
The Black-Box Simplex Architecture for
Runtime Assurance of Autonomous CPS

Usama Mehmood, Sanaz Sheikhi, Stanley Bak, Scott A. Smolka, and
Scott D. Stoller

Department of Computer Science, Stony Brook University, Stony Brook NY, USA
{umehmood, ssheikhi, sbak, sas, stoller}@cs.stonybrook.edu

Abstract. The Simplex Architecture is a runtime assurance framework
where control authority may switch from an unverified and potentially
unsafe advanced controller to a backup baseline controller in order to
maintain the safety of an autonomous cyber-physical system. In this
work, we show that runtime checks can replace the requirement to stat-
ically verify safety of the baseline controller. This is important as there
are many powerful control techniques, such as model-predictive control
and neural network controllers, that work well in practice but are dif-
ficult to statically verify. Since the method does not use internal infor-
mation about the advanced or baseline controller, we call the approach
the Black-Box Simplex Architecture. We prove the architecture is safe
and present two case studies where (i) model-predictive control provides
safe multi-robot coordination, and (ii) neural networks provably prevent
collisions in groups of F-16 aircraft, despite the controllers occasionally
outputting unsafe commands.

Keywords: Black-Box Simplex · Runtime Assurance · Autonomous CPS.

1 Introduction

Autonomous cyber-physical systems (CPS) have the potential to transform vital
domains such as transportation, health-care, and energy management. As these
systems perform complex functions, they often require complex designs. More-
over, since autonomous CPS interact with the physical world, they are typically
safety-critical. Formal analysis, however, can be difficult for complex systems.

In the development of such CPS, powerful control techniques such as model-
predictive control and deep reinforcement learning are increasingly being used
instead of traditional controller design techniques. Such trends exacerbate the
safety verification problem. Additionally, there is increasing interest in systems
that can learn in the field, changing their behaviors based on observations. Clas-
sical verification strategies are poorly suited for such designs.

One approach for dynamically providing safety for systems with complex and
unverified components is runtime assurance [9], where the state of the plant is
monitored at runtime to mitigate possible imminent violations of formal prop-
erties. A well-known runtime assurance technique is the Simplex Control Archi-
tecture [36,37], which has been applied to a wide range of systems [10,30,32]. In

2 U. Mehmood et al.

Advanced
Controller

Baseline
Controller

Decision
Module

Sensor
Data

Command
Command

Plant
+

Low-Level
Controller

(a) Traditional Simplex Architecture

Advanced
Controller

Lookahead
Baseline
Controller

Command
Command
Sequence

Command

Plant
+

Low-Level
Controller

Decision Module
Stored

Command
Sequence

Sensor
Data

(b) Black-Box Simplex Architecture

Fig. 1: The Black-Box Simplex Architecture guarantees safety despite a black-
box advanced controller and a black-box baseline controller.

the original Simplex Architecture, shown in Figure 1(a), the baseline controller
(BC) and the decision module (DM) are part of the trusted computing base. The
DM monitors the state of the system and switches control from the advanced
controller (AC) to the BC if using the former could result in a safety violation
in the near future. The original Simplex Architecture requires creating a prov-
ably safe BC, which can be difficult. In this work, we eliminate this requirement
through a greater reliance on runtime verification.

In the proposed Black-Box Simplex Architecture (BSA), shown in Figure 1(b),
the BC (now referred to as the Lookahead Baseline Controller (LBC)), no longer
needs to be statically verified, and can even be incorrect. The tradeoff is that
the DM performs more extensive runtime checking and stores backup command
sequences from previous computation steps. The DM performs simulation or
reachability analysis based on a known system model. If the DM’s computation
time is too large, BSA keeps the system safe by switching control to a stored
command sequence generated at an earlier step by the LBC and checked for
safety by the DM. The specifics of the approach will be discussed in Section 2.

We prove two theorems about this architecture: (i) safety is always guar-
anteed, and (ii) when the baseline and advanced controllers perform well (to
be formally defined in Section 2), the architecture is transparent: the advanced
controller appears to have full control of the system. The practicality of these as-
sumptions and the utility of the BSA architecture itself is demonstrated through
two significant case studies. In the first, a multi-robot coordination system uses
a BC based on a model-predicative control algorithm with a potential-field ap-
proach for collision avoidance. Such a setup is difficult to statically verify as it
depends on the online solution of a nonlinear optimization problem. In the sec-
ond, a mid-air collision avoidance system for groups of F-16 aircraft is created
from imperfect logic encoded in neural networks. A preview of the second case
study is shown in Figure 2, where directly using the neural networks causes a col-
lision (left), but the Black-Box Simplex approach safely navigates the scenario,
resulting in an emergent maneuver similar to a roundabout (right).

The rest of the paper is organized as follows. Section 2 presents a formal
definition of the Black-Box Simplex Architecture, including proofs of safety and
transparency. Section 3 features two case studies implementing the architecture.
Section 4 discusses related work and Section 5 offers our concluding remarks.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 3

(a) Original System (unsafe, the two red
aircraft collide)

(b) Black-Box Simplex (safe, snapshot
shown at closest distance)

Fig. 2: Black-Box Simplex safely navigates complex scenarios. In the 15-aircraft
case, all aircraft cross the circle while maintaining a 1500 ft separation distance.

2 Black-Box Simplex

The traditional Simplex Architecture, shown in Figure 1(a), preserves the safety
of the system while permitting the use of an unverified AC. It does this by using
the AC in conjunction with a verified BC and a verified DM. The DM cannot
simply check if the next state is safe, as cyber-physical systems have inertia and
it may be too late to take corrective action. Rather, the verified design of a
Simplex system usually requires offline reasoning with respect to a trusted BC
and the system dynamics.

If the system dynamics are linear and the admissible states are defined with
linear constraints, a state-feedback BC and a DM can be synthesized by solving a
linear matrix inequality [36]. If the system dynamics or constraints are nonlinear,
however, there is no direct approach to create a trusted BC and DM. This
prevents more widespread use of the traditional Simplex Architecture.

The proposed Black-Box Simplex Architecture removes the requirement that
the BC is statically verified, allowing provable safety with both an unverified AC
and an unverified BC. Its architecture is shown in Figure 1(b). Apart from elim-
inating the need to establish safety of the BC, BSA differs from the traditional
Simplex Architecture in other important ways. First, the AC shares its com-
mand with the LBC instead of passing it directly to the DM. Second, the LBC
uses this command as the starting point of a candidate safe command sequence.
(Sanaz: inconsistant with section 3.2)

Candidate command sequences may be generated using state-of-the-art con-
troller designs, including neural networks trained with reinforcement learning or
MPC. Note that a candidate command sequence is not guaranteed to be safe
until it is verified by the DM through a runtime check. Specifically, the DM
checks safety of the LBC’s candidate command sequence, rejecting it if safety is
not ensured. The DM checks safety by running simulations (rollouts) for deter-
ministic systems; for systems with uncertainty, it performs online reachability
computation [21,4,2]. BSA does not fail if the DM cannot finish the computation

4 U. Mehmood et al.

in time. Rather, it aborts the computation and switches to a backup command
sequence that continues to ensure system safety. It can subsequently switch back
to the AC when the runtime checks finish in time.

As long as the AC drives the system through states from which the LBC
can recover, it continues to actuate the system. However, if the LBC fails to
compute a candidate command sequence that maintains safety—due to a fault
of the unverified AC or the unverified BC, or due to excessive computation time
for any of the components—the DM can still recover the system using the safe
command sequence from the previous step. Note that the DM does not generate
any command sequences. It only performs runtime checks and stores command
sequences to maintain a safe backup plan at all times.

The applicability of BSA depends on the feasibility of two system-specific
steps: (i) constructing candidate command sequences and (ii) proving their safety
at runtime. For some systems, a safe command sequence can simply bring the
system to a stop. An autonomous car, for example, could have a safe command
sequence that steers the car to the side of the road and then stops. A safe se-
quence for a drone might direct it to the closest emergency landing location. For
an rapidly-moving autonomous fixed-wing aircraft swarm, a safe sequence could
fly all aircraft in non-intersecting circles to allow time for human intervention.
Proving safety of a given command sequence can also be challenging and depends
on the system dynamics. For nondeterministic systems, this could involve per-
forming reachability computations at runtime [21,4,2]. Such techniques assume
an accurate system model is available in order to compute reachable sets. Notice
that traditional offline control theory also requires this assumption, so we do not
view it as overly burdensome.

In BSA, although both controllers are unverified, we do not combine them
into a single unverified controller. This allows for a logical separation of concerns,
where the AC focuses on making progress on the mission, and the BC focuses
on generating safe backup plans.

2.1 Formal Definition of Black-Box Simplex

We formalize the behavior and requirements for the components of the Black-Box
Simplex Architecture in order to prove properties about the system’s behavior.

Plant Model. We consider discrete-time plant dynamics, modeled as a func-
tion

f(xi︸︷︷︸
state

, ui︸︷︷︸
input

, wi︸︷︷︸
disturbance

) = xi+1︸︷︷︸
next state

(1)

where i ∈ Z+ is the time step, xi ∈ X is the system state, ui ∈ U is a control
input command, and wi ∈ W is an environmental disturbance. We sometimes
also consider a deterministic version of the system, where the disturbance wi

can be taken to be zero at every step.
Admissible States. The system is characterized by a set of operational

constraints which include physical limits and safety properties. States that satisfy
all the operational constraints are called admissible states.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 5

Candidate Command Sequences. A single-input command is some u ∈
U , and a k-length sequence of commands is written as u ∈ Uk. The length of
a sequence can be written as ulen = k, where we also can take the length of a
single command, ulen = 1. We use Python-like notation for subsequences, where
the first element in a sequence is u[0], and the rest of the sequence is u[1:].

Decision Module. The decision module in Black-Box Simplex stores a com-
mand sequence s, which we sometimes call the decision module’s state. The be-
havior of the DM is defined through two functions, dmupdate and dmstep. The
dmupdate function attempts to modify the DM’s stored command sequence:

dmupdate(x︸︷︷︸
state

, s︸︷︷︸
cur seq

, t︸︷︷︸
proposed seq

) = s′︸︷︷︸
new seq

(2)

where if s′ = t then we say that the proposed command sequence is accepted ;
otherwise s′ = s and we say that it is rejected. Correctness conditions on dmupdate

are given in Section 2.2. Note that the DM will accept a safe command sequence
from the AC even if the previous command sequence from the AC was rejected
because it was unsafe. As in [28], we refer to this as reverse switching, since it
switches control back to the AC.

The dmstep function produces the next command u to apply to the plant, as
well as the next step’s command sequence s′ for the DM:

dmstep(s̄︸︷︷︸
cur seq

) = (u︸︷︷︸
next input

, s′︸︷︷︸
next seq

) (3)

where u = s[0] and s′ is constructed from s̄ by removing the first command (if
the current sequence s has only one command then it is repeated):

s′ =

{
s if slen = 1

s[1:] otherwise

Controllers. The AC and LBC are defined using functions of the system
state. In particular, the AC is defined by a function ac(x) = u, where u ∈ U is a
single command. BSA’s look-ahead baseline controller is defined by lbc(x) = u,
where u ∈ Uk is a k-length command sequence. The LBC outputs candidate
command sequences that start with a given command, specifically, the command
proposed by the AC. These can be defined with a function lbcac(x) = u, with
u[0] = ac(x). We generally drop the subscript on lbc, as it is clear from context.

Execution Semantics. At step i, given system state xi and DM state si,
the next system state xi+1 and next DM state si+1 are computed with the
following sequence of steps: (1) zi = ac(xi); (2) ti = lbc(xi), with ti[0] = zi;
(3) s′i = dmupdate(xi, si, ti); (4) (ui, si+1) = dmstep(s′i); (5) xi+1 = f(xi, ui, wi),
for some disturbance wi ∈ W.

2.2 Safety and Transparency Theorems

We define several relevant concepts and then state and prove safety and trans-
parency theorems for Black-Box Simplex.

6 U. Mehmood et al.

Definition 1 (Safe System Execution). A system execution is called safe if
and only if the system state is admissible at every step.

Safety can be ensured by following a permanently safe command sequence from
a given system state.

Definition 2 (Permanently Safe Command Sequence). Given state xi, a
k-length permanently safe command sequence si ∈ Uk is one where the state
xj is admissible at every step j ≥ i, where (ui, si+1) = dmstep(si), and xi+1 =
f(xi, ui, wi), for every choice of disturbance wi ∈ W.

That is, the system state will remain admissible when applying each command in
the sequence si, and then repeatedly using the last command forever, according
to the semantics of dmstep. More general definitions of permanently safe com-
mand sequences could be considered, such as repeating a suffix rather than just
the last command. For simplicity we do not explore this here.

We define recoverable commands to be commands that result in states that
have permanently safe command sequences.

Definition 3 (Recoverable Command). Given state xi, a recoverable com-
mand u is one where there exists a permanently safe command sequence from
xi+1, where xi+1 = f(xi, u, wi), for every choice of disturbance wi ∈ W.

Optimal decision modules are defined by requiring the dmupdate function accept
all sequences that can guarantee future safety.

Definition 4 (Optimal Decision Module). An optimal decision module has
a dmupdate function that accepts t at state x if and only if t is a permanently safe
command sequence starting from x.

A correct DM is one which only accepts sequences that can guarantee future
safety. A correct DM, by this definition, could reject every command sequence.

Definition 5 (Correct Decision Module). A correct decision module has
a dmupdate function that accepts t at state x only if t is a permanently safe
command sequence starting from x.

The role of the BC is to try to keep the system safe. An optimal look-ahead
BC can be defined as one that always produces a permanently safe command
sequence when it exists. This is optimal in the sense that during system execu-
tion, it allows the DM to override the AC as infrequently as possible while still
guaranteeing safety. This notion of optimality can be defined with respect to a
specific advanced controller ac.

Definition 6 (Optimal Look-Ahead Baseline Controller). Given state x
with u = ac(x), if there exists a permanently safe command sequence s from x
with s[0] = u, then an optimal look-ahead baseline controller will always produce
a permanently safe command sequence t, with t[0] = u.

Note that t may differ from s, as there can be multiple permanently safe com-
mand sequences from the same state.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 7

Theorem 1 (Safety). Given initial state x0 along with an initial permanently
safe command sequence s0, if the decision module is correct, then the system’s
execution is safe regardless of the outputs of the advanced controller ac and look-
ahead baseline controller lbc.

Proof. The command executed at each step comes from the state of the decision
module si, which maintains the invariant that si is always a permanently safe
command sequence from the current system state xi. The dmupdate function can
only replace a permanently safe command sequence with another permanently
safe command sequence. Since initially, s0 is permanently safe, then by induction
on the step number, the decision module’s command sequence at every step is
permanently safe, and so the system’s execution is safe.

Although safety is important, achieving only safety is trivial, as a decision
module can simply reject all new command sequences. A runtime assurance
system must also have a transparency property, where the advanced controller
retains control in sufficiently well-designed systems.

Theorem 2 (Transparency). If (i) from every state xi encountered, the out-
put of the advanced controller ac(xi) = zi is a recoverable command, (ii) the
look-ahead baseline controller is optimal, and (iii) the decision module is opti-
mal, then the input command used to actuate the system at every step is the
advanced controller’s command, zi.

Proof. The proof proceeds by stepping through an arbitrary step i of the execu-
tion semantics defined in Section 2.1. Since the output of the advanced controller
ac(xi) = zi is assumed to be recoverable, there exists a permanently safe com-
mand sequence from xi that starts with zi. By the definition of an optimal
look-ahead baseline controller, since there exists a permanently safe command
sequence, the output lbc(xi) = t must also be a permanently safe command
sequence, with t[0] = zi as required by the definition of a look-ahead baseline
controller. In step (3) of the execution semantics, dmupdate(xi, si, ti) = s′i. Since
t is a permanently safe command sequence and the decision module is optimal,
the command sequence will be accepted by the decision module, and so s′i = t.
Step (4) of the execution semantics produces ui, which is the first command in
the sequence t. As shown before, this command is equal to zi, which is used in
step (5) of the execution semantics to actuate the system. This reasoning applies
at every step, and so the advanced controller’s command is always used.

Discussion. There are several practical considerations with the described ap-
proach. For example, the black-box controllers may not only generate unsafe
commands, but a controller implementation may fail to generate a command
at all, for example, entering an infinite loop. To account for such behaviors, a
runtime cap can be used with a default command sequence assumed if the DM
receives no input. For increased protection, the black-box controllers can be iso-
lated on dedicated hardware [3] so that they do not, for example, crash a shared
operating system. Also, the DM’s analysis of the command sequence is nontriv-
ial and could involve a runtime reachability computation. If this may take too

8 U. Mehmood et al.

long, we again could use a runtime cap. This means that the practicality of the
architecture depends on the efficiency of runtime reachability methods, an active
area of research orthogonal to this work.

Another consideration is the feasibility of coming up with permanently safe
command sequences. For systems where landing or coming to a stop is considered
safe, remaining there forever will be permanently safe. Other approaches, which
we use the case studies in the next section, rely on geometric arguments to
show permanent safety. Methods from control theory could also be used for this,
such as computing forward invariant sets [16] or using a locally stable controller.
For example, using the indirect method of Lyapnuov, a closed-loop system’s
equilibrium point x∗ can be proven to be stable using linearization, along with
conservative bounds on its basin of attraction [27]. The BC would then strive
to get the system into the basin of attraction of x∗, and then use the locally
stable controller to ensure indefinite future safety. Directly using the locally
stable controller as the BC, however, would be overly conservative, as it would
not allow the system to leave the (potentially small) basin of attraction.

3 Case Studies

In this section, we apply the approach to two case studies: a multi-robot co-
ordination system, and a mid-air collision avoidance system for groups of F-16
aircraft.

3.1 Multi-Robot Coordination

We consider a multi-agent system (MAS), indexed by M = {1, ..., n}, of planar
robots modeled with discrete-time dynamics of the form:

pi(k + 1) = pi(k) + dt · vi(k), |vi(k)| < vmax

vi(k + 1) = vi(k) + dt · ai(k), |ai(k)| < amax

(4)

where pi, vi, ai ∈ R2 are the position, velocity and acceleration of agent i,
respectively, at time step k, and dt ∈ R+ is the time step. The magnitudes
of velocities and accelerations are bounded by vmax and amax, respectively. The
acceleration ai is the control input for agent i. The combined state of all agents is
denoted as x = [pT1 , v

T
1 , ..., p

T
n , v

T
n]

T , and their accelerations are a = [aT1 , ..., a
T
n]

T .
In the initial configuration, the agents are equally spaced on the boundary of

a circle and are at rest. Agent i’s goal is to reach a target location ri, located on
the opposite side of the circle. The initial configuration of the MAS is shown in
Figure 3(a), where the agents and their target locations are represented as red
dots and blue crosses, respectively. The safety property is absence of inter-agent
collisions. A pair of agents is considered to collide if the Euclidean distance be-
tween them is less than a non-negative threshold dmin. Thus, the safety property
is that ∥pi − pj∥ > dmin for all pairs of agents i, j ∈ M with i ̸= j.

Both the AC and the BC are designed using centralized Model Predictive
Control (MPC), which produces command sequences as part of the solution of

The Black-Box Simplex Architecture for Runtime Assurance of CPS 9

-8 -4 0 4 8

-8

-4

0

4

8

(a) Initial configura-
tion, k = 1

-8 -4 0 4 8

-8

-4

0

4

8

(b) k = 10

-8 -4 0 4

-8

-4

0

4

8

(c) BC fails, k = 11

-12 -8 -4 0 4 8 12

-12

-8

-4

0

4

8

(d) Final configura-
tion, k = 32

Fig. 3: Simulation of the MAS with 7 robots. The DM performs system recovery
after the BC produces an unsafe command sequence. The BC’s proposed path
is shown in part (c) at k = 11, where the two dotted red lines intersect, indicat-
ing the future paths of the agents cross. We represent current positions as red
dots, future positions corresponding to the safe/unsafe command sequences as
green/blue dots, velocities as blue lines, and agent trajectories as grey curves.

a nonlinear optimization problem. For collision avoidance, we use a potential
field formulation [19] in both the AC and BC. While the AC tries to reach the
target positions on the opposite side of the circle, the BC has a simpler goal
of having each agent leave the circle. Note that numerical methods for global
nonlinear optimization, such as MATLAB’s fmincon used in our implementation,
do not provide a guaranteed optimal solution. To create unsafe variants of the
controllers, we simply limit the number of iterations used for optimization.

The AC only outputs the first command of the command sequence, whereas
the BC produces the full command sequence. Both the AC and the BC are
high-level controllers that produce accelerations. In our simulations, we do not
model the low-level controller; the plant dynamics work directly with the acceler-
ations. When implementing our approach on physical robots, a trusted low-level
controller will map the desired acceleration commands to actuator inputs.

A centralized MPC controller produces a command sequence s of length T ,
where T is the prediction horizon, and each command s[i] contains the acceler-
ations for all agents to use at step i.

The centralized MPC controller solves the following optimization problem at
each time step k:

argmin
a(k|k),...,a(k+T−1|k)

T−1∑
t=0

J(k + t | k) + λ ·
T−1∑
t=0

∥a(k + t | k)∥2 (5)

where a(k + t | k) and J(k + t | k) are the predictions made at time step k for
the values at time step k + t of the accelerations and the centralized (global)
cost function J , respectively. The first term is the sum of the centralized cost
function, evaluated for T time steps, starting at time step k. It encodes the
control objective. The second term, scaled by a weight λ > 0, penalizes large
control inputs.

10 U. Mehmood et al.

Advanced controller. The centralized cost function Jac for the AC contains
two terms: (1) a separation term based on the inverse of the squared distance
between each pair of agents (potential field term for collision avoidance); and
(2) a target seeking term based on the distance between the agent and its target
location.

Jac = ωs

∑
i>j

1

∥pi − pj∥2
+ ωt

∑
i

∥pi − ri∥2 (6)

where ωs, ωt ∈ R are the weights of the separation term and target seeking
terms. The separation term promotes inter-agent spacing but does not guaran-
tee collision avoidance. The AC generates a command sequence by solving the
optimization problem in Eq. 5, with J replaced by Jac. The first command in
that sequence is the AC’s command; it is passed to the LBC.

Baseline controller. The centralized cost function Jbc for the BC contains
two terms. As in Eq. 6, the first term is the separation term (collision avoidance
based on potential fields). The second term is a divergence term which forces
the agents to move out of the circle by aligning their velocities with rays radially
pointing out of the center of the circle.

Jbc = ωs

∑
i>j

1

∥pi − pj∥2
+ ωd

∑
i

(
1− (pi − c) · vi

|pi − c||vi|

)
(7)

where ωs, ωd ∈ R are the weights of the separation term and the divergence
term, and c is the center of the circle containing the initial configuration of the
robots and their target locations. The control law for the BC is Eq. 5, with J
replaced by Jbc. A zero acceleration is appended to the end of the BC’s command
sequence to help establish collision freedom for all future time steps.

Decision module. The LBC combines accelerations from the AC and the
BC, producing the command sequence t = [ac(x), bc(x′), 0⃗], where x′ is the next
state after executing ac(x) in state x. The function dmupdate(x, s, t) accepts the
proposed command sequence t if and only if t is a permanently safe command
sequence. For this system, a command sequence t is considered permanently safe
in a state x if it satisfies the following two conditions. First, for all states in the
state trajectory obtained by executing t from x, the Euclidean distance between
every pair of distinct agents is at least dmin. Second, in the final state, for all pairs
of distinct agents, the rays extending from their positions and in the directions
of their velocities do not intersect. Any pair of agents that satisfies the second
condition will not collide in the future, since the last command in the sequence t
has zero acceleration. The initial permanently safe command sequence is a zero
acceleration for all agents, as the agents start at rest.

MPC Parameters. In our case study, we use the following MPC param-
eters: dt = 0.3 sec, dmin = 1.7, amax = 1.5, and vmax = 2. The length of the
prediction horizon for MPC is Tac = Tbc = 10.

Successful Recovery After Failure.We first consider seven robotic agents
initialized on a circle centered at the origin, with a radius of 10. The initial state
of the system is shown in Figure 3(a). At k = 11, the BC produces an unsafe
command sequence. The state trajectory corresponding to the unsafe sequence

The Black-Box Simplex Architecture for Runtime Assurance of CPS 11

-8 -4 0 4 8

-8

-4

0

4

8

Fig. 4: Stress test of robotic MAS with 12 robots reaching their targets. Trajec-
tory segments where stored command sequences are used are shown in blue.

is shown in blue. As shown in Figure 3(c), the final paths of the two agents
corresponding to the larger red dots cross after simulating the current state
forward with the unsafe sequence. Hence, at k = 11, the DM rejects the proposed
command sequence and shifts control to the previous safe command sequence,
which safely recovers the system. Here, we purposefully did not return control
to the AC to demonstrate how the stored command sequence keeps the agents
safe 1.

Reverse Switching Scenario. We stress-tested the multi-robot system by
initializing 12 agents on a circle of radius 10. The path of the agents is shown
in Figure 4. There are 10 instances where the DM rejects the AC’s proposed
command sequence and instead uses the stored command sequence. Nonetheless,
all agents reach their target locations without colliding, maintaining a minimum
separation of 1.724 between any pair of agents2.

Handling Uncertainty. We next investigate the DM’s runtime overhead
when there is uncertainty in the robot’s state or the dynamics. The former case
arises when the sensors used to determine the positions and velocities are subject
to sensor noise. The latter case could be used to account for modeling errors,
through disturbances on the positions and velocities at each step.

We continue to use the same MPC strategy as before; thus, the controllers
ignore the uncertainty when generating proposed command sequences. Only the
logic used by the DM to accept or reject command sequences is modified to ac-
count for uncertainty. We examine the scenario shown before in Figure 3(b). To
account for the uncertainty, we perform an online reachability computation. To
do this, we use efficient methods for reachability for linear systems based on zono-
topes [11], which we implement in Python. Briefly, a zonotope is a set of states
represented as an affine transformation of a unit box. The unit box is associated
with a number of generator vectors, where each generator vector corresponds to
one dimension of the box. The computational efficiency of propagating sets over
time using zonotopes relates to the number of generators. Each agent has four

1 A video of the simulation is available at https://youtu.be/bcVJBkGgnxA.
2 A video of the simulation is available at https://youtu.be/qmk31jS6B2Y.

https://youtu.be/bcVJBkGgnxA
https://youtu.be/qmk31jS6B2Y

12 U. Mehmood et al.

(a) Reachable States with Sensor Error (b) Reachable States with Disturbances

Fig. 5: Zonotope reachability computes future states with uncertainty.

state variables, two for position and two for velocity. The composed system with
seven agents has 28 state variables.

In the situation shown in Figure 5(a), the current state is assumed to have
uncertainty independently in both position and velocity with an L2 norm of 0.1.
We use a 16-sided polygon to bound this uncertainty. In the plot, the determin-
istic simulation is given, along with black polygons for each agent that show the
states that might be reachable at each step due to the sensor uncertainty. The un-
certainty in the velocity causes the set to expand over time, since the open-loop
command sequence does not attempt to compensate for the uncertainty. The
zonotope representation of the composed system needs 112 generator vectors to
represent the initial states, which remains constant at every time step.

In the situation shown in Figure 5(b), the initial state has very little error, but
the dynamics is modified to have disturbances at each step. For each component
of each agent’s position and velocity, we allow an external disturbance value
to be added in the range [−0.02, 0.02]. Since each agent has four independent
disturbances, the zonotope representation of the composition will have 28 new
generators added at each step. After 12 steps, the final zonotope will have a total
of 364 generators.

Runtime. To measure runtime, we used a standard laptop with a 2.70 GHz
Intel Xeon E-2176M CPU and 32 GB RAM. The method is fast. For the case
of sensor uncertainty, computing the box bounds of the reachable set at all the
steps takes about 1.5 milliseconds. With uncertainty, even though the number
of generators grows over time, it is not large enough to significantly affect the
runtime. The computation with disturbances requires about 2 milliseconds to
complete. We believe such execution times are sufficiently fast for use in the
decision module.

3.2 Multi-Aircraft Collision Avoidance

Our second evaluation system guarantees collision avoidance for groups of air-
craft. We use a full six-degrees-of-freedom F-16 simulation model [14], based on

The Black-Box Simplex Architecture for Runtime Assurance of CPS 13

dynamics taken from an Aerospace Engineering textbook [38]. Each aircraft is
modeled with 16 state variables, including positional states, positional velocities,
rotational states, rotational velocities, an engine thrust lag term, and integrator
states for the low-level controllers. These controllers actuate the system using
the typical aircraft control surfaces—the ailerons, elevators, and rudder—as well
as by setting the engine thrust. The system evolves continuously with piece-wise
nonlinear differential equations, where the function that computes the derivative
given the state is provided as Python code. In order to match the discrete-time
plant model in Definition 1, we periodically select a control strategy with a fre-
quency of once every two seconds. The model further includes high-level autopilot
logic for waypoint following, which we reuse in the advanced controller.

For the collision-avoidance baseline controller, our controller is based on the
ACAS Xu system designed for collision avoidance in unmanned aircraft [20].
While the original system was designed using a partially observable Markov
decision process (POMDP), the resultant controller was encoded in a large look-
up table that used hundreds of gigabytes of storage [15]. To make the system
more practical, one early approach considered a downsampling process followed
by a lossy compression using neural networks [17,15]. We use these downsampled
neural networks as the BC and refer to this as the original system.

The system issues horizontal turn advisories based on the relative positions
of two aircraft, an ownship and an intruder. The system is similar to Simplex,
where the output can be either clear-of-conflict, where any command is allowed,
or an override command that is one of weak-left, weak-right, strong-left or strong-
right. We adapt this system to the multi-aircraft case by having each aircraft
run an instance of the system against every other aircraft, using the closest turn
advisory as the output.

To create command sequences, the BC repeatedly advances the plant model
and re-runs the collision avoidance system in a closed-loop fashion until the
generated command sequence is permanently safe. To check whether a generated
command sequence is permanently safe, the DM checks that (i) each aircraft’s
state stays within the model limits (e.g., no aircraft enters a stall), (ii) all aircraft
obey the safety distance constraint at all times, and (iii) the execution ends in a
state where the roll angle of each aircraft has been small (less than 15 degrees)
and the distances between all pairs of aircraft has been increasing consecutively
for several seconds. If all aircraft continue to fly straight and level from such a
configuration, their distance would increase and no collisions would occur in the
future.

As with the multi-robot scenario, we examine cases where the initial aircraft
state x0 has all aircraft starting evenly-spaced, facing towards the center of a
circle with a given initial diameter. Each aircraft has an initial velocity of 807
ft/sec and an initial altitude of 1000 ft, both of which are maintained throughout
the maneuver by the lower-level controllers. The AC commands each aircraft to
fly towards a waypoint past the opposite side of the circle, which would cause
a collision at the center. The safety property requires maintaining horizontal
separation. The near mid-air collision cylinder (NMAC) uses a safe horizon-

14 U. Mehmood et al.

tal separation of 500 ft [24], although we will vary this in our evaluation. For
the initial permanently safe command sequence s0, we have each aircraft fly in
clockwise circles forever, which avoids collisions.

In addition to the AC being unsafe, the baseline controller should not be fully
trusted for many reasons. The original POMDP formulation was not proven
formally correct, not to mention the downsampling and lossy neural network
compression. While some research has examined proving open-loop properties
for the neural network compression [17,5,6], these do not imply closed-loop colli-
sion avoidance. Further, we use a multi-aircraft adaptation of the system, which
could also lead to problems. Although aspirationally, the system should han-
dle up to 30 intruders [15], in practice most analysis has been performed on two
aircraft scenarios. Finally, the intended physical system response to the collision-
avoidance commands is that weak-left and weak-right should cause turning at
1.5 degrees per second, whereas strong-left and strong-right turn at 3.0 degrees
per second [15]. However, turning an aircraft in the F-16 model (as well as in
the real world) is not an instantaneous process, and requires first performing a
roll maneuver before the heading angle begins to change. For these reasons, the
BC in this scenario is also an unverified component, and we will show scenarios
where it misbehaves. Nonetheless, we will compose the incorrect AC with the
incorrect BC to create a safe collision-avoidance system by using BSA.

We now elaborate on three scenarios: (i) a three aircraft case, which shows the
safety of the system despite unsafe outputs, (ii) a four aircraft case, which shows
the increased transparency of BSA, and (iii) a 15 aircraft case, which shows safe
navigation of a complex scenario. Also, a seven aircraft case is presented in the
appendix of extended report 3, which shows the safety condition can be easily
customized.

In all the plots in this section, we show snapshots at the time when the
distance between the two closest aircraft is smallest. The two red aircraft are
the closest pair, and their distance is printed in the bottom right of each figure.
The solid line shows the historic path of each aircraft, and the dotted line is the
future trajectory.

Three Aircraft Scenario. The original collision avoidance system was de-
signed with two aircraft in mind, an ownship and an intruder. We adapted it to
the multi-aircraft case, but this mismatch between the system design assump-
tions and usage scenario can lead to problems. In Figure 6, we show such a
scenario, where the initial circle diameter is 90,000 ft. In Figure 6(a), the mini-
mum distance between the top two aircraft is 175 ft, violating the near mid-air
collision safety distance. The other two subplots show the system using BSA with
a safety distance of 1500 ft; the minimum separation is 1602 ft, which satisfies
the constraint.

Four Aircraft Scenario. Figure 7 shows a four-aircraft scenario using an
initial circle diameter of 70,000 ft. In this case, both designs have safe executions.
Using the original system leads to a minimum separation of 5342 ft, whereas the
minimum separation with Black-Box Simplex is 1600 ft, much closer to the 1500

3 https://arxiv.org/abs/2102.12981

https://arxiv.org/abs/2102.12981

The Black-Box Simplex Architecture for Runtime Assurance of CPS 15

(a) Original System (b) Black-Box Simplex (c) Black-Box Simplex
(Zoomed In)

Fig. 6: Black-Box Simplex is safe. In the three-aircraft case, the original system
fails, whereas BSA maintains the 1500 ft separation.

ft safety-distance constraint used in the DM. Although both systems are safe,
from the plots it is clear that the Black-Box Simplex version is more transparent,
in the sense that it produces smaller modifications to the direct-line trajectories
commanded by the AC.

Fifteen Aircraft Scenario. Finally, we demonstrate the system’s ability to
safely navigate complex scenarios. For this, we use a 15 aircraft scenario, with
an initial circle diameter of 90,000 ft. With 15 aircraft, the composed system
has 240 real-valued state variables, each of which evolves according to piece-
wise nonlinear differential equations. The plot for this system was shown in the
introduction in Figure 2. While the original system is unsafe, Black-Box Simplex
has a minimum separation of 1500.5 ft, just above the 1500 ft safety constraint
used in the DM. Another surprising observation is that in some of the cases,
such as this 15-aircraft case and the seven-aircraft case shown in the appendix
of the extended report3, the aircraft perform something similar to a roundabout
maneuver. This is an emergent behavior, not something explicitly hardcoded or
anticipated. A video of this case is also available online4.

Runtime. The existing implementation uses numerical integration for the
dynamics with an adaptive-step explicit Runge-Kutta scheme of order 5(4) from
Python’s scipy package. On our laptop platform with default accuracy param-
eters, this runs at about 55 times faster than real-time per aircraft.

4 Related Work

Reachability-based verification methods for black-box systems for waypoint fol-
lowing with uncertainty have been recently investigated in the ReachFlow frame-
work [21]. ReachFlow builds upon the Flow* reachability tool [8], which is un-
likely to scale to systems like the 240-variable 15-aircraft scenario.

A framework for safe trajectory planning using MILP for piecewise-linear
vehicle models is presented in [33,34]. The method relies on the ability of an
MPC controller to produce command sequences where the terminal state in the
prediction horizon is constrained to lie within a safe invariant set. This provides

4 https://youtu.be/Bhn0uqKCj7Q

https://youtu.be/Bhn0uqKCj7Q

16 U. Mehmood et al.

(a) Original System (b) Black-Box Simplex

Fig. 7: Black-Box Simplex is more transparent. For the four aircraft case, the
original system is significantly more intrusive than Black-Box Simplex, which
overrides commands just enough to guarantee the 1500 ft separation requirement.

a safe back-up command sequence for the next step in case the system fails to
find a safe sequence. The scope of this work is limited to MPC, and it is not
clear how to extend it to other types of controllers. Moreover, the conditions for
switching back from the stored return trajectory are not formalized.

In the Contingency Model Predictive Control framework [1], an MPC con-
troller maintains a contingency plan in addition to the nominal or desired plan
to ensure safety during an identified potential emergency. Like BSA, the initial
command is common to both plans. In this framework, both plans must be gen-
erated using their custom version of MPC, whereas Black-Box Simplex works
with independent baseline and advanced controllers of any design.

Similar frameworks have been considered for autonomous vehicles, using fail-
safe backup plans and reachability analysis [22]. In this case, the target was plan-
ning for autonomous vehicles where most likely trajectories are used for other
vehicles but safety can still be provided if emergency maneuvers are performed
instead. Other ideas such as Safety Net Control [35] extend the approach to
use backreachability and underapproximations of nonlinear reachable sets while
taking computation time into account.

Designing safe switching logic for a given baseline controller is related to the
concept of computing viability kernels [31] (closed controlled-invariant subsets)
in control theory. This often requires set operations which can be inefficient in
high-dimensional spaces with nonlinear dynamics, although there has been some
progress on this [18,23].

Simplex designs have also been considered that use a combination of offline
analysis with online reachability [4]. Again, though, reachability computation is
currently intractable for large nonlinear systems, and requires symbolic differ-
ential equations. Other work has used Simplex to provide safety guarantees for
neural network controllers with online retraining [29]. In these approaches, the
baseline controller must be verified ahead of time.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 17

Online simulation-based methods have also been investigated to secure power
grids from insider attacks [25]. As with this work, fast online simulation is critical,
although the goal there is system security not safe high-level control design.

The design of the MPC controllers for our multi-robot case study is similar
to Control Barrier Function methods [7,12] and Implicit Active Set Invariance
Filtering [13]. There, a runtime assurance system was used to provide mini-
mally perturbed advanced controller commands, computed using a constrained-
optimization problem. However, the optimization problem might become infea-
sible or global nonlinear optimization could perform poorly at one of the steps
at runtime, causing this method to be unsafe. With Black-Box Simplex, failure
of the baseline controller does not compromise safety.

5 Conclusions

We have presented the Black-Box Simplex Architecture, a methodology for con-
structing safe CPS from unverified black-box high-level controllers. Unlike the
classical Simplex design, the baseline controller does not need to be statically
verified and can even be incorrect. The tradeoff is that the decision module per-
forms more extensive runtime checking and stores backup command sequences
produced by the black-box baseline controller at previous time steps. The com-
plexity of runtime checking depends on the nature of the system model. For
deterministic models, simulation suffices. However, if the model has uncertainty
then we need to perform online reachability analysis.

BSA reduces the difficult problem of proving high-level safety to a simpler
problem of performance optimization: ensuring that the runtime checking com-
pletes before a decision is needed. The practicality of the approach was demon-
strated through two significant case studies, including a mid-air collision avoid-
ance system for groups of F-16 aircraft created from imperfect logic encoded
in neural networks. This case study involves a highly complex nonlinear system
with over a hundred dimensional variables and a neural-network-based controller.
Black-Box Simplex provides a feasible path for runtime verification of systems
that are otherwise unverifiable in practice.

Acknowledgement. This material is based upon work supported by National
Science Foundation (NSF) under grant numbers OIA-2134840, OIA-2040599,
CCF-1918225, CCF-1954837 and CPS-1446832, the Office of Naval Research
(ONR) under grants N000142112719 and N000142212156, and the Air Force
Office of Scientific Research (AFOSR) under award numbers FA9550-19-1-0288,
FA9550-21-1-0121, FA9550-22-1-0450. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSF, United States Air Force or the United
States Navy. An early version of this work was presented in the CAADCPS 2021
workshop under the title “Safe CPS from Unsafe Controllers” [26].

18 U. Mehmood et al.

References

1. Alsterda, J.P., Brown, M., Gerdes, J.C.: Contingency model predictive control for
automated vehicles. In: 2019 American Control Conference (ACC). pp. 717–722
(2019). https://doi.org/10.23919/ACC.2019.8815260

2. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Transactions on Robotics 30(4) (2014)

3. Bak, S., Chivukula, D.K., Adekunle, O., Sun, M., Caccamo, M., Sha, L.: The
system-level simplex architecture for improved real-time embedded system safety.
In: 2009 15th IEEE Real-Time and Embedded Technology and Applications Sym-
posium. pp. 99–107. IEEE (2009)

4. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. In: 35th IEEE Real-Time Systems Symposium (RTSS 2014). IEEE
Computer Society, Rome, Italy (Dec 2014)

5. Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint
arXiv:2109.00498 (2021)

6. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying relu neural networks. In: Proceedings of the 32nd International
Conference on Computer Aided Verification (2020)

7. Borrmann, U., Wang, L., Ames, A.D., Egerstedt, M.: Control barrier certifi-
cates for safe swarm behavior. In: Egerstedt, M., Wardi, Y. (eds.) ADHS. IFAC-
PapersOnLine, vol. 48, pp. 68–73. Elsevier (2015)

8. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: International Conference on Computer Aided Verification. pp.
258–263. Springer (2013)

9. Clark, M., Koutsoukos, X., Porter, J., Kumar, R., Pappas, G., Sokolsky, O., Lee,
I., Pike, L.: A study on run time assurance for complex cyber physical systems.
Tech. rep., Air Force Research Laboratory, Aerospace Systems Directorate (2013)

10. Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., Tiwari, A.: SOTER: A runtime
assurance framework for programming safe robotics systems. In: 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2019, Portland, OR, USA, June 24-27, 2019. IEEE (2019)

11. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Interna-
tional Workshop on Hybrid Systems: Computation and Control. Springer (2005)

12. Gurriet, T., Mote, M., Ames, A.D., Feron, E.: An online approach to active set
invariance. In: Conference on Decision and Control. IEEE (2018)

13. Gurriet, T., Mote, M., Singletary, A., Feron, E., Ames, A.D.: A scalable controlled
set invariance framework with practical safety guarantees. In: 2019 IEEE 58th
Conference on Decision and Control (CDC). pp. 2046–2053. IEEE (2019)

14. Heidlauf, P., Collins, A., Bolender, M., Bak, S.: Verification challenges in f-16
ground collision avoidance and other automated maneuvers. In: 5th International
Workshop on Applied Verification of Continuous and Hybrid Systems. EPiC Series
in Computing, EasyChair (2018)

15. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. Journal of Guidance, Control, and Dynam-
ics 42(3), 598–608 (2019)

16. Kapinski, J., Deshmukh, J.: Discovering forward invariant sets for nonlinear dy-
namical systems. In: Interdisciplinary topics in applied mathematics, modeling and
computational science, pp. 259–264. Springer (2015)

https://doi.org/10.23919/ACC.2019.8815260

The Black-Box Simplex Architecture for Runtime Assurance of CPS 19

17. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An effi-
cient SMT solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification. pp. 97–117. Springer (2017)

18. Kaynama, S., Maidens, J., Oishi, M., Mitchell, I.M., Dumont, G.A.: Computing
the viability kernel using maximal reachable sets. In: Proceedings of the 15th ACM
international conference on Hybrid Systems: Computation and Control. pp. 55–64
(2012)

19. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In:
Autonomous robot vehicles, pp. 396–404. Springer (1986)

20. Kochenderfer, M.J., Chryssanthacopoulos, J.: Robust airborne collision avoidance
through dynamic programming. Massachusetts Institute of Technology, Lincoln
Laboratory, Project Report ATC-371 130 (2011)

21. Lin, Q., Chen, X., Khurana, A., Dolan, J.: Reachflow: An online safety assurance
framework for waypoint-following of self-driving cars. In: 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (2020)

22. Magdici, S., Althoff, M.: Fail-safe motion planning of autonomous vehicles. In:
2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC). pp. 452–458. IEEE (2016)

23. Maidens, J.N., Kaynama, S., Mitchell, I.M., Oishi, M.M., Dumont, G.A.: La-
grangian methods for approximating the viability kernel in high-dimensional sys-
tems. Automatica 49(7), 2017–2029 (2013)

24. Marston, M., Baca, G.: ACAS-Xu initial self-separation flight tests. Tech. rep.,
NASA (2015)

25. Mashima, D., Chen, B., Zhou, T., Rajendran, R., Sikdar, B.: Securing substa-
tions through command authentication using on-the-fly simulation of power sys-
tem dynamics. In: IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (2018)

26. Mehmood, U., Bak, S., Smolka, S.A., Stoller, S.D.: Safe cps from unsafe controllers.
In: Proceedings of the Workshop on Computation-Aware Algorithmic Design for
Cyber-Physical Systems. pp. 26–28 (2021)

27. Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A mathematical introduction to
robotic manipulation. CRC press (1994)

28. Phan, D., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural
simplex architecture. In: NASA Formal Methods Symposium (NFM 2020) (2020)

29. Phan, D., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural
simplex architecture. In: NASA Formal Methods Symposium (NFM 2020). pp.
97–114. Springer (2020)

30. Phan, D., Yang, J., Grosu, R., Smolka, S.A., Stoller, S.D.: Collision avoidance for
mobile robots with limited sensing and limited information about moving obstacles.
Formal Methods in System Design 51(1), 62–86 (2017)

31. Saint-Pierre, P.: Approximation of the viability kernel. Applied Mathematics and
Optimization 29(2), 187–209 (1994)

32. Schierman, J., DeVore, M.D., Richards, N., Gandhi, N., Cooper, J., Horneman,
K.R., Stoller, S., Smolka, S.: Runtime assurance framework development for highly
adaptive flight control systems. Report AD1010277, Defense Technical Information
Center (2015)

33. Schouwenaars, T., Valenti, M., Feron, E., How, J.: Implementation and flight test
results of MILP-based UAV guidance. 2005 IEEE Aerospace Conference pp. 1–13
(2005)

34. Schouwenaars, T.: Safe trajectory planning of autonomous vehicles. Ph.D. thesis,
Massachusetts Institute of Technology (2006)

20 U. Mehmood et al.

35. Schurmann, B., Klischat, M., Kochdumper, N., Althoff, M.: Formal safety net
control using backward reachability analysis. IEEE Transactions on Automatic
Control (2021)

36. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture for safe online
control system upgrades. In: Proceedings of the 1998 American Control Conference.
ACC (IEEE Cat. No. 98CH36207). vol. 6. IEEE (1998)

37. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001).
https://doi.org/10.1109/MS.2001.936213

38. Stevens, B.L., Lewis, F.L., Johnson, E.N.: Aircraft control and simulation. John
Wiley & Sons (2015)

https://doi.org/10.1109/MS.2001.936213

	The Black-Box Simplex Architecture for Runtime Assurance of Autonomous CPS

