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P luto’s orbit is significantly eccentric and its orbit plane
is inclined 17 degrees to the solar system’s invariable

plane. Its eccentric orbit overlaps that of Neptune’s, so much
so that for approximately two decades of its 248 year long
orbital period it is closer to the Sun than is Neptune; Pluto’s
most recent perihelion passage closer to the Sun than Neptune
was observed during the period 1979 to 1999. In general,
most such planet-crossing orbits have very short dynamical
stability time because planetary close encounters cause large,
destabilizing perturbations. Numerical propagation of Pluto’s
orbit shows that Pluto avoids close encounters with Neptune
due primarily to two types of librations of its perihelion (see,
e.g., 1). [“Libration” is a term used in celestial mechanics
for the oscillation of an angular variable or a combination of
angular variables.] The first and most consequential for Pluto’s
dynamical stability is the libration of its perihelion longitude
about a center ±90◦ away from Neptune’s ecliptic longitude.
[Here “ecliptic” refers to the standard plane of reference for
orbits in the solar system.] This libration, which has a period
of about 20,000 years, is associated with Pluto’s 3/2 mean
motion resonance with Neptune (Pluto’s orbital period is 1.5
times Neptune’s orbital period), and is characterized by the
libration of the critical resonant angle,

φ = 3λ− 2λ′ −$, [1]

where λ and$ denote Pluto’s mean longitude and its longitude
of perihelion, and λ′ denotes Neptune’s mean longitude. The
libration of φ about a center at 180◦, with an amplitude of 80◦–
86◦, ensures that at the times when Pluto crosses Neptune’s
orbit its spatial location is far removed from Neptune’s, more
than 45◦ in ecliptic longitude. We call this an azimuthal
libration.

The second is the libration of its perihelion in the third
dimension: at perihelion Pluto’s location oscillates about a
high latitude, well above the plane of the other planets. We call
this a latitudinal libration. In terms of orbital elements, it is
characterized by the libration of Pluto’s argument of perihelion,
ω, about a center at 90◦, an amplitude of 24◦–27◦ and a period
of∼ 4 Myr. [The argument of perihelion is the angular distance
of Pluto’s perihelion from its longitude of ascending node. The
latter is usually reported in the ecliptic plane although the
dynamically relevant reference plane is closer to Neptune’s
orbit plane or to the Solar system’s invariable plane.] The
libration of ω has the effect of elevating Pluto’s minimum
distance of approach to Neptune and to the other giant planets,
thereby increasing its orbital stability. A visualization of
Pluto’s spatial perihelion librations can be found in (2).

After several foundational studies on Pluto’s dynamics in
the 1960s and 1970s (e.g., 3–5), very long numerical orbit
propagations of sufficient accuracy became possible with ad-
vanced digital computers in the late 1980s. These shed more
light on Pluto’s engagement with the giant planets in multiple

resonances and its potential for chaotic orbital evolution on
very long timescales (6, 7). Pluto is one of the first examples
in solar system dynamics whose chaotic nature was unveiled.
Sussman & Wisdom (6) propagated the orbital motion of the
outer four giant planets and Pluto for 845 million years, and
found that its nearby trajectories diverge exponentially with an
e-folding time of only about 20 million years. Later, Laskar (8)
numerically solved the secular equations of motion of the eight
major planets (excluding Pluto), and claimed that the entire
solar system is chaotic in the sense that its Lyapunov index is
positive. Then, Sussman & Wisdom (9) carried out a numeri-
cal integration including the interactions of all nine planets
(including Pluto, which was considered a planet at that time),
and found that the planetary system as a whole is chaotic
and its Lyapunov e-folding time is only about 4 million years.
However, additional long term numerical solutions for the solar
system planets established that, within the highest fidelity
solar system model, the orbits of the outer planets, including
Pluto’s, are practically stable on multi-gigayear timescales,
both in the past and in the future (10–12). The detection of
positive Lyapunov exponents notwithstanding, Pluto’s and the
planets’ perihelion and aphelion distances and their latitudinal
variations remain well bounded on multi-gigayear timescales,
indicating that the chaos detected in the above investigations
is very weak indeed.

The period of 1990s–2000s also saw the advancement of
the hypothesis of resonance sweeping and capture of Pluto
during an early epoch of giant planet migration (13). This
hypothesis provides a plausible account of Pluto’s eccentric
resonant orbit within the physical and dynamical processes of
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the early evolution of the solar system. In turn, Pluto’s orbital
properties provide quantitative constraints on the magnitude
and speed of the early migration of the giant planets and the
mass and size of the planetesimal disk left over after planet
formation (e.g. 14–16). A wide range of solar system data has
been identified in support of this hypothesis which has been
developed extensively in many recent studies; reviews can be
found in (17), (18) and (19).

During the period 2005–2012, deep imaging with the Hub-
ble Space Telescope revealed that Pluto hosts a retinue of four
small moons, in addition to its large moon, Charon, discovered
previously in 1978 (20). In 2015, new data from the New Hori-
zons spacecraft’s reconnaissance of the Pluto system revealed
the surprisingly active geophysical state of Pluto (21). These
new discoveries have added to the list of puzzles presented by
this distant dwarf planet.

While its origin story is now understood in broad terms,
Pluto and its orbital dynamics in the current solar system still
present many unsolved problems. These puzzles prompt us
to seek to better understand its orbital stability. The present
work is a step towards this goal. We revisit the topic of
Pluto’s orbital dynamics, with a view to understand better the
collective and individual influence of the giant planets on the
stability of Pluto’s orbit, as manifested in the librations of its
critical resonant angle, φ, and of its argument of perihelion, ω.
We use tailored numerical experiments to identify new details
of both the secular and non-secular effects of the giant planets’
perturbations on Pluto to learn more about the dynamical
neighborhood in which Pluto orbits.

Numerical experiments

N-body simulations. We carried out numerical simulations
of Pluto’s orbital evolution for up to 5 Gyr with eight dif-
ferent combinations of the perturbing giant planets: Nep-
tune only (hereafter referred to as ---NP), Uranus+Neptune
(--UNP), Saturn+Neptune (-S-NP), Jupiter+Neptune (J--NP),
Saturn+Uranus+Neptune (-SUNP), Jupiter+Uranus+Neptune
(J-UNP), Jupiter+Saturn+Neptune (JS-NP), and the highest fi-
delity model with Jupiter+Saturn+Uranus+Neptune (JSUNP).
It must be emphasized that we do not expect these experi-
ments to accurately identify the direct effects of each individual
giant planet on Pluto, because the perturbations of each giant
planet are not simply a sum of perturbations of each individual
perturber. The giant planets’ orbital evolution itself depends
upon their mutual interactions. For example, the evolution
of Neptune in the Jupiter+Neptune model (J--NP) is slightly
different than in the Uranus+Neptune model (--UNP). Nev-
ertheless, we will see that we gain useful insights with these
experiments.

We obtained the heliocentric orbital elements of the major
planets and Pluto from JPL Horizons System, and they are the
values as of 2021 March 19 00:00:00 TDB (Barycentric Dynam-
ical Time). The position and the velocity of each planet are
those of its barycenter (including its satellite system). Pluto’s
position and velocity are also those of the barycenter of the
Pluto system. We obtained the masses of the planets from
JPL’s DE245 (e.g. 22). In the simulations, we regard Pluto
as a massless particle. For the numerical orbit propagation,
we employed the second-order regularized mixed variable sym-
plectic integrator based on the Wisdom–Holman symplectic
mapping (23) implemented as a part of the swift package

(24). [The code and data availability are described in the
Supplementary Information.] We adopted a basic stepsize of
ten days. For computational efficiency, we set an outer cutoff
distance of 100 au so as to cease numerical propagation of
Pluto-like particles that are ejected from Neptune’s 3/2 mean
motion resonance. For checking the accuracy, we also carried
out some of the same orbit propagations with the fourth-order
standard symplectic integrator that splits the Hamiltonian just
into kinetic energy and potential energy terms (e.g. 25). We
confirmed that both the methods yield similar output in terms
of Pluto’s dynamical characteristics that we discuss in this
work. For illustration, we plot in Figure 1 the time evolution
of Pluto’s orbital elements for two models, the simplest model
with Neptune as the sole perturber (---NP) and the highest
fidelity model with all four giant planet perturbers (JSUNP);
the contrast in some properties of Pluto’s orbital evolution
between these two models is quite stark, and we discuss these
differences later on.

For each of the eight models, we examined the behavior
of φ and ω by making two plots: a time series plot of φ(t)
and a polar plot of (e cosω, e sinω). These pairs of plots are
shown in Figure 2 and Figure 3 for each of the eight models.
In Figure 2 we plot only the first 100 Myr of evolution, and
in Figure 3 we plot the evolution for up to 5 Gyr in the eight
models. By examining these results closely, we observe the
following.

1. The simplest model with Neptune as the sole perturber
(model ---NP) maintains the libration of φ but not of ω;
the latter does not librate, but undergoes fairly smooth
rotations in this model; these rotations persist on gigayear
timescales in this model.

2. Adding Uranus to the simplest model (--UNP) destroys
the libration of φ within a few megayears, and it also
causes ω to evolve irregularly, with intermittent librations
and rotations; the dynamical lifetime of Pluto is only a
few hundred megayears in this case. However, adding
either Jupiter or Saturn to the simplest model (J--NP and
-S-NP, respectively) yields longer dynamical lifetimes by
stabilizing the librations of φ (but not of ω). With the
addition of Saturn, the dynamical lifetime gain is modest,
only a factor of 2–3, but Jupiter’s addition increases the
dynamical lifetime to at least 5 Gyr. We find that in the
latter case (J--NP), ω undergoes fairly smooth rotations,
but it is significantly slowed compared to the simplest
case (---NP).

3. Of the three models with three perturbing planets, the
model without Jupiter (-SUNP) yields chaotic evolution of
both φ and ω and a dynamical lifetime less than 100 Myr.
But the models with Jupiter (J-UNP and JS-NP) have
dynamical lifetimes exceeding a gigayear. These latter
two models support librations of φ and ω for at least ten
million years. We found that in the JS-NP model ω slips
from libration to chaotic evolution (intermittent libration
and rotation) in less than 100 Myr while φ remains in
steady libration for 5 Gyr. In the J-UNP model, both ω
and φ slip into chaotic evolution on timescales of a few
hundred megayears, and Pluto is ejected from the 3/2
mean motion resonance in less than 2 Gyr.

4. All models yield libration of φ on at least ∼ 1 Myr, albeit
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Fig. 1. Pluto’s orbital elements for 10 Myr computed with two different models: the three body model of Sun, Neptune and Pluto (---NP; shown in dark red color) and the
highest fidelity model of Sun, Jupiter, Saturn, Uranus, Neptune and Pluto (JSUNP; shown in blue). Pluto is treated as a massless object in all these models. From top to bottom,
the panels on the left plot the semimajor axis, eccentricity and inclination; the panels on the right plot the longitude of perihelion, $, the longitude of ascending node, Ω, and the
argument of perihelion, ω. The output interval for the plots is 2.5 Kyr.

with differences in libration amplitudes. Two models,
--UNP and -SUNP, do not support steady librations of φ on
longer than 1 Myr timescales. These two models can be
reasonably considered the two most unstable cases. With
different integration schemes, such as the Bulirsch–Stoer
extrapolation method (26), the trajectories of Pluto in
these two models also diverge visibly over just ∼ 1 Myr.
The divergence of solutions with different integrators is
another symptom of the strongly chaotic behavior in those
models.

5. Notably, only the highest fidelity model (JSUNP) yields the
steady libration of both φ and ω on gigayear timescales.

Modified restricted three body model. As previous studies
have shown, and the numerical experiments in the previous sec-
tion have confirmed, Neptune’s resonant perturbations main-
tain the libration of the resonant angle, φ. But the additional
libration of ω cannot occur with Neptune’s perturbations alone.

Previous semi-analytic studies concluded that the secular ef-
fects of the three inner giant planets, Jupiter–Saturn–Uranus,
are critical to support the libration of Pluto’s ω (5). We briefly
outline this mechanism, and then follow up with numerical ex-
periments with a modified three body model to quantitatively
examine this hypothesis.

The condition for the libration of Pluto’s ω is that its
time-averaged rate must vanish, i.e., 〈ω̇〉 = 0. Considering
that ω = $ − Ω, this requires that Pluto’s average apsidal
rate, $̇, matches its average nodal rate, Ω̇. With Neptune’s
perturbations alone, we find (from the numerical solution of the
Sun–Neptune–Pluto three body model, i.e., the ---NP model)
that Pluto’s apsidal rate is $̇(only Neptune) ' −11.3×10−5 deg
yr−1, and its nodal rate is Ω̇(only Neptune) ' −3 × 10−5 deg
yr−1 (see Figure 1). The apsidal rate forced by Neptune can
be understood as being of two parts, one part from the secular
perturbations (which contributes a precession) and another
part from the mean motion resonance (which contributes a
regression); the latter is dominant and leads to an overall
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Fig. 2. The evolution over 100 Myr of Pluto’s critical resonant angle φ (Eq. (1)), and argument of perihelion ω, in numerical simulations with different sets of perturbers. The
top left (in blue) is for the highest fidelity model including all four giant planets and Pluto (JSUNP), the other cases are shown in dark red, with the planets in the model indicated
in the legend above each pair of panels (for example, --UNP indicates the model with Uranus, Neptune and Pluto). Note that in the case of model -SUNP, the simulation lasts
only about 67 Myr, ending because Pluto travelled too far from the Sun (heliocentric distance r > 100 au) on a very extended orbit no longer confined to Neptune’s 3/2 mean
motion resonance. The output interval in the plots is 25 Kyr.

net regression for Pluto in the ---NP model. The secular
forcing by the inner three giant planets (Jupiter, Saturn and
Uranus) is qualitatively similar in effect to that of an additional
quadrupolar potential which contributes a positive apsidal
rate and a negative nodal rate. As we will see quantitatively
with the numerical analyses below, the secular effects from
the inner three giant planets are just enough that Pluto’s
nodal and apsidal rates become nearly equal, leading to the
near-vanishing of the average rate of Pluto’s ω, and thereby
supporting its libration. These effects can be discerned in
Figure 1 in which we can observe that in the model with
all four giant planets (JSUNP), Pluto’s apsidal regression is
smaller while its nodal regression is larger than in the three

body model in which Neptune is the sole perturber (---NP).
The apsidal and nodal rates are nearly equal in the JSUNP
model, accounting for the near-vanishing of the rate of ω.

In order to more directly test the above hypothesis, we carry
out simulations with a modified restricted three body model
in which we included the secular effects of the inner three
giant planets as follows. The secular effects of the inner three
giant planets can be approximately modelled by replacing each
giant planet with a circular ring of radius equal to the planet’s
semi major axis ap and mass equal to the planet’s mass mp.
The gravitational potential of a ring at a heliocentric distance
r > ap and a distance z above the plane of the ring, is given
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with shorter stability times, the output interval is shorter, in the range 20 Kyr to 250 Kyr.

by (e.g. 27)

Vring = −Gmp

r

[
1 +

∞∑
k=1

(
ap

r

)2k

P2k(0)P2k

(
z

r

)]
, [2]

where G is the universal constant of gravitation, and P2k(.) is
the Legendre polynomial of degree 2k.

The spatial dependence of the ring potential is similar to
the potential exterior to an axially symmetric spheroidal mass,
such as that of a spheroidal sun in the axially symmetric
approximation,

V� = −Gm�
r

[
1−

∞∑
k=1

J2k

(
R�
r

)2k

P2k

(
z

r

)]
, [3]

where m� is the solar mass, R� is the Sun’s equatorial radius,
and J2k are the coefficients of the zonal harmonics. Then,

provided that the ring plane is identified with the solar equa-
tor, comparing Eq. (3) with Eq. (2), with both truncated
to quadrupolar terms, we can define an “effective J2 of a
hypothetical oblate Sun” which approximately describes the
orbit-averaged potential of a planet seen by a distant test
particle,

J2,eff = 1
2
mpa

2
p

m�R2
�
. [4]

The values of J2,eff arising from the inner three giant planets
are given in Table 1. The large values are owed to the very
large ratio of orbit radius of the planets to the solar radius. It is
perhaps worth mentioning that the value of J2,eff contributed
by the terrestrial planets (Mercury, Venus, Earth and Mars)
is only ∼ 0.1; this small value, as well as their total mass
being less than 10−5 of the solar mass, justifies neglecting the
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Table 1. Inner three giant planet parameters.

planet m�/mp ap (au) J2,eff

Jupiter 1047.3486 5.2076 592.5
Saturn 3497.898 9.5725 605.5
Uranus 22902.98 19.3038 376.1
Total 1574.1

Source for m�/mp and ap: https://ssd.jpl.nasa.gov/horizons.cgi,
retrieved September 10, 2020.

terrestrial planets in the present analysis.
Below we report results of numerical simulations with a

modified restricted three body problem of the Sun, Neptune
and a massless Pluto (---NP) in which we attributed an oblate-
ness to the Sun. We represent the solar gravitational potential
with a point-mass potential plus a second zonal harmonic with
coefficient J2 (that is, up to k = 1 in the series in Eq. (3)). We
carried out a set of numerical simulations of this model for a
time span of up to 2 Gyr, sampling 74 different values of J2 in
the range 1–10,000. The effect of the second zonal harmonic
of the central mass is implemented in the swift package that
we use here. Figure 4 shows plots of the evolution of φ ver-
sus time and plots of (e cosω, e sinω) for a selection of these
simulations. The results show that φ librates with a nearly
steady amplitude of about 90◦ in all cases, but the libration
of ω with an amplitude below 45◦ is found to persist only in a
restricted range of J2 of 1350–1650. For J2 ≤ 500 we find that
ω circulates smoothly in a retrograde sense, and for J2 ≥ 3100
it circulates smoothly in a prograde sense. In the boundary
zones of 600 . J2 . 1300 and 1700 . J2 . 3000, ω has chaotic
behavior, with intermittent librations and rotations; the incli-
nation and eccentricity also have strongly chaotic behavior,
correlated with each other and with that of ω; two examples
are shown in the Supplementary Information. In the zone of
600 . J2 . 1300, the eccentricity can become large enough
that the ensuing smaller perihelion distance would, in the
actual solar system, allow closer approaches to Uranus and
cause instability, such as found in the N-body simulations of
the J-UNP, -SUNP and --UNP models (cf. Figure 3).

These results are summarized in Figure 5. The results sup-
port the hypothesis that the orbit-averaged perturbations of
the three inner giant planets are the underlying physical mech-
anism that accounts for the latitudinal librations of Pluto’s
perihelion. They also highlight the narrow range of the effec-
tive J2 for which librations of Pluto’s ω are possible, and the
remarkable circumstance that the orbital arrangement of the
inner giant planets’ yields an effective J2 that happens to fall
within this narrow range.

Quantitatively, our result is somewhat different from that of
Nacozy & Diehl (28) who adopted the modified restricted three
body model with the “oblate Sun” to carry out semi-analytic
calculations; they reported an empirical estimate of J2 = 2005
for the best agreement with Williams & Benson (4)’s numerical
solution for Pluto’s motion on a timespan of ∼ 4.5 Myr. The
difference is partly due to their semi-analytic approach versus
our fully numerical approach, and partly due to updates in
planetary masses and orbits that have occurred in the time
since Nacozy & Diehl’s work. Notably, their estimate for the
total effective J2 lies in a range that our calculations find to
be strongly chaotic for Pluto’s argument of perihelion and its

eccentricity and inclination (cf. Figure 5).
It is also interesting to note that in the modified restricted

three body model, the libration of Pluto’s critical resonant
angle φ remains very stable for all the values of J2 that we
investigated. There is no indication of erratic evolution of φ
of the kind found for two of the N-body models in Figure 2,
-SUNP and --UNP. For these two models, the equivalent modified
three body problem would have total effective J2 values of
1198.0 and 376.1, respectively (see Table 1), and we would
expect steady librations of φ based on the simulations of the
modified three body model shown in Figure 5. From this
comparison, we conclude that the origin of chaos in model
-SUNP and model --UNP lies not in the orbit-averaged secular
perturbations of the three inner giant planets, but in their non-
secular effects. A possible source of such non-secular effects
of the inner giant planets is the near-resonant perturbations
from Uranus: Pluto’s orbital period is close to three times as
long as Uranus’ orbital period, and Neptune’s orbital period is
close to twice as long as Uranus’ orbital period. The timescale
(. 1 Myr) of the erratic evolution found in models -SUNP and
--UNP in Figure 2, is somewhat shorter than Pluto’s secular
apsidal and nodal precession timescales. This also points
to shorter timescale perturbations, as would arise from the
near-resonant perturbations from Uranus.

Conclusions and future directions

Tailored numerical simulations reported here elucidate the
mechanisms underlying Pluto’s perihelion librations and its
long term dynamics. The results from these are summarized
as follows.

1. The stability of Pluto’s perihelion librations in the az-
imuth (equivalently, the libration of the critical resonant
angle, φ) and in latitude (equivalently, the argument of
perihelion, ω) are sensitive to the perturbations of not
only the most proximate planet (Neptune), but also to
the inner giant planets (Jupiter, Saturn and Uranus).

2. Neptune’s influence is dominant in the libration of φ.
However, the other giant planets, particularly Uranus,
influence the modulation of its amplitude of libration.

3. Uranus is the source of the most erratic perturbations.
Without the stabilizing influence of Jupiter and Saturn,
Uranus would destabilize the librations of both φ and
ω on less than 10 Myr timescales. We conjecture that
the reason for Uranus’ destabilizing influence is its 3/1
near-resonance with Pluto, and possibly also indirectly
its 2/1 near-resonance with Neptune.

4. It is rather striking that for Pluto-like orbits the architec-
ture of the solar system’s giant planets produces secular
forcing of magnitude within the narrow range required
to maintain the steady librations of ω (and correspond-
ing steady variations of eccentricity and inclination) on
gigayear timescales. This range is bounded by a zone in
which ω undergoes strongly chaotic evolution (intermit-
tent libration and rotation) and large chaotic variations
of eccentricity and inclination on timescales much shorter
than the age of the solar system.

Pluto’s proximity to the edge of strong chaos in its latitu-
dinal perihelion libration invites further investigation. Better
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Fig. 4. Numerical simulations for 2 Gyr of a modified three body model of the Sun, Neptune and (massless) Pluto in which we include an oblateness for the Sun parameterized
by a value of J2, as indicated at the top of each pair of panels. The top panels plot Pluto’s critical resonant angle φ versus time, and the bottom panels are plots of
(e cosω, e sinω). Simulations were carried out for 74 values of J2 in the range 1–10,000, only a small selection of 8 cases is shown here; see Supplementary Information for
more detail. The output interval in the plots is 1 Myr. The color scheme follows that of Figure 5.

analytic approximations to assess the dynamical landscape in
which Pluto orbits, including the effects of near-resonances
with Uranus, are needed for further advancement of under-
standing of both Pluto’s dynamics and the dynamics of the
large population of so-called Plutinos that orbit, alongside
Pluto, in the same 3/2 resonance with Neptune (15, 29–33). It
is estimated that about 20% of Plutinos share Pluto’s property
of a librating argument of perihelion (34).

In the previous literature, the latitudinal libration of Pluto’s
argument of perihelion is often called the von Zeipel–Lidov–
Kozai (vZLK) oscillation, or the Lidov–Kozai oscillation or
just the Kozai resonance (e.g. 7, 35–37). Each of von Zeipel,
Lidov and Kozai, independently predicted such a libration
in some regimes of the orbit-averaged three body problem

(38–41). Additional perturbations such as the quadrupole
and higher order moments can significantly affect the vZLK
oscillation (e.g. 42). A quantitative and analytic formulation
of the vZLK theory in the regime of mean motion resonances,
such as Pluto’s 3/2 mean motion resonance with Neptune, and
including the secular effects of the inner giant planets, remains
to be done; this topic is worth pursuing, and we intend to
explore it in a forthcoming publication.

Improved understanding of Pluto’s dynamics has broader
implications for solar system dynamics. The orbital distribu-
tion of the Plutinos and other abundant resonant populations
of minor planets beyond Neptune retain imprints of the dy-
namical history of the solar system. These imprints include
the effects of resonance sweeping and capture by an outwardly
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Fig. 5. Summary of the behavior of Pluto’s argument of perihelion ω over 2 Gyr, as a function of the solar oblateness, J2, in the modified restricted three body model. In the
dark red zone, ω rotates (in a retrograde sense in the small–J2 regime, in a prograde sense in the large–J2 regime). In the orange zone it exhibits chaotic behavior with
intermittent rotations and librations, and it librates steadily in the green zone. The red hatched zones indicate the fuzzy boundaries between the neighboring zones. The blue
vertical line indicates the value 1574.1 of the total effective J2 estimated for the orbit-averaged combined quadrupolar effect of the inner three giant planets, Jupiter, Saturn and
Neptune (see Table 1). Note that the horizontal scale in the upper panel is logarithmic from J2 = 1 to 10000, whereas in the lower panel it is linear from J2 = 600 to 3000.

migrating Neptune, and of the effects of gravitational scat-
tering by the giant planets and possibly additional planets
that may have existed briefly but were ejected from the solar
system (18). Prior to large-scale migration, the orbits of the
giant planets would have been more compact and the effective
J2 would have been smaller. For magnitudes of migration
considered in the recent literature, we calculate that the total
effective J2 (arising from Jupiter, Saturn and Uranus) would
have remained within the range for Pluto’s long term stability
in its current orbit provided Uranus’ outward migration was
not more than about 5 au; this is discussed further in the
Supplementary Information. We leave to future investigations
to explore the implications of this limit for the migration his-
tory of the giant planets. We can, however, state the general
conclusion that, as a consequence of the large-scale migration
of the giant planets, Pluto and the Plutinos were promoted
into an orbital niche where minor planets can survive in eccen-
tric and inclined orbits for multi-gigayear timescales, whereas
their nearby dynamical neighborhood is strongly unstable. In
our present state of understanding, Pluto’s long term stability
may be regarded as both inevitable and fortuitous, being owed
in part to identifiable physical mechanisms and in part to
random processes inherent to those mechanisms.

Additional higher order resonances (including secular res-
onances between apsidal and nodal precession rates and so-
called “super-resonances”) have also been identified in Pluto’s
long term orbital dynamics (7, 10, 43). These have periods
exceeding 107 years and cause only very small amplitude mod-
ulations of Pluto’s perihelion (1), and were not discussed in
the present work. These weaker resonances may be relevant to

explaining the weak chaos detected in numerical simulations
of Pluto’s long term motion (9–11). Further investigations to
examine the associated phase space regions and the role of
these resonances would also help to probe the origin of the
weak chaos.

In the present work, Pluto’s proximity to the edge of strong
chaos has been determined within the specific model of the
solar system, that is, with the current orbital architecture
of the four giant planets as the only source of perturbations
on Pluto’s motion. Unmodelled perturbations could either
increase or decrease Pluto’s proximity to the edge of strong
chaos. Therefore, Pluto’s distance to the edge of strong chaos
can potentially be used to quantify constraints on unmodelled
perturbations that may have accumulated over its history, such
as the collective gravity of the population of objects beyond
Neptune as well as the effects of encounters or collisions with
such objects, the effects of undiscovered distant planets, and
the perturbing effects of occasional close stellar flybys.

Alternatively, we might question the implicit and widely
held assumption that Pluto has remained in close proximity
to its current orbit for much of the solar system’s ∼ 4.5 Gyr
history, or at least since the end of the chaotic phase of for-
mation and migration of the giant planets. Considering the
results in this work on the proximity of Pluto to the edge
of strong chaos, we must ask: could it be that Pluto’s past
orbital history on gigayear timescales is not as sanguine as
assumed? We speculate that, with the inclusion of some types
of unmodelled effects, it is perhaps not inconceivable that even
in geologically recent times Pluto has an orbital history of
intermittent chaotic episodes. The consequences of a chaotic
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orbital history would be significant for understanding Pluto’s
unexpected geophysical state, including the circumstances
of its formation, the peculiar state of its spin axis and the
properties of its satellite system (e.g., 44). Even if initially
speculative, investigations along these lines may also identify
geophysical evidence or dynamical arguments to either support
or to rule out a chaotic orbital history.
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Supporting Information Text

Eccentricity and inclination evolution

In the simulations of the modified restricted three body model as well the full N-body model, the time variations of the eccentricity and the
inclination of Pluto-like objects are both closely related to the time variations of the argument of perihelion, ω. Figure S1 shows the time
evolution of these three variables over 2 Gy for the highest fidelity N-body model, JSUNP (shown in blue, in the right-most panels), and for
two cases of the modified restricted three body model (Sun–Neptune–Pluto, with J2 = 600 and J2 = 1000, shown in the left and middle
panels). The latter two cases are illustrative of the range of J2 values, 600–1300, in which a Pluto-like object’s ω has chaotic behavior. In
these cases we observe that the chaotic variations of the eccentricity and inclination have larger range than in the JSUNP system, and that the
eccentricity reaches values exceeding ∼ 0.3. Astronomical observations obtained thus far indicate that transneptunian objects in Neptune’s 3/2
mean motion resonance are limited to eccentricities below ∼ 0.3 (e.g. 1). The lower perihelion distance achieved with higher eccentricity leads
to a larger destabilizing influence of closer approaches with Uranus. This explains the paucity of higher eccentricity Plutinos. This effect
would be especially acute in the absence of steady latitudinal librations of the perihelion away from the plane of the planets. We therefore
infer that in the regime of 600 . J2 . 1300, Pluto-like objects would be vulnerable to ejection from Neptune’s mean motion resonance, with
ensuing close approaches to the planets and eventual collision or transfer into scattered orbits or escape from the solar system.
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Fig. S1. Time evolution over 2 Gy of Pluto’s eccentricity, inclination, and its argument of perihelion ω, in three models: (left) modified restricted three body model (Sun–Neptune–
Pluto) with total effective J2 = 600, (middle) modified restricted three body model with total effective J2 = 1000, (right) highest fidelity N-body simulation including all four
giant planets (JSUNP).
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Effect of giant planets’ migration on total effective J2

We can see from Eq. (4) in the main text that the time history of the total effective J2 arising from Jupiter, Saturn and Uranus will depend on
the time history of the semimajor axis of each of these giant planets during their past orbital migration. Currently, these time histories are
not well constrained. (In principle, the total effective J2 also depends upon the time history of the planetary masses, but it is reasonable to
assume that the planetary masses did not change significantly after their formation.) In the previous literature, the magnitudes of migration
discussed are approximately a few tenths au inward migration of Jupiter, ∼ 1 au outward migration of Saturn, and a few au outward migration
of Uranus. With these estimates, we find that the changes in the total effective J2 during migration would have been most sensitive to Uranus’
migration. As a first quantitative estimate, we find that the total effective J2 would have remained within the range 1350–1650 that we found
for Pluto’s long-term stability in its current orbit (Figure 5 in the main text), provided that the magnitude of Uranus’ outward migration was
less than about 5 au. An outward migration of Uranus by more than ∼ 5 au would potentially change the total effective J2 enough to transition
from the latitudinal libration of Pluto’s argument of perihelion being unstable to stable. We note that better estimates would take account
of the effects of the more massive ancient planetesimal disk and the changes in Pluto’s orbit itself during the migration of the giant planets.
Further investigation of this point may provide insights into the mechanism for capturing Pluto (and many Plutinos) into the libration state of
the argument of perihelion that we observe today.

Figure S2 shows the time evolution of the total effective J2 for a simple migration model in which the planets’ orbits migrate with an
e-folding timescale, τ . The magnitude of each planet’s migration is indicated in the figure legend.
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migration timescale, τ . The magnitude of the migration, ∆a, of each planet is indicated in the legend. For example, “−0.2 (J)” means that Jupiter’s semimajor axis decreases
by 0.2 au; “+5.5 (U)” means that Uranus’ semimajor axis increases by 5.5 au.
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Data Availability

The data supporting this study’s findings are available within the article and its Supplementary Information. Raw output data from our numerical
orbit integrations is available from the authors upon reasonable request. See also Section Numerical experiments—N-body simulations in the
main text for the details of the numerical integration scheme.

Location of the SWIFT code package. Access https://www.boulder.swri.edu/ hal/swift.html for retrieving the source code package.

Masses of the Sun and the planets. The masses of the Sun and the planets are listed in Table S1. The unit in this table is what is used in the
SWIFT code where the gravitational constant is unity, the unit of length is au, and the unit of time is day, and one year is exactly 365.25 days.
We adopted the masses of the planets from JPL’s DE245 (e.g. 2). Note that Pluto is treated as a massless particle in our simulations, and it is
not listed in Table S1.

Table S1. Sun’s and planet’s masses.

object mass

Sun 2.959139768995959 × 10−4

Jupiter 2.82536279610815247 × 10−7

Saturn 8.45976574787474959 × 10−8

Uranus 1.29203489551819958 × 10−8

Neptune 1.52436801162357287 × 10−8

Initial heliocentric positions and velocities of the planets and Pluto. Table S2 shows the initial heliocentric positions and velocities of
the planets and Pluto in our numerical simulations that we adopted from JPL Horizons System, and they are the values as of 2021 March 19
00:00:00 TDB (Barycentric Dynamical Time). The position and the velocity of each planet are those of its barycenter (including its satellite
system). Pluto’s position and velocity are also those of the barycenter of the Pluto system.

Table S2. Initial positions (x, y, z) and velocities (vx, vy , vz) of the planets and Pluto.

Jupiter
(x, y, z) au +3.479871576082048 × 100 −3.687143487014625 × 100 −6.254225671208241 × 10−2

(vx, vy , vz) au/day +5.402875942445465 × 10−3 +5.540962998223180 × 10−3 −1.438919301148455 × 10−4

Saturn
(x, y, z) au +5.820837611255400 × 100 −8.099314046939625 × 100 −9.084726091630656 × 10−2

(vx, vy , vz) au/day +4.225945590475764 × 10−3 +3.247914368493194 × 10−3 −2.246007629992486 × 10−4

Uranus
(x, y, z) au +1.515559431707809 × 101 +1.268157394646391 × 101 −1.492515199899297 × 10−1

(vx, vy , vz) au/day −2.547970714590798 × 10−3 +2.838524448937736 × 10−3 +4.340564757625335 × 10−5

Neptune
(x, y, z) au +2.950068586930330 × 101 −4.991750775881499 × 100 −5.771477267043819 × 10−1

(vx, vy , vz) au/day +5.087496282435223 × 10−4 +3.120340880227267 × 10−3 −7.590654143371072 × 10−5

Pluto
(x, y, z) au +1.428680876763813 × 101 −3.110962891479370 × 101 −8.023206165392421 × 10−1

(vx, vy , vz) au/day +2.933163077825810 × 10−3 +6.417680020238108 × 10−4 −9.148165866326484 × 10−4

Values of Sun’s J2. The following values of Sun’s J2 are used for the simulations of the modified restricted three body problem whose results
are summarized in Figure 5 in the main text: J2 = 1, 10, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1250, 1300,
1350, 1400, 1450, 1500, 1550, 1600, 1650, 1700, 1750, 1800, 1850, 1900, 1950, 2000, 2050, 2100, 2150, 2200, 2250, 2300, 2350, 2400, 2450,
2500, 2550, 2600, 2650, 2700, 2750, 2800, 2850, 2900, 2950 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200,
4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 6000, 7000, and 10000. The time series of φ and the trajectories on the (e cosω, e sinω)
plane in eight of these cases, specifically J2 = 100, 1000, 1350, 1500, 3000, 3100, 4000, 10000, are plotted in Figure 4 in the main text as
illustrative examples.

Specifying the J2 values in the SWIFT code. We assumed that the solar radius is 0.00465247265886874 au. This value becomes an input
to calculate the effective J2 values used in the SWIFT code. For example when J2 = 1000, we enter 1000 × 0.004652472658868742 =
0.02164550184152116 in the pl.in parameter file for the SWIFT code.
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