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Abstract

This paper studies the minimax rate of nonparametric conditional density estimation under
a weighted absolute value loss function in a multivariate setting. We first demonstrate that
conditional density estimation is impossible if one only requires that pX|Z is smooth in x for
all values of z. This motivates us to consider a sub-class of absolutely continuous distributions,
restricting the conditional density pX|Z(x|z) to not only be Hölder smooth in x, but also be total
variation smooth in z. We propose a corresponding kernel-based estimator and prove that it
achieves the minimax rate. We give some simple examples of densities satisfying our assumptions
which imply that our results are not vacuous. Finally, we propose an estimator which achieves
the minimax optimal rate adaptively, i.e., without the need to know the smoothness parameter
values in advance. Crucially, both of our estimators (the adaptive and non-adaptive ones)
impose no assumptions on the marginal density pZ , and are not obtained as a ratio between
two kernel smoothing estimators which may sound like a go to approach in this problem.

1 Introduction

A significant yet challenging problem in statistical inference is how to learn from complex, mul-
tidimensional data. While the nonparametric regression problem of estimating conditional mean
E(x|z) from an i.i.d. sample of (X,Z) is well studied, the alternative problem of estimating the
full conditional density pX|Z(x|z) remains largely unexplored. There is little literature studying
minimax optimal conditional density estimation, and particularly not when both X and Z are in
a multivariate setting. However, the advantages of estimating pX|Z(x|z) over just the conditional
mean are numerous. Fundamentally, the conditional mean is a summary of the conditional density.
It follows that conditional density yields more information about the data and can be more useful
for subsequent analysis. This is especially important when there exists multi-modality, asymme-
try, or heteroscedastic noise in pX|Z(x|z), in which case the conditional mean E(x|z) would be
insufficient to explain the data and to do inference. Furthermore, the problem of nonparametric
quantile regression [1] can be solved via conditional density estimation. Finally, when forecasting
and making predictions in fields such as economics, conditional density has been proven to be a
key component of interest [2]. However, although the advantages of conditional density estimation
are clear, it is a harder problem than conditional mean estimation, which in turn raises the need
to impose stronger assumptions.

To the best of our knowledge in this paper we give the first matching minimax upper and lower
bounds for conditional density estimation in a multivariate setting. Concretely, the problem we
consider is the following. Suppose here and throughout the paper that we have random variables
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X ∈ [0, 1]dX , Z ∈ [0, 1]dZ , and n independent and identically distributed (i.i.d.) observations
Dn = {(X1, Z1), . . . , (Xn, Zn)}, coming from a joint distribution pX,Z that is absolutely continuous
with respect to the Lebesgue measure on [0, 1]d, where d = dX+dZ . Our goal is to estimate the con-
ditional density pX|Z(x|z) with the estimate p̂X|Z(x|z) where x = (x1, . . . , xdX ), z = (z1, . . . , zdZ ).
We will focus on the following loss function

E

∫ ∫
|p̂X|Z(x|z) − pX|Z(x|z)|pZ(z)dxdz, (1.1)

where pZ denotes the marginal density of Z, the expectation is taken with respect to n i.i.d.
samples from pX,Z , and dx and dz are shorthands for

∏
i∈[dX ] dxi,

∏
i∈[dZ ] dzi respectively. The

loss function (1.1) is largely inspired by the works [3, 4], where the authors consider the squared
version of this loss. The L1-based loss function that we use has several benefits, and has been
argued for in past works (see, for instance, [5, 6] in the context of density estimation, and [7, 8]
in the context of density testing). The L1-based distance metric induced by this loss function
is invariant to monotonic transformations, and in contrast to the L2-based distance, closeness in
this distance has a clear probabilistic interpretation. Equivalently, the loss function we define
may be interpreted as the L1 distance between the joint distribution p̂X|Z(x|z)pZ(z) and the joint
distribution pX,Z(x, z). Furthermore, we can decompose the loss function into two parts. First we
have

∫
|p̂X|Z(x|z) − pX|Z(x|z)|dx which is equal to the L1 distance between the estimated density

and the target density. Next we weigh this distance by pZ to stress on the regions where Z is
more common, and downweight regions where Z is less common. An important point that is worth
making is that in this work we do not impose any assumptions on pZ , which is enabled by the fact
that the true density pZ is present in the loss function. Hence our estimators can handle situations
where pZ may be non-differentiable and not even continuous. This is in stark contrast with an
approach that one may be willing to take, i.e., to assume that pZ is Hölder smooth and estimate
the conditional distribution as a ratio between kernel smoothed estimators of the joint pX,Z and
the marginal pZ .

We note that minimax rates with respect to this loss function have not been previously studied
in the literature, and in fact any analysis of the minimax rates of conditional density estimation is
scarce. The closest minimax analysis is given by Efromovich [9], where the author studied minimax
rates of conditional density estimation under an unweighted squared loss function. Unlike in the
present work, [9] only focused on the one dimensional setting, i.e., when dX = dZ = 1. Additionally,
there exist more significant differences in the assumptions made and the problem settings, which
will be elaborated on later.

1.1 Relevant Literature

In this section we review some of the relevant literature. In a classical work, Rosenblatt [10]
proposed a kernel based estimate of pX,Z and pZ and combined them using the formula pX|Z =

pX,Z

pZ
.

Assuming that pX|Z , pZ and the conditional mean of X|Z have continuous second derivatives,
Hyndman et al. [11] analyzed the mean integrated squared error of a ratio between two kernel
smoother estimators in the dX = 1 dimensional case. Bashtannyk and Hyndman [3] looked into
optimal bandwidth selection in the aforementioned kernel smoother estimate. Fan et al. [12] used
locally polynomial regression to develop nonparametric estimate of the conditional density function
in nonlinear dynamical systems. In a follow-up work, Fan and Yim [13] used cross-validation to
select the bandwidth of the double-kernel estimator developed by Fan et al. [12]. Hall et al. [14]
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used cross-validation to automatically reduce the number of relevant covariates when estimating
the conditional density, but they did not study the minimax rates of estimation. In a related work,
Hall et al. [15] proposed a different method for estimating the density using dimension reduction.
Hall et al. [16] studied methods for conditional distribution estimation based on parametric and
nonparametric techniques, including a logistic model and a Nadaraya-Watson estimator. A different
method using dimension reduction was proposed by Efromovich [17] where the author used an
orthogonal series based approach. Chagny [18] used an expansion of a “warped” conditional density
onto a space spanned by orthonormal bases. Recently, Ćevid et al. [19] studied conditional density
estimation using an adapted Random Forest algorithm. In conclusion, although there has been
some work on conditional density estimation, the minimax optimal rate is an open question. In
this paper we address this question for the loss function (1.1) under certain smoothness assumptions
on the conditional distributions pX|Z=z.

1.2 Summary of Results

We begin by showing that conditional density estimation is impossible if one does not impose
sufficient assumptions on the class of distributions. In particular, assuming that pX|Z is smooth
in x for all z is not enough and further assumptions are needed. We formally prove this fact by
arguing that for any sample size n ∈ N, there exists a finite class of distributions whose conditional
densities pX|Z are Hölder smooth (see Definition 2.1) in x for all z, for which the worst case loss is
bounded from below by a constant. This result motivates the assumptions that we impose next.

We formalize a class of distributions Pβ,γ consisting of conditional densities that are Hölder
smooth with smoothness β in x, and γ-total variation (γ-TV) smooth in z (see Definition 3.1). We
show the following result:

inf
p̂

sup
p∈Pβ,γ

Ep

∫ ∫
|p̂X|Z(x|z) − pX|Z(x|z)|pZ(z)dxdz ≍ n

−1
β−1dX+γ−1dZ+2 ,

where ≍ means equality up to constant factors, and Ep is the expectation over n i.i.d. samples,
each of which comes from the distribution p. This minimax rate is achieved by a kernel-based
estimator, which is defined in (3.1). Furthermore, observe that there is a curse of dimensionality,
where the dimensions dX , dZ may have different effects on the rate depending on the corresponding
smoothing parameters β and γ.

Finally, we devise an adaptive estimator to achieve the minimax optimal rate without the need
to know the values of the smoothness parameters β and γ in advance. Our estimator is based on
the work of Yatracos [20], but requires delicate care and crucial modifications, since we do not
possess knowledge of, and are not willing to make any assumptions on the marginal pZ .

1.3 Notation

The following notations will be used throughout the paper. We use pX,Z = pX|Z · pZ to denote
any joint distribution (and density function) of the pair of random variables (X,Z). We also use
pX|Z(x|z), pX|Z=z to denote the conditional density function and the conditional distribution of
X|Z = z respectively, and pZ to denote the marginal distribution (and density function) of Z. For
an integer n we use the shorthand [n] = {1, . . . , n}.
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We also use multi-index notations. Suppose we have vectors x = (x1, . . . , xdX ), α = (α1, . . . , αdX )

such that x ∈ R
dX , α ∈ R

dX
+ , where R+ = {x ∈ R|x ≥ 0}, then we have

‖α‖1 =

dX∑

i=1

|αi|, α! =

dX∏

i=1

αi!, xα =

dX∏

i=1

xαi
i .

Furthermore

Dαf =
∂‖α‖1f

∂xα1
1 . . . ∂x

αdX
dX

.

We let ⌊β⌋ denote the greatest integer strictly less than the real number β. We also use .,& to
mean inequalities up to universal constants, and we write f(n) ≍ g(n) if both f(n) . g(n) and
f(n) & g(n) hold.

2 Impossibility

In this section, we will show that it is, in general, impossible to estimate the conditional density at
a reasonable rate unless some assumptions on the class of distributions are imposed. Importantly,
we show that even if one is willing to assume that pX|Z is smooth in x for all z, it is still insufficient,
and more assumptions are needed. Intuitively, when the conditioning variable Z has a continuous
density we observe no replicates (multiple samples with identical Z values) and it is necessary to
impose that the conditional densities pX|Z are smooth in z in order to reliably estimate pX|Z . Our
impossibility result, Theorem 2.2, formalizes this intuition.

As detailed in the introduction, for an estimate p̂X|Z(x|z), based on a dataset Dn = {(X1, Z1),
. . . , (Xn, Zn)} with n observations and a density pX|Z(x|z), we will use the loss function (1.1). In
order to formally state our result, we first define Hölder smoothness.

Definition 2.1 (Hölder smoothness). We say that the collection of conditional densities pX|Z(x|z)
for Z ∈ [0, 1]dZ is Hölder smooth with some constant W1 and smoothness β, where β,W1 are positive
numbers, if it is ℓ = ⌊β⌋ times differentiable, and for all x, x′ ∈ [0, 1]dX , z ∈ [0, 1]dZ satisfies

sup
α

|DαpX|Z(x|z)−DαpX|Z(x
′|z)| ≤W1‖x− x′‖β−ℓ1 , for all α such that ‖α‖1 = ℓ, α ∈ N

dX
0 ,

where α = (α1, ..., αdX ) and N0 = N ∪ {0}.

We then have the following result:

Theorem 2.2 (Impossibility of Conditional Density Estimation). Let the sample size n be any fixed
integer. Then for any constants β, W1 and ε > 0, there exists a finite class of distributions C(β,W1)
(whose cardinality depends on n and ε) on [0, 1]dX+dZ satisfying the following three properties:

i. the marginal Z densities are absolutely continuous with respect to the Lebesgue measure on
[0, 1]dZ , with density equal to pZ (which can be specified by the user),

ii. the conditional distributions pX|Z are Hölder smooth with constant W1 and smoothness β,
and
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iii. the following inequality holds

inf
p̂

max
p∈C(β,W1)

Ep

∫ ∫
|p̂X|Z(x|z)− pX|Z(x|z)|pZ(z)dxdz ≥ κ− ǫ,

where κ is some positive constant that depends on β and W1. More specifically, if β ≤ 1 and

W1 <
2

dβX
, we have κ =

W 2
1 d

(2β−1)
X
144 , and otherwise κ = 1

36dX
.

Remarks:

1. It is important to note that this result holds for any arbitrary marginal Z density pZ (i.e. it
can be chosen to be arbitrarily smooth and known to the statistician). Our result shows that
consistent conditional density estimation is impossible when the only assumptions made are
that the marginal density pZ , and the conditional densities pX|Z are smooth (no matter how
smooth they are).

2. A straightforward extension of our proof shows that one can further relax the condition on the
marginal pZ . If the absolutely continuous part of Z has probability mass at least θ for some
θ > 0 then an identical argument will show that the minimax error can be made arbitrarily
close to κθ.

Here we provide a sketch of the proof, while the full proof is deferred to Section 7.1.

Proof Sketch. We define a “null” distribution by taking pX|Z to be uniform on [0, 1]dX for all values
of Z. We then construct a family of “alternate” distributions which are perturbations of the null
distribution constructed in the following way. We first construct a pair of smooth distributions
p1, p2 such that they yield that uniform distribution when mixed with equal weights, but which are
individually sufficiently far from uniform. We divide the support of Z into many small intervals, and
in each interval, we randomly (with equal probability) set pX|Z to be either p1 or p2. This constructs
a large family of possible alternate distributions. We then argue that with high probability each
sample point Zi falls into different intervals, and show that this in turn makes it impossible to
distinguish whether the samples came from the null distribution or the uniform mixture over the
possible alternate distributions.

Theorem 2.2 illustrates that if we only assume that pX|Z is smooth in x for all z (e.g. Hölder
smooth), we can construct a finite collection of distributions such that any estimate will produce
an expected error of at least κ in the worst case sense. Importantly, the proof makes use of the fact
that we do not see replications of the densities pX|Z for different Z values. We can remedy this by
assuming that the distributions pX|Z=z vary smoothly with z. In the following section, we do so by
imposing a Total Variation smoothness assumption on z, and show that under such conditions we
can obtain reasonable (and minimax-optimal) bounds (i.e., bounds decreasing with the sample size)
on the loss function. Intuitively, this happens since with additional smoothness assumptions, one
can group observations whose Zi values are close, while this strategy is unavailable in the general
setting.
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3 Upper Bound

In this section we propose an estimate p̂X|Z(x|z) under certain smoothness assumptions on the
class of distributions. Formally, suppose we have a joint distribution of two variables (X,Z):
pX,Z(x, z) where x = (x1, . . . , xdX ), z = (z1, . . . , zdZ ) and X ∈ [0, 1]dX , Z ∈ [0, 1]dZ . We assume
that the conditional density pX|Z(x|z) satisfies Hölder smoothness in x (see Definition 2.1) and the
following γ-total variation (γ-TV) smoothness in z. We denote the class of densities which satisfy
our smoothness conditions by Pβ,γ .
Definition 3.1 (γ-TV smoothness). We say that the distribution is γ-total variation (γ-TV)
smooth if the following inequality holds for some 0 < γ ≤ 1, and for all x ∈ [0, 1]dX and z, z′ ∈
[0, 1]dZ :

‖pX|Z=z − pX|Z=z′‖1 ≤W2‖z − z′‖γ1 ,

for some sufficiently large constant W2.

In the above, the L1 distance between probability densities (equal to 2 times the TV distance)
is defined as:

‖pX|Z=z − pX|Z=z′‖1 = 2TV(pX|Z=z, pX|Z=z′) =

∫
|pX|Z(x|z)− pX|Z(x|z′)|dx.

In other words, TV smoothness requires that the distributions pX|Z=z vary smoothly with z in
the L1 sense. This assumption is inspired by [21], where the authors used a similar assumption to
establish the minimax rate for conditional independence testing. Furthermore, γ ≤ 1 is required
due to the following lemma:

Lemma 3.2. Suppose γ > 1, and the inequality ‖pX|Z=z−pX|Z=z′‖1 ≤W2‖z−z′‖γ1 from Definition

3.1 holds. Then it must be that pX|Z=z ≡ pX|Z=z′ for all z, z′ ∈ [0, 1]dZ .

Proof. Fix any two points z, z′ in [0, 1]dZ . Take αj =
j

k+1 , j = 0, 1, . . . , k + 1. Let zj = αjz + (1−
αj)z

′. Then by γ-TV smoothness with γ > 1 we have

TV(pX|Z=z, pX|Z=z′) ≤
k∑

i=0

TV(pX|Z=zi, pX|Z=zi+1
) ≤W2

(‖z − z′‖1
k + 1

)γ
(k + 1).

Taking k → ∞ lets us conclude that pX|Z=z = pX|Z=z′ as desired.

Finally, the estimator we propose under the Hölder smoothness assumption makes use of kernels.
Below we define a class of kernels that can be used in the estimator to achieve the minimax optimal
rate.

Definition 3.3 (Appropriate Kernels). We say that a kernel K : RdX → R is appropriate if
∫
K(u)du = 1,

∫
uαK(u)du = 0, for all α such that ‖α‖1 ≤ ℓ, α ∈ N

dX
0 ,

where N0 = N ∪ {0}. In addition the kernel should satisfy
∫
K2(u)du <∞
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and
∫

|K(u)| · |uα| <∞, for all α such that ‖α‖1 ≤ β, α ∈ R
dX
+ ,

where R+ = {x ∈ R | x ≥ 0}.
Importantly, appropriate kernels do exist, and one method of constructing them is detailed in

Lemma 3.4 below.

Lemma 3.4 (Appropriate Kernels’ Construction). We can construct appropriate kernels K :
R
dX → R using a product kernel K(u) =

∏
Ki(ui), where each Ki is a kernel of order ℓ as

defined in [22, Proposition 1.3].

We prove this lemma in Appendix B. We now formally define the estimator. Recall that we are
interested in estimating the conditional density pX|Z(x|z) with the estimate p̂X|Z(x|z) under the
loss function (1.1). We propose a histogram-type estimator that uses kernel smoothing. Namely, bin
[0, 1] into intervals A1, . . . , Am of equal length (m−1), and consider the hyper-rectangles created from
the Cartesian product of such intervals over [0, 1]dZ . We define the following shorthand notations:
let j̄ = (j1, ..., jdZ ) ∈ [m]dZ denote the bin indices for some dZ dimensional hyper-rectangle. Then

Aj̄ =
∏dZ
k=1Ajk denotes that hyper-rectangle itself, where

∏
stands for the Cartesian product

between sets. Finally, define the estimate

p̂X|Z(x|z) =
∑

j̄∈[m]dZ

1

(
z ∈ Aj̄

)
∑

i∈[n] 1(Zi ∈ Aj̄)K(Xi−x
h )

hdX
∑

i∈[n] 1(Zi ∈ Aj̄)
, (3.1)

where K : R
dX → R is an appropriate multi-dimensional kernel as in Definition 3.3 and 0

0 is
understood as 0. Note that we only apply binning to Z here, and apply kernel smoothing to X.
Our estimator (3.1) need not be a proper density since it need not be positive, but we provide a
simple modification below. This modified estimator has the same properties as p̂X|Z but is in fact a
proper density. This will play an important role when we devise our adaptive estimator in Section
6.

Theorem 3.5 (Hölder Upper Bound). Suppose that pX,Z ∈ Pβ,γ . Using the estimate (3.1) with

an appropriate kernel as per Definition 3.3, and selecting the parameters h ≍ n
−1

dX+dZβγ−1+2β and

m ≍ n
β

dX+dZβγ−1+2β (for some appropriately selected constants) we have that

E

∫ ∫
|p̂X|Z(x|z) − pX|Z(x|z)|pZ(z)dxdz . n

−1
β−1dX+γ−1dZ+2 =: rn(β, γ, dX , dY ). (3.2)

Theorem 3.5 provides an upper bound for the estimator (3.1), and in Section 4 we will derive a
matching lower bound. Combining the two proves that (3.2) is in fact the minimax optimal rate,
and therefore no estimator can do better than p̂X|Z up to constant factors. We defer the proof of
Theorem 3.5 to Section 7.2. Roughly, the proof consists of a “bias” and “variance” decomposition
(in quotation marks due to the fact that the two terms in the decomposition are not exactly bias
and variance since our loss function is not the squared loss) and carefully controlling both ensures
that the rate exhibited in (3.2) holds.

Remarks:
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1. Equation (3.2) shows that the estimator we propose exhibits the curse of dimensionality. In
particular, the presence of β and γ smoothness parameters makes sense intuitively. Recall
that the class of distributions Pβ,γ assumes conditional densities that are β-Hölder smooth
in x, and γ-TV smooth in z, which matches the effects observed here. We note that when
holding both dimensions dX , dZ constant, our estimator performs better for higher values of
β or γ smoothness (i.e. smoother densities). Indeed, as β increases, the effect of dX on the
estimator’s effectiveness diminishes, and when β → ∞, the dimension ofX has no effect on the
minimax rate at all. In addition, since our proof does not require the restriction γ ≤ 1, we note
that when we take γ → ∞, the minimax rate simply reduces to that of classical unconditional
density estimation of x in a multivariate setting with Hölder smoothness assumptions. In
fact, by Lemma 3.2 any value of γ > 1 can be thought of as γ → ∞.

2. Once again, we would like to stress the fact that we make no assumptions on the marginal
density of Z. This is in stark contrast to an approach one may be compelled to take, by first
estimating the joint density pX,Z(x, z), then the marginal density of z by integrating x out,
and dividing the two to arrive at an estimate of pX|Z . This implies consistently estimating
pX,Z(x, z) and pZ(z), which likely requires assumptions on both of these densities, whereas
that is not needed in our case. In fact, Theorem 5.1 provides examples of one such class of
Hölder smooth densities where our approach is minimax optimal regardless of what pZ is,
whereas the aforementioned approach will likely fail.

3. Finally, as discussed earlier, there does not exist work closely comparable to ours. The most
related paper is [9], where the author studied local minimax rates for conditional density
estimation in a bivariate case (i.e. dX = dZ = 1). Furthermore, [9] imposed vastly different
assumptions (e.g. the conditional densities are assumed to belong to a perturbed Sobolev
class), and utilized different loss functions. The difference in the two problem settings renders
the comparison of the resulting minimax rates nonproductive.

We now provide a modified estimator of (3.1) to ensure that it is a proper density. Consider
the following estimator:

• if p̂X|Z=z 6≡ 0 (which implies
∫
p̂X|Z(x|z)dx = 1), define p̄X|Z(x|z) = C−1(p̂X|Z(x|z))+ where

C =
∫
(p̂X|Z(x|z))+dx, and for a function f(x) we denote (f(x))+ = f(x)1(f(x) ≥ 0);

• else if p̂X|Z=z ≡ 0, define p̄X|Z=z ≡ 1.

Lemma 3.6. p̄X|Z(x|z) satisfies (3.2), and is a proper density.

The details of Lemma 3.6 are given in Appendix B. Finally, recall our result in equation (3.2),
which shows an upper bound for the loss function (1.1) by a quantity which is of the same order
as rn := rn(β, γ, dX , dY ). Now consider our modified estimator p̄X|Z(x|z). We have the following
result which is a simple consequence of Markov’s inequality:

Lemma 3.7. For any ǫ > 0 there exists a set Aǫ satisfying P(Z ∈ Aǫ) ≥ 1 − ǫ, such that for all
z ∈ Aǫ we have

TV(p̄X|Z(x|z), pX|Z(x|z)) .
1

ǫ
rn.
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Proof. Since p̄X|Z is a density this allows us to write

∫
|p̄X|Z(x|z)− pX|Z(x|z)|dx = 2TV(p̄X|Z(x|z), pX|Z(x|z)).

Let f(z) := TV(p̄X|Z(x|z), pX|Z(x|z)), and note that by Theorem 3.5 and Lemma 3.6 we know that

Ef(z) . rn.

By the Markov’s inequality we have

P

(
f(z) >

1

ǫ
E[f(z)]

)
≤ ǫ.

This implies that there exists a subset of the support of Z – call it Aǫ – which has probability of
at least 1− ǫ to occur, and for all z ∈ Aǫ, f(z) ≤ 1

ǫE[f(z)] .
1
ǫ rn. This completes the proof.

Lemma 3.7 illustrates that we can estimate well an overwhelming majority (in terms of the Z
distribution) of conditional densities in terms of TV distance. Next we move on to establish a lower
bound.

4 Minimax Lower Bound

In this section we produce a minimax lower bound for the estimation problem with the loss func-
tion (1.1). We recall the definition of the class Pβ,γ in Section 3.

Theorem 4.1 (Hölder Lower Bound). For any pZ(z) ≥ c where c is some constant, we have that

inf
p̂

sup
p∈Pβ,γ

Ep

∫ ∫
|p̂X|Z(x|z) − pX|Z(x|z)|pZ(z)dxdz & n

−1
β−1dX+γ−1dZ+2 .

Remarks:

1. Theorem 3.5 and this theorem together show that the proposed estimate (3.1) achieves the

minimax rate n
−1

β−1dX+γ−1dZ+2 under the loss function (1.1).

2. It is worth comparing and contrasting the results of this Theorem with our earlier impossibility
result in Theorem 2.2. In rough terms, they convey the same basic intuition that when γ
is very small (or 0) conditional density estimation is difficult (or impossible) in a minimax
sense. This result is more quantitative, capturing in a more precise sense the dependence on
γ. On the other hand, the result of Theorem 2.2 is more flexible, allowing essentially any
marginal density pZ (not requiring it to be lower bounded by a constant), as long as the
marginal density has some non-trivial absolutely continuous component (as discussed in the
remarks following Theorem 2.2).

Here we provide a sketch of the proof for the minimax optimal lower bound. The full proof is
deferred to Section 7.3.
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Proof Sketch. We first define a class of conditional density functions and show that their joint
distributions indeed belong to Pβ,γ . Then, we apply Fano’s inequality to derive the minimax lower
bound.

The conditional density functions are defined as

p∆X|Z(x|z) = 1 +
∑

ī∈[m]dX

∑

j̄∈[m]dZ

∆ī,j̄

∏

k∈[dX ]

hik(xk)
∏

k∈[dZ ]

gjk(zk),

where recall the shorthands ī ∈ [r]dX , j̄ ∈ [m]dZ (r,m are integers chosen later), and ∆ī,j̄ ∈
{±1}. The intuition for such a construction is to add multiple small perturbations to the uniform
conditional density function by using infinitely differentiable bump functions hik , gjk . We proceed
to verify that the constructed conditional density functions are indeed density functions (i.e. always
positive and integrates to 1), and follow both the γ-TV smoothness condition as in Definition 3.1
and the Hölder smoothness condition as in Definition 2.1.

In order to apply Fano’s inequality [23], we first show that there exists a subset of the conditional
density functions defined above, such that the distance between any pair as measured by the loss
function is sufficiently large (more specifically, is lower bounded by some ǫ). This is done by
using Varshamov-Gilbert’s construction [22, Lemma 2.9]. We then find an upper bound on the
Kullback-Leibler (KL) divergence between any pair of our conditional density functions. Finally,
applying Markov’s inequality to the Fano’s inequality allows us to express the minimax lower bound
in terms of the distance lower bound and KL divergence upper bound we just derived. Making
some optimal selection of parameter values completes the proof and produces the desired matching
minimax optimal lower bound.

Importantly, note that in the process of proving Theorem 4.1, we constructed a class of con-
ditional density functions and showed that it satisfies all our assumptions. In order to better
understand the class Pβ,γ , we develop further examples of densities belonging to this class in the
next section.

5 Examples

In this section we provide examples of distributions which belong to Pβ,γ . Recall that this class
of distributions requires conditional densities to be Hölder smooth (see Definition 2.1) and γ-TV
smooth (see Definition 3.1). We already saw examples of such distributions in the proof of Theorem
4.1. Below we give two additional classes of examples for different values of the smoothness β.

Theorem 5.1 (Examples for β > 1). Suppose g(x, z) : [0, 1]d 7→ R is such that g(x, z) ≥ a > 0 for
some constant a, and is Hölder smooth with smoothness β > 1 in both x and z, i.e.,

sup
α

|Dαg(x, z) −Dαg(x′, z′)| ≤ C(‖x− x′‖1 + ‖z − z′‖1)β−ℓ,

for all α such that ‖α‖1 = ℓ, α ∈ N
dX
0 , where ℓ = ⌊β⌋. Then if pX|Z(x|z) = g(x,z)∫

g(x,z)dx
, we have

pX|Z ∈ Pβ,1 ⊆ Pβ,γ, for any γ ≤ 1.

Theorem 5.2 (Examples for β ≤ 1). Suppose g(x, z) : [0, 1]d 7→ [−M,M ] is a bounded function
such that

|g(x, z) − g(x′, z′)| ≤ C(‖x− x′‖β1 + ‖z − z′‖γ1).

10



Then if pX|Z(x|z) = exp(g(x,z))∫
exp(g(x,z))dx

, we have pX,Z ∈ Pβ,γ.

The proofs of Theorem 5.1 and 5.2 are given in Appendix C.

6 Hyperparameter Tuning and Selection

We have shown that our proposed estimate (3.1) achieves the minimax-optimal rate n
−1

β−1dX+γ−1dZ+2

under the loss function (1.1). However, in doing so we manually picked the values of the hyperpa-
rameters h and m, which depend on the smoothness parameters β and γ of the true distribution.
Here we introduce an adaptive method of selecting the hyperparameters without needing to assume
the knowledge of β and γ.

Towards the goal of hyperparameter tuning we first design and analyze a selection procedure
for conditional density estimation which satisfies a type of oracle inequality with respect to the
loss (1.1). Given a collection of candidate conditional density estimates we devise a procedure
which selects one which has nearly minimal loss. Our procedure is inspired by a minimum distance
estimate described in the work of Yatracos [20], and further developed in the works [5, 6]. However,
in contrast to these works our selection procedure only has access to conditional density estimates
(as opposed to joint density estimates), and we aim to design a selection procedure tailored to
the loss (1.1) (as opposed to the usual L1 loss on the joint densities). Furthermore, our goal is to
avoid smoothness assumptions which would be required to estimate the marginal of Z, and this
necessitates careful modifications of the minimum distance procedure.

We describe our oracle inequality in Theorem 6.1 and use this result to develop an adaptive
conditional density estimate which achieves the same minimax-optimal rates as the estimate in (3.1)
without knowledge of the smoothness parameters in Section 6.2.

6.1 A Modified Selection Procedure for Conditional Density Estimates

To begin with we consider the following setup. We are given access to a collection of conditional
density estimates f̂1, . . . , f̂N , which are either fixed, or estimated on a separate sample. Our goal
is to select an estimate of (nearly) minimal loss.

We associate each estimate with an oracle joint distribution f̃j(x, z) = f̂j(x|z)pZ(z) where p is
the unknown true density of the samples. Associated with each pair (i, j) of density estimates we
define the so-called Yatracos set:

Aij = {(x, z) : f̃i(x, z) > f̃j(x, z)}.

We note that we can compute Aij even without access to the unknown density p. Denote the
collection of such sets A. For a set A we let Az denote the subset with Z = z.

Given n samples {(X1, Z1), . . . , (Xn, Zn)} from p, we use the following minimum distance esti-
mator:

ψ = argmin
f̂j :j∈[N ]

sup
A∈A

∣∣∣∣∣
1

n

n∑

i=1

∫

AZi

f̂(x|Zi)dx− Pn(A)

∣∣∣∣∣ .

In rough terms our selection procedure compares, for each candidate f̂j, an estimate of the mass

of the Yatracos sets under f̃j to an estimate of the population mass of these sets, selecting the
candidate for which the largest discrepancy is smallest.
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We show the following result:

Theorem 6.1. With probability at least 1− δ,

∫

z
‖ψ(x|z) − p(x|z)‖1pZ(z)dz ≤ 3min

j

∫

z
‖f̂j − p(x|z)‖1pZ(z)dz + 14

√
log(N/δ)

n
.

Remarks:

1. Our method and analysis are inspired by those of Yatracos [20]. The crucial insight of Yatracos
is that when our goal is to select one of a collection of candidates, the supremum over the
relatively small collection of Yatracos sets is adequate as a (statistically and computationally)
tractable proxy for the supremum over all measurable sets (the TV/L1 distance).

2. The guarantee of the theorem is extraordinary in that we are able to obtain an oracle inequal-
ity with an excess error which scales as 1/

√
n, despite the fact that accurately estimating the

loss (1.1) of even a single estimate would require many more samples. Furthermore, the guar-
antee degrades only logarithmically in the number of estimates N we are aiming to select from
and in the failure probability δ. This, for instance, will be important in the next section when
we use the method to select from a large collection of candidate density estimates constructed
using different values of the tuning parameter.

3. Although not the main focus of our paper, the computational costs of constructing the Ya-
tracos sets and computing the minimum distance estimate are discussed extensively in [5, 6].
At the expense of a slightly worse guarantee one might use a tournament-based selection rule
which has a computational cost which scales linearly (as opposed to quadratically) in the
number of estimates N .

6.2 Adaptive Conditional Density Estimation

With our previous result in place we now describe an adaptive conditional density estimate which

achieves the rate n
−1

β−1dX+γ−1dZ+2 , without knowledge of the smoothness parameters β and γ. We
assume throughout that β and γ are upper bounded by some (unknown, but fixed) universal
constants. We split our sample in two halves, using one half to construct a collection of candidate
density estimates, and the second half to select one of these candidates following the procedure
in Section 6.1. In practice, one might choose instead to use cross-fitting, where we repeat this
procedure swapping the roles of the two samples, and average the two resulting estimates. It is
straightforward to show that our guarantees continue to hold for the cross-fit variant as well.

We postulate two intervals where h and m are assumed to lie in respectively. Recall our

choice of optimal hyperparameter values while proving Theorem 3.5: h ≍ n
−1

dX+dZβγ−1+2β and

m ≍ n
β

dX+dZβγ−1+2β . Based on this result we consider values of the tuning parameters in two
sets I1 = {n−1/dX , 2 × n−1/dX , . . . , 2⌈log2 n

1/dX ⌉n−1/dX}, and I2 = {1, 2, 4, . . . , 2⌈(log2 n)/2⌉}. We
consider all pairs of tuning parameters (h,m) ∈ I1 × I2, noting that there are at most N :=
O(log2 n) such choices. For each possible hyperparameter combination, we compute our conditional
density estimate p̄j(x|z), for j ∈ [N ] (we use the truncated and renormalized estimate analyzed in

Lemma 3.6). At least one of these estimates achieves the minimax rate of n
−1

β−1dX+γ−1dZ+2 and it
thus only remains to select a sufficiently good candidate.
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We apply the Yatracos procedure from Section 6.1 to select a candidate ψ̂ using the second half
of the sample, and we obtain the following result.

Theorem 6.2 (Adaptive Conditional Density Estimation). Suppose that pX,Z ∈ Pβ,γ. The tuning-

parameter free procedure described above yields an estimate ψ̂ such that,

E

∫ ∫
|ψ̂X|Z(x|z)− pX|Z(x|z)|pZ(z)dxdz . n

−1
β−1dX+γ−1dZ+2 .

Remarks:

1. The proof of this result is fairly straightforward given the result of the previous section, and
only requires us to convert the high-probability bound from Theorem 6.1 so that we may use
our previously derived upper bound in Theorem 3.5. We present the details in Section 7.5.

2. We note that, in contrast to works on pointwise adaptation over smoothness classes [24] where
typically a logarithmic price is unavoidable, we design an adaptive estimator which achieves
the (oracle) minimax-rate (of Theorem 4.1).

7 Proofs

In this section we present the proofs of the main results of our paper, deferring remaining technical
aspects to the Appendix.

7.1 Proof of Theorem 2.2

We start by constructing a joint distribution pX,Z(x, z) such that pX|Z is uniform on [0, 1]dX for all
values of Z (i.e. X is independent of Z), and the marginal of Z is equal to pZ which is specified
by the user. We will now construct multiple distributions out of pX,Z(x, z). Take disjoint Borel
measurable sets C1, . . . , Cm ⊂ [0, 1]dZ such that

∫
Ci
pZ(z)dz = m−1 and ∪i∈[m]Ci = [0, 1]dZ .

For a given β and W1, we construct two distributions p1, p2 which are Hölder smooth with
constant W1 and smoothness β, and have sufficiently large total variation (TV) distance from the
uniform distribution. In addition, their mixture distribution with equal weights produces pX|Z , i.e.

1

2
p1 +

1

2
p2 = pX|Z = U([0, 1]dX ).

For a constant 0 < c < 1 which we will set appropriately in the sequel, we define p1, p2 as linear
functions of the xi as follows:

p1(x) = 2(1 − c)
∑

i∈[dx]

xi
dX

+ c, p2(x) = 2− p1(x).

The following result develops some properties of the distributions p1 and p2.

Lemma 7.1. 1. The densities p1, p2 are positive, integrate to 1, and satisfy the property that
1
2p1 +

1
2p2 = U([0, 1]dX ).

2. When β ≤ 1 the densities are Hölder with W1 = 2(1− c)/dβX and if β > 1 they are Hölder for
any value W1 ≥ 0.
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3. Furthermore, TV(U([0, 1]dX ), p1) = TV(U([0, 1]dX ), p2) ≥ (1−c)2

18dX
=: cTV.

Now, for a ∆ = (∆1, . . . ,∆m) ∈ {1, 2}m, construct the distribution p∆X,Z(x, z) which has the
same marginal distribution on Z as pX,Z(x, z), i.e., pZ , and the conditional distributions defined as
follows: for z ∈ Cj we have

p∆X|Z(·|z) = p∆j(·).

We know from Lemma 7.1 that TV(U([0, 1]dX ), p1) = TV(U([0, 1]dX ), p2) ≥ cTV where cTV is some
positive constant, so it follows that

∫ ∫
|pX|Z(x|z) − p∆X|Z(x|z)|pZ(z)dxdz =

∫
2TV(U([0, 1]dX ), p1)pZ(z)dz ≥ 2cTV > 0. (7.1)

Next the proof will emulate a classical reduction scheme from estimation to a testing problem.
This reduction is similar to the one described in Section 2.2 of [22], yet there are differences hence
we provide full details. For brevity note that our loss function is

‖p̂X|ZpZ − qX|ZpZ‖1 =
∫ ∫

|p̂X|Z(x|z)− qX|Z(x|z)|pZ(z)dxdz.

By Markov’s inequality, we have that:

E‖p̂X|ZpZ − qX|ZpZ‖1 ≥ cTVP

(
‖p̂X|ZpZ − qX|ZpZ‖1 ≥ cTV

)
. (7.2)

Define the finite class of distributions C(β,W1) = {pX|Z , {p∆X|Z}∆∈{1,2}m}, and for ease of notation

enumerate the elements of C(β,W1) by p0 = pX|Z , p∆+1 = p∆X|Z where with a slight abuse of
notation we refer to ∆ as the integer with binary representation ∆. Thus the cardinality of the set
|C(β,W1)| = 2m + 1. In light of (7.2), it follows that in order to lower bound the quantity

inf
p̂X|Z

max
i∈{0}∪[2m]

EpipZ‖p̂X|ZpZ − pipZ‖1,

it suffices to control

inf
p̂X|Z

max
i∈{0}∪[2m]

PpipZ

(
‖p̂X|ZpZ − pipZ‖1 ≥ cTV

)
,

where we are indexing the expectation and the probability to stress that the distribution of the
data is generated under the distribution pipZ (importantly note that we have n i.i.d. observations
from pipZ). Next we notice that

Pp0pZ

(
‖p̂X|ZpZ − p0pZ‖1 ≥ cTV

)
≥ Pp0pZ (ψ

∗ 6= 0),

and

PpipZ

(
‖p̂X|ZpZ − pipZ‖1 ≥ cTV

)
≥ PpipZ (ψ

∗ = 0),
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where

ψ∗ = argmin
0≤i≤2m

‖p̂X|ZpZ − pipZ‖1,

and the above two inequalities follow by the triangle inequality and (7.1). We conclude that

inf
p̂X|Z

max
i∈{0}∪[2m]

PpipZ

(
‖p̂X|ZpZ − pipZ‖1 ≥ cTV

)

≥ inf
ψ

max(Pp0pZ (ψ 6= 0), max
i∈[2m]

PpipZ (ψ = 0)),

where the inf is taken over all measurable test functions with values in the set {0} ∪ [2m]. Using
the fact that the max is bigger than the average we have

inf
p̂X|Z

max
i∈{0}∪[2m]

PpipZ

(
‖p̂X|ZpZ − pipZ‖1 ≥ cTV

)

≥ inf
ψ

max(Pp0pZ (ψ 6= 0), max
i∈[2m]

PpipZ (ψ = 0))

≥ inf
ψ

max

(
Pp0pZ (ψ 6= 0),

1

2m

∑

i∈[2m]

PpipZ (ψ = 0)

)
. (7.3)

Suppose we are able to show that the TV distance between these distributions can be made arbi-
trarily small, i.e. for any ǫ > 0 we can ensure that,

TV

(
Pp0pZ ,

1

2m

∑

i∈[2m]

PpipZ

)
≤ ǫ, (7.4)

then as a consequence we obtain that,

inf
ψ

max

(
Pp0pZ (ψ 6= 0),

1

2m

∑

i∈[2m]

PpipZ (ψ = 0)

)

≥ inf
ψ

max

(
Pp0pZ (ψ 6= 0),Pp0pZ (ψ = 0)− ǫ

)

≥ 1

2
− ǫ.

Hence we conclude following (7.2) that,

inf
p̂X|Z

max
i∈{0}∪[2m]

EpipZ‖p̂X|ZpZ − pipZ‖1 ≥ cTV

2
− cTVǫ.

It remains to specify the choice of the constant c in our definition of p1. When β > 1 or when
W1 ≤ 2/dβX we can choose c = 0 to obtain the lower bound of 1/36dX . Otherwise, we must choose

c large enough to ensure that 2(1 − c)/dβX ≤ W1, i.e. we choose c = 1 − (W1d
β
X)/2 to obtain the

lower bound of
W 2

1 d
(2β−1)
X
144 as claimed, completing the proof of the theorem.
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Finally, we prove the total variation bound in (7.4). Note that,

TV

(
Pp0pZ ,

1

2m

∑

i∈[2m]

PpipZ

)
= sup

A∈Σ

∣∣∣∣Pp0pZ (A) −
1

2m

∑

i∈[2m]

PpipZ (A)

∣∣∣∣,

where Σ is the Borel σ-field. Let B be the event where at least two points Zi for i ∈ [n] belong
to the same bin Ck for some k. The complement Bc is therefore the event where each point Zi for
i ∈ [n] falls into its own bin. For any event A we have

∣∣∣∣Pp0pZ (A)−
1

2m

∑

i∈[2m]

PpipZ (A)

∣∣∣∣ ≤
∣∣∣∣Pp0pZ (A ∩Bc)− 1

2m

∑

i∈[2m]

PpipZ (A ∩Bc)

∣∣∣∣

+

∣∣∣∣Pp0pZ (A ∩B)− 1

2m

∑

i∈[2m]

PpipZ (A ∩B)

∣∣∣∣

≤
∣∣∣∣Pp0pZ (A ∩Bc)− 1

2m

∑

i∈[2m]

PpipZ (A ∩Bc)

∣∣∣∣

+

∣∣∣∣Pp0pZ (A ∩B)

∣∣∣∣+
∣∣∣∣
1

2m

∑

i∈[2m]

PpipZ (A ∩B)

∣∣∣∣

≤
∣∣∣∣Pp0pZ (A ∩Bc)− 1

2m

∑

i∈[2m]

PpipZ (A ∩Bc)

∣∣∣∣+ 2Pp0pZ (B),

where in the last inequality we used the fact that Pp0pZ (B) = 1
2m
∑

i∈[2m] PpipZ (B) since the two
distributions have the same marginal distribution on Z. Now by the definition of our distributions
pi we know that the mixture distribution 1

2m
∑

i∈[2m] PpipZ assigns the same measure to the set
A ∩Bc as the distribution Pp0pZ , and therefore

∣∣∣∣Pp0pZ (A)−
1

2m

∑

i∈[2m]

PpipZ (A)

∣∣∣∣ ≤ 2Pp0pZ (B).

Due to the definitions of the sets Ci we have that Pp0pZ (B) = mn−m(m−1)...(m−n+1)
mn = O( 1

m), for a
sufficiently large m. It follows that

TV

(
Pp0pZ ,

1

2m

∑

i∈[2m]

PpipZ

)
≤ O(

1

m
).

Thus going back to (7.3), we have

inf
ψ

max

(
Pp0pZ (ψ 6= 0),

1

2m

∑

i∈[2m]

PpipZ (ψ = 0)

)

≥ inf
ψ

max

(
Pp0pZ (ψ 6= 0),Pp0pZ (ψ = 0)−O(

1

m
)

)

≥ 1

2
−O

(
1

m

)
.

Taking m large enough completes the proof.
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7.2 Proof of Theorem 3.5

For each Aj̄, define the corresponding estimate

p̂X,j̄(x) :=

∑
i∈[n] 1(Zi ∈ Aj̄)K(Xi−x

h )

hdX
∑

i∈[n] 1(Zi ∈ Aj̄)
.

Using the triangle inequality we have

E

∫ ∫
|p̂X|Z(x|z) − pX|Z(x|z)|pZ(z)dxdz

≤
∫ ∫

|p̃X|Z(x|z)− pX|Z(x|z)|pZ(z)dxdz + E

∫ ∫
|p̂X|Z(x|z)− p̃X|Z(x|z)|pZ(z)dxdz, (7.5)

where

p̃X|Z(x|z) =
∑

j̄

1

(
z ∈ Aj̄

)
E

[∑
i∈[n] 1(Zi ∈ Aj̄)K(Xi−x

h )

hdX
∑

i∈[n] 1(Zi ∈ Aj̄)

]
=
∑

j̄

1

(
z ∈ Aj̄

)
E[p̂X,j̄(x)],

and

p̂X|Z(x|z) =
∑

j̄

1

(
z ∈ Aj̄

)
∑

i∈[n] 1(Zi ∈ Aj̄)K(Xi−x
h )

hdX
∑

i∈[n] 1(Zi ∈ Aj̄)
=
∑

j̄

1

(
z ∈ Aj̄

)
p̂X,j̄(x).

We proceed to bound the two terms of (7.5) separately.

Bounding the first term of (7.5):

By Lemma B.1 in Appendix B.1 we know that

E[p̂X,j̄(x)] = h−dXE

[
K

(
X − x

h

) ∣∣∣∣Z ∈ Aj̄
]
(1− P(Z ∈ Acj̄)

n).

So we have
∫ ∫

|p̃X|Z(x|z)− pX|Z(x|z)|pZ(z)dxdz

=

∫ ∫ ∣∣∣∣
∑

j̄

1(z ∈ Aj̄)
(
E[p̂X,j̄(x)] − pX|Z(x|z)

) ∣∣∣∣pZ(z)dxdz

≤
∑

j̄

∫

Aj̄

∫ ∣∣∣∣E[p̂X,j̄(x)]− pX|Z(x|z)
∣∣∣∣pZ(z)dxdz

=
∑

j̄

∫

Aj̄

∫ ∣∣∣∣h
−dXE

[
K

(
X − x

h

) ∣∣∣∣Z ∈ Aj̄
]
(1− P(Z ∈ Acj̄)

n)

− pX|Z(x|z)(1 − P(Z ∈ Acj̄)n)− pX|Z(x|z)P(Z ∈ Acj̄)
n

∣∣∣∣pZ(z)dxdz
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≤
∑

j̄

∫

Aj̄

∫ ∣∣∣∣(1− P(Z ∈ Acj̄)n)
(
h−dXE

[
K

(
X − x

h

) ∣∣∣∣Z ∈ Aj̄

]
− pX|Z(x|z)

)∣∣∣∣pZ(z)dxdz

+
∑

j̄

∫

Aj̄

∫
pX|Z(x|z)P(Z ∈ Acj̄)

npZ(z)dxdz

≤
∑

j̄

∫

Aj̄

∫ ∣∣∣∣h
−dXE

[
K

(
X − x

h

) ∣∣∣∣Z ∈ Aj̄
]
− pX|Z(x|z)

∣∣∣∣pZ(z)dxdz

+
∑

j̄

∫

Aj̄

∫
pX|Z(x|z)P(Z ∈ Acj̄)

npZ(z)dxdz. (7.6)

We consider the two terms separately. To upper bound the first term, we know from Lemma
B.2 in Appendix B.1 that

∣∣∣∣h
−dXE

[
K

(
X − x

h

) ∣∣∣∣Z ∈ Aj̄
]
− pX|Z(x|z ∈ Aj̄)

∣∣∣∣ ≤ Chβ,

for some constant C. Then applying the triangle inequality we have

∑

j̄

∫

Aj̄

∫ ∣∣∣∣h
−dXE

[
K

(
X − x

h

) ∣∣∣∣Z ∈ Aj̄

]
− pX|Z(x|z)

∣∣∣∣pZ(z)dxdz

≤
∑

j̄

∫

Aj̄

∫ (∣∣∣∣pX|Z(x|z) − pX|Z(x|z ∈ Aj̄)

∣∣∣∣

+

∣∣∣∣h
−dXE

[
K

(
X − x

h

) ∣∣∣∣Z ∈ Aj̄

]
− pX|Z(x|z ∈ Aj̄)

∣∣∣∣
)
pZ(z)dxdz

≤
∑

j̄

∫

Aj̄

∫ ∣∣∣∣pX|Z(x|z) −
∫

Aj̄

pX|Z(x|z′)
pZ(z

′)

P(Z ∈ Aj̄)
dz′
∣∣∣∣pZ(z)dxdz + Chβ

≤
∑

j̄

∫

Aj̄

∫

Aj̄

∫ ∣∣∣∣pX|Z(x|z)− pX|Z(x|z′)
∣∣∣∣dxpZ(z)

pZ(z
′)

P(Z ∈ Aj̄)
dz′dz + Chβ

=
∑

j̄

∫

Aj̄

∫

Aj̄

‖pX|Z=z − pX|Z=z
′‖1pZ(z)

pZ(z
′)

P(Z ∈ Aj̄)
dz′dz + Chβ

≤
∑

j̄

∫

Aj̄

∫

Aj̄

W2‖z − z′‖γ1pZ(z)
pZ(z

′)

P(Z ∈ Aj̄)
dz′dz + Chβ

≤
∑

j̄

∫

Aj̄

∫

Aj̄

W2

(
dZ
m

)γ
pZ(z)

pZ(z
′)

P(Z ∈ Aj̄)
dz′dz + Chβ

=
∑

j̄

∫

Aj̄

W2

(
dZ
m

)γ
pZ(z)dz + Chβ

=W2

(
dZ
m

)γ
+ Chβ,

where W2 and C are constants.

18



Now we upper bound the second term in equation (7.6). Notice that it reduces to:

∑

j̄

∫

Aj̄

∫
pX|Z(x|z)P(Z ∈ Acj̄)

npZ(z)dxdz =
∑

j̄

pj̄(1− pj̄)
n,

where pj̄ = P(Z ∈ Aj̄).

Lemma 7.2. We have

∑

j̄

pj̄(1− pj̄)
n ≤

(
1− 1

mdZ

)n
. (7.7)

The proof of Lemma 7.2 relies on Lagrange multipliers and is deferred to Appendix B.1. Finally
we have an upper bound for the entirety of the first term of (7.5):

∫ ∫
|p̃X|Z(x|z) − pX|Z(x|z)|pZ(z)dxdz ≤W2

(
dZ
m

)γ
+ Chβ +

(
1− 1

mdZ

)n
.

Bounding the second term of (7.5):

Recall that both p̃X|Z(x|z) and p̂X|Z(x|z) are of the form
∑

j̄ 1
(
z ∈ Aj̄

)
M where the first part∑

j̄ 1
(
z ∈ Aj̄

)
depends on z while the second part M is independent of z. Then we can rewrite the

integral as

E

∫ ∫
|p̂X|Z(x|z)− p̃X|Z(x|z)|pZ(z)dxdz

≤E

[∑

j̄

∫ ∫
1

(
z ∈ Aj̄

) ∣∣∣∣p̂X,j̄(x)− E[p̂X,j̄(x)]

∣∣∣∣pZ(z)dxdz
]

=E

[∑

j̄

∫

Aj̄

pZ(z)dz

∫ ∣∣∣∣p̂X,j̄(x)− E[p̂X,j̄(x)]

∣∣∣∣dx
]

=E

[∑

j̄

∫
P(Z ∈ Aj̄)

∣∣∣∣p̂X,j̄(x)− E[p̂X,j̄(x)]

∣∣∣∣dx
]

=
∑

j̄

∫
P(Z ∈ Aj̄)E

[∣∣∣∣p̂X,j̄(x)− E[p̂X,j̄(x)]

∣∣∣∣
]
dx.

We can further bound this term by first bounding the inner expression. By Jensen’s inequality
we have

E

[∣∣p̂X,j̄(x)− E[p̂X,j̄(x)]
∣∣
]
≤
√

E

[(
p̂X,j̄(x)− E[p̂X,j̄(x)]

)2
]
=
√
var[p̂X,j̄(x)].

But by Lemma B.3 in Appendix B.1 we know this variance is upper bounded as,

var[p̂X,j̄(x)] ≤
A

nhdXP(Z ∈ Aj̄)
+BP(Z ∈ Acj̄)

n,
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for some constants A,B. Notice that this bound is independent of x, so substituting back into the
second term we have

∑

j̄

∫
P(Z ∈ Aj̄)E

[∣∣∣∣p̂X,j̄(x)− E[p̂X,j̄(x)]

∣∣∣∣
]
dx

≤K
∑

j̄

∫
P(Z ∈ Aj̄)

√
1

nhdXP(Z ∈ Aj̄)
+ P(Z ∈ Ac

j̄
)ndx

=K
∑

j̄

√
P(Z ∈ Aj̄)

√
1

nhdX
+ P(Z ∈ Aj̄)P(Z ∈ Ac

j̄
)n,

where K is a constant. Once again denote pj̄ = P(Z ∈ Aj̄). Then by Cauchy-Schwarz we have

K
∑

j̄

√
pj̄

√
1

nhdX
+ pj̄(1− pj̄)

n ≤ K

√√√√√


∑

j̄

pj̄




∑

j̄

1

nhdX
+
∑

j̄

pj̄(1− pj̄)
n




= K

√√√√ mdZ

nhdX
+
∑

j̄

pj̄(1− pj̄)
n

≤ K

√
mdZ

nhdX
+K

(
1− 1

mdZ

)n
2

,

where the last step follows from (7.7), since we already proved that
∑

j̄ pj̄
(
1− pj̄

)n ≤ (1− 1
mdZ

)n.
So we have shown that the second term is upper bounded as

E

∫ ∫
|p̂X|Z(x|z) − p̃X|Z(x|z)|pZ(z)dxdz ≤ K

√
mdZ

nhdX
+K

(
1− 1

mdZ

)n
2

.

Combining the terms:

Combining the bounds for the two terms, we have found an upper bound to the loss function:

E

∫ ∫
|p̂X|Z(x|z)− pX|Z(x|z)|pZ(z)dxdz

≤W2

(
dZ
m

)γ
+ Chβ +

(
1− 1

mdZ

)n
+K

√
mdZ

nhdX
+K

(
1− 1

mdZ

)n
2

,

where W2, C and K are constants. This yields the optimal parameter values h ≍ n
−1

dX+dZβγ−1+2β

and m ≍ n
β

dX+dZβγ−1+2β , and a rate of n
−1

β−1dX+γ−1dZ+2 . Notice that by our selection of h,m, we
have (1− 1

mdZ
)n ≤ (1− 1

mdZ
)
n
2 ≤ exp( −n

2mdZ
), both of which are negligible compared to other terms

for sufficiently large n, and thus can be ignored.
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7.3 Proof of Theorem 4.1

We first choose a “bump” function h supported on [0, 1] which is an infinitely differentiable function,
and satisfies the conditions that

∫
h(x)dx = 0,

∫
h2(x)dx = 1, and for which

∫
|h(x)|dx is a non-zero

constant.
We construct a collection of densities by setting the conditional distributions pX|Z to be the

uniform density perturbed by bumps of an appropriate resolution. Formally, we bin [0, 1] into m
bins for Z and r bins for X. We then define the following conditional density functions:

p∆X|Z(x|z) = 1 +
∑

ī

∑

j̄

∆ī,j̄

∏

k∈[dX ]

hik,r(xk)
∏

k∈[dZ ]

hjk,m(zk),

where we recall the shorthands ī ∈ [r]dX , j̄ ∈ [m]dZ (r,m are integers chosen later), and ∆ī,j̄ ∈ {±1}.
We further define

hik,r(xk) = ρ
√
rh(rxk − ik + 1),

hjk,m(zk) = ρ
√
mh(mzk − jk + 1),

where ρ is a positive constant which we will choose appropriately. The support of hik ,r(xk) is
xk ∈ [ ik−1

r , ikr ], and the support of hjk,m(zk) is zk ∈ [ jk−1
m , jkm ]. The supports of these bumps are

disjoint for different values of ik or jk.
The following lemma develops some important properties of the perturbed densities p∆.

Lemma 7.3. 1. Suppose we ensure that,

ρdrdX/2mdZ/2‖h‖d∞ ≤ 1

2
, (7.8)

then p∆ is a valid density.

2. Suppose we ensure that,

2ρdrdX/2mdZ/2rβ‖h‖dZ∞
([

2
∏

k∈[dX ]

‖h(αk)‖∞
]
∨
[√

dX
∏

k∈[dX ]

[
‖h(αk+1)‖∞ ∨ ‖h(αk)‖∞

] ])
≤W1,

(7.9)

then p∆ satisfies the Hölder smoothness condition.

3. Finally, if we ensure that,

2ρdr
dX
2 m

dZ
2 mγ‖h‖dZ−1

∞

(
2‖h‖∞ ∨ ‖h′‖∞

)
≤W2, (7.10)

then p∆ satisfies the TV smoothness condition.

Our lower bound will follow as a consequence of Fano’s inequality [23]. In order to apply Fano’s
inequality it will be useful to bound the KL divergence between a pair of densities p∆ and p∆

′
, and

to show that we can construct a collection of sufficiently large cardinality which are well-separated
in the loss function (1.1).
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Lemma 7.4. 1. Suppose that the condition in (7.8) holds. For a given pairs of densities p∆

and p∆
′
the KL divergence can be bounded as,

KL(p∆, p∆
′
) ≤ 8‖h‖∞ρ2drdXmdZ .

2. There is a subset T of densities p∆ such that, |T | ≥ 2r
dXmdZ /8, and furthermore for any pair

of densities p∆ and p∆
′
in T there is an absolute constant C > 0 such that,

∫ ∫
|p∆X|Z(x|z)− p∆

′

X|Z(x|z)|pZ(z)dxdz ≥ 1

4
‖h‖d1pminρ

drdX/2mdZ/2.

Ignoring constants in the remainder of the proof we now describe our choice of (ρ, r,m). We
select ρd ≍ 1/

√
n, r ≍ nβ

−1/(dX/β+dZ/γ+2) and m ≍ nγ
−1/(dX/β+dZ/γ+2) (with appropriately small

constants) and observe that each of the conditions of Lemma 7.3 are satisfied.
The proof of the theorem follows from a straightforward application of Fano’s inequality (see

for instance [22, Theorem 2.7]). In rough terms, we apply Fano’s inequality to the collection of
distributions T . Provided that we can show that the average pairwise KL divergence between
the n-sample product distributions is at most some small constant times log |T | we obtain a lower
bound on the loss (1.1) of any estimator which scales as ρdrdX/2mdZ/2 ≍ n−1/(dX/β+dZ/γ+1). We
note that,

KL((p∆)n, (p∆
′
)n) = nKL(p∆, p∆

′
) . nρ2drdXmdZ . rdXmdZ . log |T |,

as desired, completing the proof of the theorem.

7.3.1 Proof of Lemma 7.3

We prove each of the three claims in turn.

Proof of Claim (1): We now verify that p∆X|Z(x|z) is a density function. Consider the integral

∫ ∫ 
1 +

∑

ī

∑

j̄

∆ī,j̄

∏

k∈[dX ]

hik,r(xk)
∏

k∈[dZ ]

hjk,m(zk)


 dxdz

=1 +
∑

ī

∑

j̄

∆ī,j̄

∫
hi1,r(x1)dx1...

∫
hjdZ ,m(zdZ )dzdZ

=1 +
∑

ī

∑

j̄

∆ī,j̄

(
ρr−

1
2

∫
h(u)du

)
...

(
ρm− 1

2

∫
h(u)du

)

=1.

And under the additional assumption

|∆ī,j̄

∏

k∈[dX ]

hik,r(xk)
∏

k∈[dZ ]

hjk,m(zk)| ≤ ρdrdX/2mdZ/2‖h‖d∞ ≤ 1

2
,

the function p∆X|Z(x|z) is always positive. So it is indeed a density function.
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Proof of Claim (2): Now we verify that p∆X|Z(x|z) indeed satisfies the Hölder smoothness
assumption. Since the L2 norm is always smaller than or equal to the L1 norm, it suffices to show

|Dαp∆X|Z(x|z)−Dαp∆X|Z(x
′|z)| ≤W1‖x− x′‖β−ℓ2 .

p∆X|Z(x|z) is infinitely differentiable since h is infinitely differentiable, and so it is ℓ = ⌊β⌋
times differentiable. Now we want to show the second requirement. Without loss of generality let
(α1, ..., αdX ) be fixed, and suppose we are given arbitrary x, x′, z.

Since z is fixed and
∏
k∈[dZ ] hjk,m(zk) have disjoint support, the only non-zero one is

∏
k∈[dZ ] hj∗k ,m(zk)

for the bins j̄∗ = (j∗1 , ..., j
∗
dZ

).
So we have

|Dαp∆X|Z(x|z)−Dαp∆X|Z(x
′|z)|

=

∣∣∣∣
∑

ī

∑

j̄

∆ī,j̄


 ∏

k∈[dX ]

h
(αk)
ik ,r

(xk)
∏

k∈[dZ ]

hjk,m(zk)−
∏

k∈[dX ]

h
(αk)
ik ,r

(x′k)
∏

k∈[dZ ]

hjk,m(zk)



∣∣∣∣

=ρdrdX/2mdZ/2rℓ
∣∣∣∣
∑

ī

∆ī,j̄∗

( ∏

k∈[dX ]

h(αk)(rxk − ik + 1)
∏

k∈[dZ ]

h(mzk − j∗k + 1)

−
∏

k∈[dX ]

h(αk)(rx′k − ik + 1)
∏

k∈[dZ ]

h(mzk − j∗k + 1)

)∣∣∣∣

≤ρdrdX/2mdZ/2rℓ‖h‖dZ∞
∣∣∣∣
∑

ī

∆ī,j̄∗



∏

k∈[dX ]

h(αk)(rxk − ik + 1)−
∏

k∈[dX ]

h(αk)(rx′k − ik + 1)



∣∣∣∣.

Notice that in the above summation, there are at most two non-zero terms, as
∏
k∈[dX ] h

(αk)(rxk−
ik + 1) have disjoint supports. Let ā = (a1, ..., adX ) be such that ∀k ∈ [dx], xk ∈ [ak−1

r , akr ], and let

b̄ = (b1, ..., bdZ ) be such that ∀k ∈ [dX ], x
′
k ∈ [ bk−1

r , bkr ], which correspond to the two non-zero terms
respectively. Then we have

|Dαp∆X|Z(x|z)−Dαp∆X|Z(x
′|z)|

≤ρdrdX/2mdZ/2rℓ‖h‖dZ∞
[
|
∏

k∈[dX ]

h(αk)(rxk − ak + 1)−
∏

k∈[dX ]

h(αk)(rx′k − ak + 1)|

+ |
∏

k∈[dX ]

h(αk)(rxk − bk + 1)−
∏

k∈[dX ]

h(αk)(rx′k − bk + 1)|
]
.

We can further bound the term within the square brackets. We will find two upper bounds and
use the minimum between the two. Firstly we have

|
∏

k∈[dX ]

h(αk)(rxk − ak + 1)−
∏

k∈[dX ]

h(αk)(rx′k − ak + 1)|

+ |
∏

k∈[dX ]

h(αk)(rxk − bk + 1)−
∏

k∈[dX ]

h(αk)(rx′k − bk + 1)|

≤4
∏

k∈[dX ]

‖h(αk)‖∞ := µ1.
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Secondly, using the identity |f(x)− f(x′)| ≤ supy ‖∇f(y)‖2‖x − x′‖2, where ∇ is the gradient

and we take f(x) =
∏
k∈[dX ] h

(αk)(rxk − ik + 1), we have another upper bound. Here we have

sup
y

‖∇f(y)‖2

=sup
y

√√√√√
∑

l∈[dX ]


rh(αl+1)(rxl − il + 1)

∏

k∈[dX ],k 6=l

h(αk)(rxk − ik + 1)




2

≤r

√√√√√
∑

l∈[dX ]


‖h(αl+1)‖∞

∏

k∈[dX ],k 6=l

‖h(αk)‖∞




2

≤r
√
dX

∏

k∈[dX ]

[
‖h(αk+1)‖∞ ∨ ‖h(αk)‖∞

]
.

This identity gives us the upper bound

|
∏

k∈[dX ]

h(αk)(rxk − ak + 1)−
∏

k∈[dX ]

h(αk)(rx′k − ak + 1)|

+ |
∏

k∈[dX ]

h(αk)(rxk − bk + 1)−
∏

k∈[dX ]

h(αk)(rx′k − bk + 1)|

≤2r
√
dX

∏

k∈[dX ]

[
‖h(αk+1)‖∞ ∨ ‖h(αk)‖∞

]
‖x− x′‖2 := µ2r‖x− x′‖2.

Taking the minimum of these two upper bounds gives a tighter upper bound. Let ∧ denote the
minimum between two terms and ∨ the maximum. Using the properties (ab ∧ cd) ≤ (a ∨ c)(b ∧
d), a, b, c, d > 0 and (1 ∧ u) ≤ uα for u > 0, 0 < α ≤ 1, we have

|Dαp∆X|Z(x|z)−Dαp∆X|Z(x
′|z)|

≤ρdrdX/2mdZ/2rℓ‖h‖dZ∞
[
µ1 ∧ (rµ2‖x− x′‖2)

]

≤ρdrdX/2mdZ/2rℓ‖h‖dZ∞ (µ1 ∨ µ2)(1 ∧ r‖x− x′‖2)
≤ρdrdX/2mdZ/2rℓ‖h‖dZ∞ (µ1 ∨ µ2)rβ−ℓ‖x− x′‖β−ℓ2

≤W1‖x− x′‖β−ℓ2 , (7.11)

provided we ensure that ρdrdX/2mdZ/2rβ(µ1 ∨ µ2) ≤ W1, which is indeed the case. So p∆X|Z(x|z)
satisfies the Hölder smoothness condition.

Proof of Claim (3): Now we show that p∆X|Z(x|z) also satisfies the TV smoothness assumption.
We have
∫

|p∆X|Z(x|z)− p∆X|Z(x|z′)|dx ≤
∫ ∑

ī

∑

j̄

∣∣∣∣
∏

k∈[dX ]

hik ,r(xk)

∣∣∣∣
∣∣∣∣
∏

k∈[dZ ]

hjk,m(zk)−
∏

k∈[dZ ]

hjk,m(z
′
k)

∣∣∣∣dx.

(7.12)
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Recall that
∏
k∈[dZ ] hjk,m(zk) have disjoint supports, so there are at most two non-zero terms

within the summation. Suppose ∀k ∈ [dZ ], zk ∈ [
j∗k−1
m ,

j∗k
m ] for some specific j∗k while ∀k ∈ [dZ ], z

′
k ∈

[
j′∗k −1
m ,

j′∗k
m ] for some specific j′∗k , corresponding to the two non-zero terms. Then

∑

j̄

∣∣∣∣
∏

k∈[dZ ]

hjk,m(zk)−
∏

k∈[dZ ]

hjk,m(z
′
k)

∣∣∣∣

≤
∣∣∣∣
∏

k∈[dZ ]

hj∗k ,m(zk)−
∏

k∈[dZ ]

hj∗k ,m(z
′
k)

∣∣∣∣+
∣∣∣∣
∏

k∈[dZ ]

hj′∗k ,m(zk)−
∏

k∈[dZ ]

hj′∗k ,m(z
′
k)

∣∣∣∣.

We upper bound the first term and note that an identical upper bound holds for the second term.
Using a similar approach to how we showed Hölder smoothness in (7.11), and by telescoping, we
have

∣∣∣∣
∏

k∈[dZ ]

hj∗k ,m(zk)−
∏

k∈[dZ ]

hj∗k ,m(z
′
k)

∣∣∣∣

≤
∑

k∈[dZ ]

(
√
mρ)dZ−1‖h‖dZ−1

∞ |hj∗k ,m(zk)− hj∗k ,m(z
′
k)|

≤
∑

k∈[dZ ]

(
√
mρ)dZ−1‖h‖dZ−1

∞ ρ
√
m
(
2‖h‖∞ ∧ ‖h′‖∞m|zk − z′k|

)

≤
∑

k∈[dZ ]

(
√
mρ)dZ−1‖h‖dZ−1

∞ ρ
√
m
(
2‖h‖∞ ∨ ‖h′‖∞

) (
1 ∧m|zk − z′k|

)

≤
∑

k∈[dZ ]

(
√
mρ)dZ−1‖h‖dZ−1

∞ ρ
√
m
(
2‖h‖∞ ∨ ‖h′‖∞

)
mγ |zk − z′k|γ

≤ρdZm
dZ
2 mγ‖h‖dZ−1

∞

(
2‖h‖∞ ∨ ‖h′‖∞

)
‖z − z′‖γ1 .

Substituting this result back in (7.12) gives
∫

|p∆X|Z(x|z)− p∆X|Z(x|z′)|dx

=
∑

j̄

∣∣∣∣
∏

k∈[dZ ]

hjk,m(zk)−
∏

k∈[dZ ]

hjk,m(z
′
k)

∣∣∣∣
∑

ī

∫ 1

0

∣∣∣∣
∏

k∈[dX ]

hik ,r(xk)

∣∣∣∣dx

≤2ρdZm
dZ
2 mγ‖h‖dZ−1

∞

(
2‖h‖∞ ∨ ‖h′‖∞

)
‖z − z′‖γ1

∑

ī

ρdX r
−dX

2

∏

k∈[dX ]

(∫ 1

0
|h(u)|du

)

=2ρdr
dX
2 m

dZ
2 mγ‖h‖dZ−1

∞

(
2‖h‖∞ ∨ ‖h′‖∞

)
‖z − z′‖γ1

≤W2‖z − z′‖γ1

provided we ensure that 2ρdr
dX
2 m

dZ
2 mγ‖h‖dZ−1

∞ (2‖h‖∞ ∨ ‖h′‖∞) ≤ W2. This is indeed the case,
and we obtain that p∆X|Z(x|z) indeed satisfies the TV smoothness assumption.

7.3.2 Proof of Lemma 7.4

We prove each of the two claims in turn.
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Proof of Claim (1): Recall that in constructing p∆ and p∆
′
we do not perturb the marginal

distribution over Z. As a consequence the KL divergence between p∆ and p∆
′
can be written as:

dKL(p
∆, p∆

′
) = EzdKL(p

∆
X|Z(x|z), p∆

′

X|Z(x|z)),

and we focus on upper bounding the KL divergence between the conditional densities.

dKL(p
∆
X|Z(x|z), p∆

′

X|Z(x|z)) ≤dχ2(p∆X|Z(x|z), p∆
′

X|Z(x|z))

=

∫
p∆

′

X|Z(x|z)
(
p∆X|Z(x|z)
p∆

′

X|Z(x|z)
− 1

)2

dx

=

∫ (p∆X|Z(x|z) − p∆
′

X|Z(x|z))2

p∆
′

X|Z(x|z)
dx.

Recall that by the condition in (7.8) we have that |∆ī,j̄

∏
k∈[dX ] hik ,r(xk)

∏
k∈[dZ ] hjk,m(zk)| ≤

ρdrdX/2mdZ/2‖h‖d∞ ≤ 1
2 which implies p∆

′

X|Z(x|z) ≥ 1
2 . So we have

dKL(p
∆
X|Z(x|z), p∆

′

X|Z(x|z))

≤2

∫ 
∑

ī

∑

j̄

(∆ī,j̄ −∆′
ī,j̄)

∏

k∈[dX ]

hik,r(xk)
∏

k∈[dZ ]

hjk,m(zk)




2

dx

(i)
=2
∑

ī

∑

j̄

(∆ī,j̄ −∆′
ī,j̄)

2
∏

k∈[dZ ]

h2jk,m(zk)

∫ ∏

k∈[dX ]

h2ik,r(xk)dx,

≤8ρ2dX rdX
∑

j̄

∏

k∈[dZ ]

h2jk,m(zk),

where for (i) we note that the cross terms in expanding the square correspond to disjoint bumps
and are 0. As a consequence we obtain that,

dKL(p
∆, p∆

′
) ≤ 8ρ2dX rdX

∫ ∑

j̄

∏

k∈[dZ ]

h2jk,m(zk)pZ(z)dz

≤ 8ρ2dX rdX (ρ
√
m)2dZ‖h‖∞×

∑

j̄

[ ∏

k∈[dZ ]

1

(
zk ∈

[ j̄k − 1

m
,
j̄k
m

])]
pZ

([ j̄1 − 1

m
,
j̄1
m

]
× · · · ×

[ j̄dZ − 1

m
,
j̄dZ
m

])

= 8‖h‖∞ρ2drdXmdZ .

Proof of Claim (2): Given that the marginal density of Z is lower bounded i.e. pZ(z) ≥ pmin >
0, it suffices to instead ensure that for some absolute constant C > 0 we have that,

∫ ∫
|p∆X|Z(x|z)− p∆

′

X|Z(x|z)|dxdz ≥ CρdrdX/2mdZ/2.

Using the Varshamov-Gilbert construction [22, Lemma 2.9] we know that there existN = 2r
dXmdZ /8

vectors ∆ on the hypercube {±1}rdXmdZ such that dH(∆,∆
′) ≥ rdXmdZ/8 for each ∆,∆′ in that
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set, where dH(∆,∆
′) = 1

2

∑
ī

∑
j̄ |∆ī,j̄ −∆′

ī,j̄
| is the Hamming distance. Then

∫ ∫
|p∆X|Z(x|z)− p∆

′

X|Z(x|z)|dxdz

=
∑

ī

∑

j̄

|∆ī,j̄ −∆′
ī,j̄|
∫ ∫ ∣∣∣∣

∏

k∈[dX ]

hik ,r(xk)
∏

k∈[dZ ]

hjk,m(zk)

∣∣∣∣dxdz

≥r
dXmdZ

4

ρd√
rdXmdZ

(∫ 1

0
|h(u)|du

)d

≥Cρd
√
rdXmdZ

as claimed, where C = ‖h‖d1/4.

7.4 Proof of Theorem 6.1

We denote by ∆1,∆2 the following,

∆1 = sup
A∈A

∣∣∣∣Pn(A)−
∫

A
p

∣∣∣∣ ,

∆2 = sup
A∈A

sup
j∈[N ]

∣∣∣∣∣

∫

A
f̃j −

1

n

n∑

i=1

∫

AZi

f̂j(x|Zi)dx
∣∣∣∣∣ .

The following lemma is a simple consequence of Hoeffding’s inequality, and gives high-probability
upper bounds on the above quantities:

Lemma 7.5. With probability at least 1− δ,

∆1 ≤
√

log(2N/δ)

n

∆2 ≤
√

3 log(2N/δ)

2n
.

Taking this result as given we complete the proof, before returning to prove it. Let us denote by

̂
f

the minimizer argmin
f̂j :j∈[N ]

∫
z ‖f̂j − p(x|z)‖1pZ(z)dz, then we can write:

∫

z
‖ψ(x|z) − p(x|z)‖1pZ(z)dz ≤

∫

z
‖ψ(x|z) −

̂
f(x|z)‖1pZ(z)dz

︸ ︷︷ ︸
T

+

∫

z
‖
̂
f(x|z) − p(x|z)‖1pZ(z)dz.

Abusing notation slightly in the remainder of the proof we identify

̂
f and ψ with their corresponding
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oracle joint densities

̂
f(x|z)pZ(z) and ψ(x|z)pZ(z). We note that,

T ≤ 2 sup
A∈A

∣∣∣∣
∫

A
ψ −

∫

A

̂
f

∣∣∣∣

≤ 2 sup
A∈A

[
|
∫

A
ψ − Pn(A)|+ |

∫

A

̂
f − Pn(A)|

]

≤ 2 sup
A∈A

[∣∣∣∣∣
1

n

n∑

i=1

∫

AZi

ψ(x|Zi)dx− Pn(A)

∣∣∣∣∣ +
∣∣∣∣∣
1

n

n∑

i=1

∫

AZi

ψ(x|Zi)dx−
∫

A
ψ

∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

∫

AZi

̂
f(x|Zi)dx− Pn(A)

∣∣∣∣∣+
∣∣∣∣∣
1

n

n∑

i=1

∫

AZi

̂
f(x|Zi)dx−

∫

A

̂
f

∣∣∣∣∣

]

≤ 4∆2 + 4 sup
A∈A

∣∣∣∣∣
1

n

n∑

i=1

∫

AZi

̂
f(x|Zi)dx− Pn(A)

∣∣∣∣∣ ,

where in the final inequality we use the definition of the minimum distance estimator, and of ∆2.
We then note that,

4 sup
A∈A

∣∣∣∣∣
1

n

n∑

i=1

∫

AZi

̂
f(x|Zi)dx− Pn(A)

∣∣∣∣∣ ≤ 4∆1 + 4 sup
A∈A

∣∣∣∣∣
1

n

n∑

i=1

∫

AZi

̂
f(x|Zi)dx−

∫

A
p

∣∣∣∣∣

≤ 4∆1 + 4∆2 + 4 sup
A∈A

∣∣∣∣
̂
f(A)−

∫

A
p

∣∣∣∣

≤ 4∆1 + 4∆2 + 2

∫

z
‖
̂
f(x|z)− p(x|z)‖1pZ(z)dz,

and putting these bounds together with the bounds in Lemma 7.5 we obtain our claimed result.

Proof of Lemma 7.5: We note that for fixed A ∈ A (and a fixed index j ∈ [N ]) we are simply
bounding the deviation of a sum of bounded (by 1) random variables from their mean. This is
straightforward for the terms appearing in the definition of ∆1. For the terms appearing in ∆2 we
note that,

f̃j(A) =

∫

A
f̃(x|z)pZ(z)dxdz = EZ

[∫

AZ

f(x|Z)dx
]
.

The result then follows by combining the Hoeffding bound with the union bound, noting that A
has cardinality at most N2.

7.5 Proof of Theorem 6.2

The proof is a straightforward application of Theorem 6.1. Let us denote D1 the half of the
sample on which we construct our density estimates and D2 the half on which we run the selection
procedure. By Theorem 6.1, setting δ = 1/n, we obtain that conditioning on the first half of the
sample, with probability at least 1− 1/n we select ψ such that,

∫

z
‖ψ(x|z) − p(x|z)‖1pZ(z)dz . min

j∈[N ]

∫

z
‖f̂j − p(x|z)‖1pZ(z)dz +

√
log n

n
.
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Let us denote by E the event on which this guarantee holds, and denote by j∗ ∈ [N ] a density
estimate constructed with (nearly) optimal choices of the tuning parameters. The expected error
(the expectation taken over all samples), can be bounded as:

E

[∫

z
‖ψ(x|z) − p(x|z)‖1pZ(z)dz

]
≤ ED1,D2

[∫

z
‖ψ(x|z) − p(x|z)‖1pZ(z)dz|E

]
+

2

n
,

by noting that the error is always atmost 2 since both ψ and p are valid densities (and the L1-loss
is upper bounded by 2 for densities). Finally, we note that,

E

[∫

z
‖ψ(x|z) − p(x|z)‖1pZ(z)dz

]
. ED1

[
min
j∈[N ]

∫

z
‖f̂j − p(x|z)‖1pZ(z)dz +

√
log n

n

]
+

2

n
,

. ED1

[∫

z
‖f̂j∗ − p(x|z)‖1pZ(z)dz

]
+

√
log n

n
,

. n
−1

β−1dX+γ−1dZ+2 +

√
log n

n

. n
−1

β−1dX+γ−1dZ+2 ,

where the last inequality follows by noting that for any finite β or γ the rate of conditional density
estimation is strictly slower than O(

√
(log n)/n).

8 Discussion

In this paper we looked at the problem of conditional density estimation under a weighted absolute
value loss function. We first demonstrated that if one imposes smoothness only on the conditional
densities pX|Z(x|z) with respect to x, conditional density estimation is impossible in a minimax
sense regardless of the marginal density pZ (which may even be known to the statistician). We
then derived the minimax rate of estimation and showed an adaptive estimator which achieves the
rate without knowledge of the smoothness parameters.

An interesting question that we intend to investigate in our future work is to generalize our
results to an Lp loss function:

∫
|p̂X|Z(x|z) − pX|Z(x|z)|ppZ(z)dz,

for some p ≥ 1. We anticipate that such a modification will require a smoothness assumption
stronger than TV smoothness. It will be interesting to see whether one can show that TV smooth-
ness is not sufficient to analyze the Lp loss function for p > 1. In addition we are interested in
quantifying higher order TV smoothness and studying the problem of conditional density estimation
for such densities.
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A Additional Technical Results

A.1 Proof of Lemma 7.1

We begin by verifying the first and second claims. Notice that p1 belongs to the Hölder class with
any smoothness value β. For the β ≤ 1 cases, p1 is Hölder smooth with constant 2(1−c)

dβX
; furthermore

linear functions are Hölder smooth for any β > 1 and any W1 > 0. Now we consider p2. We note
that p1 ≤ 2. It immediately follows that if we define p2 = 2 − p1 then p2 is a valid density in the
same Hölder class as p1, and

1
2p1 +

1
2p2 = U([0, 1]dX ).

Finally we examine the TV distance

TV(U([0, 1]dX ), p1) = TV(U([0, 1]dX ), p2) =
1

2

∫ ∣∣∣∣∣∣
1−


α

∑

i∈[dx]

xi
dX

+ c



∣∣∣∣∣∣
dx.

We will lower bound this from below:

TV(U([0, 1]dX ), p1) ≥
1

2

∫
3




∣∣∣1−
(
α
(∑

i∈[dx]
xi
dX

)
+ c
)∣∣∣

3




2

dx

=
1

6

∫ 
1− 2α

∑

i∈[dx]

xi
dX

− 2c+ α2



∑

i∈[dx]

xi
dX




2

+ 2αc
∑

i∈[dx]

xi
dX

+ c2


 dx

=
1

6

(
(1− c)2 − (1− c)α + α2(

1

3dX
+
dX − 1

4dX
)

)
,

where the first inequality holds since

∣∣∣1−
(
α
(∑

i∈[dx]
xi
dX

)
+c

)∣∣∣
3 ≤ 1, and we used

∫ ∑
i∈[dX ]

xi
dX
dx = 1

2

and
∫
(
∑

i∈[dX ]
xi
dX

)2dx =
∫
x21dx1
dX

+ dX−1
dX

∫
x1dx1

∫
x2dx2 =

1
3dX

+ dX−1
4dX

. Substituting in α = 2(1−c)
from previous observations we get

TV(U([0, 1]dX ), p1) ≥
1

6

(
(1− c)2 − 2(1− c)2 + 4(1− c)2(

1

3dX
+
dX − 1

4dX
)

)

=
1

6

(
(1− c)2

(
4

3dX
+
dX − 1

dX
− 1

))

=
(1− c)2

18dX
≥ 0.

B Proofs of Section 3

Proof of Lemma 3.4. It is easy to see that the construction in [22, Proposition 1.3] provides kernels
satisfying

∫
|Ki(u)|||u|κdu <∞,
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for any fixed κ ≥ 0. This is so since by construction Ki(u) are Legendre polynomials supported on
[−1, 1]. In addition they also satisfy

∫
K2
i (u)du < ∞. Furthermore since each kernel is of order ℓ

we have that for any non-negative integer k ≤ ℓ:
∫
Ki(u)u

kdu = 0. The statement of the lemma
follows immediately by combining these three properties.

Proof of Lemma 3.6. Suppose that

∫
|pX|Z(x|z)− p̂X|Z(x|z)|dx ≤ ǫn(z),

and p̂X|Z=z 6≡ 0. Now consider the set S = {x | p̂X|Z(x|z) ≥ 0}. Observe that

∫

S
|pX|Z(x|z)− p̂X|Z(x|z)|dx ≤

∫
|pX|Z(x|z)− p̂X|Z(x|z)|dx ≤ ǫn(z).

Since on the set Sc we have |pX|Z(x|z) − p̂X|Z(x|z)| = pX|Z(x|z) − p̂X|Z(x|z), and we know
pX|Z(x|z) ≥ 0, we can conclude by the above inequality that

∫

Sc

−p̂X|Z(x|z)dx ≤ ǫn(z).

In addition, since
∫
p̂X|Z(x|z)dx = 1, we have

C =

∫
(p̂X|Z(x|z))+dx ≥ 1− ǫn(z).

By the triangle inequality we also have

C ≤
∫

|p̂X|Z(x|z)|dx ≤
∫

|p̂X|Z(x|z)− pX|Z(x|z)|dx+ 1 ≤ 1 + ǫn(z).

Finally, we know the following holds

∫
|pX|Z(x|z)− (p̂X|Z(x|z))+|dx ≤

∫
|pX|Z(x|z) − p̂X|Z(x|z)|dx ≤ ǫn(z).

Combining the above results gives us

∫
|pX|Z(x|z)− C−1(p̂X|Z(x|z))+|dx ≤

∫
|pX|Z(x|z)− (p̂X|Z(x|z))+|dx+

∫ |1− C|
C

(p̂X|Z(x|z))+|dx

≤ ǫn(z) + |1− C|
≤ 2ǫn(z).

Next, notice that when p̂X|Z=z ≡ 0 then we have
∫
|pX|Z(x|z)− p̂X|Z(x|z)|dx = 1, whereas,

∫
|pX|Z(x|z)− p̄X|Z(x|z)|dx ≤ 2,

hence the same bound as above applies. Finally integrating the bound over z completes the proof.
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B.1 Lemmas of Section 7.2

Proof of Lemma 7.2. Let
∑

j̄

pj̄(1− pj̄)
n

be the objective function that we try to maximize. We will use the Karush-Kuhn-Tucker (KKT)
conditions and we will subject the objective to the constraints pj̄ ≥ 0 for all j̄ and

∑
j̄ pj̄ = 1. We

introduce the KKT multipliers λj̄ ≤ 0 for all j̄, and µ corresponding to the constraints respectively.
Then taking the derivative with respect to some j̄ we have the conditions

(1− pj̄)
n − npj̄(1− pj̄)

n−1 − λj̄pj̄ + µ = 0

and by complementary slackness λj̄pj̄ = 0 for all j̄.
Let S = {j̄ | pj̄ 6= 0}, which means from the conditions that on the set S, all λj̄ = 0 and

(1 − pj̄)
n − npj̄(1 − pj̄)

n−1 = −µ. We can write this as f(x) = (1 − (n + 1)x)(1 − x)n−1 where

x = pj̄. Clearly f is decreasing on [0, 1
n+1 ] and f( 1

n+1) = 0. Since |S| ≤ mdZ ≪ n + 1 (by

our construction of m) and
∑

j̄ pj̄ = 1, there exists k̄ ∈ S such that pk̄ ≥ 1
|S| ≥ 1

mdZ
≫ 1

n+1 . But

(1−(n+1)pk̄)(1−pk̄)n−1 < 0, so it follows that µ > 0. Now observe f ′(x) = n(1−x)n−2((n+1)x−2).
This shows that on the interval [ 1

n+1 , 1], f changes from decreasing to increasing exactly once, at

the point 2
n+1 >

1
n+1 . This implies that the equations f(x) = −µ for some µ > 0 and x ∈ [ 1

n+1 , 1]
can have at most two solutions.

Then simply divide S = S1 ∪ S2, where all pj̄ on S1 are equal to some v, and all pj̄ on S2 are

equal to some w, such that |S1|v + |S2|w = 1, v, w ∈ [ 1
n+1 , 1] and f(v) = f(w) > 0. Substituting

this in, our objective function becomes
∑

j̄

pj̄(1− pj̄)
n = |S1|v(1− v)n + |S2|w(1 − w)n.

But the function (1− x)n is convex, so by Jensen’s inequality it follows that

|S1|v(1− v)n + |S2|w(1 − w)n ≤ (1− |S1|v2 − |S2|w2)n,

which is maximized when we minimize |S1|v2+ |S2|w2 under the constraint |S1|v+ |S2|w = 1. This

is done by rearranging to get v = 1−|S2|w
|S1|

, so the minimum is achieved at v = w = 1
|S1|+|S2|

. This

result shows that pj̄ must have the same value of 1
|S| for all j̄, which is what one would intuitively

expect. Our objective function then becomes

∑

j̄

pj̄(1− pj̄)
n = |S| 1|S|

(
1− 1

|S|

)n
=

(
1− 1

|S|

)n
.

In order to maximize this, we want |S| to be as large as possible, which in this case is mdZ . This
completes the proof.

Lemma B.1. Under the same assumptions as Theorem 3.5, the estimator

p̂X,j̄(x) =

∑
i∈[n] 1(Zi ∈ Aj̄)K(Xi−x

h )

hdX
∑

i∈[n] 1(Zi ∈ Aj̄)
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for some j̄ ∈ [m]dZ has the expected value

E[p̂X,j̄(x)] = h−dXE

[
K

(
X − x

h

) ∣∣∣∣Z ∈ Aj̄
]
(1− P(Z ∈ Acj̄)

n).

Proof of Lemma B.1. Using the law of total expectation we have

E[p̂X,j̄(x)] =
∑

S∈2[n]

E[p̂X,j̄(x)|Zi ∈ Aj̄ , i ∈ S,Zi ∈ Acj̄ , i ∈ Sc]P(Z ∈ Aj̄)|S|P(Z ∈ Acj̄)
n−|S|,

where the condition in the conditional expectation means that

∑

i∈[n]

1(Zi ∈ Aj̄)K

(
Xi − x

h

)
=
∑

i∈S

K

(
Xi − x

h

)

and that
∑

i∈[n]

1(Zi ∈ Aj̄) = |S|.

Then the conditional expectation can be rewritten as:

E[p̂X,j̄(x)|Zi ∈ Aj̄ , i ∈ S,Zi ∈ Acj̄, i ∈ Sc]

= E

[∑
i∈[n] 1(Zi ∈ Aj̄)K

(
Xi−x
h

)

hdX
∑

i∈[n] 1(Zi ∈ Aj̄)

∣∣∣∣Zi ∈ Aj̄ , i ∈ S,Zi ∈ Acj̄ , i ∈ Sc
]

= E

[∑
i∈SK

(
Xi−x
h

)

hdX |S|

∣∣∣∣Zi ∈ Aj̄ , i ∈ S

]

=
1

hdX |S|
∑

i∈S

E

[
K
(Xi − x

h

)∣∣∣∣Zi ∈ Aj̄

]

= h−dXE

[
K

(
X − x

h

)∣∣∣∣Z ∈ Aj̄
]
.

Now notice that
∑

S∈2[n]

P(Z ∈ Aj̄)
|S|

P(Z ∈ Acj̄)
n−|S| = 1

and there is one special case when S is the empty set ∅, where by definition the estimator p̂X,j̄(x) =
0
0 := 0. This occurs when |S| = 0 with a corresponding probability of P(Z ∈ Ac

j̄
)n. So we subtract

this probability, giving:

E[p̂X,j̄(x)] = h−dXE

[
K

(
X − x

h

)
|Z ∈ Aj̄

]
(1− P(Z ∈ Acj̄)

n)

as desired.

Lemma B.2. Under the same assumptions as Theorem 3.5, for some j̄ ∈ [m]dZ we have that:
∣∣∣∣h

−dXE

[
K

(
X − x

h

)
|Z ∈ Aj̄

]
− pX|Z(x|z ∈ Aj̄)

∣∣∣∣ ≤ Chβ

for some constant C.

35



Proof of Lemma B.2. By assumption that K is a kernel of order ℓ, it follows that:
∣∣∣∣h

−dX

∫
K

(
y − x

h

)
pX|Z(y|z ∈ Aj̄)dy − pX|Z(x|z ∈ Aj̄)

∣∣∣∣

=

∣∣∣∣
∫
K(u)pX|Z(x+ uh|z ∈ Aj̄)du− pX|Z(x|z ∈ Aj̄)

∣∣∣∣

=

∣∣∣∣
∫
K(u)

[
pX|Z(x+ uh|z ∈ Aj̄)− pX|Z(x|z ∈ Aj̄)

]
du

∣∣∣∣.

But by Lemma B.5 pX|Z(x+ uh|z ∈ Aj̄) is ℓ times differentiable. Then the Taylor series is:

pX|Z(x+ uh|z ∈ Aj̄) =
∑

‖α‖1<ℓ

DαpX|Z(x|z ∈ Aj̄)

α!
(uh)α +

∑

‖α‖1=ℓ

DαpX|Z(x+ τuh|z ∈ Aj̄)

α!
uαhℓ,

where ‖α‖1 = ℓ and τ ∈ [0, 1]. Substituting this back in cancels out the first summation and
pX|Z(x|z ∈ Aj̄) (since the kernel is of order ℓ), giving:

∣∣∣∣
∫
K(u)[pX|Z(x+ uh|z ∈ Aj̄)− pX|Z(x|z ∈ Aj̄)]du

∣∣∣∣

=

∣∣∣∣
∫
K(u)

∑

‖α‖1=ℓ

DαpX|Z(x+ τuh|z ∈ Aj̄)

α!
uαhℓdu

∣∣∣∣

=

∣∣∣∣
∫
K(u)

∑

‖α‖1=ℓ

DαpX|Z(x+ τuh|z ∈ Aj̄)

α!
uαhℓdu−

∫
K(u)

∑

‖α‖1=ℓ

DαpX|Z(x|z ∈ Aj̄)

α!
uαhℓdu

∣∣∣∣

≤
∫

|K(u)| |u
αhℓ|
α!

∑

‖α‖1=ℓ

∣∣DαpX|Z(x+ τuh|z ∈ Aj̄)−DαpX|Z(x|z ∈ Aj̄)
∣∣du

≤
∫

|K(u)| |u
αhℓ|
α!

∑

‖α‖1=ℓ

W1‖τuh‖β−ℓ1 du

=hβ |τ |β−ℓW1

α!

∑

‖α‖1=ℓ

∫
|K(u)| · |uα| · ‖u‖β−ℓ1 du.

In the above, we used the fact that pX|Z(x|z ∈ Aj̄) also follows the Hölder smoothness condition
because of Lemma B.5.

Since in R
d all norms are equivalent, we know that for any q ≥ 1, there exists Cq such that

(
∑

i |yi|q)
1
q ≤ Cq

∑
i |yi| = ‖y‖1. Now let yi = |ui|q where q = (β − ℓ)−1. It follows that

‖u‖β−ℓ1 =

(
∑

i

|ui|
)β−ℓ

≤ C(β−ℓ)−1

∑

i

|ui|β−ℓ

for some constant Cβ−ℓ. Then

∑

‖α‖1=ℓ

|uα| · ‖u‖β−ℓ1 ≤ C(β−ℓ)−1

∑

‖α‖1=ℓ

∑

i

|uα||ui|β−ℓ .
∑

‖α‖1=β

|uα|,
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where in the last inequality the constant may depend on β − ℓ, and the dimension dX . Since we
are assuming

∫
|K(u)||uα|du <∞ for all ‖α‖1 ≤ β, α ∈ R

dX
+ , this means that

∣∣∣∣
∫
K(u)[pX|Z(x+ uh|z ∈ Aj̄)− pX|Z(x|z ∈ Aj̄)]du

∣∣∣∣ ≤ Chβ|τ |β−ℓ ≤ Chβ.

Lemma B.3. Under the same assumptions as Theorem 3.5, the estimator

p̂X,j̄(x) =

∑
i∈[n] 1(Zi ∈ Aj̄)K(Xi−x

h )

hdX
∑

i∈[n] 1(Zi ∈ Aj̄)

for some j̄ ∈ [m]dZ has its variance upper bounded as

var[p̂X,j̄(x)] ≤
C

nhdXP(Z ∈ Aj̄)
+KP(Z ∈ Acj̄)

n.

where C,K are constants.

Proof of Lemma B.3. By the law of total variance we have:

var(p̂X,j̄(x)) =E[var(p̂X,j̄(x)|Zi ∈ Aj̄, i ∈ S,Zi ∈ Acj̄ , i ∈ Sc)]

+ varS [E[p̂X,j̄(x)|Zi ∈ Aj̄ , i ∈ S,Zi ∈ Acj̄, i ∈ Sc]]. (B.1)

We proceed to bound the two terms separately.

Bounding the first term

The conditions in the expectation means that

∑

i∈[n]

1(Zi ∈ Aj̄)K
(
Xi − x

h

)
=
∑

i∈S

K

(
Xi − x

h

)
,
∑

i∈[n]

1(Zi ∈ Aj̄) = |S|.

We first consider the variance term inside the expectation:

var
(
p̂X,j̄(x)

∣∣Zi ∈ Aj̄ , i ∈ S,Zi ∈ Acj̄ , i ∈ Sc
)

=var

(∑
i∈SK(Xi−x

h )

hdX |S|

∣∣∣∣Zi ∈ Aj̄, i ∈ S

)

=
1

h2dX |S|2
∑

i∈S

var

(
K

(
Xi − x

h

)∣∣∣∣Zi ∈ Aj̄

)

≤ 1

h2dX |S|2
∑

i∈S

E

[
K2

(
Xi − x

h

)∣∣∣∣Zi ∈ Aj̄

]
.
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Then when S 6= ∅ we have

var(p̂X,j̄(x)|Zi ∈ Aj̄ , i ∈ S,Zi ∈ Acj̄ , i ∈ Sc)

≤ 1

h2dX |S|E
[
K2

(
X − x

h

)∣∣∣∣Z ∈ Aj̄
]

≤ 2

h2dX (|S|+ 1)
E

[
K2

(
X − x

h

)∣∣∣∣Z ∈ Aj̄

]
,

where the last step makes a small sacrifice in the tightness of the bound in order to allow a very
useful identity to be applied later. As for the other case when S = ∅, by definition the estimator
p̂X,j̄(x) = 0, so the above still holds.

We proceed to bound the expectation E
[
K2
(
X−x
h

)∣∣Z ∈ Aj̄
]
. First consider K∗, a bounded

kernel of order ℓ, not necessarily equal to K. Now notice that pX|Z(x|z ∈ Aj̄) ≤ pmax < ∞. This
can be proven by applying lemma B.2 and setting h = 1 to get

∣∣∣∣
∫
K∗ (y − x) pX|Z(y|z ∈ Aj̄)dy − pX|Z(x|z ∈ Aj̄)

∣∣∣∣ ≤ C.

It follows that

pX|Z(x|z ∈ Aj̄) ≤ C +

∫
|K∗ (y − x) |pX|Z(y|z ∈ Aj̄)dy ≤ C +K∗

max <∞,

where K∗
max = supu∈RdX |K∗(u)|.

Now we have

E

[
K2

(
X − x

h

)∣∣∣∣Z ∈ Aj̄

]
=

∫
K2

(
y − x

h

)
pX|Z(y|z ∈ Aj̄)dy ≤ pmaxh

dX

∫
K2(u)du ≤ ChdX ,

(B.2)

where C ≥ pmax

∫
K2(u)du is a constant, since both the conditional density and

∫
K2(u)du are

upper bounded.
Substituting this back into the first term of (B.1) we get

E[var(p̂X,j̄(x)|Zi ∈ Aj̄, i ∈ S,Zi ∈ Acj̄ , i ∈ Sc)]

≤E

[
2

h2dX (|S|+ 1)
ChdX

]

=
2C

hdX
E

[
1

|S|+ 1

]
.

By Lemma B.4 we have

E

[
1

|S|+ 1

]
=

1− P(Z ∈ Ac
j̄
)n+1

(n+ 1)P(Z ∈ Aj̄)
≤ 1

(n+ 1)P(Z ∈ Aj̄)
.

Then the first term is bounded by

E[var(p̂X,j̄(x)|Zi ∈ Aj̄, i ∈ S,Zi ∈ Acj̄ , i ∈ Sc)] ≤ 2C

hdX (n+ 1)P(Z ∈ Aj̄)
≍ C

nhdXP(Z ∈ Aj̄)

38



for some constant C.

Bounding the second term

Now we bound the second term from equation (B.1), and start by examining the inner expec-
tation. When S 6= ∅

E[p̂X,j̄(x)|Zi ∈ Aj̄, i ∈ S,Zi ∈ Acj̄ , i ∈ Sc] = h−dXE

[
K

(
X − x

h

)∣∣∣∣Z ∈ Aj̄

]

and otherwise when S = ∅

E[p̂X,j̄(x)|Zi ∈ Aj̄ , i ∈ S,Zi ∈ Acj̄, i ∈ Sc] = 0.

Then

varS [E[p̂X,j̄(x)|Zi ∈ Aj̄ , i ∈ S,Zi ∈ Acj̄ , i ∈ Sc]]

=

(
h−dXE

[
K

(
X − x

h

)∣∣∣∣Z ∈ Aj̄

])2

P(Z ∈ Acj̄)
n(1− P(Z ∈ Acj̄)

n).

Since
∫
K2(u)du < ∞ is upper bounded, it follows that

∫
|K(u)|du ≤

√∫
K2(u)du < ∞.

Therefore by the same logic as how we arrived at the bound in equation (B.2), we have E[K(X−x
h )|Z ∈

Aj̄ ] ≤ C ′hdX for some constant C ′. Then we can simply bound the whole expression as:

varS [E[p̂X,j̄(x)|Zi ∈ Aj̄, i ∈ S,Zi ∈ Acj̄ , i ∈ Sc]]

≤C ′2
P(Z ∈ Acj̄)

n(1− P(Z ∈ Acj̄)n)
≤KP(Z ∈ Acj̄)n

for some constant K.

Combining the terms

For the variance (B.1) we have split it into two terms and upper bounded them individually.
It follows that

var[p̂X,j̄(x)] ≤
C

nhdXP(Z ∈ Aj̄)
+KP(Z ∈ Acj̄)

n

for some constants C,K as desired.

Lemma B.4. We have the identity

E

[
1

|S|+ 1

]
=

1− P(Z ∈ Ac
j̄
)n+1

(n+ 1)P(Z ∈ Aj̄)
.
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Proof. By definition of |S|, it can be regarded as a binomial distribution |S| ∼ Bin(n, p) where
p = P(Z ∈ Aj̄). We also set q = 1− p = P(Z ∈ Ac

j̄
). Then

E

[
1

|S|+ 1

]
=

n∑

k=0

1

k + 1
P(|S| = k)

=

n∑

k=0

1

k + 1

n!

k!(n − k)!
pkqn−k

=
1

(n+ 1)p

n∑

k=0

(
n+ 1

k + 1

)
pk+1qn−k

=
1

(n+ 1)p
[(

n+1∑

t=0

(
n+ 1

t

)
ptq(n+1)−t)− qn+1]

=
1

(n+ 1)p
[(p+ q)n+1 − qn+1] by the binomial theorem

=
1

(n+ 1)p
[1− qn+1]

=
1− P(Z ∈ Ac

j̄
)n+1

(n+ 1)P(Z ∈ Aj̄)
.

Lemma B.5. Given the Hölder smoothness condition in Definition 2.1 with some smoothness β,
the conditional density pX|Z(x|z ∈ Aj̄) also satisfies the same property. That is, it is ℓ = ⌊β⌋ times
differentiable and satisfies

sup
α

|DαpX|Z(x|z ∈ Aj̄)−DαpX|Z(x
′|z ∈ Aj̄)| ≤W1‖x− x′‖β−ℓ1

for all α such that ‖α‖1 = ℓ, α ∈ N
dX
0 , where α = (α1, ..., αdX )

Proof. We first show that pX|Z(x|z ∈ Ak̄) is ℓ times differentiable. The Leibniz integral rule in
higher dimensions allows switching the order of derivative and integration as follows

∂

∂xi

(∫ b

a
f(x, z)dz

)
=

∫ b

a

∂

∂xi
f(x, z)dz,

where all elements of a, b are bounded. In context, let a, b be the lower and upper bound vector of
Aj̄ and let f(x, z) = pX|Z(x|z) pZ(z)

P(Z∈Aj̄)
. Then by the Leibniz integral rule, we have

DαpX|Z(x|z ∈ Aj̄) =

∫

Aj̄

DαpX|Z(x|z)
pZ(z)

P(Z ∈ Aj̄)
dz, ‖α‖1 = i, for 1 ≤ i ≤ ℓ,

thus proving that pX|Z(x|z ∈ Aj̄) is ℓ times differentiable.
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Now, for an arbitrary α such that ‖α‖1 = ℓ, applying the Leibniz integral rule gives:

|DαpX|Z(x|z ∈ Aj̄)−DαpX|Z(x
′|z ∈ Aj̄)|

≤
∫

Aj̄

∣∣∣∣D
αpX|Z(x|z) −DαpX|Z(x

′|z)
∣∣∣∣

pZ(z)

P(Z ∈ Aj̄)
dz

≤
∫

Aj̄

W1‖x− x′‖β−ℓ1

pZ(z)

P(Z ∈ Aj̄)
dz

=W1‖x− x′‖β−ℓ1 .

So pX|Z(x|z ∈ Aj̄) indeed follows the Hölder smoothness condition.

C Proofs of Section 5

Proof of Theorem 5.1. We first show that pX|Z(x|z) = g(x,z)∫
g(x,z)dx

is Hölder smooth in x for any fixed

z. Notice that the denominator
∫
g(x, z)dx ≥ a · µ([0, 1]dX ) = a > 0 is lower bounded by some

constant. Then to show that pX|Z(x|z) is Hölder smooth it suffices to show that g(x, z) is Hölder
smooth in x. But we already required this in the assumptions, where taking all partial derivatives
with respect to x satisfies the Hölder condition supα |Dαg(x, z) −Dαg(x′, z)| ≤ C‖x− x′‖β−ℓ1 .

Now we show that pX|Z(x|z) is Lipschitz smooth in z by showing that its derivative is bounded.
Without loss of generality take the partial derivative with respect to some zi ∈ Z, then we have:

sup
x,z

∣∣∣∣
∂

∂zi
pX|Z(x|z)

∣∣∣∣ = sup
x,z

∣∣∣∣∣

∂
∂zi
g(x, z) ·

∫
g(x, z)dx −

∫
∂
∂zi
g(x, z)dx · g(x, z)

(
∫
g(x, z)dx)2

∣∣∣∣∣ ,

where we used the Leibniz integral rule to change the order of the derivative and the integral.
But

∫
g(x, z)dx ≥ a, thus the denominator (

∫
g(x, z)dx)2 ≥ a2 is lower bounded by some positive

constant. Then we just need to show that the numerator is bounded. We have:

sup
x,z

∣∣∣∣
∂

∂zi
g(x, z) ·

∫
g(x, z)dx −

∫
∂

∂zi
g(x, z)dx · g(x, z)

∣∣∣∣

≤ sup
x,z

∣∣∣∣
∂

∂zi
g(x, z) ·

∫
g(x, z)dx

∣∣∣∣ + sup
x,z

∣∣∣∣
∫

∂

∂zi
g(x, z)dx · g(x, z)

∣∣∣∣ .

Recall that g(x, z) is ℓ times differentiable, where ℓ = ⌊β⌋ ≥ 1. It follows that g(x, z) and its
derivatives up to order ℓ are continuous. Furthermore, since it is defined on a compact space [0, 1]d,
g(x, z) and ∂

∂zi
g(x, z) are bounded. Then each term in the expression above are bounded, and thus

the numerator is bounded. So we have shown that the first derivative supx,z | ∂∂zi pX|Z(x|z)| ≤ K is
bounded by some constant, and therefore pX|Z is Lipschitz smooth in z. Substituting this result
into the TV smoothness condition (see Definition 3.1) we have:

‖pX|Z=z − pX|Z=z′‖1 =
∫

|pX|Z(x|z) − pX|Z(x|z′)|dx

≤
∫ 1

0
K‖z − z′‖1dx

= K‖z − z′‖1
as desired. So pX|Z is indeed Hölder smooth and TV smooth (hence it is also γ-TV smooth).
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Proof of Theorem 5.2. We will first show that the function pX|Z(x|z) is Hölder smooth. To see this
note that ℓ = ⌊β⌋ = 0 so we do not take partial derivatives, and

|pX|Z(x|z)− pX|Z(x
′|z)| = | exp(g(x, z)) − exp(g(x′, z))|∫

exp(g(x, z))dx
≤ exp(M)| exp(g(x, z)) − exp(g(x′, z))|.

Next let g = g(x, z) and g′ = g(x′, z) for brevity. We have

|eg − eg
′ | ≤ |g − g′|

∞∑

k=1

∑k−1
i=0 |g|i|g′|(k−1−i)

k!
≤ |g − g′| exp(M) ≤ C exp(M)‖x − x′‖β1 ,

and we conclude that

|pX|Z(x|z) − pX|Z(x
′|z)| ≤ C exp(2M)‖x − x′‖β1 .

Next we will control the quantity ‖pX|Z=z − pX|Z=z′‖1. To see this we note that

‖pX|Z=z − pX|Z=z′‖1 =
∫

|pX|Z(x|z)− pX|Z(x|z′)|dx

=

∫ (
max(pX|Z(x|z), pX|Z(x|z′))
min(pX|Z(x|z), pX|Z(x|z′))

− 1

)
min(pX|Z(x|z), pX|Z(x|z′))dx

≤
∫ (

max(pX|Z(x|z), pX|Z(x|z′))
min(pX|Z(x|z), pX|Z(x|z′))

− 1

)
pX|Z(x|z)dx.

Suppose now that the function log pX|Z(x|z) is Hölder with constants K and γ in z then the above
can be bounded as

‖pX|Z=z − pX|Z=z′‖1 ≤
∫
(exp(K‖z − z′‖γ1)− 1)pX|Z(x|z)dx

= K‖z − z′‖γ1 +
∑

k≥2

(K‖z − z′‖γ1)k/k!

≤ K‖z − z′‖γ1 +K‖z − z′‖γ1
∑

k≥2

(KdZ)
k−1/k!

= K‖z − z′‖γ1 +K‖z − z′‖γ1(eKdZ − 1−KdZ)/(KdZ)

= B‖z − z′‖γ1 ,
where B = K(1+ (eKdZ − 1−KdZ)/(KdZ)). It remains to show that log pX|Z(x|z) is Hölder with
constants K and γ. Consider the difference

log pX|Z(x|z)− log pX|Z(x|z′) = g(x, z) − g(x, z′)− log

∫
exp(g(x, z))dx∫
exp(g(x, z′))dx

≤ C‖z − z′‖γ1 − log

∫
exp(g(x, z) − g(x, z′)) exp(g(x, z′))dx∫

exp(g(x, z′))dx

≤ C‖z − z′‖γ1 +
∫
(g(x, z′)− g(x, z)) exp(g(x, z′))dx∫

exp(g(x, z′))dx

≤ 2C‖z − z′‖γ1 ,
where we used Jensen’s inequality in the next to last inequality. Reversing the roles of z and z′ we
complete the proof.
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