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Abstract

In this paper, we investigate local permutation tests for testing conditional independence
between two random vectors X and Y given Z. The local permutation test determines the
significance of a test statistic by locally shuffling samples which share similar values of the
conditioning variables Z, and it forms a natural extension of the usual permutation approach for
unconditional independence testing. Despite its simplicity and empirical support, the theoretical
underpinnings of the local permutation test remain unclear. Motivated by this gap, this paper
aims to establish theoretical foundations of local permutation tests with a particular focus on
binning-based statistics. We start by revisiting the hardness of conditional independence testing
and provide an upper bound for the power of any valid conditional independence test, which
holds when the probability of observing “collisions” in Z is small. This negative result naturally
motivates us to impose additional restrictions on the possible distributions under the null and
alternate. To this end, we focus our attention on certain classes of smooth distributions and
identify provably tight conditions under which the local permutation method is universally valid,
i.e. it is valid when applied to any (binning-based) test statistic. To complement this result
on type I error control, we also show that in some cases, a binning-based statistic calibrated
via the local permutation method can achieve minimax optimal power. We also introduce a
double-binning permutation strategy, which yields a valid test over less smooth null distributions
than the typical single-binning method without compromising much power. Finally, we present
simulation results to support our theoretical findings.

1 Introduction

Conditional independence (CI) is an important concept in a variety of statistical applications in-
cluding graphical models (De Campos and Huete, 2000; Koller and Friedman, 2009) and causal
inference (Imbens and Rubin, 2015; Pearl, 2014; Spohn, 1994). In these applications, the assump-
tion of conditional independence offers significant representational and computational benefits, and
helps disentangle causal relationships among variables in an efficient and tractable way. In a re-
lated vein, a problem of essential importance in statistical practice is that of variable selection (Dai
et al., 2021; Williamson et al., 2021), which is concerned with selecting a parsimonious subset of
features that are predictive of a response variable. In each of these settings, conditional indepen-
dence tests are an essential tool to validate (or invalidate) critical modeling assumptions, and can
lend additional credibility to the conclusions of our data analysis.

The performance of a statistical hypothesis test relies not only on the form of the test statistic
but also heavily on the method used to ensure type I error control. Indeed, one might argue that



a huge part of the practical success and ubiquity of two-sample and (unconditional) independence
tests is the fact that these tests can be tightly calibrated in a black-box fashion using a permutation
method. This in turn frees the practitioner to focus on designing powerful test statistics, without
having to further ensure that the distribution of their test statistics are analytically tractable under
the null. For two-sample and (unconditional) independence testing, the permutation method is
universal without any additional restrictions, i.e. it controls the type I error in a non-trivial sense
for any underlying test statistic. As noted by Shah and Peters (2020), part of the hardness of
conditional independence testing with a continuous conditioning variable Z stems from the fact
that it is impossible to control the type I error, via for instance a permutation method, in any non-
trivial sense without additional restrictions. Our broad goal in this paper is to propose and study
natural extensions of the permutation method, namely the local permutation procedure, which
are applicable to CI testing. In particular, we aim to investigate restrictions under which these
extensions tightly control the type I error for a broad class of test statistics, and further to explore
the power of tests calibrated via these methods.

The local permutation procedure calibrates a test statistic by locally shuffling samples based
on the proximity of their conditioning variables Z. When the conditional variable is discrete, the
resulting local permutation test has a universal guarantee on type I error control under relatively
weak assumptions on the data-generating process. When the conditional variable is continuous,
on the other hand, the validity of the local permutation test is far from obvious. While there is a
line of work providing some empirical support (Doran et al., 2014; Fukumizu et al., 2008; Neykov
et al., 2021; Sen et al., 2018), a rigorous theoretical foundation of the local permutation test has
not been fully established in the continuous case. Motivated by this gap, the first aim of this paper
is to identify provably tight conditions under which the type I error of the local permutation test is
uniformly controlled at least for sufficiently large sample-sizes. To this end, we focus primarily on
a binning-based local permutation procedure and determine the size of bins for which the resulting
test is asymptotically valid under various smoothness assumptions.

Once the type I error is under control, our subsequent focus is on power. In contrast to type I
error control, which requires the size of bins to be small, the use of bins that are too fine causes a
loss of power due to the small sample size in each bin. Our next goal is to balance this trade-off and
show that there is a choice of bin-widths which ensures that the local permutation method controls
the type I error but still retains minimax optimal power. We achieve this goal by building on the
recent work of Canonne et al. (2018) and Neykov et al. (2021) which study minimax-optimal CI
tests and the work of Kim et al. (2020) which studies the power of the classical permutation method
for two-sample and independence testing.

An interesting aspect of our results is that they elucidate a tension in conditional independence
testing between ensuring tight control of the type I error, and ensuring high power of the resulting
test. In many well-studied examples, permutation and other simulation methods represent an
apparent free lunch, ensuring tight control of the type I error without sacrificing power (see for
instance, Kim et al. (2020) for precise results on the minimax power of the permutation test in
these settings). In conditional independence testing, the permutation method is no longer exact
and we show that there is a trade-off when using the local permutation method for calibration.
In certain cases, ensuring type I error control requires selecting bin-widths which are too small
to guarantee high power. In some settings, we are able to mitigate this trade-off by designing a
careful double-binning strategy where two resolutions are combined in the permutation method:



a finer resolution for permutations which ensures type I error control, and a coarser resolution
for computing the test statistic which ensures high power (see Section 6). Before we state our
contributions in more detail, we briefly review related work.

1.1 Related work

There is an extensive body of literature on CI measures and CI tests. Here, we give a selective
review of existing methods, which can be categorized into several groups.

The first category of methods is based on kernel mean embeddings (see Muandet et al., 2017,
for a review). The idea of kernel mean embeddings is to represent probability distributions as
elements of a reproducing kernel Hilbert space (RKHS), which enables us to understand properties
of these distributions using Hilbert space operations. One of the initial attempts to use kernel
mean embeddings for CI testing was made by Fukumizu et al. (2008). In particular, Fukumizu
et al. (2008) propose a test based on the empirical Hilbert—Schmidt norm of the conditional cross-
covariance operator. Zhang et al. (2012) introduce another kernel-based test attempting to measure
partial correlations, which in turn characterize CI (Daudin, 1980). Strobl et al. (2019) use random
Fourier features to approximate kernel computations, and propose a more computationally efficient
version of the test of Zhang et al. (2012). Other CI measures proposed by Doran et al. (2014)
and Huang et al. (2020) are motivated by the kernel maximum mean discrepancy for two-sample
testing (Gretton et al., 2012). In particular, the CI measure introduced by Huang et al. (2020)
compares whether Y| X, Z and Y| X have the same distribution, and their measure can be viewed
as a kernelized version of the CI measure of Azadkia and Chatterjee (2019). Recently, Sheng
and Sriperumbudur (2019) and Park and Muandet (2020) propose kernel CI measures that are
closely connected to the Hillbert—Schmidt independence criterion (Gretton et al., 2005). Sheng
and Sriperumbudur (2019) also discuss the connection between their CI measure to the conditional
distance correlation proposed by Wang et al. (2015).

Another category of methods relies on estimating regression functions. Consider random vari-
ables X and Y, and their regression residuals on Z, denoted by ex z := X — E[X|Z] and ey z :=
Y —E[Y|Z]. The underlying idea of regression-based methods is that the expected value of ex zey 7z
is zero if X I Y|Z, and not necessarily zero if X [ Y|Z. Thus, one can use an empirical estimate
of the expected value of ex zey,z as a test statistic for CI. We refer to Zhang et al. (2018) for a
discussion of the relationship between ex z L ey, z and X L Y|Z. Given that there exist a variety of
successful regression algorithms to estimate E[X|Z] and E[Y'|Z], the expected value of ex, zey z can
be accurately estimated as well. This regression-based idea has been exploited by several authors to
tackle CI testing. For instance, Shah and Peters (2020) propose the generalized covariance measure,
which has been extended to functional linear models by Lundborg et al. (2021). The methods pro-
posed by Zhang et al. (2012) and Strobl et al. (2019) rest on the regression of a function in a RKHS,
thereby belonging to this category as well. We also note that there has been a growing interest in
estimating the expected conditional covariance in semi-parametric statistics (Li et al., 2011; Newey
and Robins, 2018; Robins et al., 2008) often employing non-parametric regression methods followed
by adjustments to reduce bias, and this work in turn has implications for the design of CI tests.

Apart from the above two categories, there are many other novel approaches for CI testing
developed in recent years. For example, Bellot and van der Schaar (2019); Shi et al. (2020) de-
sign nonparametric tests by leveraging the success of generative adversarial networks. Sen et al.



(2018, 2017) convert the CI testing problem into a binary classification problem, which allows one
to leverage existing classification algorithms. Approaches based on the partial copula have been
examined by Bergsma (2010, 2004); Patra et al. (2016); Petersen and Hansen (2021); Song (2009).
A metric-based approach is also common in the literature, including tests based on the conditional
Hellinger distance (Su and White, 2008) and conditional mutual information (Runge, 2018). The
above methods are mainly for continuous data, whereas there are numerous CI tests available for
discrete data as well (Agresti, 1992; Balakrishnan and Wasserman, 2018; Canonne et al., 2018; Kim
and Agresti, 1997; Marx and Vreeken, 2019; Neykov et al., 2021; Yao and Tritchler, 1993). A more
extensive review of CI tests can be found in Li and Fan (2020).

So far we have mainly reviewed various ways of measuring CI and constructing test statistics.
For testing problems, it is also important to determine a reasonable critical value, that results in
small type I and type II errors. The current literature usually considers one of the following three
approaches for setting critical values.

e Asymptotic method. The first common approach is based on the limiting null distribution
of a test statistic. Once the limiting null distribution is known, the critical value is determined
by using a quantile of this limiting distribution or a bootstrap procedure. In order to obtain
a tractable asymptotic distribution, the test statistic typically has an asymptotically linear
or quadratic form. Examples of CI tests based on the asymptotic approach include Huang
(2010); Shah and Peters (2020); Strobl et al. (2019); Su and White (2008); Wang et al. (2015);
Zhang et al. (2012); Zhou et al. (2020). Due to technical hurdles, this line of work often focuses
on a pointwise (rather than uniform) type I error guarantee with a few exceptions (Lundborg
et al., 2021; Shah and Peters, 2020).

e Model-X framework. Formalized by Candés et al. (2018), the model-X framework builds
on the assumption that the conditional distribution Px|; is (approximately) known. In this
case, one can compute a set of test statistics, which are exchangeable under the null, by
exploiting the knowledge of Py|z either through direct resampling as in Candés et al. (2018)
or via a permutation method as in Berrett et al. (2020b). The critical value is then set to be
an empirical quantile of these test statistics, and the resulting test has finite-sample validity.
Berrett et al. (2020b) rigorously characterize the excess type I error when an estimate of
Px|z is considered, and also demonstrate situations where this excess error is asymptotically
negligible. Nevertheless, this methodology may not be appropriate for applications where
Px|z is hard to estimate.

e Local permutation method. The third approach is based on local permutations. This
method generates a reference distribution by randomly permuting Y within subclasses, which
are defined in terms of the proximity of the conditional variable Z. Then the critical value
is determined as a quantile of this reference distribution. The work of Doran et al. (2014);
Fukumizu et al. (2008); Margaritis (2005); Sen et al. (2017) fall into this category. When
observing multiple samples with the same value of Z is possible, this method can yield an
exact CI test with reasonable power against certain alternatives. However, its validity has not
been fully explored beyond discrete settings.

As mentioned before, our work heavily builds upon the recent work of Canonne et al. (2018),
Neykov et al. (2021) and Kim et al. (2020). Canonne et al. (2018) construct tests for CI when



(X,Y, Z) are discrete random variables, but with a possibly large number of categories, and establish
the optimality of their tests from a minimax perspective, in certain regimes. Neykov et al. (2021)
extend the work of Canonne et al. (2018) to the case where Z is a continuous and bounded random
variable. However, both tests considered in Canonne et al. (2018) and Neykov et al. (2021) rely on
critical values that depend on unspecified constants. In this sense, it has been unknown whether
there exists a minimax optimal CI test, which is easily implementable in practice. To address this
issue, our work considers the local permutation method, which leads to an explicit critical value. In
order to analyze the power of the resulting test, we build on results of Kim et al. (2020) who provide
a sufficient condition under which the permutation test has non-trivial power for (unconditional)
independence testing. To verify this sufficient condition, we build on the analysis of U-statistic-based
tests from the previous work of Canonne et al. (2018) and Neykov et al. (2021).

1.2 Owur contributions

We now outline our contributions.

e Hardness result of CI testing (Section 3). By leveraging the recent work of Barber
et al. (2019); Barber (2020), our first contribution (Theorem 1) is to provide a new hardness
result for CI testing. For two-sample and unconditional independence testing, one can use the
permutation procedure to develop tests that can keep the type I error under control, while
having non-trivial power against interesting alternatives (e.g. Kim et al., 2020). However, this
is not the case for the continuous CI testing problem. As pointed out by Shah and Peters
(2020), any valid CI test should have no power against any alternative when Z is a continuous
random variable. In Theorem 1, we formalize that the impossibility of CI testing is more
fundamentally determined by the probability of observing collisions in Z, rather than the
type of Z. Therefore, even in the discrete or mixture setting, CI testing is difficult or even
impossible when the probability of observing the same Z is extremely small.

e Validity of local permutation tests (Section 4.2). In continuous settings, one typical
way to address the replication problem of Z in the design of tests is to hypothesize some
notion of smoothness, i.e. the conditional distribution does not vary too much as a function of
Z. Under this hypothesis, we have approximate replicates, which we can use to construct our
test statistics, and can use to design an (approximate) permutation method. A basic question
is to address the validity of the local permutation method. Our preliminary results (Lemma 1
and Lemma 2) show that one can control the type I error of binning based CI statistics when
the binned distribution is indistinguishable from its CI projection (the distribution we obtain
from permutations). See Figure 1 for a pictorial illustration.

e Tightness of our conditions (Section 4.3). We note that, counterintuitively, increasing
the sample size n can make type I error control harder to achieve, because ensuring the
indistinguishability of the product measures is more challenging as n increases. This forces us
to use finer bins as n increases for type I error control. On the other hand, using bins that
are too fine may result in a loss of power, which raises the question on a choice of the size
of bins. In Theorem 2 and Theorem 3, we first present concrete upper bounds for the type I
error in terms of the size of bins and the sample size n, under certain smoothness conditions.



These results guide us on the size of bins, which yields rigorous type I error control. As a
complementary result, Theorem 4 proves that the upper bounds in the previous results are
asymptotically tight. In particular, we show that there exists a local permutation test whose
type I error is arbitrarily close to one when the given upper bounds are sufficiently far from
the significance level.

e Power analysis (Section 5). The next question we address is that of power. We start by
revisiting the test statistics for discrete CI testing in Canonne et al. (2018). Theorem 5 then
shows that the corresponding local permutation tests have the same power guarantee as the
tests in Canonne et al. (2018). Unlike the discrete CI setting, the replication problem affects
both type I and type II error control in the continuous CI setting. As mentioned earlier,
taking finer bins helps us for type I error control but not for power. Our next result shows
that in some cases, we are able to navigate this trade-off, i.e. there is a choice of binning which
ensures that the local permutation method controls the type I error but still retains minimax
power. In particular, we show in Theorem 6 and Theorem 7 that the local permutation tests
using the same test statistics in Neykov et al. (2021) achieve the same minimax power in the
total variation (TV) distance. However, this guarantee comes at a cost. Namely, the local
permutation test with the optimal choice of binning is valid over a set of null distributions
much smoother than those considered in Neykov et al. (2021).

e Double-binning strategy (Section 6). Finally, we develop and analyze a new double-
binning based permutation test, which partly addresses the aforementioned drawback. More
specifically, we consider bins of two distinct resolutions where finer bins are used for permu-
tations and coarser bins are used to compute a test statistic. By permuting over the finer
bins, our theory in Proposition 1 guarantees that a double-binning based test has type I error
control over a larger class of null distributions than the single-binning counterpart. On the
other hand, by computing the test statistic over the coarser bins, Theorem 8 proves that the
power of the resulting test remains the same as the single-binning test, up to a constant fac-
tor, under certain regularity conditions. We further demonstrate our theoretical findings in
Section 7.3 through simulations.

1.3 Organization

The rest of this paper is organized as follows. We start by explaining the local permutation procedure
in Section 2 along with a basic background on probability metrics. Section 3 provides a new hardness
result of CI testing that covers the discrete case of Z. We then move on to discussing the validity
of the local permutation test in Section 4. In particular, we provide upper bounds for the type
I error of the local permutation test under certain smoothness conditions. We further prove that
these upper bounds are asymptotically tight in some cases. Focusing on the test statistics proposed
by Canonne et al. (2018) and Neykov et al. (2021), we investigate the power property of the local
permutation tests in Section 5. Section 6 introduces a double-binning strategy that allows us to
choose a smaller binning size without sacrificing power up to a constant factor. Section 7 includes
several illustrative simulation results. Finally, we end the paper with a discussion and future work
in Section 8. All technical proofs are relegated to the Appendix.
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Figure 1: A visualization of our analysis of the local permutation test. To proceed, we first discretize Z
into several bins and denote the binned conditional variable by Z. Given a product distribution P% - ,, the
corresponding distribution smoothed over the bins is denoted by Q’;{ v 7 (see Section 4.2 for a more precise

description). Next, we consider another distribution é; v which is the CI projection of Q’;{ y 7 onto the

space where X I Y|Z . The validity of the location permutation test is essentially determined by the TV
distance d,, (or its upper bound) between Q§ v and Q§ _pe
asymptotically valid when 4,, — 0 as n — co. In Section 4,7we present sharp and tractable conditions under

which §,, converges to zero, depending on the smoothness of underlying distributions.

In particular, the local permutation test is

2 Preliminaries

In this section, we set up the notation and introduce preliminaries including the local permutation
procedure and probability metrics.

2.1 Notation

Throughout this paper, we mostly follow the notation used in Neykov et al. (2021). Let the triplet
(X,Y, Z) have a distribution Px y z on a measurable space. We denote the conditional distribution
of X,Y|Z = z as Pxy|z—,. We denote the (marginal) conditional distributions of X|Z = z
and Y|Z = z by Px|z—, and Py|z—_., respectively. In addition, the marginal distributions of
X,Y, Z are denoted by Px, Py, Pz and similarly the joint marginal distributions are denoted by
Pxy,Px z,Py,z. Moreover, we will use the lowercase p to denote density functions with respect to
a base measure. For example, px y|z(z,y|2), denotes the conditional density (or probability mass)
function of X,Y|Z = z, evaluated at a point (z,y,z). We denote the set of all distributions for
which X I Y|Z by Py.

2.2 Local permutation procedure

We formalize the local permutation procedure based on ii.d. observations {(X;,Y;, Z;)}7, =
(X™, Y™ Z") from Pxy,z. Throughout this paper, we assume the conditional random variable
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Z has compact support Z and briefly discuss an extension to unbounded support in Appendix B.4.
Let {Bi,..., By} denote a partition of Z such that Z2 = UM_, B,, and o := {01,...,0)} denote
the sample sizes within bins {Bi,..., By }. Furthermore, let W,,, denote the set of the pairs of
(Xi,Y;) that belong to the mth bin. More formally, by letting (X, Y: ) be the ith pair in the
mth bin, we write Wi, := {(X1m, Yi.m), - - -+ (Xou,.ms Yo,.,m) } when o, > 1 and otherwise W, = 0.
Given this binned data, we consider a generic test statistic for CI testing, which maps from
Wi,...,Wy to R, i.e. for some function f: Wi, ..., Wy — R we compute our test statistic as:

Tcr = f(Wh,...,Wh). (1)

As a concrete example with real-valued data, one can take f to be the average function of arbitrary
(unconditional) independence test statistics computed based on Wi, ..., Wy, respectively.

In order to determine significance of the statistic Ty, we rely on the local permutation pro-
cedure summarized in Algorithm 1. To describe the algorithm, consider a permutation m, =
{7mm(1), . Tm(om)} of {1,..., 0m} and denote Wim = {(X1m, Yo, (1)m)s - -+ » (Xop ms Yo (o) m) }
for m = 1,..., M. Notice that when o, = 0, there is nothing to permute and we set W m = ().
The test statistic computed using the locally permuted data set is denoted by

T = (W, W), (2)
Let us further denote the set of all possible such local permutations 7 := {71, ..., 7} by II whose

cardinality is K = H%:l om!. Given this notation, we describe the local permutation procedure in
Algorithm 1.

Algorithm 1 Local permutation procedure

Input: data {(X;,Y;, Z;)}", a partition of Z: {By,..., B}, a test statistic T¢y, a nominal level
a

1. For each 7 € II, compute TZ; as in (2) and denote the resulting statistics by (3}, ..., T5f .

2. By comparing the statistic T¢r in (1) with the permuted ones, calculate the p-value as

1 .
oo = 70 > U{TE > Taa: )
;€11

3. Given the nominal level o € (0,1), define the test function ¢permn = L(Pperm < @) and
reject the null when ¢perm,n = 1.

The local permutation procedure, like other randomized or permutation procedures (e.g. Chapter
15 of Lehmann and Romano, 2006), can be used with any binning-based test statistic for CI testing.
For simplicity, our theoretical results are based on Algorithm 1 but they can be easily extended to
a more practical permutation procedure via Monte Carlo simulations as remarked below.

Remark 1.



e Monte Carlo approximation. The permutation p-value (3) may be practically unappealing
as its computational cost is prohibitively expensive for large n. To alleviate this computa-
tional issue, it is a common practice to approximate pperm using Monte Carlo simulations
as in (22). As noted in Lehmann and Romano (2006), the difference between pperm and its
Monte Carlo approximation can be made arbitrarily small by taking a sufficiently large num-
ber of Monte Carlo samples. This can be formally stated using Dvoretzky—Kiefer—Wolfowitz
inequality (Dvoretzky et al., 1956) and we refer to Corollary 6.1 of Kim (2021) or Proposition
4 of Schrab et al. (2021) for such argument.

e Randomization. It is well-known that the permutation test can be made exact by introduc-
ing randomization. We state the randomized permutation test (Hoeffding, 1952) for complete-
ness. For a nominal level a, we denote k = K — [Ka] where [K ] is the largest integer less
than or equal to Ka. In addition let K+ and K° be the numbers of TZ ..., TE, which are

greater than or equal to Ty, respectively. Given a = (Ka—K1)/K° and the kth order statis-

tic Tg;) of T}, ..., TE{, we define ¢permma = 1,a or 0 depending on whether Tey > Tg;),

Ter = Tgf) or Ter < T, gf), respectively. Then under the exchangeability assumption of the
permuted statistics, it holds that E[¢permmn,a] = o, whereas ¢perm, from Algorithm 1 has a
weaker guarantee that E[¢perm ] < o in general.

In the next subsection, we present several statistical distances between probability measures
that we make use of throughout this paper.

2.3 Probability metrics

Let P and @ be two probability measures over a measurable space (€2, F) and denote the densities
of P and ) with respect to a common dominating measure y by p and g, respectively. There are
two classes of probability metrics that will be considered in this paper. The first class, we call
the generalized Hellinger distance (e.g. Kamps, 1989), includes the TV distance and the Hellinger
distance as special cases.

Definition 1 (Generalized Hellinger distances). Given v > 1, the generalized Hellinger distance
with parameter v between P and (@ is defined as

1 1/ /7|7 1/7
Dyu(P,Q) = 2/!1) — ¢/ dp

From the definition, it is clear that the above distance becomes the TV distance when v = 1 and
the Hellinger distance when v = 2. Since these two values deserve special attention, we denote the
corresponding TV distance and Hellinger distance by Dy (P, Q) and Dy (P, Q), respectively. The
generalized Hellinger distance has the monotonicity property that Dz;H(P, Q) < D%H(P, Q) for
1 <1 <75 (Corollary 3 of Kamps, 1989). This monotonic relationship generalizes the well-known
inequality between the TV and Hellinger distances, namely D% (P, Q) < Drv(P, Q) (e.g. Chapter 4
of Le Cam, 2012).

Another class of probability metrics that we consider is Rényi divergence defined as follows.



Definition 2 (Rényi divergences). For v € (0,00), Rényi divergence of order  of P from @ is

defined as
1 Y
log{/<p) qdu}, iy £ 1,
-1 q

/plog <§> du, ify=1.

In the above definition, some notable values of 7 include v € {1/2,1,2} and the corresponding
Rényi divergence is directly or indirectly associated with the Hellinger distance (v = 1/2), Kullback—
Leibler (KL) divergence (v = 1) and x? divergence (y = 2) as stated in Appendix B. We refer the
reader to Van Erven and Harremos (2014) and Sason and Verda (2016) for more information on
Rényi divergences.

D'Y,R(P”Q) =

3 Fundamental limits of CI testing

Before we start analyzing local permutation tests, we provide a new hardness result for CI testing.
In view of the recent hardness result of Shah and Peters (2020), further revisited by Neykov et al.
(2021), CI testing is intrinsically difficult in the following sense. Let Pra be the set of all distributions
for (X,Y,Z) on R%+dy+d: and let Py C Pga be the subset of Pya whose support is defined within
a Lo ball of radius K. We also assume that the distributions in Pg are absolutely continuous
with respect to the Lebesgue measure. Let Py x C Pk be the subset of distributions such that
X 1 Y|Z and denote its complement by P; g = Pk \ Po,x. By denoting the joint distribution
of n i.i.d. random vectors from Pxy,z by P¥% Y.z the result of Shah and Peters (2020) states that
any valid CI test ¢ for the class of null distributions Po.i should satisfy EP)?Y,Z[Qb] < « for any
Pxy 7z € P1 k. In words, no CI test, which has valid type I error control for all absolutely continuous
conditionally independent distributions, can have meaningful power against any single alternative
distribution in P; g. It therefore emphasizes that one should consider smaller sets of null and
alternative distributions in order to make the CI testing problem feasible.

The story, on the other hand, is different when Z has a discrete or a mixture distribution where
one can observe the same value of Z. In this case, by permuting the samples within groups having
the same value of Z, the local permutation test can be valid, while possessing non-trivial power
against certain alternatives. However, even in this case, there exists an intrinsic difficulty of CI
testing when the probability of observing the same Z is extremely small. We precisely characterize
this challenge in the following theorem. To describe the result, let Py C Pgra be the subset of
distributions such that X 1 Y|Z, and define P; = Pga \ Po. Further, let Pg gise C Po be the subset
of null distributions where Z is supported on a countable set. Then our result is stated as follows.

Theorem 1 (Hardness of CI testing). For an arbitrary integer J > n(n — 1), let us define pjp :=
P{Z1,...,Z; are distinct}, where Zy,...,Z; are i.i.d. samples from the marginal distribution of
Z. Suppose that a test ¢ satisfies SUPPy 1 2 €Po dise Ep;xz[(b] < a for a € (0,1). Then for any
Pxy 7z € P1, the power of ¢ is bounded above by

nn—1
Epyp, [0l <axpsp+(1—psp)+ (J) (4)
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A few remarks on this result are given below.
Remark 2.

e Theorem 1 states that what makes the CI problem hard is not just whether Z is discrete or
continuous, but whether one can observe the same value of Z repeatedly with high probability.
This difficulty is precisely captured by the quantity p;p. As an illustration, suppose that Z
has a multinomial distribution with equal probabilities over bins. Intuitively, when the number
of bins is much larger than the sample size, one cannot expect to see the same Z even twice
with high probability, and thus the bound (4) becomes close to «. We make this intuition more
precise in Remark 10 where we demonstrate that any valid CI test becomes (asymptotically)
powerless if Z is uniformly distributed over bins and the number of bins increases much faster
than n*. We also refer to Section 7.1 for a numerical illustration.

e Our result is not restricted to the case of discrete Z. Suppose that ¢ is valid over a subset of Py
that contains Pp gisc. Then the same result trivially follows. Let P1 no-atom C P1 be the subset
of alternative distributions where the marginal distribution of Z has no atoms, i.e. pjp = 1.
Then, as a corollary of Theorem 1, it holds that supp,  ,cp, .o voom Epg,y’z[gb] < «a for any

¢ such that sup Px.v.z€Po Ep)r},y’z[(ﬁ] < «. However, in this argument, it is crucial to assume

that Pp gisc C Po. In contrast, the hardness result of Shah and Peters (2020) does not require

Po.aisc C Po. In this sense, Theorem 1 is a weaker result than Theorem 2 of Shah and Peters

(2020).

e On the other hand, the proof of Theorem 1 is much simpler than that of the hardness re-
sult of Shah and Peters (2020), being highly motivated by the recent impossibility results
in distribution-free conditional predictive inference e.g., Lemma A.1 of Barber et al. (2019)
and Lemma 1 of Barber (2020). The key idea of the proof is to introduce ghost samples
{X:,Y;, Zi}iJ:1 and express the type II error of ¢ as the iterative expectations associated with
sampling without replacement from these ghost samples. When Z3,..., Z; are distinct, ran-
dom draws from these ghost samples with replacement can be viewed as random draws under
the null. We note that such argument via sampling with replacement can be traced back to
Gretton et al. (2012) (see Example 1) who provide a negative result for two-sample testing.
Given this key observation, we can connect the type II error with the significance level «, and
the result follows by a union bound along with the total variation distance between sampling
with and without replacement. The details can be found in Appendix A.1.

In summary, the hardness result of Shah and Peters (2020) and Theorem 1 indicate that CI
testing is a difficult task without further assumptions. This negative result naturally motivates us
to explore reasonable conditions under which CI testing, especially based on the local permutation
procedure, is feasible. This is the main topic of the next section.

4 Validity under smoothness conditions

The goal of this section is two-fold: one is to identify universal conditions under which any local
permutation test based on a binned statistic is asymptotically valid; the other is to show that these
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conditions are tight under certain smoothness conditions in the sense that there exists a permutation
test whose type I error is not controlled even asymptotically when our conditions are violated. We
start by introducing our smoothness assumptions (Section 4.1) and then state the main results
(Section 4.2 and Section 4.3).

4.1 Smoothness conditions

The validity of the local permutation test crucially relies on the smoothness assumption on condi-
tional distributions. For instance, suppose that px|z(x|z) and py|z(y|z) are constant with respect
to z for all z € Z. In this case, X and Y are independent of Z and, consequently, CI testing is the
same as unconditional independence testing for which the (local) permutation test has finite-sample
validity. Motivated by this observation, we consider similar (but more general) smoothness classes
to those in Neykov et al. (2021) defined as follows.

Definition 3 (y-Hellinger Lipschitzness). Let Powq,5(L) C Po be the collection of distributions
Py y . such that for all z,2' € Z,

Dy u(Px|z=2 Px|z=2) < Ld(2,2") and Dyu(Py|z—., Py|z—) < Ld(2,7'),
where §(z,2") is a distance between z and z' in Z.

Another smoothness assumption is made based on Rényi divergence.

Definition 4 (y-Rényi Lipschitzness). Let Por.,s(L) C Po be the collection of distributions Py, .
such that for all z,2' € Z,

D)/E(Pxz=:|Pxjz=2) < Lo(z,2) and DYE(Pyiz—.|Pyiz—n) < Lo(z, 7).

where §(z,2') is a distance between z and z' in Z.

For both Lipschitz conditions, we let (-, -) be the Euclidean distance by default when Z € R,
With these smoothness conditions in place, the next section studies the asymptotic validity of the
local permutation test.

4.2 Validity

To state the validity result, we begin with additional notation. Let (X™yn", Z”) be the binned
version of (X", Y™, Z") where Z € {1,..., M} is a discrete random variable with probability P(Z =
m) = P(Z € By,) for m = 1,..., M. For simplicity, let us write qz(m) = P(Z = m) and denote
the conditional distribution of Z|Z € By, by Py zcp,,- Then (X,Y,Z) has its density function
qX7y"Zv(xv Y, m) = qu‘Z(xv y’m)QZ(m) where

qu|§(9Ca@/|m) :/ px.y|z(T,y]2)dPz z¢B,,(2),
B

m

and we denote the corresponding joint distribution by @ 7.
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Under the considered binning scheme, we make a key observation that the test statistic Tcg
is defined only through the binned data, which means that Ty based on (X", Y™, Z") is equal in
distribution to that based on (X", Y™, Z"). Furthermore, since our test function ¢perm,r is computed
only through the binned data, we observe that

EP;,Y,Z [¢Permv”] = EQ&,Y,Z [prerm,n]- (5)

To proceed further, we consider a product density ¢y y >(z,y,m) = qy. ‘Z(x]m)qYl-Zv(y\m)qZ( m)
where g, |Z( x|m) and ¢ Y|Z(y|m) are the marginals of qXY‘Z(x y|m), and denote the corresponding

joint distribution by QXYZ By construction, (X", Y™ Z”) from QXYZ satisfies X 1L Y|Z and
therefore exchangeablhty of Y within each bin yields

]EQn [¢perm n] <.

Combining the above inequality with the identity (5) yields a generic type I error bound for the
local permutation test in terms of the total variation distance.

Lemma 1 (Type I error bound in terms of the TV distance). Suppose that the distribution Pxy,yz
belongs to Py. Then for any o € (0,1), the type I error of ¢perm,n is bounded above by

E XYZ[¢permn]<a+DTV( YZ’QXYZ)

The given bound implies that the local permutation test is valid when the binned null distribution
is indistinguishable from its CI projection. The proof of this result follows by the definition of the TV
distance. It is worth pointing out that since the randomized permutation test ¢permn,a (Remark 1)

is exact under the law of Q} y, 5> One can establish a stronger result that

‘EP)% vz R [¢perm,n,a] - O‘} < Dty (Q;,Y,Z’ @&7{2)3

where R ~ Uniform[0, 1] is for randomization and independent of the data. In either randomized
or non-randomized test, our main task boils down to identifying reasonable conditions under which

the TV distance between Q’;{ .7 XY tends to zero asymptotically. In general, however, it

is challenging to directly work with the TV distance between two product measures. Instead we
upper bound the TV distance by the Hellinger distance as follows.

Lemma 2 (Type I error bound in terms of the Hellinger distance). Suppose that the distribution
Pxy .z belongs to Py. Then for any o € (0,1), the type I error of ¢perm,n is bounded above by

m=1

1/2
Erg vz 0pemn] <t {2n Z qz(m) x D (QX,Y|Z:m’ éx,ném)} 7 )

where the second term on the right-hand side is simply v/2nDy (QXYZ’ QVXYZ)'
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We mention that, while the Hellinger bound (6) is provably looser than that based on the TV
distance, it has the same characterization as the TV bound in terms of when the local permutation
is asymptotically valid. More specifically, using well-known bounds relating the TV distance and
the Hellinger distance, it can be verified that

Doy ( ;K P Q;‘(’Y’ 2) — 0 if and only if nDf(Q xv.z @xy, 7) — 0.

We are now ready to state the main results of this section. To this end, we denote the maximum
diameter of bins Bi,..., By by h, that is
h:= ma sup 6(z,2). 7
Jhax, sup (2,2) (7)
We first state the result under y-Hellinger Lipschitzness in the next theorem and then consider
~v-Rényi Lipschitzness in Theorem 3.

Theorem 2 (Validity of ¢perm,n under y-Hellinger Lipschitzness). For any a € (0,1), the type I
error of Gperm,n under y-Hellinger Lipschitzness is bounded above by

a+Cn' 2LV, ifye[1,2],
sup EP; v.z [¢perm,n] < (8)
Pxy,z€Po,H,~,5(L) o o+ Cynl/2L2h27 if’Y > 2,

where C., is a constant that only depends on .
A few remarks are in order.
Remark 3.

e The result of Theorem 2 shows that once we assume that L and  are fixed in the sample size,
a sufficient condition for the validity of ¢perm.n is h = o(n~/?7) if v € [1,2] and h = o(n~1/4)
if v > 2 under y-Hellinger Lipschitzness. Since users have control over h, Theorem 2 provides
a guideline for the choice of binning that ensures type I error control of the local permutation
test. We also note that when h is too small, most of the bins are empty, which adversely
affects the power performance. In other words, there is an intriguing trade-off between the
type I error and power in terms of the choice of h. We discuss this trade-off more in Section 5.

e In most practical applications, the smoothness parameter v is unknown. In such case, one can
choose h such that n'/2h — 0 as n — oo, which leads to an asymptotically valid permutation
test for all v > 1, assuming other parameters are fixed. However, as mentioned before,
choosing small h comes at a price of low power under the alternative. It would be interesting
to see whether an adaptive way of choosing h is possible without much loss of power. We
leave this direction to future work.

e We observe an interesting phenomenon that there exists a sharp transition at v = 2, which
corresponds to the Hellinger distance. In particular, the result illustrates that the smoothness
condition beyond v > 2 does not really help to improve the convergence rate of the type I
error. Importantly, the given upper bound (8) is tight in terms of n and h in some cases.
More specifically, we show in Section 4.3 that there exists a local permutation test whose type
I error rate can be made arbitrarily large unless the upper bound (8) converges to «.
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e The proof of Theorem 2 builds on Lemma 2 and the monotonicity property of the generalized
Hellinger distance. We note that Lemma 2 has a bound in terms of smoothed distributions
over partitions, whereas y-Hellinger Lipschitzness is stated in terms of original distributions.
The bulk of the effort in proving Theorem 2 lies in connecting the Hellinger distance between
Q X.Y|Z=m and @ X,Y|Z=m to the y-Hellinger distance between Px|z—, and Px|z—.s (and also
between Py|z_, and Py|z—./). The details can be found in Appendix A.3.

Next we present a similar result under v-Rényi Lipschitzness.

Theorem 3 (Validity of ¢permn under y-Rényi Lipschitzness). For any o € (0,1) and v > 0, the
type I error of ¢perm,n under y-Rényi Lipschitzness is bounded above by

sup EP}; vz [¢perm,n] <a+ nynl/QLQhQa (9)
Pxy,z€Po,R,~,5(L) o

where C., is a constant that only depends on .

In contrast to Theorem 2, the above result indicates that the smoothness parameter v in Rényi
Lipschitzness does not affect the type I error of ¢perm,n by more than a constant factor. At a
high-level, we observe this phenomenon because Rényi divergence is lower bounded by the squared
Hellinger distance, up to a constant factor, for any v > 0 (see Lemma 5). In other words, the
conditional distribution in Py R ~,5(L) is at least as smooth as the one in Py 11,y=2,6(L), which means
that we are essentially in the second regime of Theorem 2 for v > 2. Indeed, it should be clear from
the proof that the same upper bound in Theorem 3 holds for any Lipschitzness condition whose
underlying divergence is lower bounded by the squared Hellinger distance such as KL divergence
and x? divergence.

Remark 4 (Poissonization). To analyze the power of binning-based tests, it is often convenient to
assume that the sample size has a Poisson distribution (e.g. Balakrishnan and Wasserman, 2019;
Canonne et al., 2018; Neykov et al., 2021). This, so-called, Poissonization trick allows us to bypass
the difficulty in dealing with the dependence between different bins. In fact, as we proved in
Proposition 2 in Appendix B.3, the local permutation test under Poissonization has the same validity
as before in Theorem 2 and Theorem 3. To explain it briefly, we shall use the convenient notation

[ee]
Epy, Nl kZIP’ = k)Ep; [
=0

to denote the expectation operator with respect to PX Y.z where N is a random sample size. We sim-
ilarly write PP)JXYYZ7 [-] to denote EP)];]’Y,Z,N[]I< )] Suppose now that Suppy , ,epy Epp [perm,n] <

a+Cn~¢ for P) C Py and some constants C, e > 0. Then under the same condition, the permutation

test under Poissonization (i.e. N ~ Pois(n)) satisfies supp, , ,eps EP)](VYZ [#perm,N] < o+ Cen™¢

where C¢ is a constant that only depends on €. See Proposition 2 for a more rigorous statement.

We now move to the next section where we provide complementary results of this section.
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4.3 Lower bounds

In this section, we demonstrate that the upper bounds for the type I error established in Section 4.2
cannot be improved further in some cases. In particular, we prove that there exists a local permu-
tation test whose type I error cannot be controlled if one chooses h in such a way that the upper
bounds (8) or (9) diverge. In order to simplify our presentation, we focus on the case where X and
Y are discrete random variables whereas Z is continuous and bounded between [0, 1]. Other cases
such as multivariate continuous (X,Y, Z) will be discussed in Remark 5.

Suppose that X and Y are discrete random variables supported on [¢1] x [¢2] for some positive
integers ¢ and ¢2. By convention, [¢1] denotes the set of integers {1,...,¢1} and [f3] is similarly
defined. Let {B,..., By} be an equi-partition of [0, 1] so that the length of each bin is h = M 1.
The given partition yields the binned data sets W7,..., Wy, defined in Section 2.2. To study lower
bounds, we work with the weighted sum of U-statistics proposed by Canonne et al. (2018) and
Neykov et al. (2021). Let

Qﬁ;}?(ﬂ?,y) = ]l(Xi,m =, Y:i,m = y) - ]l(Xi,m = «T)]l(y}',m = y)7

and define a kernel function as

m 1 m m
hiY iz = m Z Z %(1)7:(2)(%y)@/’w(s)w(zx)(fﬁay)>

w€elly x€[l1],y€[l2]

where Iy is the set of all permutations of {41, i2,43,74}. By linearity of expectations, it is seen that

i iy i34 18 an unbiased estimator of the squared Lg norm between () Xy|Z=m and Q X.Y|Zem’ Given
this kernel and by recalling W, = {(X1,m,Y1i.m)s .-, (Xo,..m, Yo,..m) }, the resulting U-statistic is
calculated as

U(W,,) = @ > I i inia- (10)

11 <i2<i3<i4:(11,12,13,i4) E[Om]

The final statistic is a weighted sum of U(W3),...,U(W) given by

Tor:= Y Lom > 4)omU(Wp). (11)
me[M]

Several properties of T¢1, such as minimax power optimality, have been studied under Poissonization
by Canonne et al. (2018) and Neykov et al. (2021). To fully benefit from their results, we work with
a modified local permutation test: First draw N ~ Pois(n/2) and accept the null when N > n. If
N < n, we carry out a local permutation test with N samples randomly chosen from (X™, Y™ Z™).
Formally, we define the modified local permutation test as

W ermn = Gpermn X L(N < n), (12)

where ¢perm, v denotes the local permutation test using Ty (11) computed based on the N samples

chosen before. By Proposition 2 along with the inequality ¢£erm,n < Pperm, N, it is clear that qﬁ}:erm,n
is asymptotically valid whenever the upper bounds in (8) and (9) converge to . The next theorem
provides complementary results establishing lower bounds for the type I error of ¢£erm,n.
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Theorem 4 (Lower bounds). For arbitrarily small but fized o, 3 > 0, choose hy, — 0 such that
Vnhy — oo for v € [1,2] and \/nh? — oo for v > 2 under y-Hellinger Lipschitzness. On the
other hand, choose h,, — 0 such that \/nh2 — oo for v > 0 under y-Rényi Lipschitzness. Consider
qﬁ;r)erm,n based on Tcy in (11). Then there exist constants ng, L > 0, where L depends only on =,
such that for all n > ng, the following two inequalities hold:

T
sup Epy nl6homnl > 15 and
Px,y,z€Po,H,~,5(L) XY, Z° perm,n
sup Epy N[¢;r)erm,n] >1-8.

X,Y, 2
Px y,z€Po,R,y,5(L)

Let us provide several comments on Theorem 4.
Remark 5.

e A crucial observation is that the type I error of gb;r)erm,n for CI testing corresponds to its power
for testing

Hy QX,Y,Z = @X,Y,Z versus  Hj : QX,Y,Z % @X,Y,Z' (13)

This means that, in order to verify that the type I error of gbg,erm’n is inflated, it suffices to
show that qb}:ermm is asymptotically powerful against the above alternative (13). With this
observation in place, our main task is to construct a distributional setting where QSIT;,erm,n is
able to distinguish the binned distribution and its CI projection with high probability. In fact,
the conditions of Theorem 4 guarantee that these two distributions are far enough for ¢1T)erm,n
to be asymptotically powerful.

e In order to ease our analysis, we carefully design the distribution of Z such that most samples
are observed in one of the partitions with high probability. In this case, the test statistic T¢g
approximates o1U(W7), which is much easier to handle. It is then sufficient to study the
permutation test based on o1U(W7) and prove that it is asymptotically powerful under the
given conditions. We show that this is indeed the case by building on the results of Kim et al.
(2020) where the authors investigate the permutation test based on U(W7) for unconditional
independence testing.

e We expect that ¢perm,n (i.e. without Poissionization) also achieves the same error bounds in
Theorem 4 as it always uses more samples than (ﬁLermﬂ by definition. See empirical evidence in
Figure 4. However, we found it challenging to analyze Tcr without Poissonization, especially
its variance, due to a non-trivial dependence between the summands of T¢r. Due to this
technical difficulty, we focus on the Poisson-sampling scheme as in Canonne et al. (2018) and
Neykov et al. (2021) and leave the detailed analysis of ®perm,n to future work. Nevertheless,
the concentration property of a Poisson random variable allows us to say a certain negative
result on @perm,, Without Poissonization. Specifically, note that a Poisson random variable N
with parameter n/2 is bound between cn < N < Cn with high probability where ¢,C' > 0
some positive constants (e.g. Canonne, 2017). Thus it is guaranteed that one can find a fixed
sample size n such that cn <7 < Cn and Theorem 4 holds for ¢perm 7 Without Poissonization.
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e For simplicity, we prove Theorem 4 using the example where (X,Y") are discrete and Z is
a univariate continuous random variable. Nevertheless, our proof can be extended to the
case of multivariate continuous (X,Y, Z) as follows. Consider piecewise constant densities for
(X,Y) and assume that the components Z®@ .. zUz) of Z € Rz are independent of the
rest of variables. In this case, we are essentially in the setting where X,Y are discrete and
Z is univariate. Therefore, the same proof carries through except now that the maximum
diameter h depends on dz. When an equi-partition is considered, we note that dz only affects
the scaling factor in h and hence the statement of Theorem 4 remains true, provided that dz
is fixed. We also note that the upper bound results (Theorem 2 and Theorem 3) are stated
in terms of the maximum diameter h; thereby the upper bounds remain the same for both
univariate and multivariate cases of Z.

So far we have explored type I error control of the local permutation test. Next we turn our
attention to the power and study its optimality in certain regimes.

5 Power analysis

This section considers both discrete and continuous cases of the conditional variable Z and investi-
gates the power property of local permutation tests. In order to achieve meaningful power, we focus
on a subset of alternatives, which are at least ¢ far away from the null in terms of the TV distance.
Our main interest is then to characterize ¢ for which local permutation tests can be powerful.

5.1 Discrete (X,Y,7)

To start with the discrete case where (X,Y,Z) € [(1] x [2] x [M], we revisit the test statistics
proposed by Canonne et al. (2018) and demonstrate the power property of the local permutation
procedure based on the same test statistics. Canonne et al. (2018) propose two test statistics
for CI testing. The first one is Ty given in (11), which is defined as the sum of unweighted U-
statistics. While T¢y is simple and performs well in certain regimes, it may suffer from a large
variance especially when the dimensions ¢ and ¢ of X and Y are large. To mitigate this issue,
Canonne et al. (2018) propose another statistic building on the flattening idea of Diakonikolas and
Kane (2016). The latter statistic can be viewed as the sum of weighted U-statistics as observed by
Neykov et al. (2021).

Weighted U-statistic. To proceed, let us formally write down the weighted U-statistic. First
recall that W, = {(X1,m,Y1m), - (Xopm, Yo,.,m)} is the set of pairs of (X;,Y;) with Z; = m.
Suppose that the sample size of W, is o,, > 4 and o, = 4 + 4t,, for some t,, € N. Following
the notation in Neykov et al. (2021), let ¢, := min{t,,, 1} and ta,, = min{t,,,¢>}. We then
randomly split the data W,,, into three sets Wx ,,,, Wy, and Wiy, of size t1 p,, to,m and 2t,, 44,
respectively, where Wy, := {Xim 1 0 € [tim]}, Wym = {Yim 1 tim +1 <@ < tim+tam} and
Wxym = {(Xim,Yim : 2t;m +1 < i < 0,,)}. The purposes of these splits are different: the first
two will be used to compute weights and the last one will be used to compute the U-statistic. In
particular, as a weight function, consider a positive integer 1 + azym = (1 + azm)(1 + aym) where
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g,m is the number of occurrences z in Wx ,,, and, similarly, a, ,, is the number of occurrences y in

Wy, m. Next let hi" ;i denote a weighted kernel function defined as

m,a 1 Ip:?(l)ﬂ(g) (xu y)w;n(g,)ﬂ(z;) (xa y)
=0 2.

21,12,23,%4 1 + a$y7m

’ melly {L‘G[fl],ye[fg]
Given this kernel, we compute the weighted U-statistic for each 1 < m < M as

1
Uw (W) = W Z Ry i nsia:

2 ) il<i2<i3<i4:(i1,i27i37i4)€ny’m

where (i1,12,43,74) € Wxy,, stands for taking four observations from Wxy . Now, by letting
Wi 1= \/min(am,él)min(am,ﬁg), the final test statistic for CI is defined as a weighted sum of
Uw (Wh), ..., Uy (W) given by

Torw == Y L(om = 4)omwnln (W). (14)
me[M]

Tests of Canonne et al. (2018). For both test statistics Ty in (11) and Topw in (14), Canonne
et al. (2018) suggest that one rejects the null when the test statistic is larger than ¢\/min(n, M)
where ( is a sufficiently large (but unspecified) constant. This cutoff value can be roughly understood
as an upper bound of the standard deviation of the test statistic under the null. For ease of reference,
we let ¢cpiks,1 = 1(Tcr > ¢y/min(n, M)) denote the test based on the unweighted statistic and
similarly let ¢cpks2 = L(Tciw > (+/min(n, M)) denote the test based on the weighted test
statistic computed based on N ~ Pois(n) samples. To describe their power results, let Piar be the
set of discrete distributions defined on the support [(1] X [a] x [M]. Moreover, let Py ] C P
where X 1 Y|Z and Py pr := P\ Po,a- Canonne et al. (2018) first consider the regime where
¢y and ¢y are fixed and ¢ satisfies a certain condition recalled in (56) of the Appendix, and then
show that

1

<— 1
< 100 (15)

sup Epy  n[1 = ¢cpks 1]

PX,Y,ZEPL[M]5ian€‘PO7[A4] Drv(Px,v,z,Q)>¢ vz

For example, the condition for ¢ is fulfilled when & > cmax{M*/n'/2 M7/8/n, M3/*/n7/8} for
some large constant ¢ > 0. In the second regime where ¢; and /2 can vary, the authors consider a
more involved condition for ¢ depending on (¢1,¢2, M,n), and show that

(16)

sup Epy  n[1— ¢cpks 2]

Pxy,z€P1 myinfQery ) Drv(Pxy,z,@Q)> 07

< —.
— 100

The condition for € in this second regime is recalled in (52) of the Appendix for completeness.
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Main results for the discrete case. In contrast to Canonne et al. (2018), we consider relatively
more practical tests calibrated by the local permutation procedure, which do not rely on unspecified
constants. We then argue that the permutation-based tests have the same theoretical guarantee as
the tests of Canonne et al. (2018). As mentioned earlier, the local permutation test can control the
type I error rate in the discrete setting without any further assumptions. Therefore our focus is
on the power of the test. In the next remark, we explain a modified local permutation procedure,
which we refer to as the “half-permutation” procedure, that facilitates the power analysis of the test
based on Ty w.

Remark 6 (Full- versus. half-permutation). For the weighted test statistic Tcyw, there are two
possible ways of calibrating the test via the local permutation procedure. The first one, we call
“full-permutation”, computes the p-value by permuting all Y labels within W,,, independently,
for each m. This is equivalent to the procedure described in Algorithm 1. The second one, we
call “half-permutation”, only permutes the Y labels within Wxy,,, independently, for each m.
Both approaches have finite-sample validity but the power of the first approach is intrinsically
more difficult to analyze since each permutation destroys the independence structure among Wx ,,
Wy and Wxy . On the other hand, the half-permutation approach preserves the independence
between Wxy.,,, and {Wx ,,, Wy} even after permutations. Moreover, it has computational
advantage over the full-permutation test since we do not need to recompute weights 1 + azy, for
each permutation. A similar strategy has been used in Kim et al. (2020, 2021) to analyze two-sample
and (unconditional) independence tests.

We are now ready to state the main results of this subsection. As in Canonne et al. (2018),
suppose that we draw N 1.i.d. samples from Px y,z € Py where N ~ Pois(n). Given these samples,
let dperm,1 be the local permutation test based on the unweighted test statistic Ty (11) through the
full-permutation procedure described in Remark 6. Similarly, we let ¢perm,2 be the local permutation
test base on the weighted test statistic Tcrw (14) through the half-permutation procedure described
in Remark 6. For both tests, we set the significance level o = 0.01 for simplicity. These tests have
the following guarantee on the type II error rate.

Theorem 5 (Type II error for discrete X,Y, Z). Consider the local permutation tests ¢perm,1 and
Gperm,2, described above. In the setting of discrete (X,Y,Z), ¢pperm,1 and ¢perm,2 have the same type
II error guarantee as in (15) and (16), respectively.

The implications of Theorem 5 are as follows.

Remark 7.

e In Theorem 5, we set the type I error and the type II error by 1/100 for simplicity. In fact,
1/100 can be replaced with an arbitrarily small number by adjusting the constant factor in
the condition for e given in (52) of the Appendix.

e To make the given tests feasible for a fixed sample size, one can apply the truncation trick as
in (12) and consider <Z>;f)erm71 = ¢perm,1 X L(IN < n) and ¢Lerm72 = ¢Pperm,2 X 1(N < n) where
N ~ Pois(n/2). As discussed before, these modified tests have smaller type I errors than
Gperm,1 and ¢perm 2 based on N ~ Pois(n/2), respectively, and have the same power guarantee

up to e"/8 factor. See equation (26) in the Appendix for more details.
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e Canonne et al. (2018) further prove that the condition (52) in terms of n cannot be improved
in certain regimes (depending on /i, /¢y, M,e) by providing matching lower bounds. This
together with Theorem 5 implies that the corresponding permutation test shares the same
rate optimality as Canonne et al. (2018) whenever the tests of Canonne et al. (2018) are
rate optimal in terms of the sample complexity. Despite the same optimality property, the
permutation test may be more attractive than the corresponding test of Canonne et al. (2018)
as it does not depend on an unspecified constant and it tightly controls the type I error rate
in finite-sample settings.

e A major difficulty of proving Theorem 5 is in controlling randomness arising from the per-
mutation procedure. We tackle this difficulty by building on the recent work of Kim et al.
(2020). In particular, we derive an upper bound for the 1 — « quantile of the permutation
distribution of the test statistic, which holds with high probability. More details can be found
in Appendix A.6.

Next we switch gear to the continuous case of Z and develop similar results as in the discrete
case.

5.2 Continuous Z

In this subsection, we build on the recent work of Neykov et al. (2021) and investigate the power
of local permutation tests for continuous data. The idea of Neykov et al. (2021) is to carefully
discretize Z into several bins and apply the tests based on T¢r and Terw as if the original data
were discrete. Neykov et al. (2021) investigate the type I and II errors of these tests and prove
that they are minimax optimal under certain smoothness conditions. However, their tests depend
on unspecified constants and, in their simulations, the authors instead use the local permutation
procedure to determine critical values. Hence there is a gap between theory and practice. The goal
of this subsection is to close this gap by showing that the local permutation tests have the same
power property as the tests considered in Neykov et al. (2021).

Discrete X, Y and continuous Z. First recall the setting described in Section 4.3 where X and Y
are discrete random variables supported on [¢1]x [¢3] and Z is continuous and bounded between [0, 1].
Denote by Pjg 1) the collection of distributions Py y,z of such random variables. Let Py 9,17 C Pjo,1
where X L Y|Z and Py jo1] := Pjo,1) \ Po,j0,1]- Furthermore, let Py (g 1) 1v(L) C Py [o,1) be the subset
of alternative distributions that satisfies the TV smoothness:

DTV(PX,Y\Zzzva,Y|Z=z’) < L|Z — Z/‘ for all Z,Z/ S [0, 1] (17)

To describe the result of Neykov et al. (2021), draw N ~ Pois(n/2). If N < n, we take a random
subset of size N from {(X;,Y;, Z;)}_; and otherwise accept the null. Given that N < n, compute
the unweighted test statistic T¢y (11) using the binned data set W7i,..., Wy, where M = [n?/5]
and Zf\il o; = N. For a sufficiently large constant ¢ depending on L, the corresponding test of
Neykov et al. (2021) is defined as

onpw,1 = 1(Tcr > (n'/%) x L(N < n).
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In terms of the type II error, the authors show that there exists a sufficiently large constant ¢
depending on ((, L, ¢1,¢3), and for € > en~2/5,

1
N1 = onpwa] < — + e/ (18)

sup Epy < 100

PX,Y,ZEpl,[o,l],TV(L):ianG'POV[O,l] Drv(Px,v,z,Q)>€ Xz

The type I error of ¢npw 1 is also guaranteed over a class of null distributions determined by certain
smoothness conditions.

As mentioned before, a test based on the unweighted U-statistic may not perform well when
¢1 and {9 potentially increase with n. To avoid this issue, Neykov et al. (2021) follow the idea
of Canonne et al. (2018) and propose another test based on the weighted test statistic Tcrw (14)

where M = (%] More formally, for a sufficiently large ¢ depending on L, the second test is
defined as
¢NBW72 = ]I(TCI,W Z AV CM) X ]l(N S n) (19)
(8152)1/5

Again, let ¢ be a sufficiently large constant depending on ({, L) such that £ > ¢ e YEa Under this
condition for € and an extra condition that M{; < n for £1 > {5, Theorem 5.5 of Neykov et al.
(2021) guarantees that

1
NI —onBw2] < — + e /8, (20)

sup Epy =< 100

. XY, 2
Pxy,z€P1 0,11, 7v(L)infgepy 1 1) Prv(Px,y,2,Q)2e

Furthermore, the authors prove that no CI test can be uniformly powerful in the TV distance when
€ is much less than “fg); /5. That means, ¢npw,1 and ¢nBw 2 achieve minimax optimal rate, while
the optimality of ¢npw,1 is only guaranteed when ¢; and {3 are bounded. However the optimal
power of ¢pnBw 2 over a broader regime comes at the cost of decreasing the size of null distributions.
In fact, the type I error of ¢pnpw 2 is guaranteed over a x2-smooth class of null distributions, which
is smaller than the class of null distributions considered for ¢npw,1. See Neykov et al. (2021) for
more details.

Having described the results of Neykov et al. (2021), our aim is to reproduce the type II error
guarantees (18) and (20) based on the same test statistics but with (explicit) cutoff values determined
by the local permutation procedure. Given the data set of size N < n where N ~ Pois(n/2), let
us denote the local permutation tests based on Ty and Torw by @perm,1 and @perm,2, respectively.
As described in Remark 6, it greatly simplifies the power analysis for Tcr when we consider
the half-permutation method. Hence, unlike ¢perm,1 that builds on Algorithm 1, the p-value of
®perm,2 is determined by the half-permutation method. Now in order to take into account the

random sample size N, the final test functions are defined as ¢Lerm71 = ¢Pperm,1 X L(N < n) and

¢£erm,2 = Pperm,2 X L(IN < n). These tests have the following guarantee on the type II error rate.

Theorem 6 (Type II error for discrete X,Y and continuous Z). Consider the local permutation
.I.

perm,1

tests qb;erm’l and ¢I)erm727 described above. In the setting of discrete (X,Y ) and continuous Z, ¢
and ng have the same type II error guarantee as in (18) and (20), respectively.

perm,2

Several remarks are provided below.
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Remark 8.
e We highlight once again that the local permutation tests ¢T ; and qu 5 do not require

perm, perm,

the knowledge on unspecified constant ¢ in ¢npw,1 and ¢nBw,2, while achieving the same
power (in terms of rate) as stated in Theorem 6.

e However, such a nice property does not come for free. In general, the local permutation test
requires a stronger condition on the class of null distributions than the corresponding theoret-
ical test for type I error control. For instance, under the class of null distributions P p,,5(L)
in Definition 3, we require that n'/2hY — 0 for v € [1,2] and n'/2h? — 0 for 4 > 2 for the
local permutation test to be valid (Theorem 2). With the choice of M = [n?/®] (recall that
M = h~1), for instance, we have only shown that ¢>T ; is valid when v > 5/4. On the other

perm,
hand, ¢npw,1 can control the type I error even when v = 1 (see Theorem 5.2 of Neykov et al.,

2021). Similarly, in order for ¢;r)erm,2 to be valid under the same x2-smoothness condition in

/
Theorem 5.5 of Neykov et al. (2021), we require that n'/2h? = % — 0, which was not
needed for ¢npw 2. In Section 6, we attempt to partly address this drawback by introducing a

novel double-binning strategy, which requires less stringent conditions for type I error control.

e The proof of Theorem 6 is similar to that of Theorem 5, that is, we show that the 1—a quantile
of the permutation distribution of T¢y is upper bounded by ¢n!/5 with high probability under
the alternative. This result yields that the type II error of ¢;:r>erm,1 is upper bounded by that of
®NBW,1, up to a small error term. From here, we can directly benefit the previous bounds (18)

and (20) and show that the type II error of Al | is small. The proof for Al

perm, perm,2

similarly. The details can be found in Appendix A.7.

follows

Continuous X,Y,Z. Next we develop a similar result for the case where (X,Y, Z) is supported
on [0,1]® with a joint distribution absolutely continuous with respect to the Lebesgue measure.
Let Pjg 1y be the set of distributions of such random variables and Py g 13 C P 1y3 for which
X L Y|Z Let P12, v be the subset of Py g3 := Pjojs \7707[071]3, which satisfies the TV
smoothness condition in (17). In addition, we assume that, for any Pxyz € Py o131V, the
corresponding conditional density function py y|z given any z € [0, 1] belongs to H>*(L), where
H%5(L) is the class of Holder smooth functions [0, 1] — R with parameter s defined in Definition 5
of the Appendix.

In order to apply Tcrw to continuous data, we need to further discretize X,Y into several bins.
For this purpose, for a given M > 0 (specified in the sequel), consider a partition of [0, 1] into
M’ = [M'/*] bins of equal size denoted by {B.,}M" . We then transform X (and similarly V)
through the map ¢ : [0,1] — {1,..., M’} by defining g(z) = m if and only if x € B,,. On the
other hand, we partition the conditional variable Z into M bins of equal size. Given this binned
data set, we implement ¢npw 2 in (19), but with a different choice of M = [n2s/(5s+2)] . According
to Theorem 5.6 of Neykov et al. (2021), the resulting test achieves minimax optimal power. In
particular, they show that there exists a sufficiently large constant ¢ depending on (, L, and if
e > en~28/(5s%2) then

1
N[l — ¢NBW,2] < — + e_”/g. (21)

sup Epy < 100

Px,y,z€Py 19133 pv(L)infoep, 0,13 Drv(Pxy,z.@Q)> 07
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T

We now show that the corresponding local permutation test ¢qy, o

has the same power property.

.I.
perm,2

applied to the discretized data set described above. In the setting of continuous (X,Y,Z), gblermg

has the same type II error guarantee as in (21) and thereby shares the same optimal power as
ONBW 2-

Theorem 7 (Type II error for continuous X,Y, 7). Consider the local permutation test ¢

The same points in Remark 8 apply to Theorem 7. While ¢£erm,2 has the same optimality as
¢NBW 2 in terms of power, we need to restrict the class of null distributions further to rigorously
control the type I error. In particular, under y-Hellinger Lipschitzness with v > 2, the underlying
conditional density function should be smooth enough to ensure that n'/2h2 = n=4/(Gs+2)+1/2 _,
equivalently s > 2/3, for type I error control. As we discussed in more detail in the introduction,
the tension in CI testing between tightly controlling the type I error (requiring narrow bins) and
ensuring high power (requiring, in some cases, wider bins) is a unique feature of CI testing. In the
next section, we introduce a novel double-binning permutation test that allows us to consider less
smooth null distributions, while maintaining the power (up to a constant factor).

6 Double-binning strategy

As we discussed above, the type I error of the local permutation test is guaranteed to be small over
a smaller set of null distributions than the conservatively calibrated U-statistic test used by Neykov
et al. (2021). The reason for this gap is that the permutation approach relies on an additional

condition for its validity. In particular, it requires that the binned distribution Q’;{ v and its CI

projection Q“?(Y~ be close in the TV distance. The goal of this section is to mitigate this issue
via double—binhfng. The idea is to consider bins of two distinct resolutions where a test statistic
is computed over coarser bins, whereas the permutation procedure is implemented over finer bins.
This double-binning strategy allows us to keep the TV distance smaller than the single-binning
approach, while maintaining similar power under certain conditions.

To elaborate on the idea, recall that {By,..., By} is a partition of Z. For m = 1,..., M, let
us further partition By, into b bins, which results in smaller bins {By, 1,...,Bnp}. For (m,k) €
[M] x [b], let o, 1, be the sample size within By, i, and W, ;, denote the set of the pairs of (X;,Y;)
that belong to By, ;. More formally, by letting (X; m k, Yimx) be the ith pair in B, 5, we write
Wik = {(Xtmk Yimk), -+ (Xop pmks Yo, emk)} When o, > 1 and otherwise Wi, = 0.
Under this setting, we compute the test statistic T¢r as in (1) based on the larger bins {B1, ..., Bas}.
The permuted test statistic T{%; is computed similarly as before except now that Y values are
permuted within the smaller bins. We then compute the permutation p-value as in (3) by counting
how many permuted statistics are larger than or equal to T¢g.

Here, to simplify our theoretical analysis, we focus our attention on a subset of all possible local
permutations. In particular, within each small bin B, for (m,k) € [M] x [b], we only consider
a set of cyclic permutations of {1,...,0,,%}. As an illustration, when o, = 4, we have four
distinct cyclic permutations of {1,2,3,4} as {1,2,3,4},{2,3,4,1},{3,4,1,2},{4,1,2,3}. A formal
definition of a cyclic permutation can be found in Definition 6. This cyclic restriction results in K, :=
H(mk)e[M]X[b} max{o, , 1} number of local permutations, and the set of all possible such cyclic
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local permutations is denoted by Ilycic. Given this notation, we describe the local permutation
procedure via double-binning in Algorithm 2. We also refer to Figure 2 for an illustration of the
procedure.

Algorithm 2 Local permutation procedure via double-binning

Input: data {(X;,Y;, Z;)},, a super-partition of Z: {Bl, . BM}, sub-partitions of each B, :

=1
{Bm,...,Bmp} form=1,..., M, a test statistic Ty, a nominal level o

1. For each w € Ilgyic, compute 7% as in (2) and denote the resulting statistics by
T ToE
crr--tcr -

2. By comparing the statistic T¢r in (1) with the permuted ones, calculate the p-value as
1 .
Pperm = K. Z ]I{Tgf > TCI}-
*

7"'iel_[cyclic

3. Given the nominal level o € (0,1), define the test function ¢permn = 1(Pperm < ) and
reject the null when ¢permn = 1.

Next, we discuss the type I and type II errors of the local permutation test via double-binning.
The analysis of the type I error is relatively straightforward. Indeed, all of the results in Section 4.2
continue to hold for this new approach but now the maximum diameter (7) becomes smaller as it
is defined over the finer bins. Therefore, in view of Theorem 2 and Theorem 3, an upper bound
for the type I error can be much tighter than the single-binning approach based on {Bi,..., By }.
The only caveat, here, is that we consider the set of cyclic local permutations Il.yclic, rather than
all possible local permutations. However, this change does not affect the validity.

Proposition 1 (Type I error of the double-binning test). Let ¢perm,n be the local permutation test
via double-binning in Algorithm 2. Then the same bounds (8) and (9) hold for ¢permn with the
mazimum diameter h defined as

h=  max sup  4(z, 7).
(m,k)EIMIX[Y] 2,2/ € B, ( )

We note that the above result holds under Poissonization in a similar fashion to Proposition 2
in the Appendix. Indeed, once the bounds (8) and (9) are given, the validity of the double-binning
test under Poissonization can be proved along the same lines of the proof of Proposition 2. Given
the above proposition, our main concern is the type II error. Here, to illustrate ideas, we only
focus on the case where (X,Y,Z) € [¢1] x [l2] x [0,1] and £y, s are fixed. In addition, we recall
the definition of P o 1) rv(L) from Section 5.2 and consider a subset of P 1) 7v(L), denoted by

1,[0,1],TV(L)’ such that the marginal density of Z is bounded below by some fixed constant cjoy > 0,
ie. pz(z) > cow for all z € [0,1]. Furthermore, we assume that any distribution in P{,[O,l},TV(L)
satisfies

Drv(Px|z=2 Px|z=») < LIz = 2| and  Drv(Py|z—., Py|z=») < L|z = 2'],
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for all 2,2’ € [0, 1].

To describe type II error results, we consider the test statistic Tcy used in ¢npw,1. Moreover,
assume that each of the coarser bins and the finer bins has the same length of an interval 1/M
and 1/(Mb), respectively. Now, given a sample {(X;,Y;, Z;)}| where N ~ Pois(n/2), we compute
¢perm,N based on Ty using Algorithm 2 at significance level o = 0.01 (for simplicity) and define
qb;r)erm,n = ¢perm,N X L{N < n} asin (12). Under this setting, the resulting test has the following
type II error guarantee.

Theorem 8 (Type II error of the double-binning test). Consider the test gbgerm,n defined above
with the number of larger bins M = [n*/®]. Suppose that we choose b such that n/(Mb)? > 40001:)vlv

and Mb — 0o as n — co. Suppose further that € > en=2/ for a sufficiently large ¢ depending on
(L,ﬁl,gg). Then

1 _
N[l - d);r)erm,n] < - Tfe n/8 + Pn,

sup Epy < 100

. XY, 2
PX,Y,ZEPL[OY1],TV(L):1an€PO7[O,1] Drv(Px,y,z,Q)>¢

where p, s a positive sequence converging to zero as n — 0o.

We first note that an explicit form of p, in the above result can be found in (70) given in the
Appendix. Next, observe that the above double-binning test achieves the same minimax separation
rate as ynpw,1 without being dependent on an unspecified constant in its critical value. Its guarantee
holds over a smaller set of alternative distributions, namely ,Pi,[O,I},TV(L) (in contrast, the result of
Neykov et al. (2021) does not require any lower bound on the density of 7).

On the other hand, compared to the corresponding permutation test via single-binning, the
double-binning method controls the type I error rate over a larger class of null distributions without
sacrificing power up to a constant factor. In particular, with an optimal choice of M = [nQ/ %7, the
single-binning test requires v > 5/4 in order to control the type I error under y-Hellinger smoothness.
In contrast, the double-binning test is valid for v > 1 as long as b is chosen appropriately such that
n/(Mb)?" — 0 but n/(Mb)? is bounded below by a large constant.

Remark 9 (Extension to other settings). It is worth highlighting that the validity result of the
double-binning test in Proposition 1 holds universally for any binning-based test statistic. Theorem 8
regarding the power, on the other hand, is based specifically on the test statistic Tcr used in gnpw ;1.
While we believe that a similar power result can be developed based on other test statistics including
Ter,w used in ¢gnBw 2, a detailed treatment of this direction is beyond the scope of this paper.
Another important direction one can pursue is to see whether the lower bound restriction on the
density of Z can be removed in Theorem 8. We leave these topics to future work.

7 Simulations

In this section, we illustrate the numerical performance of the local permutation test through Monte
Carlo simulations. Throughout our experiments, we use Monte Carlo simulations to compute the
permutation p-value, defined as pperm in (3). In particular, we draw B permutations, denoted by
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Figure 2: Illustration of the double-binning strategy where we consider bins of two distinct resolutions.
The purpose of coarser bins {Bi,..., By} is to compute a test statistic, whereas the purpose of finer bins
{B11,...,Bpma} is to perform the permutation procedure. In particular, we only permute the observations
within the finer bins. This strategy allows us to keep the type I error under control over a larger class of
null distributions, while maintaining the competitive power under certain conditions.

..., g, from IT with replacement. Then the permutation p-value using the test statistic Tcy is
defined as
1 [< /
Dperm = —5—— T > T 1]. 22
Pperm = p ; {Tef = Terd + (22)
It is well-known that 1 (Pperm < ) is a valid test in finite-sample scenarios, whenever Tcr, T3, - .., TGf

are exchangeable under the null. Furthermore, pperm can be arbitrarily close to pperm for a suffi-
ciently large B, and we take B = 100 in our simulations. We also note that the type I error and the
power presented in this section are approximated by repeating simulations 1000 times at significance
level o = 0.05.

7.1 Experiment 1

In our first experiment, we demonstrate Theorem 1 in a discrete setting of (X, Y, Z) where (X,Y, Z)
is distributed over [¢1] x [¢2] x [M] and ¢; = 2 = 2 and M € {10,20,...,110,120}. In particular,
we let Z have a multinomial distribution with equal probabilities over the bins. Similarly, we let X
have a multinomial distribution with equal probabilities, and set X =Y and (X,Y) 1L Z. We are
under the alternative hypothesis where X and Y are perfectly correlated conditional on Z. In this
setting, we compute the empirical power of the local permutation test based on the test statistic T
considered in Theorem 5 by varying (M, n). The result can be found in the left panel of Figure 3.
As predicted by Theorem 1, we see that the power of the test degrades quickly as M increases for
any given n. This in turn illustrates that CI testing is impossible unless the probability observing
the same value of Z is properly controlled.
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7.2 Experiment 2

In our second experiment, we demonstrate the validity result of the local permutation test in Sec-
tion 4. To generate the data, we consider a distributional setup used in construction of our lower
bound result (Theorem 4). In particular, we consider the marginal density of Z in (25) with
e = n~ !, and the conditional density of X|Z = z in (33). We further let Y|Z = 2 have the
same conditional density as X|Z = z for all z € [0, 1], while satisfying X L Y|Z. As proved in
Appendix A.5.1 and Appendix A.5.3, the considered distribution satisfies y-Hellinger Lipschitzness
with any fixed v > 1 as well as v-Rényi Lipschitzness with any fixed v > 0. Therefore, by Theo-
rem 2 and Theorem 3, the type I error of the local permutation test based on any test statistic is
approximately « as long as nM ~* — 0. We also note from Theorem 4 that there exists a test statis-
tic such that the corresponding local permutation test fails to control the type I error rate when
nM~* — co. To demonstrate both results, we use the test statistic in (11) by varying the number
of bins M € {n, [n'/?], [n'/*], [n'/1]}. The result is given in the right panel of Figure 3. As we
can see from the result, the type I error is well controlled when M is chosen such that nM % — 0.
On the other hand, the error tends to increase when nM ~* — oo, which coincides with our theory.

7.3 Experiment 3

In our third experiment, we illustrate type I and II error control of the double-binning test in
Theorem 8 by setting M = b = (nz/ %]. The permutation p-value of the double-binning procedure is
approximated similarly as Pperm in (22) but by drawing B cyclic permutations from Il without
replacement. As before, we choose B = 100 for our third simulation as well. To demonstrate the
performance, we let Z have a uniform distribution over the interval [0,1] and X,Y be Bernoulli
random variables with the following conditional probability mass functions:

px|z(X = 1]2) = pyz(Y = 1|z) = 02 /4, (23)

The considered distribution depends on the parameter 6, which controls the smoothness of the
conditional probability mass function. In particular, the conditional marginals (23) become more
wiggly as 6 increases, which makes it more difficult to control the type I error under the null.

(a). Type I error. To illustrate type I error control, we consider the null distribution with the
conditional marginals (23). We then draw n = 100 samples from the null distribution, and
compute the test statistic Ty as well as the p-value. The finite-sample type I error is approxi-
mated by Monte Carlo simulations and the result is provided in the left panel of Figure 4. As
a reference point, we also consider the single-binning test based on the same test statistic with
M = [n?/°] and its type I error rate is also provided in the left panel of Figure 4. From the
result, we see that the type I error of the single-binning test increases with # much faster than
that of the double-binning test. This empirical result supports Proposition 1 that claims that
the double-binning test is valid over a larger class of null distributions than the corresponding
single-binning test.

(b). Power. To illustrate the power performance, we consider an alternative distribution with the
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same marginals (23) with 6 = 1. In particular, by writing f(z) = (%) /4, we set
pxyiz(X =1Y =1]2) = f(2)* + f(2)/5,
Pxyiz(X =0,Y =0J2) = {1 - f(2)}* + f(2)/5 and
pxy|z(X =1Y =0]2) = pxyz(X =0,Y = 1]2) = 4f(2)/5 — f(2)*.

One can check that the above joint distribution is a valid alternative distribution where the
conditional joint distribution differs from the product of the conditional marginal distributions.
With n draws from the above distribution, we compute the same test statistic and p-value as
before and approximate the power of the test by changing n € {30, 50,100, 150, ..., 350,400}.
The right-panel of Figure 4 collects the power approximates for both single-binning and double-
binning tests. Overall, the power of the single-binning test is higher than that of the double-
binning test, but the difference seems marginal, especially when the power is close to one. This
may be viewed as empirical evidence of Theorem 8, which shows that both tests have the same
power up to a constant factor in certain regimes.

In both the panels of Figure 4, we also present the type I error and power of the corresponding tests
under Poisson sampling. Specifically, for N ~ Poisson(n), we draw i.i.d. samples (XV, YN, ZN)
from the joint distribution of (X,Y, Z) and compute each permutation test using (X, YV, ZV).
As we can see, the results under Poisson sampling are not significantly different from the previous
results with the fixed sample size n, and we anticipate that our theoretical results will continue to
hold with a fixed sample-size.

8 Discussion

In this paper, we investigated several statistical properties of the local permutation method for CI
testing. We started by presenting a new hardness result of CI testing, which, along with the recent
work of Shah and Peters (2020), motivates us to consider reasonable assumptions under which CI
testing becomes possible. Under certain smoothness assumptions, we provided upper bounds for the
type I error of the local permutation test and further showed that these bounds are tight in some
cases. Turning to the power, we demonstrated that the local permutation test can retain minimax
power, while rigorously controlling the type I error, under certain circumstances. In particular, we
showed that the local permutation tests using the same test statistics in Canonne et al. (2018);
Neykov et al. (2021) have the same power guarantee. However, compared to the previous tests, the
type I error of the local permutation test is guaranteed over a smaller set of null distributions in the
continuous case of Z. To this end, we introduced and analyzed a double-binning strategy, which
mitigates this drawback.

Future directions. We close by discussing several interesting directions for future work.
¢ Adaptive binning strategy. Throughout this paper, we have been mainly concerned with
equal-sized bins. This strategy, as we saw earlier, can lead to optimal CI tests from a minimax

perspective. However, when there exists a local structure on the distribution of Z, many of
bins would be empty. In this case, it would be more desirable to consider an adaptive binning
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Figure 3: Illustration of the power and type I error of the local permutation test using Tcy. The left panel
demonstrates that the power of the permutation test keeps decreasing as M increases even though X and Y
are perfectly correlated conditional on Z; thereby, confirming Theorem 1. The right panel demonstrates that
the type I error of the local permutation test is well-controlled under the smoothness condition, described in
Section 7.2, unless M is chosen such that nM ~* — oco.

scheme that uses different sizes of bins over different regions of Z. This strategy, potentially
data-dependent, requires a more delicate analysis for both type I and type II error control,
which we leave to future work. As mentioned before, it would also be interesting to see
whether it is possible to develop an adaptive test to the unknown smoothness parameters
without sacrificing power much.

e Different metrics. In this work, we have focused on the smoothness conditions based on the
generalized Hellinger distance and Rényi divergence. It may be possible to obtain different
and potentially sharper validity conditions by considering other metrics. In addition, one can
impose a smoothness assumption on higher order derivatives of a conditional distribution and
see whether its improves the validity result. It is also worth investigating the minimax power
of the local permutation test in different metrics other than the TV distance.

e Other test statistics. While our validity result can be applied to any binning-based statistic,
the power analysis was specifically based on U-statistics with discrete-type kernels. We believe
that it is also possible to obtain similar minimax power results using other test statistics. In
particular, exploring the power of RKHS-based test statistics (e.g. Fukumizu et al., 2008) is
a promising direction for future work. This can be potentially explored by building on the
recent work of Kim et al. (2020); Meynaoui et al. (2019) that investigate the minimax power
of unconditional independence tests based on Gaussian kernels.

e Depoissonization. As in the previous work (Balakrishnan and Wasserman, 2019; Canonne
et al., 2018; Neykov et al., 2021), it was crucial to use Poissonization technique for our power
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Figure 4: Illustration of the type I error and power of the single- and double-binning tests using 7¢j.
The left-panel considers the null distribution with conditional marginals (23) and shows that the double-
binning test has better type I error control than the single-binning test over different values of smoothness
parameter 6. The right-panel is concerned with the power as n varies, demonstrating that the single-binning
performs better than the double-binning test in terms of power. We also include simulation results under
Poissonization, which illustrates that the Possionization version performs similarly as the fixed-n counterpart.
A more detailed explanation can be found in Section 7.3.

analysis. Since a Poisson random variable is tightly concentrated around its mean, it sounds
plausible that the same power guarantee can be achieved by the local permutation test without
Poissonization as empirically demonstrated in Section 7.3. However, a formal proof is not
available at the current stage, which we leave as future work.

e Multivariate Z. Our results on type I error control show that the validity of a local per-
mutation test crucially relies on the maximum diameter of bins, which is well-defined even
when Z is a multivariate random vector. Our results on minimax power, on the other hand,
only deal with the univariate case of Z. Indeed, tight minimax separation rates for CI testing
are only known for the case when the dimension of Z is either one or two (Neykov et al.,
2021). As the purpose of our work is to demonstrate that local permutation tests can achieve
the same optimal power as their theoretical counterparts, we focus only on the univariate Z
case. It therefore remains for future work to establish minimax separation rates for a general
multivariate case and see whether local permutation tests can achieve these rates.

e Theoretical vs. practical calibration. While the double-binning strategy allows us to
consider less smooth null distributions than the corresponding single-binning test, there still
remain settings where minimax-optimal tests are available (Neykov et al., 2021) but where we
do not have practical methods to calibrate these optimal tests. Understanding these gaps and
more clearly establishing the fundamental limits for practical conditional independence tests
are an important direction for future work.
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A Proofs of the results in the main text

In this section, we collect the proofs of the results in the main text. Some auxiliary lemmas
required for the proofs can be found in Appendix B. We start by introducing additional notation
that simplifies our presentation.

Additional notation. For sequences a, and b,, we write a, < b, or b, = a, if there exists
an absolute constant C' > 0 such that a, < Cb, for all n. In addition, a, = o(b,) means that
an/b, — 0 as n — oo. As convention, || - ||, represents the L, norm. C,Cp,Cs,... denote some
constants whose value may differ in different places.

A.1 Proof of Theorem 1

As mentioned in the main text, the proof of this result is highly motivated by the impossibility
result of distribution-free conditional predictive inference (see e.g., Lemma A.1 of Barber et al. 2019
and Lemma 1 of Barber 2020). We also mention again that negative results for testing argued via
sampling with replacement can be traced back to Example 1 of Gretton et al. (2012). Following the
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construction of Lemma 1 in Barber (2020), let £ = {(X1,Y1,21),...,(Xs, Y, Z))} Lig Pxyz € Py
be ghost samples for some J > n(n — 1). Given £, draw {(X{,Y{,Z]),...,(X],Y,), Z)} from

L without replacement. We denote this conditional sampling distribution by Pyithout- Then by
marginalizing over £, we simply have the identity

EP)’;,Y,Z [¢] = EL []E’Pwithout [¢|£H (24)
Next consider drawing {(X1,Y{,Z1),..., (X}, Y., Z)} from L with replacement and denote this

conditional sampling distribution by Pyin. By Stam (1978), the total variation distance between
Pyith and Pyithous can be bounded by n(n — 1)/J. Therefore, using the identity (24), we have

Epn

XY, Z

6] < el lolc]) + "

Let A be the event that Zi,...,Z; are distinct. Under the event A, we have X 1L Y|Z for
(X,Y, Z) ~ Pyitn since the conditional distribution of X, Y given any Z takes a single value (i.e. con-
ditionally degenerate). Therefore we should have

Epu (9L, Al <o and  Ep,,[¢|£, A7 <1

ith

as SUPpep, 4. Ep[¢] < a from our condition and ¢ < 1. Combining the results together with the
law of total expectation, we have for any Pxy,z € P1

Erg, ,[6] < EclEr (6164 x BAIL)] + EcEr,,, 61, A x BA% L) + 201

n(n—l).

< ax B(A) + P(AY) + =

Therefore the desired result follows.

Remark 10.

e From Equation (2.1) of Stam (1978), the result still holds if we replace n(nJ_l) in the bound (4)

with 2 — QW where one can prove that 2 — 2(J—i£)!Jﬂ < n(nJ_l) by induction.

e Suppose that Z has a uniform distribution supported on a set of size M,, :== M > J, = J.
Then pjp = P(A) is the probability that there is no collision, which can be computed as
_MXM—l>< ><M—(J—l)_ M!
PIE =1 "M M MI(M -

This probability is lower and upper bounded by
J(J—1) J(J-1)
_ I < _— 7.
L= spes eXp( o0

See Equation (2.4) of Stam (1978) for details. Therefore, in this case, the test ¢ has asymp-
totically no power when

2 2
]\JJT;%O and TJL—”—>0.
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Now let a, be a positive sequence that goes to zero arbitrarily slowly as n — oco. Then by
taking J2 = M, X a,, the above conditions become equivalent to

n4

— = 0.
M, X ap

This essentially means that any valid test has asymptotically no power in this setup if M,

increases much faster than n?.

e We also note that the same proof carries over even if we assume that (X,Y,Z) is supported
on a compact set.

A.2 Proof of Lemma 2

Continuing from Lemma 1, we have the list of inequalities:

Epn

XY, Z

- 1) ~
[¢perm,n] < a+ DTV (Q}A/’Zv Q},Y,Z) < a+ \/§DH (Q}7Y727 QT)LQY,Z)
(i) -
< a+v2nDy (QX,Y,Z’ QX,Y,Z)

y 1/2
(iii) 9
= a+ {271 Z qz(m) x Dy, (QX,Y|Z:m’ QX,YZW)} ’

m=1

where step (i) uses the well-known inequality Drv (P, Q) < v2Du(P, Q) and step (ii) use subaddi-
tivity of the squared Hellinger distance for product measures and step (iii) can be verified by the
definition of the Hellinger distance. This completes the proof of Lemma 2.

A.3 Proof of Theorem 2
We start with the case of v € [1,2]. In this case, the first inequality (71) of Lemma 4 shows that

Dj (PX|2=20n: PX|Z:ZLH) < Dz,H (PX|2=Z0n: PX|Z:Z;,L) and

2

Dy (PYIZ:va PY|Z=Z;;) < D;Y,H (PY\Z:vaPY|Z=Z§;)'
Therefore, from Lemma 3, it holds that

) -

Dy (QX,Y|Z:m’ QX,Y|Z:m)

6Ezm,z,’n,z,’{1 [DIQ{ (PXIZ:va PX\Z:Z,’n) X DIZJ (PY\Z:Zm’ PY|Z:Z§,§)]

IN

IN

6Ezm,zﬁn,z,'q’1 [D;YH (PX\Z=Zm7 PX\Z:Z;,L) X D;Y,H (PY\Z=Zm’ PY|Z:Z§’H)}

—~
=

2 2 no W g
6L“7 sup 677(z,72") < 6L“7h*7 for any m € [M],
2,2/ €Bm,

IN
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where step (i) uses 7-Hellinger Lipschitzness and step (ii) follows by the definition of A in (7).
Applying this result to the type I error bound in terms of the Hellinger distance in Lemma 2 yields
the result.

Next we turn to the case of v > 2. In this case, Corollary 1 proves

DI2{ (PX|Z=va PX\Z:Z;I) < Cvpi,H (PX|Z=Zm7 PX\Z:Z;,L) and
D (Pyiz=z2, Priz=z1) < O u(Priz=2,0 Py z=z21),

where C, and C’% are constants that only depend on «. Then following the same steps as before, it
holds that

Dii (QX,Y\Z:m’QX,Y|Z:m) < CWL%Q for any m € [M],

where C',ly/ is another constant that only depends on ~. Combining this inequality with Lemma 2
yields the result. This completes the proof of Theorem 2.

A.4 Proof of Theorem 3

The proof of Theorem 3 follows exactly the same lines of the proof of Theorem 2 by replacing
Corollary 1 with Lemma 5. For this reason, we omit the details.

A.5 Proof of Theorem 4

We proceed by considering the case of y-Hellinger Lipschitzness (Appendix A.5.1 for 2 < ~ and
Appendix A.5.2 for 1 < < 2) and 7-Rényi Lipschitzness (Appendix A.5.3) in order. We start with
a high-level sketch of the proof.

e As discussed in Remark 5, we would like to show that the permutation test <Z5I)erm,n has power
greater than 1 — (3 for the hypothesis (13). This in turn implies our desired claim that ¢1T)erm,n
has the type I error rate greater than 1 — § for Hp : X L Y|Z. In this regard, we need to
consider a powerful test that can reliably distinguish between XY.Z and @ x.y.z to prove the
result. To this end, we analyze the test statistic (11):

Tor= Y, Wom > 4)omU(Wy).
me[M]

e However, it is quite complicated to study Ty directly as it is a sum of dependent variables.
Our strategy to overcome this complication is to construct a distributional setting where
Tcr =~ 01U (W7) with high probability. More formally, we let the marginal density of Z be

M —e, ifzel0,M™],
pZ(z) = Mil’ if z € (M_1¢ 1]7 (25)
0,

otherwise,
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for some € := ¢, > 0, which may vary depending on n. Intuitively, when e is sufficiently small
(this will become precise in the proof), we only observe samples from the first bin with high
probability and thus our test statistic will be dominated by the first term of the test statistic,
ie.

> Uom = DomU (W) = o1U(Wh).
me[M]

If this is the case, then we are essentially testing for unconditional independence between X
and Y within the first bin, and we can leverage the results of Kim et al. (2020) to investigate
the power of the permutation test based on o1U(Wh).

e In particular, Kim et al. (2020) present sufficient conditions using the first two moments of
a test statistic under which the permutation test based on U(W}) has significant power. At
a high-level, these sufficient conditions guarantee that the test statistic is greater than the
critical value of the permutation test with high probability, which yields high power.

e Throughout this proof, we only deal with the type II error (or 1—power) of ¢perm v under
Poissonization since that of qﬁ}r)erm,n is upper bounded by

E[l - (bir)erm,n] < E[l - prerm,N] + P<N > n) (26)
< E[l - ¢perm,N] + e—n/S’

where the second inequality uses an exponential Poisson tail bound (e.g. Canonne, 2017).
Therefore, once we establish that the type II error of ¢perm, v is small, it follows that the type

IT error of gb;r,ermm is also small by taking n large enough.

The next section formalizes it under «-Hellinger Lipschitzness for 2 < ~.

A.5.1 ~-Hellinger Lipschitzness for 2 <~

Due to the inequality (26), it suffices to show that the type II error of ¢perm, v for the hypothesis (13)
is sufficiently small under the given conditions. To proceed, let us denote the entire sample by
Wn ={(X:,Y:, Z;) i]\;l and denote the expectation and the variance operator under the permutation
law by Ex[-|o, W] and Varg[-|o, Wn] where we recall o = {01, ...,0p}. First of all, we make an
observation that

Er (T30, Wl = Y L(om = 4)omB[U(Wm)|o, Wn] = 0, (27)
me[M]

where we use the fact that E[U(W,™)|o, Wxn] = 0 when o, > 4 (see Appendix I of Kim et al.,
2020). Thus a modification of Lemma 3.1 of Kim et al. (2020) shows that if

Tl > 2V&rp§§, v, Z,N[TCI] 2EP)1}” Y,Z,N{Var‘ﬂ' [T& o, Wi}
N[ CI] = 6 + 066

Epy (28)

X,Y,z»
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holds then the power of ¢perm,n is lower bounded by 1 — 3. Therefore our goal is to prove the
inequality (28) under the given conditions.

In what follows, we suppress the dependence on P)](V y z+ N in the expectation and the variance for
notational convenience, and often write U(W,,) as U, if there is no confusion. The inequality (28)
is verified by showing that there exists Pxy,z € Pou,,5(L) such that

ETci] 2 nhy, (29a)
Var[Tcy] < E[Tcr] + 1, (29Db)
E{Vars [T o, Wal} < 1. (29¢)

When these inequalities are fulfilled for large n, the condition (28) is automatically satisfied since
it is assumed that nhj — co. Therefore our task boils down to confirming (29a), (29b) and (29¢c).

Proof of the inequality (29a). Let us define p, = P(Z € B;) for i = 1,..., M. Since the
expectation of Uy, is non-negative, the expected value of Ty can be lower bounded by

E[TCI] 2 E[]l(01 Z 4)0‘1U1] (30)

i

> (1- 56_1/2) min{npi, (np1)4}||Qxy|Z:1 - QX.|Z:1QAy|Z:1 H%a

—
=

where (i) makes use of Lemma 3.1 of Canonne et al. (2018) and the fact that o1 ~ Pois(np;). We
also use the observation that E[U;|o1]1(0qp > 4) = HQXY‘Z:1 - QX-|Z:1Q-Y|Z:1H%H(01 > 4). By

our choice of the density of Z in (25), we have p; = 1 — M, e, and we set €, < 1/2. In this case,
np1 > n/2 and thus

E[TCI] Z n”Qxy‘z:l - QX~\Z:1Q~Y|221H§' (31)

Therefore it is sufficient to construct Px|z and Py, that satisfy (i) Px|zPy|zPz € Pon,y,s(L) for
~v > 2 and (ii) the squared Lo distance between the corresponding QXY|Z:1 and QX-|Z=1Q-Y|Z:1 is
lower bounded by

2 4
HQXy|Z:1 - Qx.|Z:1Q.Y‘§:1H2 Z hn' (32)

We construct such example below. For notational convenience, we often suppress the dependence
of n in h,, and M, and also write h = M~! as we work on the equi-partition.

Example of the conditional distribution in Py . s(L). Suppose X and Y are Bernoulli
random variables. Then the Lipschitz condition in Definition 3 can be equivalently written as

1 1 1 1
|pX/‘WZ(:L‘ = 1|z) —px/lvz(:p = 1|z/)"¥ 4 ‘pX/I’YZ(x — 0|Z) _pX/"YZ(l, — O|z,)‘7

< 2L7z - 2.
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px|z(z =1|2)

1

1

05—M' 05+M!

px|z(z = 0|2)

0
L

[ T 1

0 M1 1
z

Figure 5: Illustration of px|z(z = 1|2) and px|z(z = 0|z) described in (33) as a function of z.

For any M > 1, the following probability mass functions are well-defined:

%_ﬁ_Fz, for z € [0,1/M],
pxiz(z =1]2) = { 5 + 751> for z € (1/M,1],
0, otherwise,
\
' (33)
%-Fﬁ—za for z € [0,1/M],
pxiz(x =0[2) = { 5 — 551> for 2. € (1/M,1],
0, otherwise.

See Figure 5 for an illustration. In addition, by taking M large enough, we see that both px|,(z =
1|z) and px|z(z = 0]|z) are bounded below and also above by, let’s say, [1/4,3/4] for z € [0,1].
Thus, using Taylor’s theorem, one can verify that

1 1 1 1
S O’Y|Z_z/|7¢

for some constant C'y > 0. Thus it is seen that the distribution with the probability mass func-
tion (33) satisfies Definition 3 with LY = C, /2. Similarly we let pyz(y = 1|2) = px|z(x = 1|2) and
thus py|z(y|z) is also Lipschitz in 7-Hellinger distance.

Next we calculate quZ(:):,y\m = 1) and qX_|2(x|m = 1)q'Y‘2(ylm = 1). To start with
qu|-Zv(a:, ylm = 1), recall that

dPz(z)

dﬁZ‘ZEBl(Z) - P(Z € [0,h])

42



and also recall that Z has the density in (25). Then since h = M !
h ~
Gxy@ =1 =1m=1) = [ pxizle = 190pvizls = 10Ps 76, (2

h
= h1/0 px|z(x = 1]2)py|z(y = 1]2)dz

h/q 2
= h_l/ (2—;+z> dz
0

e
12 4
Similarly,
h ~ 1
QX,@(?C =1m=1)= Q.y|2(y =1lm=1)= /o px|z(® = 1|2)dPy zep, (2) = 3

For the binary case, the squared Lo distance simply becomes

2
”QXY\Zzl - QX-\E:lQ-Y|Z=1”2
= 4|Qxy‘2(m =ly= 1‘m = 1) qx. |Z(JZ = 1‘771 = 1)Qy|§(y = 1‘77’1 = 1)|2
h4
144°
Therefore the condition (32) is fulfilled and the inequality (29a) follows.

Proof of the inequality (29b). By modifying the proof of Theorem 5.2 in Neykov et al. (2021),
the variance of T¢y is upper bounded by

Var[Tcy] < E[Tcr] +E Z (om >4)
me[M]

S ElTal+ Y Plom >1)
mée[M]

M
S E[Tc]+1—e ™ + ) (1—emm), (34)

m=2

where we use the fact that o, ~ Pois(np,,), and C is some positive constant. Now by choosing
€n > 0 in the density function (25) such that

<M(M_1)10 M—-1
€n > n g M_2)°

(35)
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the summation in (34) can be controlled as ZM 5(1 —e7™m) < 1. In more detail, for any m > 2,
the binned probability p,, is the same as M=) (7 - Thus we have a series of equivalent conditions as

M
(1—e™m) <1 (M —1)(1 — e MM-D) < ]
m=2
e M2 sty
M-1-
— <M(M—1)1 M-—1
O .
=Ty e\ —2

With the choice of such €, in the density of Z (25) (and also let €, < 1/2 from the previous step),
the variance is upper bounded by

Var[Tcy) S E[Tcr] + 1.
Therefore the inequality (29b) follows.

Proof of the inequality (29c). Let us denote U(W,m) by U™ for simplicity. Then using the
independence between 71, ..., 7, the conditional variance of T{; is

Varg [TGlo, Wy] = > L(om > 4)o2 Varg U o, Wy].
me[M]

Based on the result in Appendix J of Kim et al. (2020),
E(Vara[UZ "o Wallo} S on2max {IQ gy 7oml3 1Qx 1 7m @17

< o,

2

where the second inequality holds since ||P||3 < ||P||? = 1 for a discrete probability distribution P.
Therefore, with the choice of €, as in (35),

E{Varg[TG|o, Wy} S > Plom>4) < 1,
me([M]

where the last inequality holds since o, ~ Pois(np,,) and
M
ZP(omzzL)g Z]P’(am21 Zl—e_"pm _2.
me([M)] me[M] m=2
This verifies the inequality (29¢).

Indeed, our proof in this subsection goes through for the case where 1 < v < 2 as well. However,
the condition \/nh2 — oo is not tight for this case, and we need a more careful analysis detailed in
the next subsection.
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A.5.2 ~-Hellinger Lipschitzness for 1 <~ < 2

The underlying idea of the proof of this result is the same as in the previous section. That is, we
want to show that the inequality (28) holds when /nh), — oo for some Pxy,z € Pop,s(L) with
v € [1,2]. However, we need to obtain a sharper bound for the variance of the test statistic in order
to achieve the desired rate, which requires some nontrivial effort.

Suppose that X and Y are binary random variables taking a value between {0,1}. We then set

27, for z € [0,271/7],
px|z(z =1|2) = 2- 1 for z € [271/7 1],
0, otherwise.
, (30
1—27, for z € [0,271/7],
px|z(x =0]z) = 2- 1 for z € [271/7,1],
0, otherwise.

Similarly, we let px|z(z = 1]2) = py|z(y = 1]2) and px|z(z = 0|2) = py|z(y = 0[2). It can be
checked that Px|z and Py|z with the above probability mass functions are v-Hellinger smooth for
~ > 1 using Taylor’s theorem. Here we note that the Lipschitz constant depends on v and is assumed
to be fixed. Also note that this example is more sophisticated than the one in (33). For instance,
when v = 1, the distribution (36) is TV smooth but not smooth in the Hellinger distance (since /z
is not a Lipschitz function). In addition to the condition on the conditional distributions (36), we
let Z have the marginal density as in (25) with a sufficiently small 0 < €, < 1/2 (specified later).

Under this setting, we will show that the mean, the variance and the expected conditional
variance of the test statistic T are bounded by

E[Tc1] Z nhy, (37a)
Var[Ter] S E[Tarlhy) + by, (37b)
E{Var, [T&|o, WN]]} < Ay (37¢)

If this is the case, then the inequality (28) holds as y/nh,, — oo, which completes the proof. In
what follows, we prove these inequalities in order.

Proof of the inequality (37a). As we define the density of Z to be (25) with €, < 1/2, the
inequality (31) follows in this case as well, that is

E[TCI] Z nHQxy‘Zzl - Qx_‘Zle.y@:lH%' (38)

Therefore it is enough to show that HQXY\Z:l _QX-|Z:1Q-Y\Z=1 |2 > h*'. Then the inequality (37a)
follows. In fact, when h < 1/2,

h ~
txyz@ =1 =1m=1) = [ pxizle =11:pvizly = 12)Przen, ()
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h
= h_l/o px|z(x = 1|2)py|z(y = 1]2)dz

h 2
= hl/ 227dz:7h
0

2y+1°
Similarly,
h . hY
Ix 7@ =1m=1)=qyzy=1m=1) = /O px|z(® = 1|2)dPg zep, (2) = o
When X and Y are binary, the squared Lo norm simply becomes
2
||QXY\Z:1 - QX.|Z:1Q.Y|Z:1||2
2
= 4{Qxy‘2(x =lLy= 1‘m = 1) - qX~|Z($ = 1‘m = 1)qy|2(y = 1‘m = 1)} (39)

2
= 4h4’Y < 1 - 1 ) 9
2y+1  (y+1)?
which concludes the inequality (37a).

Proof of the inequality (37b). Bounding the variance requires a bit more work. First the law
of total variance yields

Var[Tc1] = E{Var[Tci|o]} + Var{E[Tc1|o]}. (40)

To start with the first term, we use the independence between different bins conditional on o and
see

E{Var[Tcilo]} = Y E{l(owm > 4)o7, Var[U|o]}

me[M]
M
< E{l(oy > 4)otVar[Uh|o1]} + > E[l(om > 4)02],
m=2

where the second inequality uses |U,,| < 1. Since we have freedom to choose € in the density of Z,
we can make the second term smaller than

M
> E[l(om = 4)op] S K. (41)
m=2

For example, since o, ~ Pois(np,,) where p,, =
Schwarz inequality yields

m for m = 2,..., M, applying Cauchy—

)=
=
=
Q
3
V
N
Q
[\
A
=
pac)
Q
[\
v
N
=
Q
[\l.’)_‘4>.



S M1 —e 2,

where the second inequality follows since P(op > 4) < P(op > 1) = 1 — e ™2 and E[o}]

npa(1 + Tnps + 6n2p3 + n®p3) < 15 by assuming npe < 1, which is satisfied when € < 1/(nh?).
Therefore, the inequality (41) holds, for instance, when

1 1
< _— -
€= nhzlog(l_h4w+1>'

Next we analyze E{1(o; > 4)03Var[U;|o]}. Intuitively the conditional variance of Uy |oy be-
comes smaller for large M (equivalently small h) under our distributional setting (36). In particular,
observe that qu|§(x = 0,y = 0lm = 1) — 1 and thus (X,Y)|Z € B; becomes degenerate at

X =0,Y =0 as M increases. However the bound for Var[U;|oi] given in Lemma 5.1 of Neykov
et al. (2021) (and also see the proof of Proposition 5.3 in Kim et al., 2020):

E[Uﬂoﬂ max { “Qxy|2:1‘|27 ||Qx.|'ZV:1Q.y|'Zv:1H2}

01

Var[Ul\Ul] SJ

maX{‘|Qxy|Z:1||%> |’Qx.|Z:1Q.y|Z:1H%}

2
01

for o1 > 4,

does not capture this intuition. It turns out that this variance bound is not tight for the binary
case. In fact, we can obtain a sharper bound as

E[Ul‘o'l] max {qu‘Z'(lv 1|1)7 qX|Z(1’1)qY|Z(1’1)}
01

+ 3 for o1 > 4,
01

Var[U1|01] S

(42)

where qu|2(1, 11) = qXY‘Z(x = 1,y = 1|/m = 1) and the other quantities are similarly defined.
We will prove this inequality at the end of this section. Therefore, using the previous calculations

of Uxy|7 Ux.|7 and Ly |7 the (conditional) variance is bounded by

E [ A el
S M—i—— for o9 > 4. (43)

~ 2

01 28]

Var[Ullal]

In summary, we have
E{Var[Tailo]} < E{l(o1 > 4)o1E[Us|on]}h*7 + h*
< E[Tcr|h® + Y.

~

Next we focus on the second term Var{E[Tci|o]} in (40) and see

Var{ElTulol} = 3 VarfowL(om = 4] % [Qyy 7m — Q. 7om @y 7mll
me[M]
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@)
g Z E[Umﬂ(am > 4)] X HQXY|Z:771 - QX\Z:mQY\Z:mH%

me[M]
(i)

4
< o x gy (L LD — gy (LD QD] + 20

(? 2y 4y
N E[TCI]h + h™7,

where step (i) uses Claim 2.1 of Canonne et al. (2018), step (ii) can be deduced by the inequality (41)
and the identity (39). To give a more detail on step (ii), consider a decomposition

Z E[Um]l(am > 4)] X HQXY|Z:m - QX-\Z:mQ-Y\Z:mH%
me[M]

= E[Ulﬂ(al > 4)] X HQXY\Z:l - QX~\Z:1Q~Y|Z:1H%

@

M
+ Z E[Um]l(am > 4)] X HQXY\Z:m - QX-|Z:mQ-Y|Z:m”§ :

m=2

(I1)

For the first term (I), we make use of the identity (39) and E[o;] = np;, which yields (I) < npy X
|qX,Y|Z(1’ 1j1) - qX-\Z(
QX~|Z:mQ~Y|Z:m is bounded by two for any m. Therefore, (II) < Z%:Q E[o2 1 (0, > 4)] < b by
the inequality (41). This explains step (ii). Step (iii) follows by using the lower bound for E[T¢q] in
(38) and the observation that \qu|2(1, 11) — qX"’Zv(l\l)qy‘ﬂzv(l\l)\2 < b < h?Y. Combining this
with (44) yields the claim (37b). The last step is to verify the sharper bound (42).

1’1)q~Y\Z(1’1)’4' For the second term, note that the Ly norm of QXY|Z=m -

Verification of the bound (42). Recall that the kernel of U is
1
hivjinisia = gy DY Uy @ U@y (@ y),
mwelly IE[@ﬂ,yE[fg]
where Il is the set of all permutations of {i1,i2,13,74} and
VYij(z,y) = L Xin =2,V =y) — 1(X;1 = 2)1(Yj1 = y).

Importantly, for the binary case, we observe that

4
hisinissis = Girsiniisis = 7 > Urye@) (1L D) ryr( (1,1). (45)
’ welly
This means that U; is the same as another U-statistic defined with the kernel g;, i, i,4,. Having

this observation, we work with the U-statistic associated with g;, ;,,.:,. We then follow basically
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the same lines of the proofs in Neykov et al. (2021) and Appendix J of Kim et al. (2020) and see
that the bound (42) is satisfied (more specifically, follow the same lines of the proof in Appendix J
of Kim et al. (2020) by setting d; = dy = 1).

Proof of the inequality (37c). Similar to the proof of (29¢), we can obtain

Varg [TGlo, Wy] = Y L(om > 4)o2, Var[Usm|o, Wy]
me[M]

M
< Aoy > 4)oiVar[UT o, W] + > L(om > 4)02,,
m=2

where the second inequality follows by |UJm| < 1. By taking the expectation, the second term can
be smaller than k%Y by the condition (41). On the other hand, recall that for the binary case, Uy
is equivalent to the U-statistic based on the kernel g;, i, s, in (45). Thus, based on the results in
Appendix I and Appendix J of Kim et al. (2020) (more specifically by letting dy = d2 = 1 therein),

~

< o7 %Y.
Consequently, we obtain the desired bound E{ Vary [T%|o, Wn]]} < ha.

A.5.3 ~-Rényi Lipschitzness for 0 < ~

The proof of this part is essentially the same as that in the case of y-Hellinger Lipschitzness for
2 < v (Appendix A.5.1). In particular, we consider the distribution setting in (33) and show that
the considered distribution is Rényi smooth for all v > 0. Once this is established, the other parts
of the proof follow exactly the same lines of the proof as before in Appendix A.5.1.

Note that, for a sufficiently large M, px|z(z = 1|2) and px|z(z = 0|z) are bounded below and
above by constants for any z € [0, 1], say,

px|z(z =1|z) € [1/4,3/4] and pxz(z = 0[z) € [1/4,3/4]. (46)

Therefore, when 0 < v < 2, there exist some constants C7,Cy > 0 such that

)
D’Y,R(PX|Z:zHPX|Z:z’) < Dx2(PX\Z:z||PX\Z:z/)

(i)
< Ci||Pxiz—. — Pxjz-~3

(iii)
< CQ‘Z - Z/’27

where step (i) uses the fact that Rényi divergence is nondecreasing in v (e.g. Theorem 3 of Van Erven
and Harremos, 2014) and the inequality (74). Additionally, step (ii) holds since we set Px|z—./ is
lower bounded by some constant and step (iii) follows directly by the construction of Py|,_, in
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(33). Similarly we let Py|z—, = Px|z—. and thus both Py z_. and Py|;_, are Rényi smooth when
0<y <2

We now consider the case where v > 2. Again, we make use of the distribution given in (33)
and assume that px|z(z = 1]z) and px|z(x = 0|z) are bounded below and above by constants for
any z € [0,1] as in (46). Since X takes a binary value, Rényi divergence of Px|;_, from Px|;_./
simply becomes

D’Y:R(‘PX|Z:ZHPX|Z=Z/)

1 pX|Z(37 =1[2)\" ’ PX|Z(37 =0[2) \" ’
:log{( pxiz(e=112)+ | ——F——7 | pxjz(x=0|z) ;.
=1 e = 1)) PRI =gy ) el =0
When both z,2" € (1/M,1], Rényi divergence becomes zero and hence there is nothing to prove.

Next assume that both z, 2’ € [0,1/M]. In this case, Rényi divergence can be written more explicitly
as

D,y r(Px|z=:Px|z=2)

1 1 1 1
_ bl (zmm A (L L, §+m—271+i_2/
v-1 s—ar T/ \2 2M 3tar— 7 2M
= f(z2).

By viewing the above expression as a function of z, Taylor’s theorem yields that there exists £ €
(0,1/M) such that

f(2) = F(&) + F1() (= = 2) + f1(€)(= = )%

The first term f(2’) is zero. We also note that the first derivative satisfies f/(z") = 0 since
y—1 v—1
ME =0 R
1 —am stow =%

fl(z) = X 2] 2] :
v—1 14z 1,1
<12 iJr ) (é_Q}\4+2,>+<12+21M_ZZ/> < +2M_Z,>
2 2M 2 ' 2M

Furthermore, it can be seen that sup,cio1/a [f”(2)] < Cym where G,y is a positive constant
depending only on v and M. This shows that D, p(Px|z=.[Px|z=-) < Cym(z — 22 for all
z,2" € [0,1/M]. Suppose now that z € [0,1/M] and 2" € (1/M,1]. In this case, since px|z (v =
12") = pxiz(z = 2|1/M) and pxz(z = 0[2') = px|z(z = 0[1/M) for all 2’ € (1/M,1], the
previous result implies that Dy r(Px|z—.|Px|z=-) < Cym(z — 1/M)* < Cyp(z — 2')% The
final case where z € (1/M,1] and 2’ € [0,1/M] can be similarly handled, which concludes that
Dy r(Px|z=:1Px|z=2) < Cym(z — 2)? for all z,2' € [0,1]. Hence, by letting Py|z—. = Px|z—,
both Px|z—. and Py|z—, are Rényi smooth for v > 2.

In summary, the distribution in (33) is Rényi smooth for v > 0 with a different Lipschitz constant
NlBberma] =1 — B follows.

N"“m\»—‘

and therefore the result supp, .. cp, . s(D) Ep PYy N
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A.6 Proof of Theorem 5

We start by proving the type II error bound for ¢perm 2 and then turn to ¢perm,1-

e Type II error of ¢perm2. We note that by Lemma 6, the type II error of ¢pperm,2 can be expressed

as
EP)JXY‘Z,NU - ¢perm,2] = PP§Y7Z7N[TCI,W < Q1—oc]7
where qi_q is the 1 — a quantile of the empirical distribution of TG/, ..., TEf,. Therefore, it is

enough to work with the test that rejects the null when Tcrw > gi—o. For simplicity, we use the
notation Wayeight := {Wxm, WYJTL}MG[ M) to denote samples used for weights. Given this notation,
we first claim that

]P’p)z(vYZW[TCLW < qi-q]

(47)

where ( is a sufficiently large constant as in the critical value of the test in Canonne et al. (2018).
We then show that under the given condition,

: 1
< PP}}”KZ,N{TCLW < g\/mln{n, M} + EP)JXY’Z’N[TCI,W|WW6ighta 0'}} + 200"

Ppy,,, v{Teww < ¢ fmin{n, MY+ Epy  clToiw[Waeg. o]} (43)

< ann
— 200

which establishes the desired result. To ease the notation, we suppress dependence on P)](V’ Y.z and
N in the expectation and probability function, throughout this proof.

1. Proof of the first claim (47). To show the first claim (47), let us define an event

A= {q1—a < C\/min(n, M) + EP)J(VYZ’N[TCLW‘Wweight: U]}a

and show that
199
P >, 4
(4) > o (49)

If this is the case, then the first claim (47) follows by the union bound. To begin, let us simply
denote the permutation distribution of T 5, by

1 )
Pr [T8w < t] = e Z L[TE w <t].
eIl

More generally, we let P[] be the probability measure in terms of 7 uniformly distributed over
IT conditional on everything else. We denote the expectation and the variance operator under the
permutation law by Er[-] and Varg[] for simplicity. As in the case of (27) for T¢;, we make an
observation that T{ y;, is centered under the permutation law, i.e.

Eﬂ[TgLW] = Z L(om > 4)omwnEx[Uy (W5m)] =0,
me[M]
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which can be shown using the result in Appendix I of Kim et al. (2020). Therefore, for any ¢ > 0,
Chebyshev’s inequality yields

1
Pr{TGw 2t} < 5Ex[(TGw)’]-

Then, by the definition of the 1—« quantile, it holds that ¢;_, < \/oﬁlEﬂ. [(Tgl W)Q] with probabil-
ity one. Notice that E [(TgI W)Q] is a non-negative random variable, changing its value depending
on {Wx m, Wy, WXY,m}%[zl- Then Markov’s inequality verifies that the following inequality

Er[(TEw)?] < 400E{E[(TE w)?] [Wweight, o }

holds with probability at least 1 — 1/400. Based on the results of Canonne et al. (2018), Neykov
et al. (2021) and Kim et al. (2020), we further prove below that

40005_1E{E7r [(TgI,W)Q] lwweighta U} < Cl/z ( min{”, M} + E[TCLW|Wweight> 0-])7 (50)

with probability at least 1 — 1/400 by taking ¢ sufficiently large (depending on «, but recall that «
is assumed to be a fixed constant). This verifies the probability bound (49) for A, completing the
proof of the first claim (47).

Detail of the inequality (50). First of all, since m1,..., 7 are independent, it can be verified
that
Er|(TEw)?] = Y Lom = 4)omwi B [Uf(Wim)]. (51)
me[M]

In order to analyze the expectation of Er [U‘%V(erlm)], we need some preliminary results. To this
end, form=1,..., M, let

1(z1 = 2)1(zg = x)

gx,m (21, 22) = Z TTa and
€[] wm
Ly =y)l(y2 =y
gym(yy2) = > ( 1+)a( ),
veltz] o

and for p: [(1] x [f2] — R, denote

2(g,
Il a, = > D (1+ain()(1yzL Aym)’

x€[l1] yEl2]

Since ag m, ay,m > 0, the above bivariate functions are non-negative and bounded by one. Therefore
E[ggf,m(XLm’ XZ,m)g%’,m(}/l,Tm YQ,m) ’WX,WU WY,m]

< E[QX,m(Xl,maXZ,m)gY,m(}/l,myY2,m)|WX,m7WY,m] = ||PXY|Z:m|

2
2,am"
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Similar calculations show

El9% m (X1.m> X2.m) 95 (Y3, Yam) [Wxm: Wyim] < |1Px1z=m Py z=ml3.a,,

and

E[ggf,m(Xl,ma X2,m)g}2/,m (H,m» Y&,m) |WX,m7 WY,m]

1
2 2
2am T §||PX\Z:mPY|Z:m”2,am’

1
< 5IPxyiz=m

where the last inequality uses the inequality zy < %LEQ + %y2. In addition, using the triangle
inequality, we have

1Pxyz=mll3.a, < 201Pxyim — Px|z=mPyrz=mll3.a, + 2IPx|z=mPy|z=mll3.a,-

Since we consider half-permutation method (Remark 6) for Ty, we can apply the bound for the
expected variance of a permuted U-statistic in Kim et al. (2020) to UZ,(W;m). More specifically,
by the argument made in Appendix I of Kim et al. (2020) along with the above results, we have

1(om > 4E[Ex [UZ(WE)] W 1 Wy m, 0m)

AN

L(om > 4)0,, max { | Pxy|z=ml3.a,,> |1 Px|2=m Py z=mll3.a,, }

< Lom = 40,2 {|1Px.yim — Px|z=mPyiz=ml3.a,, + | Px|2=mPy|7=m|3.a,, }-

This result together with (51) leads to the following bound

E|Ex [(180)2) W 0] | S {D+ (D},

where
D) = Y Lom = Dwil|Pxiz—mPyiz=m3 0,
mée([M]
(ID) == Y Lom = Dwil Pxyim — Pxiz—mPriz=ml3.a,-
me[M]

To simplify the first term, the result of Canonne et al. (2018) and Neykov et al. (2021) yields

2amt = (14 tym) (1 + tom)’

IE’[HF)X|Z:m~PY|Z:m

which further shows that

w2
E(De] < > 1(0m24>(1+t1,m)?1+t2,m) < min{N, M}.

me[M]

Recall that N ~ Pois(n), which highly concentrates around its mean. Thus, by Markov’s inequality
as well as the union bound, one can have (I) < min{n, M} with probability at least 1 — 1/400. For
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the second term, since wy, < oy, we have (II) < E[TCLW]WWGight, 0]. Therefore, with probability
at least 1 — 1/400, it holds that

(D) +(II) £ min{n, M} +E [TCI,W‘Wweighty O'] ,
which proves the inequality (50).

2. Proof of the second claim (48). Next we prove the second claim (48) under the condition on
€ imposed in Canonne et al. (2018). In particular, for ¢; > ¢5 and infQepy u, Drv(Pxyz, Q) > ¢,
equation (1) of Canonne et al. (2018) assumes that ¢ satisfies

7/8 /A 14 1 677 2)T ,2)T
n > (’xmax(min{M/El O ML },

€ ’ e8/7
(52)

1/2,1/2 2/3,1/3 1/2,1/2
M3/4€1/ €2/ M2/3£1/ 22/ M1/2£1/ 62/
£ ’ g4/ 7 e? '

where (’ is a sufficiently large positive constant. A sufficient condition for this inequality in the
form of € 2 f(M,¥l1,02,n) is

M7/8£1/4€1/4 M3/4€1/2€1/2 M1/2£1/2£1/4
" 1 "2 1 "2 1 =2
e > X max( - , - , 3/ ,
M1/4£}/4€;/4 M3/4€i/4£;/4
nl/2 ) n7/8 )

where ¢” is some large positive constant. Let us define an event £ such that E [TCI,W|Wweighta 0'] pe
v/¢' min{n, M} and
Var|[Tcrw [Weights 0]

. . 3/2
N mln{n, M} +v mln{n7 M}E [TCI,W’Wweighta U] +E [TCI,W|Wweighta 0'] /

If infgoep, |\, Drv(Pxyz,Q) > €, Lemma 5.4 of Canonne et al. (2018) guarantees that P(€) >
399/400. Under this event, by choosing ¢’ sufficiently large depending on ¢, we see that

. 1
C\/mln{n, M} + E[Tcr,w [Waweight, ] < §E[TCI,W‘Wweight7 ol.

Thus

P|Terw < C\/mln{n M} + E[Tcr,w | Waweight, © ]}

1
Tc1
[ 400
1

IN
=

TCI W|Wwe1ght7 ] |5

l\')\»—*

IA

200’
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where the last inequality uses Chebyshev’s inequality, as detailed in the proof of Lemma 5.6 in
Canonne et al. (2018).

e Type II error of ¢perm,1- The type II error bound for ¢perm,1 follows similarly as ¢perm,2-
Indeed it is simpler to prove the result of ¢perm,1 than ¢perm,2 as T does not involve randomness
from weights. We note from Lemma 6 again that the type II error of ¢perm,1 is equivalent to

Ppy  nylTcr < qi—a) where g1 is the 1 — o quantile of the empirical distribution of T3, ..., TG

X,Y,Z°
(with some abuse of notation). We then prove the results in two steps as before. In the first step,

we show that

- 1
PP)JXY,Z’N[TCI < ql_a] < IPP)];],Y,ZvN [TCI < Cvmm{n, M}] + m (53)

In the second step, we verify that

- 1
]P)P)](\]YYVZ’N [Tor < ¢v/min{n, M}] < 200° (54)

under the condition on e imposed by Canonne et al. (2018).

1. Proof of the first claim (53). To start with the first claim (53), by Chebyshev’s inequality
along with Markov’s inequality, we have

o < BT R [TET

with probability at least 1 — 1/200. Again, by the independence between 7y, ..., 7y and following
the analysis in the proof of Theorem 4 — especially the proof of the inequality (29¢), the conditional
expectation becomes

E{E[(T&)?]le} = D L(om > 4)onE[UR(Wir)|o]
me[M]

I
=
=

Z 1(op > 4)0,2nIE[Var,,{UW(W,Z’”)|Wm,a}|a]
me[M]

(ii) (iii)

< Y L(om =1) < min{N, M},

me[M]

where step (i) uses the fact that Ex{Uw (W]™)|Wy,,o} = 0, step (ii) follows based on the anal-
ysis in the proof of the inequality (29¢) and step (iii) follows by combining the two inequalities
Zme[M]]l(Um > 1) < ZmE[M] 1 = M and Zme[M}]l(O-m > 1) < ZmE[M] om = N. By taking
the expectation over o, we then have E{Eﬂ- [(T&)Q]} < min{n, M }. Therefore, the inequality (53)
holds by taking ¢ sufficiently large and the union bound.

2. Proof of the second claim (54). The proof of this result directly follows by Section 3.1
of Canonne et al. (2018). In particular, for fixed ¢; and {3, and infgep, ,,, Prv(Pxv,z, Q) > ¢,
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Canonne et al. (2018) assume that ¢ satisfies

1/2 7/8 2 f6/7
n > ¢ x max M min M7 M (56)
— 62 Y € Y 58/’7 9y

where (' is a sufficiently large positive constant. A sufficient condition for this inequality in the
form of € 2 f(M,n) is

1/4 af7/8 as3/4
- > ¢ max MY4 M8 M
- n1/27 n 7n7/8 )

for some large ¢ > 0 as mentioned in the main text. Under this condition, Section 3.1 of Canonne
et al. (2018) shows that the second claim (54) holds by taking ¢ sufficiently large. Finally, combining
the two inequalities (53) and (54) yields the desired result. This completes the proof of Theorem 5.

A.7 Proof of Theorem 6
T

perm,2°

We first study the type II error bound of ¢Lerm,1 and then turn to the type II error bound of ¢
e Type II error of qﬁgerm’l. The proof of this part is similar to that of Theorem 5, especially the
result of ¢perm,1- The only difference is that we are now dealing with the discretized probability
Qy y 7 defined in Section 4.2, rather than the original probability Px y,z. Since the upper bound

for the expected variance E{Eﬂ[(TgI)ﬂ \0'} in (55) does not depend on the underlying discrete

distribution, the same proof carries through and we can obtain the bound (53) for > as well.

Qxyz
In particular, since we set min{n, M} < M = [n?/%], we have

]:EPN

XY, 2>

N[l - ¢perm,1] < IP)Q;Y’E,N [TCI < Cn / ] + % +e n/ ,

where we note that IP’QN N[TCI < Cnl/ 5] = Ppy N[TCI < Cnl/ 5] since T¢r is defined only
X,Y,Z’ X,Y,zZ»

through the binned data. We also note that e™/8 comes from the truncation probability of N
as in (26). This probability is essentially the type II error of the test of Neykov et al. (2021) by
adjusting the value of ¢, and thus we have

1

sup Ppy N[TCI < Cn1/5] < 100"

‘ XY, 2
Px,y,z€P1 0,1),7v (L)infQep, 1 1) Prv(Px,y,z,Q)2¢

See the proof of Theorem 5.2 in Neykov et al. (2021) for more details. Therefore, we conclude that
¢Lerm,1 has the same power guarantee as ¢NBw,1-

Itermg. Given that ¢Lerm,2 uses the same test statistic Tcrw as in Theorem 5,
the proof of this result is similar to that of Theorem 5, especially the result of ¢perm,2. The only
difference is, again, that we now work with the discretized probability distribution @y , > defined

e Type II error of ¢
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in Section 4.2. Following exactly the same lines in the proof of Theorem 5, there exists an absolute
constant ¢’ > 0 such that

IEPN N[l - ¢Lerm,2]

X,Y, 2>

: 1
< Pov N{TCLW < ¢/, fminfn, M} +Eqy v Torw Wi a]} v L s,
X,v,Z’ X,z 200

where the second line also holds by replacing Qg v with P)Z(V y z in the probability and the expec-

tation since Ty is defined only through the binned data.
To further bound the given probability, we recall the results in Neykov et al. (2021). By ignoring

the dependence on Qg v the following two bounds hold with probability at least 399/400 under

the given conditions for the guarantee (20):
Var [Ter,w [ Waeight O |

< M + (VM + DE[Terw [ Weights 0] + [Torw | Weight, 01>/

and

E{Tct,w | Waweight, 0] 2 v/ (M,

where ¢ > 0 is a sufficiently large constant given in ¢xpw 2, which differs from ¢’ above. See Lemma
C.10 of Neykov et al. (2021) for details on these bounds. Let £ be an event that both inequalities
hold simultaneously. Under this event, by taking ¢ sufficiently large depending on (’, we have

. 1
¢'\Jmin{n, M} + ElToriw [ Waeiga: 0] < SE[Touw [Waigiis o

Then by Chebyshev’s inequality and Lemma C.13 of Neykov et al. (2021),

P [TCLW < C'\/min{n, M} + E[Tcr,w | Waweight » U]]

IN

1 1
P[TCI,W < §E[TCLW\Wweight,U]|5 + 200

1
— 200
This completes the proof of the second part.

A.8 Proof of Theorem 7

The proof of this result is essentially the same as that of the second part of Theorem 6, which builds
on the proof of Theorem 5. The only difference is that we are now in a situation where X,Y, Z are
all discretized. Under this binning scheme, the mean and the variance of Ty have been studied
in Neykov et al. (2021). In particular, Lemma G.9 of Neykov et al. (2021) yields that the following
two events hold under the conditions of the theorem with probability at least 399/400:

Var [Tor,w | Weight: O |
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S AM + (VM + DE[Tcr,w [Waeight o) + [Ter,w [ Weight 0]3/2}
and

E[Tcr,w [Wheight: o] 2/ (M,

where ¢ > 0 is a sufficiently large constant given in ¢npw 2. Building upon this result, we can
proceed by following the same lines of the proof of Theorem 6 to complete the proof. We omit the
details.

A.9 Proof of Proposition 1

The proof of this result follows by modifying the proof of the validity of usual permutation tests based
on exchangeability (e.g. Lehmann and Romano, 2006). Here we provide a detail for completeness.

Let X = {(X;,Y;, Z;)}y ~ Q?(,Y,Z be a set of n i.i.d. draws from the CI projection QEL(,Y,E' For

each 7, 7" € Tleyelie, write X" = {(Xi, Yz, Z)}?zl and X7 = {(X;, Yron' (i) Z)};‘Zl where
7 o7’ denotes the composition of two permutation maps 7 and 7’. Throughout this proof, we use
the notation T(X™) = T and T(X) = Tcy. Let T (X)) < ... < T (X) be the ordered statistics
of T(X™),..., T(X™K+) where {my,..., 7k, } = Ilcyciic. Note that the set {T'(X™),... , T(X7K«)}
has the same components as {T(X™1°7),..., T(X™%°™)} for any 7 € Iyepic. Therefore, T (X) =
TOX™) forany i =1,..., K, and 7 € ILcyclic-

Having the above preliminaries in place, suppose we reject the null when T'(X) > T*)(X) where
k= [(1 — a)K,]. Then, by letting 7y have the uniform distribution on Ilgyjic, we have

o AT >T®@)} € ps,  {T(A™) > TW (A0}

X,Y,Z X,Y,Z

P

= Pg.  {T(x™)>T®(x)},
where step (i) uses the fact that X and X™ have the same distribution for all 7 € ILcyclic under the
law Q% _ >, and step (ii) holds due to T*)(x) = T®)(X™). Now since 7 is uniformly distributed

on Ilcycic, we have

o ATX™) > T0(x)} =By, |

X,Y,Z X,Y,Z K,

P ST ™) > 1WA} <o,

ﬂiencyclic
where the last inequality holds since

;* ST ) > 1WA} <o

™ 6rIcyclic

Finally, by Lemma 6, the permutation test from Algorithm 2 can be equivalently written as ¢perm,n =
1{T(X) > T®(X)}. Therefore, we have

Eén ~[¢perm,n] <a.

X.\Y,Z
Having this inequality, the other steps are exactly the same as the proofs of Theorem 2 and Theo-
rem 3. This completes the proof of Proposition 1.
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A.10 Proof of Theorem 8

The main idea of the proof of this result is similar to that of Theorem 6. However, it requires
a much more involved analysis for the mean and the variance due to a sophisticated dependence
structure among local permutations over smaller bins. For the single-binning method, there is a
symmetric structure of the U-statistic under the (global) permutation, which allows us to show
that the mean of the permuted U-statistic is zero and its variance is bounded by some tractable
quantities (e.g. Theorem 5.1 of Kim et al., 2020). However, this is no longer the case for the
double-binning method, which leads to a technical challenge.

Throughout this proof, we only deal with the type II error (or 1—power) of ¢perm, N since the
result of gblerm’  follows directly by the inequality (26). For a sufficiently large ¢ > 0 (depending on
L), Neykov et al. (2021) prove that the test (bi\IBW,l =1(Tc1 > Cn1/5) has a small type II error in
the sense of (18) (indeed, without e~"/® term) when € > ¢n=2/% for a sufficiently large ¢ depending
on (¢, L, 1, ¢3). Moreover, since 73{,[0,1],TV(L) C Py o,1),rv (L), it holds that

1
sup PP}]}IYZ’N[TCI > Cn1/5] < 200° (57)
PX’Y’ZE,PL[O,I],TV(L):ianEPO,[O,l] 'DT\/(Pxﬂyﬁz,Q)ze M
Now let g1—q be the 1 —a quantile of the empirical distribution of T}, ... ,T&K * where m; € Ilgyclic.

Our main goal is to show that ¢, < ¢'n!/® for a sufficiently large ¢’ with high probability (say
1/200) under the given conditions. Since the type II error of ¢perm,n can be written as P(Tcr < ¢i1—a)
in view of Lemma 6, this bound for the quantile together with the union bound implies that the
type II error of ¢perm v is smaller than 1/100 by taking ¢ sufficiently large.

We break down the proof into several pieces for readability.

e Step 1. Bounding the quantile. In the first step, we prove that the 1 — « quantile is upper

bounded by
G- S E[TEG] 4/ Var[TE],

with high probability where @ ~ F defined in (59) below. Here we note that the expectation
and the variance are with respect to both randomness from 7 and samples.

e Step 2. Bounding the expectation. In the second step, we upper bound the expectation
of T&; where ™ ~ Fr in (59) and prove that

- n M?

e Step 3. Bounding the variance. In the third step, we upper bound the variance of T¢;
where 7™ ~ Fi in (59) and prove that

t—+—+M
n

- n? n M?
Var[TCI] = O <Z\44 M2 > .
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e Step 4. Completing the proof. Lastly, we combine the previous results and prove the
desired type II error bound for ¢perm,N-

Step 1. Bounding the quantile. We start by bounding the 1 — a quantile

. 1 -
ql_a—lnf{xER:l—agK* Z H(TCI Sx)}

7"'Lel_lcyclic

Consider a subset of IL.y.;c where we remove the identity permutation within each small bin. Let us
denote the resulting subset by Hc_ylfhc whose cardinality is K¢ := e« max{ome — 1,1}

By letting a, such that 1 — o, = min {(1 —o)K, /K, 1}, define

. K 1
_id . . * i
¢ 9 = inf {LE € R :min {(1 —a), - } < - g ]l(TgI < x)}

mel‘l’id

cyclic

: . K, 1 .
= 1nf{x ER:mln{(l—a)K*_id,l} < i Z 1(T3 §:L’)}

mel‘l’id

cyclic

Since Zmen ]I(Tgf < IL‘) is a sum of non-negative numbers, we have q;_, < qf_i%t*. Therefore

cyclic

P(Tcr < qi—a) < P(Tor < ¢ 29).

Let us define an event A as

A:{ K, <1—a/2}, (58)

K*_id_ 1—Oé

and let ql_i‘; /2 be the 1 — a/2 quantile of the empirical distribution

1 _
Fr(z) = Pt § (T3 < ). (59)
* 7\'i€Hiid

cyclic
Then, since qliii* < q;_ii /2 under A, we have
P(Ter < ¢i2%,) < P(Tor < q;%%, ) + P(A).
In what follows, we use the notation Er[] and Varg|] to denote the expectation and variance
operators with respect to Fir and let Pr[-] = Ex[1(-)]. Given this notation, we further upper bound
ql_ii/? To this end, we follow the proof of Lemma 3.1 of Kim et al. (2020). First, for ¢ > 0, by
Chebyshev’s inequality,

v iy 1 v
Pr(T¢ — Ex[T] > 1) < ﬁvafw [TE]-
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By setting the right-hand side to be /2, we see that q. f}l /2 is deterministically bounded by

i 2
ql_m(ll/g < En[TE] + aVarﬂ- [Tc’ﬁ]-

Next applying Chebyshev’s inequality and Markov’s inequality yields

(a2 2 BITG) + S Vor(Bal)} ) < £ and

2 4
]P’(Oé\/’ar,T [T > ME{V&I‘,,[T&]}) < g

From the above observation together with the union bound, it holds with probability at least 1 — 3
that

ql—la/Q

IN

E[T¢] + \/ ZVeuf{E,r [TZ1} + \/ O;E{Var,r e}

32
E[TE] + \/ @VM[T&],

where the last inequality uses Var{Ex[TZ|} + E{Var,[T%]} < Var[TZ]. In summary, by taking
a =1/100 and 8 = 1/200, we have obtained that

IN

1
P(Tcr < gi—a) < ]P’(TCI S E[TE] + Var[Té’I]) + 200 + P(A°). (60)

Step 2. Upper bounding the expectation. Recall that

18 = Z L(om > 4)onU(Wy),
me[M]

where 7 is uniformly distributed on II_1%. . When o, < 4, 1(0y, > 4)0,,U (W) becomes zero,

cyclic”
which does not contribute to T¢;. Hence, we assume o0, > 4 and show that

1 1 1
™ —
E[UWT)|om] = O <M2 + Moo + U%) for each m € [M]. (61)

Recall U(W,T) is the U-statistic with the kernel that takes the form

ik = Z {1(Xim =2, Y5, =y) = 1 X = 2)1(Ys,,, =y)} X
z€[l1],y€llz]

{]I(Xkﬂn =, Yﬂ’k,m = y) - ]I(Xk‘,m = x)]l(Yﬂ'z,m = y)},

where {1, j, k, ¢} are distinct integers between 1 and oy, and {7 m, Tj.m, Tk m, Te,m } are components
of 7 that are used to permute the corresponding components of {Y; p, Y} m, Yim, Yo.m}. Due to a
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complicated local structure of r, it is not trivial to compute the expectation of this kernel. This
is in contrast to the single-binning case where this expectation of the kernel is zero under the local
permutation law. We instead upper bound the expectation using the following observation. Suppose
that there is no collision, meaning that neither of Y ,, Yy 1, corresponds to Yz, Yz iy Yoo Yoo -
In this case, {Xim, Xjm; Yrims Yrjms Yrgms> Yrpm ) ave mutually independent, and the expectation

of the kernel is bounded above by

\E[wlfj,k,elom]\ <

max [ Yo Pk (@) mr () = Pk (2)Gm ks (9) X
[

k1,k2,k3,ka€[b
1,K2,Kk3 46[} xefl],ye[ég] (62)

)

{pm,kg (x)Qm,kg (y) — Pm,ks (x)qm,/m (y) }]

where p,, p(2) = P(X = z|Z € By, 1) and ¢y 1(y) == P(Y = y|Z € By, ). Furthermore, since we
assume Pxy z € 731 [0, TV(L)?

Drv (Gm k1 > Qs )

22/

PY|Z(Z/\Z)dﬁzweBm,,cl (2) — /
yE[l2]

Bm,kQ

pY|Z(y‘Z/)dﬁZ|Z€Bm,k2 (Z/)‘

mk‘l

< / / Z Ipy |2 (yl2) PY|Z(y\Z/)’dPZ|ZeBm,k1 (2)dPz z¢eB,, 1, (")
m k1 m ko yE[KQ
1 Cy
< — ) < =
- 2 zeBm,,gl,ferBm,kQ (2, ) - M’

for some constant C; > 0. Therefore ‘E[cpfj k,ﬂ” is further bounded by

’E[Wzg‘,k,damn

. . [ > Dok @)Poks (@)D Nt @) = Gmkes O] s () —qm,k4(y)|”
DR €[] yE€[l2] y€[la]

< 4 max D , x D ,

S TV (G s G o) TV (@ s G ks

< &

Suppose that there is only one collision, i.e. there exists only one dependent pair of (X,Y’) among
{Xims Xjms Yoy s Yajms Yayms Yy - Since we deal with a cyclic permutation excluding the iden-
tity map, there are only a few possibilities of one collision. In particular, a cyclic permutation,
which is not the identity map, is a derangement (i.e. no point will be at its original place). This

guarantees that X, and Yz, = are independent for each i and m, which simplifies our analysis.
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Case 1) Suppose that X;,, and Y, collide. In this case, { Xy m, Y

s Yo+ are still independent,
which leads to the bound of the expectation

Z E{1(Xim =2, Yr,,, =y) — L(Xim = 2)1(Yr,,, = y)} ¥
z€[l1],y€[L2]

|E[ef) kelom]| =

E{]]'(Xk,m =7, Yﬂ'k,m = y) - ]]‘(Xk%m = x)]]‘(YWZ,m = y)}

IN

2 ) B{(Xpm =2, Y, =y) — WX = 2)1(Yz,,, = 9)}]
J;G[Zl],yewg}

<2 sup > Py () X Gy () — Gk (V)]
k1 k2€[0] x€[l1],y€[£2]

Cy

M’

where the last inequality follows similarly as the previous analysis.

<

Case 2) Next, suppose that X; ,, and Yz, .. collide. In this case, Yz
of the others. Using this property, the expectation is bounded by

and Yz, = are independent

i,m

S E{U(V, =) — 1V, = 5) B (X = 2)]x
z€[l1],y€[L2]

B[]k elom]| =

E[1(Xim = 2){1(Yny,. = %) — L(Yr,, =9)}]

<2 5w Y P (@) X Gk (9) — G ()]
k1,k2€[b] z€[l1],y€[l2]

Cs
=3

The other cases with one collision can be bounded similarly by O(M~1).
Now consider another representation of the U-statistic:

om — 4)!
vwry = =

o
T gk eyeigm

<

where 27" denotes the set of all 4-tuples drawn without replacement from [o,,]. Next we decompose
the summation into three cases depending on whether there exists a collision among

{(Xi,mv Ym,m)v (Xj,m7 Yﬂj,m)v (Xk,ma Yﬂk,m)v (X&m, Yﬂe,m)}' (63>

In particular,

Z ikt = Z O ike T Z Or ikt

{i.j,k,L}€i]™ {i,j,k,0}eigmnA? {i,j,k,}€ijm™NAL

collision collision
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T
+ > Pi gk,
{i,4,k,LycifmnALY

collision

where 1) 7™ N A% .. is the subset of 4]™ such that there exists no collision, 2) 7™ N AL ..., is
the subset of 4{™ such that there exists only one collision, and 3) i™ N ALY, . is the subset of i]™
such that there exists more than one collision.

Now we upper bound each summation. First of all, by the previous analysis,

(om —4)! 1
T > Eleljpeloml = O 1 |-
M ik e} mNAL

collision

Next, since w € Hc_yighc is a derangement by construction, if we pick four observations (63) with
no collision (i.e. {4, j, k, £} and {m;, 7, 7, m¢} have no shared component) out of o, observations,
there are at least op,(0m — 2)(0y — 4)(04 — 6) ways. Thus in order to have a collision, we have
at most O(Uf’n) choices. Moreover, as analyzed before, the expectation of the kernel is bounded by

O(M™1) if there is one collision. Therefore

(m = 4)! . 1
om! Z El@l; kelom] = O o )

{i,j,k.L}€i]m™NAL

collision

Lastly, there are at most < o2, cases to have more than one collision. In this case, using the fact

that the kernel gog"j 4. is bounded between —1 and 1, we have

(om —4)! - 1
— Z Eleljkelom] = O =2 )

u
Om'
" gk ereigm ALt

collision

These three bounds imply the claim (61). Therefore

E[TE] = O(J\Z2+1+ > E[]l(amzél)aml]).

me[M]

By recalling o,,, ~ Pois(np,,), we have the following inequalities

E|:]1(Um > 4);] S iE[ﬂ(am = 4)0'm1—|- 1]

| ot

| —

—_

| S
—~
D
e~
~—

om+ 11

Furthermore,

[ 1 ] 1— e Pm M
< <

om+1 npm - Clown7

where the last inequality uses the condition p,, > clowM ! for all m € [M]. Therefore, we have

- n M?
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Step 3. Upper bounding the variance. Next we upper bound the variance of the U-statistic U(W]T).
To compute the variance of U(W]T), first set up some notation. Similarly as in Section 4.3, let

¢Z’L’ﬂ'(w,y) = ]l(Xi,m = anﬂ'i,m = y) - ]l(Xi,m = x)]l(yﬂj,m = y)7

and define a symmetrized kernel function as
hz1,12,l3,t4 —a Z Z 1[) 2)(:U y)qbﬂ(g)r (4 )(x,y)
melly x€[l1],y€[l2]

where Iy is the set of all permutations of {ij,4s,43,74}. Then the U-statistic can be written as

1

UWg) = (@) > N iy s i

4 11 <i2<i3<i4:(i1,i2,03,i4)E[om]

and it variance has the form as
1
Var[U(an)lam] - m Z Z Cov(h:?,gﬂsym’hg'rll;?mjsm)'

o 2
( 4 ) 11 <ig<iz<ig J1<j2<j3<ja
:(41,02,13,14) €[om] :(41,42,43,74) €[Om]

Here and hereafter, we often ignore the conditional event o, when we write the expectation and
the (co)variance operator for simplicity.

Now we decompose the summation into a few different parts depending on the number of com-
mon indices between {i1, 2,143,494} and {j1, 2,73, 44}. In particular, let A®  be the set of indices
{i1,12,13,74,71, 72,73, Ja} € [om] such that i1 < o < i3 < i4, j1 < jo < j3 < ja and there are k
elements in common between {i1, 2, 3,44} and {j1, j2, j3, ja}. Using this notation, the variance can
be written as

Var[U(W,Z;)]am]

m,T m,T m,T m,T
a'm Z COV hl1 RERERYY hj1,j27j3,14 am Z COV hhﬂz 13,147 hj17j2,j3,j4)
CDm COI]']

m,T m,T
2 Z COV h11,7«2713724’ hj17j2,j37j4)'

( 4 A%OII\

Since 1) the number of cases in which {i1,i2,13,44} and {j1, j2, J3, ja} have more than one common
index is at most =< o8, and 2) that the kernel is bounded, the last term in the above display is
bounded by

m,T m,T _ -2
Z COV hu,m,zsﬂ 147 h31,J27J3J4) =0 (Um ) :
() Aldn

Next consider the cases in which {i1, 2, 73,74} and {j1, j2, J3, ja} have the exactly one common index.
Without loss of generality, we let i1 = j; and consider the resulting pairs

{(Xi1,m7 Y, )7 (Xizmw YWiQ,m)a (Xi3,m7 Ym3,m)7 (Xi4,m7 Y7ri4,m)7

7r'i1,m

65



(Xj2,m7 Y,

Tjg,m

)a (stﬂm Yﬁj3,m): (Xj4,mv Yﬂ'j4,m)}'

For now, we assume that there is no collision among the above set. Then we can treat them as if
they are i.i.d. observations with X 1 Y. Conditional on this assumption of no collision, we can
follow the proof of Lemma 5.1 of Neykov et al. (2021) and show
m,T m,T _ -2

COV(hihiz,is,M’ hjl,j27j3,j4) - O(M ) (65>
To prove this, first let 7 := {7(1),7(2),7(3),7(4)} be sampled uniformly from the set of all per-
mutations of {i1,42,143,44}. Similarly let 7' := {7/(1),7(2),7'(3),7'(4)} be sampled uniformly from
the set of all permutations of {j1, jo2, j3, ja}. Then by treating 7 and 7’ to be independent random
vectors, we can re-write the expectation as

E[ m,T m,T ]
11,82,83,%4" "J1,72,73,J4

= E Z w:fz,f)\"r(z) (l‘, y)wfég):—(gl) (1"7 y) Z ¢:}&71T)7—/(2) (ZL'/, y,)¢:7&§)7/(4) (':LJ7 y,) :
z€ll1],y€(ls] x' €[l1],y'€[l2]

Using the condition that there exists exactly one common index between {7(1),7(2),7(3),7(4)}
and {7/(1),7/(2),7(3),7'(4)} (without loss of generality, let the shared common index be between
{r(1),7(2)} and {7'(1),7/(2)}), the above expectation becomes

Z Z E W:Z’f)rf(z) (@, ) (@ y)]E W:Eg;r(z;) (z,y)|E W&Q)T/(@ («',y)]

z€[l1],yE[l2] 2’ €[41],y’ €[L2]

2
> > {E 7@ (@ VI o) (@ Y] } x

z€[l1],y€[le] = €[l1],y' €[L2]

IN

2
XY BN @ @)

x€[l1],y€[la] 2’ €[41],y’ €[¢2]

where the second step follows by Cauchy—Schwarz inequality. Now, based on the notation used in

(62)

mo 2 2
> {ERISw@n]) < max 3T {0 ()~ s (2)ama 2 |
z€[l1],y€l2] x€[l1],y€(l2)
<  max Diy( ) < G (66)
=~ kl,kge[b] TV Qm,kl ) qm,kg = M2 .
This bound gives

m,T m,T - -2

E[hil,i2,i3,i4hj1,j2,j37j4] =0 (M ) : (67)

Next we look at the product of the expectations

ER™T . ] x ER™T ]

11,12,13,14 1,32573:J4
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= x E

Z 7#:?17;7(2)(%3/)1# (3)7(4 )(x y)

z€[l1],y€[l2]

Z 7#2671\-)7-/(2) (2, y/)lb:}{g)ﬂ(@ (9|

' €[],y €[€2]

By focusing on the first term, Cauchy—Schwarz inequality together with the previous bound (66)
yields

E [ Z 77[) 7—(2 ( )711:2}37(4) (z, y)] ‘

x€[l1],y€[l2]
2 2
< Z {EW:? )7 (2) (z, y)]} X Z {E[win(g;-r(@ (a:,y)]}
z€[l1],y€[l2] z€[l1],y€ll2]
Co
S e

The other term can be similarly analyzed and thus

) —4
E[h?lz,g,i&u] X [h?l;rzdsm] =0 (M ) :
Combining the above with the bound (67) yields the claim (65).
Suppose that there are at least one collision among

{(X’il,m? le,m)v (Ximmv Yﬂ'iz,m)7 (Xi3,m7 Ymg,m)’ (Xi4,m7 Y7r¢4,m)a

(Xj1,m7Y )?(Xj4,m7y7rj47m)}-

Tj1.m

)7 (ij,ma Y

Tjg,m

)a (ng,ma Y,

Tjz,m

where {iy,12,143,14, j1,J2, 73, j4} € AL - The number of such cases is at most O(c%). Therefore
Z Cov(h"T . h™T ) = O oL
OV 11,82,83,047 " 7J1,02,93,d47 o M2 07271 :

Lastly we focus on the case when {i1, 12, i3, %4, 1, j2, 73, ja} € A% . First of all, when there is no

collision, two kernels become independent and thus Cov(h;"" . . K7 ) = 0. When there is
1,22, 13 I .717]27]3 .]4

one collision, we are basically in the same situation where {i1, i2, 3, i1, j1, j2, j3, ja} € AL,,, and there

is no collision. Therefore We can re-use the previous bound for the covariance (65). Furthermore,

since there are at most O(o7)) cases of one collision, O(c%) of two collisions and so on, we have

1 1
m, T mﬂ' _
2 Z COV hll,lzﬂs,m’ J17J2,13,J4) =0 (UmMQ + o2 :
4 COI]’]

m

Therefore, combining the results yields
1 1
Var[U(W7)|om] = O < + ) .

omM? o2,
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Given the above bound, the variance of the combined test statistic is
Var[T&] = E[Var[Tgﬂoﬂ + Var [E[T&\UH
Let us upper bound these two terms separately. Starting with the first term, note that

Var[TGlo] = > L(om > 4)op, x Var[U(W;)|om]
me[M]

1 1
§ : 2
= ﬂ(0m24)0'm><0<0_m]\4,2+0_72n>,
me([M]

which results in

- n
E[Var[T7%|o]] = O (W + M> . (68)
For the second term,
E[TGlo] = Y L(om = 4)om x E[U(W])|om].
me[M]
Since o1, ...,0) are independent,
Var[E[TG|o]] = Y Var[L(om > 4)om x E[U(W)|om]]
me[M]
< > E[l(om > 4)02, x {E[U(W)|om]}]
me[M]
Recall from the claim (61) that
x 1 1 1
Therefore
Var[E[T|o]] < G E[L(om > 4)02,] + ] E[L(oym > 4)]
CI = M m = m M2 m
me[M] mée[M]
+Cs > E[l(om >4)0,7].
me[M]

Now using the property that oy, N Pois(npy,) where Zi\n/lzl pm = 1 and p,, > 0, we can upper

bound

Z E[L(opm > 4)02] < Z npm +n’p2, <n+n? and
me[M] me[M]
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> E[l(om>4)] < ) Elow] <n.

me[M] me[M]

Furthermore, the inequality (64) implies that

Putting pieces together yields

- n? n M?

Combining the above with (68) concludes

n? n M?
Var[Tgﬂ = 0 <]\44+]\42+7”L+M> .

Step 4. Completing the proof. Now by taking M = (n2/5}, the previous bounds for the mean

and the variance yield
E[T%] 4 4/ Var[TF] = O(n1/5).

This together with the inequality (60) gives

P(Ter < qi-a) < P(Ter Sn'/?) + + P(A°).

200
Finally, we prove that P(A®) converges to zero uniformly over a class of distributions of (X,Y, Z) €
[¢1] x [l2] x [0,1] where the density of Z is lower bounded by some small constant cjoy, > 0. In
particular, we recall the event A in (58) and define

Pn = sup Ppv  n(A9). (70)

X,Y,Z°
Px,v,z€P] j0,11,7v(L)

We then show that p,, — 0 under the conditions in Theorem 8.

By letting o, . be the sample size within the bin B,, ;. and 7, > log™*((1 —a/2)/(1 —a)), let us
define another event £ in which min,, 1ye[ar)x[p] Omk = Ta X (Mb). Note that, under Poissonization,
each oy, ~ Pois(npp, k) where np,, > ciown/(MDb) since the density of Z is bounded below by
Clow- We further assume that cjown/(Mb) > 274 x (Mb). Then, by Lemma 7 in Appendix B.3, the
event £ holds with probability at least

Clow™

1-— Z e_npgl’k >1—Mbx e oMb,
(m,k)e[M]x[b]
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This probability converges to one as n — oo as long as M, b are chosen such that n/(Mb) — oo.
Therefore, we can work under the assumption that min,, e[ax[p) Omk = Ta X (Mb). Under this
event £ with 7,(Mb) > 2 (this can be assumed as Mb — 00), P(A°|E) is equivalent to

d

P H(m7k)€[M]><[b] max{o, — 1,1} _ 1—a
H(m,k)e[M]x[b] maX{Um,k7 1} —1—-«/2

l1—«
< || —oly< — 7
< IP’(( (I—0,%) < o/

m,k)e[M]x[b]

1 —
= <(1 — () ) < 52)'
Given that 7, > log((1 — a/2)/(1 — a)) and (1 —a/n)™ — e~® for any constant a, the last display
converges to zero as Mb — oo. Finally, as we argued before, we have P(£¢) — 0. Therefore
P(A°) = P(A%IE)P(E) + P(AIE)P(EY)
P(A°|E) + P(E°) — 0,

IN

as desired. Since we set a = 0.01, we can take 7, = 200 > log 7' ((1 — a/2)/(1 — a)) ~ 198.5 and
the above conditions are satisfied when n/(Mb)? > 400c;.} and Mb — oo as n — cc. These are the
conditions imposed in Theorem 8 and thus we complete the proof of Theorem 8.

B Auxiliary lemmas and additional results

This section collects some auxiliary lemmas used for the main proofs as well as additional results.

B.1 Metrics and inequalities

The next lemma connects the Hellinger distance between binned distributions @ Y|Z=m and Qv  V|F
defined in Section 4.2, to that between the underlying conditional distributions. This lemma is tLe
basis for the proof of Theorem 2 and Theorem 3.

Lemma 3 (A bound on the Hellinger distance). For each m = 1,..., M, we let Z,, denote a
random variable from the conditional distribution Z|Z € By, and we let Z;n, Z,:L be i.i.d. copies of
Zm. Then under X 1L Y|Z, it holds that

Dj (QX,Y\Z:m’ QVX,Y|Z:m)
< 6E, o Dk (PX|2=20n» PX|Z=Z§n) x Dij (Py12=2,m> PY|Z=ZZ1)]'

It is interesting to observe that Lemma 3 connects the distance between the joint conditional
distributions of the binned data to the distances between the marginal conditional distributions of
the unbinned data. In particular, the upper bound consists of the product between two distances,
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which allows us to control the type I error more tightly. The constant factor of 6 is a convenient
choice from our analysis and it is by no means tight. To prove this result, we use Jensen’s inequality
for a vector valued function and the proof can be found in Appendix D.1.

The next lemma presents an inclusion property of the generalized Hellinger distance, which is
useful for the proof of Theorem 2.

Lemma 4 (Generalized Hellinger distance). For any 1 < v1 < 72, we have
D (P,Q) < DI 4(P,Q). (71)
On the other hand, for any v > 1 and 1 < a < 2, it holds that
Dy u(P,Q) < 2! 110D y(P,Q). (72)

We note that the first inequality (71) was proved in Kamps (1989) and, as far as we are aware,
the second inequality (72) is new in the literature. In particular, the inequality (72) generalizes the
well-known inequality between the TV distance and the Hellinger distance:

DTV(P7 Q) S \/§DH(P7 Q):

by taking v = 1 and o = 2. The proof of Lemma 4 can be found in Appendix D.2. As a direct
consequence of Lemma 4, we have the following corollary.

Corollary 1 (A bound on the Hellinger distance). Suppose that v > 2 is within the range of
2k < ~ < 281 for some positive integer k. Then

Next we state a few inequalities related to Rényi divergence, which will be useful for the proof of
Theorem 3. Let Dk, (P||Q) = [ plog(p/q)dp and D,2(P||Q) = [(p—q)*/qdu be the KL divergence
and the x? divergence of P from Q, respectively. Then we have the identities:

Dl/?,Rényi(PHQ) =—2 log{l - DIQ-I(Pa Q)/Q}a
D1 renyi(P|Q) = DxL(P]|Q),
Do Renyi (P]|Q) = log{1 + D,2(P[|Q)}

Notice that Dy renyi(P||Q) is nondecreasing in v and thus, by the inequality logt < ¢ — 1 for all
t > 0, we have

Di(P, Q) < D1y renyi(PlQ) < Pxi(PQ) = Ri(fll9) < Darenyi(PlIQ) < Dy2(PIIQ).  (74)
Other notable inequalities are

7 1=
- 7

Dy, Renyi(P||Q) < Dy, Renyi(P|Q) < Doy Renyi(P[|Q)  for 0 <y <2 < 1.

Based on the above inequalities, we can upper bound the Hellinger distance by Rényi divergence as
follows.
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Lemma 5 (Rényi divergence). For any vy > 1/2, we have

,DI2-I(P7 Q) < D'y,Rényi(P”Q)‘

On the other hand, for 0 <~y < 1/2, it holds that
1—v
Di(P, Q) < Dy j2 Renyi(P1Q) < TD%Rényi(PHQ)~
The proof of the above lemma can be found in Van Erven and Harremos (2014).

B.2 Connection between permutation p-value and quantile

The next lemma provides an alternative expression of the permutation test in terms of the quantile
of the permutation distribution, which is more intuitive to analyze.

Lemma 6 (Quantile). Recall the permutation p-value pperm in (3). Let qi—q be the 1 — a quantile
of the empirical distribution of TS}, ..., TS . Then it holds that

]l(pperm > 04) = ]I(TCI < Q1fa)'

Furthermore, by letting k = [(1 — a)K|, qi—a is the same as the kth order statistic Tgl(k> of
T ToK
Cl» -"»>CI -

The proof of this result follows by the definition of the quantile function and the details can be
found in Appendix D.3.

B.3 Poissonization

In the following proposition, we demonstrate that the local permutation test under Poissonization
has the same validity as before.

Proposition 2 (Validity under Poissonization). Let P} C Py be the collection of distributions for
which it holds that SUPpy 4 ,eP; EP)?,Y,Z[prerm,n] < a4+ Cin~¢ where C1 > 0 is a universal constant,
€ >0 andn > 1. We further let ¢ppermn = 0 when n = 0. Then under Poissonization where

N ~ Pois(n), the local permutation test has the type I error guarantee as

—n/12
Y

sup  Epnv  yldperm,n] < a+ Ca(e) -n™ € +ne

PxyzePy, V7
where Co(€) > 0 is a constant that only depends on €.

The proof of Proposition 2 uses the fact that a Poisson random variable is tightly concentrated
around its mean, and the details can be found in Appendix D.4. Suppose we choose the maximum
diameter h such that the upper bounds in Theorem 2 and Theorem 3 converge to «a at a certain
rate. Then Proposition 2 essentially implies that the same convergence rate of the type I error can
be obtained under Poissonization as well.

The following lemma provides a concentration bound for the minimum of Poisson random vari-
ables.
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Lemma 7 (Poisson concentration). Form =1,...,M, let X,, be a Poisson random variable with
parameter A, > co. Then

M
P(mnelfﬂ]X < c/2) < mz_:leA

B.4 Unbounded support of 7

In this subsection, we discuss how to deal with unbounded support of Z for type I error control. In
particular, we demonstrate that it is possible to obtain similar validity results as in Theorem 2 and
Theorem 3, up to a vanishing term in the sample size, even when the support of the conditional
variable Z is unbounded.

To fix ideas, suppose Z is a univariate random variable and let {By,..., By} denote a partition
of [a,b] for some a,b € R. We further denote the complement of UM, B; by Byi1 = (—o0,a) U
(b,0) so that Uf‘i‘lei = R. Under this setting, the permutation test that builds on partitions
{Bi,...,Bp+1} has the same type I error guarantee as those in Theorem 2 and Theorem 3 except
that we have an additional term to control: ngz(m + 1) x DIz{(QX,Y\Z:m+17QX,Y|Z:m+1)' In
particular, since the Hellinger distance is bounded by one, this extra term goes to zero as long as
ngz(m +1) — 0 as n — oo. Therefore, the problem boils down to controlling ngz(m + 1). We
discuss two strategies to handle this depending on whether there exists prior knowledge on the
distribution of Z.

1. Prior information on Z. Suppose that we have prior knowledge on the distribution of Z.
To fix ideas, suppose that Z has an exponential tail such that P(|Z| > t) < Ce™! for some
C > 0 and for all £ > 0. Then by choosing b sufficiently larger than logn and by letting
a = —b, it is guaranteed that the extra term vanishes as ngz(m + 1) — 0.

2. Sample splitting. When there is no information on the distribution of Z a priori, we may
choose a and b in a data-dependent way. In detail, we split the sample into two sets of size
n1 and ng, denoted by Dy and Ds, respectively. Let Z(1) and Z(,,) be the minimum and the
maximum order statistic of the first set Dy and let @ = Z(1) and b = Z;,,). We then work with
the second set Do to perform the local permutation test. Provided that Z has a density with
respect to the Lebesgue measure, it can be seen that P(Z < Z(y)) = ﬁ and P(Z > Z,,)) =
o +1 where Z is independent of D1 Note that qz(m+1) = P(Z < Z(1y|D1)+P(Z > Z, )| D1)
and therefore Ep, [qz(m + 1)] =

n1+1 In view of (6), the type I error is bounded by

EP)?,Y,Z [prerm,nQ] = ]EDI [EDz [¢perm,n2|D1]]

M+1 N 1/2
< a+Ep, {2”2 Z az(m) x DH(QX,Y|Zm’QX,YZm)} ]

1/2
< a+Ep, {2”2 Z qz(m) x Dj (QX,Y\Z:W QX,Y|Zm)} ]

-~

)
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1/2
+Ep, {2”2qZ(M +1) x Dy (QX,Y§=M+1’QX,YZ=M+1)} ] ‘

(1)

The first term (I) can be handled similarly as in the bounded case. For the second term (II),

it can be seen that (II) < ,/% by using the fact that the Hellinger distance is bounded by
one together with Jensen’s inequality. Thus, the second term is asymptotically vanishing as

long as na/n; — 0 as n — oo.

C Definitions

We recall a Holder smoothness class from Neykov et al. (2021), which is used to analyze the local
permutation test for continuous data.

Definition 5 (Ho6lder Smoothness). Let s > 0 be a fized real number, and let |s| denote the
mazimum integer strictly smaller than s. Denote by H**(L), the class of functions f : [0,1]? — R,
which posses all partial derivatives up to order |s| and for all z,y, ',y € [0,1] we have

ak aLstk ak a[sjfk . s—s]
R = < _ N2 _ N2
S ok gy (DY) 8xk6yLSJ—kf(x’y)‘_L((x 2+ y—-y))) 2,

and in addition

ok aLsJ—k ’
_— < L.
P [9a gyl S y)‘ =

The next definition describes a cyclic permutation used in Section 6.

Definition 6 (Cyclic permutation). For a set X with finite elements ag,az,...,an—1, a cyclic
permutation T is a bijective function from X to X such that for some integer k, 7(a;) = a (i) mod n-

D Proofs of the auxiliary lemmas

This section collects the proof of the lemmas in Appendix B.

D.1 Proof of Lemma 3

To ease the notation, we suppress (z,y|m) in quZ(a:,y\m) and write Ixy |7 Similarly, we write
qX.‘Z(m|m) and q.YlZ(y|m) by Uy 7 and 4y|7> respectively. Using this shorthand notation, consider
an alternative expression of the Hellinger distance and its upper bounds

~ 2
2D12{(QX,Y\Z:m7QX,Y|Z:m) = //(\/QXY|Z_\/QX.ZQ.Y|Z) dpxdpy
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2
(QXY|Z - qX-|Zq-Y|Z)
= Qd:U'XdNY
(\/qXY|Z + \/qX-\Zq-Y|Z)

2
// (qXY|Z - qX-|Zq-Y|Z) dpixdpy
Ixy|z tT9x.172%9v|z

2

(axviz — 4x29v)2)

3// |~3‘~|~d,uxduy.
Ixy|z T99x.12%y|Z

IN

Under X 1 Y|Z, the term inside of the last expression is equivalent to

2 2
(qXY\Z - qX-|Zq-Y\Z) B {Ez.[(px)2,, — qX-|Z)(pY|Zm - q-Y|Z)]}
Uxyz +34x29y)2 Bz [(0x12,0 + 4x2) Py 12,0 + 4y 2)]

)

where we denote px|z,, = px|z(z|Zm) and py|z,, = py|z(y|Zm). Next we apply Jensen’s inequality
several times and obtain that

Bz, [(Px12, — 4x12)Priz, — 1y 7))} ) g [ Pxiz. - Uy 2) 0¥ 20 — 4y 2)°
Ez,.[(px|z, + qX.|§)(PY\zm + Q.y‘Z)] N (Px|2., + qX.|Z)(pY|Zm + Q.y|2)

(i)

m

(Px\20m +Px12:. ) (P20 + DY |22)

IN

[(p)qzm —PXx|z, )2(pY|Zm —pYZ;,g)]z]
Kz, z: zm

where we detail step (i) and step (ii) at the end of this section. Applying Tonelli’s theorem yields

2

(qXYZ_qX- Z9y Z)

3 [ SR XTI gy
Uxyiz T 9929y |z

(Px|2,, — Px|2: )2 (Py|2,, — PY|221 )2
< 3Bz, 2 21 / | )" 1 / | Z8)” g1
PX|Zm T PX|2, PY\Z, T PY|21,

< 12EZm,Z;1,Z;'1 [DIZ{ (PXIZ:va PX\Z:Z,’n) X DIZJ (PY\Z:Zm’ PY|Z:Z§,§)]?

where the last inequality holds since (z+y) < (vz+ ,/7)? < 2(z+y) for z,y > 0. Hence the result
follows.

Details of step (i) and step (ii)
Throughout this part, we assume that Ix7 > 0 and dyz > 0. Otherwise we have Uxy|z —

Ux 179y\Z = 0 and the bound becomes trivial. Based on the identity

{Ez.[(0x12 = 4x.2)v1z — 4y 2)]}
Ez, [(px|z + qX.|Z)(pY|Z + Q.y|2)]
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B {E2,.[PX12,,Pv12,) = 0y |7E 20 [Px12,0] — 45 7B 20 [Py1 2] + 0x 12052}

)

Bz, [Px| 2PV |Z0m) T 4y 1782 [Px|2,) + Ux 1782 [Py |2,,) + Ix.79v|z
it is enough to show that the function

(r — ay — bz + ab)?
Tz +ay+bz+ab

f(‘/r?y?’z) =

is convex for x,y,z > 0 and a,b > 0. Then the result follows by Jensen’s inequality for a vector
valued function. To this end, we prove that the Hessian matrix of f(z,y, 2) is positive semidefinite.
Some calculations show that

& B 8(ay + bz)?

0x2  (x+bz+ay + ab)3’

827]0 B 8a?(z + ab)?

oy?  (z+bz+ay+ab)®’

ﬁ B 8b2(z + ab)?

022 (z+bz+ay+ab)?’
Pf _ 8a(z+ab)(ay +bz)
0xdy (x+ bz + ay + ab)?’
’*f _ 8b(z + ab)(ay + bz2)
0xdz (z + bz + ay + ab)?’
#f _ 8ab(x+ab)’
oydz (x4 bz + ay + ab)3’

and thus the Hessian matrix becomes
3 ay + bz
H; = 5 | —a(x + ab) lay + bz —a(z +ab) —b(x + ab)] .
(x + bz + ay + ab) —b(z + ab)

This completes the proof of step (i). Step (ii) follows similarly by conditional Jensen’s inequality

. . (a—x)?
together with the observation that 5=

is convex for x > 0 and a,b > 0.

D.2 Proof of Lemma 4

The first inequality (71) is stated in Corollary 2 of Kamps (1989). Hence we focus on the second
inequality (72). We first claim that, for any 1 < a < 8 such that 1/a+1/5 =1,

o =yl < 2!/ =y x |21P 4 0], (75)

Without loss of generality, assume that > y > 0 (when = y, there is nothing to prove). Then,
by expanding the terms, the claim becomes equivalent to

ml/ayl/ﬁ > xl/,ﬁyl/a'
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By taking the log on both sides,

T o1 ees (L1
o 5)lsr=(,—5)ley

which is true since 1 < a < 8 and x > y > 0. This verifies the inequality (75). Leveraging this
inequality, observe that

/ Y7 — "y < / (/) UGVl 08) 4 g1/() g
forany 1 <a < fand 1/a+ 1/ = 1. By Hélder’s inequality, we further have

L/~ N 1/(va) 8 1/(vB)
{/}plh—ql/ﬂvdu} < [/‘pl/(va) _ql/('ya)"Y du] [/‘pl/(vﬁ) +q1/(v6)‘v du} .

Since p, g are density functions, the second term in the product is bounded above by

RECE
{ / (pl/08) 4 /0B dﬂ] _ {275 /

where the last step follows by Jensen’s inequality (note that v8 > 1). Therefore

PGB 4 g1/(8)
2

8 1/(vB)
d ] < 2,

Ui g 177 o oty ey yepe, |70V
Dyu(P,Q) = 2/!1) —¢""ldu| < 2 /Ip —q " dp

_ 21—1/v+1/(7a)pmH(p7 Q).

Note that by the restriction on « and 3, the parameter « should be in the range of 1 < o < 2. This
completes the proof of Lemma 4.

D.3 Proof of Lemma 6

By the definition of the quantile function, ¢;_, can be written as

. 1 .
(o = 1nf{x€R:1—a<K Z ]l(Tgf<x)}
7, €11

. 1 i
—mf{xGR:l—agK g ]l(TgI<x)}
7, €11
_ T (k)
- TCIk’

where we recall k = [(1 — «)K|. Given this representation and by noting that the permutation
distribution is discrete, we see that Tor < ¢1_ holds if and only if

% Z ]l(Tin < TCI) <1l—a,
T, €Il

which is equivalent to pperm > . This completes the proof.
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D.4 Proof of Proposition 2

Since we assume that ¢perm i = 0 when k = 0, it holds that

sup { ZP(N = k)EP;Y,Z[(bperm,k]} = sup { ZP(N = k)EP§7Y72[¢perm,k]}
k=0 k=1

PXVY’ZG’P(I) PX,Y,ZGP(I)

< a+C1 Y PN =kk™
k=1

Furthermore, by transforming k to k = k' + 1, we can simplify the infinite sum as

[ee] . o] nke_n . o] .
> P(N=kk* = > Tk =n Y PN =K)K+1)""
k=1 k=1 k'=0

= nE[(N +1)~<7!],

where we recall that N ~ Pois(n). Now decompose and upper bound the expectation by

nE[(N +1)"1 = nE[(N + 1) "{N < n/2}] + nE[(N + 1) "{N > n/2}]

IN

1+4€
P(N <n/2
nP(N < n/ )+”[n/2+1}
< ne 12 4 gltep e

where the last inequality uses a Chernoff bound for a Poisson random variable (e.g. Canonne, 2017).
This completes the proof of Proposition 2.

D.5 Proof of Lemma 7

Let X have a Poisson distribution with parameter A > 0. Then by using a Poisson tail bound (e.g.
Canonne, 2017), we have for x > 0,

2

P(X <A—z)<e .
Now, by setting z = A/2, the above inequality guarantees that
P(X < \/2) < e 5. (76)

By the union bound along with (76), we have

M M
IP’( min X < 0/2) <SS P(Xm < An/2) < S e

me m=1 m=1

which proves the result.
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