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Advanced research frontiers are extended from biophysics relations on the Earth upto
the discovering any type of alive matter within the whole space. Microorganisms’ motion
within the molecular biology processes integrates variety of microorgnisms functions.
In continuation of our Brownian motion phenomena research, we consistently build
molecular-microorganisms structures hierarchy. We recognize everywhere biomimetic
similarities between the particles in alive and nonalive matter. The research data are
based on real experiments, without external energy impulses. So, we develop the analy-
sis, inspired by fractal nature Brownian motion, as recognized joint parameter between
particles in alive and nonalive biophysical systems. This is also in line with advance
trends in hybrid submicroelectronic integrations. The important innovation in this paper
is that we introduced approximation of trajectory and error calculations, using discrete
mean square approximation, what cumulatively provide much more precise biophysical
systems parameters. By this paper, we continue to generate new knowledge in direction
to get complex relations between the particles clusters in biophysical systems condensed
matter.
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1. Introduction

The subject of molecular biology is morphological structures and functional pro-
cesses in living organisms at the molecular and submolecular level; thus, phenomena
like electron and molecular motion belong within its scope. On the other hand, these
phenomena are the subject of microelectronic and bioelectronic science; therefore,
they can be observed and examined from various aspects, in order to compile the
results and provide biophysical systems further integration. It is very important to
predict and control physical systems’ particles motion from the aspect of further
miniaturization and integration, and we can obtain significant data by this multi-
disciplinary approach.

Nowadays, alive and nonalive matter structures’ integration is one of the major
issues in advanced complex materials and technologies’ scientific research because
it provides the possibility for higher level integrations. If we take into considera-
tion the fact that the electrons, atoms and molecules are constituents of both alive
and nonalive matter systems, we can approach this subject from the biomimetic
aspect. It implies joint examination of biosystems’ and condensed matter sys-
tems’ micro and submicroparticles, based on the fractal nature of their Brownian
motion. '

The insight into the electron motion could be obtained indirectly by examin-
ing the molecular and bacterial motion, because molecules “carry” electrons, and
bacteria “carry” molecules with them. These electron transport processes are the
same, regardless of molecules as constituents of physical systems, or biomolecules,
which underlines the molecule as the central factor. Also, due to bacterial size and
motion behavior regarding Brownian motion, they can be observed in relation with
condensed matter systems particles in order to connect these two systems, which is
our goal.

The final aim of our research is the mathematical characterization of molecular
and microorganisms’ motion, with Brownian motion fractal nature similarities as
their joint motion characteristic. Our intention is to define the relation between
the particles, which leads to defining the relation between biophysical systems as
well.3 7

2. Experimental Methods and Procedures

Bacterial trajectories are random and unpredictable, and they can be influenced by
different factors, such as temperature, light, pH, etc. In our experimental research,
we examined the influence of various energetic impulses on bacterial motion,® in
order to obtain significant data regarding bacterial Brownian motion, which we used
for further mathematical processing. We introduced two bacterial species (Staphy-
lococcus aureus and Pseudomonas aeruginosa) into a liquid phase (see Fig. 1),
and observed their motion patterns. In our theoretical experiment, we studied the

molecular motion, according to available, previously published data.?3
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Fig. 1. (Color online) Schematic presentation of the microorganisms’ motion experiment.

We obtained some interesting results regarding both the bacterial and molecular
motion, and we used them for creating mathematical analytical forms, with the
idea to connect electrons and microorganisms’ motion via molecular level.”

2.1. Mathematical background

The relationship between several quantities is a very good mathematical model for
describing some dependencies. If we consider one of them as dependent variable
(we will denote it with y) and one or more of them, as the independent variables
(we can denote them with z1,25...x,), we obtain a linear relationship between
the dependent variable and independent variables, as a model in the form

y=a1x1+a2x2+--~—|—anmn+b,

where aj,as...an,,b are real (or complex) numbers. If the value of the variable y
depends only on one independent variable x, then previous formula has a form

y =az +b.

We can use various numerical approximation methods in order to obtain such a for-
mula. One of very useful approximation models is the mean square approximation.
The mean squares method (also called discrete mean square approximation'®)
belongs to the class of, so-called, best approximations. In this approximation
method, the criterion is the minimization of the error according to some of the
norms. Specifically, in this research, we will use the norm L?, i.e., minimization
of the total sum of the squares of the errors in the approximation nodes.'%:!!
There are various applications of this method. Some of the them are given in
Refs. 12-14.

If we decide to use more precise formula, more precise minimization of the error,
and better results in application of obtained formula, we can use approximation
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formulas with higher degrees and with more independent variables
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Those formulas could be even more complex
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Using approximation formula of higher order, we can get better precision and
accuracy.

2.2. Main results

For analysis of the data in Table 1, which describes the coordinates of bacteria
locations, during movement through coordinate system,® we applied our technique.

Table 1. Bacteria location coordinates.

i T; Yi 2
1 0 0 0
2 0.1043 —0.3698 —0.2869
3 0.0521 —0.4622 —0.3641
4 0.0521 —0.2773 —0.4809
5 0.0521 —0.2773 —0.7842
6 0.0521 —0.1849 —0.7605
7 0.1564 —0.5547 —0.7709
8 0.2607 —0.7396 —0.7757
9 0.5213 —0.7396 —1.0163
10 0.4170 —0.8320 —0.9330
11 0.3649 —0.8320 —0.9349

Fig. 2. (Color online) The points of the bacteria locations in 3D.
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Table 2. Molecule
location coordinates.

i zi Yi Zi
1 2 5.8 4
2 2.2 2 4.2
3 2.5 4.4 4.5
4 2.8 3.2 5.2
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Fig. 3. (Color online) 3D diagram of molecule motion in different time intervals.

Based on the data from Table 1, we obtained the 3D diagram presented in
Fig. 2. Next, we considered four molecule location points in 3D given in Table 2
and presented in Fig. 3.

2.3. Results and discussion — linear fit

In this section, we applied multiple linear regression to determine the mutual depen-
dence of the coordinates and to obtain explicit formula for predicting and calcu-
lating positions. Based on the data from Table 1, we will apply the procedure of
forming an approximation function

p(z,y) = ax + by + ¢,

by using the least squares method. Thus, by applying the least square approxi-
mation on the given data sets, we obtained next results considering the best lin-
ear fit for the presented model: the coefficients of the resulting linear function are

respectfully a = —0.746871, b = —0.421536 and ¢ = —0.3306160 and the estimated
regression function is of the form

o(z,y) = —0.746871z — 0.421536y — 0.306160.

We can compare values and precision of dependent variables z; in given points and
results obtained by formula through the absolute and relative error (Table 3).
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Table 3. Comparison between real and approximate coordinates,
absolute and relative error.

T Yi Zi ©i A %

0 0 0 —0.3061600  0.3061600

0.1043 —0.3698 —0.2869 —0.5399426  0.2530427 —88.20%
0.0521 —0.4622 —0.3641 —0.5399059 0.1758059 —48.29%
0.0521  —0.2773 —0.4809 —0.4619639  0.0189361 —3.94%
0.0521 —0.2773 —0.7842 —0.4619639 0.3222361 —41.09%
0.0521 —0.1849 —0.7605 —0.4230139 0.3374860 —44.38%
0.1564 —0.5547 —0.7709 —0.6567966 0.1141034 —14.80%
0.2607 —0.7396 —0.7757 —0.8126373  0.0369373 —4.76%
0.5213 —0.7396 —1.0163 —1.0072718  0.0090281 —0.89%
0.4170 —0.8320 —0.9330 —0.9683232  0.0353232 —3.79%
0.3649 —0.8320 —0.9349 —0.9294112 0.0054888 —0.59%

Fig. 4. (Color online) The approximation plot with marked red points from Table 3.

The plot obtained with the least squares method is presented in Fig. 4.

Similarly, as in previous procedure applied on bacterial motion experimental
data, we obtained next results for molecule motion in different time intervals, con-
sidering the best linear fit for the presented model: the coefficients of the resulting
linear function are respectfully a = 1.4685067, b = 0.0035386 and ¢ = 0.973673 and
the estimated regression function is of the form

¢ = 1.4685067x + 0.0035386y + 0.973673.

Next, by using the estimated regression function (5) and by implementing the 2D
coordinates, we obtained the estimated dependent values of the z-coordinates, pre-
sented in Table 4, together with the evaluated absolute and relative error of this
approximation.

The plot obtained with the least squares method is presented in Fig. 5.
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Table 4. z-coordinates with the absolute and rel-
ative error.

i Yi Zi Pi A %

0 0 0

2 5.8 4 3.9312102 0.0687898 1.72%
2.2 2 4.2 4.2114649 0.0114649 0.27%
25 44 45 4.6605095 0.1605096 3.57%
2.8 32 52 5.0968150 0.1031850 1.98%

Fig. 5. (Color online) The approximation plot with marked red points from Table 4.

If we observe alive and nonalive matter particles as a hierarchical phenomenon,
we can consider an atom as a cluster of electrons and other particles. Next, we can
consider a molecule as a cluster of atoms with already mentioned particles, which
are penetrating each other from their orbitals in interatomic relations within the
molecule.’® Finally, in this hierarchy, a microorganism could be considered as a
cluster of molecules. Nowadays, fundamental research and science do not have high-
tech and also resolution possibilities to recognize separately the electron motion.
We can consider only the indirect effects. Here, we must stress the complexity in
the matter based on quantum mechanical principles and Heisenberg uncertainty
principle, as well, in all of these considerations.

Each bacterial cell comprises 2-4 millions of protein molecules,'® which implies
that the total number of molecules per bacterial cell is much higher. This is just
one comparison. We can observe the effect of electron motion at the molecular
and microorganisms’ level. So definitely, the particles’ motion based on Brownian
motion fractals effects is the base for deeply understanding all of these processes
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within the submicroscale sizes with the joint characteristic which we can nominate
as “action in distance” in motion.

In this paper, we introduced two mathematical analytical forms: one for bacte-
rial and second for molecular motion, which are characterized by Brownian motion.
In that sense, we would like to establish a relation between these two mathematical
analytical forms considering molecule number ratio. In this way, we could deter-
mine asymptotic approaching!” of two mathematical functions towards fractals’
biomimetical self-similarity. This is the idea for our further research.

2.4. Results and discussion — nonlinear fit

We applied multiple linear regression to determine the mutual dependence of the
coordinates and to obtain explicit formula for predicting and calculating posi-
tions.'®!? Based on the data from Table 1, we will apply the procedure of forming
an approximation function

o(z,y) = a+bx + ca® + doy + ey + [y,

by using the least squares method. Thus, by applying the least square approxima-
tion on the given data sets, we obtained next results considering the best linear fit
for the presented model: the coefficients of the resulting linear function are respect-
fully @ = —0.113743, b = 0.610584, ¢ = 10.672648, d = 13.512006, ¢ = 2.686915,
f =5.657841, and the estimated regression function is of the form

o(z,y) = —0.113743 + 0.610584x + 10.6726482>
+13.512006zy + 2.686915y + 5.657841y2.

We can compare the values and precision of dependent variables z; in given
points and results obtained by formula trough the absolute and relative error
(Table 5).

The plot obtained with the least squares method is presented in Fig. 6. Similarly,
as in previous procedure applied on bacterial motion experimental data, we obtained

Table 5. Comparison between real and approximate coordinates, abso-
lute and relative error.

T Yi Zi Pi A %

0 0 0 —0.113743 0.113743

0.1043 —0.3698 —0.2869 —0.675016626 0.388116626 —135.28%
0.0521 —0.4622 —0.3641 —0.411553216 0.047453216 —13.03%
0.0521  —0.2773  —0.4809 —0.558194246  0.077294246 —16.07%
0.0521 —0.2773 —0.7842 —0.558194246  0.226005754  —28.82%
0.0521  —0.1849 —0.7605 —0.486506962  0.273993038 —36.03%
0.1564 —0.5547 —0.7709 —0.678978436  0.091921564  —11.92%

0.2607 —0.7396 —0.7757 —0.726859953  0.048840047 —6.30%
0.5213 —0.7396 —1.0163 —0.997072159 0.019227841 —1.89%
0.4170 —-0.8320 —0.9330 —1.01020275 0.07720275 —8.27%
0.3649 —0.8320 —0.9349 —0.8910781 0.0438219 —4.69%
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Fig. 6. (Color online) The approximation plot with marked red points from Table 5.

Table 6. z-coordinates with the absolute and relative error.

zi Yi Z Pi A %

0 0 0

2 5.8 4 3.999999120  0.000000880  0.000022000%
2.2 2 4.2 4.199996920  0.000003080  0.000073333%
25 44 45 4499998180  0.000001820  0.000040444%
2.8 3.2 52 5199996160 0.000003840  0.000073846%

Fig. 7. (Color online) The approximation plot with marked red points from Table 6.
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the next results for molecular motion in different time intervals, considering the best
linear fit for the presented model: the coefficients of the resulting linear function are
respectfully a = 1.561174, b = 0.640807, ¢ = 0.390808, d = 0.199523, ¢ = —0.008767
and f = 0.058243, and the estimated regression function is of the form

o(x,y) = 1.561174 + 0.640807z + 0.390808z2 — 0.199523zy
—0.008767y + 0.058243y>.

Next, by using the estimated regression function (5) and by implementing the 2D
coordinates, we obtained the estimated dependent values of the z-coordinates, pre-
sented in Table 6, together with the evaluated absolute and relative error of this
approximation.

The plot obtained with the least squares method is presented in Fig. 7.

3. Outlook

Furthermore, we will implement similar mathematical methods of discrete mean
square approximation, for linear and quadratic case, on experimental results with
bacteria,'? treated with energetic impulses in the frame of different musical
rhythms.

4. Conclusion

In this paper, we presented experimental results for Brownian motion of n particles,
for cases n = 4 and n = 11, without external influence of music. We performed
discrete mean square approximation method with linear and quadratic formula, and
we provided mathematical analytical expressions, that substantially characterize
this motion. The main point of this paper is calculation of absolute and relative
error of approximation formula in both cases. This is quite a new application and
further innovative advancement in this field.
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