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Abstract

This paper considers an enhancement of the classical iterated penalty Picard (IPP) method for the incompressible Navier–
tokes equations, where we restrict our attention to O(1) penalty parameter, and Anderson acceleration (AA) is used to
ignificantly improve its convergence properties. After showing the fixed point operator associated with the IPP iteration is
ipschitz continuous and Lipschitz continuously (Frechet) differentiable, we apply a recently developed general theory for AA

o conclude that IPP enhanced with AA improves its linear convergence rate by the gain factor associated with the underlying
A optimization problem. Results for several challenging numerical tests are given and show that IPP with penalty parameter
and enhanced with AA is a very effective solver.

c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

We consider solvers for the incompressible Navier–Stokes equations (NSE), which are given by

ut + u · ∇u +∇ p − ν∆u = f, (1)

∇ · u = 0, (2)

here u and p are the unknown velocity and pressure, ν is the kinematic viscosity which is inversely proportional to
he Reynolds number Re, and f is a known function representing external forcing. For simplicity we assume no-slip
oundary conditions and a steady flow (ut = 0) as well as small data so as to be consistent with steady flow, but
ur analysis and results can be extended to other common boundary conditions and temporarily discretized transient
ows with only minor modifications. Due to the wide applicability of (1)–(2) across science and engineering, many
onlinear solvers already exist for it [1], with the most popular being Picard and Newton iterations [2]. Newton’s

∗ Corresponding author.
E-mail addresses: rebholz@clemson.edu (L.G. Rebholz), dvargun@clemson.edu (D. Vargun), mxiao@uwf.edu (M. Xiao).

1 This author was partially supported by NSF Grant DMS 2011490.
ttps://doi.org/10.1016/j.cma.2021.114178
045-7825/ c⃝ 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2021.114178
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2021.114178&domain=pdf
mailto:rebholz@clemson.edu
mailto:dvargun@clemson.edu
mailto:mxiao@uwf.edu
https://doi.org/10.1016/j.cma.2021.114178


L.G. Rebholz, D. Vargun and M. Xiao Computer Methods in Applied Mechanics and Engineering 387 (2021) 114178

T
h

i
t
s

h
v
m
e

iteration converges quadratically once near a root, but requires a good initial guess, especially for higher Re [2].
he Picard iteration for the NSE is linearly convergent, but also globally convergent and is much more robust for
igher Re [2,3].

Herein, we consider Anderson acceleration (AA) of the iterated penalty Picard (IPP) iteration. The IPP iteration
s generally more efficient than Picard for a single iteration since the linear solve is easier/cheaper, but compared
o Picard it can be less robust and require more iterations if the penalty parameter is not chosen correctly. The IPP
cheme for the NSE is given in [4] as: Given uk, pk , solve for uk+1, pk+1 from

uk · ∇uk+1 +∇ pk+1 − ν∆uk+1 = f, (3)

ϵpk+1 +∇ · uk+1 = ϵpk, (4)

where ϵ > 0 is a penalty parameter, generally taken small. The system (3)–(4) is equivalent to the velocity-only
system

uk · ∇uk+1 − ϵ
−1
∇(∇ · uk+1) − ν∆uk+1 = f + ϵ−1

k∑
j=0

∇(∇ · u j ), (5)

which is used in [5–8], and the pressure can be expressed in terms of velocities, i.e. pk+1 = −ϵ−1∑k+1
j=0 ∇·u j . There

are several advantages to using IPP, including allowing for circumventing the inf–sup condition on the velocity and
pressure spaces [4], Scott–Vogelius elements can be (implicitly) used without any mesh restriction and will produce
a pointwise divergence free solution (along with many advantages this brings, see e.g. [9]), and linear system solves
will be easier to perform. Moreover, Codina showed in [4] that a discretization of (3)–(4) converges linearly under a
small data condition and sufficiently small ϵ, and has a better convergence rate if the penalty parameter ϵ is chosen
sufficiently small.

Unfortunately, with small ϵ the advantages of using (3)–(4) diminish since the same nonsymmetric saddle point
system of the usual Picard iteration is recovered as ϵ → 0, and thus ϵ ≪ 1 can lead to linear systems that most
common preconditioned iterative linear solvers will have difficulty resolving [10,11]. Hence even though the IPP is
theoretically effective when ϵ is small, its use has largely died out over the past few decades since small ϵ leads to
the need for direct linear solvers, but direct linear solvers are not effective on most large scale problems of modern
interest. Hence, in an effort to show IPP (properly enhanced with AA) can still be a very competitive solver on
any size problem, we completely avoid the notion of small ϵ and in our numerical tests use only ϵ = 1, where
preconditioned iterative methods found success on linear systems resembling (5) [11–14].

This paper presents an analytical and numerical study of AA applied to IPP, without assuming small ϵ. AA
as recently been used to improve convergence and robustness of solvers for a wide range of problems including
arious types of flow problems [15–17], geometry optimization [18], radiation diffusion and nuclear physics [19,20],
achine learning [21], molecular interaction [22], computing nearest correlation matrices [23], and many others

.g. [15,24–28]. In particular, AA was used in [16] to make the Picard iteration for (1)–(2) more robust with respect
to Re and to converge significantly faster. Hence it is a natural and important next step to consider AA applied to IPP,
which is a classical NSE solver but is not always effective when ϵ < 1 due to linear solver difficulties. Herein we
formulate IPP equipped with a finite element discretization as a fixed point iteration (uk+1, pk+1) = G(uk, pk), where
G is a solution operator to discrete linear system. We then prove that G is continuously (Frechet) differentiable,
allowing us to invoke the AA theory from [3], which implies AA will improve the linear convergence rate of the
iteration by a factor (less than 1) representing the gain of the underlying AA optimization problem. Results of
several numerical tests are also presented, which shows IPP using ϵ = 1 and enhanced with AA can be a very
effective solver for the NSE.

This paper is arranged as follows: In Section 2, we provide notation and mathematical preliminaries on the finite
element discretizations and AA. In Section 3, we present the IPP method and prove associated fixed point solution
operator properties. In Section 4, we give the Anderson accelerated IPP scheme and present a convergence result.
In Section 5, we report on the results of several numerical tests, which demonstrate a significant (and sometimes

dramatic) positive impact on the convergence.
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2. Notation and preliminaries

We consider a domain Ω ⊂ Rd (d = 2, 3) that is open, connected, and with Lipschitz boundary ∂Ω . The L2(Ω )
orm and inner product will be denoted by ∥·∥ and (·, ·). Throughout this paper, it is understood by context whether
particular space is scalar or vector valued, and so we do not distinguish notation.
The natural function spaces for velocity and pressure in this setting are given by

X :=H 1
0 (Ω ) = {v ∈ L2(Ω ) | ∇v ∈ L2(Ω ), v|∂Ω = 0},

Q :=L2
0(Ω ) = {q ∈ L2(Ω ) |

∫
Ω

q dx = 0}.

In the space X , the Poincaré inequality holds [29]: there exists a constant CP > 0 depending only on Ω such that
for any φ ∈ X ,

∥φ∥ ≤ CP∥∇φ∥.

The dual space of X will be denoted by X ′, with norm ∥ · ∥−1. We define the skew-symmetric trilinear operator
b∗

: X × X × X → R by

b∗(u, v, w) :=
1
2

(u · ∇v,w) −
1
2

(u · ∇w, v),

which satisfies

b∗(u, v, w) ≤ M∥∇u∥∥∇v∥∥∇w∥, (6)

for any u, v, w ∈ X , where M is a constant depending on |Ω | only, see [29].
In our analysis, the following natural norm on X∗

:= (X, Q) arises

∥(v, q)∥X∗ :=

√
ν∥∇v∥2 + ϵ∥q∥2. (7)

The FEM formulation of the steady NSE is given as follows: Find (u, p) ∈ (Xh, Qh) such that

ν(∇u,∇v) + b∗(u, u, v) − (p,∇ · v) = ( f, v),
(q,∇ · u) = 0,

(8)

for all (v, q) ∈ (Xh, Qh). It is known that system (8) has solutions for any data, and those solutions are unique
if the small data condition κ := ν−2 M∥ f ∥−1 < 1 is satisfied. Moreover, all solutions to (8) are bounded by
∥∇u∥ ≤ ν−1

∥ f ∥−1.

Assumption 2.1. We will assume in our analysis that κ < 1 so that (8) is well-posed, and that κ+ε1/2ν−3/2 M∥p∥ <
1.

2.1. Discretization preliminaries

We denote with τh a conforming, shape-regular, and simplicial triangulation of Ω with h denoting the maximum
element diameter of τh . We represent the space of degree k globally continuous piecewise polynomials on τh by
Pk(τh), and Pdisc

k (τh) the space of degree k piecewise polynomials that can be discontinuous across elements.
We choose the discrete velocity space by Xh = X ∩ Pk(τh) and the pressure space Qh = ∇ · Xh ⊆ Q. With

this choice of spaces, the discrete versions of (3)–(5) are equivalent, although in our computations we use only (5)
and so the pressure space is never explicitly used. As discussed in [7], pressure recovery via the L2 projection of
−ϵ−1∑∞

j=0 ∇ · u j into Q ∩ Pk−1(τh) will yield a continuous and optimally accurate pressure. Under certain mesh
structures, the (Xh, Qh) pair will satisfy the discrete inf–sup condition [21,30–33]. While inf–sup is important for
small ϵ in the IPP, our focus is on ϵ = 1 and so this compatibility condition is not necessary for our analysis to

hold.
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2.2. Anderson acceleration

Anderson acceleration is an extrapolation method used to improve convergence of fixed-point iterations.
Following [16,24,34], it may be stated as follows, where Y is a normed vector space and g : Y → Y .

lgorithm 2.2 (Anderson Iteration). Anderson acceleration with depth m and damping factors βk .
tep 0: Choose x0 ∈ Y.
tep 1: Find w1 ∈ Y such that w1 = g(x0) − x0. Set x1 = x0 + w1.
tep k: For k = 2, 3, . . . Set mk = min{k − 1,m}.

[a.] Find wk = g(xk−1) − xk−1.
[b.] Solve the minimization problem for the Anderson coefficients {αk

j }
mk
j=1

min


(

1 −

mk∑
j=1
αk

j

)
wk +

mk∑
j=1
αk

jwk− j


Y

. (9)

[c.] For damping factor 0 < βk ≤ 1, set

xk = (1 −

mk∑
j=1
αk

j )xk−1 +
mk∑
j=1
αk

j x j−1 + βk

(
(1 −

mk∑
j=1
αk

j )wk +
mk∑
j=1
αk

jwk− j

)
, (10)

where w j = g(x j−1) − x j−1 is the nonlinear residual (and also sometimes referred to as the update step).

Note that depth m = 0 returns the original fixed-point iteration. We define the optimization gain factor θk by

θk =

(1 −
∑mk

j=1 α
k
j

)
wk +

∑mk
j=1 α

k
jwk− j


Y

∥wk∥Y
, (11)

epresenting the ratio gain of the minimization problem (9) using mk compared to the m = 0 (usual fixed point
teration) case. The gain factor θk plays a critical role in the general AA convergence theory [3,35] that reveals how
A improves convergence: specifically, the acceleration reduces the first-order residual term by a factor of θk , but

introduces higher-order terms into the residual expansion.
The next two assumptions give sufficient conditions on the fixed point operator g for the theory of [3] to be

applied.

Assumption 2.3. Assume g ∈ C1(Y ) has a fixed point x∗ in Y , and there are positive constants C0 and C1 with

1.
g′(x)


Y ≤ C0 for all x ∈ Y , and

2.
g′(x) − g′(y)


Y ≤ C1 ∥x − y∥Y for all x, y ∈ Y .

Assumption 2.4. Assume there is a constant σ > 0 for which the differences between consecutive residuals and
iterates satisfy

∥wk+1 − wk∥Y ≥ σ∥xk − xk−1∥Y , k ≥ 1. (12)

Assumption 2.4 is satisfied, for example, if g is contractive (i.e. if C0 < 1 in Assumption 2.3). Other ways
that the assumption is satisfied are discussed in [3]. Under Assumptions 2.3 and 2.4, the following result from [3]
produces a bound on the residual ∥wk+1∥ in terms of the previous residuals.

Theorem 2.5 (Pollock et al. [17]). Let Assumptions 2.3 and 2.4 hold, and suppose the direction sines between
each column j of matrix

F j =
(

(w j − w j−1) (w j−1 − w j−2) · · · (w j−m j+1 − w j−m j )
)
= ( f j,i ) (13)

and the subspace spanned by the preceding columns satisfies | sin( f j,i , span { f j,1, . . . , f j,i−1})| ≥ cs > 0, for
j = 1, . . . ,mk . Then the residual wk+1 = g(xk) − xk from Algorithm 2.2 (depth m) satisfies the bound

∥wk+1∥Y ≤ ∥wk∥Y

(
θk((1 − βk) + C0βk) +

CC1

√
1 − θ2

k
(
∥wk∥Y h(θk)
2
4
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+ 2
k−1∑

n=k−mk+1

(k − n) ∥wn∥Y h(θn) + mk
wk−mk


Y h(θk−mk )

))
, (14)

here each h(θ j ) ≤ C
√

1 − θ2
j +β jθ j , and C depends on cs and the implied upper bound on the direction cosines.

The estimate (14) shows how the relative contributions from the lower and higher order terms are determined
y the gain factor θk : the lower order terms are scaled by θk and the higher-order terms by

√
1 − θ2

k . The estimate
eveals that while larger choices of m generally provide lower θk’s which reduces the lower order contributions
o the residual, it also incurs a cost of both increased accumulation and weight of higher order terms. If recent
esiduals are small then greater algorithmic depths m may be advantageous, but if not, large m may slow or prevent
onvergence. As discussed in [3], this suggests that depth selection strategies that use small m early in the iteration
nd large m later may be advantageous in some settings.

This result supposes the sufficient linear independence of the columns of each matrix F j given by (13). As
iscussed in [3], this assumption can be both verified and ensured, so long as the optimization problem is solved
n a norm induced by an inner-product. One can safeguard by sufficiently reducing m or by removing columns of
F j where the desired inequality fails to hold, as demonstrated in [3].

. The iterated penalty picard method and associated solution operator properties

This section presents some properties of the IPP iteration and its associated fixed point function.

.1. Iterated penalty picard method

This subsection studies some properties of IPP method. We begin by defining its associated fixed point operator.

efinition 3.1. We define a mapping G : (Xh, Qh) → (Xh, Qh), G(u, p) = (G1(u, p),G2(u, p)) such that for any
v, q) ∈ (Xh, Qh)

ν(∇G1(u, p),∇v) + b∗(u,G1(u, p), v) − (G2(u, p),∇ · v) = ( f, v),
ε(G2(u, p), q) + (∇ · G1(u, p), q) = ε(p, q).

(15)

Thus the IPP method for solving steady NSE can be rewritten now as follows.

lgorithm 3.2. The iterated penalty method for solving steady NSE is

tep 0 Guess (u0, p0) ∈ (Xh, Qh).
tep k Find (uk+1, pk+1) = G(uk, pk).

We now show that G is well-defined, and will then prove smoothness properties for it.

emma 3.3. The operator G is well defined. Moreover,

∥∇G1(u, p)∥ ≤ ν−1
∥ f ∥−1 +

√
ϵ

ν
∥p∥, (16)

or any (u, p) ∈ (Xh, Qh).

roof. Given f, u, p, assume (u1, p1), (u2, p2) ∈ (Xh, Qh) are solutions to (15). Subtracting these two systems and
etting eu = u1 − u2 and ep = p1 − p2 produces

ν(∇eu,∇v) + b∗(u, eu, v) − (ep,∇ · v) = 0,

ε(ep, q) + (∇ · eu, q) = 0.

etting v = eu and q = ep, and adding these equations gives
2 2
ν∥∇eu∥ + ε∥ep∥ = 0,

5
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which is satisfied if eu = ep = 0 implying the solution of (15) is unique. Because (15) is linear and finite
imensional, solutions must exist uniquely. Choosing v = G1(u, p) and q = G2(u, p) in (15) produces

∥G(u, p)∥2
X∗ = ν∥∇G1(u, p)∥2

+ ϵ∥G2(u, p)∥2
≤ ϵ∥p∥2

+ ν−1
∥ f ∥2

−1,

hanks to Cauchy–Schwarz and Young’s inequalities. This shows the solution G(u, p) is bounded continuously by
he data, proving (15) is well-posed and thus G is well-defined. Additionally, dropping the term ∥G2(u, p)∥2 and
aking square root yields (16). □

emma 3.4. Under Assumption 2.1, let (u, p) be the solution of (8) and (uk, pk) be kth iteration from Algorithm 3.2.
hen we have for any ε > 0,

lim
k→∞

∥uk − u∥ = lim
k→∞

∥pk − p∥ = 0.

roof. Subtracting Eqs. (8) from (15) with (uk+1, pk+1) gives

ν(∇(uk+1 − u),∇v) + b∗(uk, uk+1 − u, v) + b∗(uk − u, u, v) − (pk+1 − p,∇ · v) =0, (17)

ϵ(pk+1 − p, q) + (∇ · (uk+1 − u), q) =ϵ(pk − p, q). (18)

dding these equations together and setting v = uk+1 − u, q = pk+1 − p produces

ν∥∇(uk+1 − u)∥2
+ ϵ∥pk+1 − p∥2

≤ M∥∇(uk − u)∥∥∇u∥∥∇(uk+1 − u)∥ + ϵ∥pk+1 − p∥∥pk − p∥,

hanks to (6) and Cauchy–Schwarz inequality. Then, using ∥∇u∥ ≤ ν−1
∥ f ∥−1, and Young’s inequality gives

ν∥∇(uk+1 − u)∥2
+ ϵ∥pk+1 − p∥2

≤ νκ2
∥∇(uk − u)∥2

+ ϵ∥pk − p∥2, (19)

here κ := Mν−2
∥ f ∥−1. Denoting Uk = ∥∇(u − uk)∥2, Pk = ∥p − pk∥

2, (19) produces

εPk+1 + νUk+1 ≤ εPk + κ
2νUk

= εPk + νUk − (1 − κ2)νUk

≤ εPk−1 + νUk−1 − (1 − κ2)ν (Uk + Uk−1)

≤ · · ·

≤ εP0 + νU0 − (1 − κ2)ν
k∑

j=0

U j ,

nd thus

εPk+1 + νUk+1 + (1 − κ2)ν
k∑

j=0

U j ≤ εP0 + νU0.

hanks to Assumption 2.1 and dropping Pk+1 on the left hand side gives
k+1∑
j=0

U j ≤
εP0 + νU0

(1 − κ2)ν
.

Hence, as k → ∞,
∞∑
j=0

U j converges, which implies lim
k→∞

Uk = lim
k→∞

∥∇(uk − u)∥ = 0. Note that, the system

3)–(4) is equivalent to the velocity-only system (5). Thus the pressure can be represented by velocities as
pk = −ε−1∑k

j=0 ∇ · u j , which gives convergence of the sequence {pk} since the velocity converges (in H 1, using
orm equivalence due to finite dimensionality of the systems). Thus by (19) and limk→∞ ∥∇(uk − u)∥ = 0, we get
lim

k→∞

∥pk − p∥ = 0. □

Lemma 3.4 shows us that Algorithm 3.2 converges when the small data condition κ < 1 is satisfied. However,
t tells us nothing when κ ≥ 1. With Anderson acceleration, we can discuss the convergence behavior κ ≥ 1,

see Theorem 4.2. Next, we show the solution operator G is Lipschitz continuous and Fréchet differentiable, after
making an assumption on the data.
6
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Lemma 3.5. For any given (l, y), (w, z) ∈ (Xh, Qh), we have

∥G(l, y) − G(w, z)∥X∗ ≤ CL∥(l, y) − (w, z)∥X∗ , (20)

where CL = min{κ +
√
ϵ/ν3 M∥y∥, κ +

√
ϵ/ν3 M∥z∥}.

Remark 3.6. A global bound on CL does not appear possible without assuming input to G is bounded. However,
combining Lemma 3.5 with Assumption 2.1 implies G is Lipschitz continuous with constant CL < 1 in a
eighborhood Bδ around the fixed point (u, p). One can similarly take larger neighborhoods where CL < K for
ome chosen constant K .

emark 3.7. Eq. (20) tells us that with a good initial guess, Algorithm 3.2 converges linearly with rate CL , which
ay be larger than the usual Picard method’s rate of κ [2]. This is not surprising, since (until now) IPP would never

e used with small ϵ. In [4], for example, a smaller CL is found for IPP, but small ϵ is assumed as is an inf–sup
ompatibility condition on the discrete spaces. We will show in Section 4 that when IPP is enhanced with AA, the
ffective linear convergence rate will be much smaller than CL even when ϵ = 1 and without an assumption of an
nf–sup condition, and the resulting solver is demonstrated to be very effective in Section 5.

roof. From (15) with (l, y) and (w, z) by adding and subtracting b∗(l,G1(w, z), v) to the first difference, we
btain

ν(∇(G1(l, y) − G1(w, z)),∇v) + b∗(l,G1(l, y) − G1(w, z), v) + b∗(l − w,G1(w, z), v)

−(G2(l, y) − G2(w, z),∇ · v) = 0, (21)

ε(G2(l, y) − G2(w, z), q) + (q,∇ · (G1(l, y) − G1(w, z))) = ε(y − z, q). (22)

dding these equations and choosing v = G1(l, y) − G1(w, z) and q = G2(l, y) − G2(w, z) yields

ν∥∇(G1(l, y) − G1(w, z))∥2
+ ε∥G2(l, y) − G2(w, z)∥2

= ε(y − z,G2(l, y) − G2(w, z)) − b∗(l − w,G1(w, z),G1(l, y) − G1(w, z))
≤ ϵ∥y − z∥∥G2(l, y) − G2(w, z)∥ + M∥∇(l − w)∥∥∇(G1(w, z))∥∥∇(G1(l, y) − G1(w, z))∥,

hanks to Cauchy–Schwarz and (6). Applying Young’s inequality provides

ν∥∇(G1(l, y) − G1(w, z))∥2
+ ε∥G2(l, y) − G2(w, z)∥2

≤ ε∥y − z∥2
+ ν−1 M2

∥∇G1(w, z)∥2
∥∇(l − w)∥2,

or, in case of adding and subtracting b∗(w,G1(l, y), v) to the first difference to get (21), gives

ν∥∇(G1(l, y) − G1(w, z))∥2
+ ε∥G2(l, y) − G2(w, z)∥2

≤ ε∥y − z∥2
+ ν−1 M2

∥∇G1(l, y)∥2
∥∇(l − w)∥2,

which reduces to (20) due to (7) and (16). □

Next, we define an operator G ′ and then show that G ′ is the Fréchet derivative of operator G.

efinition 3.8. Given (w, z) ∈ (Xh, Qh) ∩ Bδ , define an operator G ′(w, z; ·, ·) : (Xh, Qh) → (Xh, Qh) by

G ′(w, z; h, s) := (G ′

1(w, z; h, s),G ′

2(w, z; h, s))

atisfying for all (h, s) ∈ (Xh, Qh)

ν(∇G ′

1(w, z; h, s),∇v) + b∗(h,G1(w, z), v) + b∗(w,G ′

1(w, z; h, s), v) − (G ′

2(w, z; h, s),∇ · v) =0,
ε(G ′

2(w, z; h, s), q) + (q,∇ · G ′

1(w, z; h, s)) =ε(s, q).

(23)

emma 3.9. G ′ is well-defined and is the Fréchet derivative of operator G satisfying

∥G ′(w, z; h, s)∥X∗ ≤ CL∥(h, s)∥X∗ . (24)

nd
′ ′

∗ ˆ ∗ ∗
∥G (w + h, z + s; l, y) − G (w, z; l, y)∥X ≤ CL∥(l, y)∥X ∥(h, s)∥X (25)

7
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t

where CL is defined in Lemma 3.5 and ĈL =
√

10ν−3/2 MCL .

Proof. The proof consists of three parts. First, we show that G ′ is well-defined and (24) holds. Adding equations
n (23) and setting v = G ′

1(w, z; h, s) and q = G ′

2(w, z; h, s) produces

ν∥∇G ′

1(w, z; h, s)∥2
+ ε∥G ′

2(w, z; h, s)∥2
= ε(s,G ′

2(w, z; h, s))
− b∗(h,G1(w, z),G ′

1(w, z; h, s)).

pplying Cauchy–Schwarz, (6) and Young’s inequalities gives

ν∥∇G ′

1(w, z; h, s)∥2
+ ε∥G ′

2(w, z; h, s)∥2
≤ ε∥s∥2

+ ν−1 M2
∥∇h∥2

∥∇G1(w, z)∥2

≤ ε∥s∥2
+ ν−1 M2(ν−1

∥ f ∥−1 +

√
ϵ

ν
∥z∥)2

∥∇h∥2

≤ C2
L (ε∥s∥2

+ ν∥∇h∥2),

hanks to (16), which leads to (24). Since the system (23) is linear and finite dimensional, (24) is sufficient to
conclude that (23) is well-posed.

The second part shows that G ′ is the Fréchet derivative of G. Denote η1 = G1(w + h, z + s) − G1(w, z) −
G ′

1(w, z; h, s), η2 = G2(w+h, z+s)−G2(w, z)−G ′

2(w, z; h, s). Subtracting the sum of (15) and (23) from Eq. (15)
with (w + h, z + s) yields

ν(∇η1,∇v) + b∗(w, η1, v) + b∗(h,G1(w + h, z + s) − G1(w, z), v) − (η2,∇ · v) = 0,
ϵ(η2, q) + (∇ · η1, q) = 0.

Setting v = η1, q = η2 produces

∥G(w + h, z + s) − G(w, z) − G ′(w, z; h, s)∥2
X ≤ ν−1 M2

∥∇h∥2
∥∇(G1(w + h, z + s) − G1(w, z))∥2

≤ ν−3 M2C2
L∥(h, s)∥4

X∗ ,

thanks to Young’s inequality and (20). Thus we have verified that G ′ is the Fréchet derivative of G.
Lastly, we show G ′ is Lipschitz continuous over (Xh, Qh). For (w, z), (h, s), (l, y) ∈ (Xh, Qh), letting e1 :=

G ′

1(w+ h, z + s; l, y) − G ′

1(w, z; l, y), e2 := G ′

2(w+ h, z + s; l, y) − G ′

2(w, z; l, y), and then subtracting (15) with
G ′(w, z; l, y) from (15) with G ′(w + h, z + s; l, y) yields

ν(∇e1,∇v) + b∗(l,G1(w + h, z + s) − G1(w, z), v) + b∗(h,G ′

1(w, z; l, y), v)
+ b∗(w + h, e1, v) − (e2,∇ · v) = 0,

ϵ(e2, q) + (∇ · e1, q) = 0.

Adding these equations and setting v = e1, q = e2 eliminates the fourth term and gives us

ν∥e1∥
2
+ ε∥e2∥

2
= −b∗(l,G1(w + h, z + s) − G1(w, z), e1) − b∗(h,G ′

1(w, z; l, y), e1)
≤ M∥∇w∥∥∇(G1(w + h, z + s) − G1(w, z))∥∥∇e1∥ + M∥∇h∥∥∇G ′

1(w, z; l, y)∥∥∇e1∥,

thanks to (23). Now, applying the Young’s inequality and (24), we get

∥(e1, e2)∥2
X∗ ≤ 10ν−3 M2C2

L∥(l, y)∥2
X∗∥(h, s)∥2

X∗ ,

which implies to (25) after taking square roots on both sides. This finishes the proof. □

Lastly, we show G satisfies Assumption 2.4.

4. The Anderson accelerated iterated penalty picard scheme and its convergence

Now we present the Anderson accelerated iterated penalty Picard (AAIPP) algorithm and its convergence
properties. Here, we continue the notation from Section 3 that G is the IPP solution operator for a given set of
problem data.

Algorithm 4.1 (AAIPP). The AAIPP method with depth m for solving the steady NSE is given by:
8
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tep 0 Guess (u0, p0) ∈ (Xh, Qh).
tep 1 Compute (ũ1, p̃1) = G(u0, p0)

Set residual (w1, z1) = (ũ1 − u0, p̃1 − p0) and (u1, p1) = (ũ1, p̃1).
tep k For k = 2, 3, . . . set mk = min{k,m},

(a) Find (ũk, p̃k) = G(uk−1, pk−1) and set (wk, zk) = (ũk − uk−1, p̃k − pk−1).
(b) Find {αk

j }
mk
j=0 minimizing

min∑mk
j=0 α

k
j=1


mk∑
j=0

αk
j (wk− j , zk− j )


X∗

. (26)

(c) Update (uk, pk) = (1−βk)

(
mk∑
j=0
αk

j (u j , p j )

)
+βk

(
mk∑
j=0
αk

j (ũ j , p̃ j )

)
where 0 < βk ≤ 1 is the damping

factor.

For any step k with αk
m = 0, one should decrease m and repeat Step k, to avoid potential cyclic behavior. Under

the assumption that αk
m ̸= 0 and together with Lemmas 3.5, 3.9 and assuming either CL < 1 (see Remark 3.6 for

how this can be achieved) or that if CL ≥ 1 then generally there exists a σ > 0 satisfying (12) due to there being
only small finite number of steps being involved, then the assumptions required to invoke Theorem 2.5 are satisfied,

hich establishes the following convergence theory for AAIPP.

heorem 4.2. For any step k > m with αk
m ̸= 0, the following bound holds for the AAIPP residual:

∥(wk+1, zk+1)∥X∗ ≤ θk(1 − βk + βkCL )∥(wk, zk)∥X∗ + C
√

1 − θ2
k ∥(wk, zk)∥X∗

m∑
j=1

∥(wk− j+1, zk− j+1)∥X∗ ,

for the residual (wk, zk) from Algorithm 4.1, where θk is the gain from the optimization problem, CL is the Lipschitz
constant of G defined in Lemma 3.5, and C depending on θk, βk,CL .

This theorem tells us that Algorithm 4.1 converges linearly with rate θk(1 − βk + βkCL ) < 1, which improves
on Algorithm 3.2 due to the scaling θk and the damping factor βk .

. Numerical tests

We now test AAIPP on the benchmark problems of 2D driven cavity, 3D driven cavity, and (time dependent)
elvin–Helmholtz instability. For all tests, the penalty parameter is chosen as ϵ = 1, and we use the velocity only

ormulation (5) for the IPP/AAIPP iteration. The X∗-norm is used for the optimization problems in the AA process.
For the driven cavity problems, AA provides a clear positive impact, reducing total iterations and enabling

onvergence at much higher Re than IPP without AA. For Kelvin–Helmholtz, AA significantly reduces the number
f iterations needed at each time step. Overall, our results show that AAIPP with ϵ = 1 is an effective solver. In
ll of our tests, we use a direct linear solver (i.e. MATLAB’s backslash) for the linear system solves of IPP/AAIPP
s the problem sizes are such that direct solvers are more efficient. Since the velocity-only formulation is used,
onvergence is measured in the L2 norm instead of the X∗-norm, which requires the pressure. For the problems we
onsider (up to 1.3 million degree of freedom in 3D) this remains a very robust and efficient linear solver. In all of
ur tests, the cost of applying AA was negligible compared with the linear solve needed at each iteration, generally
t least two orders of magnitude less.

.1. 2D driven cavity

We first test AAIPP for the steady NSE on a lid-driven cavity problem. The domain of the problem is the
nit square Ω = (0, 1)2 and we impose Dirichlet boundary conditions by u|y=1 = (1, 0)T and u = 0 on the
ther three sides. The discretization uses P2 elements on barycenter-refinement of uniform triangular mesh. The
nitial guess u0 is zero in the interior of the domain and it satisfies boundary conditions. We perform AAIPP with
= 0 (no acceleration), 1, 2, 5 and 10 with varying Re, all with no relaxation (β = 1). In the following tests,

onvergence was declared if the velocity residual fell below 10−8.
9
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Fig. 1. Shown above is convergence of AAIPP with varying Re and m, using mesh width h = 1/128.

Fig. 2. Shown above is convergence of AAPicard with varying Re and m, using mesh width h = 1/128.

Convergence results for AAIPP using Re = 1000, 5000 and 10000 with varying m when h = 1/128 are shown in
ig. 1. It is observed that as m increases, AA improves convergence. In particular, as Re increases, AA is observed

o provide a very significant improvement; for Re = 10000, the iteration with m = 0 (i.e. IPP iteration) fails but
ith AA convergence is achieved quickly.
In Fig. 2, convergence results by Anderson accelerated Picard (AAPicard) iteration are shown (i.e. no iterated

enalty, and solve the nonsymmetric saddle point linear system at each iteration). The same mesh is used, and here
ith (P2, Pdisc

1 ) Scott–Vogelius elements. Convergence behavior for AAPicard is observed to be overall similar to
hat of AAIPP with ϵ = 1, with the exception that for lower m = 1, 2 AAPicard performs slightly better than
AIPP in terms of total number of iterations. We note that similar convergence behavior between AAIPP and
APicard means that AAIPP is overall much more efficient. This is because each iteration of AAPicard requires a

addle point system solve for velocity and pressure that needs to resolve a Schur complement, which is significantly
ore expensive that AAIPP’s one linear solve for velocity only when ϵ = O(1). Quantifying this advantage requires

pecifying linear solvers and preconditioners (of which there are many possible choices), but our experience is that
t is generally fair to say that most solvers (e.g. [12,36,37]) for the saddle point system of AAPicard would do at
east several ‘inner’ linear solves (as part of its solve process) that are of the same difficulty as AAIPP’s one linear
olve per iteration.

Since each iteration of AAIPP is significantly cheaper than each iteration of AAPicard (generally speaking, since
APicard must solve a more difficult linear system), these results show AAIPP with ϵ = 1 performs very well.

.2. 3D Driven cavity

We next test AAIPP on the 3D lid driven cavity. In this problem, the domain is the unit cube, there is no forcing
f = 0), and homogeneous Dirichlet boundary conditions are enforced on all walls and u = ⟨1, 0, 0⟩ on the moving

id. The initial iterate u0 is zero in the interior of the domain but satisfies the boundary conditions. We compute
ith P3 elements on Alfeld split tetrahedral meshes with 796,722 and 1,312,470 total degrees of freedom (dof) that

re weighted towards the boundary by using a Chebychev grid before tetrahedralizing. We test AAIPP with varying

Re, m, and relaxation parameter β.

10
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Table 1
Shown above is the number of AAIPP iterations required for convergence in the 3D driven-cavity tests, with
varying dof, Re, damping factor β and depth.

Iterations for convergence

dof Re β m = 0 m = 1 m = 2 m = 5 m = 10 m = k − 1

796,722 100 1 > 300 > 300 138 98 92 75
796,722 400 1 > 300 > 300 260 120 91 62
796,722 1000 1 > 300 > 300 > 300 > 300 126 77
796,722 1000 0.5 > 300 > 300 > 300 198 114 68
796,722 1000 0.2 > 300 > 300 > 300 > 300 177 87

1,312,470 1000 1 > 300 > 300 > 300 > 300 140 83
1,312,470 1000 0.5 > 300 > 300 > 300 203 109 71
1,312,470 1000 0.2 > 300 > 300 > 300 > 300 174 88

Fig. 3. Shown above is the centerline x-velocity plots for the 3D driven cavity simulations at Re = 100, 400, 1000, using AAIPP with
m = 10, β = 1 and 796,722 dof.

Fig. 4 shows a visualization of the computed solutions by AAIPP with m = 10 for Re = 100, 400 and 1000 on
the 796,722 total dof, which are in good qualitative agreement with reference results of Wong and Baker [38]. In
Fig. 3, we compare centerline x-velocities for varying Re = 100, 400 and 1000 on the same mesh with reference
data of Wong and Baker [38] and obtain excellent agreement.

In Table 1, the number of AAIPP iterations required for reducing the velocity residual to fall below 10−8, for
arying dof, Re, relaxation parameter β and depth, within 300 iterations. In each cases, we observe that as m
ncreases, the number of iterations decreases, and the maximum m = k − 1 is observed to be the best choice in
ll cases. Also, the relaxation parameter β is observed to give improved results for larger Re. Thus, AAIPP with
roperly chosen depth and relaxation can significantly improve the ability of the iteration to converge.

We also tested AAIPP with Re = 1500, 2000, 2500 which would not converge within 1000 iterations without
A. Table 2 shows that with sufficiently large m and properly chosen relaxation parameter, AAIPP converges for

ven higher Re. This is especially interesting since the bifurcation point where this problem becomes time dependent
s around Re ≈ 2000 [39], and so here AAIPP is finding steady solutions in the time dependent regime.

.3. Kelvin–Helmholtz instability

For our last test we consider a benchmark problem from [40] for 2D Kelvin–Helmholtz instability. This test is
ime dependent, and we apply the IPP/AAIPP method at each time step to solve the nonlinear problem. The domain
s the unit square, with periodic boundary conditions at x = 0, 1. At y = 0, 1, the no penetration boundary condition
·n = 0 is strongly enforced, along with a natural weak enforcement of the free-slip condition (−ν∇u ·n)×n = 0.
he initial condition is given by

u0(x, y) =
(

tanh (28(2y − 1))
)
+ 10−3

(
∂yψ(x, y)

)
,
0 −∂xψ(x, y)

11



L.G. Rebholz, D. Vargun and M. Xiao Computer Methods in Applied Mechanics and Engineering 387 (2021) 114178

β

w

Table 2
Shown above is the number of AAIPP iterations required for convergence in
the 3D driven-cavity tests, with varying dof, Re, damping factor β and depth
of AA iterations.

Re dof m β k

1500 1,312,470 k − 1 0.5 102
1500 1,312,470 k − 1 0.3 111

2000 1,312,470 k − 1 0.5 154
2000 1,312,470 k − 1 0.3 162

2500 1,312,470 100 0.5 381
2500 1,312,470 100 0.3 > 1000
2500 1,312,470 k − 1 0.5 371

Fig. 4. Shown above are the midsliceplane plots for the 3D driven cavity simulations at Re = 100, 400 and 1000 by AAIPP with m = 10,
= 1 and 796,722 dof.

here 1
28 is the initial vorticity thickness, 10−3 is a noise/scaling factor, and

ψ(x, y) = exp
(
−282(y − 0.5)2) (cos(8πx) + cos(20πx)) .

The Reynolds number is defined by Re =
1

28ν , and ν is defined by selecting Re. Solutions are computed for both
Re = 100 and Re = 1000, up to end time T = 5.

Define X = {v ∈ H 1(Ω ), v(0, y) = v(1, y), v · n = 0 at y = 0, 1}, and take V = {v ∈ X, ∥∇ · v∥ = 0} and
Xh = P2(τh) ∩ X . The problem now becomes at each time step: Find un+1

∈ Xh ∩ V satisfying

1
(3un+1, v) + (un+1

· ∇un+1, v) + ν(∇un+1,∇v) = ( f, v) +
1

(4un
− un−1, v) ∀v ∈ Xh ∩ V .
2∆t 2∆t
12
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Fig. 5. Shown above are Re = 100 absolute vorticity contours for IPP solution, at times t = 0, 1, 2, 3, 4, 5 and 6 (left to right, top to
ottom).

he IPP iteration to find each un+1 is thus analogous to what is used for solving the steady NSE above including
ressure recovery, but now with the time derivative terms and using the previous time step solution as the initial
uess.

For accuracy comparison, we also give results using the standard (nonlinear) BDF2 mixed formulation using
kew-symmetry, which we will refer to as the SKEW formulation: Find un+1

∈ Xh and pn+1
h ∈ Qh = P1(τh)∩L2

0(Ω )
atisfying

1
2∆t

(un+1, v) + b∗(un+1, un+1, v) + (pn+1,∇ · v) + ν(∇un+1,∇v) = ( f, v) +
1

2∆t
(un

− 2un−1, v),

(∇ · un+1, q) = 0,

or all (v, q) ∈ (Xh, Qh). The nonlinear problem for SKEW is resolved using Newton’s method, and since
aylor–Hood elements are being used, a large divergence error is expected.

For Re = 100, a h =
1

128 uniform triangular mesh was used, together with a time step of ∆t = 0.005. The
tolerance for the nonlinear solver was to reduce the H 1 relative residual to 10−6. Simulations were performed
with IPP, AAIPP with m = 1, 3, k − 1, and SKEW. The evolution of the flow can be seen in Fig. 5 as absolute
vorticity contours from the AAIPP solutions (all IPP and AAIPP solutions were visually indistinguishable), and
these match those of the high resolution solution from [40] and solutions from [41]. In addition to their plots
of vorticity contours being the same, the IPP and AAIPP solutions yielded the same energy and enstrophy to five
significant digits (i.e. they all give the same solution, as expected). Fig. 6 shows the energy, enstrophy and divergence
of the IPP/AAIPP/SKEW solutions versus time, along with energy and enstrophy of the high resolution solutions
from [40]. We observe that the energy and enstrophy solutions of IPP, AAIPP, and SKEW all match the high
resolution reference solutions very well. As expected, the IPP/AAIPP solutions have divergence error around 10−5,
which is consistent with a relative residual L2 stopping criteria of 10−8. SKEW, however, has a large divergence
error that is O(10−2) despite a rather fine mesh and essentially resolving the flow; since Taylor–Hood elements are
used, this large divergence error is not surprising [9].

Fig. 7 shows the number of iterations needed to converge IPP/AAIPP at each time step. We observe that using
AAIPP with m = 1 offers no real improvement over IPP (m = 0) in converging the iteration, however both m = 3
and m = k − 1 both offer significant improvement. While at early iterations the larger m choices give modest

improvement, by t = 4 the larger m choices cut the iteration count from 27 to 16 at each time step.

13
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Fig. 6. Shown above are Re = 100 energy, enstrophy and divergence error versus time for the IPP/AAIPP, SKEW and reference solutions
from [40].

Fig. 7. Shown above are IPP/AAIPP total iteration counts at each time step, for Re = 100 and varying m.

For Re = 1000, the IPP/AAIPP tests again used h =
1

128 , using the same setup as for the Re = 100 case and
again solutions are compared with a reference solution from [40] and the SKEW solution (but here the SKEW
solution uses a finer mesh with h =

1
196 . As discussed in [41], even the 1

196 mesh is not fully resolved for this
Reynolds number. The time step size was chosen to be ∆t = 0.001 for the IPP/AAIPP and SKEW simulations.
IPP/AAIPP vorticity contours are plotted in Fig. 8, and match those from the reference solution qualitatively well
(as discussed in [40], the evolution of this flow in time is very sensitive and it is not clear what is the correct
behavior in time, even though it is clear how the flow develops spatially and how the eddies combine). Fig. 9
shows the energy, enstrophy and divergence of the computed and reference solutions (the reference solution has
divergence on the order of roundoff error, and it is not shown), and we observe that the 1/196 SKEW solution
gives the worst predictions of energy, enstrophy and (not surprisingly) divergence, even though IPP/AAIPP uses a
significantly coarser mesh. Finally, the impact of AA on the IPP iteration is shown in Fig. 10, where we observe a
significant reduction in iterations at each time step, with larger m cutting the total number of iterations by a factor of
our. Hence overall, the AAIPP iteration is effective and efficient, and produces accurate divergence-free solutions.

. Conclusions

In this paper, we studied IPP with penalty parameter ϵ = 1, and showed that while alone it is not an effective
olver for the NSE, when used with AA and large m it becomes very effective. We proved the IPP fixed point
unction satisfies regularity properties which allow the AA theory of [3] to be applied, which shows that AA applied
o IPP will scale the linear convergence rate by the ratio gain of the underlying AA optimization problem. We also
howed results of three test problems which revealed AAIPP with ϵ = 1 is a very effective solver, without any
14
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Fig. 8. Shown above are Re = 1000 absolute vorticity contours for the iterated penalty solution, at times t = 0, 1, 2, 3, 4, 5 and 6 (left
to right, top to bottom).

Fig. 9. Shown above are Re = 1000 energy, enstrophy and divergence error versus time for the IPP/AAIPP, SKEW and reference solutions
from [40].

Fig. 10. Shown above are IPP/AAIPP total iteration counts at each time step, for Re = 1000 and varying m.
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continuation method or pseudo time-stepping. While the classical IPP method is not commonly used for large scale
NSE problems due to difficulties with linear solvers when ϵ is small, our results herein suggest it may deserve a
econd look since using AA allows for the penalty parameter ϵ = 1 to be used, which in turn will allow for effective
reconditioned iterative linear solvers to be used such as those in [11,12,14].
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