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SUMMARY

The likelihood ratio test (LRT) based on the asymptotic chi-squared distribution of the log
likelihood is one of the fundamental tools of statistical inference. A recent universal LRT ap-
proach based on sample splitting provides valid hypothesis tests and confidence sets in any
setting for which we can compute the split likelihood ratio statistic (or, more generally, an
upper bound on the null maximum likelihood). The universal LRT is valid in finite samples
and without regularity conditions. This test empowers statisticians to construct tests in settings
for which no valid hypothesis test previously existed. For the simple but fundamental case of
testing the population mean of d-dimensional Gaussian data, the usual LRT itself applies and
thus serves as a perfect test bed to compare against the universal LRT. This work presents the
first in-depth exploration of the size, power, and relationships between several universal LRT
variants. We show that a repeated subsampling approach is the best choice in terms of size and
power. We observe reasonable performance even in a high-dimensional setting, where the ex-
pected squared radius of the best universal LRT confidence set is approximately 3/2 times the
squared radius of the standard LRT-based set. We illustrate the benefits of the universal LRT
through testing a non-convex doughnut-shaped null hypothesis, where a universal inference
procedure can have higher power than a standard approach.

Some key words: Hypothesis testing; Sample splitting; Universal inference.

1. INTRODUCTION

Suppose we have data from an unknown distribution Py+ which belongs to some set of distributions
(P : 0 € ©). We wish to test the composite null hypothesis Hy : 0* € ©(. We use the observed data to
construct a test statistic 7;, and reject Hy if T;, > ¢, where c,, must satisfy

sup Py«(T), > co) < .
0*€0g

Consider, for example, the alternative H; : 6 € © \ ©p. The generalized likelihood ratio statistic is
E(@) / E(@o), where 0 is the maximum likelihood estimate (MLE) in © and é\o is the MLE in ©g. We
reject Hy when 210g{£(§) / E(@O)} > Ca,4, Where ¢, g is the upper « quantile of the x? distribution
and d = df(©) — df (©p). This construction arises from Wilks’ Theorem (Wilks, 1938), which states
that 2 log{[,(§) / E(go)} has an asymptotic x? distribution under certain regularity conditions. This will
apply, for instance, when we have independent and identically distributed (iid) data from an exponential
family, ©¢ is a subset of ©, and © and ©Og are linear subspaces in Euclidean space (Van der Vaart,
2000, Theorem 4.6). We can invert the likelihood ratio test (LRT) to produce an asymptotically valid
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100(1 — a)% confidence region of the form:
CLRT(4) = {9 €0 :2log {z(é) / E(Q)} < cayd} .

We reject Hy if and only if CLRT(a) N ©g = (), which is equivalent to rejecting Hy if and only if
2log{L(6) / L(6o)} > Ca,d- We refer to this testing framework as the classical LRT. Some composite
nulls are irregular, meaning that Wilks’ theorem does not apply and calculating a threshold can be hard
due to intractable asymptotics.

The universal inference approach developed by Wasserman et al. (2020) provides a new likelihood ratio
testing framework that addresses situations where the classical LRT is not valid. This new LRT relies on
sample splitting to construct a test and confidence interval that are valid in finite samples and without
regularity conditions. This universal inference method allows one to construct valid tests in settings
for which no hypothesis test with type I error control and finite sample guarantees previously existed.
The statistical literature has repeatedly emphasized the inadequacy of the asymptotic y? approximation
in the small sample setting. Examples include Bartlett (1937), Lehmann (2012), and Medeiros & Ferrari
(2017). Small sample sizes also pose a recurrent problem across biological science research. For instance,
researchers have noted the prevalence of low-powered studies in neuroscience (Button et al., 2013) and
the need for clinical trial designs that account for the small sample sizes common to rare disease and
pediatric population research (Ildstad et al., 2001; McMahon et al., 2016).

Many basic questions remain unanswered about the universal LRT, since its power even in very simple
settings remains unknown. Further, Wasserman et al. (2020) describe numerous settings in which the
universal LRT is the first hypothesis test with finite sample validity. These settings include testing the
number of components in mixture models (Hartigan, 1985; McLachlan, 1987; Chen et al., 2009; Li
& Chen, 2010) and testing whether the underlying density satisfies the shape constraint of log-concavity
(Culeetal., 2010; Axelrod et al., 2019). As a precursor to studying the power in these important but as-yet
intractable settings, we first study the universal LRT in the fundamental case of constructing confidence
regions (or hypothesis tests) for the population mean 6* € R? when Y1,...,Y; ~ N(6*%,1;). In this
setting — where the classical LRT is of course valid — our results showcase the reasonable performance
of the universal LRT in comparison to the classical approach. With more technical effort, the results can
be extended to models that satisfy standard regularity conditions such as quadratic mean differentiability,
where the MLE is asymptotically normal (Van der Vaart, 2000, Chapter 5).

This work provides two main contributions: First, we provide a careful analysis of several variants
of the universal LRT in the Gaussian case. We show that a repeated subsampling approach is the best
choice in terms of size and power. We observe reasonable performance in a high-dimensional setting,
where the expected squared radius of the best universal LRT confidence set is approximately 3/2 times
the squared radius of the set constructed through the classical approach. Thus, in particular, the power
of the universal approaches has the same behavior (in n,d, o) as the classical approach. Second, we
show an example of a hypothesis test on normally distributed data where universal LRT methods have
higher power than classical testing methods. Specifically, when testing the non-convex “doughnut” null
Hy : ||0*]| € [0.5,1] versus Hy : ||0*]| ¢ [0.5,1] on N(0*,1;) data, a universal LRT approach can have
higher power than a standard approach that uses the classical LRT confidence set. A test of this form
could examine, for instance, whether trial outcomes or biomarker levels are within an acceptable range.

2. UNIVERSAL LRT CONFIDENCE SETS
2.1.  Universal LRT background

Wasserman et al. (2020) presented an alternative to the LRT that is valid in finite samples without
requiring regularity conditions. Suppose we have n iid observations Y7, ..., Y, ~ Pp+, where Ppy- is from
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afamily (P : 0 € ©). Each Py has a density denoted by py. We denote the dataset by D = {Y1,..., Y, }.
To implement the test, first split the data into Dy and D;. Let 51 be an estimator constructed from D;.
The parameter 51 could be the MLE, but any parameter that is fixed given D; is valid. Certain choices of
6, may be more efficient. Using the data in Dy, the likelihood function is Lo (8) = Iy, epypo(Y;). Define
the split LRT statistic as

To(0) = Lo(B1)/Lo(6)-
The universal confidence set for 6* using the split LRT is
C¥liY o) ={# €O :T,(0) < 1/a}.

Theorem 1. C:""(«) is a valid 100(1 — )% confidence set for 0*. As a consequence (and equiva-
lently), when testing an arbitrary composite null Hy : 0* € ©¢ versus Hy : 6* € © \ O, rejecting Hy

when ©g N C;F m(a) = () provides a valid level o hypothesis test. The latter rule reduces to rejecting if
T,.(00) > 1/, where 0y € arg maxpeo, Lo(0) is the null MLE.

Theorem 1 is due to Wasserman et al. (2020). The validity of the universal test does not depend on
large samples or regularity conditions. The proof establishes that Eyp- {T,,(0*)} < 1 and then invokes
Markov’s inequality. See Section S1 of the supplement for more details. This property on the expectation
makes 7, (0*) an e-variable (Griinwald et al., 2020).

The validity of C’TSLpnt(a) only depends on the fact that Ey«{7,,(0*)} < 1. If we consider multiple test
statistics that each satisfy this condition, then the average of those test statistics will satisfy the condition
as well. Therefore, the average of test statistics 7),(6*) across multiple data splits is also a valid test
statistic.

2.2.  Classical test in normal setting

Assume Y7, ...,Y,, are d-dimensional iid vectors drawn from N (6*, I;) with 6* € R%. Where Ca,d 18
the upper « quantile of the XZ! distribution, the classical LRT confidence set for 6* is

C]n‘RT(a) = {0 €0:0 —}7||2 < ca,d/n} . (1)

See Section S2 of the supplement for a derivation of (1). In this case, CLRT(@) is valid in finite sam-
ples, since n||6* —Y|? follows a x? distribution. We compare CLRT(a) to the split LRT set and several
universal confidence sets that are variants of the split LRT set.

2.3.  Split, cross-fit, and subsampling sets in normal setting

First, we consider two universal LRT variants based on a single split of the data. Assume we split the n
observations in half, such that Dy and D; each contain n/2 observations. Define Yo = (2/n) >y .p, Vi

andY; = (2/n) > _v.ep, Yi- Then the confidence set for §* based on the split likelihood ratio is

. n, - = n = 1
CPI() = {0 €0 :exp <_ZHYO e 1 ZHYO - ‘9”2) < a}

—{0€0:10-Vo|2 < (4/n) l0g(1/a) + Vo~ V1|2 } . 2

See Section S2 of the supplement for a derivation of (2). Using the same split, we define the cross-fit
statistic as Sy, (0) = {T,(0) + T, **(0)} /2, where T,,"**(0) is computed by switching the roles of Dy
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and D;. Then the cross-fit confidence set is a valid 100(1 — «)% set given by

CSF(a) = {9 co: ;exp (= 51¥0 = V112) {exo (V0 — 0112) +exp (F101 - 0)) } < ;}

The split and cross-fit sets have both statistical randomness (due to the random sampling of observa-
tions) and algorithmic randomness (due to the randomness in splitting the sample into Dy and Dj). In
contrast, the classical LRT only has statistical randomness, since the test is deterministic for a given set
of observations. We now consider a repeated subsampling approach. This universal method attempts to
mitigate the algorithmic randomness from the split and cross-fit LRTs by splitting the observations many
times and averaging the test statistics. Algorithm 1 shows how to compute the subsampling test statistic
T,.(6) at a given § € R,

Algorithm 1 Compute the subsampling test statistic 7}, ().

Input: n independent d-dimensional observations Y71, ..., Y, ~ N(0*, 1;) (6* unknown),
a value of # € R?, number of subsamples B.
Output: The subsampling test statistic 7}, ().
Forb=1tob = B:

Randomly split the data into Dy, and D; 5, each containing n /2 values of Yj.
LetYop = (2/n) Xy,ep, , YiandletY1y = (2/n) Yy cp, , Vi

24 2V, - 0)2).

Output the subsampling test statistic 7},(§) = B! Zle Trp(8).

Compute 77, 5(0) = exp (*%H}_/O,b —1_/171,

As noted earlier, this method is also valid. The 100(1 — a))% subsampling confidence set is

B
- 1 n,= S n, = 1
subsplit _ . 2 2
CobsPl () = {9 co: b§_l:exp (=00 = Vral2 + FI¥os — 0]12) < a}.

Figure 1 shows coverage regions of the classical LRT, split LRT, cross-fit LRT, and subsampling LRT
(B = 100) from six simulations with 8* = (0,0). We generate 1000 observations from N (6*, I5), and
we use this sample for all simulations. Hence, the variation in the split, cross-fit, and subsampling LRT's
across simulations is due to algorithmic randomness.

The coverage regions in Fig. 1 suggest several relationships that we will formalize. We see that the
classical LRT provides the smallest confidence regions. This is not surprising since, even in finite sam-
ples, the classical LRT statistic follows a chi square distribution under Hy : # = 6* in the Gaussian case.
The volume of the cross-fit LRT set is less than or equal to the volume of the split LRT set, although
the cross-fit set is not entirely contained within the split set. The split and cross-fit approaches both use
a single split of the data, but there is a notable improvement from cross-fitting. The subsampling set also
has less volume than the split LRT set. Recall that we construct the subsampling test statistic by per-
forming the split LRT over repeated splits of the data and then averaging the test statistics 7}, (). While
any individual split LRT region is guaranteed to be spherical, the subsampling set is not necessarily a
spherical region. For large B, however, we see that the subsampling region is approximately spherical.
Thus, although the subsampling approach is computationally intensive, this hints that it may be possibly
to derive a formulaic approximation to the limiting subsampling set.
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Fig. 1. Coverage regions of classical LRT (black), subsampling LRT (blue), cross-fit LRT (red), and split LRT
(orange) at o = 0.1. The six simulations use the same 1000 observations from N (6*, I) under * = (0, 0).

2.4.  Limit of subsampling region

We are particularly interested in the behavior of the subsampling confidence set as B — oo. Since
B 'S0 T, 4(0) — E{T() | D} as B — oo, the limiting subsampling set has no algorithmic ran-
domness. We see hints of this in Fig. 1, where the subsampling set at B = 100 does not vary much across
six simulations on the same data. Theorem 2 describes conditions for the convergence of the ratio of
E{T,(6) | D} to an approximation. We have been suppressing the n subscript when it is clear we are
working with a single dataset with n observations. Theorem 2 considers a sequence of datasets, so we
use the n subscript to index the datasets.

Theorem 2. Assume we have a sequence of datasets (Dy)ncon, where Dy = {Yp1,..., Yoo} and
each Yp; is an independent observation from N (0*,14). Let Dy, be a sample of n/2 observations

from D, and let Dy, = Dp\Dy . Define Y,, = (1/n)> " | Yai, }_/Om =(2/n) >y .ep,,, Yni> and

}_/Ln =(2/n) >y, .ep,, Yni- Let ¢ >0, and let (0y,) be a sequence that satisfies 1Y, — 0l < ¢//n
for all n. Then

B(Ta(60) | Da} / {exp (301 - 6u1?) (i)m} 1+ o). ®

In words, the subsampling statistic is approximately given by R(6)%/°(2/5)%/? where R() =
E(g) /L(0) is the usual likelihood ratio statistic.

Section S1 of the supplement contains a proof of Theorem 2. The proof relies critically on the finite
sample central limit theorems from Hajek (1960) and Li & Ding (2017) and on the Portmanteau Theorem
proof techniques from Van der Vaart (2000).

Since

2

n, = 9 4/2
BT, D) ~ e (07 -0) (3) @
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Fig. 2. Analytical (red curve) and simulated (black dots) approximations of the limiting test statistic
limpB_0o % Zle Tn,b(Q) at various dimensions d and numbers of observations n. The test points equal 6 = c1
for various c. The horizontal dashed black line at 1/0.1 is the cutoff for an & = 0.1 confidence region.

the subsampling confidence region is approximately

B
- 1 i = = n, = 1
subsplit _ R 2 2
Oyt = {0 €0: lim bE_l:exp (=310 = ¥ral2 + o — 0]12) < E}

— 00
- 10 5/2)%?
z{0€®:|]Y—0H2<—log(L>}. (5)
3n «@
Figure 2 validates (4) as a reasonable approximation. We simulate one sample Y7, ...,Y,, ~ N(0, I;)

atd = 1 and d = 20, where n = 1000. We consider  values of the form # = ¢I. Through B = 100, 000
subsampling simulations, we estimate

B
1 n, = = n, =
E{Tn(0) | D} ~ % Y exp (—5l¥0s — V1l + JIi¥os — 6%) -
b=1

The black dots represent this average at each value of ¢, and the red curve traces out exp((3n/10)|[Y —
0?)(2/5)%? from (4). Except for the most difficult setting of (d = 20,7 = 10), the simulated and an-
alytical estimates align well. At « = 0.1, the confidence region includes all values of 6 such that the
test statistic is at most 1/0.1. The horizontal dashed black line represents this value. Thus, test statistics
constructed from the simulated and analytical approaches would produce similar confidence regions.

3. COMPARISON OF UNIVERSAL LRT SETS
3.1. Optimal split proportions

We have been assuming that the universal LRTs place n/2 observations in Dy and n/2 observations
in D;. The statement Eg«{7},(0*)} < 1 holds regardless of the proportion of observations in Dy versus
D, though. Let py denote the proportion of observations that we place in Dy.
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Fig. 3. Squared radius of multivariate normal split LRT with varying po. We simulate Y7, ..., Yip00 ~

N(0, I;) and compute the split LRT region at varying po. We repeat this simulation 1000 times. At each

po, the circular point is the mean squared radius and the error bar represents the mean squared radius

+ 1.96 standard deviations. Blue points/lines correspond to pg. The red curve is the expected squared
radius. (See Theorem 3 proof in the supplement for a derivation of the expected squared radius at pg.)

Theorem 3. Let Y1,...,Y, ~ N(0%, 1,). The splitting proportion that minimizes E[r2{C:""(a)}] is

V442 + Sdlog (&) — 2d
. 4log (é) .

As d — oo for fixed «, the optimal split proportion p;; converges to 0.5. See Section S1 of the sup-
plement for a proof of Theorem 3 and a derivation of this fact. Alternatively, as v — 0 for fixed d,
the proportion p(, converges to 1, suggesting that one should use nearly all data for likelihood estima-
tion. This is not an issue for reasonable « levels, though. For instance, at d = 1, one would need to set
a < exp(—40) to produce an optimal split proportion p;; that exceeds 0.90.

Figure 3 shows the average squared radius of the split LRT at p and at surrounding choices of pg.
The expected squared radius (red curve) is more sensitive to changes in pg at higher values of d. That is,
use of the optimal p;) has a greater effect on the split LRT squared radius in higher dimensions. In high
dimensions, though, pj is close to 0.5. It is thus a reasonable choice to use pp = 0.5 in all dimensions.
We use pg = 0.5 for all remaining analyses.

In the cross-fit case, we conjecture that pg = 0.5 minimizes the expected squared diameter. Simulations
in Section S3 of the supplement support this claim. Intuitively, since the cross-fit approach uses both Dy
and D; once for parameter estimation and once for likelihood computation, we should not gain any
efficiency by using unbalanced sets.

po=1 (6)

3.2.  Split versus cross-fit volume
In Fig. 1, we see that the cross-fit LRT set volume is less than the split LRT set volume, but CF(a) is
not a subset of Ctht(a). Nevertheless, it holds that Volume{CS<F ()} < Volume{Ctht(a)}.

Theorem 4. Suppose Y1,...,Y, are iid observations from N(0*,1;). Split the sample such that D
and Dy each contain 5 observations. Use Dy and D; to define the split and cross-fit sets. Then
Volume{CSF (o)} < Volume{C""(«)}. Equality holds only when Yo = Y7.

Briefly, the proof of Theorem 4 constructs a spherical region centered atY with radius equal to the split

LRT radius. The cross-fit set is a subset of this re-centered split LRT region, so the volume of the cross-
fit LRT set is bounded above by the volume of the split LRT set. If Yy = Y7, then the split and cross-fit
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LRT sets are equivalent and have equal volume. The fact that equal volume holds only when Yy =Y;
relies on the strict convexity of the squared Lo norm and the exponential function. See Section S1 of the
supplement for a complete proof.

Theorem 4 proves that the cross-fit LRT approach improves over the split LRT by constructing prov-
ably smaller confidence regions. Out of all universal methods, our simulations have shown that the sub-
sampling approach tends to produce the smallest sets. Constructing a subsampling region can be com-
putationally intensive, though, especially when the limiting subsampling test statistic is intractable. The
cross-fit approach may be a reasonable compromise in settings where repeated subsampling is computa-
tionally prohibitive.

3.3.  Comparative size in high dimensions
Figure 1 demonstrated the appearance of the four LRT regions in the d = 2 case at o = 0.1. We
observe that the classical LRT and the split LRT produce the smallest and largest confidence regions,
respectively. While the split LRT region’s radius appears to be approximately twice the classical LRT
region’s radius, we consider whether the ratio of their squared radii diverges in high dimensions or for
very small . We characterize the ratio of squared radii in terms of the expected ratio. The expected

spht( ) is

E[r{CP"()}] = (4/n) log(1/a) + (4/n)d. (7

Thus, the expected ratio of the split LRT squared radius over the classical LRT radius is

squared radius of C|

E[rg{Czplit(a)}] B (4/n)log(1/c) + (4/n)d B 4log(1l/a) + 4d'

r2{CLRT(q)} Cad/T - Ca,d ®)
Ford > 2 and o < 0.17,
2 split
4log(1l/a) + 4d < E[r{Cyn " (a)}] < 4log(1l/a) + 4d ©)

2log(1/a) +d + 2y/dlog(1/a) — rH{CIRT(a)} ~ 2log(l/a)+d— 5

Ford =1 and a < exp <—5(1%‘/5))

)

4log(1/a) + 4d _ E[r2{CP" (a)}] - Alog(1/a) + 4d
2log(1/a) +d + 2+/dlog(1/a) ~— 7*{CERT(a)} 2log(1/a) +9 — 41/5 + 2log(1/a)

See Section S2 of the supplement for derivations of (7), (9), and (10). The derivation of (9) relies on
chi square quantile bounds from Theorem A and Proposition 5.1 of Inglot (2010). The derivation of the
upper bound in (10) involves a bound from Section 2.1 of Polland (2015). The restrictions on o and d are
necessary for the upper bounds to be valid. The lower bound is valid for any d > 1 and o € (0, 1). The
upper and lower bounds both converge to 4 as d — oc. In addition, all bounds converge to 2 as a — 0.
Figure 4 shows the true value of E[r2{C:P"(a)}] / r2{CLRT ()} as well as the proved lower and upper
bounds on this expectation at d = 10 and d = 100, 000. We observe that the bounds converge to 2 for
very small « relative to the dimension, and we observe that the bounds converge to 4 for high dimensions
relative to . Interestingly, we see that the expected value of the ratio is not monotone increasing in c.

Furthermore, this ratio of squared radii is less than 4 with probability approximately 1 — « in high
dimensions. Theorem 5 formalizes this result. See Section S1 of the supplement for a proof.
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Fig. 5. We perform 10,000 simulations in which we simulate a data sample Y1,. .., Yio00 ~ N(0, I2),

construct the split and classical LRT confidence sets, and compute the squared radii. The points represent

the proportion of these simulations in which r*{CP ()} /72 {C5¥" (o)} < 4. The red and blue curves are
the lower and upper bounds on P[r2{C5*(a)} / 2 {C:R"(a)} < 4] from Theorem 5 at a = 0.1.

Theorem 5. Assume c, 4+ log(a) > d — 2. Let fq(z) be the probability density function of the x?
distribution, and let c,, q be the upper o quantile of the XZ distribution. Then

P [r{CP" (o)} /r*{CE (@)} < 4] 21 — a —log(1/a) fa{ca,a + log(a)}
and P [rQ{Cflp“’(a)}/7"2{C£RT(04)} < 4] <1—a-—log(l/a)fi(cad)-

Figure 5 explores the bounds from Theorem 5. We see that the result from Theorem 5 is more infor-
mative in higher dimensions, where the upper and lower bounds are closer to each other. Both theoreti-
cally and empirically, the ratio of squared radii TQ{CZpllt(a)} /T {CERT (@)} is less than 4 with probably
slightly below 1 — « in higher dimensions.

From (5) and (7), we can see that

P{CE M a)) 5 { (4/2) log(5/2) + log(1/a) }
’ .

E[r2{C3""(a)}] d+ log(1/a) (11)
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Combining (9) and (11), TQ{CZubSpm(a)}/rQ{C’kRT(a)} is approximately 4(5/12)log(5/2) ~ 3/2 as
d — oo, and the ratio is approximately 2(5/6) = 5/3 as a — 0. Recall that the classical LRT cutoff
is dimension dependent and uses the exact distribution’s quantile, while the universal LRT cutoff is
dimension independent. Regardless, in the extreme cases of d — oo or v — 0, the ratio of the classical
LRT region’s radius to the subsampling universal LRT region’s radius is less than 2.

3.4. Power

While the universal methods provide conservative confidence regions for 6%, we establish that the
universal tests can still have high power. Suppose we wish to test Hy : * = 0 versus H; : 8% # 0 at level
1 — a. We reject Hy if 0 ¢ C,,(«), where Cy, () is the confidence set defined by some likelihood ratio
test. The power of the test at 0* # 0 is Pyg«{0 ¢ C,(«)}.

First, we consider the classical LRT, stated in (1). The power of the classical LRT at 6™ is

d + 7”LH9*”2 — Ca,d
V20d +2n]j05)2) [

We can find a similar representation for the approximate power of the limiting subsampling LRT as

B — oc:
— 5 10 5\ %2 1
> bt —
n|Y]* = S log ¢ { 3 -
1 10 5\%9? 1
~ ® d+n|6*||> = =1lo () = . (3
( 3(d + 2n)|6"|?) 19717 = g{ 2) @ (13)

Since n|[Y||? ~ x? (df = d, A = n||6*|?), (12) and (13) use the normal approximation to the non-central
x? distribution with a large noncentrality parameter A\ (Chun & Shapiro, 2009). See Section S2 of the
supplement for derivations of (12) and (13).

The power of the split LRT is

Power{C-RT(a); 6%} = Py- <||§_/||2 > cmd/n) ~ o { (12)

Power{CSPPlit(0); %} ~ Pp-

Power{C3™(a); 0"} = Po- { Vo[> = (4/n) log(1/) + Vo —V1[*}

and the power of the cross-fit LRT is
N n.-= = n, = n, = 2
Power{CST (0); 0"} = Py- [exp (=510 = Y2112 {exp (FIVol2) +exp (FIV1I2) } = a] .

As n||0*]]?> — oo for fixed «, the power of the tests approaches 1. Importantly, this shows that although
the universal methods are conservative, they will all have high power for sufficiently large n or for ||6*||
sufficiently far from 0. As o — 0, the power approaches O.

Figure 6 plots the power of the LRTs against [|0*||2. (Each vector 6* has the form ¢1.) This figure uses
the standard normal CDF approximation to the non-central x> CDF to plot the classical and subsampling
LRT power. We use simulations to approximate the power of the split and cross-fit LRTs. For a given
value of 6%, we simulate n = 1000 observations Y1, ...,Y, ~ N(6* I;). We construct split LRT and
cross-fit LRT confidence sets from this sample. Then we test whether # = 0 is in each confidence set. We
repeat this procedure 5000 times at each 6*, and each procedure’s estimated power at 8* is the proportion
of times that 0 ¢ Cy,(«).

As we would expect, the power is higher when 6* is farther from 0. In addition, the classical LRT
has the highest power, followed in order by the subsampling LRT, the cross-fit LRT, and the split LRT.
Interestingly, at d = 1 the subsampling and cross-fit LRT have nearly identical (approximate) power. As
d increases, the difference between the subsampling and cross-fit LRT power increases.
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Fig. 6. Estimated power of classical LRT (black), limiting subsampling LRT (blue), cross-fit LRT (red), and split

LRT (orange). We are testing Ho : 0% = 0 versus H; : 0* # 0 across varying true [|0*||>. We use the standard

normal CDF approximation for the classical and subsampling LRT power calculations, and we use simulations
to estimate the cross-fit and split LRT power.

4. EXAMPLE: HYPOTHESIS TESTING A DOUGHNUT NULL SET

Instead of presenting a simulation which further confirms our theoretical findings, we instead present
here an example of a nontrivial testing problem that appears to be beyond the current reach of our math-
ematical analysis. Below, a procedure based on universal inference can have higher power than a more
standard intersection approach using the classical, exact confidence set, motivating the need for further
study of the pros and cons of such methods.

Suppose we observe an iid sample Y7, ..., Y, ~ N(6*, I;), and we wish to test

Hy : ||0%|| € [0.5,1.0] versus Hy : 6% ¢ [0.5,1.0].

Then ©g = {# € R?: ||6]| € [0.5,1.0]} and ©; = {6 € R? : ||0]| ¢ [0.5,1.0]}. The nonconvex structure
of ®©p makes it unclear how to construct a valid test based on a limiting distribution. Nevertheless, we
can use alternative methods, including universal inference tools, to construct valid hypothesis tests for
Hy : ||0*]] € [0.5,1.0]. We compare three approaches to this test.

Approach 1: Intersect confidence set with ©g. CLRT (o) = {# € © : |0 —Y]|]2 < Ca,d/m} 18 a level
1 — «a confidence set for 0, where c, 4 is the upper o quantile of the X?l distribution. Suppose we reject
H, if and only if CLRT(a) N ©g = ). We can see that this test has valid type I error control. Assume
0* € ©p. Then
Py« {C5X(a) N Qg = B} < Py {6* ¢ CLXT () UO* ¢ Op}
=Po- {6" ¢ C;"" ()}

= .

To implement this test, we need to check whether the intersection CLRT(a) N Qy is empty. First, we set
6P™i to the projection of Y onto ©. That is,
 (osY/FI Yl <05
O =Y Il € [0.5,1.0]
Y/|IY] > 1

Now 6P minimizes 10 — Y| out of all § € Og. So CLRT () N Oy = 0 if and only if gpro; ¢ CIRT(q).
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Approach 2: Subsampled split LRT. To implement the subsampled split LRT, we repeatedly split the
observations into Dy, and Dy . Let 91 . be any parameter estimated on the data in Dy ;. Let g(s)pll;t be the
MLE under Hy, : ||6*| € [0.5,1.0], estimated on the data in Dy ;. Table 1 presents the chosen expression
for :9\1,1, and the MLE expression for gé?ll)it. The subsampled split LRT rejects Hy if B -1 > {,3:1 Upp > 1/a,
where

Unp = Lop(O1s) / LopOF) = ] {rg, Py (Vi) }-
Yi€Do o

Approach 3: Subsampled hybrid LRT. As an alternative to the split LRT, Wasserman et al. (2020)
establish a test based on the reversed information projection (RIPR); also see Griinwald et al. (2020).
We first define the RIPR, following Definition 4.2 of the PhD thesis by Li (1999). Let ) be a dis-
tribution with density ¢, and let Pg be a convex set of densities (or redefine it as its convex hull).
Let Dk (- || -) be the Kullback-Leibler divergence. The RIPR of ¢ onto Pg is a (sub-)density p* such
that for arbitrary sequences p,, in Pe, Dx1.(¢ || pn) — infpeo Dki(q || po) implies log(p,) — log(p*) in
LY(Q). Lemma 4.1 of Li (1999) proves that p* exists and is unique; further, p* satisfies Dxy (¢ || p*) =
infgee Dki(q || po), and if Y ~ ¢, then for all 6 € ©, E,{pg(Y")/p*(Y)} < 1.

Using similar logic to Theorem 1, Wasserman et al. (2020) apply this property to construct a split RIPR
LRT. Let Pg, be the set of all densities in Hy (or its convex hull). Suppose @1 is an estimator constructed
on D;. Let p; be the RIPR of p; onto Pe,. Note that if the true py- € Pe,, then Eg- {p§1 Y)/p5(Y)} =

E5 {pe~(Y)/p}(Y)} < 1. Then a level « hypothesis test rejects Hy if R,, > 1/, where

= I {p; (¥0) / ps(¥0)}-

Y;€Do

This test is valid because if 0* € O, then Py« (R,, > 1/a) < aEy- {pg1 (Y)/p§(Y)} < . Furthermore,
note that the RIPR test statistic will always exceed the split LRT statistic when the two tests use the same
numerator, since the split LRT denominator maximizes the likelihood under Hy on Dy. Thus, the RIPR

test will have higher power than the split LRT. (More generally, one can project pL ° onto P(la ol , but we

omit this discussion for brevity.)

In the doughnut test setting, we let Pg, be the set of all convex combinations of N (6, 1;) densities
such that ||6|| € [0.5, 1]. To implement the subsampled hybrid LRT for this test, we also repeatedly split
the observations into Dy ; and D; ;. Depending on the value of |[Y7 ||, we take one of three approaches:

1. If ||Y1 »|| < 0.5, use the split LRT on the b"* subsample. We define o, b and «9As Pt 45 in Table 1, and the
split LRT statistic is Uy, , = Lo b(01 v)/ Lo, b(/\pht)

2. If HY1 s|| € [0.5,1], set the b subsample’s test statistic to 1.
3. If ||V ]| > 1, use the RIPR LRT on the b subsample. We define 6; 4, and @UPR as in Table 1, and

the RIPR statistic is 12, ;, = Lo b(91 b)/ Lo, b(q{IPR)‘

Theorem 6 defines a valid test based on this approach.

Theorem 6. In the doughnut null hypothesis test setting, assume the subsampled test statistics Uy, j, and
R, 1 < b < B, as defined above. A valid level « test rejects Hy when

B
{UnsL(V15ll < 0.5) + L(V14] € [05,1]) + Rap LVl > 1)} = 1/ar
b=1

|~
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Table 1. Requirements and choices for the numerator and denominator in a single subsample
of the split LRT and RIPR LRT statistics

Method Split LRT RIPR LRT
Restrictions None V1] > 1. (Computational = restriction.
on use RIPR unknown for |[Y1|| = ||01]] < 0.5.)
Numerator pgl , where [9\1 is any parameter fit on D;. p/g\l, where [9\1 is any parameter fit on D;.
Fitted value Choose 01 =Y. Choose 61 =Y.
Denominator PG, where é\o is the MLE under Hy, constructed  pg is the RIPR of i onto Pe,.
from Dy.
Fitted value No choices. No choices.
0.5 (?o/u?ou) Vol < 0.5
R =17y, Vol € 0.5,1]  Since [[61]] > 1, p5 = ps, where 6 =
Vo/lFoll ¢ [[¥oll > 1 O™ = 61/161.

To justify the hybrid approach, recall that the RIPR test will have higher power than the split LRT when
it is possible to implement the RIPR. Based on the construction of 5171,, if [[Y7 ]| > 1, then ||§1’b | >1.In
this setting, the proof of Theorem 6 shows that the density pg, with § = 5171, / Hé\l,bH, is the RIPR of GALb
onto Pg, . On the other hand, it is unclear how to implement the RIPR when ||Y7 || < 0.5, in which case
”gl,bH < 0.5. The hybrid approach allows us to use the RIPR when it is implementable, and it relies on
the split LRT to provide a valid test when the RIPR is not implementable.

Figure 7 shows the simulated power of these three tests of Hy : ||6*| € [0.5,1.0] versus H; : ||6*|| ¢
[0.5, 1.0]. The intersection method and the subsampled hybrid LRT have the highest power. Interestingly,
out of those two methods, the test with higher power varies across dimensions. When d = 2 or d = 1000,
the simulated power of the subsampled hybrid LRT is less than (or equal to) the power of the standard
intersection approach. At the intermediate dimensions of d = 10 and d = 100, the simulated power of
the subsampled hybrid LRT is greater than (or equal to) the power of the standard intersection approach.
The latter two cases show that even in the Gaussian setting, hypothesis tests based on a universal LRT
can have higher power than tests based on the exact confidence set. When ||6*|| < 0.5, the hybrid test
and the split test have approximately the same power. When ||6*|| > 1, the hybrid test has higher power
than the split test. We see that the intersection method always has higher power than the subsampled
split LRT. One might consider whether we could combine the RIPR with the intersection method instead
of combining the RIPR with the split LRT. It is unclear, though, how to construct a valid test from one
approach that uses sample splitting and subsampling (RIPR) and a second approach that uses neither
(intersection).

We can provide a partial theoretical justification for Fig. 7. For one, it is possible to derive an exact
formula for the power of the intersection approach. Using the fact that n||Y]|? follows a non-central 2
distribution, we can write the power of the intersection method in terms of the non-central x?> CDF.
When d = 100 or d = 1000, the hybrid method has no power at ||0*|| = 0, though we would expect
this case to have the highest power out of ||0*|] < 0.5. At d = 100 and ||0*|| = 0, the hybrid method
satisfies ||Y1 || < 0.5 in most simulations, but the test statistic is too small to reject Hy. At d = 1000
and ||0*|| = 0, (n/2)|[Y1,]|* ~ x? is approximately d (Dasgupta & Schulman, 2007, Lemma 2). Hence
Y1) ~ v/2, which means the hybrid approach selects the “incorrect” case of |[Y7 | > 1. This test also
has approximately zero power. See Section S4 of the supplement for more details. In addition, for any
given subsample, the hybrid LRT power is provably greater than or equal to the split LRT power. This
holds because the RIPR test statistic is always larger than the split test statistic when both tests use the
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Fig. 7. Estimated power of Hp : ||0*|| € [0.5,1.0] versus H; : ||6*|| ¢ [0.5, 1.0] using the intersection (black),

subsampled split LRT (blue), and subsampled hybrid LRT (red) methods. In these simulations, we set 6" =

(67,0,...,0). The x-axis is the value of 67 = ||67| for each simulation. For each dimension, the left panel

satisfies ||0*|| < 0.5, and the right panel satisfies ||0*|| > 1. We set a = 0.10 and n = 1000, and we perform
1000 simulations at each value of ||#*||. We subsample B = 100 times.

same numerator (Wasserman et al., 2020). The theoretical justification behind the relative power of the
intersection and subsampled hybrid methods remains an open question, since the power of the latter
method is not easily tractable.

5. DISCUSSION

The recent development of the universal LRT provides a hypothesis testing framework that is valid in
finite samples and does not rely on regularity conditions. We have explored the performance of several
universal LRT variants in the simple but fundamental case of testing for the mean 6" when data arise
from a N (6%, 1;) distribution. We have seen that even in high dimensions or for very small «, the ratio of
the radius of the limiting subsampling universal LRT confidence set over an exact confidence set is less
than 2. While the universal method tests the likelihood ratio against a dimension-independent cutoff, the
universal LRT can still exhibit reasonable performance in high dimensions.

Future research directions may focus on settings where hypothesis tests were previously intractable or
only asymptotically valid. Researchers can apply the universal LRT in any setting where it is possible to
write a likelihood ratio or, more generally, upper bound the maximum likelihood under the null hypoth-
esis. This allows for the development of valid tests for the number of components in mixture models and
for log-concavity of the underlying density. Additionally, we have shown proof of concept that the uni-
versal LRT can be more powerful than existing valid tests. In the Gaussian setting, this phenomenon may
apply more generally across other tests of non-convex null parameter spaces. Wasserman et al. (2020)
also describe how the universal LRT can be used to test independence versus conditional independence
in a Gaussian setting. Recent work by Guo & Richardson (2020) also provides a valid test in that setting,
but the relative power of these two approaches is currently unknown.
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S1. PROOFS OF THEOREMS
Theorem 1. C:""(q) is a valid 100(1 — )% confidence set for 0*. As a consequence (and equiva-
lently), when testing an arbitrary composite null Hy : 0* € ©¢ versus Hy : 6* € © \ O, rejecting Hy
when ©g N C;F lit(a) = ) provides a valid level o hypothesis test. The latter rule reduces to rejecting if
Tn(go) > 1/, where fo € arg maxgpeo, Lo(0) is the null MLE.

Proof. This result is due to Wasserman et al. (2020). To prove this fact, we show that Ep- [T),(6%) | D1] <
1. First, we use only the data in D; to fit a parameter ;. Let M(0) = support(Py) in |Dy|-dimensional
space. We see

~

Lo(61) / [1y,ep, pe
E * D E D = 1 * 1 d 1
o [Tn(07) | D] = Eo- | 7203 ‘ 1] o H Po- (yi)dy;

HyzEDo pe y €Dy
/ 11 25 (vi)dys _/ 11 »; (wi)dy:
(0%) yieDy M(@) e,
iid
= by (yla"'ay'D dy:]-
/M(el) g o)) H Z

yi€Do

Applying Markov’s inequality and the above fact,
Po- (0% ¢ C5PY()) = Pp« (T5(0%) > 1/a) < aEgs[Tn(0%)] = aEgs [Eg+ [Tn(0%) | D1]] <

This shows that 6* € Czplit(a) with probability at least 1 — cv. Alternatively, suppose we want to test
Hy : 0* € ©¢ versus H; : 6* € ©\ ©p. We see that rejecting Hy when ©p N Czpht(oz) = () provides a
valid level a hypothesis test. Under Hy,

Po- {©9 N CPM () = 0} < Ppe {0 ¢ O N CP ()} = Py- {6* ¢ CP(a)} < .
O

Before proving Theorem 2, we establish Lemma 1 and Lemma 2. We draw heavily on finite population
central limit theorem results from Hajek (1960) and Li & Ding (2017). Lemma 1 combines key results
from these two papers and adapts them to our setting.

Lemma 1. Let (D,,)ncon be a sequence of datasets, where D,, = {Yy1,...,Yun} and each Yy; is an
independent observation from N(0*,1;). Let Dy ,, be a sample of n/2 observations from D,,. Define
Y, = % Yo Yo andi_/ovn = % ZYmeDo,n Y,i. As n — oo, \/ﬁ(i_/o,n — 5_/,1) converges in distribution to
N(0, 1;) with probability 1.

Proof. We show a highlight of the proof of Lemma 1, in five steps.

Step 1 (Hajek, 1960): Show that simple random sampling and Poisson sampling approaches produce
the same limiting distributions.

In the notation of Héjek (1960), suppose we have an infinite sequence of simple random sample ex-
periments indexed by v. Experiment v draws a simple random sample of size n, from a population of
size N, given by {Y,1,...,Y,n, }. We assume that n, — oo and N,, — n,, — oo. In the simple random
sampling set-up, a subset s of indices {1, ..., N, } is chosen with probability

else.
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In contrast, in a Poisson sampling approach with mean sample size n,, a subset s is chosen with proba-

bility
n k n N, —k
P == j—— )
0= (5) (%)

We say that each experiment produces a simple random sample (SRS) s;,, and a Poisson sample sy,
such that s,, C si or s C s,,. To construct these samples, we take two steps:

(i) Draw k ~ Binom(N,,n,/N,).

(1) If £ = n, choose SRS s,,, and set s, = s,,.
If £ > n, choose SRS s;, and then let s,, be an SRS of size n from sj.
If & < n, choose SRS s,,, and then let s; be an SRS of size & from s,,.

Using the two samples, we define two random variables:

N = Z(Yuz _}_/u) and 77; = Z(Yuz _Yu)-

1€8n 1ESK

We can show that the variance of 7}, is

N,
D= vaoi) = 7 (1= 57 ) L0
Under the assumption that n,, — oo and N — n,, — co, we can then show that

%2
i B0 = 15)7]
V—00 Dn*

v

= 0. (S1)

Remark 2.1 of Héjek (1960) states that (S1) implies that the limiting distributions of 7, /1/Dn¥ and
n5/+/Dn} are the same if they exist, and they exist under the same conditions. To see this, we use

Chebyshev’s inequality. For € > 0,
» 1 L, — * 1FE L — *\2
p(l 7 < Lvar i) L [(n *m) Jvopo
A /Dn;j A /Dnl, Dny, € Dn

This means that ‘ny //Dni —n/ /Dn;ﬁ! %0. Under this condition, for any distribution W,
M /+/Dnj ~ W if and only if 1} // Dn ~> W.

Since 7} is a sum of independent random variables, it will be easier to work with 1,/ Dn’ than to work
with n, / Dn.

Step 2 (Hajek, 1960): Find conditions such that 1,/ /Dn} ~~ N(0,1). (We can think of 7, as
(n/2)Yo,n —Yy) and Dnj as var(d>r | Bi(Yn —Y5,)) for B; o Bernoulli(1/2).)

Theorem 3.1 in Héjek (1960) is the key result for asymptotic normality. We present an intermediate

result from the proof of Theorem 3.1. _
Let £, = ZiESn , Y, i (Son, =& —nY,.) Let D, be the variance of ,. Let S, be the subset of

Sy, ={1,..., N, } on which the inequality

Y, —Y,| > 7/D¢,
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holds. Suppose that n, — oo and N, — n,, — oo. If
. Eiesw (Ym' _}_/V)Z
lim —
V—00 ZiGSV (Ym _Yy)2
then n,/+/Dnj ~ N(0,1).

We will show that 7, /+/Dn ~~ N (0, 1), and then we can appeal to Step 1’s result. 1)} is the centered
sum of the Poisson sampling terms. We can write 7}, as

=0 foranyT >0, (S2)

N, —
. _ . ~_ } Y,; =Y, with probabilty n,, /N,
M = Z; Cvi, Where Gu; = {0 with probabilty 1 — n,,/N,..
=

In this setting, Lindeberg’s condition for n //Dn ~~ N(0,1) is for all 7 > 0,
1
lim

Ny
b e 3% [ B3 (G Bl > /D) =0
1=
We can show that (S2) implies that the Lindeberg condition is satisfied. Since Step 1 implies that the lim-
iting distribution of 7, //Dn}; must be the same as the limiting distribution of 7} /+/Dn;},, we conclude
that n,,//Dn ~ N(0,1).
Step 3: If d = 1, show that n,,//Dn}, ~ N(0, 1) implies v/n(Yo , —Y5) ~» N(0,1).
This is mostly a matter of adapting Step 2’s result to our setting. When n, /N, = 1/2, n, is the same
random variable as (n/2)(Yo , —Yy,). Using the formula for Dn},
Vil¥on —Ya)  _ (0/2)(Yon—Ya) 4

U
VESL V=Y AT =V VPR

In addition, \/% S (Vi —Y3)2/y/var(Yy;) % 1. By Slutsky’s Theorem, +/n(Yo, —Y,) ~
N(0,1).

Step 4 (Li & Ding, 2017): If Y,,1, ..., Yy, ~ N(6*, 1), show that the condition of Step 2 is satisfied
with probability 1.

These results come from page 2 of the appendix of Li & Ding (2017). The authors show that if the Y,,;s
are iid draws from a superpopulation with 2 + € (e > 0) absolute moments and nonzero variance, then
(1/n) maxi<j<pn(Yni — Yy)? = my,/n — 0 with probability 1. Furthermore, they show that m,, /n — 0
implies their condition (A2), which is a rewriting of Hijek (1960)’s condition (S2).

Since N (0*,1) satisfies the superpopulation conditions, condition (S2) is satisfied with probability 1.
Then following Steps 2 and 3, /n(Yo,, —Y5) ~» N(0,1).

Step 5 (Hajek, 1960): Extend results to d > 1.

In d dimensions, suppose Y1, ..., Yo, ~ N(6%, 1;). Remark 3.2 of Héjek (1960) notes that we can
user the Cramér-Wold device to extend the results to the multivariate case. Let Z = (Z ...,z (d))
represent the N (0, I) distribution. Then for each component, ZU) ~ N (0, 1). By the Cramér-Wold de-

vice, we can say that \/ﬁ(l_/o,n ~Y,) ~ Z if and only if for any A € R, 2?21 )\(j)\/ﬁ(l_/((){i - }_’g )) ~
2?21 NOAO)

For any dimension j, we can think of Yrg), . ,Yn(fl) as draws from a N(6*() 1) superpopulation.
So the superpopulation conditions from Step 4 are satisfied, which means \/ﬁ(l_/é],)1 — 3_/51] )) ~ ZU) We
conclude that \/n(Yo, —Y5,) ~ N(0, Iy). O

~ N(0,1).
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Lemma 2. Assume (Dy,)ncon is a sequence of data sets such that Dy, = {Y,1, Yoo, ..., Yan} with
observations Yp; ”mfl]_\f (0*,14). Let Dy, be a sample of n/2 observations from D,,. Define Y, =
(1/n) 320 Yoi and Yo = (2/0) Xy, cp,, Yni- Let ¢ >0, and let (0,,) be a sequence that satisfies
1Y, — 0u|| < ¢/+/n for all n. Define X,, = ;/ﬁ(}_/om —Y,,). Let Z denote a N (0, 1) random variable.
Then

E |:exp (—ixgxn + ?XE (Yn - en)> \ Dn} —E [exp (—iZTZ—&- ?ZT (Yn - en)> | Dn} =op(1).

Proof. Since (0,,) is chosen such that [[Y,, — ,|| < ¢/+/n, we can re-write 6,, = Y,, + (¢/+/n)vn, where
vy € R satisfies ||vy,|| < 1 for all n.
Define a function f by

3 c
f(xn,v,) = exp (—4:U£xn — 2:r£vn> .

f is clearly a continuous function. We can also show that f is bounded. Define

3 c
— T T
g(Tp,vp) = —7%ntn = 5%nUn

so that f(zy, v,) = exp(g(zn, vy)). We can see that

0 ( ) 3 C set (—)*
—g(Tp, V) = —=xp — —Vy =
is solved by z, = —(c¢/3)vy,. Since g(zn,v,) is concave in x,, g(x,,v,) is maximized at x, =

—(¢/3)vy, for any vy,. Since f(zy, v,) = exp(g(xn, vn)), f(2n, vy) is also maximized at this value of z,
for any v,,. Under the assumption that ||v, || < 1, we see

Thus, f(x,,v,) is a continuous and bounded function.

The claim of Lemma 2 is equivalent to E[f(X,,v,) | Dn] — E[f(Z,v,) | Dn] = op(1). The Port-
manteau Theorem provides several equivalent definitions of convergence in distribution, including that
Xy, ~ Zif and only if E[h(X,,)] — E[h(Z)] for every continuous, bounded function h. We prove the re-
sult on f(X,,, v,) by modifying the Van der Vaart (2000), Chapter 2, proof of this Portmanteau Theorem
result.

Let v > 0. Fix € > 0 such that

€ <7/ (34 3exp(c?/12)). (S3)
Choose a large enough compact rectangle I such that
P(Z¢1I)<e. (S4)

Let B1(0) be the d-dimensional ball of radius 1 centered at 0. By construction, each v,, € B1(0).
Since f is continuous and I x B(0) is compact, f(zy, v,) is uniformly continuous on I x B1(0). We
can thus partition I x B;(0) into J compact regions I; x V; where I x B1(0) = Ule(lj x Vj) such
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that for any j and for any (2,1,vn1), (Tn2, Un2) € I; X Vj, |f(2n1,vn1) — f(Zn2,vn2)| < €. (For in-
stance the I; regions may be rectangles and the V) regions may be rectangles truncated at the bound-
aries of B1(0). These rectangular regions may be appropriately sized such that within a region I; x V},
d((Zn1,vn1), (Tne, vng)) is small enough that | f (2,1, vn1) — f(@n2, vn2)| < €.)

Select a point (2’ from each I; x V;. Define

J? J)

For a given sample D,,, we note that there are (, /2) possible values of X,,, since there are (_ ) o ,) possible

values of Y(),n. We denote the sum over all possible values of X, as > X,

Note that
Elf(Xn,vn) | Dn] = E[fe(Xn,vn) | D ”
" anavn - " fe(Xn,Un)
(n ) T =() 2
-1(,7, ) £ 00) = FolXs 00X € 1) (F (Ko ) = Jo(Xo 01X ¢ )]

= (7”:;2) Z |f(Xna'Un) — fe(Xn,vn)Hl(Xn c I)+
Xn
-1
<n7;2> Z |f(Xn7Un) — fe(Xn;’Un)‘]l(Xn ¢ [)
Xn
-1
= (u1n) o) = el ) 10X € L € Bi(0)+
Xn
-1
<nT/L2> Z |f (X, vpn) — fe(Xn, vn)|L(X,, € 1)
Xn

(Y S e (M) S ¢ 1)
("/2> . <”/ 2) Xn

<e+exp(?/12)P(X, ¢ I | D). (S5)
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Similarly, we show that

[ELf(Z,v0) | Dl ~ ELfe(Z,v0) | il

= [E[(f(Z.0n) = fo(Z,0n)1(Z € D)+ ((Z,00) = [ Z,va))L(Z & 1)

<E[|£(Z.0a) = o Z,on)|UZ € 1) | Da) + B [|1(Z,00) = J(Z,0a)|1(Z ¢ 1) | D

—E Hf(Z, o) — F(Z, )| 1(Z € I, vn € B1(0)) | Dn} +E Hf(Z, o) — F(Zvn)|1(Z ¢ 1) | Dn}
<e+exp(ct/12)P(Z ¢ I | D)

=e+exp(c?/12)P(Z ¢ I)

< e+ eexp(c?/12). (S6)

In addition, we see that

IE [fe(Xn,vn) | D] = E[fe(Z,v0) | Dy |
-1
o) T A Bl )

|
N
3
~
[\V]

J
:<n72> sz )L (X o) € 1 % V) = S F(@l v))B(Z € L)1 (vn € V)
7=1

Xn j=1

n/2> Zf o, ) U(Xy, € ) 1(v, € Vy) = f(2,v))P(Z € ;)1 (v, € V))

VAN

]~
e N
S

~ 3

o

> Zf 2 V) L(Xy € I;) — f(2f, v))P(Z € 1)

j=1
J _
= Z f(:c;,vg) < " ) Z]l(Xn S Ij) —]P)(Z S Ij)
st n/2 i
J
<> [P(Xn €I | Dn) —P(Z € I)| x |f(a,0))]. (S7)
j=1

For the sequence of datasets (Dy,),c2n, Lemma 1 establishes that X,, ~» N (0, I;) with probability 1.
This tells us that with probability 1 over the randomness in sequences (D), )neon, limy, oo P(X,, € I |
D,) =P(Z € I). Since almost sure convergence implies convergence in probability, for any 6 > 0,

lim P(|P(X, €I |Dy)—P(ZeI)|>6) =0 (S8)
and lim P(|P(Xn € I; | Dp) —P(Z € I;)| > 6) =0for1 < j < J. (S9)

The outer probability is over the randomness in the sequences (D, ), con.
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Now we see

lim P(|E[f(Xn,vn) | Dn] — E[f(Z,vy) | Dnl| > )

< lim P(|E[f(Xn,vn) | Da] = E[fe(Xn,vn) | Dul|+
}E{fe(van) | Dp] — E[fe(Z,vn) | DnH+
|E[fe(Z,vn) | Du] = E[f(Z,vn) | Dnl| > )

< lim P(|E[f(Xn,vn) | Dn] = E[fe(Xn, vn) | Du]| > 7/3)+

nan;oIP(]E fe(Xn,vn) | D] = E[fe(Z,vn) | Dl > 7/3)+
Tim P(E[fe(Z,va) | Da) — E[f(Z,va) | Dal] > 7/3)
< nlLIEOP(e +exp(?/12)P(X,, ¢ I | D) > 7v/3) + l1m P(e+ eexp(c?/12) > v/3)+

n—oo

J

lim P (Z |P(X, € I; | D) — P(Z € Ij)| x | f(a),0))| > 7/3) by (S5), (S6), and (S7)
j=1

= lim IP’(e +exp(c?/12)P(X,, ¢ I | Dy) > 7/3)+

hmP(ZUPX €I | D) —P(Z € Ij)| x | f(a),] >’y/3) by (S3)

n—oo 1
J
< lim P(e + exp(c?/12) (P(X, ¢ I | Dy) —P(Z ¢ 1)) > v/3 — exp(c*/12)P(Z ¢ 1))+
n oo

J

nliggozl?’ (IP(Xn € I | D) = P(Z € I;)| > (v/3)1f (2, 0))|7)
j=1

< lim P (e + exp(c?/12)(P(X,, € I | D) —P(Z ¢ 1)) > /3 — eexp(c*/12)) by (S4) and (S9)

— J€E — IEEX C2
= Jim P (P(X" ¢11D) Pz gD > 1" exs(c2/li(2) /12)>

= 0 by (S3) and (S8).

We have shown that for arbitrary v > 0,

lim P(|E[f(Xn,vn) | Dn] —E[f(Z,vn) | Du]| > ) =0.

n—oo
We conclude that E[f(X,,,v,) | Dyn] — E[f(Z,v) | Dn] = op(1). O
Theorem 2. Assume we have a sequence of datasets (Dy)ncon, where Dy, = {Yn1, ..., Yo} and

each Yy; is an independent observation from N(0*,1;). Let Dy, be a sample of n/2 observations
from Dy, and let D1y, = Dy\Do . Define Yy, = (1/n) 31 Yoi, Yo = (2/7) Xy, ep,, Ynir and
Yin = (2/n) Yv..ep,, Yni- Let ¢ >0, and let (0,,) be a sequence that satisfies IV, — 0l < ¢//n

for all n. Then
_ d/2
E{T(6.) | Du} / {exp (3517 - 0u12) (2) } 1+ op(1).
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Proof. Define X,, = \/n(Yo., —Y,) and let Z ~ N(0, I). In addition, define /i, = (v/n/5) (Y — 0r)
and Q2 = (2/5)1,. Then

3n 2\*?
BIT.0,) 12,1/ {exp (17, - 0u?) ()
n,< n = 2\ %2
= E [exp (= 2Fon Pl + 2 [Fon - 0 ||)|Dn}/{exp(m|n—enn2) (%) }
3n, = 2 2 —d/2
[ = 27, + 5 T = 017 1 2,] exp (~ 3017 - 1) (2)

(-
—a/2
-E [exp ( nlYom —Yal? + —HYO n=Yn +Y, — 0, ) | Dn] exp (—%H?n - 971“2) (%)

- 3 . A o (= 9\ —4/2
=& [oxp (X0, 4 X (7 - 00) ) 12] e (g5 70— 1) (2)
- [exp (—éxfxn + %X{ (_n _ en)> | Dn} JE [exp (—gZTZ i @ZT (17” _ en)> | Dn} (S10)

=1+ op(1). (S11)

Step (S10) holds because

E {exp (—ZZTZ + %ZT (?n _ en)) | Dn}
= /Rd [WW exp (—%ZTZ) exp <_%ZTZ + ?ZT ()_/n - Qn)> ] dz
:/Rd [Wexp (%szJrgz (V. 0 ))
1

_ 1/2 4+ 71 o To-1/, n. 2
=19 /Rd (zﬂ)d/2|Q|1/2exp( 2(2 pn) 2 (2 ﬂn)+20||yn gn”)]dz (812)

= exp (357 = 017 10272

= oxp (27— 0u) (Q)M.

dz




Step (S12) uses the following equality:

szTer ?zT(l_/n —6n)
:_g{fz_g%ﬁz%if—@)+§%dz—ewsz_e@_7%da_emT@z_em
= (L F ) (- LT 0) 4 g T
=3 (- LF - 00) (3) (- L 00) + P00l
= 5= )T e = ) 5 [V — Ol
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To justify step (S11), note that E {exp <—%ZTZ + @ZT <1_/n — 6n>) \ Dn}, which equals
exp <2ﬂ0\|1_/n - 9n‘|2) (%)dﬂ, is bounded between (2/5)%?2 and exp(c?/20)(2/5)%? under the assump-

tion that ||[Y,, — 0,|| < ¢/\/n. By Lemma 2,

E |:exp (ix{xn + ?x{ (Yn en)> \ Dn} —E [exp <iZTz+ ?ZT (Y en)> \ Dn} =op(1).

Combining these two facts, we conclude that

E [exp <3X5Xn + @XZ (Yo - en)> | Dn] /E |:exp <3ZTZ+ ?ZT (Yn - en)> | Dn} =1+o0p(1).

4 2 4

Theorem 3. Let Yy, ...,Y, ~ N(0*%, I,). The splitting proportion that minimizes E[r?{C

/42 + 8dlog (L) — 2d
a 4log (é) '

Proof. Recall that pg represents the proportion of observations that we place in Dy.
We know that

pp =1

— 1
Yo~ N <9*, Var = Id>
npo

= 1
Yi~N|(0 Var= ———1,
' < n(1 —po) d)

Since all observations in Dy and D; are mutually independent, this implies

— — 1 1
YoV, ~N <0, ( + ) Id>
npo  n(l—po)

and, hence,

( ! +1)>1/2 (Yo-¥1) ~ N (0, 10).

npo - n(l—po

(S13)
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‘We now see

2

- - 1 1 1 1 -z
Fo-1il? = ( +)H(+) Fo—T)

npo  n(l—po) npo (1l —po)

1 1 )
i - . S14
(npo + (1 _p0)> Xd (S14)

1S

When py = %, this expression is % X?l’ as shown in the derivation of equation 7.
Setting 1 =Y, atd € R4 we construct the test statistic:

1y - Doy exp (S50 =007 (%~ 00)
n\Y) = [Iv.en, exp (—2(Yoi — )T (Yo; — 0))

—ep [ 30 (-i(?o V@ - V1) + 5o~ 6) (o - e))
Yo:€Do

npo., 5 npo 5
= exp (=22 I¥o — V1|2 + T2 Yo — 0]

Using a split proportion of pg, the split LRT confidence set is now

S
m
@

| _ _ _ 1
C’tht —10co:exp (_@HYO _Y1||2 + @HYQ — 9||2) < —
2 2 N

o _ 1

—{oeo: -y, —vy? + Oy, - 0)2 < log ( —

2 2 “

_ 1 V. _V

_ {9 €0 : ¥y — 0]> < log <a> + 5 ¥ _Yl”Q}

— 2 1 — —
Yo — 0> < —log () + Yo —Y1||2}
npo o

The squared radius is thus R%(CSP™) = n%o log (1) +|[Yy —Y1|[%. By (S14), the expected squared
radius at a given value of pg is

7( )—ilo 1 + L—F# d
PO = pe 7 \a npo  n(l—po)/)
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We can now minimize this function:
0 -2 1 d d
0% “r(py) = —5lo <> -
Opo (po) np? &\ & npt  n(l—po)?
3

1
0= —2(1 - po)*log <a> = d(1 = po)” + dpg

(0%

1
= —2(1 — 2pg + p}) log < > —d(1 —2po + p3) + dpd

1 1 1
= —2log <a> ~+ 4pg log <a) — 2p(2) log <a> —d+ 2dpg — dpg + dpg

(D) on () ) () )

This is now a quadratic expression in pg. Thus, this formula is solved by

—4log (L) — 24/ (41og (2) +2d)* — 4 (~21og (1)) (~2log (1) — d)
2 (—2log (}))
4log (1) + 2d + \/4d2 +8dlog (1)
- 1log (1)

‘We now consider the + choice. In the + direction, we have

Po =

Alog (L) +2d+ \/4d2 + Sdlog (1) 20+ /4d2 + 8d log (L)

po 4log (é) 4log (é)
However, in the — direction, we can show that py € (3, 1). We note that
1 1 1\\?
2d < \[4d? +8dlog | — ) < 4/4d? +8dlog | — ) +4 (log | —
a a a
1)\ 1
= 2d+2log | — =2d+2log | — ).
« (6%
So
20—\ /4d2 + 8d log (L) 9 — 2
po=1+ T < —v =1
4log (E) 4log (E)
and
. 2d — /4 + 8dlog (1) Ly 22y (d) 11
Po= 4log (é) 4log (é) B 2 2

This means that

V42 + 8dlog (1) — 2d
a 4log (é)

Py =1
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optimizes 7(pg), and p§ € (%, 1). Furthermore, this optimum must be a minimum, since for any pg €
(0,1),

0?2 (7o) 41 <1>+2d+ 2d -0
——5 r(po) = —5log | — —+ 3 >0.
opt npj a)  npd  n(l—p)?

We can use L’Hopital’s Rule to show that pj — % as d — oo:

o _\/4a2 +8dlog (1) — 2d
dlggopo =1- dlggo 4log (%)
1 b V4 -+ (8/d)log (1/a) — 2
d—ro0 (4/d)log(1/cv)
1 (44 (8/d)log(1/a))""* (=8/d?)log(1/)

=1-1
dvos (—4/d?)log(1/c)
—1— lim (4+ (8/d)log(1/a))*/?
d—o0
1
2
We conclude that as d — oo for fixed «, the optimal choice of pj — 0.5. O

Theorem 4. Suppose Y1,...,Y, are iid observations from N(0*,1;). Split the sample such that D

and D1 each contain % observations. Use Dy and D; to define the split and cross-fit sets. Then

Volume{CEF ()} < Volume{C""(c)}. Equality holds only when Yy =Y.
Proof. Let § € CS¥ (). Then

n,.os o n, =
exp (—5 Vo~ V1[* + ZI¥ - 6]

n,—- = n|l,= 1=
= —— Yo -Y1 P+~ ||=(Yo—0)+ = (Y1 — 0
exp( 1Yo 1H+4H2(o )+ 501 -0)

n,.os o n, = n,=
< exp (5o = Y1I? + S Vo — 02 + S I¥1 — 6] (S15)

- W =Y 12+ Ve — 012 = Y, — Y12 - 2y — )2
= exp (—5[[Vo = Y1[1? + £ I¥o - 01 = ZI¥o — Va1 + S V1 - 6])

1 n — — n . —
<z Yo =2 —Y—GQ)
_ZIGXP( 4|| 0o — Y1 +4|| 0o—0]7)+

n.= = n.<
exp (=5 Vo = V1|2 + 2 V1 — 0]1?) (S16)
1
< —.
«
Line (S15) holds because || - ||? is convex. Line (S16) holds because exp(-) is convex. Thus,
CSF(a) C {9 cO: |y —9|2< Llog(L) + Yo —}_/1||2}, which has the same volume as CjP™" (o) =

{9 cO:|IYo—0|?< Llog (1) + Yo —}_/1||2}. Hence, Vol (C5F () < Vol (C’me(a)>.
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Furthermore, since || -||? and exp(-) are strictly convex, equality holds in (S15) and (S16) only
whenYy =Y. If Yy =Yy, then CSF(a) = {0 cO: |y —9|2< rem3 log(L) + Yo —3_/1“2}, which

means Vol (CSF () = Vol <C’me(a)). O

Theorem 5. Assume cq 4+ log(a) > d — 2. Let fq(z) be the probability density function of the x3
distribution, and let c,, q be the upper o quantile of the X?l distribution. Then

P [r2{C"(a)}/r{C(a)} < 4] 21— a —log(1/a) fa{ca,a + log(a)}
and P [rz{Cgpli’(a)}/TQ{C'f;RT(a)} <4] <1-a—log(l/a)fi(caq)

Proof. We use the fact that 2(Cy" () = Llog(1/a) + Yo —Y1||2. As established in the proof of

Theorem 3 and the derivation of equation 7, we know that [V — Y7 ||? 4 (4/n)x%. Let X ~ x2. Note
that log(a)) < 0. Then

P ((C" @) /(@) < 4) =P (7O (@) < e

4 4 4
=P ( log(1/a) + —X < Ca,d)
n n n

=P (log(l/a) + X < ¢ a)

=P(X < cqa +log(a))

= ]P)(X < Coz,d) - P(Coz,d + log(a) <X < Ca,d)
=1—a—P(cqq+log(a) <X <caq).

Now we need to bound P(c, g + log(a) < X < ¢q4). Under the assumed conditions, we show that the
x5 pdf is decreasing on [cq. 4 + log(a), ca.q)- Let fa(z) be the X pdf. The following five statements are
equivalent:

0
1 d Ve 1
Z 9 /2—2 —x/2 -1 =~ —x/2
0>2d/2P(d/2) [(2 )x e +x 26

1 d
d/2—-1 [ = —x/2 Z d/2-2_—x/2

Tz d
—>—-—1
27 2
z>d—2

By our initial assumption, ¢, 4 + log(c) > d — 2. Thus, fq(x) is decreasing on [cq q + log(a), ¢ d)-
Since the interval has length log(1/«),

log(1/a)fa(caa) < P(caa+log(a) <X <caq) < log(l/a)fi(caq +log(a)).

The bounds on P <r2(C’tht(a)) /2 (CHRT () < 4) follow immediately. O

Before proving Theorem 6, we establish Lemma 3 and Lemma 4.
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Lemma 3. Assume the doughnut null test setting. Let Peo, be the set of all convex combinations of
N(0, 14) densities such that ||0|| € [0.5,1]. When |Y1]| > 1 and 6, =Y, the RIPR of pg, onto Pe, is

Pg, 16,1

Proof. Suppose |[Y1] > 1. Defining 6, =Y, as in Table 1, \\§1|| > 1. The RIPR of 6; onto the
convex set Pg, minimizes Dk ( §1Hp0) out of all densities py € Pg,. Suppose pg € Pe,. Then

we can write pg as a mixture of N (6, I;) densities. We write py = Zle wipe,, Where K € N,
fo:l wi =1, and for each k=1,...,K, 0 <w, <1 and ||f;] € [0.5,1]. Note that o, 161 €

Po. To prove that DKL(pg1 | p51/||51||) = infp,epq, Dy ( % Il po), we show DKL(p§1 ”pa/lla\\) <
K
Dxr(pg, || 2ok=1 wkpa,)-

K
D <p51 H ;wkp9k> - Dx (v, 173,13,
5 (Y) > ()
= ~ () log | — 2" ) dy — ~ (y)log [ 7 ) g
/Rd 5. W) g<2£(:1wkp0k(y)> y /Rd 5. W) g(pgl/”al(y)) y
P5, /15, W) )
= lo
/Rd i) g<2k 1 WkPo,, ()
_ Sy kpek(y)>
= — lo
/Rd L) g( P5, /15 W)
= -Ej, [log{Zk 1wkp0’“ }
P Y

~logEj { —Zk:l Wi, (9) } (S17)

P5, pjany W)

— 1 oE- ) Poy)

- lglz Hs {p91/91||(y)}]

> —log{Zwk(l)} (S18)
k=1

=0.

v
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(S17) holds by Jensen’s inequality. (S18) holds by the following derivation:

Eg{ po,, (¥) }
' pei/u%u(y)
1, o~ o (—3ly—0kl?)
Gz e (5l A L
a (27) exp (=L ly — 61/16111]12)

1 ~ o~~~
= — sy = 91“2_*”21_01"1‘01_9]@”2 *Hy—91+91—91/|l91\\|l2 dy
Rd( )d/2 2

1 1 ~ ~ 1~ N ps
= Sa7z OXP — =lly =61l — (y = 01)" (61 — Ok) — 51161 — Ok[l* + (y — 61)" (61 — 61/161 )+
ra (27) 2 2

1 ~ ~ o~
5\\91 - 91/91||2>dy

Il
I

Xp

~ o~ 1,~ 1 1 ~ ~ ~
01— 01/61]|12 = =161 — 6 2) . (_7 — 601 — 070, —0,/]0 )d
161 — 01 /1161l 2H 1 — Okl i exp 2IIy 11"+ (y = 01)" (0x — 61/|611) ) dy

Il
o

o o~ o~ 1 ~ ~ ~ o~
xp ( =101 — 61/1161 ][] — Sler = 9k\|2) Es [exp { (y — 01)7 (0 — 01/11611) }]

Il
o

~ ~ o~ 1 ~ ~ o~ ~ o~
xp (1161 =01 /10 117 = S 1161 — 01> — 0F (05 91/||91H)) E;. [exp {6k — 61/[1611) v }]

~ o~ o~ 1 ~ ~ o~ ~ o~ 1 ~ o~
182 = 82/ B 1 = 5162 = 6l ~ T @1 — 81 /1831 ) exo { G (00 — B/ 1) + 5 0% — /1 1P }

Il
@

Xp

Il
o

~ o~ o~ 1 ~ 1 ~ o~
xp ( =110 = 01/11611111* — SlIor - Ol + 516k — 91/|I91Hll2)

N~ NI NIE NDIR ND= N

~ ~ lop~  ~ 1 ~ 1
163117 — 8761 /181 + 07 01 /16111 — S 11611 + 67 0 — - 10w[1°+

Il
@
%
kS

o~ /N /o~ —~

1 ~ Loy~ o~
S 10112 = 0701/ 101 | + 2@?91/91”2)

= exp (6701/116:(1> — 67 61/(162 | — 6701 /1161 ]| + 67 0, )

= exp { (01/1101] — 00)T (B1/1101] - 0x) }
< exp(0) (S19)
=1.

To justify (S19), note that
(01101 = 80)7 @1/ 181 = 00) = |81/18111 = B | |91/ 1811 - 6 |cost)

where 7 is the angle between 91/||01H — 6, and 91/H91|| — 0. Recall that ©g is a spherical region,
10k]| € 0.5, 1], H91 | > 1, and 01/||t91 || is on the outer border of ©p. Thus, v will always be between 90°
and 270°. (See Fig. S1.) This implies that (91/||01H - 91) (91/|]91H —0;) <0. O

Lemma 4. Assume the doughnut null test setting. Let Ry, = [[y.cp, {p61( )/p91/H91||( i)} If0* € ©,
then Eg-{ R, 1(||Y1] > 1) | D1} < I(||Y1] > 1).
Proof. If Dy satisfies ||Y;]| < 1, then
Eg-{RpL([Y1] > 1) [ D1} = 0 = 1(|V3]| > 1).
Now suppose D; satisfies ||[Y1]| > 1. Then ||§1 | > 1, and P4, 161 is the RIPR of p;. onto the convex
set of densities Pg,,, as proved in Lemma 3. Since 6* € Oy, 6, € ©1, and g, ] is the RIPR of s,
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0.5

0.0

-1.0 -0.5 0.0 05 1.0 15

Fig. S1. Lemma 3 companion diagram. The angle between 51/||§1 = 0 and 51/H§1 | — s
must be between 90° and 270°.

onto Pg,, we know Eg- {pé\1 (Y)/ P, /1u] (Y)} < 1, as explained under Approach 3: Subsampled hybrid
LRT. So

Eg{Ra1(IV1]l > 1) | D1} = Eo- | [T {p5, (¥0)/05, 5, (Y}
Y, €Dy

Theorem 6. In the doughnut null hypothesis test setting, assume the subsampled test statistics Uy, , =
Lo b(91 b) / Lop(0 Spl”) and Ry, = Ly b(91 b) / Lo, b(/mpR) 1 < b < B. The test that rejects Hy when

B

1 —
= { UL (IV10ll < 0.5) + (V14 € 0.5, 1)) + R (V1] > 1)} = 1/a
b=1

is a valid level « test.
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Proof. Assume 6* € Og. The probability of falsely rejecting Hy is

Py-

B

1 — — —

5 O { UL (V10 < 05) + 1(F 10l € [0.5,1]) + Rap (¥ 16l] > D} = 1/
b=1

< aEg- % ZB: {Un,bﬂ(n?l,bn < 0.5) + 1(|[V 1l €[0.5,1]) + R p1(|[V10] > 1)}]
1 bZI
< aEgs BZ{TM 1|Vl < 0.5) + L([¥14]| € [0.5,1]) + Rup (V1] > 1)}] (S20)
— ag- {Tn(e* (IY1] < 0.5) + L(|[Y1] € [0.5,1]) + RaL(|Y1]| > 1)}
= aBo [Eo {T(0")1(IV1]l < 0.5) | D1 }| + aPo- (V]| € [0.5,1]) + aBo- [Eo- { RuL(|¥1]l > 1) | D1 }]
< oo+ [1(IV1] < 0.5)Eo- {T(6") | Di}] + aPo- (IV1]] € [0.5,1]) + aEo- {1(IV1] > 1)} (s21)
< aIEg*{]l HYIH < 0.5)} + aIPQ*(||Y1|| S [0.57 1]) + ozIPg*{]l(HYlH > 1)} (S22)

o {Po- (V1] < 0.5) + Po- (IV1]] € [0.5,1]) + Po- (V1] > 1)}

= Q.

(S20) holds because %plljit = arg max L (6). Since 0* € Oy,
’ USISH)

Unp = Lop(01)/ Lo, b(ﬁpht) < Lop(01)/Lop(07) = T p(67).

(S21) holds by Lemma 4. (S22) holds because Egy«{T,,(0*) | D1} < 1, as established by Theorem 1. [

S2. DERIVATIONS OF EQUATIONS
Derivation of Equation 1. The usual likelihood ratio confidence set for #* € R? is given by

CLRT () = {9 € 0:2log LX) < ca,d} ,

where ¢, g is the upper o quantile of the X?l distribution. Y is the sample mean of the Y; observations,
and it is also the MLE estimate for §*. We re-write this confidence set such that the squared radius of the
set is apparent.
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=Y (- -V V) + (VY 0T (Y -V +V - 0))
=1
= znj (— (Y =)' (Vi =Y) + (Y; = V) (Vi = Y)+
=1
20, -V = 0) + (Y = )T (Y - 9))
=n|Y — 0|,

The final step holds because the first two terms cancel and the summation over the third term equals 0.
Therefore,

<$”uo:{ee@4w—ﬂﬁngh@.

Derivation of Equation 2. Let 51 = }_/1 be the sample mean of the n/2 observations in D;. Where

~

~ Lo(bh)
C Lo(0)

T, (0)
the universal confidence set using the split likelihood ratio statistic is

cgmm):{aeewmw)<l}.

(67

We also re-write this confidence set such that the squared radius of the set is apparent.
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My, ep, exp ( 1 (Yoi — 01)7 (Yo — a1))
Iy, ep, exp (— 5 (Yoi — 0)T (Yo; — 0))

—exp( Z

Y;€Dg

_exp< >

Y;€Dg

T.(0) =

1 -1 -
_E(YOi_Yl) (Yos — Y1)+§(Y()i—9) (YOZ‘—@))>

7N

(Yoi — Yo +Y0—Y1) (Ym‘—?o +§_/0—3_/1)+

DN =

(Yoi — YO +Y0 *9) (Yo: 7}_/0 +17o 9)))

A N | = VRS

% [(Ym ?U)T(Yoi —370) + 2(Yo; _)_/O)T(}_/O —371) + 0_/0 —371)T(570 —3_/1)] +

s

Y;€Dg

N | —

[(Yoi = Vo) (Y()i}_/o)JrQ(YOi?o)T(?o9)+(5709)T(1709)]>> (823)

l\')\»—t

— exp (YZD ( Vo -V (¥o —V1) + %(Yofé)) (Y00)>)

= exp (— 5 I¥o — V2l + ZI¥o — 01) - (S24)

The first and fourth terms of (S23) cancel, and the cross-product terms equal 0 upon taking the summa-
tion. (S24) holds because D contains % elements. Therefore,

O () = {9 €0 :T,(0) < 1}

(0%

n.-= = n, - 1
0 €0 :exp (—lVo — V1|2 + ¥ - 0]) < }

Q

ATV TD B LT D) 1
b e: "Vl + Lo - o <1og(a)}

n, = 1 n.- =
c—|[Yo —0]* <log { — | + —|[Yo —Y1|?
T - 017 <tog (1) + ¥ - T

S
m
@

Il
— " =
>
m
@

_ 4 1 _
: HYO — 9“2 < *10g () + ”YQ —Y1H2} .
n (6
]

Derivation of Equation 7. From the statement of CiP'™(a), we see that r2(C5P™(a)) = Llog(1/a) +
Yo — Y1 |2 Note that

2 2

9 n/2 4 n/2 4

el > d

Yo —Y1|? = EE (Yo = Yu)| =~ f§ (Yoi — Y1;) fxd
=1

To see why the last step holds, note that Y7, .. Y id N (0%, 1;). So for any i, Yp; — Y7, id N(0,21y).

Then Z”/2(YOZ Y1) ud N (0,%(214)), and f ZR/Q(YOZ' —Yu) ud N(0,1;). This implies that

r2(C5P () £ Llog(1/a) + Lx2. Therefore, E[r2(CiP™"(a))] = 4 log (1) + 4d. O
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Derivation of Equation 9. From equation 8, we know that

. r2(c,ipli‘(a))] _ 4log(1/a) +4d.

r2(CFR () Ca,d

Ford > 1 and o € (0, 1), Inglot (2010) shows the upper bound

1 1
Ca,d < d+2log <a> + 24 /dlog (a)

Also, for d > 2 and o < 0.17, Inglot (2010) shows the lower bound

1 )
Cad > d+ 2log <) - —.
’ « 2
Combining these facts, we see that for d > 2 and o < 0.17,

r2(czpli‘(a))] _ _4log(1/a) +4d

4log(l/a) + 4d
sl sE r2(CERT (o)) | — 2log(1/a)—|—d—%'

2log(1l/a) +d+24/dlog(l/a) —

Derivation of Equation 10. From equation 8, we know that

r2(CP" (@) | 4log(1/a) + 4d
r2(CER () | Cad '

E

The lower bound of equation 10 is the same as the lower bound from equation 9. We consider the upper

bound. Suppose d =1 and a < exp (—5(1%@)) Let t = =2+ /5 + 2log(1/a). We will show that

Ca,1 > t2 in several steps:

Step 1: Show that t2 + 4t — 2 < 2log(1/a).

244t —2= (—2 +/5+ 210g(1/a))2 +4(—2+ /5 +2log(1/a)) — 2

=4 —4/5+2log(1/a) + 5+ 2log(1/a) — 8+ 44/5+ 2log(1/a) — 2
=2log(l/a) — 1
< 2log(1/a).

Step 2: Show that log(1/a) > % + 2log(t) + log(+v/2m). Starting with the result from Step 1,

2
log(1/a) > 5 T 2t — 1

t2

> 5 +2(log(t)+1) —1 since t > log(t) + 1 fort > 0
2

=5t 2log(t) +1
2

t
>3 + 2log(t) + log(v2m).
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Step 3: Show that t2 — 1> t. We start by showing that ¢t > %(1 + \/5) follows from our definitions of ¢

and a:
agem)<_ﬂ1+\ﬁﬂ>

4
— ;Zexp<<1zf)>
— 8log(1/a) > 10(1 + V/5)

— 20 + 8log(1/a) > 30 4+ 10v/5

— (5+210g(1/a)) > 25+ 10v5+5
= 5+ 2log(l/a) > 5+\[

— —4+2y5+2log(l/a) > 1+

— —2+/5+2log(1l/a)> %(1+\f5)

— t

v

1
5(1+\/5).

The roots of the convex function t2 —¢ — 1 are at ¢ = (1 £+/5)/2. At t > (1/2)(1 + /5), we know
—1>1

Step 4: Show that t? < ¢, 1. Starting with the results of steps 2 and 3,

log(t? — 1) — t2/2 — log(v/2m) > log(t? — 1) + 2log(t) + log(c)
> 3log(t) + log(w).

Exponentiating,

(t* — 1) exp (—t*/2) (\/12?> > t3a.
So

<1 t13>exp( 2/2)<\/127r>2a.

If Z ~ N(0,1) and X = Z2 ~ x2, then using an inequality on P(Z > t) from Polland (2015),
1 1 1
P(X >t =2P(Z>t)>P(Z>t)> (- 2/2) | —= ) > a.
(X=®) =222 0>Pz 20> (1-5)ew(-2/2) (=) 2a

This implies that ¢, 1 > t? = 2log(1/a) + 9 — 4,/5 + 21log(1/a). We conclude that ford = 1 and a <
oxp (3000
4 Y

4log(1/a) + 4d - T‘Q(C’Split(a)) _ Alog(1/a) + 4d
2log(1/a) +d + 24/dlog(1/c) r2(CHRT(a)) | ~ 2log(1/a) + 9 — 4/5 + 2log(1/a)

O
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Derivation of Equation 12. The usual LRT set is

CE¥(a) = {9 € ©: |V~ 0] < cau /),

where c, 4 is the upper a quantile of the X?i distribution. Suppose we are testing Hg : * = 0 versus
H;y : 6 # 0. The power of the usual LRT at the true 6* is thus

Power(CHRT(a); %) = Py- <||37||2 > C%d/n) :

We can express the power function of the usual LRT in terms of the CDF of a noncentral x? distribution.
Let us denote 60* = (67, ..., 0}). We see that

n 2 d n 2
1 Z Z 1 Z
% i=1 Y; - j=1 <\/ﬁ =1 Kj) ‘

For each dimension j, n /2 3, ¥;; ~ N(0}+/n, 1). So this follows a non-central x* distribution given
by

nllY]|* =

d
= d * d *
nllYIP S X2 (df =d, A=Y n(07)* | =x*(df =d, X =n|0*]?).

Let ®(-) represent the standard normal CDF. Suppose X ~ x%(df = d, A = n||0*||?). As d — oo or
as A — oo, it holds that

— (d+n[l6"]?)
2(d + 2n[|0]?)

~ N(0,1).

See Chun & Shapiro (2009). Using the Normal approximation to the non-central chi-squared CDF, the
power of the usual LRT is

Power(CLRT (o P@*(HYH2:>cad/n)
—-P9*<nH?H2:>cad>
n[[Y]? —d —n6*|? _ Cad—d—n|o"|?
2(d + 2n[|6°]?) 2(d+ 2n]|0° )
. q)(cad— —n||9*||2>
2(d + 2nl|6*(|?)

— & Cl—l- n||9*||2 — Ca,d
2(d + 2n)|0*2) )

Derivation of Equation 13. Using methods from the derivation of equation 12, we can find a representa-
tion for the approximate power of the limiting subsampling LRT set as B — co. From equation 4,

‘ _ 10 5\¥% 1
subsplit ~?0 Y — 6 2 1 = il
C ) { co: 702 < g (2) L

O]
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So the power of the limit of subsampling LRT is

subsplit * 1712 10 5 vz 1
Power(C)"™P" (a); 0) = Py« | n|]Y]|* > ?log 3 o

— B <nHl7H2 —d—nle"|?  (10/3)l0g (5/2)74(1/) —d—n|re*||2)
V2(d +2n0%)2) V/2(d + 2nl|0%||?)

1 10 5\%? 1
~ ® d + nl|0*]|> — =1 <> = .
( 2(d+2n|9*|y2)< Pl = Og( 2]

S3. SIMULATED CROSS-FIT SETS WITH VARYING pg

In the split LRT case, the optimal split proportion p;; (established in Theorem 3) converges to 0.5
as d — oo. This optimal split proportion minimizes the expected squared radius. Under general py, the
cross-fit set is defined as

CF(a) = {ae@:;

npo .o o npo <
exp (=22 Vo = Va2 + 22 Vo — 0]17) +

n(l — s =S n(l — = 1
exp (P22 7 -2 4 M2 —0|!2>] < a}.

Noting the symmetry of the set CSF (), we conjecture that pg = 0.5 will minimize the expected squared
diameter of the cross-fit set. Figure S2 presents examples of cross-fit sets at varying py on a single sample
of 1000 observations simulated from a NV (6, I,) distribution. We see that the regions with py € {0.5,0.7}
have smaller diameters than the regions with py € {0.1,0.3,0.9}.

S4. POWER OF TESTS OF Hy : ||6*| € [0.5,1]
S4.1. Exact Formula for Power of Intersection Test

In section 4, we present hypothesis tests for Hy : ||0*|| € [0.5,1] versus H; : ||0*| ¢ [0.5,1]. The
power of the intersection method that we present is tractable. We derive a formula for the intersec-
tion method’s power at 6*. From the intersection method’s description, we reject Hy if and only if

CERT () N (81\So.5) = 0, where CLRT (o) = {9 €O 0-Y|2< ca,d/n}. This is equivalent to re-
jecting Hy if and only if GPr ¢ CLRT(q), where
0.5Y/[Y[| - Y] <05

groi = Jy Y] € [0.5,1.0] -
Y/IV]| Y] > 1

In Case 2, we have |[Y|| € [0.5, 1. In this setting, it is always true that gproi = }_i € CIRT(a). So we
will never reject Hy in this case. We consider Case 1 (|[Y]| < 0.5) and Case 3 (||Y]| > 1). For ||0*| ¢
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Fig. S2. Simulated cross-fit regions at varying po, using a single data sample.
[0.5, 1.0], the power is given by

- — —112 —
Power(6*) = Py <HY/HYH —YH > caa/n, Y] > 1> +

— — 12 _
PG* <H05Y/||YH 7YH > Ca’d/n’ ||YH < 05> .

We know that n|[Y]|2 ~ x2(df = d, A = n||0*||2). We will use this fact to write Power(6*) in terms of
this non-central x> CDF.

Case 1. Note that

o2 Y'Y Yy
H0-5Y/HYH—YH =2
4y 2|y

— - — 1\?
HIFIP = 3 - 171+ 1712 = (17 - 5)



Then we write

[ — —112 —
Ps- <H0.5Y/HYH Y| > caafn, ¥l < 1/2)

= Py <<|p7|| = 1/2)2 > caa/n, Y] < 1/2>
=By (1/2= V] > (caa/m)"/2, V] < 1/2)
=Py (V) < 1/2 = (caa/m)2, |V < 1/2)
=By (V] < 1/2 = (caua/m)"/?)

= 1(caa/n < 1/4) P (I¥]] < 1/2 = (caa/m)/?)

=1 (n > 4cq,q) Po- (]}_/HZ <1/4—\/cad/n+ ca,d/n>
=1 (n > 4cq,q) Po- (nH}_/HZ <n/4— \/ncad+ ca,d)

1 (n > 4Ca,d) Fd,nHG*H? (n/4 — \/NCa,d + Ca,d) ,
where F}; 9+ |2 is the non-central x*(df = d, X = n||0*||*) CDF.

Case 3. Note that

_ _ _e Y'Y Yy
[/ -7 = |-Y|’,” - 2”%

Then we write

[ — —112 —
Py- (HY/HYH Y| > caa/n, I¥1 > 1>

~ o ((I71-1)" > coaf, 1717 > 1)
=Py (V] = 1> (caa/n)%, V]2 > 1)
=Po- (JIV] > 1+ (caa/m)"2, [VI? > 1)
=Py (V1P > 1+ (2/v)ey/s + caafn, VP > 1)
V|2 > 1+ (2/v/n)el/3 + caa/n)

=Py (V12 > .+ 2/ + Caa)

=1— Fypnje<)2(n + 2y/NCad + Ca,d),

where Fy |6+ |2 is the non-central X2(df = d,\ = nl||0*|*) CDF.

N T N N NN

For a given ||0*|| ¢ [0.5, 1], our calculation of Power(6*) is given by (S26) + (S25). That is,

POWCI‘(Q*) =1- Fd,nHH*\P(n + 2,/nca7d + Ca,d)+
1(n > 4dcaa) Fynjjo-)2 (n/4 — \/nCad+ caa) -

— — — — 2
+ V12 = 1= 20 + 12 = (171 - 1) -

41

(525)

(S26)
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Fig. S3. Calculated power of Hy : ||6*|| € [0.5,1.0] versus H; : ||0| ¢ [0.5,1.0] using the intersection
method. We compare the simulated power to the calculation (S26) + (S25). The points correspond to the
simulated power, and the curves trace out the calculated power.

Figure S3 compares this calculated power to the simulated power of the intersection method from
Figure 7. The points correspond to the simulated power, and the curves trace out the calculated power.
The calculated and simulated powers align.

S4.2.  Cases of the Subsampled Hybrid LRT

The subsampled hybrid test of Hy : ||6*|| € [0.5, 1] versus H; : ||0*|| ¢ [0.5, 1] takes one of three ap-
proaches within each repeated subsample:

1. If ||1_/1,b\| < 0.5, use the split LRT statistic U,, on the b'* subsample.
2. If [V ]| € [0.5,1], set the bth subsample’s test statistic to 1.
3. If |[Y14]| > 1, use the RIPR LRT statistic 12, on the b" subsample.

Figure S4 shows the proportion of these three cases that make up the hybrid test. We consider all ||6* ||
values from Fig. 7 of the main paper, as well as cases where ||0*|| is within the null region. At any given
value of d and ||6*||, the three proportions sum to 1. Interestingly, although [[Y7 ;|| < 0.5 approximately
95% of the time when ||0*|| = 0 and d = 100, the hybrid test has approximately zero power at that choice
of parameters. We derive this fact in section S4.3. In addition, when d = 1000 we see that |[Y || > 1 in
all simulations, even at * = 0. In section S4.4, we see why this setting has approximately zero power as
well.

S4.3.  Hybrid power when 0* = 0, d = 100, and n = 1000
When 0* = 0, d = 100, and n = 1000, Fig. S4 shows that ||Y; 3|| < 0.5 (case 1) occurs with probabil-

ity of approximately 0.95, and ||571,b” € [0.5, 1] (case 2) occurs with probability of approximately 0.05.
At these parameters, the hybrid method has power of approximately 0, as shown in Fig. 7 in the main
paper. We consider the power of the hybrid method at a single split of the data:
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Fig. S4. Proportions of three cases that compose the hybrid LRT. We set o« = 0.10 and n = 1000,
and we perform 1000 simulations at each value of ||0*||. We subsample B = 100 times.

Pox—o(Un (Y1l < 0.5) + L(IY1]| € [0.5, 1)) + Ra (Y] > 1) > 1/c)

= — n, — = 2 n — - = 2 1 — —
=Por—o(II¥1ll <05, |I¥oll <0.5)Pgx—o { exp | —7[¥o —¥1[" + 2 [¥o — 0.5¥0/[I¥o[l]I" ) = — | 1]l < 0.5, [[Yoll < 0.5 ) +

A
1 Ag

= = n — = n — = 1 = —
Por—oI71] < 0.5, [oll € [0:5,1) Po+—o (exp (5 1o =411 + F1T0 ~Toll*) 2 = |7l < 05,100l € [0.5,11) +

By

Ba

= = n — = n = = = 1 = =
Pos o111 < 05 [Foll > 1) Por (exp (=210 = Fall* + 2 1F0 — Fo/IFall*) > + | IF2ll < 05, [Foll > 1) +

(oF] On
Po=—o([[Y1]| € [0.5, 1]) Pov—o(1 > 1/cr | [[V1]| € [0.5,1]) +
Dy D2
- n — = 2 n, — - = 2 1 -
o o7l > 1) Poro (exp (= 3170 ~ Tl + S 1¥0 = 72/ IF201I7) 2 5 |17l > 1)
B

The probabilities By and Dy equal 0. In addition,

Po«—o([Yoll > 1) = Pos—o(|[Y1]| > 1)
n,— mn
= Pg+— (— Y- 2 > —)
or=o (5 IV1lI" > 5
= P(X3—100 > 1000/2)
~ 0.

So (' and FEj are also approximately 0. That means we only need to consider A; Ay. It will be easier to
work with the product of these two probabilities:
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— — — [ — 1 — —
A1 As = Pgeg (exp (=510 =YaI* + Z1¥o — 0.5V0/[Valll*) = —, V1] < 05, [Vol| < 0.5)

< Por=o (H?o =Y1|? < Yo = 0.5Y0/|[Yol||I%, [Yol| < 0-5)
< Poe—o([[Yo — Y1* < 0.25)

= P(M/”)X?lf:loo < 1/4)

= P(xZf=100 < 1000/16)

=~ 0.001.

This means that at a single split of the data, the power at ||0*|| = 0, d = 100, and n = 1000 is

Pg-—o(Un1(||[Y1]| < 0.5) + L(|[Y1]| € [0.5,1]) + R,1(][Y1] > 1) > 1/a) < 0.001.

S4.4.  Hybrid power when 0* = 0, d = 1000, and n = 1000

When 6* = 0, d = 1000, and n = 1000, we see that the hybrid method selects case 3 (|[Y7 ]| > 1) in
all simulations. This is essentially choosing the wrong case, since ||6*|| = 0 < 0.5. Numerically, we can
show that the hybrid method will have power of approximately O at these parameters. Again, we consider
a single split of the data.

Po—o(Un1(|[Y1]] < 0.5) + 1(||[Y1]| € [0.5,1]) + R I(Y1] > 1) > 1/a)
= Po_o(|[Y1]| < 0.5) Por—o (Un > 1/a ‘ Y1)l < 0.5) n
D e ——

Ay

Az
Po-—o(|[V1]| € [0.5,1]) Po-=o(1 > 1/ | |[V1]| € [0.5,1]) +

By B;

|72l > 1) .

> n.o o NS T o 1
Po-=o([[Y1]l > 1) Po-=o (exp (—ZHYO -Y1l* + 7 1Yo —Yl/HY1HH2) >
—— —

C1

Co

The probability By equals 0. In addition, A; is approximately O because

Py-—o[V1]| < 0.5) = Pge—o ((n/2)V1|* < n/3)
= IED(X?lf:looo < 1000/8)
~ 0.
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So the probability of rejecting Hy at this choice of parameters is approximately

C1Cy =Py (exp (= 31%0 =1l + 510 ~ V1 /I 17) = - ¥ > 1)

< Poe—o (Vo = V1% < Vo = Va/ IV 1%, ¥ > 1)
= Pyo (Vo> = 26 V1 + V1|2 < [Voll? = 2V V1 / IV + 1, %2 > 1)
= Pye—o (2 V1(1/ V1] = 1)+ V]2 < 1,2 > 1)
= Pyr—o (2 Y1(1 = [Val)/IV ] < 1= [V 1%, |2 > 1)
= Pge—o (2 Y1(1 = [Val)/ IVl < (1= [FAI)(1 + V], I3 > 1)
= Pye—o (20 Y1 > A1+ V1), ¥4 > 1)

< Pp<—o

N N N N7 N NN

Let o = 1/v/500. Since Yo and Y are averages of 500 N (0, I;) random variables, we see that Y ~
N(0,02%1;) and Yy ~ N(0,0%1,). Let A = —d/2 + (1/2)+/d? + 4/c*. (This choice of A minimizes
E[exp()\l_/oTl_/l)]/exp(/\) out of A > 0.) Let v = ¢ /(1 — 0*A?)/2. We derive
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e \UQIdll/2 o (27) d/2\y21 iz ( Szl )dY1
= exp(— )(l//o')
A exp(—207)(1.1)1000

~
~




46

At a single split of the data, the power at ||6*| = 0, d = 1000, and n = 1000 is approximately O
because

Py o (Un (V1] < 0.5) + L(I¥1| € [05,1]) + RaL(IVa]| > 1) 2 1/a)
n,.- = NS S S 1 =
~ Py <exp (=5I¥0 =Yal2 + Vo =Y/ I NIP) = = 74 > 1)

< By (V71 > 1)

~ 0.
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