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SUMMARY

The likelihood ratio test (LRT) based on the asymptotic chi-squared distribution of the log

likelihood is one of the fundamental tools of statistical inference. A recent universal LRT ap-

proach based on sample splitting provides valid hypothesis tests and confidence sets in any

setting for which we can compute the split likelihood ratio statistic (or, more generally, an

upper bound on the null maximum likelihood). The universal LRT is valid in finite samples

and without regularity conditions. This test empowers statisticians to construct tests in settings

for which no valid hypothesis test previously existed. For the simple but fundamental case of

testing the population mean of d-dimensional Gaussian data, the usual LRT itself applies and

thus serves as a perfect test bed to compare against the universal LRT. This work presents the

first in-depth exploration of the size, power, and relationships between several universal LRT

variants. We show that a repeated subsampling approach is the best choice in terms of size and

power. We observe reasonable performance even in a high-dimensional setting, where the ex-

pected squared radius of the best universal LRT confidence set is approximately 3/2 times the

squared radius of the standard LRT-based set. We illustrate the benefits of the universal LRT

through testing a non-convex doughnut-shaped null hypothesis, where a universal inference

procedure can have higher power than a standard approach.

Some key words: Hypothesis testing; Sample splitting; Universal inference.

1. INTRODUCTION

Suppose we have data from an unknown distribution Pθ∗ which belongs to some set of distributions

(Pθ : θ ∈ Θ). We wish to test the composite null hypothesis H0 : θ
∗ ∈ Θ0. We use the observed data to

construct a test statistic Tn and reject H0 if Tn > cα, where cα must satisfy

sup
θ∗∈Θ0

Pθ∗(Tn > cα) ≤ α.

Consider, for example, the alternative H1 : θ ∈ Θ \Θ0. The generalized likelihood ratio statistic is

L(θ̂) / L(θ̂0), where θ̂ is the maximum likelihood estimate (MLE) in Θ and θ̂0 is the MLE in Θ0. We

reject H0 when 2 log{L(θ̂) / L(θ̂0)} > cα,d, where cα,d is the upper α quantile of the χ2
d distribution

and d = df(Θ)− df(Θ0). This construction arises from Wilks’ Theorem (Wilks, 1938), which states

that 2 log{L(θ̂) / L(θ̂0)} has an asymptotic χ2
d distribution under certain regularity conditions. This will

apply, for instance, when we have independent and identically distributed (iid) data from an exponential

family, Θ0 is a subset of Θ, and Θ and Θ0 are linear subspaces in Euclidean space (Van der Vaart,

2000, Theorem 4.6). We can invert the likelihood ratio test (LRT) to produce an asymptotically valid
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100(1− α)% confidence region of the form:

CLRT
n (α) =

{
θ ∈ Θ : 2 log

{
L(θ̂) / L(θ)

}
≤ cα,d

}
.

We reject H0 if and only if CLRT
n (α) ∩Θ0 = ∅, which is equivalent to rejecting H0 if and only if

2 log{L(θ̂) / L(θ̂0)} > cα,d. We refer to this testing framework as the classical LRT. Some composite

nulls are irregular, meaning that Wilks’ theorem does not apply and calculating a threshold can be hard

due to intractable asymptotics.

The universal inference approach developed by Wasserman et al. (2020) provides a new likelihood ratio

testing framework that addresses situations where the classical LRT is not valid. This new LRT relies on

sample splitting to construct a test and confidence interval that are valid in finite samples and without

regularity conditions. This universal inference method allows one to construct valid tests in settings

for which no hypothesis test with type I error control and finite sample guarantees previously existed.

The statistical literature has repeatedly emphasized the inadequacy of the asymptotic χ2 approximation

in the small sample setting. Examples include Bartlett (1937), Lehmann (2012), and Medeiros & Ferrari

(2017). Small sample sizes also pose a recurrent problem across biological science research. For instance,

researchers have noted the prevalence of low-powered studies in neuroscience (Button et al., 2013) and

the need for clinical trial designs that account for the small sample sizes common to rare disease and

pediatric population research (Ildstad et al., 2001; McMahon et al., 2016).

Many basic questions remain unanswered about the universal LRT, since its power even in very simple

settings remains unknown. Further, Wasserman et al. (2020) describe numerous settings in which the

universal LRT is the first hypothesis test with finite sample validity. These settings include testing the

number of components in mixture models (Hartigan, 1985; McLachlan, 1987; Chen et al., 2009; Li

& Chen, 2010) and testing whether the underlying density satisfies the shape constraint of log-concavity

(Cule et al., 2010; Axelrod et al., 2019). As a precursor to studying the power in these important but as-yet

intractable settings, we first study the universal LRT in the fundamental case of constructing confidence

regions (or hypothesis tests) for the population mean θ∗ ∈ R
d when Y1, . . . , Yn ∼ N(θ∗, Id). In this

setting — where the classical LRT is of course valid — our results showcase the reasonable performance

of the universal LRT in comparison to the classical approach. With more technical effort, the results can

be extended to models that satisfy standard regularity conditions such as quadratic mean differentiability,

where the MLE is asymptotically normal (Van der Vaart, 2000, Chapter 5).

This work provides two main contributions: First, we provide a careful analysis of several variants

of the universal LRT in the Gaussian case. We show that a repeated subsampling approach is the best

choice in terms of size and power. We observe reasonable performance in a high-dimensional setting,

where the expected squared radius of the best universal LRT confidence set is approximately 3/2 times

the squared radius of the set constructed through the classical approach. Thus, in particular, the power

of the universal approaches has the same behavior (in n, d, α) as the classical approach. Second, we

show an example of a hypothesis test on normally distributed data where universal LRT methods have

higher power than classical testing methods. Specifically, when testing the non-convex “doughnut” null

H0 : ‖θ∗‖ ∈ [0.5, 1] versus H1 : ‖θ∗‖ /∈ [0.5, 1] on N(θ∗, Id) data, a universal LRT approach can have

higher power than a standard approach that uses the classical LRT confidence set. A test of this form

could examine, for instance, whether trial outcomes or biomarker levels are within an acceptable range.

2. UNIVERSAL LRT CONFIDENCE SETS

2.1. Universal LRT background

Wasserman et al. (2020) presented an alternative to the LRT that is valid in finite samples without

requiring regularity conditions. Suppose we have n iid observations Y1, . . . , Yn ∼ Pθ∗ , where Pθ∗ is from
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a family (Pθ : θ ∈ Θ). Each Pθ has a density denoted by pθ. We denote the dataset by D = {Y1, . . . , Yn}.

To implement the test, first split the data into D0 and D1. Let θ̂1 be an estimator constructed from D1.

The parameter θ̂1 could be the MLE, but any parameter that is fixed given D1 is valid. Certain choices of

θ̂1 may be more efficient. Using the data in D0, the likelihood function is L0(θ) = ΠYi∈D0
pθ(Yi). Define

the split LRT statistic as

Tn(θ) = L0(θ̂1)/L0(θ).

The universal confidence set for θ∗ using the split LRT is

Csplit
n (α) = {θ ∈ Θ : Tn(θ) < 1/α}.

Theorem 1. Csplit
n (α) is a valid 100(1− α)% confidence set for θ∗. As a consequence (and equiva-

lently), when testing an arbitrary composite null H0 : θ
∗ ∈ Θ0 versus H1 : θ

∗ ∈ Θ \Θ0, rejecting H0

when Θ0 ∩ Csplit
n (α) = ∅ provides a valid level α hypothesis test. The latter rule reduces to rejecting if

Tn(θ̂0) ≥ 1/α, where θ̂0 ∈ argmaxθ∈Θ0
L0(θ) is the null MLE.

Theorem 1 is due to Wasserman et al. (2020). The validity of the universal test does not depend on

large samples or regularity conditions. The proof establishes that Eθ∗ {Tn(θ
∗)} ≤ 1 and then invokes

Markov’s inequality. See Section S1 of the supplement for more details. This property on the expectation

makes Tn(θ
∗) an e-variable (Grünwald et al., 2020).

The validity of C
split
n (α) only depends on the fact that Eθ∗{Tn(θ

∗)} ≤ 1. If we consider multiple test

statistics that each satisfy this condition, then the average of those test statistics will satisfy the condition

as well. Therefore, the average of test statistics Tn(θ
∗) across multiple data splits is also a valid test

statistic.

2.2. Classical test in normal setting

Assume Y1, . . . , Yn are d-dimensional iid vectors drawn from N(θ∗, Id) with θ∗ ∈ R
d. Where cα,d is

the upper α quantile of the χ2
d distribution, the classical LRT confidence set for θ∗ is

CLRT
n (α) =

{
θ ∈ Θ : ‖θ −Y‖2 ≤ cα,d/n

}
. (1)

See Section S2 of the supplement for a derivation of (1). In this case, CLRT
n (α) is valid in finite sam-

ples, since n‖θ∗ −Y‖2 follows a χ2
d distribution. We compare CLRT

n (α) to the split LRT set and several

universal confidence sets that are variants of the split LRT set.

2.3. Split, cross-fit, and subsampling sets in normal setting

First, we consider two universal LRT variants based on a single split of the data. Assume we split the n
observations in half, such that D0 and D1 each contain n/2 observations. DefineY 0 = (2/n)

∑
Yi∈D0

Yi

andY 1 = (2/n)
∑

Yi∈D1
Yi. Then the confidence set for θ∗ based on the split likelihood ratio is

Csplit
n (α) =

{
θ ∈ Θ : exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2

)
<

1

α

}

=
{
θ ∈ Θ : ‖θ −Y 0‖2 < (4/n) log(1/α) + ‖Y 0 −Y 1‖2

}
. (2)

See Section S2 of the supplement for a derivation of (2). Using the same split, we define the cross-fit

statistic as Sn(θ) = {Tn(θ) + T
swap
n (θ)}/2, where T

swap
n (θ) is computed by switching the roles of D0
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and D1. Then the cross-fit confidence set is a valid 100(1− α)% set given by

CCF
n (α) =

{
θ ∈ Θ :

1

2
exp

(
−n

4
‖Y 0 −Y 1‖2

){
exp

(n
4
‖Y 0 − θ‖2

)
+ exp

(n
4
‖Y 1 − θ‖2

)}
<

1

α

}
.

The split and cross-fit sets have both statistical randomness (due to the random sampling of observa-

tions) and algorithmic randomness (due to the randomness in splitting the sample into D0 and D1). In

contrast, the classical LRT only has statistical randomness, since the test is deterministic for a given set

of observations. We now consider a repeated subsampling approach. This universal method attempts to

mitigate the algorithmic randomness from the split and cross-fit LRTs by splitting the observations many

times and averaging the test statistics. Algorithm 1 shows how to compute the subsampling test statistic

Tn(θ) at a given θ ∈ R
d.

Algorithm 1 Compute the subsampling test statistic Tn(θ).

Input: n independent d-dimensional observations Y1, . . . , Yn ∼ N(θ∗, Id) (θ∗ unknown),

a value of θ ∈ R
d, number of subsamples B.

Output: The subsampling test statistic Tn(θ).
For b = 1 to b = B:

Randomly split the data into D0,b and D1,b, each containing n/2 values of Yi.

LetY 0,b = (2/n)
∑

Yi∈D0,b
Yi and letY 1,b = (2/n)

∑
Yi∈D1,b

Yi.

Compute Tn,b(θ) = exp
(
−n

4 ‖Y 0,b −Y 1,b‖2 + n
4 ‖Y 0,b − θ‖2

)
.

Output the subsampling test statistic Tn(θ) = B−1
∑B

b=1 Tn,b(θ).

As noted earlier, this method is also valid. The 100(1− α)% subsampling confidence set is

Csubsplit
n (α) =

{
θ ∈ Θ :

1

B

B∑

b=1

exp
(
−n

4
‖Y 0,b −Y 1,b‖2 +

n

4
‖Y 0,b − θ‖2

)
<

1

α

}
.

Figure 1 shows coverage regions of the classical LRT, split LRT, cross-fit LRT, and subsampling LRT

(B = 100) from six simulations with θ∗ = (0, 0). We generate 1000 observations from N(θ∗, I2), and

we use this sample for all simulations. Hence, the variation in the split, cross-fit, and subsampling LRTs

across simulations is due to algorithmic randomness.

The coverage regions in Fig. 1 suggest several relationships that we will formalize. We see that the

classical LRT provides the smallest confidence regions. This is not surprising since, even in finite sam-

ples, the classical LRT statistic follows a chi square distribution under H0 : θ = θ∗ in the Gaussian case.

The volume of the cross-fit LRT set is less than or equal to the volume of the split LRT set, although

the cross-fit set is not entirely contained within the split set. The split and cross-fit approaches both use

a single split of the data, but there is a notable improvement from cross-fitting. The subsampling set also

has less volume than the split LRT set. Recall that we construct the subsampling test statistic by per-

forming the split LRT over repeated splits of the data and then averaging the test statistics Tn,b(θ). While

any individual split LRT region is guaranteed to be spherical, the subsampling set is not necessarily a

spherical region. For large B, however, we see that the subsampling region is approximately spherical.

Thus, although the subsampling approach is computationally intensive, this hints that it may be possibly

to derive a formulaic approximation to the limiting subsampling set.
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Fig. 1. Coverage regions of classical LRT (black), subsampling LRT (blue), cross-fit LRT (red), and split LRT
(orange) at α = 0.1. The six simulations use the same 1000 observations from N(θ∗, I2) under θ∗ = (0, 0).

2.4. Limit of subsampling region

We are particularly interested in the behavior of the subsampling confidence set as B → ∞. Since

B−1
∑B

b=1 Tn,b(θ) → E{Tn(θ) | D} as B → ∞, the limiting subsampling set has no algorithmic ran-

domness. We see hints of this in Fig. 1, where the subsampling set at B = 100 does not vary much across

six simulations on the same data. Theorem 2 describes conditions for the convergence of the ratio of

E{Tn(θ) | D} to an approximation. We have been suppressing the n subscript when it is clear we are

working with a single dataset with n observations. Theorem 2 considers a sequence of datasets, so we

use the n subscript to index the datasets.

Theorem 2. Assume we have a sequence of datasets (Dn)n∈2N, where Dn = {Yn1, . . . , Ynn} and

each Yni is an independent observation from N(θ∗, Id). Let D0,n be a sample of n/2 observations

from Dn, and let D1,n = Dn\D0,n. Define Yn = (1/n)
∑n

i=1 Yni, Y 0,n = (2/n)
∑

Yni∈D0,n
Yni, and

Y 1,n = (2/n)
∑

Yni∈D1,n
Yni. Let c > 0, and let (θn) be a sequence that satisfies ‖Yn − θn‖ ≤ c/

√
n

for all n. Then

E{Tn(θn) | Dn} /
{
exp

(
3n

10
‖Yn − θn‖2

)(
2

5

)d/2
}

= 1 + oP (1). (3)

In words, the subsampling statistic is approximately given by R(θ)3/5(2/5)d/2 where R(θ) =

L(θ̂)/L(θ) is the usual likelihood ratio statistic.

Section S1 of the supplement contains a proof of Theorem 2. The proof relies critically on the finite

sample central limit theorems from Hájek (1960) and Li & Ding (2017) and on the Portmanteau Theorem

proof techniques from Van der Vaart (2000).

Since

E{Tn(θ) | D} ≈ exp

(
3n

10
‖Y − θ‖2

)(
2

5

)d/2

, (4)
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LRT sets are equivalent and have equal volume. The fact that equal volume holds only when Y 0 = Y 1

relies on the strict convexity of the squared L2 norm and the exponential function. See Section S1 of the

supplement for a complete proof.

Theorem 4 proves that the cross-fit LRT approach improves over the split LRT by constructing prov-

ably smaller confidence regions. Out of all universal methods, our simulations have shown that the sub-

sampling approach tends to produce the smallest sets. Constructing a subsampling region can be com-

putationally intensive, though, especially when the limiting subsampling test statistic is intractable. The

cross-fit approach may be a reasonable compromise in settings where repeated subsampling is computa-

tionally prohibitive.

3.3. Comparative size in high dimensions

Figure 1 demonstrated the appearance of the four LRT regions in the d = 2 case at α = 0.1. We

observe that the classical LRT and the split LRT produce the smallest and largest confidence regions,

respectively. While the split LRT region’s radius appears to be approximately twice the classical LRT

region’s radius, we consider whether the ratio of their squared radii diverges in high dimensions or for

very small α. We characterize the ratio of squared radii in terms of the expected ratio. The expected

squared radius of C
split
n (α) is

E[r2{Csplit
n (α)}] = (4/n) log(1/α) + (4/n)d. (7)

Thus, the expected ratio of the split LRT squared radius over the classical LRT radius is

E[r2{Csplit
n (α)}]

r2{CLRT
n (α)} =

(4/n) log(1/α) + (4/n)d

cα,d/n
=

4 log(1/α) + 4d

cα,d
. (8)

For d ≥ 2 and α ≤ 0.17,

4 log(1/α) + 4d

2 log(1/α) + d+ 2
√

d log(1/α)
≤ E[r2{Csplit

n (α)}]
r2{CLRT

n (α)} ≤ 4 log(1/α) + 4d

2 log(1/α) + d− 5
2

. (9)

For d = 1 and α ≤ exp
(
−5(1+

√
5)

4

)
,

4 log(1/α) + 4d

2 log(1/α) + d+ 2
√
d log(1/α)

≤ E[r2{Csplit
n (α)}]

r2{CLRT
n (α)} ≤ 4 log(1/α) + 4d

2 log(1/α) + 9− 4
√
5 + 2 log(1/α)

. (10)

See Section S2 of the supplement for derivations of (7), (9), and (10). The derivation of (9) relies on

chi square quantile bounds from Theorem A and Proposition 5.1 of Inglot (2010). The derivation of the

upper bound in (10) involves a bound from Section 2.1 of Polland (2015). The restrictions on α and d are

necessary for the upper bounds to be valid. The lower bound is valid for any d ≥ 1 and α ∈ (0, 1). The

upper and lower bounds both converge to 4 as d → ∞. In addition, all bounds converge to 2 as α → 0.

Figure 4 shows the true value of E[r2{Csplit
n (α)}] / r2{CLRT

n (α)} as well as the proved lower and upper

bounds on this expectation at d = 10 and d = 100, 000. We observe that the bounds converge to 2 for

very small α relative to the dimension, and we observe that the bounds converge to 4 for high dimensions

relative to α. Interestingly, we see that the expected value of the ratio is not monotone increasing in α.

Furthermore, this ratio of squared radii is less than 4 with probability approximately 1− α in high

dimensions. Theorem 5 formalizes this result. See Section S1 of the supplement for a proof.
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Combining (9) and (11), r2{Csubsplit
n (α)}/r2{CLRT

n (α)} is approximately 4(5/12) log(5/2) ≈ 3/2 as

d → ∞, and the ratio is approximately 2(5/6) = 5/3 as α → 0. Recall that the classical LRT cutoff

is dimension dependent and uses the exact distribution’s quantile, while the universal LRT cutoff is

dimension independent. Regardless, in the extreme cases of d → ∞ or α → 0, the ratio of the classical

LRT region’s radius to the subsampling universal LRT region’s radius is less than 2.

3.4. Power

While the universal methods provide conservative confidence regions for θ∗, we establish that the

universal tests can still have high power. Suppose we wish to test H0 : θ
∗ = 0 versus H1 : θ

∗ 6= 0 at level

1− α. We reject H0 if 0 /∈ Cn(α), where Cn(α) is the confidence set defined by some likelihood ratio

test. The power of the test at θ∗ 6= 0 is Pθ∗{0 /∈ Cn(α)}.
First, we consider the classical LRT, stated in (1). The power of the classical LRT at θ∗ is

Power{CLRT
n (α); θ∗} = Pθ∗

(
‖Y‖2 > cα,d/n

)
≈ Φ

{
d+ n‖θ∗‖2 − cα,d√

2(d+ 2n‖θ∗‖2)

}
. (12)

We can find a similar representation for the approximate power of the limiting subsampling LRT as

B → ∞:

Power{Csubsplit
n (α); θ∗} ≈ Pθ∗

[
n‖Y‖2 ≥ 10

3
log

{(
5

2

)d/2 1

α

}]

≈ Φ

(
1√

2(d+ 2n‖θ∗‖2)

[
d+ n‖θ∗‖2 − 10

3
log

{(
5

2

)d/2 1

α

}])
. (13)

Since n‖Y‖2 ∼ χ2
(
df = d, λ = n‖θ∗‖2

)
, (12) and (13) use the normal approximation to the non-central

χ2 distribution with a large noncentrality parameter λ (Chun & Shapiro, 2009). See Section S2 of the

supplement for derivations of (12) and (13).

The power of the split LRT is

Power{Csplit
n (α); θ∗} = Pθ∗

{
‖Y 0‖2 ≥ (4/n) log(1/α) + ‖Y 0 −Y 1‖2

}

and the power of the cross-fit LRT is

Power{CCF
n (α); θ∗} = Pθ∗

[
exp

(
−n

4
‖Y 0 −Y 1‖2

){
exp

(n
4
‖Y 0‖2

)
+ exp

(n
4
‖Y 1‖2

)}
≥ 2

α

]
.

As n‖θ∗‖2 → ∞ for fixed α, the power of the tests approaches 1. Importantly, this shows that although

the universal methods are conservative, they will all have high power for sufficiently large n or for ‖θ∗‖
sufficiently far from 0. As α → 0, the power approaches 0.

Figure 6 plots the power of the LRTs against ‖θ∗‖2. (Each vector θ∗ has the form c~1.) This figure uses

the standard normal CDF approximation to the non-central χ2 CDF to plot the classical and subsampling

LRT power. We use simulations to approximate the power of the split and cross-fit LRTs. For a given

value of θ∗, we simulate n = 1000 observations Y1, . . . , Yn ∼ N(θ∗, Id). We construct split LRT and

cross-fit LRT confidence sets from this sample. Then we test whether θ = 0 is in each confidence set. We

repeat this procedure 5000 times at each θ∗, and each procedure’s estimated power at θ∗ is the proportion

of times that 0 /∈ Cn(α).
As we would expect, the power is higher when θ∗ is farther from 0. In addition, the classical LRT

has the highest power, followed in order by the subsampling LRT, the cross-fit LRT, and the split LRT.

Interestingly, at d = 1 the subsampling and cross-fit LRT have nearly identical (approximate) power. As

d increases, the difference between the subsampling and cross-fit LRT power increases.
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Approach 2: Subsampled split LRT. To implement the subsampled split LRT, we repeatedly split the

observations into D0,b and D1,b. Let θ̂1,b be any parameter estimated on the data in D1,b. Let θ̂
split
0,b be the

MLE under H0 : ‖θ∗‖ ∈ [0.5, 1.0], estimated on the data in D0,b. Table 1 presents the chosen expression

for θ̂1,b and the MLE expression for θ̂
split
0,b . The subsampled split LRT rejects H0 if B−1

∑B
b=1 Un,b ≥ 1/α,

where

Un,b = L0,b(θ̂1,b) / L0,b(θ̂
split
0,b ) =

∏

Yi∈D0,b

{p
θ̂1,b

(Yi) / pθ̂split

0,b

(Yi)}.

Approach 3: Subsampled hybrid LRT. As an alternative to the split LRT, Wasserman et al. (2020)

establish a test based on the reversed information projection (RIPR); also see Grünwald et al. (2020).

We first define the RIPR, following Definition 4.2 of the PhD thesis by Li (1999). Let Q be a dis-

tribution with density q, and let PΘ be a convex set of densities (or redefine it as its convex hull).

Let DKL(· ‖ ·) be the Kullback-Leibler divergence. The RIPR of q onto PΘ is a (sub-)density p∗ such

that for arbitrary sequences pn in PΘ, DKL(q ‖ pn) → infθ∈ΘDKL(q ‖ pθ) implies log(pn) → log(p∗) in

L1(Q). Lemma 4.1 of Li (1999) proves that p∗ exists and is unique; further, p∗ satisfies DKL(q ‖ p∗) =
infθ∈ΘDKL(q ‖ pθ), and if Y ∼ q, then for all θ ∈ Θ, Eq{pθ(Y )/p∗(Y )} ≤ 1.

Using similar logic to Theorem 1, Wasserman et al. (2020) apply this property to construct a split RIPR

LRT. Let PΘ0
be the set of all densities in H0 (or its convex hull). Suppose θ̂1 is an estimator constructed

on D1. Let p∗0 be the RIPR of p
θ̂1

onto PΘ0
. Note that if the true pθ∗ ∈ PΘ0

, then Eθ∗{pθ̂1(Y )/p∗0(Y )} =

E
θ̂1
{pθ∗(Y )/p∗0(Y )} ≤ 1. Then a level α hypothesis test rejects H0 if Rn ≥ 1/α, where

Rn =
∏

Yi∈D0

{p
θ̂1
(Yi) / p

∗
0(Yi)}.

This test is valid because if θ∗ ∈ Θ0, then Pθ∗(Rn ≥ 1/α) ≤ αEθ∗{pθ̂1(Y )/p∗0(Y )} ≤ α. Furthermore,

note that the RIPR test statistic will always exceed the split LRT statistic when the two tests use the same

numerator, since the split LRT denominator maximizes the likelihood under H0 on D0. Thus, the RIPR

test will have higher power than the split LRT. (More generally, one can project p
|D0|
θ̂1

onto P |D0|
Θ0

, but we

omit this discussion for brevity.)

In the doughnut test setting, we let PΘ0
be the set of all convex combinations of N(θ, Id) densities

such that ‖θ‖ ∈ [0.5, 1]. To implement the subsampled hybrid LRT for this test, we also repeatedly split

the observations into D0,b and D1,b. Depending on the value of ‖Y 1,b‖, we take one of three approaches:

1. If ‖Y 1,b‖ < 0.5, use the split LRT on the bth subsample. We define θ̂1,b and θ̂
split
0,b as in Table 1, and the

split LRT statistic is Un,b = L0,b(θ̂1,b)/L0,b(θ̂
split
0,b ).

2. If ‖Y 1,b‖ ∈ [0.5, 1], set the bth subsample’s test statistic to 1.

3. If ‖Y 1,b‖ > 1, use the RIPR LRT on the bth subsample. We define θ̂1,b and θ̂RIPR
0,b as in Table 1, and

the RIPR statistic is Rn,b = L0,b(θ̂1,b)/L0,b(θ̂
RIPR
0,b ).

Theorem 6 defines a valid test based on this approach.

Theorem 6. In the doughnut null hypothesis test setting, assume the subsampled test statistics Un,b and

Rn,b, 1 ≤ b ≤ B, as defined above. A valid level α test rejects H0 when

1

B

B∑

b=1

{
Un,b✶(‖Y 1,b‖ < 0.5) + ✶(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b✶(‖Y 1,b‖ > 1)

}
≥ 1/α.
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Table 1. Requirements and choices for the numerator and denominator in a single subsample

of the split LRT and RIPR LRT statistics

Method Split LRT RIPR LRT

Restrictions

on use

None ‖Y 1‖ > 1. (Computational restriction.

RIPR unknown for ‖Y 1‖ = ‖θ̂1‖ < 0.5.)

Numerator p
θ̂1

, where θ̂1 is any parameter fit on D1. p
θ̂1

, where θ̂1 is any parameter fit on D1.

Fitted value Choose θ̂1 = Y 1. Choose θ̂1 = Y 1.

Denominator p
θ̂0

, where θ̂0 is the MLE under H0, constructed

from D0.

p∗0 is the RIPR of p
θ̂1

onto PΘ0
.

Fitted value No choices. No choices.

θ̂split
0

=






0.5
(
Y 0/‖Y 0‖

)
: ‖Y 0‖ < 0.5

Y 0 : ‖Y 0‖ ∈ [0.5, 1]

Y 0/‖Y 0‖ : ‖Y 0‖ > 1

Since ‖θ̂1‖ > 1, p∗0 = pθ , where θ =

θ̂RIPR
0 = θ̂1/‖θ̂1‖.

To justify the hybrid approach, recall that the RIPR test will have higher power than the split LRT when

it is possible to implement the RIPR. Based on the construction of θ̂1,b, if ‖Y 1,b‖ > 1, then ‖θ̂1,b‖ > 1. In

this setting, the proof of Theorem 6 shows that the density pθ, with θ = θ̂1,b/‖θ̂1,b‖, is the RIPR of θ̂1,b
onto PΘ0

. On the other hand, it is unclear how to implement the RIPR when ‖Y 1,b‖ < 0.5, in which case

‖θ̂1,b‖ < 0.5. The hybrid approach allows us to use the RIPR when it is implementable, and it relies on

the split LRT to provide a valid test when the RIPR is not implementable.

Figure 7 shows the simulated power of these three tests of H0 : ‖θ∗‖ ∈ [0.5, 1.0] versus H1 : ‖θ∗‖ /∈
[0.5, 1.0]. The intersection method and the subsampled hybrid LRT have the highest power. Interestingly,

out of those two methods, the test with higher power varies across dimensions. When d = 2 or d = 1000,

the simulated power of the subsampled hybrid LRT is less than (or equal to) the power of the standard

intersection approach. At the intermediate dimensions of d = 10 and d = 100, the simulated power of

the subsampled hybrid LRT is greater than (or equal to) the power of the standard intersection approach.

The latter two cases show that even in the Gaussian setting, hypothesis tests based on a universal LRT

can have higher power than tests based on the exact confidence set. When ‖θ∗‖ < 0.5, the hybrid test

and the split test have approximately the same power. When ‖θ∗‖ > 1, the hybrid test has higher power

than the split test. We see that the intersection method always has higher power than the subsampled

split LRT. One might consider whether we could combine the RIPR with the intersection method instead

of combining the RIPR with the split LRT. It is unclear, though, how to construct a valid test from one

approach that uses sample splitting and subsampling (RIPR) and a second approach that uses neither

(intersection).

We can provide a partial theoretical justification for Fig. 7. For one, it is possible to derive an exact

formula for the power of the intersection approach. Using the fact that n‖Y‖2 follows a non-central χ2

distribution, we can write the power of the intersection method in terms of the non-central χ2 CDF.

When d = 100 or d = 1000, the hybrid method has no power at ‖θ∗‖ = 0, though we would expect

this case to have the highest power out of ‖θ∗‖ < 0.5. At d = 100 and ‖θ∗‖ = 0, the hybrid method

satisfies ‖Y 1,b‖ < 0.5 in most simulations, but the test statistic is too small to reject H0. At d = 1000

and ‖θ∗‖ = 0, (n/2)‖Y 1,b‖2 ∼ χ2
d is approximately d (Dasgupta & Schulman, 2007, Lemma 2). Hence

‖Y 1,b‖ ≈
√
2, which means the hybrid approach selects the “incorrect” case of ‖Y 1,b‖ > 1. This test also

has approximately zero power. See Section S4 of the supplement for more details. In addition, for any

given subsample, the hybrid LRT power is provably greater than or equal to the split LRT power. This

holds because the RIPR test statistic is always larger than the split test statistic when both tests use the
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S1. PROOFS OF THEOREMS

Theorem 1. Csplit
n (α) is a valid 100(1− α)% confidence set for θ∗. As a consequence (and equiva-

lently), when testing an arbitrary composite null H0 : θ
∗ ∈ Θ0 versus H1 : θ

∗ ∈ Θ \Θ0, rejecting H0

when Θ0 ∩ Csplit
n (α) = ∅ provides a valid level α hypothesis test. The latter rule reduces to rejecting if

Tn(θ̂0) ≥ 1/α, where θ̂0 ∈ argmaxθ∈Θ0
L0(θ) is the null MLE.

Proof. This result is due to Wasserman et al. (2020). To prove this fact, we show that Eθ∗ [Tn(θ
∗) | D1] ≤

1. First, we use only the data in D1 to fit a parameter θ̂1. Let M(θ) = support(Pθ) in |D0|-dimensional

space. We see

Eθ∗ [Tn(θ
∗) | D1] = Eθ∗

[
L0(θ̂1)

L0(θ∗)

∣∣∣∣∣D1

]
=

∫

M(θ∗)

∏
yi∈D0

p
θ̂1
(yi)∏

yi∈D0
pθ∗(yi)

∏

yi∈D0

pθ∗(yi)dyi

=

∫

M(θ∗)

∏

yi∈D0

p
θ̂1
(yi)dyi ≤

∫

M(θ̂1)

∏

yi∈D0

p
θ̂1
(yi)dyi

iid
=

∫

M(θ̂1)
p
θ̂1

(
y1, . . . , y|D0|

) ∏

yi∈D0

dyi = 1.

Applying Markov’s inequality and the above fact,

Pθ∗
(
θ∗ /∈ Csplit

n (α)
)
= Pθ∗ (Tn(θ

∗) ≥ 1/α) ≤ αEθ∗ [Tn(θ
∗)] = αEθ∗ [Eθ∗ [Tn(θ

∗) | D1]] ≤ α.

This shows that θ∗ ∈ C
split
n (α) with probability at least 1− α. Alternatively, suppose we want to test

H0 : θ
∗ ∈ Θ0 versus H1 : θ

∗ ∈ Θ \Θ0. We see that rejecting H0 when Θ0 ∩ C
split
n (α) = ∅ provides a

valid level α hypothesis test. Under H0,

Pθ∗
{
Θ0 ∩ Csplit

n (α) = ∅
}
≤ Pθ∗

{
θ∗ /∈ Θ0 ∩ Csplit

n (α)
}
= Pθ∗

{
θ∗ /∈ Csplit

n (α)
}
≤ α.

Before proving Theorem 2, we establish Lemma 1 and Lemma 2. We draw heavily on finite population

central limit theorem results from Hájek (1960) and Li & Ding (2017). Lemma 1 combines key results

from these two papers and adapts them to our setting.

Lemma 1. Let (Dn)n∈2N be a sequence of datasets, where Dn = {Yn1, . . . , Ynn} and each Yni is an

independent observation from N(θ∗, Id). Let D0,n be a sample of n/2 observations from Dn. Define

Yn = 1
n

∑n
i=1 Yni andY 0,n = 2

n

∑
Yni∈D0,n

Yni. As n → ∞,
√
n(Y 0,n −Yn) converges in distribution to

N(0, Id) with probability 1.

Proof. We show a highlight of the proof of Lemma 1, in five steps.

Step 1 (Hájek, 1960): Show that simple random sampling and Poisson sampling approaches produce

the same limiting distributions.

In the notation of Hájek (1960), suppose we have an infinite sequence of simple random sample ex-

periments indexed by ν. Experiment ν draws a simple random sample of size nν from a population of

size Nν given by {Yν1, . . . , YνNν}. We assume that nν → ∞ and Nν − nν → ∞. In the simple random

sampling set-up, a subset sk of indices {1, . . . , Nν} is chosen with probability

P (sk) =

{(
Nν

nν

)−1
: |sk| = nν

0 : else.
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In contrast, in a Poisson sampling approach with mean sample size nν , a subset sk is chosen with proba-

bility

P (sk) =

(
nν

Nν

)k (
1− nν

Nν

)Nν−k

.

We say that each experiment produces a simple random sample (SRS) sn and a Poisson sample sk
such that sn ⊆ sk or sk ⊆ sn. To construct these samples, we take two steps:

(i) Draw k ∼ Binom(Nν , nν/Nν).
(ii) If k = n, choose SRS sn, and set sk = sn.

If k > n, choose SRS sk, and then let sn be an SRS of size n from sk.

If k < n, choose SRS sn, and then let sk be an SRS of size k from sn.

Using the two samples, we define two random variables:

ην =
∑

i∈sn
(Yνi −Y ν) and η∗ν =

∑

i∈sk
(Yνi −Y ν).

We can show that the variance of η∗ν is

Dη∗ν = var(η∗ν) =
nν

Nν

(
1− nν

Nν

) Nν∑

i=1

(Yνi −Y ν)
2.

Under the assumption that nν → ∞ and N − nν → ∞, we can then show that

lim
ν→∞

E[(ην − η∗ν)
2]

Dη∗ν
= 0. (S1)

Remark 2.1 of Hájek (1960) states that (S1) implies that the limiting distributions of ην/
√

Dη∗ν and

η∗ν/
√

Dη∗ν are the same if they exist, and they exist under the same conditions. To see this, we use

Chebyshev’s inequality. For ǫ > 0,

P

(∣∣∣∣∣
ην√
Dη∗ν

− η∗ν√
Dη∗ν

∣∣∣∣∣ > ǫ

)
≤ 1

ǫ2
var

(
ην − η∗ν√

Dη∗ν

)
=

1

ǫ2
E[(ην − η∗ν)

2]

Dη∗ν

ν→∞→ 0.

This means that
∣∣ην/

√
Dη∗ν − η∗ν/

√
Dη∗ν

∣∣ p→ 0. Under this condition, for any distribution W ,

ην/
√

Dη∗ν  W if and only if η∗ν/
√
Dη∗ν  W .

Since η∗ν is a sum of independent random variables, it will be easier to work with η∗ν/Dη∗ν than to work

with ην/Dη∗ν .

Step 2 (Hájek, 1960): Find conditions such that ην/
√

Dη∗ν  N(0, 1). (We can think of ην as

(n/2)(Y 0,n −Yn) and Dη∗ν as var(
∑n

i=1Bi(Yni −Yn)) for Bi
iid∼ Bernoulli(1/2).)

Theorem 3.1 in Hájek (1960) is the key result for asymptotic normality. We present an intermediate

result from the proof of Theorem 3.1.

Let ξν =
∑

i∈sn,ν
Yν,i. (So ην = ξν − nνY ν .) Let Dξν be the variance of ξν . Let Sντ be the subset of

Sν = {1, . . . , Nν} on which the inequality

|Yνi −Y ν | > τ
√

Dξν
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holds. Suppose that nν → ∞ and Nν − nν → ∞. If

lim
ν→∞

∑
i∈Sντ

(Yνi −Y ν)
2

∑
i∈Sν

(Yνi −Y ν)2
= 0 for any τ > 0, (S2)

then ην/
√
Dη∗ν  N(0, 1).

We will show that η∗ν/
√

Dη∗ν  N(0, 1), and then we can appeal to Step 1’s result. η∗ν is the centered

sum of the Poisson sampling terms. We can write η∗ν as

η∗ν =

Nν∑

i=1

ζνi, where ζνi =

{
Yνi −Y ν with probabilty nν/Nν

0 with probabilty 1− nν/Nν .

In this setting, Lindeberg’s condition for η∗ν/
√
Dη∗ν  N(0, 1) is for all τ > 0,

lim
ν→∞

1

Dη∗ν

Nν∑

i=1

E

[
(ζνi − E[ζνi])

2 · ✶
(
|ζνi − E[ζνi| > τ

√
Dη∗ν

)]
= 0.

We can show that (S2) implies that the Lindeberg condition is satisfied. Since Step 1 implies that the lim-

iting distribution of ην/
√

Dη∗ν must be the same as the limiting distribution of η∗ν/
√

Dη∗ν , we conclude

that ην/
√
Dη∗ν  N(0, 1).

Step 3: If d = 1, show that ην/
√
Dη∗ν  N(0, 1) implies

√
n(Y 0,n −Yn) N(0, 1).

This is mostly a matter of adapting Step 2’s result to our setting. When nν/Nν = 1/2, ην is the same

random variable as (n/2)(Y 0,n −Yn). Using the formula for Dη∗ν ,

√
n(Y 0,n −Yn)√

1
n

∑n
i=1(Yni −Yn)2

=
(n/2)(Y 0,n −Yn)√
1
4

∑n
i=1(Yni −Yn)2

d
=

ην√
Dη∗ν

 N(0, 1).

In addition,

√
1
n

∑n
i=1(Yni −Yn)2/

√
var(Yni)

p→ 1. By Slutsky’s Theorem,
√
n(Y 0,n −Yn) 

N(0, 1).
Step 4 (Li & Ding, 2017): If Yn1, . . . , Ynn ∼ N(θ∗, 1), show that the condition of Step 2 is satisfied

with probability 1.

These results come from page 2 of the appendix of Li & Ding (2017). The authors show that if the Ynis
are iid draws from a superpopulation with 2 + ǫ (ǫ > 0) absolute moments and nonzero variance, then

(1/n)max1≤i≤n(Yni −Yn)
2 ≡ mn/n → 0 with probability 1. Furthermore, they show that mn/n → 0

implies their condition (A2), which is a rewriting of Hájek (1960)’s condition (S2).

Since N(θ∗, 1) satisfies the superpopulation conditions, condition (S2) is satisfied with probability 1.

Then following Steps 2 and 3,
√
n(Y 0,n −Yn) N(0, 1).

Step 5 (Hájek, 1960): Extend results to d > 1.

In d dimensions, suppose Yn1, . . . , Ynn ∼ N(θ∗, Id). Remark 3.2 of Hájek (1960) notes that we can

user the Cramér-Wold device to extend the results to the multivariate case. Let Z = (Z(1), . . . , Z(d))
represent the N(0, Id) distribution. Then for each component, Z(j) ∼ N(0, 1). By the Cramér-Wold de-

vice, we can say that
√
n(Y 0,n −Yn) Z if and only if for any λ ∈ R

d,
∑d

j=1 λ
(j)√n(Y

(j)
0,n −Y

(j)
n ) 

∑d
j=1 λ

(j)Z(j).

For any dimension j, we can think of Y
(j)
n1 , . . . , Y

(j)
nn as draws from a N(θ∗(j), 1) superpopulation.

So the superpopulation conditions from Step 4 are satisfied, which means
√
n(Y

(j)
0,n −Y

(j)
n ) Z(j). We

conclude that
√
n(Y 0,n −Yn) N(0, Id).
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Lemma 2. Assume (Dn)n∈2N is a sequence of data sets such that Dn = {Yn1, Yn2, . . . , Ynn} with

observations Ynj
iid∼ N(θ∗, Id). Let D0,n be a sample of n/2 observations from Dn. Define Yn =

(1/n)
∑n

i=1 Yni and Y 0,n = (2/n)
∑

Yni∈D0,n
Yni. Let c > 0, and let (θn) be a sequence that satisfies

‖Yn − θn‖ ≤ c/
√
n for all n. Define Xn ≡ √

n(Y 0,n −Yn). Let Z denote a N(0, Id) random variable.
Then

E

[
exp

(
−3

4
XT

n Xn +

√
n

2
XT

n

(
Yn − θn

))
| Dn

]
− E

[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]
= oP (1).

Proof. Since (θn) is chosen such that ‖Yn − θn‖ ≤ c/
√
n, we can re-write θn = Yn + (c/

√
n)vn, where

vn ∈ R
d satisfies ‖vn‖ ≤ 1 for all n.

Define a function f by

f(xn, vn) ≡ exp

(
−3

4
xTnxn − c

2
xTnvn

)
.

f is clearly a continuous function. We can also show that f is bounded. Define

g(xn, vn) ≡ −3

4
xTnxn − c

2
xTnvn

so that f(xn, vn) = exp(g(xn, vn)). We can see that

∂

∂xn
g(xn, vn) = −3

2
xn − c

2
vn

set
= ~0

is solved by xn = −(c/3)vn. Since g(xn, vn) is concave in xn, g(xn, vn) is maximized at xn =
−(c/3)vn for any vn. Since f(xn, vn) = exp(g(xn, vn)), f(xn, vn) is also maximized at this value of xn
for any vn. Under the assumption that ‖vn‖ ≤ 1, we see

f(xn, vn) ≤ exp

(
−3

4

(
− c

3

)2
vTn vn − c

2

(
− c

3

)
vTn vn

)

= exp

(
− c2

12
‖vn‖2 +

c2

6
‖vn‖2

)

≤ exp

(
c2

12

)
.

Thus, f(xn, vn) is a continuous and bounded function.

The claim of Lemma 2 is equivalent to E[f(Xn, vn) | Dn]− E[f(Z, vn) | Dn] = oP (1). The Port-

manteau Theorem provides several equivalent definitions of convergence in distribution, including that

Xn  Z if and only if E[h(Xn)] → E[h(Z)] for every continuous, bounded function h. We prove the re-

sult on f(Xn, vn) by modifying the Van der Vaart (2000), Chapter 2, proof of this Portmanteau Theorem

result.

Let γ > 0. Fix ǫ > 0 such that

ǫ < γ / (3 + 3 exp(c2/12)). (S3)

Choose a large enough compact rectangle I such that

P(Z /∈ I) < ǫ. (S4)

Let B1(0) be the d-dimensional ball of radius 1 centered at 0. By construction, each vn ∈ B1(0).
Since f is continuous and I × B1(0) is compact, f(xn, vn) is uniformly continuous on I × B1(0). We

can thus partition I × B1(0) into J compact regions Ij × Vj where I × B1(0) = ∪J
j=1(Ij × Vj) such
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that for any j and for any (xn1, vn1), (xn2, vn2) ∈ Ij × Vj , |f(xn1, vn1)− f(xn2, vn2)| < ǫ. (For in-

stance the Ij regions may be rectangles and the Vj regions may be rectangles truncated at the bound-

aries of B1(0). These rectangular regions may be appropriately sized such that within a region Ij × Vj ,

d((xn1, vn1), (xn2, vn2)) is small enough that |f(xn1, vn1)− f(xn2, vn2)| < ǫ.)
Select a point (x′j , v

′
j) from each Ij × Vj . Define

fǫ(x, v) =

J∑

j=1

f(x′j , v
′
j)✶((x, v) ∈ Ij × Vj).

For a given sample Dn, we note that there are
(

n
n/2

)
possible values of Xn, since there are

(
n

n/2

)
possible

values ofY 0,n. We denote the sum over all possible values of Xn as
∑

Xn
.

Note that

|E[f(Xn, vn) | Dn]− E[fǫ(Xn, vn) | Dn]|

=

∣∣∣∣∣

(
n

n/2

)−1∑

Xn

f(Xn, vn)−
(

n

n/2

)−1∑

Xn

fǫ(Xn, vn)

∣∣∣∣∣

=

∣∣∣∣∣

(
n

n/2

)−1∑

Xn

[
(f(Xn, vn)− fǫ(Xn, vn))✶(Xn ∈ I) + (f(Xn, vn)− fǫ(Xn, vn))✶(Xn /∈ I)

]
∣∣∣∣∣

≤
(

n

n/2

)−1∑

Xn

|f(Xn, vn)− fǫ(Xn, vn)|✶(Xn ∈ I)+

(
n

n/2

)−1∑

Xn

|f(Xn, vn)− fǫ(Xn, vn)|✶(Xn /∈ I)

=

(
n

n/2

)−1∑

Xn

|f(Xn, vn)− fǫ(Xn, vn)|✶(Xn ∈ I, vn ∈ B1(0))+

(
n

n/2

)−1∑

Xn

|f(Xn, vn)− fǫ(Xn, vn)|✶(Xn /∈ I)

<

(
n

n/2

)−1∑

Xn

ǫ+

(
n

n/2

)−1∑

Xn

|f(Xn, vn)|✶(Xn /∈ I)

≤ ǫ+ exp
(
c2/12

)
P(Xn /∈ I | Dn). (S5)
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Similarly, we show that

∣∣∣E[f(Z, vn) | Dn]− E[fǫ(Z, vn) | Dn]
∣∣∣

=
∣∣∣E
[
(f(Z, vn)− fǫ(Z, vn))✶(Z ∈ I) + (f(Z, vn)− fǫ(Z, vn))✶(Z /∈ I)

]∣∣∣

≤ E

[∣∣∣f(Z, vn)− fǫ(Z, vn)
∣∣∣✶(Z ∈ I) | Dn

]
+ E

[∣∣∣f(Z, vn)− fǫ(Z, vn)
∣∣∣✶(Z /∈ I) | Dn

]

= E

[∣∣∣f(Z, vn)− fǫ(Z, vn)
∣∣∣✶(Z ∈ I, vn ∈ B1(0)) | Dn

]
+ E

[∣∣∣f(Z, vn)− fǫ(Z, vn)
∣∣∣✶(Z /∈ I) | Dn

]

< ǫ+ exp(c2/12)P(Z /∈ I | Dn)

= ǫ+ exp(c2/12)P(Z /∈ I)

< ǫ+ ǫ exp(c2/12). (S6)

In addition, we see that

∣∣E [fǫ(Xn, vn) | Dn]− E [fǫ(Z, vn) | Dn]
∣∣

=

∣∣∣∣∣

(
n

n/2

)−1∑

Xn

fǫ(Xn, vn)− E[fǫ(Z, vn)]

∣∣∣∣∣

=

∣∣∣∣∣∣

(
n

n/2

)−1∑

Xn

J∑

j=1

f(x′j , v
′
j)✶((Xn, vn) ∈ Ij × Vj)−

J∑

j=1

f(x′j , v
′
j)P(Z ∈ Ij)✶(vn ∈ Vj)

∣∣∣∣∣∣

≤
J∑

j=1

∣∣∣∣∣

(
n

n/2

)−1∑

Xn

f(x′j , v
′
j)✶(Xn ∈ Ij)✶(vn ∈ Vj)− f(x′j , v

′
j)P(Z ∈ Ij)✶(vn ∈ Vj)

∣∣∣∣∣

≤
J∑

j=1

∣∣∣∣∣

(
n

n/2

)−1∑

Xn

f(x′j , v
′
j)✶(Xn ∈ Ij)− f(x′j , v

′
j)P(Z ∈ Ij)

∣∣∣∣∣

=

J∑

j=1

∣∣∣∣∣f(x
′
j , v

′
j)

[(
n

n/2

)−1∑

Xn

✶(Xn ∈ Ij)− P(Z ∈ Ij)

]∣∣∣∣∣

≤
J∑

j=1

|P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)| ×
∣∣f(x′j , v′j)

∣∣ . (S7)

For the sequence of datasets (Dn)n∈2N, Lemma 1 establishes that Xn  N(0, Id) with probability 1.

This tells us that with probability 1 over the randomness in sequences (Dn)n∈2N, limn→∞ P(Xn ∈ I |
Dn) = P(Z ∈ I). Since almost sure convergence implies convergence in probability, for any δ > 0,

lim
n→∞

P
(
|P(Xn ∈ I | Dn)− P(Z ∈ I)| > δ

)
= 0 (S8)

and lim
n→∞

P
(
|P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)| > δ

)
= 0 for 1 ≤ j ≤ J. (S9)

The outer probability is over the randomness in the sequences (Dn)n∈2N.
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Now we see

lim
n→∞

P
(∣∣E[f(Xn, vn) | Dn]− E[f(Z, vn) | Dn]

∣∣ > γ)

≤ lim
n→∞

P
(∣∣E[f(Xn, vn) | Dn]− E[fǫ(Xn, vn) | Dn]

∣∣+
∣∣E[fǫ(Xn, vn) | Dn]− E[fǫ(Z, vn) | Dn]

∣∣+∣∣E[fǫ(Z, vn) | Dn]− E[f(Z, vn) | Dn]
∣∣ > γ

)

≤ lim
n→∞

P
(∣∣E[f(Xn, vn) | Dn]− E[fǫ(Xn, vn) | Dn]

∣∣ > γ/3
)
+

lim
n→∞

P
(∣∣E[fǫ(Xn, vn) | Dn]− E[fǫ(Z, vn) | Dn]

∣∣ > γ/3
)
+

lim
n→∞

P
(∣∣E[fǫ(Z, vn) | Dn]− E[f(Z, vn) | Dn]

∣∣ > γ/3
)

≤ lim
n→∞

P
(
ǫ+ exp(c2/12)P(Xn /∈ I | Dn) > γ/3

)
+ lim

n→∞
P
(
ǫ+ ǫ exp(c2/12) > γ/3)+

lim
n→∞

P




J∑

j=1

∣∣P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)
∣∣× |f(x′j , v′j)| > γ/3


 by (S5), (S6), and (S7)

= lim
n→∞

P
(
ǫ+ exp(c2/12)P(Xn /∈ I | Dn) > γ/3

)
+

lim
n→∞

P




J∑

j=1

∣∣P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)
∣∣× |f(x′j , v′j)| > γ/3


 by (S3)

≤ lim
n→∞

P
(
ǫ+ exp(c2/12) (P(Xn /∈ I | Dn)− P(Z /∈ I)) > γ/3− exp(c2/12)P(Z /∈ I)

)
+

lim
n→∞

J∑

j=1

P
(∣∣P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)

∣∣ > (γ/3)|f(x′j , vj)|−1
)

≤ lim
n→∞

P
(
ǫ+ exp(c2/12)(P(Xn /∈ I | Dn)− P(Z /∈ I)) > γ/3− ǫ exp(c2/12)

)
by (S4) and (S9)

= lim
n→∞

P

(
P(Xn /∈ I | Dn)− P(Z /∈ I) >

γ − 3ǫ− 3ǫ exp(c2/12)

3 exp(c2/12)

)

= 0 by (S3) and (S8).

We have shown that for arbitrary γ > 0,

lim
n→∞

P
(∣∣E[f(Xn, vn) | Dn]− E[f(Z, vn) | Dn]

∣∣ > γ) = 0.

We conclude that E[f(Xn, vn) | Dn]− E[f(Z, vn) | Dn] = oP (1).

Theorem 2. Assume we have a sequence of datasets (Dn)n∈2N, where Dn = {Yn1, . . . , Ynn} and

each Yni is an independent observation from N(θ∗, Id). Let D0,n be a sample of n/2 observations

from Dn, and let D1,n = Dn\D0,n. Define Yn = (1/n)
∑n

i=1 Yni, Y 0,n = (2/n)
∑

Yni∈D0,n
Yni, and

Y 1,n = (2/n)
∑

Yni∈D1,n
Yni. Let c > 0, and let (θn) be a sequence that satisfies ‖Yn − θn‖ ≤ c/

√
n

for all n. Then

E{Tn(θn) | Dn} /
{
exp

(
3n

10
‖Yn − θn‖2

)(
2

5

)d/2
}

= 1 + oP (1).
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Proof. Define Xn ≡ √
n(Y 0,n −Yn) and let Z ∼ N(0, Id). In addition, define µn ≡ (

√
n/5)(Yn − θn)

and Ω ≡ (2/5)Id. Then

E[Tn(θn) | Dn] /

{

exp

(
3n

10
‖Yn − θn‖2

)(
2

5

)d/2
}

= E

[
exp

(
−n

4
‖Y 0,n −Y 1,n‖2 +

n

4
‖Y 0,n − θn‖2

)
| Dn

]
/

{

exp

(
3n

10
‖Yn − θn‖2

)(
2

5

)d/2
}

= E

[
exp

(
−n

4
‖2Y 0,n − 2Yn‖2 +

n

4
‖Y 0,n − θn‖2

)
| Dn

]
exp

(
−3n

10
‖Yn − θn‖2

)(
2

5

)−d/2

= E

[
exp

(
−n‖Y 0,n −Yn‖2 +

n

4
‖Y 0,n −Yn +Yn − θn‖2

)
| Dn

]
exp

(
−3n

10
‖Yn − θn‖2

)(
2

5

)−d/2

= E

[
exp

(
−3n

4
‖Y 0,n −Yn‖2 +

n

2
(Y 0,n −Yn)

T (Yn − θn) +
n

4
‖Yn − θn‖2

)
| Dn

]
×

exp

(
−3n

10
‖Yn − θn‖2

)(
2

5

)−d/2

= E

[
exp

(
−3

4
XT

n Xn +

√
n

2
XT

n

(
Yn − θn

))
| Dn

]
exp

(
− n

20
‖Yn − θn‖2

)(2

5

)−d/2

= E

[
exp

(
−3

4
XT

n Xn +

√
n

2
XT

n

(
Yn − θn

))
| Dn

]
/E

[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]
(S10)

= 1 + oP (1). (S11)

Step (S10) holds because

E

[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]

=

∫

Rd

[
1

(2π)d/2|Id|1/2
exp

(
−1

2
zT z

)
exp

(
−3

4
zT z +

√
n

2
zT
(
Yn − θn

))]

dz

=

∫

Rd

[
1

(2π)d/2
exp

(
−5

4
zT z +

√
n

2
zT
(
Yn − θn

))]

dz

= |Ω|1/2
∫

Rd

[
1

(2π)d/2|Ω|1/2 exp

(
−1

2
(z − µn)

TΩ−1(z − µn) +
n

20
‖Yn − θn‖2

)]

dz (S12)

= exp
( n

20
‖Yn − θn‖2

)
|Ω|1/2

= exp
( n

20
‖Yn − θn‖2

)(2

5

)d/2

.
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Step (S12) uses the following equality:

−5

4
zT z +

√
n

2
zT (Yn − θn)

= −5

4

[
zT z − 2

√
n

5
zT (Yn − θn) +

n

25
(Yn − θn)

T (Yn − θn)−
n

25
(Yn − θn)

T (Yn − θn)

]

= −5

4

(
z −

√
n

5
(Yn − θn)

)T (
z −

√
n

5
(Yn − θn)

)
+

n

20
‖Yn − θn‖2

= −1

2

(
z −

√
n

5
(Yn − θn)

)T (
5

2
Id

)(
z −

√
n

5
(Yn − θn)

)
+

n

20
‖Yn − θn‖2

= −1

2
(z − µn)

TΩ−1(z − µn) +
n

20
‖Yn − θn‖2.

To justify step (S11), note that E

[
exp

(
−3

4Z
TZ +

√
n
2 ZT

(
Yn − θn

))
| Dn

]
, which equals

exp
(

n
20‖Yn − θn‖2

) (
2
5

)d/2
, is bounded between (2/5)d/2 and exp(c2/20)(2/5)d/2 under the assump-

tion that ‖Yn − θn‖ ≤ c/
√
n. By Lemma 2,

E

[
exp

(
−3

4
XT

n Xn +

√
n

2
XT

n

(
Yn − θn

))
| Dn

]
− E

[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]
= oP (1).

Combining these two facts, we conclude that

E

[
exp

(
−3

4
XT

n Xn +

√
n

2
XT

n

(
Yn − θn

))
| Dn

]
/E

[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]
= 1 + oP (1).

Theorem 3. Let Y1, . . . , Yn ∼ N(θ∗, Id). The splitting proportion that minimizes E[r2{Csplit
n (α)}] is

p∗0 = 1−

√
4d2 + 8d log

(
1
α

)
− 2d

4 log
(
1
α

) .

Proof. Recall that p0 represents the proportion of observations that we place in D0.

We know that

Y 0 ∼ N

(
θ∗, V ar =

1

np0
Id

)

Y 1 ∼ N

(
θ∗, V ar =

1

n(1− p0)
Id

)

Since all observations in D0 and D1 are mutually independent, this implies

Y 0 −Y 1 ∼ N

(
0,

(
1

np0
+

1

n(1− p0)

)
Id

)
(S13)

and, hence,

(
1

np0
+

1

n(1− p0)

)−1/2 (
Y 0 −Y 1

)
∼ N (0, Id) .
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We now see

‖Y 0 −Y 1‖2 =
(

1

np0
+

1

n(1− p0)

)∥∥∥∥∥

(
1

np0
+

1

n(1− p0)

)−1/2

(Y 0 −Y 1)

∥∥∥∥∥

2

d
=

(
1

np0
+

1

n(1− p0)

)
χ2
d. (S14)

When p0 =
1
2 , this expression is 4

nχ
2
d, as shown in the derivation of equation 7.

Setting θ̂1 = Y 1, at θ ∈ R
d we construct the test statistic:

Tn(θ) =

∏
Y0i∈D0

exp
(
−1

2(Y0i − θ̂1)
T (Y0i − θ̂1)

)

∏
Y0i∈D0

exp
(
−1

2(Y0i − θ)T (Y0i − θ)
)

= exp


 ∑

Y0i∈D0

(
−1

2
(Y 0 −Y 1)

T (Y 0 −Y 1) +
1

2
(Y 0 − θ)T (Y 0 − θ)

)


= exp
(
−np0

2
‖Y 0 −Y 1‖2 +

np0
2

‖Y 0 − θ‖2
)

Using a split proportion of p0, the split LRT confidence set is now

Csplit
n =

{
θ ∈ Θ : exp

(
−np0

2
‖Y 0 −Y 1‖2 +

np0
2

‖Y 0 − θ‖2
)
≤ 1

α

}

=

{
θ ∈ Θ : −np0

2
‖Y 0 −Y 1‖2 +

np0
2

‖Y 0 − θ‖2 ≤ log

(
1

α

)}

=

{
θ ∈ Θ :

np0
2

‖Y 0 − θ‖2 ≤ log

(
1

α

)
+

np0
2

‖Y 0 −Y 1‖2
}

=

{
θ ∈ Θ : ‖Y 0 − θ‖2 ≤ 2

np0
log

(
1

α

)
+ ‖Y 0 −Y 1‖2

}

The squared radius is thus R2(C
split
n ) = 2

np0
log
(
1
α

)
+ ‖Y 0 −Y 1‖2. By (S14), the expected squared

radius at a given value of p0 is

r(p0) =
2

np0
log

(
1

α

)
+

(
1

np0
+

1

n(1− p0)

)
d.
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We can now minimize this function:

0
set
=

∂

∂p0
r(p0) =

−2

np20
log

(
1

α

)
− d

np20
+

d

n(1− p0)2

m

0 = −2(1− p0)
2 log

(
1

α

)
− d(1− p0)

2 + dp20

= −2(1− 2p0 + p20) log

(
1

α

)
− d(1− 2p0 + p20) + dp20

= −2 log

(
1

α

)
+ 4p0 log

(
1

α

)
− 2p20 log

(
1

α

)
− d+ 2dp0 − dp20 + dp20

= p20

(
−2 log

(
1

α

))
+ p0

(
4 log

(
1

α

)
+ 2d

)
+

(
−2 log

(
1

α

)
− d

)
.

This is now a quadratic expression in p0. Thus, this formula is solved by

p0 =
−4 log

(
1
α

)
− 2d±

√(
4 log

(
1
α

)
+ 2d

)2 − 4
(
−2 log

(
1
α

)) (
−2 log

(
1
α

)
− d
)

2
(
−2 log

(
1
α

))

=
4 log

(
1
α

)
+ 2d±

√
4d2 + 8d log

(
1
α

)

4 log
(
1
α

) .

We now consider the ± choice. In the + direction, we have

p0 =
4 log

(
1
α

)
+ 2d+

√
4d2 + 8d log

(
1
α

)

4 log
(
1
α

) = 1 +
2d+

√
4d2 + 8d log

(
1
α

)

4 log
(
1
α

) > 1.

However, in the − direction, we can show that p0 ∈
(
1
2 , 1
)
. We note that

2d <

√
4d2 + 8d log

(
1

α

)
<

√

4d2 + 8d log

(
1

α

)
+ 4

(
log

(
1

α

))2

=

√(
2d+ 2 log

(
1

α

))2

= 2d+ 2 log

(
1

α

)
.

So

p0 = 1 +
2d−

√
4d2 + 8d log

(
1
α

)

4 log
(
1
α

) < 1 +
2d− 2d

4 log
(
1
α

) = 1

and

p0 = 1 +
2d−

√
4d2 + 8d log

(
1
α

)

4 log
(
1
α

) > 1 +
2d− 2d− 2 log

(
1
α

)

4 log
(
1
α

) = 1− 1

2
=

1

2
.

This means that

p∗0 = 1−

√
4d2 + 8d log

(
1
α

)
− 2d

4 log
(
1
α

)
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optimizes r(p0), and p∗0 ∈
(
1
2 , 1
)
. Furthermore, this optimum must be a minimum, since for any p0 ∈

(0, 1),

∂2

∂p20
r(p0) =

4

np30
log

(
1

α

)
+

2d

np30
+

2d

n(1− p0)3
> 0.

We can use L’Hôpital’s Rule to show that p∗0 → 1
2 as d → ∞:

lim
d→∞

p∗0 = 1− lim
d→∞

√
4d2 + 8d log

(
1
α

)
− 2d

4 log
(
1
α

)

= 1− lim
d→∞

√
4 + (8/d) log (1/α)− 2

(4/d) log(1/α)

= 1− lim
d→∞

1
2 (4 + (8/d) log(1/α))−1/2 (−8/d2) log(1/α)

(−4/d2) log(1/α)

= 1− lim
d→∞

(4 + (8/d) log(1/α))−1/2

=
1

2
.

We conclude that as d → ∞ for fixed α, the optimal choice of p∗0 → 0.5.

Theorem 4. Suppose Y1, . . . , Yn are iid observations from N(θ∗, Id). Split the sample such that D0

and D1 each contain n
2 observations. Use D0 and D1 to define the split and cross-fit sets. Then

Volume{CCF
n (α)} ≤ Volume{Csplit

n (α)}. Equality holds only whenY 0 = Y 1.

Proof. Let θ ∈ CCF
n (α). Then

exp
(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y − θ‖2

)

= exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4

∥∥∥∥
1

2
(Y 0 − θ) +

1

2
(Y 1 − θ)

∥∥∥∥
2
)

≤ exp
(
−n

4
‖Y 0 −Y 1‖2 +

n

8
‖Y 0 − θ‖2 + n

8
‖Y 1 − θ‖2

)
(S15)

= exp
(
−n

8
‖Y 0 −Y 1‖2 +

n

8
‖Y 0 − θ‖2 − n

8
‖Y 0 −Y 1‖2 +

n

8
‖Y 1 − θ‖2

)

≤ 1

2

[
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2

)
+

exp
(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 1 − θ‖2

)]
(S16)

<
1

α
.

Line (S15) holds because ‖ · ‖2 is convex. Line (S16) holds because exp(·) is convex. Thus,

CCF
n (α) ⊆

{
θ ∈ Θ : ‖Y − θ‖2 < 4

n log( 1α) + ‖Y 0 −Y 1‖2
}

, which has the same volume as C
split
n (α) =

{
θ ∈ Θ : ‖Y 0 − θ‖2 < 4

n log
(
1
α

)
+ ‖Y 0 −Y 1‖2

}
. Hence, V ol

(
CCF
n (α)

)
≤ V ol

(
C

split
n (α)

)
.



29

Furthermore, since ‖ · ‖2 and exp(·) are strictly convex, equality holds in (S15) and (S16) only

whenY 0 = Y 1. IfY 0 = Y 1, then CCF
n (α) =

{
θ ∈ Θ : ‖Y − θ‖2 < rem 4

n log( 1α) + ‖Y 0 −Y 1‖2
}

, which

means V ol
(
CCF
n (α)

)
= V ol

(
C

split
n (α)

)
.

Theorem 5. Assume cα,d + log(α) > d− 2. Let fd(x) be the probability density function of the χ2
d

distribution, and let cα,d be the upper α quantile of the χ2
d distribution. Then

P
[
r2{Csplit

n (α)}/r2{CLRT
n (α)} ≤ 4

]
≥ 1− α− log(1/α)fd{cα,d + log(α)}

and P
[
r2{Csplit

n (α)}/r2{CLRT
n (α)} ≤ 4

]
≤ 1− α− log(1/α)fd(cα,d).

Proof. We use the fact that r2(C
split
n (α)) = 4

n log(1/α) + ‖Y 0 −Y 1‖2. As established in the proof of

Theorem 3 and the derivation of equation 7, we know that ‖Y 0 −Y 1‖2 d
= (4/n)χ2

d. Let X ∼ χ2
d. Note

that log(α) < 0. Then

P
(
r2(Csplit

n (α)) / r2(CLRT
n (α)) ≤ 4

)
= P

(
r2(Csplit

n (α)) ≤ 4

n
cα,d

)

= P

(
4

n
log(1/α) +

4

n
X ≤ 4

n
cα,d

)

= P (log(1/α) +X ≤ cα,d)

= P(X ≤ cα,d + log(α))

= P(X ≤ cα,d)− P(cα,d + log(α) ≤ X ≤ cα,d)

= 1− α− P(cα,d + log(α) ≤ X ≤ cα,d).

Now we need to bound P(cα,d + log(α) ≤ X ≤ cα,d). Under the assumed conditions, we show that the

χ2
d pdf is decreasing on [cα,d + log(α), cα,d]. Let fd(x) be the χ2

d pdf. The following five statements are

equivalent:

0 >
∂

∂x
fd(x)

0 >
1

2d/2 Γ(d/2)

[(
d

2
− 1

)
xd/2−2e−x/2 + xd/2−1

(
−1

2
e−x/2

)]

xd/2−1

(
1

2
e−x/2

)
>

(
d

2
− 1

)
xd/2−2e−x/2

x

2
>

d

2
− 1

x > d− 2

By our initial assumption, cα,d + log(α) > d− 2. Thus, fd(x) is decreasing on [cα,d + log(α), cα,d].
Since the interval has length log(1/α),

log(1/α)fd(cα,d) ≤ P(cα,d + log(α) ≤ X ≤ cα,d) ≤ log(1/α)fd(cα,d + log(α)).

The bounds on P

(
r2(C

split
n (α)) / r2(CLRT

n (α)) ≤ 4
)

follow immediately.

Before proving Theorem 6, we establish Lemma 3 and Lemma 4.
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Lemma 3. Assume the doughnut null test setting. Let PΘ0
be the set of all convex combinations of

N(θ, Id) densities such that ‖θ‖ ∈ [0.5, 1]. When ‖Y 1‖ > 1 and θ̂1 = Y 1, the RIPR of p
θ̂1

onto PΘ0
is

p
θ̂1/‖θ̂1‖.

Proof. Suppose ‖Y 1‖ > 1. Defining θ̂1 = Y 1 as in Table 1, ‖θ̂1‖ > 1. The RIPR of θ̂1 onto the

convex set PΘ0
minimizes DKL(pθ̂1

‖p0) out of all densities p0 ∈ PΘ0
. Suppose p0 ∈ PΘ0

. Then

we can write p0 as a mixture of N(θk, Id) densities. We write p0 =
∑K

k=1wkpθk , where K ∈ N,∑K
k=1wk = 1, and for each k = 1, . . . ,K, 0 < wk < 1 and ‖θk‖ ∈ [0.5, 1]. Note that p

θ̂1/‖θ̂1‖ ∈
P0. To prove that DKL(pθ̂1

‖ p
θ̂1/‖θ̂1‖) = infp0∈PΘ0

DKL(pθ̂1
‖ p0), we show DKL(pθ̂1

‖ p
θ̂1/‖θ̂1‖) ≤

DKL(pθ̂1
‖ ∑K

k=1wkpθk).

DKL

(
p
θ̂1

∣∣∣
∣∣∣

K∑

k=1

wkpθk

)
−DKL

(
p
θ̂1

‖ p
θ̂1/‖θ̂1‖

)

=

∫

Rd

p
θ̂1
(y) log

(
p
θ̂1
(y)

∑K
k=1wkpθk(y)

)
dy −

∫

Rd

p
θ̂1
(y) log

(
p
θ̂1
(y)

p
θ̂1/‖θ̂1‖(y)

)
dy

=

∫

Rd

p
θ̂1
(y) log

(
p
θ̂1/‖θ̂1‖(y)∑K

k=1wkpθk(y)

)
dy

= −
∫

Rd

p
θ̂1
(y) log

(∑K
k=1wkpθk(y)

p
θ̂1/‖θ̂1‖(y)

)
dy

= −E
θ̂1

[
log

{∑K
k=1wkpθk(y)

p
θ̂1/‖θ̂1‖(y)

}]

≥ − logE
θ̂1

{∑K
k=1wkpθk(y)

p
θ̂1/‖θ̂1‖(y)

}
(S17)

= − log

[
K∑

k=1

wkEθ̂1

{
pθk(y)

p
θ̂1/‖θ̂1‖(y)

}]

≥ − log

{
K∑

k=1

wk(1)

}
(S18)

= 0.
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(S17) holds by Jensen’s inequality. (S18) holds by the following derivation:

E
θ̂1

{
pθk (y)

p
θ̂1/‖θ̂1‖

(y)

}

=

∫

Rd

1

(2π)d/2
exp

(
−1

2
‖y − θ̂1‖2

) exp
(
− 1

2
‖y − θk‖2

)

exp
(
− 1

2
‖y − θ̂1/‖θ̂1‖‖2

)dy

=

∫

Rd

1

(2π)d/2
exp

(
−1

2
‖y − θ̂1‖2 − 1

2
‖y − θ̂1 + θ̂1 − θk‖2 +

1

2
‖y − θ̂1 + θ̂1 − θ̂1/‖θ̂1‖‖2

)
dy

=

∫

Rd

1

(2π)d/2
exp

(
− 1

2
‖y − θ̂1‖2 − (y − θ̂1)

T (θ̂1 − θk)−
1

2
‖θ̂1 − θk‖2 + (y − θ̂1)

T (θ̂1 − θ̂1/‖θ̂1‖)+

1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2

)
dy

= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 − 1

2
‖θ̂1 − θk‖2

)∫

Rd

1

(2π)d/2
exp

(
−1

2
‖y − θ̂1‖2 + (y − θ̂1)

T (θk − θ̂1/‖θ̂1‖)
)
dy

= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 − 1

2
‖θ̂1 − θk‖2

)
E
θ̂1

[
exp
{
(y − θ̂1)

T (θk − θ̂1/‖θ̂1‖)
}]

= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 − 1

2
‖θ̂1 − θk‖2 − θ̂T1 (θk − θ̂1/‖θ̂1‖)

)
E
θ̂1

[
exp
{
(θk − θ̂1/‖θ̂1‖)T y

}]

= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 − 1

2
‖θ̂1 − θk‖2 − θ̂T1 (θk − θ̂1/‖θ̂1‖)

)
exp

{
θ̂T1 (θk − θ̂1/‖θ̂1‖) +

1

2
‖θk − θ̂1/‖θ̂1‖‖2

}

= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 − 1

2
‖θ̂1 − θk‖2 +

1

2
‖θk − θ̂1/‖θ̂1‖‖2

)

= exp

(
1

2
‖θ̂1‖2 − θ̂T1 θ̂1/‖θ̂1‖+

1

2
θ̂T1 θ̂1/‖θ̂1‖2 − 1

2
‖θ̂1‖2 + θ̂T1 θk − 1

2
‖θk‖2+

1

2
‖θk‖2 − θTk θ̂1/‖θ̂1‖+

1

2
θ̂T1 θ̂1/‖θ̂1‖2

)

= exp
(
θ̂T1 θ̂1/‖θ̂1‖2 − θ̂T1 θ̂1/‖θ̂1‖ − θTk θ̂1/‖θ̂1‖+ θ̂T1 θk

)

= exp
{
(θ̂1/‖θ̂1‖ − θ̂1)

T (θ̂1/‖θ̂1‖ − θk)
}

≤ exp(0) (S19)

= 1.

To justify (S19), note that

(θ̂1/‖θ̂1‖ − θ̂1)
T (θ̂1/‖θ̂1‖ − θk) =

∥∥∥θ̂1/‖θ̂1‖ − θ̂1

∥∥∥
∥∥∥θ̂1/‖θ̂1‖ − θk

∥∥∥cos(γ),

where γ is the angle between θ̂1/‖θ̂1‖ − θ̂1 and θ̂1/‖θ̂1‖ − θk. Recall that Θ0 is a spherical region,

‖θk‖ ∈ [0.5, 1], ‖θ̂1‖ > 1, and θ̂1/‖θ̂1‖ is on the outer border of Θ0. Thus, γ will always be between 90◦

and 270◦. (See Fig. S1.) This implies that (θ̂1/‖θ̂1‖ − θ̂1)
T (θ̂1/‖θ̂1‖ − θk) ≤ 0.

Lemma 4. Assume the doughnut null test setting. Let Rn =
∏

Yi∈D0
{p

θ̂1
(Yi)/pθ̂1/‖θ̂1‖(Yi)}. If θ∗ ∈ Θ0,

then Eθ∗{Rn✶(‖Y 1‖ > 1) | D1} ≤ ✶(‖Y 1‖ > 1).

Proof. If D1 satisfies ‖Y 1‖ ≤ 1, then

Eθ∗{Rn✶(‖Y 1‖ > 1) | D1} = 0 = ✶(‖Y 1‖ > 1).

Now suppose D1 satisfies ‖Y 1‖ > 1. Then ‖θ̂1‖ > 1, and p
θ̂1/‖θ̂1‖ is the RIPR of p

θ̂1
onto the convex

set of densities PΘ0
, as proved in Lemma 3. Since θ∗ ∈ Θ0, θ̂1 ∈ Θ1, and p

θ̂1/‖θ̂1‖ is the RIPR of p
θ̂1
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Fig. S1. Lemma 3 companion diagram. The angle between θ̂1/‖θ̂1‖ − θ̂1 and θ̂1/‖θ̂1‖ − θk
must be between 90◦ and 270◦.

onto PΘ0
, we know Eθ∗{pθ̂1(Y )/p

θ̂1/‖θ̂1‖(Y )} ≤ 1, as explained under Approach 3: Subsampled hybrid

LRT. So

Eθ∗{Rn✶(‖Y 1‖ > 1) | D1} = Eθ∗


 ∏

Yi∈D0

{p
θ̂1
(Yi)/pθ̂1/‖θ̂1‖(Yi)}




iid
=

n/2∏

i=1

Eθ∗

{
p
θ̂1
(Yi)/pθ̂1/‖θ̂1‖(Yi)

}

≤ 1

= ✶(‖Y 1‖ > 1).

Theorem 6. In the doughnut null hypothesis test setting, assume the subsampled test statistics Un,b =

L0,b(θ̂1,b) / L0,b(θ̂
split

0,b ) and Rn,b = L0,b(θ̂1,b) / L0,b(θ̂
RIPR
0,b ), 1 ≤ b ≤ B. The test that rejects H0 when

1

B

B∑

b=1

{
Un,b✶(‖Y 1,b‖ < 0.5) + ✶(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b✶(‖Y 1,b‖ > 1)

}
≥ 1/α

is a valid level α test.
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Proof. Assume θ∗ ∈ Θ0. The probability of falsely rejecting H0 is

Pθ∗

[
1

B

B∑

b=1

{
Un,b✶(‖Y 1,b‖ < 0.5) + ✶(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b✶(‖Y 1,b‖ > 1)

}
≥ 1/α

]

≤ αEθ∗

[
1

B

B∑

b=1

{
Un,b✶(‖Y 1,b‖ < 0.5) + ✶(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b✶(‖Y 1,b‖ > 1)

}]

≤ αEθ∗

[
1

B

B∑

b=1

{
Tn,b(θ

∗)✶(‖Y 1,b‖ < 0.5) + ✶(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b✶(‖Y 1,b‖ > 1)
}]

(S20)

= αEθ∗

{
Tn(θ

∗)✶(‖Y 1‖ < 0.5) + ✶(‖Y 1‖ ∈ [0.5, 1]) +Rn✶(‖Y 1‖ > 1)
}

= αEθ∗

[
Eθ∗

{
Tn(θ

∗)✶(‖Y 1‖ < 0.5) | D1

}]
+ αPθ∗(‖Y 1‖ ∈ [0.5, 1]) + αEθ∗

[
Eθ∗

{
Rn✶(‖Y 1‖ > 1) | D1

}]

≤ αEθ∗

[
✶(‖Y 1‖ < 0.5)Eθ∗ {Tn(θ

∗) | D1}
]
+ αPθ∗(‖Y 1‖ ∈ [0.5, 1]) + αEθ∗{✶(‖Y 1‖ > 1)} (S21)

≤ αEθ∗{✶(‖Y 1‖ < 0.5)}+ αPθ∗(‖Y 1‖ ∈ [0.5, 1]) + αPθ∗{✶(‖Y 1‖ > 1)} (S22)

= α
{
Pθ∗(‖Y 1‖ < 0.5) + Pθ∗(‖Y 1‖ ∈ [0.5, 1]) + Pθ∗(‖Y 1‖ > 1)

}

= α.

(S20) holds because θ̂
split
0,b = arg max

θ∈Θ0

L0,b(θ). Since θ∗ ∈ Θ0,

Un,b = L0,b(θ̂1)/L0,b(θ̂
split
0,b ) ≤ L0,b(θ̂1)/L0,b(θ

∗) = Tn,b(θ
∗).

(S21) holds by Lemma 4. (S22) holds because Eθ∗{Tn(θ
∗) | D1} ≤ 1, as established by Theorem 1.

S2. DERIVATIONS OF EQUATIONS

Derivation of Equation 1. The usual likelihood ratio confidence set for θ∗ ∈ R
d is given by

CLRT
n (α) =

{
θ ∈ Θ : 2 log

L(Y )
L(θ) ≤ cα,d

}
,

where cα,d is the upper α quantile of the χ2
d distribution. Y is the sample mean of the Yi observations,

and it is also the MLE estimate for θ∗. We re-write this confidence set such that the squared radius of the

set is apparent.
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2 log
L(Y )
L(θ) = 2 log



Πn

i=1 exp
(
−1

2(Yi −Y )T (Yi −Y )
)

Πn
i=1 exp

(
−1

2(Yi − θ)T (Yi − θ)
)




= 2 log

(
exp

(
−1

2

n∑

i=1

(Yi −Y )T (Yi −Y ) +
1

2

n∑

i=1

(Yi − θ)T (Yi − θ)

))

= −
n∑

i=1

(Yi −Y )T (Yi −Y ) +
n∑

i=1

(Yi − θ)T (Yi − θ)

=
n∑

i=1

(
−(Yi −Y )T (Yi −Y ) + (Yi −Y +Y − θ)T (Yi −Y +Y − θ)

)

=

n∑

i=1

(
− (Yi −Y )T (Yi −Y ) + (Yi −Y )T (Yi −Y )+

2(Yi −Y )T (Y − θ) + (Y − θ)T (Y − θ)

)

= n‖Y − θ‖2.

The final step holds because the first two terms cancel and the summation over the third term equals 0.

Therefore,

CLRT
n (α) =

{
θ ∈ Θ : ‖θ −Y‖2 ≤ cα,d/n

}
.

Derivation of Equation 2. Let θ̂1 = Y 1 be the sample mean of the n/2 observations in D1. Where

Tn(θ) =
L0(θ̂1)

L0(θ)
,

the universal confidence set using the split likelihood ratio statistic is

Csplit
n (α) =

{
θ ∈ Θ : Tn(θ) <

1

α

}
.

We also re-write this confidence set such that the squared radius of the set is apparent.
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Tn(θ) =
ΠYi∈D0

exp
(
− 1

2
(Y0i − θ̂1)

T (Y0i − θ̂1)
)

ΠYi∈D0
exp

(
− 1

2
(Y0i − θ)T (Y0i − θ)

)

= exp




∑

Yi∈D0

(
−1

2
(Y0i −Y 1)

T (Y0i −Y 1) +
1

2
(Y0i − θ)T (Y0i − θ)

)



= exp

(
∑

Yi∈D0

(

− 1

2
(Y0i −Y 0 +Y 0 −Y 1)

T (Y0i −Y 0 +Y 0 −Y 1)+

1

2
(Y0i −Y 0 +Y 0 − θ)T (Y0i −Y 0 +Y 0 − θ)

))

= exp

(
∑

Yi∈D0

(

− 1

2

[
(Y0i −Y 0)

T (Y0i −Y 0) + 2(Y0i −Y 0)
T (Y 0 −Y 1) + (Y 0 −Y 1)

T (Y 0 −Y 1)
]
+

1

2

[
(Y0i −Y 0)

T (Y0i −Y 0) + 2(Y0i −Y 0)
T (Y 0 − θ) + (Y 0 − θ)T (Y 0 − θ)

]))

(S23)

= exp




∑

Yi∈D0

(
−1

2
(Y 0 −Y 1)

T (Y 0 −Y 1) +
1

2
(Y 0 − θ)T (Y 0 − θ)

)



= exp
(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2

)
. (S24)

The first and fourth terms of (S23) cancel, and the cross-product terms equal 0 upon taking the summa-

tion. (S24) holds because D0 contains n
2 elements. Therefore,

Csplit
n (α) =

{
θ ∈ Θ : Tn(θ) <

1

α

}

=

{
θ ∈ Θ : exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2

)
<

1

α

}

=

{
θ ∈ Θ : −n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2 < log

(
1

α

)}

=

{
θ ∈ Θ :

n

4
‖Y 0 − θ‖2 < log

(
1

α

)
+

n

4
‖Y 0 −Y 1‖2

}

=

{
θ ∈ Θ : ‖Y 0 − θ‖2 < 4

n
log

(
1

α

)
+ ‖Y 0 −Y 1‖2

}
.

Derivation of Equation 7. From the statement of C
split
n (α), we see that r2(C

split
n (α)) = 4

n log(1/α) +

‖Y 0 −Y 1‖2. Note that

‖Y 0 −Y 1‖2 =

∥∥∥∥∥∥
2

n

n/2∑

i=1

(Y0i − Y1i)

∥∥∥∥∥∥

2

=
4

n

∥∥∥∥∥∥
1√
n

n/2∑

i=1

(Y0i − Y1i)

∥∥∥∥∥∥

2

d
=

4

n
χ2
d.

To see why the last step holds, note that Y1, . . . , Yn
iid∼ N(θ∗, Id). So for any i, Y0i − Y1i

iid∼ N(0, 2Id).

Then
∑n/2

i=1(Y0i − Y1i)
iid∼ N

(
0, n2 (2Id)

)
, and 1√

n

∑n/2
i=1(Y0i − Y1i)

iid∼ N(0, Id). This implies that

r2(C
split
n (α))

d
= 4

n log(1/α) + 4
nχ

2
d. Therefore, E[r2(C

split
n (α))] = 4

n log
(
1
α

)
+ 4

nd.



36

Derivation of Equation 9. From equation 8, we know that

E

[
r2(C

split
n (α))

r2(CLRT
n (α))

]
=

4 log(1/α) + 4d

cα,d
.

For d ≥ 1 and α ∈ (0, 1), Inglot (2010) shows the upper bound

cα,d ≤ d+ 2 log

(
1

α

)
+ 2

√
d log

(
1

α

)
.

Also, for d ≥ 2 and α ≤ 0.17, Inglot (2010) shows the lower bound

cα,d ≥ d+ 2 log

(
1

α

)
− 5

2
.

Combining these facts, we see that for d ≥ 2 and α ≤ 0.17,

4 log(1/α) + 4d

2 log(1/α) + d+ 2
√

d log(1/α)
≤ E

[
r2(C

split
n (α))

r2(CLRT
n (α))

]
≤ 4 log(1/α) + 4d

2 log(1/α) + d− 5
2

.

Derivation of Equation 10. From equation 8, we know that

E

[
r2(C

split
n (α))

r2(CLRT
n (α))

]
=

4 log(1/α) + 4d

cα,d
.

The lower bound of equation 10 is the same as the lower bound from equation 9. We consider the upper

bound. Suppose d = 1 and α ≤ exp
(
−5(1+

√
5)

4

)
. Let t = −2 +

√
5 + 2 log(1/α). We will show that

cα,1 ≥ t2 in several steps:

Step 1: Show that t2 + 4t− 2 < 2 log(1/α).

t2 + 4t− 2 =
(
−2 +

√
5 + 2 log(1/α)

)2
+ 4(−2 +

√
5 + 2 log(1/α))− 2

= 4− 4
√
5 + 2 log(1/α) + 5 + 2 log(1/α)− 8 + 4

√
5 + 2 log(1/α)− 2

= 2 log(1/α)− 1

< 2 log(1/α).

Step 2: Show that log(1/α) > t2

2 + 2 log(t) + log(
√
2π). Starting with the result from Step 1,

log(1/α) >
t2

2
+ 2t− 1

≥ t2

2
+ 2(log(t) + 1)− 1 since t ≥ log(t) + 1 for t > 0

=
t2

2
+ 2 log(t) + 1

>
t2

2
+ 2 log(t) + log(

√
2π).
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Step 3: Show that t2 − 1 ≥ t. We start by showing that t ≥ 1
2(1 +

√
5) follows from our definitions of t

and α:

α ≤ exp

(
−5(1 +

√
5)

4

)

⇐⇒ 1

α
≥ exp

(
5(1 +

√
5)

4

)

⇐⇒ 8 log(1/α) ≥ 10(1 +
√
5)

⇐⇒ 20 + 8 log(1/α) ≥ 30 + 10
√
5

⇐⇒ 4(5 + 2 log(1/α)) ≥ 25 + 10
√
5 + 5

⇐⇒ 2
√
5 + 2 log(1/α) ≥ 5 +

√
5

⇐⇒ −4 + 2
√
5 + 2 log(1/α) ≥ 1 +

√
5

⇐⇒ −2 +
√
5 + 2 log(1/α) ≥ 1

2
(1 +

√
5)

⇐⇒ t ≥ 1

2
(1 +

√
5).

The roots of the convex function t2 − t− 1 are at t = (1±
√
5)/2. At t ≥ (1/2)(1 +

√
5), we know

t2 − 1 ≥ t.

Step 4: Show that t2 ≤ cα,1. Starting with the results of steps 2 and 3,

log(t2 − 1)− t2/2− log(
√
2π) > log(t2 − 1) + 2 log(t) + log(α)

≥ 3 log(t) + log(α).

Exponentiating,

(
t2 − 1

)
exp

(
−t2/2

)( 1√
2π

)
≥ t3α.

So
(
1

t
− 1

t3

)
exp

(
−t2/2

)( 1√
2π

)
≥ α.

If Z ∼ N(0, 1) and X = Z2 ∼ χ2
1, then using an inequality on P(Z ≥ t) from Polland (2015),

P(X ≥ t2) = 2P(Z ≥ t) > P(Z ≥ t) ≥
(
1

t
− 1

t3

)
exp

(
−t2/2

)( 1√
2π

)
≥ α.

This implies that cα,1 ≥ t2 = 2 log(1/α) + 9− 4
√

5 + 2 log(1/α). We conclude that for d = 1 and α ≤
exp

(
−5(1+

√
5)

4

)
,

4 log(1/α) + 4d

2 log(1/α) + d+ 2
√
d log(1/α)

≤ E

[
r2(C

split
n (α))

r2(CLRT
n (α))

]
≤ 4 log(1/α) + 4d

2 log(1/α) + 9− 4
√

5 + 2 log(1/α)
.
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Derivation of Equation 12. The usual LRT set is

CLRT
n (α) =

{
θ ∈ Θ : ‖Y − θ‖2 ≤ cα,d / n

}
,

where cα,d is the upper α quantile of the χ2
d distribution. Suppose we are testing H0 : θ

∗ = 0 versus

H1 : θ
∗ 6= 0. The power of the usual LRT at the true θ∗ is thus

Power(CLRT
n (α); θ∗) = Pθ∗

(
‖Y‖2 > cα,d/n

)
.

We can express the power function of the usual LRT in terms of the CDF of a noncentral χ2 distribution.

Let us denote θ∗ = (θ∗1, . . . , θ
∗
d). We see that

n‖Y‖2 =
∥∥∥∥∥

1√
n

n∑

i=1

Yi

∥∥∥∥∥

2

=
d∑

j=1

(
1√
n

n∑

i=1

Yij

)2

.

For each dimension j, n−1/2
∑n

i=1 Yij ∼ N(θ∗j
√
n, 1). So this follows a non-central χ2 distribution given

by

n‖Y‖2 d
= χ2


df = d, λ =

d∑

j=1

n(θ∗j )
2


 d

= χ2
(
df = d, λ = n‖θ∗‖2

)
.

Let Φ(·) represent the standard normal CDF. Suppose X ∼ χ2(df = d, λ = n‖θ∗‖2). As d → ∞ or

as λ → ∞, it holds that

X − (d+ n‖θ∗‖2)√
2(d+ 2n‖θ∗‖2)

≈ N(0, 1).

See Chun & Shapiro (2009). Using the Normal approximation to the non-central chi-squared CDF, the

power of the usual LRT is

Power(CLRT
n (α); θ∗) = Pθ∗

(
‖Y‖2 > cα,d/n

)

= Pθ∗

(
n‖Y‖2 > cα,d

)

= Pθ∗

(
n‖Y‖2 − d− n‖θ∗‖2√

2(d+ 2n‖θ∗‖2)
>

cα,d − d− n‖θ∗‖2√
2(d+ 2n‖θ∗‖2)

)

≈ 1− Φ

(
cα,d − d− n‖θ∗‖2√

2(d+ 2n‖θ∗‖2)

)

= Φ

(
d+ n‖θ∗‖2 − cα,d√

2(d+ 2n‖θ∗‖2)

)
.

Derivation of Equation 13. Using methods from the derivation of equation 12, we can find a representa-

tion for the approximate power of the limiting subsampling LRT set as B → ∞. From equation 4,

Csubsplit
n (α) ≈

{
θ ∈ Θ : ‖Y − θ‖2 < 10

3n
log

((
5

2

)d/2 1

α

)}
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So the power of the limit of subsampling LRT is

Power(Csubsplit
n (α); θ∗) ≈ Pθ∗

(
n‖Y‖2 ≥ 10

3
log

((
5

2

)d/2 1

α

))

= Pθ∗

(
n‖Y‖2 − d− n‖θ∗‖2√

2(d+ 2n‖θ∗‖2)
≥ (10/3) log

(
(5/2)d/2(1/α)

)
− d− n‖θ∗‖2√

2(d+ 2n‖θ∗‖2)

)

≈ Φ

(
1√

2(d+ 2n‖θ∗‖2)

(
d+ n‖θ∗‖2 − 10

3
log

((
5

2

)d/2 1

α

)))
.

S3. SIMULATED CROSS-FIT SETS WITH VARYING p0

In the split LRT case, the optimal split proportion p∗0 (established in Theorem 3) converges to 0.5

as d → ∞. This optimal split proportion minimizes the expected squared radius. Under general p0, the

cross-fit set is defined as

CCF
n (α) =

{
θ ∈ Θ :

1

2

[
exp

(
−np0

2
‖Y 0 −Y 1‖2 +

np0
2

‖Y 0 − θ‖2
)
+

exp

(
−n(1− p0)

2
‖Y 0 −Y 1‖2 +

n(1− p0)

2
‖Y 1 − θ‖2

)]
<

1

α

}
.

Noting the symmetry of the set CCF
n (α), we conjecture that p0 = 0.5 will minimize the expected squared

diameter of the cross-fit set. Figure S2 presents examples of cross-fit sets at varying p0 on a single sample

of 1000 observations simulated from a N(~0, I2) distribution. We see that the regions with p0 ∈ {0.5, 0.7}
have smaller diameters than the regions with p0 ∈ {0.1, 0.3, 0.9}.

S4. POWER OF TESTS OF H0 : ‖θ∗‖ ∈ [0.5, 1]

S4.1. Exact Formula for Power of Intersection Test

In section 4, we present hypothesis tests for H0 : ‖θ∗‖ ∈ [0.5, 1] versus H1 : ‖θ∗‖ /∈ [0.5, 1]. The

power of the intersection method that we present is tractable. We derive a formula for the intersec-

tion method’s power at θ∗. From the intersection method’s description, we reject H0 if and only if

CLRT
n (α) ∩ (S1\S0.5) = ∅, where CLRT

n (α) =
{
θ ∈ Θ : ‖θ −Y‖2 ≤ cα,d/n

}
. This is equivalent to re-

jecting H0 if and only if θ̂proj /∈ CLRT
n (α), where

θ̂proj =





0.5Y/‖Y‖ : ‖Y‖ < 0.5

Y : ‖Y‖ ∈ [0.5, 1.0]

Y/‖Y‖ : ‖Y‖ > 1

.

In Case 2, we have ‖Y‖ ∈ [0.5, 1]. In this setting, it is always true that θ̂proj = Y ∈ CLRT
n (α). So we

will never reject H0 in this case. We consider Case 1 (‖Y‖ < 0.5) and Case 3 (‖Y‖ > 1). For ‖θ∗‖ /∈
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Fig. S2. Simulated cross-fit regions at varying p0, using a single data sample.

[0.5, 1.0], the power is given by

Power(θ∗) = Pθ∗

(∥∥∥Y/‖Y‖ −Y
∥∥∥
2
> cα,d/n, ‖Y‖ > 1

)
+

Pθ∗

(∥∥∥0.5Y/‖Y‖ −Y
∥∥∥
2
> cα,d/n, ‖Y‖ < 0.5

)
.

We know that n‖Y‖2 ∼ χ2(df = d, λ = n‖θ∗‖2). We will use this fact to write Power(θ∗) in terms of

this non-central χ2 CDF.

Case 1. Note that

∥∥∥0.5Y/‖Y‖ −Y
∥∥∥
2
=

Y
T
Y

4‖Y‖2
− 2

Y
T
Y

2‖Y‖
+ ‖Y‖2 = 1

4
− ‖Y‖+ ‖Y‖2 =

(
‖Y‖ − 1

2

)2

.
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Then we write

Pθ∗

(∥∥∥0.5Y/‖Y‖ −Y
∥∥∥
2
> cα,d/n, ‖Y‖ < 1/2

)

= Pθ∗

((
‖Y‖ − 1/2

)2
> cα,d/n, ‖Y‖ < 1/2

)

= Pθ∗

(
1/2− ‖Y‖ > (cα,d/n)

1/2, ‖Y‖ < 1/2
)

= Pθ∗

(
‖Y‖ < 1/2− (cα,d/n)

1/2, ‖Y‖ < 1/2
)

= Pθ∗

(
‖Y‖ < 1/2− (cα,d/n)

1/2
)

= ✶ (cα,d/n < 1/4)Pθ∗

(
‖Y‖ < 1/2− (cα,d/n)

1/2
)

= ✶ (n > 4cα,d)Pθ∗

(
‖Y‖2 < 1/4−

√
cα,d/n+ cα,d/n

)

= ✶ (n > 4cα,d)Pθ∗

(
n‖Y‖2 < n/4−√

ncα,d + cα,d

)

= ✶ (n > 4cα,d)Fd,n‖θ∗‖2
(
n/4−√

ncα,d + cα,d
)
, (S25)

where Fd,n‖θ∗‖2 is the non-central χ2(df = d, λ = n‖θ∗‖2) CDF.

Case 3. Note that

∥∥∥Y/‖Y‖ −Y
∥∥∥
2
=

Y
T
Y

‖Y‖2
− 2

Y
T
Y

‖Y‖
+ ‖Y‖2 = 1− 2‖Y‖+ ‖Y‖2 =

(
‖Y‖ − 1

)2
.

Then we write

Pθ∗

(∥∥∥Y/‖Y‖ −Y
∥∥∥
2
> cα,d/n, ‖Y‖ > 1

)

= Pθ∗

((
‖Y‖ − 1

)2
> cα,d/n, ‖Y‖2 > 1

)

= Pθ∗

(
‖Y‖ − 1 > (cα,d/n)

1/2, ‖Y‖2 > 1
)

= Pθ∗

(
‖Y‖ > 1 + (cα,d/n)

1/2, ‖Y‖2 > 1
)

= Pθ∗

(
‖Y‖2 > 1 + (2/

√
n)c

1/2
α,d + cα,d/n, ‖Y‖2 > 1

)

= Pθ∗

(
‖Y‖2 > 1 + (2/

√
n)c

1/2
α,d + cα,d/n

)

= Pθ∗

(
n‖Y‖2 > n+ 2

√
ncα,d + cα,d

)

= 1− Fd,n‖θ∗‖2(n+ 2
√
ncα,d + cα,d), (S26)

where Fd,n‖θ∗‖2 is the non-central χ2(df = d, λ = n‖θ∗‖2) CDF.

For a given ‖θ∗‖ /∈ [0.5, 1], our calculation of Power(θ∗) is given by (S26) + (S25). That is,

Power(θ∗) = 1− Fd,n‖θ∗‖2(n+ 2
√
ncα,d + cα,d)+

✶ (n > 4cα,d)Fd,n‖θ∗‖2
(
n/4−√

ncα,d + cα,d
)
.
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A1A2 = Pθ∗=0

(
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − 0.5Y 0/‖Y 0‖‖2

)
≥ 1

α
, ‖Y 1‖ < 0.5, ‖Y 0‖ < 0.5

)

≤ Pθ∗=0

(
‖Y 0 −Y 1‖2 < ‖Y 0 − 0.5Y 0/‖Y 0‖‖2, ‖Y 0‖ < 0.5

)

≤ Pθ∗=0(‖Y 0 −Y 1‖2 < 0.25)

= P((4/n)χ2

df=100 < 1/4)

= P(χ2

df=100 < 1000/16)

≈ 0.001.

This means that at a single split of the data, the power at ‖θ∗‖ = 0, d = 100, and n = 1000 is

Pθ∗=0(Un✶(‖Y 1‖ < 0.5) + ✶(‖Y 1‖ ∈ [0.5, 1]) +Rn✶(‖Y 1‖ > 1) ≥ 1/α) ≤ 0.001.

S4.4. Hybrid power when θ∗ = 0, d = 1000, and n = 1000

When θ∗ = 0, d = 1000, and n = 1000, we see that the hybrid method selects case 3 (‖Y 1,b‖ > 1) in

all simulations. This is essentially choosing the wrong case, since ‖θ∗‖ = 0 < 0.5. Numerically, we can

show that the hybrid method will have power of approximately 0 at these parameters. Again, we consider

a single split of the data.

Pθ∗=0(Un✶(‖Y 1‖ < 0.5) + ✶(‖Y 1‖ ∈ [0.5, 1]) +Rn✶(‖Y 1‖ > 1) ≥ 1/α)

= Pθ∗=0(‖Y 1‖ < 0.5)
︸ ︷︷ ︸

A1

Pθ∗=0

(
Un ≥ 1/α

∣∣∣ ‖Y 1‖ < 0.5
)

︸ ︷︷ ︸
A2

+

Pθ∗=0(‖Y 1‖ ∈ [0.5, 1])
︸ ︷︷ ︸

B1

Pθ∗=0(1 ≥ 1/α | ‖Y 1‖ ∈ [0.5, 1])
︸ ︷︷ ︸

B2

+

Pθ∗=0(‖Y 1‖ > 1)
︸ ︷︷ ︸

C1

Pθ∗=0

(
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 −Y 1/‖Y 1‖‖2

)
≥ 1

α

∣∣∣ ‖Y 1‖ > 1

)

︸ ︷︷ ︸
C2

.

The probability B2 equals 0. In addition, A1 is approximately 0 because

Pθ∗=0(‖Y 1‖ < 0.5) = Pθ∗=0

(
(n/2)‖Y 1‖2 < n/8

)

= P(χ2
df=1000 < 1000/8)

≈ 0.
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So the probability of rejecting H0 at this choice of parameters is approximately

C1C2 = Pθ∗=0

(
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 −Y 1/‖Y 1‖‖2

)
≥ 1

α
, ‖Y 1‖ > 1

)

≤ Pθ∗=0

(
‖Y 0 −Y 1‖2 < ‖Y 0 −Y 1/‖Y 1‖‖2, ‖Y 1‖ > 1

)

= Pθ∗=0

(
‖Y 0‖2 − 2Y

T
0Y 1 + ‖Y 1‖2 < ‖Y 0‖2 − 2Y

T
0Y 1/‖Y 1‖+ 1, ‖Y 1‖ > 1

)

= Pθ∗=0

(
2Y

T
0Y 1(1/‖Y 1‖ − 1) + ‖Y 1‖2 < 1, ‖Y 1‖ > 1

)

= Pθ∗=0

(
2Y

T
0Y 1(1− ‖Y 1‖)/‖Y 1‖ < 1− ‖Y 1‖2, ‖Y 1‖ > 1

)

= Pθ∗=0

(
2Y

T
0Y 1(1− ‖Y 1‖)/‖Y 1‖ < (1− ‖Y 1‖)(1 + ‖Y 1‖), ‖Y 1‖ > 1

)

= Pθ∗=0

(
2Y

T
0Y 1 > ‖Y 1‖(1 + ‖Y 1‖), ‖Y 1‖ > 1

)

≤ Pθ∗=0

(
Y
T
0Y 1 > 1

)
.

Let σ = 1/
√
500. Since Y 0 and Y 1 are averages of 500 N(0, Id) random variables, we see that Y 0 ∼

N(0, σ2Id) and Y 1 ∼ N(0, σ2Id). Let λ = −d/2 + (1/2)
√
d2 + 4/σ4. (This choice of λ minimizes

E[exp(λY
T
0Y 1)]/ exp(λ) out of λ > 0.) Let ν = σ/(1− σ4λ2)1/2. We derive

Pθ∗=0

(
Y

T
0Y1 > 1

)

= Pθ∗=0

(
exp

(
λY

T
0Y1

)
> exp(λ)

)

≤ Eθ∗=0

[
exp

(
λY

T
0Y1

)]
/ exp(λ)

= exp(−λ)

∫

Rd

∫

Rd

1

(2π)d|σ2Id|
exp

(
− 1

2σ2
‖Y0‖2 − 1

2σ2
‖Y1‖2 + λY

T
0Y1

)
dY0dY1

= exp(−λ)

∫

Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2σ2
‖Y1‖2

){∫

Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2σ2
‖Y0‖2 + λY

T
0Y1

)
dY0

}
dY1

= exp(−λ)

∫

Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2σ2
‖Y1‖2

){
E

[
exp((λY1)

TY0) | Y1

]}
dY1

= exp(−λ)

∫

Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2σ2
‖Y1‖2

)
exp

(
1

2
λ2σ2‖Y1‖2

)
dY1

= exp(−λ)

∫

Rd

1

(2π)d/2|σ2Id|1/2
exp

(
−1

2

(
1

σ2
− σ2λ2

)
‖Y1‖2

)
dY1

= exp(−λ)

∫

Rd

1

(2π)d/2|σ2Id|1/2
exp

(
−1

2

(
1− σ4λ2

σ2

)
‖Y1‖2

)
dY1

= exp(−λ)

∫

Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2ν2
‖Y1‖2

)
dY1

= exp(−λ)
|ν2Id|1/2
|σ2Id|1/2

∫

Rd

1

(2π)d/2|ν2Id|1/2
exp

(
− 1

2ν2
‖Y1‖2

)
dY1

= exp(−λ)(ν/σ)d

≈ exp(−207)(1.1)1000

≈ 0.
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At a single split of the data, the power at ‖θ∗‖ = 0, d = 1000, and n = 1000 is approximately 0

because

Pθ∗=0(Un✶(‖Y 1‖ < 0.5) + ✶(‖Y 1‖ ∈ [0.5, 1]) +Rn✶(‖Y 1‖ > 1) ≥ 1/α)

≈ Pθ∗=0

(
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 −Y 1/‖Y 1‖‖2

)
≥ 1

α
, ‖Y 1‖ > 1

)

≤ Pθ∗=0

(
Y
T
0Y 1 > 1

)

≈ 0.
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