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A one-step analysis of Anderson acceleration with general algorithmic depths is presented. The resulting
residual bounds within both contractive and noncontractive settings reveal the balance between the
contributions from the higher and lower order terms, which are both dependent on the success of the
optimization problem solved at each step of the algorithm. The new residual bounds show the additional
terms introduced by the extrapolation produce terms that are of a higher order than was previously
understood. In the contractive setting these bounds sharpen previous convergence and acceleration results.
The bounds rely on sufficient linear independence of the differences between consecutive residuals, rather
than assumptions on the boundedness of the optimization coefficients, allowing the introduction of a
theoretically sound safeguarding strategy. Several numerical tests illustrate the analysis primarily in the
noncontractive setting, and demonstrate the use of the method, the safeguarding strategy and theory-based
guidance on dynamic selection of the algorithmic depth, on a p-Laplace equation, a nonlinear Helmholtz
equation and the steady Navier–Stokes equations with high Reynolds number in three spatial dimensions.
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1. Introduction

Anderson acceleration (AA) is an extrapolation technique that recombines a given number of the most
recent iterates and update steps in a fixed-point iteration to improve the convergence properties of the
sequence. The coefficients of the linear combination used in the update are recomputed at each iteration
by the solution to an optimization problem, which determines a least-length update step. The technique
was originally introduced in the context of integral equations in Anderson (1965). It has since been used
in many applications over the past decade for various types of flow problems, for instance in Lott et al.
(2012); Both et al. (2019); Pollock et al. (2019); Evans et al. (2020); geometry optimization in Peng
et al. (2018); electronic structure computations in Fang & Saad (2009); radiation diffusion and nuclear
physics in Toth et al. (2015); An et al. (2017); computing nearest correlation matrices in Higham &
Strabic (2016); molecular interaction in Stasiak & Matsen (2011); and on a wide range of nonlinear
problems in Walker & Ni (2011), among others.

In terms of its analysis AA was shown to be in the class of generalized quasi-Newton methods in
Eyert (1996) and Fang & Saad (2009). In Walker & Ni (2011) it was shown that in the linear case,
the variant of the method related to Type II Broyden methods is ‘essentially equivalent’ to Generalized
Minimal RESidual method (GMRES), while the Type I variant is essentially equivalent to Arnoldi. In
the remainder we restrict our attention to the (standard) Type II variant and consider its use on the
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2842 S. POLLOCK AND L. G. REBHOLZ

solution of nonlinear problems. Recently, in Brezinski et al. (2018) a nontrivial (cf. Walker & Ni, 2011)
mathematical connection between AA and classical extrapolation algorithms used to accelerate vector
sequences, including the (Modified) Minimal Polynomial Extrapolation, Topological and Vector Epsilon
Algorithms and Reduced Rank Extrapolation algorithms, was established (see the review paper Smith et
al., 1987, and the references therein for further discussion on the relation between these more classical
methods). Meanwhile, the first mathematical results showing local convergence of AA for contractive
nonlinear operators were developed in Toth & Kelley (2015) and sharpened in Kelley (2018). The first
results to prove how AA improves the convergence rate in fixed point iterations were written by the
authors in Pollock et al. (2019) and Evans et al. (2020). The present work improves upon the results
by Evans et al. (2020), by further exploiting the relationship between the optimization coefficients and
optimization gain, made possible by analyzing the least-squares problem as it is discussed in Fang &
Saad (2009) using a QR factorization.

This paper presents a novel one-step analysis that both sharpens and generalizes the AA convergence
theory developed for contractive operators in Evans et al. (2020). The new one-step estimates hold
for fixed-point iterations of contractive operators, or for zero-finding fixed-point iterations based on
operators whose Jacobians do not degenerate. The latter are of particular importance in the numerical
approximation of nonlinear partial differential equations (PDEs). The presented theory does not
guarantee convergence of the sequence of iterations for noncontractive operators, unless the optimization
problem is assumed to be sufficiently successful at each iteration. However, it succeeds at explaining the
mechanism by which AA applied to this broad class of noncontractive fixed-point operators often does
converge, and it provides insight into the design of more robust and efficient algorithms, as demonstrated
in the practical guidance and in the numerical results.

One of the fundamental aspects of the theory that (to the knowledge of the authors) has not
been exploited in previous investigations for general algorithmic depths, is the relation between the
optimization coefficients and the gain from the optimization problem, which, as shown here, can
be understood through a QR factorization. For this reason the analysis is restricted to R

n (trivially
extendable to C

n), with the norm from the optimization problem induced by an inner product. While the
analysis and theory extend to more general Hilbert space settings, this allows for a clean presentation
of the central ideas, and it is the most interesting for the solution of systems assembled from the
discretization of nonlinear PDEs.

The presented bounds significantly sharpen those previously developed for contractive operators in
two important ways. First, the dependence on the higher order terms is shown to be O

(‖wk‖(‖wk‖ +
‖wk−1‖+. . .+‖wk−m‖)), improving on the O(‖wk‖2)+O(‖wk−1‖2)+. . .+O(‖wk−m‖2) bound proven
in Evans et al. (2020), where wk is the stage-k residual. This analysis produces the first residual bound
for AA applied to nonlinear problems, where the most recent residual

∥∥wk

∥∥ can be factored out of the
entire bound; previously, the best bounds for the higher order terms involved only older (often larger)
residuals from the history. Secondly, the new estimates show that if the solution to the optimization
problem does not produce a linear combination of residuals that is strictly lesser in norm than the most
recent residual, then there is no contribution from the higher order terms. The results of the analysis
further motivate strategies for choosing the AA depth adaptively or dynamically, which is shown to
provide a significant advantage over constant depths in the numerical tests.

The remainder of the paper is structured as follows. Section 2 states the algorithm and presents
notation that will be used throughout, and Section 3 summarizes the residual expansion that is similar
to that of Evans et al. (2020). In Section 4 the new one-step analysis is presented for algorithmic depth
m = 1, and in Section 5 the one-step analysis is developed for m > 1. In section 5.1 practical guidance
is presented on dynamic algorithmic depth selection and safeguarding strategies, as motivated by the
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2843

developed theory. In Section 6 numerical results are presented that both illustrate the theory and practical
guidance, and demonstrate how AA can be effectively used to solve a nonlinear Helmholtz equation and
the three-dimensional steady Navier–Stokes equations (NSEs) with Reynolds numbers past the first
Hopf bifurcation. An appendix contains a proof of a technical lemma providing particular bounds on the
entries of the inverse of the upper triangular matrix found in the QR decomposition.

2. Problem setting and preliminaries

Consider seeking a fixed point of Fréchet differentiable operator g : X → X for Hilbert space X ⊆ R
n

equipped with inner product ( · , · ) and induced norm ‖ · ‖, under the following conditions.

Assumption 2.1 Assume g ∈ C1(X) has a fixed point x∗ in X, and there are positive constants κg and
κ̂g with

1.
∥∥g′(x)z

∥∥ � κg ‖z‖ for all x, z ∈ X.

2.
∥∥g′(x)z − g′(y)z

∥∥ � κ̂g ‖x − y‖ ‖z‖ for all x, y, z ∈ X.

A particular case of interest is finding a zero of a function f : X → X, where the system of nonlinear
equations f (x) = 0, comes from the discretization of a nonlinear PDE. Then f (x) = g(x) − x converts
between the fixed-point and zero-finding problems. Under Assumption 2.1 it holds that f has a zero
x∗ ∈ X, f ∈ C1(X), and

∥∥f ′(x)z − f ′(y)z
∥∥ = ∥∥(g′(x) − I)z − (g′(y) − I)z

∥∥ � κ̂g ‖x − y‖ ‖z‖ , for all x, y, z ∈ X. (2.1)

The AA algorithm with depth m applied to the fixed-point problem g(x) = x reads as follows.

Algorithm 2.2 (Anderson iteration). The AA algorithm with depth m ≥ 0 and damping factors
0 < βk � 1 reads as follows:

Step 0: Choose x0 ∈ X.
Step 1: Find w1 ∈ X such that w1 = g(x0) − x0. Set x1 = x0 + w1.
Step k + 1: For k = 1, 2, 3, . . . Set mk = min{k,m}.

[a.] Find wk+1 = g(xk) − xk.
[b.] Solve the minimization problem for {αk+1

j }kk−mk

min∑k
j=k−mk

αk+1
j =1

∥∥∥∥∥∥
k∑

j=k−mk

αk+1
j wj+1

∥∥∥∥∥∥ . (2.2)

[c.] For damping factor 0 < βk � 1, set

xk+1 =
k∑

j=k−mk

αk+1
j xj + βk

k∑
j=k−mk

αk+1
j wj+1. (2.3)
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2844 S. POLLOCK AND L. G. REBHOLZ

Throughout the remainder the stage-k differences between iterates and terms are defined as

ek := xk − xk−1, wk := g(xk−1) − xk−1. (2.4)

The next assumption allows a key generalization from the previous convergence analysis frameworks
by Toth & Kelley (2015); Kelley (2018); Pollock et al. (2019); Evans et al. (2020), which are specific
to contractive fixed-point operators. As discussed below in Remark 2.1, it is automatically satisfied at
each iteration for contractive fixed-point operators, and may be locally satisfied for finding zeros of
nondegenerate functions.

Assumption 2.3 The stage-j iterates and residuals satisfy the relationship

∥∥wj+1 − wj

∥∥ � σ
∥∥ej∥∥. (2.5)

Remark 2.1 Assumption 2.3 is reasonable to require as it is satisfied (not necessarily exhaustively)
under the two following important settings.

1. If g is a contractive operator, then its Lipschitz constant given by Assumption 2.1 satisfies κg < 1,
and by the triangle inequality

∥∥wj+1 − wj

∥∥ �
∥∥xj − xj−1

∥∥ − ∥∥g(xj) − g(xj−1)
∥∥ � (1 − κg)

∥∥ej∥∥.
Then (2.5) is always satisfied with σ = (1 − κg).

2. In terms of seeking a zero of a function f as the fixed point of g(x) = f (x) + x, the nonlinear
residual is wj+1 = g(xj) − xj = f (xj). Assumption 2.3 is then satisfied locally if the smallest
singular value of the Jacobian f ′ is uniformly bounded away from zero on X, and

∥∥xj − xj−1

∥∥ is
small enough. Specifically, if for each x, y ∈ X it holds that

∥∥f ′(x)y∥∥ � σf

∥∥y∥∥, for some σf > 0.
This is similar to the usual assumption for Newton iterations that the Jacobian is nondegenerate at
a solution, and could be localized to the vicinity of a solution without undue complication. Then,
under Assumption 2.1, and in accordance with (2.1), it holds that

‖f (x) − f (y)‖ =
∥∥∥∥f ′(y)(x − y) +

∫ 1

0
(f ′(y + t(x − y)) − f ′(y))(x − y) dt

∥∥∥∥
� σf ‖x − y‖ − κg

2
‖x − y‖2

�
σf

2
‖x − y‖ , for ‖x − y‖ �

σf

κ̂g
.

Then for
∥∥ej∥∥ � σf /κ̂g it holds that

∥∥wj+1 − wj

∥∥ � σf
2

∥∥ej∥∥, which satisfies (2.5) with σ = σf /2.

Define the following averages given by the solution αk+1 = {αk+1
j }kj=k−mk

to the optimization
problem (2.2) by

xα
k =

k∑
j=k−mk

αk+1
j xj, wα

k+1 =
k∑

j=k−mk

αk+1
j wj+1. (2.6)
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2845

Then the update (2.3) can be written in terms of the averages xα
k and wα

k+1, by

xk+1 = xα
k + βkw

α
k+1. (2.7)

The stage-k gain θk that quantifies the success of the optimization problem is defined by

∥∥wα
k

∥∥ = θk

∥∥wk

∥∥ . (2.8)

This important quantity is shown in Evans et al. (2020) to scale the first-order term in the residual
expansion (also shown below). Up to that scaling this term is the residual in the standard fixed-point

iteration. The higher-order terms on the other hand are shown below to be scaled by a factor of
√

1 − θ2
k ,

meaning a successful optimization increases the relative weight of the higher-order terms, and an
unsuccessful optimization increases the relative weight of the first-order term in the residual expansion.

The constrained optimization problem (2.2) is often useful for analysis of the method (see, e.g., Toth
& Kelley, 2015; Kelley, 2018; Pollock et al., 2019; Evans et al., 2020). In the current view, however,
the following unconstrained form of the optimization problem (2.2) that is more easily implemented in
practice is also more convenient for the analysis.

Define the matrices Ek and Fk formed by the respective differences between consecutive iterates and
residuals by

Ek := (
ek ek−1 · · · ek−mk+1

)
,

Fk := (
(wk+1 − wk) (wk − wk−1) . . . (wk−mk+2 − wk−mk+1)

)
.

(2.9)

Then (2.2) is equivalent to the unconstrained minimization problem

γ k+1 = argminγ∈Rm

∥∥wk+1 − Fkγ
∥∥ , for γ k+1 =

(
γ k+1
k , γ k+1

k−1 , . . . , γ k+1
k−mk+1

)	
. (2.10)

The averages xα
k and wα

k+1 used in the update (2.7) and the transformation between the two sets of
optimization coefficients are related by

xα
k = xk − Ekγ

k+1, wα
k+1 = wk+1 − Fkγ

k+1, γ k+1
j =

j−1∑
n=k−mk

αk+1
n . (2.11)

This form of the optimization problem is instrumental in the analysis by Evans et al. (2020), and its
direct use in the practical implementation of Algorithm 2.2 is carefully discussed in Fang & Saad (2009);
Walker & Ni (2011).

As commonly understood, the algorithm in its most general form does not identify the norm that
should be used in the optimization. The minimization problem is usually taken in the l2 (or weighted
l2) sense, whereby the least-squares problem can be solved efficiently by a (fast) QR method (see Toth
& Kelley, 2015, for a discussion on minimizing in l1 or l∞). Throughout the rest of this manuscript the
optimization problem (2.10) is considered the norm ‖ · ‖ induced by inner product ( · , · ), which then
falls under the least-squares setting. For example in Pollock et al. (2019), the optimization is done in the
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2846 S. POLLOCK AND L. G. REBHOLZ

H1
0 , sense as the nonlinear operator there is contractive in H1

0; this is interpreted (and implemented) as a
least-squares optimization of a (discrete) gradient.

The QR decomposition of Fk will be explicitly used in the analysis to extract relations between
the optimization gain θk and optimization coefficients γ k. A key repercussion of this approach is that
assumptions on the boundedness of the optimization coefficients as used in Toth & Kelley (2015); Kelley
(2018); Pollock et al. (2019); Evans et al. (2020) and for m > 1, are replaced by assumptions on the
sufficient linear independence between columns of Fk. As discussed in Subsection 5.1, satisfaction of
these assumptions can be easily verified and even enforced during the course of a numerical simulation.

3. Expansion of the residual

This section is summarized from Evans et al. (2020) and included here, both to make the paper more
self-contained and to introduce a consistent notation. The novelty in the current paper is how the
differences between consecutive iterates are bounded in terms of the nonlinear residuals under more
general assumptions than contractiveness of the underlying fixed-point operator; and, without explicit
assumptions on the boundedness of the optimization coefficients. The results of Sections 4 and 5 are
applied to the residual expansion of this section to obtain the main results.

Starting with the definition of the residual by (2.4) and expanding the iterate xk by the update (2.7),
the nonlinear residual wk+1 can be written as

wk+1 = g(xk) − xk = (g(xk) − xα
k−1) − βk−1w

α
k . (3.1)

The first term on the right-hand side of (3.1) can be expanded by (2.6). Consistent with (2.11), the
optimization coefficients αk

j are collected into the coefficients γ k
j by γ k

j := ∑j−1
n=k−mk−1−1 αk

n. Then

g(xk) − xα
k−1 =

k−1∑
j=k−mk−1−1

αk
j (g(xk) − xj)

=
k−1∑

j=k−mk−1−1

αk
j (g(xj) − xj) +

k∑
j=k−mk−1

⎛
⎝ j−1∑

n=k−mk−1−1

αk
n

⎞
⎠ (g(xj) − g(xj−1))

= wα
k +

k∑
j=k−mk−1

γ k
j (g(xj) − g(xj−1)). (3.2)

This equality shows the approximation to the fixed-point g(xk) is decomposed into the average of the
previous iterates xα

k−1, the average over previous updates wα
k corresponding to the optimization problem

from the last step and a weighted sum over the differences of consecutive approximations. Due to
Assumption 2.1 each term g(xj) − g(xj−1) has a Taylor expansion g(xj) − g(xj−1) = ∫ 1

0 g′(zj(t))ej dt,
where zj(t) = xj−1 + tej. Rewriting (3.1) with (3.2) with this expansion yields

wk+1 = (1 − βk−1)w
α
k +

k∑
j=k−mk−1

γ k
j

∫ 1

0
g′(zj(t))ej dt. (3.3)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/41/4/2841/6065020 by C
lem

son U
niversity Libraries user on 25 M

ay 2022



ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2847

Adding and subtracting consecutive averages each summand of the last term of (3.3) can be written as

∫ 1

0
g′(zj(t))ej dt =

∫ 1

0
g′(zk(t))ej dt +

k−1∑
n=j

∫ 1

0
g′(zn(t))ej − g′(zn+1(t))ej dt. (3.4)

Summing over the j’s, the sum on the right-hand side of (3.3) may be expressed as

k∑
j=k−mk−1

γ k
j

∫ 1

0
g′(zj(t))ej dt =

∫ 1

0
g′(zk(t))

k∑
j=k−mk−1

γ k
j ej dt

+
k−1∑

j=k−mk−1

k−1∑
n=j

γ k
j

∫ 1

0
g′(zn(t))ej − g′(zn+1(t))ej dt. (3.5)

From
∑k

j=k−mk−1
γ k
j ej = xk − xα

k−1 (see Evans et al., 2020, Section 2 for details) and (2.7), it holds that

k∑
j=k−mk−1

γ k
j ej = xk − xα

k−1 = βk−1w
α
k . (3.6)

Putting (3.6) together with (3.5) and (3.3) then yields

wk+1 =
∫ 1

0
(1 − βk−1)w

α
k + βk−1g

′(zk(t))wα
k dt +

k−1∑
j=k−mk−1

k−1∑
n=j

∫ 1

0

(
g′(zn(t)) − g′(zn+1(t))

)
ejγ

k
j dt.

(3.7)

Notice that the summands on the right of (3.7) are all zero if g is a linear operator, as g′ is then constant.
The terms summed over are next bounded using Assumption 2.1. It is worth noting here that for linear
operators this will result in zero contribution from higher-order terms, whereas for nonlinear operators
the higher-order terms are scaled by κ̂g > 0, the Lipschitz constant of g′. Intuitively, this expansion leads
to a local result, as when the difference between iterates is sufficiently small, the graph of a function
satisfying Assumption 2.1 at or between those iterates is nearly linear.

Taking norms in (3.7) and applying Assumption 2.1, then triangle inequalities applied to the terms
of the final sum produces the expansion of

∥∥wk+1

∥∥ in terms of
∥∥wα

k

∥∥ and
∥∥ej∥∥, j = k − mk, . . . , k, by

∥∥wk+1

∥∥ �
(
(1 − βk−1) + κgβk−1

) ∥∥wα
k

∥∥+ κ̂g

2

k−1∑
j=k−mk−1

∥∥∥ejγ k
j

∥∥∥ k−1∑
n=j

(∥∥en+1

∥∥+ ∥∥en∥∥)

=
(
(1 − βk−1) + κgβk−1

) ∥∥wα
k

∥∥+ κ̂g

2

k−1∑
n=k−mk−1

(∥∥en+1

∥∥+ ∥∥en∥∥)
k−1∑
j=n

∥∥∥ejγ k
j

∥∥∥ , (3.8)
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2848 S. POLLOCK AND L. G. REBHOLZ

where the last equality follows from reindexing the sums. The next step is to bound the ‖ej‖ terms by
‖wj‖ terms. Here the analysis departs from that in Evans et al. (2020). This will be shown first in the
simpler case of depth m = 1 in Section 4 and then extended to more general depths m > 1 in Section 5.

4. Acceleration for depth m = 1

For depth m = 1 the matrix Fk has only one column, which removes several technicalities from the
analysis. It is useful to use this case to overview the general framework and to introduce the extension
to a noncontractive setting.

Lemma 4.1 Let Assumption 2.1 hold, and let m = 1 in Algorithm 2.2. Assume there is a constant
σ > 0 for which the residuals on stages j + 1 and j satisfy Assumption 2.3. Then the following bound
holds on the difference between consecutive accelerated iterates:

∥∥ej+1

∥∥ �
∥∥wj+1

∥∥ (σ−1
√

1 − θ2
j+1 + βjθj+1

)
. (4.1)

Proof. The update (2.7) for the case m = 1 is

xj+1 = (1 − γ
j+1
j )xj + γ

j+1
j (xj−1) + βjw

α
j+1, (4.2)

where consistent with (2.11), γ
j+1
j = α

j+1
j−1. Taking norms and applying (2.8) allow

∥∥ej+1

∥∥ = ∥∥xj+1 − xj
∥∥ � |γ j+1

j |∥∥ej∥∥+ βjθj+1

∥∥wj+1

∥∥. (4.3)

Inequality (4.3) will be used to trade terms of the form ‖ej+1‖ for expressions in terms of ‖wj+1‖. The

argument follows by relating the optimization coefficient γ
j+1
j to the optimization gain θj+1.

For m = 1 the coefficient γ
j+1
j can be explicitly written as

γ
j+1
j = (wj+1,wj+1 − wj)∥∥wj+1 − wj

∥∥2
. (4.4)

In particular, this determines the decomposition of wj+1 into wR = γ
j+1
j (wj+1 − wj), in the range of

(wj+1 − wj) and wN = wα
j+1 = wj+1 − γ

j+1
j (wj+1 − wj), in the nullspace of (wj+1 − wj)

	. By the
orthogonality of wR and wN it follows that

∥∥wj+1

∥∥2 =∥∥wR

∥∥2 + ∥∥wN

∥∥2 =∥∥γ j+1
j (wj+1 − wj)

∥∥2 + ∥∥wα
j+1

∥∥2 =(γ
j+1
j )2

∥∥wj+1 − wj

∥∥2 + θ2
j+1

∥∥wj+1

∥∥2,

(4.5)

by which

|γ j+1
j | =

√
1 − θ2

j+1

∥∥wj+1

∥∥∥∥wj+1 − wj

∥∥ and θj+1 =
√√√√1 − (wj+1,wj+1 − wj)

2∥∥wj+1

∥∥2∥∥wj+1−wj

∥∥2 , (4.6)
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2849

where the expression for θj+1 in (4.6) can be recognized as the (absolute value of the) direction sine

between wj+1 and wj+1 − wj. Applying the expression for γ
j+1
j in (4.6) to (4.3) yields

∥∥ej+1

∥∥ �
√

1 − θ2
j+1

∥∥wj+1

∥∥∥∥wj+1 − wj

∥∥∥∥ej∥∥+ βjθj+1

∥∥wj+1

∥∥. (4.7)

Applying now they key inequality (2.5) to (4.7) yields

∥∥ej+1

∥∥ � σ−1
√

1 − θ2
j+1

∥∥wj+1

∥∥+ βjθj+1

∥∥wj+1

∥∥, (4.8)

establishing the result (4.1) �
Remark 4.1 In the second case of Remark 2.1 where f ′ is nondegenerate, the results of Lemma 4.1 and
0 < βj ≤ 1 show

∥∥ej+1

∥∥ �
(

2

σf

√
1 − θ2

j+1 + θj+1

)∥∥wj+1

∥∥ �
√

1 + 4/σ 2
f

∥∥wj+1

∥∥,

where the last bound was obtained by maximizing the previous expression with respect to θj+1. Setting

this expression no greater than σf /κ̂g, it follows that
∥∥wj+1

∥∥ � σ 2
f /
(
κ̂g

√
σ 2
f + 4

)
is sufficient to ensure∥∥ej+1

∥∥ � σf /κ̂g, which implies satisfaction of Assumption 2.3 on the subsequent iteration.

Relation (4.8) is now used in the expansion of the residual (3.8) to bound
∥∥wk+1

∥∥.

Theorem 4.1 Suppose the hypotheses of Lemma 4.1 for j = k − 1 and j = k − 2. Then the following
bound holds for the nonlinear residual

∥∥wk+1

∥∥ generated by Algorithm 2.2 with depth m = 1.

∥∥wk+1

∥∥ �
∥∥wk

∥∥{θk
(
(1 − βk−1) + κgβk−1

)+ κ̂gσ
−1
√

1 − θ2
k

×
(∥∥wk

∥∥ (σ−1
√

1 − θ2
k + βk−1θk

)
+ ∥∥wk−1

∥∥ (σ−1
√

1 − θ2
k−1 + βk−2θk−1

))}
. (4.9)

Remark 4.2 Since κ̂g represents the Lipschitz constant of g′ if g is linear, then κ̂g = 0, and thus all of
the higher order terms on the right side of (4.9) will vanish.

This result shows, not only how the first-order term is scaled by the optimization gain θk, but also

that the higher order terms are scaled by
√

1 − θ2
k . This explicitly establishes that if θk = 1, then the

higher order terms do not contribute to the total residual and the bound for the fixed-point iteration is
recovered. This holds as well for the case m > 1, shown in the next section.

Proof. Expanding the residual by (3.8) yields for depth m = 1

∥∥wk+1

∥∥ � θk
(
(1 − βk−1) + κgβk−1

) ∥∥wk

∥∥+ κ̂g
(∥∥ek∥∥+ ∥∥ek−1

∥∥) |γ k
k−1|

∥∥ek−1

∥∥ ,
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2850 S. POLLOCK AND L. G. REBHOLZ

where consistent with (2.11), γ k
k−1 = αk

k−2.
Applying (4.8) with j = k − 1 and j = k − 2 allows

∥∥wk+1

∥∥ � θk
(
(1 − βk−1) + κgβk−1

) ∥∥wk

∥∥+ κ̂g

(∥∥wk

∥∥ (σ−1
√

1 − θ2
k + βk−1θk

)

+ ∥∥wk−1

∥∥(σ−1
√

1 − θ2
k−1 + βk−2θk−1

))
|γ k

k−1|
∥∥ek−1

∥∥ . (4.10)

Combining relation (4.6) with hypothesis (2.5) yields |γ k
k−1|

∥∥ek−1

∥∥ � σ−1
√

1 − θ2
k

∥∥wk

∥∥, by which

∥∥wk+1

∥∥ �θk
(
(1 − βk−1) + κgβk−1

) ∥∥wk

∥∥+ κ̂g

(∥∥wk

∥∥ (σ−1
√

1 − θ2
k + βk−1θk

)

+ ∥∥wk−1

∥∥ (σ−1
√

1 − θ2
k−1 + βk−2θk−1

))
σ−1

√
1 − θ2

k

∥∥wk

∥∥ , (4.11)

establishing the result (4.9). �
The bound (4.9) shows for θk small the higher-order terms have a greater contribution, whereas for

θk close to unity (the optimization did little) the residual is dominated by the first order term; and, κ̂g,
the Lipschitz constant of g′, has less influence on the residual.

In light of Remark 2.1, the two presented conditions under which the hypothesis (2.5) must hold are
now discussed. First, if g is contractive on X, then (2.5) continues to hold on subsequent iterates without
further conditions. Moreover, in that case it makes sense to run the iteration without damping (βj = 1
for all j) and (4.11) reduces to

∥∥wk+1

∥∥ �
∥∥wk

∥∥{θkκg +
κ̂g

√
1 − θ2

k

(1 − κg)
2

(∥∥wk

∥∥(√1 − θ2
k + θk

)
+ ∥∥wk−1

∥∥(√1 − θ2
k−1 + θk−1

))}
.

If instead,
∥∥f ′(y)(x − y)

∥∥ � σf ‖x − y‖ for all x, y ∈ X, then at the next iteration
∥∥wk+1 − wk

∥∥ �
(σf /2)

∥∥ek∥∥ continues to hold if
∥∥ek+1

∥∥ �
∥∥ek∥∥, which is guaranteed upon sufficient decrease of the

sequence of residuals {‖wk‖}. This explains the observation (demonstrated by the steady examples
by Lott et al., 2012, for instance) that Anderson accelerated noncontractive iterations can show
rapid convergence. However, this does not guarantee convergence without some ability to enforce an
inequality such as θk((1 − βk−1) + κgβk−1) < 1 − ε, with sufficient frequency. As θk sufficiently less
than one is essential to the success of the algorithm, this encourages the consideration of the theory
for m > 1 in the next sections, as smaller gain factors can be obtained (to some extent) with greater
algorithmic depth.

Finally, a corollary to (4.1) shows a simplified residual bound for contractive operators together
with a condition for monotonic decrease of the residual. This result features tighter bounds on the higher
order terms than in Evans et al. (2020), and without assumptions on the boundedness of the optimization
coefficients.

Corollary 4.1 Suppose the hypotheses of Lemma 4.1 for j = k − 1 and j = k − 2, and the Lipschitz
constant of g satisfies κg < 1. Then the following bound holds on the nonlinear residual

∥∥wk+1

∥∥
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2851

generated by Algorithm 2.2 with m = 1 and βk = β = 1:

∥∥wk+1

∥∥ �
∥∥wk

∥∥{θkκg +
√

2κ̂g

(1 − κg)
2

√
1 − θ2

k

(∥∥wk

∥∥+ ∥∥wk−1

∥∥)}. (4.12)

After the first two consecutive iterations j = k − 1, k where the following inequality is satisfied

∥∥wj

∥∥+ ∥∥wj−1

∥∥ <

√
1 − κ2

g (1 − κg)
2

√
2κ̂g

, (4.13)

monotonic decrease of the residual is ensured.

Proof. From (4.9) with βk = 1 and σ = (1 − κg), the residual
∥∥wk+1

∥∥ satisfies

∥∥wk+1

∥∥ �
∥∥wk

∥∥{θkκg +
κ̂g

√
1 − θ2

k

(1 − κg)
2

(∥∥wk

∥∥ (√1 − θ2
k + θk

)
+ ∥∥wk−1

∥∥ (√1 − θ2
k−1 + θk−1

))}
.

(4.14)

The maximum of
√

1 − θ2 + θ on 0 � θ � 1 is
√

2, attained at θ = 1/
√

2. Applying this to θk−1, θk
within the higher order terms yields (4.12).

Following the same idea maximizing the bracketed term on the right-hand side of (4.12) over θk

θkκg +
√

2κ̂g

(1 − κg)
2

√
1 − θ2

k

(∥∥wk

∥∥+ ∥∥wk−1

∥∥) �
√

κ2
g + 2κ̂2

g

(1 − κg)
4

( ∥∥wk

∥∥+ ∥∥wk−1

∥∥ )2.

Setting (the square of) the right-hand side expression less than one, it follows that ‖wk+1‖ < ‖wk‖
under condition (4.13). If this condition is satisfied for two consecutive iterates, then ‖wk+1‖ < ‖wk‖
and ‖wk‖ < ‖wk−1‖, which is sufficient to ensure monotonic decrease of the sequence. �

This corollary quantifies (in the contractive setting) the transition from the preasymptotic regime
where the residuals may be large, to the asymptotic regime where the residuals are small enough that
the higher order terms ‘don’t count’, and previous convergence results such as those in Pollock et al.
(2019) hold (see also Toth & Kelley, 2015; Kelley, 2018, for a different, but related approach). This
will be generalized in Corollary 5.1 for algorithmic depths m > 1, where it will be sufficient for a
similar condition to hold for m+1 consecutive iterates. However, the monotonicity result holds only for
contractive operators.

5. Acceleration for depth m > 1

The analysis for m > 1 is somewhat more complicated than for m = 1, if only because in the
optimization problem for m = 1, the matrix Fk has only one column. For m > 1 the columns of Fk are
in general not orthogonal, and the estimates that follow show how detrimental this lack of orthogonality
can be to the convergence rate. First, some standard results from numerical linear algebra are recalled.
Then, Theorem 4.1 is generalized to m > 1.
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2852 S. POLLOCK AND L. G. REBHOLZ

Proposition 5.1 Let Rj be a j × j upper triangular matrix given by

Rj =
(
Rj−1 bj

0 rjj

)
,

where Rj−1 is an invertible j − 1 × j − 1 upper triangular matrix, bj is a j − 1 × 1 vector of values and
rjj 
= 0. Then Rj is invertible and the inverse matrix satisfies

R−1
j =

(
R−1
j−1 cj
0 r−1

jj

)
.

The next two results are specific to the economy (or thin) QR decomposition of n×m matrix A (see,
for instance Golub & Van Loan, 1996, Chapter 5). The following notation will be used throughout the
remainder of this section. For u, v ∈ R

n, let cos(u, v) = (u, v)/(‖u‖ ‖v‖) be the usual direction cosine
between vectors u and v, with the corresponding direction sine satisfying sin2(u, v) = 1 − cos2(u, v).
Let Aj be the subspace of Rn given by Aj = span{a1, . . . , aj}, with orthogonal basis {q1, . . . , qj}; let

sin2(u,Aj) = 1 −∑j
i=1 cos2(u, qi), denote the square of the direction sine between vector u and Aj.

Proposition 5.2 Let Q̂R̂ be the economy QR decomposition of a matrix A ∈ R
n×m, n � m, where A

has columns a1, . . . am and Q̂ has orthonormal columns q1, . . . qm. Then

r2
jj = ∥∥aj∥∥2 sin2(aj,Aj−1), j = 1, . . . ,m. (5.1)

The proof is standard and follows from writing the columns of Q̂ as qj = vj/‖vj‖ with vj = aj −∑j−1
i=1(qi, aj)qi. Then r2

jj = 2 = ‖aj‖2 −∑j−1
i=1(qi, aj)

2 from orthogonality. Factoring out ‖aj‖2 from each
term yields the result.

The next technical lemma gives a bound on the elements of R̂−1; it is proven here (in the appendix)
to make the manuscript more self-contained.

Lemma 5.1 Let Q̂R̂ be the economy QR decomposition of matrix A ∈ R
n×m, n � m, where A has

columns a1, . . . am, Q̂ has orthonormal columns q1, . . . qm and R̂ = (rij) is an invertible upper-triangular

m × m matrix. Let R̂−1 = (sij).
Suppose there is a constant 0 < cs � 1 such that |sin(aj,Aj−1)| � tcs, j = 2, . . . ,m, which implies

another constant 0 � tct < 1 with |cos(aj, qi)| ≤ ct, j = 2, . . . ,m and i = 1, . . . , j − 1. Then it
holds that

s11 = 1∥∥a1

∥∥ , sii �
1∥∥ai∥∥ cs , i = 2, . . . ,m, (5.2)

|s1j| �
ct(ct + cs)

j−2∥∥a1

∥∥ cj−1
s

and |sij| �
ct(ct + cs)

j−i−1∥∥ai∥∥ cj−i+1
s

, for (5.3)

i = 2, . . . ,m − 1 and j = i + 1, . . . ,m.
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2853

The constant cs > 0 ensures the full rank of A and essentially bounds Q̂ away from degeneracy,
assuring sufficient linear independence of its columns. While the results are simpler in form if the
second constant is taken as ct = 1, the condition cs > 0 implies ct < 1. By taking this second constant
into account, the results reflect that if the columns of A are close to (or actually) orthogonal, then ct and
the off-diagonal elements are close to (or actually) zero.

The next lemma generalizes Lemma 4.1 to m > 1. The technical difficulty of the more complicated
relationship between the optimization coefficients and optimization gain is handled by expressing both
in terms of a QR decomposition and then making use of Lemma 5.1.

Lemma 5.2 Let Assumption 2.1 hold. Let vn+1 = wn+1 −wn and let Assumption 2.3 hold with constant
σ for n = j − m, . . . , j. Further, assume there is a constant cs > 0 such that

∣∣sin
(
vn+1, span{vn+2, . . . vj+1}

)∣∣ � cs, n = j − m + 1, . . . , j − 1, (5.4)

which implies there is a constant 0 � ct < 1 that satisfies

∣∣cos
(
vn+1, vp}

)∣∣ � ct, n = j − m + 1, . . . , j − 1 and p = n + 2, . . . , j + 1.

Then the following bound holds for the difference between consecutive iterates ej+1 = xj+1 − xj:

∥∥ej+1

∥∥ �
∥∥wj+1

∥∥ (CF,j+1

√
1 − θ2

j+1 + βjθj+1

)
, (5.5)

where the constant CF,j+1 is given by

CF,j+1 := σ−1

⎛
⎝1 + (1 + ct)

∑mj−1
l=1

(mj−1
l

)
cl−1
t c

mj−l−1
s

c
mj−1
s

⎞
⎠ . (5.6)

Additionally, the following bounds hold for terms of the form
∥∥enγ j+1

n
∥∥.

∥∥enγ j+1
n

∥∥ � Cn,j+1βj

√
1 − θ2

j+1

∥∥wj+1

∥∥, n = j − mj, . . . , j, (5.7)

where the constants Cn,j+1 are given by

Cn,j+1 :=

⎧⎪⎨
⎪⎩

1
σ

(
ct+cs
cs

)mj−1
, n = j

1
σcs

(
ct+cs
cs

)mj−(j−n+1)

, n = j − mj, . . . , j − 1.
(5.8)

The additional assumption of (5.4) not found in the m = 1 case requires that the columns
of the matrix used in the least squares problem (2.10), vj+1, . . . , vj−m+2, maintain sufficient linear
independence. See Subsection 5.1 on ensuring this assumption holds during a simulation.
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2854 S. POLLOCK AND L. G. REBHOLZ

Proof. Throughout this proof depth mj will be denoted by m, for simplicity. Starting with the update

for xj+1 from (2.7) and (2.11), defined for optimization coefficients γ j+1 from (2.10), and the matrix Ej

given by (2.9) shows xj+1 − xj = −Ejγ
j+1 + βkw

α
j+1. Taking norms and applying (2.8) yield

∥∥ej+1

∥∥ �
∥∥Ejγ

j+1
∥∥+ βjθj+1

∥∥wj+1

∥∥. (5.9)

By (2.10) the coefficients γ j+1 are the least-squares solution to Fjγ
j+1 = wj+1, where Fj is given by

(2.9). Using an economy QR-decomposition provides R̂γ j+1 = Q̂	wj+1, by which (5.9) may be written

∥∥ej+1

∥∥ �
∥∥EjR̂

−1Q̂	wj+1

∥∥+ βjθj+1

∥∥wj+1

∥∥. (5.10)

The first term on the right of (5.10) can be bounded in terms of
∥∥wj+1

∥∥ by considering an explicit
expression for the optimization gain θj+1, as first discussed in Evans et al. (2020). From (2.8) and

the unique decomposition wj+1 = wR + wN with wR ∈ Range (Fj) and wN ∈ Null ((Fj)
	), the null-

space component wN is the least-squares residual satisfying
∥∥wN

∥∥ = ∥∥Fjγ
j+1 − wj+1

∥∥ = ∥∥wα
j+1

∥∥ =
θj+1

∥∥wj+1

∥∥, meaning θj+1 =
√

1 − ∥∥Q̂	wj+1

∥∥2
/
∥∥wj+1

∥∥2, or, by rearranging

∥∥wj+1

∥∥√1 − θ2
j+1 = ∥∥Q̂	wj+1

∥∥. (5.11)

The first term on the right-hand side of (5.10) can now be controlled by (5.11), yielding

∥∥EjR̂
−1Q̂	wj+1

∥∥ �
∥∥EjR̂

−1
∥∥∥∥Q̂	wj+1

∥∥ �
∥∥EjR̂

−1
∥∥∥∥wj+1

∥∥√1 − θ2
j+1. (5.12)

It remains to bound
∥∥EjR̂

−1
∥∥. Writing R̂−1 = S = (sij),

∥∥EjR̂
−1
∥∥ = ∥∥( ej∑m

n=1 s1n ej−1
∑m

n=2 s2n · · · ej−m+1smm
)∥∥

�
∥∥∥∥∥ej

m∑
n=1

s1n

∥∥∥∥∥+
∥∥∥∥∥ej−1

m∑
n=2

s2n

∥∥∥∥∥+ · · · + ∥∥ej−m+1smm
∥∥, (5.13)

where the last inequality follows from the standard bound of the matrix 2-norm by the Frobenius norm.
Apply now the results of the technical Lemma 5.1.
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2855

For the first term in the sum of vector norms in (5.13), applying (5.2)–(5.3) of Lemma 5.1 then
taking the finite geometric sum produces the bound

∥∥∥∥∥ej
m∑

n=1

s1n

∥∥∥∥∥ �
∥∥ej∥∥

∣∣∣∣∣
m∑

n=1

s1n

∣∣∣∣∣
�

∥∥ej∥∥∥∥wj+1 − wj

∥∥
(

1 +
m∑

n=2

ct(ct + cs)
n−2

cn−1
s

)

=
∥∥ej∥∥∥∥wj+1 − wj

∥∥
(
ct + cs
cs

)m−1

� σ−1
(
ct + cs
cs

)m−1

, (5.14)

where the last inequality follows from the hypothesis (2.5).
Proceed similarly for the remaining vector norms of (5.13), indexed by p = 2, . . . ,m, noting the

additional factor of cs in the denominator, to get

∥∥∥∥∥∥ej−p+1

m∑
n=p

spn

∥∥∥∥∥∥ � 1

σcs

⎛
⎝1 +

m∑
n=p+1

(ct + cs)
n−(p+1)

cn−p
s

⎞
⎠ � 1

σcs

(
ct + cs
cs

)m−p

. (5.15)

Finally, adding the contributions from p = 1 to p = 2, . . . ,m from (5.14) and (5.15), and applying the
total to (5.13) yield, assuming ct 
= 0,

∥∥EjR̂
−1
∥∥ � σ−1

(
(ct + cs)

m−1(ct + 1) − cm−1
s

cm−1
s ct

)
= σ−1

⎛
⎝1 + (1 + ct)

∑m−1
j=1

(m−1
j

)
cj−1
t cm−j−1

s

cm−1
s

⎞
⎠ .

(5.16)

If it so happens that ct = 0, meaning the columns of Fk are orthogonal, then cs = 1 and (5.16) is in
agreement with summing the terms directly from (5.14) and (5.15) yields

∥∥EjR̂
−1
∥∥ � m/σ , in agreement

in (5.16). Putting (5.16) together with (5.11) yields

∥∥ej+1

∥∥ � CF,j+1

√
1 − θ2

j+1

∥∥wj+1

∥∥+ βjθj+1

∥∥wj+1

∥∥,

with CF,j+1 given by (5.6), hence the result (5.5).
For the second result, (5.7), expanding (5.10), shows

(
ejγ

j+1
j ej−1γ

j+1
j−1 · · · ej−m+1γ

j+1
j−m+1

)
= Ejγ

j+1 = EjR̂
−1Q̂	wj+1. (5.17)
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2856 S. POLLOCK AND L. G. REBHOLZ

Accordingly, ej−p+1γ
j+1
j−p+1 = ej−p+1s

pQ̂	wj+1, where sp is row p of R̂−1. Hence, following (5.14) and
applying (5.11) produces for the first column of (5.17):

∥∥∥ejγ j+1
j

∥∥∥ �
∥∥∥∥∥ej

m∑
n=1

s1n

∥∥∥∥∥ ∥∥wα
j+1

∥∥ � σ−1
(
ct + cs
cs

)m−1

βj

√
1 − θ2

j+1

∥∥wj+1

∥∥.

For the remaining columns following now (5.15) allows

∥∥∥ej−p+1γ
j+1
j−p+1

∥∥∥ �
∥∥∥∥∥ej−p+1

m∑
n=1

spn

∥∥∥∥∥ ∥∥wα
j+1

∥∥ � 1

σcs

(
ct + cs
cs

)mj−p

βj

√
1 − θ2

j+1

∥∥wj+1

∥∥,

which establishes the second result (5.7) with n = j − p + 1. �
Lemma (5.2) is now used to establish one-step residual bounds for general depths m.

Theorem 5.1 Suppose the hypotheses of Lemma 5.2 for j = k − m, . . . , k − 1. Then the following
bound holds for the nonlinear residual

∥∥wk+1

∥∥ generated by Algorithm 2.2 with depth m:

∥∥wk+1

∥∥ �
∥∥wk

∥∥{θk((1 − βk−1) + κgβk−1) + κ̂g

2

(∥∥wk

∥∥ h(θk)hk−1(θk)

+ 2
k−1∑

n=k−mk−1+1

(∥∥wn

∥∥ h(θn)
k−1∑
j=n

hj(θk)

)
+ ∥∥wk−mk−1

∥∥h(θk−mk−1
)

k−1∑
j=k−mk−1

hj(θk)

)}
,

(5.18)

where

h(θj) = CF,j

√
1 − θ2

j + βj−1θj, hj(θk) = Cj,kβk−1

√
1 − θ2

k , (5.19)

and the constants CF,j and Cj,k are given by (5.6) and (5.8), respectively.

Remark 5.1 As in Remark 4.2 if g is linear then κ̂g = 0 and the higher-order terms do not appear.

Remark 5.2 Theorem 5.1 gives three significant improvements for the higher order terms, compared
to the results for general m in Evans et al. (2020). First, the results above show

∥∥wk+1

∥∥ � O
( ∥∥wk

∥∥2 )+ O
( ∥∥wk

∥∥ ∥∥wk−1

∥∥ )+ . . .O
( ∥∥wk

∥∥ ∥∥wk−mk−1

∥∥),
whereas previous results show

∥∥wk+1

∥∥ ≤ O
( ∥∥wk

∥∥2 )+O
( ∥∥wk−1

∥∥2 )+ . . .O
(∥∥wk−mk−1

∥∥2). This helps
to explain how the steady Navier–Stokes numerical test of Section 6 is able to converge with very
large m.

Secondly, the theorem makes no assumptions on the boundedness of the optimization coefficients.
Instead, a more practical assumption is made for how close the matrix Fk from the least-squares problem
(2.10) comes to degeneracy. Thirdly, similar to the m = 1 case of Theorem 4.1, Theorem 5.1 shows the
higher order terms do not contribute to the residual if there is no gain from the optimization problem
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2857

(θk = 1). To see this note that each hj(θk) in (5.18) has
√

1 − θ2
k as a factor, so if there is no gain from

the optimization problem, then all the higher order terms in (5.18) vanish.

More explicitly each hj(θk) in (5.18) is bounded by C
√

1 − θ2
k for a constant C (given in (5.24),

where the factor of (1 − κg) in the denominator can be replaced by σ for the general case). Applying
these simplifications to (5.18) shows

∥∥wk+1

∥∥ satisfies the bound

∥∥wk+1

∥∥ �
∥∥wk

∥∥(θk((1 − βk−1) + κgβk−1) +
Cκ̂g

√
1 − θ2

k

2

(∥∥wk

∥∥ h(θk)
+ 2

k−1∑
n=k−mk−1+1

(k − n)
∥∥wn

∥∥ h(θn) + mk−1

∥∥wk−mk−1

∥∥h(θk−mk−1
)

))
.

The proof of Theorem 5.1 follows the same essential outline as Theorem 4.1. In contrast to the
technique used in Evans et al. (2020), a direct rather than inductive approach will be taken, as the
optimization gain (which depends on m) appears in both higher and lower order terms.

Proof. The expansion of the residual (3.8) from Section 3 shows

∥∥wk+1

∥∥ �
(
(1 − βk−1) + κgβk−1

) ∥∥wα
k

∥∥+ κ̂g

2

k−1∑
n=k−mk−1

(∥∥en+1

∥∥+ ∥∥en∥∥)
k−1∑
j=n

∥∥∥ejγ k
j

∥∥∥ . (5.20)

Opening up the first sum of (5.20) allows

k−1∑
n=k−mk−1

(∥∥en+1

∥∥+ ∥∥en∥∥)
k−1∑
j=n

∥∥∥ejγ k
j

∥∥∥

=
∥∥∥ek−mk−1

∥∥∥ k−1∑
j=k−mk−1

∥∥∥ejγ k
j

∥∥∥+ 2
k−1∑

n=k−mk−1+1

∥∥en∥∥
k−1∑
j=n

∥∥∥ejγ k
j

∥∥∥+ ∥∥ek∥∥ ∥∥∥ek−1γ
k
k−1

∥∥∥ . (5.21)

Applying now (5.5) then (5.7), (5.21) above is bounded by

∥∥wk

∥∥h(θk) ∥∥∥ek−1γ
k
k−1

∥∥∥+2
k−1∑

n=k−mk−1+1

(∥∥wn

∥∥ h(θn)
k−1∑
j=n

∥∥∥ejγ k
j

∥∥∥)+
∥∥∥wk−mk−1

∥∥∥ h(θk−mk−1
)

k−1∑
j=k−mk−1

∥∥∥ejγ k
j

∥∥∥

�
∥∥wk

∥∥ h(θk)hk−1(θk)
∥∥wk

∥∥+ 2
k−1∑

n=k−mk−1+1

( ∥∥wn

∥∥ h(θn)
k−1∑
j=n

hj(θk)
∥∥wk

∥∥ )

+
∥∥∥wk−mk−1

∥∥∥ h(θk−mk−1
)

k−1∑
j=k−mk−1

hj(θk)
∥∥wk

∥∥ . (5.22)
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2858 S. POLLOCK AND L. G. REBHOLZ

Putting the bound of (5.22) back into (5.21) then yields

∥∥wk+1

∥∥ �
∥∥wk

∥∥(θk((1 − βk−1) + κgβk−1)

+ κ̂g

2

(∥∥wk

∥∥ h(θk)hk−1(θk) + 2
k−1∑

n=k−mk−1+1

(∥∥wn

∥∥ h(θn)
k−1∑
j=n

hj(θk)

)

+
∥∥∥wk−mk−1

∥∥∥ h(θk−mk−1
)

k−1∑
j=k−mk−1

hj(θk)

))
,

hence the result. �
The next corollary gives conditions to assure the monotonic decrease of the residual, in the

contractive setting.

Corollary 5.1 Suppose the hypotheses of Lemma 5.2 for j = k − m, . . . , k − 1, and the Lipschitz
constant κg satisfies κg < 1. Then the following bound holds for the nonlinear residual

∥∥wk+1

∥∥
generated by Algorithm 2.2 with βk = β = 1.

∥∥wk+1

∥∥ �
∥∥wk

∥∥{θkκg +
C

√
1 + C2

√
1 − θ2

k κ̂g

2

×
(∥∥wk

∥∥+ 2
k−1∑

n=k−mk−1+1

(k − n)
∥∥wn

∥∥+ mk−1

∥∥∥wk−mk−1

∥∥∥)}, (5.23)

where

C = max

{
1

σcs

(
ct + cs
cs

)mk−1

,CF,k+1

}
, with σ = (1 − κg). (5.24)

After the first m + 1 consecutive iterations j = k − m, . . . , k (assuming here for simplicity that
k � 2m, so the subscript on m may be dropped), such that the following inequality is satisfied

∥∥wj

∥∥+ 2
k−1∑

n=j−m+1

∥∥wn

∥∥+
∥∥∥wj−m

∥∥∥ <
2(1 − κg)

C
√

1 + C2κ̂g

, (5.25)

monotonic decrease of the residual is assured.

The proof follows similarly to the m = 1 case in Corollary 4.1, with the additional steps of bounding
the two types of h coefficients.
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2859

Proof. For each βj = 1 and σ = 1 − κg, as in Remark 5.2 the coefficients hn(θk) are each bounded by

C
√

1 − θ2
k , with C given by (5.24). Applying this to (5.18) allows

∥∥wk+1

∥∥ �
∥∥wk

∥∥(θkκg +
Cκ̂g

√
1 − θ2

k

2

(∥∥wk

∥∥ h(θk)
+ 2

k−1∑
n=k−mk−1+1

(k − n)
∥∥wn

∥∥ h(θn) + mk−1

∥∥∥wk−mk−1

∥∥∥ h(θk−mk−1
)

))
. (5.26)

The coefficients h(θj) are each bounded by C
√

1 − θ2
j + θj �

√
1 + C2. Applying this to (5.26)

yields (5.23).
Maximizing in terms of θk the square of the bracketed terms on the right-hand side of (5.23) is

bounded by

κ2
g + C2(1 + C2)κ̂2

g

4

(∥∥wk

∥∥+ 2
k−1∑

n=k−m+1

(k − n)
∥∥wn

∥∥+ m
∥∥wk−m

∥∥)2

. (5.27)

Setting (5.27) less than one implies
∥∥wk+1

∥∥ <
∥∥wk

∥∥ under the condition (5.25). Satisfaction of∥∥wj+1

∥∥ <
∥∥wj

∥∥ for m + 1 consecutive iterates j = k − m, . . . , k, then implies reduction in every
subsequent residual. �

5.1 Practical guidance based on the theory

The results of Theorems 4.1 and 5.1, and Corollaries 4.1 and 5.1 indicate that the most effective choice
of algorithmic depth m = mk may be to have it increase through the simulation based on the three
following regimes. The different regimes below can depend on the scaling of data and choice of initial
iterates. Damping (not explicitly discussed here; see for instance Evans et al., 2020) may be necessary
to see a reduction in the first order residual terms in noncontractive settings, particularly in the initial
regime. It is assumed here that the problem dimension n is significantly larger than the number of
iterations allowed to solve the problem, and a ‘large’ value of mk is still small compared with n.
The following three-phase and two-phase approaches are demonstrated in the numerical experiments
that follow.

5.1.1 Three-phase approach. This approach is appropriate for problems where the initial residual is
large or poorly scaled, such that an accumulation of higher-order terms can cause lack of convergence,
or even an overflow. This method is demonstrated on the p-Laplacian in Section 6.

• Initial regime: The residual wk and difference between iterates ek may be large (in norm), for
instance O(1) or greater. The depth mk should be chosen small (for instance between 0 and 2),
as the accumulation of higher order terms on the right-hand side of (5.18) (cf. (3.7)) can prevent
convergence. Additionally, as shown in (4.9) of Theorem 4.1 and (5.18) of Theorem 5.1, a more
successful optimization gives greater weight to the higher-order terms.
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2860 S. POLLOCK AND L. G. REBHOLZ

• Pre-asymptotic regime. The residual or difference between iterates is on the order of 10−1 or 10−2.
The depth mk can safely be increased roughly logarithmically with

∥∥wk

∥∥, either to convergence
tolerance or until the asymptotic regime is reached.

• Asymptotic regime. The residual is sufficiently small so that the higher-order terms of (5.18) are
negligible, regardless of their scaling with respect to the optimization gain θk. The depth mk can
be increased, but should be only to the point that it has an impact on decreasing the gain θk.

Notably, in the results shown below for the steady NSEs, simply choosing a large depth m (by which
mk = k − 1, either up to some maximum m, or up to convergence) can be effective in the case that the
initial residual is not greater than O(1), and drops sufficiently rapidly through the initial iterations. This
is essentially the strategy above, starting in the pre-asymptotic, rather than the initial regime. In this
example it is also demonstrated that switching to Newton iterations upon sufficient decay of the residual
can yield rapid convergence.

5.1.2 Two-phase approach. This method is appropriate for problems with a moderately scaled initial
residual, on the order of O(1), and is demonstrated in Section 6 on a nonlinear Helmholtz equation.

• Pre-asymptotic regime. The depth mk is kept at a small to moderate value (2 to 5), until the
residual drops below a given threshold, on the order of 10−2 or 10−3.

• Asymptotic regime. The depth mk is increased to a higher steady level, for instance mk = 10.
This allows smaller factors of the optimization gain θk due to a better solution of the least-
squares problem, at the point where the residual is small enough that the increased weight and
accumulation of higher-order terms does not interfere with convergence.

5.1.3 Safeguarding and verification of (5.4) on sufficient linear independence of the columns of Fk. It
makes sense both numerically and theoretically to solve the least squares problem at each stage by means
of an economy QR decomposition. Given the large number of degrees of freedom n in comparison to the
algorithmic depth m, forming the decomposition and solving the least squares system has a negligible
effect on total solution time; in each of our examples given below the total runtime is dominated by the
linear system solves. Let Fk = Q̂R̂, where R̂ is mk × mk. Denoting the columns of Fk by {v1, . . . , vmk

}
Proposition 5.2 shows the diagonal values of R̂ are given by rii = ∥∥vi∥∥ |sin(vi, span{v1, . . . , vi−1})|, by
which |sin(vi, span{v1, . . . , vi−1})| = rii/

∥∥vi∥∥. If a practitioner wishes to enforce (5.4), any column i
for which this quantity falls below a given threshold may be removed from Fk (and accordingly from
Ek) and the QR decomposition recalculated (or dynamically updated), by which (5.4) is satisfied in
accordance with that threshold (cf. the safeguarding strategy introduced in Pollock & Schwartz, 2020,
Section 2.1.2, for AA with m = 1 applied to Newton iterations). The method is well defined for
any threshold value in cT ∈ [0, 1), providing no safeguarding for cT = 0 and otherwise enforcing
cs = cT . This method ensures the most recent column of Fk is used since r11/

∥∥vi∥∥ = 1. This strategy
is demonstrated below in Section 6 on a finite element discretization of the p-Laplace equation, with
p close to one.

This safeguarding strategy may be compared with that used in Walker & Ni (2011, Section 4) and
Yang et al. (2009), in which the condition of Fk is monitored by the condition of R̂ (which is the
same), and the oldest column of Fk is dropped if the condition exceeds a subscribed threshold. The main
difference is the present method allows the efficient numerical determination of which column(s) to
drop, yielding a theoretically sound update to this older heuristic method. An alternate strategy based on
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2861

monitoring the condition number of R̂, as suggested in Fang & Saad (2009), is to compute the singular
value decomposition (SVD) of R̂ and compute the least-squares solution using the pseudoinverse of
the truncated expansion to preserve the condition (see Chan, 1982; Sidi, 2016). However, as shown in
the numerical examples by Toth & Kelley (2015, Sections 3.1–3.2), the deteriorating condition of the
least-squares matrix does not necessarily interfere with convergence.

6. Numerical experiments

In this section the following test problems will illustrate the theory and the practical guidance
given above demonstrating both safeguarding and dynamic depth selection strategies, extend the AA
methodology to a new application in the nonlinear Helmholtz equation and improve on existing results
for AA applied to the steady NSEs.

6.1 p-Laplace equation

The p-Laplace (or p-Poisson) equation arises in many physical applications, including non-Newtonian
flows, e.g., in glaciology; turbulent flows and flows in porous media; see Diaz & De Thelin (1994);
Glowinski & Rappaz (2003); Diening et al. (2020). The elliptic p-Laplace equation that is given by

− div
(
(|∇u|2/2)(p−2)/2∇u

)
= f ,

is degenerate for p > 2 and singular for 1 < p < 2. In Evans et al. (2020) the p-Laplace equation with
p > 2 is used to demonstrate an approach to adaptively updating damping factors βk, and it is used as
a benchmark problem to demonstrate preconditioned nonlinear solvers in Brune et al. (2015). For this
example consider a regularized version in the singular regime

−div

((
ε2 + 1

2
|∇u|2

)(p−2)/2

∇u

)
= c, (6.1)

with ε = 10−14, p = 1.06 (cf. Diening et al., 2020) and c = π , over domain (0, 2) × (0, 2), subject to
homogeneous Dirichlet boundary conditions.

The results shown below use a P1 finite element discretization over a 256×256 uniform triangulation
of the domain, which produces a discrete nonlinear problem with 66,049 degrees of freedom. The
simulations were run using a Python implementation of the FEniCS finite element library (Alnæs
et al., 2015). Each simulation was started from initial iterate u0 = xy(x − 1)(y − 1)(x − 2)(y − 2)

(cf. Brune et al., 2015), and run to a residual tolerance of
∥∥wk

∥∥ < 10−10, where and l2 norm is used for
both the convergence tolerance and the optimization.

A Picard (fixed-point) iteration for the P1 finite element discretization of the variational form of
(6.1) is given by: Find uk ∈ Vh, satisfying for all v ∈ Vh

∫
Ω

(
ε2 + 1

2
|∇uk−1|2

)(p−2)/2

∇uk · ∇v dx =
∫

Ω

cv dx, (6.2)

where Vh is the space of continuous piecewise linear functions that vanish on the boundary.
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2862 S. POLLOCK AND L. G. REBHOLZ

Fig. 1. Left: residual history for AA applied to (6.2) with depths m = {0, 2, 4, 6}, with and without safeguarding (SG), which
selects columns of Fk to enforce (5.4), with threshold cs = 0.25. Right: meff, the number of columns of Fk selected at each stage
in the safeguarded simulations.

With the given parameters, the defined fixed-point operator is not globally contractive, but the Picard
iteration does converge essentially linearly as it approaches the solution. Here, AA is applied with
mk = min{k − 1,m} for m = 0, 2, 4, 8, and these results are compared with dynamically updating
the depth mk by defining

m̃k := ceil(− log10 ‖wk+1‖) and mk = ψn,N(m̃k) :=
⎧⎨
⎩

n, m̃k � n
m̃k, n < m̃k < N.
N, m̃k � N

(6.3)

Setting the depth by (6.3) implements the three-phase approach described in Subsection 5.1.1. Addi-
tionally, results are shown for enforcing the sufficient linear-independence condition (5.4) holds, with
threshold cs = 0.25, by the method described in Subsection 5.1.3. Runs where this condition is enforced
are denoted as safeguarded (SG) in Figs 1 and 2.

Figure 1 (left) shows residual histories for AA with constant depths m = {0, 2, 4, 6}, where m = 0
(the Picard iteration) is included for reference. For m = {2, 6} the safeguarding procedure reduces the
number of iterations from over 300 to just over 100. This indicates that a near-linear dependence in the
columns of Fk produces an undesirable accelerated step toward the beginning of those iterations. The
safeguarding is seen to have little effect on any of the iterations once they begin their rapid convergence.
It also has little effect on the simulation with m = 4, indicating that near-linear dependence is not always
an issue. The right plot of Fig. 1 shows the number of columns of Fk (denoted meff) selected for use by
the safeguarding strategy. It is interesting to notice how for m = {2, 6} columns are deleted often toward
the beginning of the simulations. For m = 4 columns are deleted throughout, but with little effect: the
columns deleted caused little harm, but also contributed little to the convergence.

Figure 2 (left) shows residual histories using a constant depth of m = 8, together with the three-
phase dynamic depth selection strategy suggested in Subsection 5.1.1, and given by (6.3), with depths
ranging from 0 to 8 using ψ0,8 and from 1 to 8 with ψ1,8. In this figure it is observed that the safeguarding
has little effect on convergence when it is used together with the dynamic depth selection; however, it
has a substantial effect on convergence for the constant depth m = 8. The right plot of Fig. 2 shows
the early intervention in removing certain columns from Fk, when mk = min{k − 1, 8} leads to the fast
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2863

Fig. 2. Left: residual history for AA applied to (6.2) with depths m = {0, 8}, and dynamically selected depths ψ0,8 and ψ1,8
as given by (6.3), with and without safeguarding (SG), which selects columns of Fk to enforce (5.4), with threshold cs = 0.25.
Right: meff, the number of columns selected at each stage of the simulations.

convergence seen on the left. In contrast, while the safeguarding strategy does remove columns from
Fk periodically using the dynamic ψ1,8 and particularly for ψ0,8, it leads to very little change in the
convergence histories in either case.

This example shows that either dynamic depth selection or safeguarding can lead to improved
convergence of AA. The early stages of simulations, particularly if they are started with poor initial
iterates, as is the case here, can be sensitive to choice of depth without such interventions. Combining
the two strategies did not lead to a noticeable advantage or disadvantage.

6.2 Nonlinear Helmholtz equation

The following one-dimensional nonlinear Helmholtz (NLH) equation arises in nonlinear optics, and
describes the propagation of continuous-wave laser beams through transparent dielectrics. Following the
formulation from Baruch et al. (2007), the system may be written as: Find u : [0, 10] → C, satisfying

d2u

dx2 + k2
0

(
1 + ε(x)|u|2)u = 0, 0 < x < 10,

du

dx
+ ik0u = 2ik0, x = 0,

du

dx
− ik0u = 0, x = 10.

Here, ε(x) is a given non-negative function of x representing a material constant at each point in space,
and k0 is the linear wave number in the surrounding medium. For simplicity ε(x) = ε is taken as a
non-negative constant.

Even in one dimension with constant ε(x) > 0 this is a very challenging problem, especially for
larger values of ε and k0, each of which increases the effect of the cubic nonlinearity. The system
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2864 S. POLLOCK AND L. G. REBHOLZ

Fig. 3. Results of the NLH test with ε = 0.22 and m = 0 demonstrating that decreasing a fixed damping factor β does not induce
convergence of the fixed-point iteration.

is discretized by applying a second-order finite difference method (with uniform point spacing of
h = 0.01) to the iteration

d2uj+1

dx2 + k2
0

(
1 + ε|uj|2

)
uj+1 = 0, 0 < x < 10, (6.4)

duj+1

dx
+ ik0uj+1 = 2ik0, x = 0, (6.5)

duj+1

dx
− ik0uj+1 = 0, x = 10. (6.6)

This can be considered a fixed point iteration uj+1 = g(uj), with g defined to be the solution operator

of the (discretized) systems (6.4)–(6.6). Following Baruch et al. (2007), u0 = eik0x is used as the initial
iterate.

This NLH test uses ε = 0.22, for which the fixed point iterations (6.4)–(6.6) do not converge.
Figure 3 shows the fixed-point iteration (m = 0) with varying levels of relaxation (damping); this
illustrates that (uniform) relaxation alone is not sufficient for convergence. In Fig. 4 results of AA
applied to the iteration using relaxation parameter βk = β = 0.3 are shown for m = 1, 3, 5, 10,
all of which converge. The plot of k vs. θk shows a clear reduction in gain factors θk as the depth
m increases. Comparing convergence histories for varying depths m, none of the depths tested show
monotonic decrease, particularly in the preasymptotic regime. Depth m = 10, which becomes nearly
monotone in the asymptotic regime, has gain values generally less than 0.6; whereas depth m = 1,
which is far from monotone, has gain values that return to nearly one throughout the first 250 iterations
shown in Fig. 4, on the right.

The next results, shown in Fig. 5, use a heuristic strategy for updating m. This strategy is based on the
observation that depth m = 3 gives a faster initial decrease in the residual, and m = 10 gives the fastest
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ANDERSON ACCELERATION FOR CONTRACTIVE AND NONCONTRACTIVE OPERATORS 2865

Fig. 4. Results of the NLH test with ε = 0.22, as convergence of the nonlinear residual (left) for βk = β = 0.3 and varying m,
and θk for varying m (right).

Fig. 5. Results of the NLH test with ε = 0.22, as convergence of the nonlinear residual (left) for βk = β = 0.3 and m = 3,
m = 10, and a heuristic strategy where m = 3 at first, but switches to m = 10 once the nonlinear residual is sufficiently small.

eventual decrease. Here, depth mk is switched from mk = 3 to mk = 10 on the condition of a sufficiently
small residual, where the tolerance is set at 0.005. The depth-switching approach yields substantially
faster convergence than either constant-depth strategy. This is again consistent with the theory, as larger
higher order terms play a greater role earlier in the iteration history, and moreso at greater algorithmic
depths. Once the higher order terms are sufficiently small (attained through a sequence of sufficiently
small gain values), the decrease in gain θk for greater depths m yields better performance, as the residual
is small enough to be dominated by the first-order term even as the number and weight of the higher
order terms increase.
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6.3 Three-dimensional steady Navier–Stokes equations

The last example shown is for the three-dimensional driven cavity benchmark test problem for the steady
NSE. The steady NSEs are given in a domain Ω ⊂ R

d (d = 2,3) by

u · ∇u + ∇p − νΔu = f , (6.7)

∇ · u = 0, (6.8)

u|∂Ω = s, (6.9)

where ν is the kinematic viscosity that is inversely proportional to the Reynolds number Re := ν−1, f
is a forcing term, and u and p represent velocity and pressure. The NSEs are well known to be more
difficult to solve with larger Reynolds number.

The three-dimensional driven cavity is a widely studied benchmark problem for the NSE, and
typically with Re � 1000 (see Wong & Baker, 2002, and the reference therein). For this problem
Ω = (0, 1)3, and there is no forcing (f = 0). For boundary conditions s = 0 is enforced on the
bottom and sides, and on the top, s = 〈1, 0, 0〉	, by which the driving force is provided by the moving
lid. Recently, higher Re have been considered, but as a time dependent flow, in an attempt to find
the first Hopf bifurcation where the flow becomes oscillatory, and will not converge to a steady state
(Feldman & Gelfgat, 2010; Chiu et al., 2016). This bifurcation appears to occur around Re ≈ 2000.
Here, the systems (6.7)–(6.9) are solved by applying AA to the Picard iteration, given by Girault &
Raviart (1986) as

uk · ∇uk+1 + ∇pk+1 − νΔuk+1 = f , (6.10)

∇ · uk+1 = 0, (6.11)

uk+1|∂Ω = s. (6.12)

The system above defines a fixed-point iteration with uk+1 = g(uk), where g is the solution operator for
a spatial discretization of (6.10)–(6.12). The system is discretized using (P3,Pdisc

2 ) Scott–Vogelius finite
elements on a barycenter refined tetrahedral mesh that provides 1.3 million total degrees of freedom.
The tetrahedral mesh was created using first a box mesh to subdivide all axes using Chebyshev points
(to be more refined near the boundary), then splitting each box into six tetrahedra, then splitting each
tetrahedron with a barycenter refinement. The initial guess for each of the NSE tests is u0 = 0 (no
continuation methods are applied).

In the paper by Pollock et al. (2019) AA applied to (6.10)–(6.12) (referred to here as AAPicard) was
studied both theoretically and numerically. Under a small data condition that implies the underlying
fixed-point iteration is contractive, it was shown that the method converges and that the linear
convergence rate is improved by AA. It is remarked, however, that the techniques used in that analysis
and the coefficients in front of the higher order terms differ significantly from those shown here.

For the current test problem, as shown in Pollock et al. (2019), with an initial guess of u0 = 0,
the Picard method does not converge when Re = 400. Hence, for Re � 400, Picard iterations for
steady solutions are not globally contractive. In fact, AAPicard with m = 1 fails as well, although
convergence is attained with depths m = 2, 3, 4 as demonstrated in Pollock et al. (2019). To show
the effectiveness of AAPicard, considerably higher Reynolds numbers are considered here: results are
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Fig. 6. Top: convergence of AAPicard with varying m with and without a switch to Newton. Bottom: gain factors θk for
varying m.

presented for Re = 2500 and Re = 3100, far beyond the range where the Picard iteration is contractive;
and moreover, well past the first Hopf bifurcation (Feldman & Gelfgat, 2010; Chiu et al., 2016). Thus
the method is converging to steady solutions in a time dependent regime, which from a mathematical
point of view is interesting in itself. As discussed in Akervik et al. (2006), such solutions can serve as
base-flow solutions in instability studies and flow control.

The Re = 2500 tests show different choices of the depth m, including the largest possible
(mk = k − 1), with no relaxation (βk = β = 1). Results are shown in Fig. 6. For m � 50 convergence
is not achieved (nor is it close to being achieved) after 500 iterations. For m = 100, 150 and m = k − 1,
the method does converge. It appears that the stability of the NSE Picard iteration (Girault & Raviart,
1986) bounds the magnitude of any residual, and the improved analysis herein shows that higher order
terms are all scaled by the latest residual, which together allows the method to benefit from the small
gain factor θk that comes from a greater algorithmic depth m (m � 100 creates gain factors θk that get
to 0.25 and below). Notably, choosing m as large as possible, mk = k− 1, gives the fastest convergence.

Finally, a combination of AAPicard with Newton (cf. Fabien et al., 2018) was tested. The Newton
iteration differs from the Picard in that the term (uk+1 − uk) · ∇uk is added to the left side of (6.10).
Additionally, a line search was used in the Newton iterations. The results shown used mk = k−1 for the
initial AAPicard iterations and switched to Newton once the nonlinear residual reached a sufficiently
low tolerance. For an H1

0-norm tolerance of 1, the method failed to converge. For tolerances of 0.1 and
0.01, the method converged, and much faster than AAPicard on its own (see the top plot in Fig. 6).

With this technique the solver attained convergence up to Re = 3100 (using AAPicard with
mk = k − 1 and βk = β = 0.5, up to a residual tolerance of 0.03, then switching to Newton with
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Fig. 7. Shown above are Re = 2500 and 3100 solutions, as midsliceplanes of the velocity fields.

a line search). With this method 217 iterations were needed to converge to a tolerance of 10−8 in the
H1

0-norm. With a continuation method that improves the initial guess solutions at even higher Re can
be obtained. Plots of the Re = 2500 and 3100 solutions are shown in Fig. 7 as midsliceplanes of the
velocity fields.

7. Conclusion

The presented one-step analysis of AA sharpens the previously developed residual bounds for contrac-
tive operators, and extends them to a class of potentially noncontractive operators that are important
for the approximation of solutions to nonlinear PDEs. The new analysis shows how the relative scaling
of the higher-order terms increases as the solution to the underlying optimization problem improves.
Understanding the balance of the higher and lower order terms in the residual expansion is instrumental
in the design of robust and efficient algorithms for challenging nonlinear problems. The current theory
assumes that the latest difference between consecutive residuals sufficiently changes the span of the
previous differences, up to the given algorithmic depth. An efficient safeguarding strategy to ensure this
assumption holds is introduced and demonstrated, advancing the connection between theory and practice
in a sense not accomplished with the usual assumption that the optimization coefficients are bounded.
Practical advantages based on the present advances in theory are demonstrated in the numerical section,
where AA is used to attain results for the nonlinear Helmholtz equation and three-dimensional steady
Navier–Stokes past the first Hopf bifurcation, which cannot be attained by the usual combinations of
Picard iterations, Newton iterations and relaxation techniques alone.
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A. Appendix

The proof of the technical Lemma 5.1 follows.

Proof. The proof follows by induction on the submatrix formed by the first p rows and columns of
R, then by induction indexing up the entries of the right-most column. Let Rp = R(1 : p, 1 : p), the

upper-left p × p block of R̂, with inverse Sp.

The off-diagonal entries rij of R̂ are given by rij = (qi, aj) = ∥∥aj∥∥ cos(qi, aj), and by Proposition 5.2
the diagonal entries are given by rii = ∥∥ai∥∥ |sin(ai,Ai−1)|, following the convention that the columns

of Q̂ are chosen so the rii are positive.
For the trivial case of p = 1, R1 = r11 and s11 = 1/r11 = 1/

∥∥a1

∥∥. By Proposition 5 to compute the
inverse of R2 it remains to compute s22 and s12. It is useful here to state the inversion formula for entries
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of the right-most column (index p) as

spp = 1

rpp
and skp = − 1

rkk

p−k∑
j=1

rk,k+jsk+j,p = − 1

rkk

p−k∑
j=1

∥∥ak+j

∥∥ cos(qk, ak+j)sk+j,p, k < p. (A.1)

For p = 2 the inversion formula (A.1) and expression (5.1) for the diagonal entries yield s22 = 1/r22 =
1/(‖a2‖| sin(a2, q1)|). Then by the hypotheses of the lemma s22 � 1/(‖a2‖cs). Using (A.1) the off-
diagonal entry then satisfies s12 = −‖a2‖ cos(q1, a2)s22/r11, yielding |s12| � ct/(‖a1‖cs). Hence, for
p = 2 the result holds. Continue by induction on p, assuming the result holds for q = 1, . . . , p−1. Then
for q = p,

Rp =
⎛
⎜⎝

Rp−1 r1p
...

0 rpp

⎞
⎟⎠ .

By (A.1), Proposition 5.2 and the hypotheses of the lemma
∥∥spp∥∥ � 1/

(∥∥ap∥∥cs).
Similarly by (A.1)

∥∥sp−1,p

∥∥ � ct/
(∥∥ap−1

∥∥c2
s

)
. This satisfies the base step on the inner induction, up

row p of Sp. Assuming the bound of (5.3) for sip holds for i = p − 1 down to i = k + 1, it suffices to
show the result for i = k. By (A.1) and the inductive hypothesis,

|skp| =
∣∣∣∣∣∣

1

rkk

p−k∑
j=1

∥∥ak+j

∥∥ cos(qk, ak+j)sk+j,p

∣∣∣∣∣∣ �
1

rkk

⎛
⎝p−k−1∑

j=1

c2
t (ct + cs)

p−(k+j)−1

cp−(k+j)+1
s

+ ct
cs

⎞
⎠ .

Setting n = p − k

|skp| �
1

rkk

⎛
⎝n−1∑

j=1

c2
t (ct + cs)

n−j−1

cn−j+1
s

+ ct
cs

⎞
⎠ = ct

cns rkk

⎛
⎝n−1∑

j=1

ct(1 + cs)
n−j−1cj−1

s + cn−1
s

⎞
⎠ . (A.2)
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Rearranging the terms in the sum shows

n−1∑
j=1

ct(ct + cs)
n−j−1cj−1

s + cn−1
s

=
n−2∑
j=1

ct(ct + cs)
n−j−1cj−1

s + (ct + cs)c
n−2
s

=
n−3∑
j=1

ct(ct + cs)
n−j−1cj−1

s + (ct + cs)
2cn−3

s

...

= ct(ct + cs)
n−2 + ct(ct + cs)

n−3cs + (ct + cs)
n−3c2

s

= ct(ct + cs)
n−2 + (ct + cs)

n−2cs

= (ct + cs)
n−1. (A.3)

Applying (A.3) and (5.1) to (A.2) allows

|s1p| �
ct(ct + cs)

p−2∥∥a1

∥∥ cp−1
s

and |skp| �
ct(ct + cs)

p−k−1∥∥ak∥∥ cp−k+1
s

, k = 2, . . . , p − 1,

which completes the inductive step on k and hence on p and establishes the result. �
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