
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

ConcSpectre: Be Aware of Forthcoming Malware
Hidden in Concurrent Programs

Yang Liu , Member, IEEE, Zisen Xu, Ming Fan , Member, IEEE, Yu Hao , Kai Chen, Member, IEEE,
Hao Chen, Member, IEEE, Yan Cai, Member, IEEE, Zijiang Yang, and Ting Liu , Member, IEEE

Abstract�Concurrent programs with multiple threads execut-
ing in parallel are widely used to unleash the power of multicore
computing systems. Owing to their complexity, a lot of research
focuses on testing and debugging concurrent programs. Besides
correctness, we �nd that security can also be compromised by
concurrency. In this article, we present concurrent program spectre
(ConcSpectre), a new security threat that hides malware in non-
deterministic thread interleavings. To demonstrate such threat, we
have developed a stealth malware technique called concurrent logic
bomb by partitioning a piece of malicious code and injecting its
components separately into a concurrent program. The malicious
behavior can be triggered by certain thread interleavings that
rarely happen (e.g., <1%) under a normal execution environment.
However, with a new technique called controllable probabilistic
activation, we can activate such ConcSpectre malware with a
very high probability (e.g., >90%) by remotely disturbing thread
scheduling. In the evaluation, more than 1000 ConcSpectre samples
are generated, which bypassed most of the antivirus engines in
VirusTotal and four well-known online dynamic malware analysis
systems. We also demonstrate how to remotely trigger a ConcSpec-
tre sample on a web server and control its activation probability.

Manuscript received February 6, 2022; accepted March 22, 2022. This work
was supported in part by the National Key R&D Program of China under
Grant 2018YFB0803501, in part by the National Natural Science Foundation
of China under Grant U1766215, 61772408, Grant 61632015, Grant 61833015,
Grant 62002281, and Grant 61902306, in part by the China Postdoctoral Sci-
ence Foundation under Grant 2019TQ0251, Grant 2020M683520, and Grant
2020M673439, in part by the Fundamental Research Funds for the Central
Universities, the Youth Talent Support Plan of Xi�an Association for Science
and Technology under Grant 095920201303, in part by the CCF�Tencent Open
Research Fund, and in part by the 2020 Industrial Internet Innovation Develop-
ment Project�Industrial Internet Penetration Testing and Crowdsourced Testing
Platform under Grant TC200H01P. Associate Editor: Z. Zheng. (Corresponding
author: Ming Fan.)

Yang Liu, Zisen Xu, Ming Fan, Zijiang Yang, and Ting Liu are
with the Ministry of Education Key Laboratory for Intelligent Net-
works and Network Security, Xi�an Jiaotong University, Xi�an 710049,
China (e-mail: yliu.xjtu@gmail.com; xzs05350332@stu.xjtu.edu.cn; ming-
fan@mail.xjtu.edu.cn; zijiang@xjtu.edu.cn; tingliu@mail.xjtu.edu.cn).

Yu Hao is with the Department of Computer Science and Engineering,
University of California, Riverside, CA 92521 USA (e-mail: yhao016@ucr.edu).

Kai Chen is with the State Key Laboratory of Information Security, Institute
of Information Engineering, Chinese Academy of Sciences, Beijing 100195,
China, with the School of Cyber Security, University of Chinese Academy
of Sciences, Beijing 100049, and also with the Beijing Academy of Arti�cial
Intelligence, Beijing 100084, China (e-mail: chenkai@iie.ac.cn).

Hao Chen is with the Department of Computer Science, University of Cali-
fornia, Davis, CA 95616 USA (e-mail: chen@ucdavis.edu).

Yan Cai is with the State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences, Beijing 100190, China, and also
with the School of Computer Science and Technology, University of Chinese
Academy of Sciences, Beijing 100049, China (e-mail: ycai.mail@gmail.com).

Color versions of one or more �gures in this article are available at
https://doi.org/10.1109/TR.2022.3162694.

Digital Object Identi�er 10.1109/TR.2022.3162694

Our work shows an urgent need for new malware analysis methods
for concurrent programs.

Index Terms�Concurrent logic bomb (CLB), concurrent
programs, concurrent program spectre (ConcSpectre),
controllable probabilistic activation (CPA), software security.

I. INTRODUCTION

MANY strategies have been implemented to unleash the
full potential of modern processors, such as out-of-order

execution, branch prediction, and speculative execution strate-
gies. These optimization technologies signi�cantly enhance the
performance but at the same time dramatically increase the
complexity of the hardware systems. Complexity may introduce
security risks, such as Meltdown [1] and Spectre [2]. Meltdown
utilizes the side effects of out-of-order execution to read ar-
bitrary kernel-memory locations, including personal data and
passwords. Spectre attacks involve inducing a victim to spec-
ulatively perform operations that leak the victim�s con�dential
information via a side channel to the adversary. The community
was astonished by these discoveries due to its severity, as these
optimization technologies have been used for decades.

In this article, we present a new threat to hide malware
in concurrent programs. Concurrent programs with multiple
threads executing in parallel are widely used to improve system
ef�ciency. Meanwhile, the inherent nondeterminism of thread
interleavings also signi�cantly increases the complexity of pro-
grams. In general, the number of possible interleavings of a
concurrent program with n threads each executing k steps can
be as large as (nk)!/(k!)n � (n!)k[3], a number that is double
exponential to both n and k. Since it is impossible to check all
the interleavings of a nontrivial program, a piece of malware
triggered only by several speci�c thread interleavings would be
extremely dif�cult to detect. Similar to Spectre, this threat also
exploits the complexity of the concurrency mechanism to cover
its malicious behavior, which is used to unleash the power of
modern multicore computing systems. We name it concurrent
program spectre (ConcSpectre).

Current malware detection techniques mainly rely on static
malicious signatures and dynamic analysis results [4]. However,
the static signatures can be easily changed using obfuscation
techniques. Dynamic analysis technologies aim to execute each
execution path to trigger the malicious behavior for further
veri�cation. However, exploring all the paths is extremely hard
in the era of multicore processors due to the nondeterminism of
thread interleavings.

0018-9529 ' 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4075-1971
https://orcid.org/0000-0002-9327-0987
https://orcid.org/0000-0002-3944-3162
https://orcid.org/0000-0002-7600-0934
mailto:yliu.xjtu@gmail.com
mailto:xzs05350332@stu.xjtu.edu.cn
mailto:mingfan@mail.xjtu.edu.cn
mailto:mingfan@mail.xjtu.edu.cn
mailto:zijiang@xjtu.edu.cn
mailto:tingliu@mail.xjtu.edu.cn
mailto:yhao016@ucr.edu
mailto:chenkai@iie.ac.cn
mailto:chen@ucdavis.edu
mailto:ycai.mail@gmail.com
https://doi.org/10.1109/TR.2022.3162694


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

Fig. 1. Code snippet of a multithreaded download program.

Consider the multithreaded program given in Fig. 1. The
main thread creates two threads T1 and T2 to concurrently
execute the function multidownload to download four �les in
total. The functions is _ download and set _ download are used
to avoid downloading the same �le more than once. A typi-
cal execution trace is �1: T1(download(0))�T2(download(1))�
T1(download(2))�T2(download(3)). However, �1 is not the
only trace under input N = 4. For example, if there is a conges-
tion during the execution of download(0), a different trace can
be �2: T1(download(0))�T2(download(1))�T2(download(2))�
T1(download(3)). A malware analysis on �1 and �2 may report
different results. The behavior of a concurrent program relies on
not only its inputs but also the thread scheduling. The inherent
nondeterminism of multithreaded executions invalidates the as-
sumption of deterministic behavior under �xed inputs and, thus,
exhibits a threat to the current malware detection techniques,
which is the intuition of our ConcSpectre.

In order to implement ConcSpectre by exploiting concur-
rency, there are two main challenges. The �rst challenge is to
snugly hide a malware sample in a concurrent program while
bypassing the malicious behavior detection of modern malware
detection tools. The second challenge is to trigger the malicious
behavior effectively in a controllable manner. This article ad-
dresses these challenges with a new stealth malware technique
called concurrent logic bomb (CLB) and a new activation tech-
nique called controllable probabilistic activation (CPA).

The idea of the CLB technique is to partition a piece of mal-
ware and inject its components into many concurrently executed
program fragments such that: 1) each individual component is
benign so the malware detection tool does not raise alarms when
monitoring its execution; 2) there exist speci�c orderings of the
components that trigger the malicious behavior; and 3) malicious
behaviors are well hidden from typical executions. There are
different strategies to partition malware, identify the injection
locations in a host program, and arrange the orders to manifest
malicious behavior. Therefore, a piece of malware processed by
the CLB technique may yield multiple pieces before injecting
into a concurrent program. To demonstrate the feasibility of the
CLB technique with a real case, we partition the malware sample
BullMoose and inject its components into various locations of
several publicly available concurrent programs. More than 1000
malware samples have been generated, which evade the detec-
tion of most of the antivirus engines in VirusTotal [5], as well
as four well-known online dynamic malware analysis systems.

For each piece of CLB malware, there exist certain orderings
that can trigger the malicious behavior. These orderings rarely
happen during normal execution conditions. The idea of CPA is
to disturb the normal execution condition such that the orderings
that trigger malicious behavior are no longer rare. In the exper-
iments, we implement a CPA technique based on the system
load and demonstrate that this CPA technique can signi�cantly
increase the probability of the rare orderings with a group of
real attacks. By combining CLB and CPA techniques, attackers
can control the activation probability of ConcSpectre malware,
which is less than 1% under normal execution environment and
higher than 90% under attack.

In summary, this article makes the following contributions.
1) We reveal a new security threat called ConcSpectre to

concurrent programs, which calls for an urgent redesign
of malware detection techniques for concurrent programs
to prevent forthcoming threats.

2) We propose a new stealth malware technique called CLB
to hide a malware sample into concurrent programs. Lever-
aging the dif�culty of analyzing the interleaving of differ-
ent threads, the concealed malware can evade most of the
state-of-the-art dynamic and static detectors.

3) We design a new malware activating approach called
CPA to trigger ConcSpectre malware based on the system
workload. CPA can drastically increase the probability of
triggering malicious behavior that is stealthy under normal
execution conditions.

The rest of this article is organized as follows. Section II
explains the basic idea of ConcSpectre malware through a moti-
vating example. Sections III and IV give a detailed explanation
of CLB and CPA techniques, respectively. Section V shows
the performance of ConcSpectre malware against well-known
online malware detection systems. Section VI discusses the
threats of ConcSpectre and corresponding detection and defense
strategies. Section VII introduces the related work. Finally,
Section VIII concludes this article.

II. OVERVIEW

A. Motivating Example

We use the programs given in Fig. 2 as a running example to
explain the basic idea of ConcSpectre. As shown in Fig. 2(a),
a snippet of malware calls get _ data() and send _ data() to
retrieve sensitive data and transmit it. A dynamic malware
detection tool can report this illegal activity when it monitors
the execution of the malware since sensitive data are retrieved
and then transmitted.

As shown in Fig. 2(b), we transform the program to malware
_ C(), where the order of the calls to get _ data() (Line 19)
and send _ data() (Line 14) are reversed and separated into two
LOCK/UNLOCK components (S1 and S2). An additional vari-
able order is inserted for controlling the execution. Monitoring
the execution of malware _ C() by running it within a single
thread does not raise any alarms since no sensitive data are being
retrieved �rst and then transmitted.

Consider the host program given in Fig. 2(c), where two
threads (T1 and T2) simultaneously invoke malware _ C() in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: CONCSPECTRE: BE AWARE OF FORTHCOMING MALWARE HIDDEN IN CONCURRENT PROGRAMS 3

Fig. 2. Demo case of ConcSpectre. (a) Snippet of malware. (b) ConcSpectre Malware. (c) Host program of ConcSpectre.

Fig. 3. Execution traces of ConcSpectre malware in Fig. 2. The last row
indicates whether the malicious behavior is activated.

func(). We show that with input x = 1, the malicious behavior
of data stealing can happen under speci�c interleavings between
the two threads. Fig. 3 lists six execution traces that cover all
possible combinations of the two branches between the two
threads, where (S1,T) indicates the if-statement in S1 executes
with a true branch, and (S2,F) means S2 executes with a false
branch. While get _ data() is invoked in all execution traces, send
_ data() is only invoked in �1 and �4. It can be observed that the
malicious behavior manifests in �1 when T2 transmits the data
obtained by T1, and in �4 when T1 transmits it obtained by T2.
That is, by monitoring an execution, the malware detection tool
has a probability of 1/3 to detect the malicious behavior. This
seems not bad, but the number of interleavings can increase
drastically and the probability can decrease sharply when the
number of malware components and host program�s threads
increases. For example, there are 1680 possible interleavings
when there are three malicious components injected into three
parallel threads. If the trigger condition of malware is their
execution and injected orders are fully reversed, only 5.7% of
all possible interleavings can trigger the malicious behavior. The
number becomes 63 063 000 with 0.07% activating malicious
behavior when there are four components and four threads.
It shows that the chance of detecting ConcSpectre malware
diminishes when the malware sample or the host concurrent
program is nontrivial.

ConcSpectre can be exploited in at least two scenarios. First, it
can be used to launch advanced persistent threat attacks against
high-security targets. The ConcSpectre may hide malware in
some large concurrent software to bypass the rigorous security
reviews in these high-security systems, even when the source

code is open to the security analyst. Second, ConcSpectre can
be applied to launch various large-scale attacks, such as botnet
and worm. Speci�cally, although botnets use existing common
protocols like Internet Relay Chat, bots within a botnet are highly
similar due to the preprogrammed activities related to the same
Command and Control server. Therefore, current botnet detec-
tion methods mainly detect botnets based on spatial�temporal
correlation in network traf�c [6], [7]. ConcSpectre bots in a
botnet could hide their abnormal behaviors well by randomly
activating once in thousands of runs, which breaks the correla-
tion of bots with acceptable performance loss.

B. Basic Assumptions

The work in this article is built on the following assumptions.
First, a piece of malware can be partitioned and each compo-

nent is not detectable by current malware analysis techniques.
Since each component by itself does not cause any harm, its
behavior is usually not suspicious. In Section V-D, we partition
four real malware samples into many components to escape from
malware detection engines.

Second, ConcSpectre malware can be installed on a victim�s
system that supports multithreading using various methods (e.g.,
phishing, social engineering, etc.). Then, ConcSpectre can hide
malicious code, bypass current malware detection, and prob-
abilistically activate the malware. In Sections IV and V, we
demonstrate how to inject malware into programs in common
concurrency benchmarks.

Third, the attacker can in�uence the thread scheduling of
the victim�s system. This assumption is reasonable since we
do not require precise thread scheduling. Speci�cally, attackers
can perturb thread switching by sending suspend commands,
increasing the system load, etc. In Section V-C, we demonstrate
how to remotely activate ConcSpectre malware on a web server
by increasing the workload on the target machine.

III. CONCURRENT LOGIC BOMB

CLB is a technique for hiding malware by partitioning a
piece of malware and hiding its components into a concurrent
program. In this article, we partition a malware sample manually
with the following consideration: 1) automated code partition
has been a dif�cult problem for decades and 2) with domain
and code knowledge, an attacker may give a partition trickier



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 4. Three types of functions in concurrent programs.

Fig. 5. Malware section injection methods. (a) SPE. (b) CPE.

than any automated approach. In this section, we will �rst focus
on automatically �nding suitable locations to inject partitioned
malware sections and, then, con�rm the stealthiness of the
proposed CLB technique.

A. Malware Injection

The CLB technique injects partitioned malware components
into different functions of a concurrent program. To choose the
right host functions, we classify the functions in a concurrent
program into three types, as illustrated in Fig. 4.

1) Nonparallel-execution (NPE) functions cannot be exe-
cuted with any other functions simultaneously (e.g., F1).

2) Cross-parallel-execution (CPE) functions can be executed
with other functions concurrently (e.g., F2 and F3).

3) Self-parallel-execution (SPE) functions can be executed
by multiple threads concurrently, but cannot be executed
with other functions in parallel (e.g., F4).

Both code analysis and execution monitoring can be applied
to identify the aforementioned three types of functions. Appar-
ently, NPE functions are not good host candidates because their
executions are affected by thread interleaving indirectly through
CPE and SPE functions.

Assuming that three malware components (m1: stealing and
saving sensitive data, m2: sending data, and m3: releasing data)
are injected into an SPE function, as shown in Fig. 5(a), two
types of faults may occur.

1) Repeated execution: If m3 has been executed in Thread
1, its re-execution in Thread 2 is erroneous.

2) Execution with wrong order: If m2 in Thread 2 sends the
sensitive data that has been cleared by m3 in Thread 1, its
execution is erroneous.

Therefore, we have to design a control module to ensure
the malware components are executed correctly. One approach
is to create a shared variable to indicate whether a malware
component can be executed. After one component is executed,
the variable is set to the value representing the next compo-
nent. In Fig. 2, we adopt this approach by using the variable

order. Of course, other strategies can also be used, such as
backward setting and forward searching. In backward setting,
the current component can turn ON the execution permission
of the next component while turning OFF others. In forward
searching, the current component has to con�rm whether certain
other components have been executed successfully before its
execution. We de�ne a malware component with its control
module as a malware section that is a basic unit in a piece
of ConcSpectre malware. Although control modules introduce
additional dependence among malware sections, such type of
dependence cannot be exploited by malware analysis tools. We
will discuss this in Section III-B.

When we inject malware components into CPE functions,
the injection positions of all sections are different. As shown
in Fig. 5(b), (m1) is injected into two CPE functions, and (m2
and m3) is only in one CPE function. When these two CPE
functions are invoked in parallel, three malware sections would
be executed with different orders, which may face similar faults
as SPE: Repeated execution and Execution with wrong order.
Thus, the control module is also needed to ensure the malware
components are executed correctly.

Both the CPE and SPE functions could be selected to inject
malware sections. We need to analyze at least two different CPE
functions, but only one SPE function. Meanwhile, the activation
methods of malware injected into CPE and SPE are different.
There are two major challenges for CPE functions. First, a single
injection location in an SPE function indicates the concurrency
of multiple threads. In comparison, we need to consider multiple
injection locations for CPE functions simultaneously, which
requires more changes to the source code and makes the injection
less uniform. Second, it is complicated to perturb the interleaving
of CPE functions, which makes probabilistic activation more
dif�cult. Thus, we mainly focus on SPE functions in our work.
The feasibility of CPE functions for malware injection will be
demonstrated in Section V-F.

B. Stealthiness of CLB

There are two common types of malware detection tech-
niques: 1) static analysis techniques attempt to identify mali-
cious code by searching suspicious strings or blocks of code
and 2) dynamic analysis techniques seek to identify malicious
behaviors after deploying and executing the samples. Since the
CLB technique partitions the malware and hides its components
into various places in a host program, it is almost impossible for
static analysis techniques to detect malware, as con�rmed by the
experiments in Section V-D. In this section, we will show that
the CLB technique could also evade current dynamic analysis
techniques.

Dynamic malware detection exploits control dependence and
data dependence to �nd suspicious executions path and guides
dynamic analysis to identify malicious behavior. Such an ap-
proach is not applicable to defend CLB. As shown in Fig. 6(a),
there are two malware sections. An array a[] is used to store the
sensitive data between the two sections. This malware is detected
if send _ data is executed after get _ data in one execution.
As shown in Fig. 6(b), we extract the control dependence of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: CONCSPECTRE: BE AWARE OF FORTHCOMING MALWARE HIDDEN IN CONCURRENT PROGRAMS 5

Fig. 6. Control and data dependence analysis. (a) Code snippet. (b) Program
dependence.

the malware sample in red. It shows that send _ data at Line
9 depends on Line 7 and get _ data at Line 14 depends on
Line 12. The data dependence of the two global variables order
and a[] is depicted in blue. For order, the conditional statement
at Line 12 is dependent on the assignment statement at Line
8. For a[], note that the a[] transmitted by send _ data (Line
9) is irrelevant to the a[] obtained by get _ data (Line 14).
Considering the control dependence and data dependence, there
is no execution path containing the get-send pattern. Therefore,
the dependencies could not guide dynamic analysis to defend
CLB. Moreover, we envision that many stealth techniques can
be implemented with the CLB technique to make it even harder
for current malware analysis. For example, side-channel leakage
can be used to provide a more stealthy data �ow among various
malware sections [8]�[10].

Another attempted defense against CLB is to explore all the
possible executions, by integrating dynamic malware detection
techniques with concurrent testing, such as model checking
(e.g., ESBMC [11]) or symbolic execution (e.g., DTAM [12],
Proactive-Debugger [13], and Conc-iSE [14]). These tools can
be applied to explore all interleavings. However, this approach
is not practical and scalable due to the inherent issues of
model checking and symbolic execution, such as state explo-
sion, nonlinear computation, and the sheer size of interleavings.
Moreover, as source codes are usually unavailable, it would be
more dif�cult to detect malicious behaviors when antianalysis
techniques, such as ambiguous translation [15], are introduced.

IV. CONTROLLABLE PROBABILISTIC ACTIVATION

A. Definition

The malicious behavior in a sequential program is triggered
when the input vector (in) is among the activation inputs INACT .
In most cases, the execution of a sequential program is determin-
istic. Then, the activation of sequential malware can be formally
presented as

P (malwareseq = active|in � INACT ) = 1 (1)

where P (•) is the probability function.

As demonstrated by Fig. 3, the triggering condition in (1)
cannot guarantee the activation of the malicious behavior in a
concurrent program because the execution traces can be different
with the same input. Thus, (1), which is valid for sequential
programs, is no longer valid for concurrent programs. We de�ne
probabilistic activation for concurrent malware as

P (malwarecon = active|in � INACT ) = �. (2)

Equation (2) states that a concurrent malware is triggered with
a probability of � � [0, 1] when its input is among the activation
inputs. A lower � indicates that a concurrent malware sample
is more stealthy and less likely to be triggered under a normal
execution environment.

However, � alone does not reveal the severity as it does not
indicate how likely the concurrent malware can be triggered by
an attacker. Thus, we introduce the concept of CPA as follows:

P (ConcS = active|in � INACT ) = �

P (ConcS = active|in � INACT � side_cond) = � (3)

where side_cond is a side condition that is irrelevant to inputs
but can be controlled or in�uenced by an attacker. With a side
condition, the probability of activating a ConcSpectre malware
sample � can be signi�cantly greater than �. Therefore, � and �
represent the stealthiness and controllability, respectively. The
gap � = � � � can indicate the severity of a piece of concurrent
malware.

B. Probabilistic Activation

For each thread interleaving, there is an execution trace that
contains malware sections. The number of execution traces with
different ordering of malware sections is (a � b)!/(b!)a, where
a and b are the number of threads and malware sections, respec-
tively. The activation of ConcSpectre malware relies on whether
all malware sections have been executed successfully in the
intended order. We can calculate the rate of malware-activated
traces by traversing all possible thread interleavings. In a real
system, the occurrence probabilities of thread interleaving are
affected by the predetermined malware activation order and vari-
ous uncertain factors, such as synchronization primitives in host
programs, OS scheduling mechanism, system load, hardware,
etc. The rate of activation order is considered as a reference for
activation strategy selection.

Consider the ConcSpectre malware sample in Fig. 6(a), where
two threads execute two malware sections, respectively. There
are (2 � 2)!/(2!)2 = 6 possible thread interleavings, as shown in
the �rst column of Table I. The activation strategy of the malware
sample is that section 1 should be executed after the execution
of section 2 (S2 < S1). The thread interleavings, execution
traces, and the activation states are shown in columns 2, 3 and
4, respectively. Malicious behavior would be activated in two
traces. Assuming that the activation strategy is revised to section
1 should be executed before section 2 (S1 < S2), the malicious
behavior is then activated in all traces. This is illustrated in the
last two columns in Table I. The reason is that malware section
1 is always executed before malware section 2 in any individual
thread.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

TABLE I
THREAD INTERLEAVINGS AND THEIR ACTIVATION STATES

TABLE II
NUMBER OF EFFECTIVE INTERLEAVINGS (THREE MALWARE SECTIONS) UNDER VARIOUS ACTIVATION STRATEGIES

We de�ne the order of two adjacent malware sections as (Si <
Sj). If i < j, then (Si < Sj) is an Ordered Pair. On the other
hand, if i > j, (Si < Sj) is a Reverse-Order Pair, and i� j is
the Reverse-Order Degree. Since all Ordered Pairs are satis�ed
in any individual thread, the Reverse-Order Pair in the activation
strategy is the key to decide whether the malicious behavior can
be triggered.

In our article, we have analyzed nine situations, including
two to four threads and two to four malware sections per
thread. The number of malware-activated thread interleavings is
shown in Table II. With activation strategy �S1 < S2 < S3,� the
malicious behavior would always be triggered. However, with
�S3 < S2 < S1,� only 0, and 14% thread interleavings would
trigger the malicious behavior when there are two to four threads,
respectively.

Observation 1: With more reversed orders and a higher
reverse-order degree in an activation strategy, fewer thread
interleavings can activate a ConcSpectre malware sample.

C. Load-Based CPA on Windows

According to (3), an exploitable piece of ConcSpectre mal-
ware requires a side condition to improve the activation proba-
bility. A feasible side condition must meet two requirements: 1)
accessible and 2) irrelevant to the malware itself.

On Windows OS, the scheduler divides the available processor
time in a round-robin fashion among the processes or threads
following scheduling priority. Thus, there are three variable
factors to in�uence thread scheduling: available processor time,
scheduling priority, and round-robin mechanism. Obviously,
it is dif�cult to access and control the scheduling priority or
round-robin on the victim�s system. In our work, we �nd the
available processor time is relevant to system load that can be
in�uenced remotely.

Assume that the example in Fig. 6 runs on a dual-core CPU
system. When the system is in an idle state, the scheduler may
assign CPU1 and CPU2 to two threads. Two threads can start to
execute malware section 1 simultaneously, as shown in Fig. 7(a).
Since there is LOCK to maintain the atomicity of all malware

sections, two threads would be executed one by one (as the
execution trace �2 in Table I). In such cases, the malware would
be triggered with low probability, since the second malware
section is unlikely to be activated.

When the system is in a high load state (e.g., CPU 2
is occupied by a high priority task), only one thread can
obtain the resource to execute. Thus, two threads would
be executed sequentially, as shown in Fig. 7(b). Two mal-
ware sections would be activated within two threads, and
the ConcSpectre malware would be triggered with high
probability.

When the threads are executed concurrently, the malware
sections in different threads may start in the same time slice.
There will be fewer reverse orders in an execution trace. When
the threads are executed sequentially, there will be more reverse
orders. Thus, we could disturb the thread scheduling on victim�s
system by in�uencing its load. In particular, we can increase the
occurrence probability of thread interleavings with more reverse
orders by increasing its workload, which leads to the Load-based
CPA.

To verify the Load-based CPA, we run a concurrent program
on a Windows server with Intel Xeon CPU E7-4850 and 8-
GB memory. We create four threads to execute four functions
(S1�S4) that read and write some local �les with the same
order. We simulate nine groups of experiments, where each
group represents a different CPU usage. In each group, the
concurrent program runs 10 000 times, and we execute zero
to eight programs with in�nite loops to simulate the system
load from 0 to 100%. All the execution traces of the concurrent
program are recorded. Then, we match all possible control
strategies in all traces to calculate their activation probabili-
ties. As shown in Fig. 8, the activation probability increases
signi�cantly when the CPU usage rises. In particular, the oc-
currence rate of the fully-reverse-order sequence S4 < S3 <
S2 < S1 is dramatically increased from 0.04% (2% CPU usage,
i.e., the average system load) to 90.24% (100% CPU usage).
Note that the sequence S1 < S2 < S3 < S4 would be activated
within each individual thread, so its activation probability is
always 100%.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: CONCSPECTRE: BE AWARE OF FORTHCOMING MALWARE HIDDEN IN CONCURRENT PROGRAMS 7

Fig. 7. Thread interleavings (1,T/1,F means malware section 1 has (not)
been executed, H is the execution of the host program, B means the thread is
blocked by the LOCK, and W means the thread is waiting for processor slicing).
(a) Low system load. (b) High system load. (c) tHost < tGet_CPU.

Fig. 8. Activation probability under different activation strategies.

Fig. 9. Activation probability of S4 < S3 < S2 < S1.

Observation 2: We can significantly change the activation
probability of reverse-order control strategy by influencing the
workload on the victim’s system.

The running time of malware sections is an important fac-
tor in deciding when and on which thread they execute. On
Windows OS, the scheduler allocates a processor time slice
(approximately 20 ms) for each thread it executes. The running
thread is suspended when its time slice elapses, allowing another
thread to run [16]. Thus, if the interval between two malware
sections is too short, the expected thread interleaving may be
changed. As shown in Fig. 7(c), Thread 2 will be blocked when
malware section 1 has been locked by Thread 1 at tT 1(1). At tx,
Thread 1 releases the LOCK and Thread 2 starts to request the
processor again. If Thread 1 starts to execute malware section
2 before Thread 2 gets the processor slicing, Thread 2 will
be blocked again. The expected thread switching in Fig. 7(a)
would not happen. And, all malware sections would be executed
successfully with high probability, regardless of the system
loads.

In our experiments, we design a concurrent program, in
which four threads execute four functions in the same order.
These functions only record their execution time, which could
be executed very quickly. Like the settings in Fig. 8, we run
the program 10 000 times for nine different CPU usages, re-
spectively. Experimental results show that the occurrence rates
of fully-reverse-order sequence S4 < S3 < S2 < S1 (i.e., the
pink line marked as 0k) in Fig. 9 are all over 60%, which
are quite different from those (i.e., the blue line marked as
S4 < S3 < S2 < S1) in Fig. 8. To further analyze this phe-
nomenon, we add a waiting section to extend the running
time of malware sections. As shown in Fig. 9, four groups of
empty loops are added into the malware sections, where the
numbers of loops are 30k, 60k, 90k, and 120k, respectively. If
a 90k-empty-loop is added, there are fewer than 0.68% execu-
tions containing the sequence S4 < S3 < S2 < S1 when CPU
usage is less than 30%, but as high as 92% when CPU usage
is 100%.

Observation 3: To obtain different activation probabilities
under different workloads, the running time of malware sections
should be longer than the time slice of thread scheduling.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

TABLE III
MALWARE SAMPLES

LOC: Lines of code.

TABLE IV
CONCURRENT PROGRAMS

LOC: Lines of code. #Function, #SPE, and #Injection point are the
number of functions, SPE functions, and injection points, respectively.

V. EVALUATION

A. Experimental Setup

In this section, we select four widely studied open-source
malware samples from VX Heavens [17], including BullMoose,
Branko, Hunatcha, and Hunatchab, as shown in Table III1 [18].
Speci�cally, BullMoose is a basic HTML File infector that
changes a registry key to run this program instead of iex-
plore.exe. It appends the infection string (i.e., a Javascript code
snippet) into the HTML �le and opens it with iexplore.exe by
calling the ShellExecute() API. It is a proof-of-concept Trojan
to demonstrate the security risk of Microsoft Windows systems
with Internet Explorer. Branko attempts to spread using a
prede�ned users/password list and runs Taskkill to shut down
antivirus programs. Hunatcha is a worm that spreads via peer-
to-peer software by infecting �les and modifying registry keys.
Hunatchab is a variant of Hunatcha.

As shown in Table IV, we select nine programs from the
well-known concurrent testing benchmark SPLASH [19] and
one program from Microsoft Open Source Code [20] as the
host programs. By analyzing their source codes, we identify
217 SPE functions from these programs. Then, we select 1�15
SPE functions in each host program that result in 77 suitable
injection points in total, which could be invoked by at least four
threads in parallel. All four malware samples are hidden into
benign concurrent programs to construct ConcSpectre and verify
its stealthiness against current malware analysis techniques. Be-
sides, BullMoose is selected as the demo sample to demonstrate
how to generate and remotely trigger ConcSpectre malware.

1As bots are essentially Trojan/worm combinations belonging to a large
malicious network (i.e., a botnet), the detection results of an individual bot based
on static and dynamic malware analysis could be represented by Trojan/worm
malware samples. Further discussion on traf�c-based botnet detection is beyond
the scope of this article.

Fig. 10. Work�ow of ConcSpectre generation.

In this article, we generate over 1000 samples of ConcSpectre
malware by injecting four malware samples and their variants
into ten benign concurrent programs with different activation
strategies at the code level. The processes of malware partition,
benign program analysis, and ConcSpectre construction are at
code level. By debugging and compiling these samples, we
generate the executables of all original malware and Conc-
Spectre samples and pass them to VirusTotal and four dynamic
malware analysis systems to demonstrate: 1) how to generate
real ConcSpectre malware samples; 2) how to trigger Conc-
Spectre malware remotely; 3) whether antivirus systems can
detect ConcSpectre malware; and 4) whether dynamic malware
analysis systems can detect ConcSpectre malware.

Note that the resource consumption of concurrent programs is
usually high. For example, programs in the SPLASH benchmark
will be executed within 0.1 s to a few minutes according to
the size of the input set, and the memory footprint is at the
level of megabytes or gigabytes [21]. In contrast, malware is
usually lightweight for better stealthiness. Speci�cally, most
malicious sections could be executed within a few milliseconds
at a very low memory footprint (i.e., at the level of kilobytes).
Therefore, the side effects of malware injection on concurrent
host programs are usually insigni�cant.

B. ConcSpectre Malware Generation

Fig. 10 shows the work�ow of ConcSpectre malware gen-
eration. All ConcSpectre malware samples are constructed
with C/C++ (mingw32-gcc 6.3.0) and Pthread (mingw32-
libpthreadgc, version: 2.10-pre-20160821-1) on Windows 7 and
Windows 10. In this section, we illustrate the detailed steps with
a real case.

1) malware=BullMoose, host program=fft.
2) CPA is set as the system-load-based strategy. The activa-

tion probability should be lower than 5% during normal
system load (CPU usage is less than 25%), and higher than
50% during high system load (CPU usage is higher than
75%).

3) A global variable is used to control the execution of each
malware section.

4) SPE functions in the host program are chosen to inject the
malicious code.

In the Malware Separation module, a static analysis technique
is applied to extract the control dependence and data dependence
of malware. These dependencies are used to guide malware
partition to make sure that the relation between different malware
fragments is as little as possible. Then, each component is
checked with various antimalware systems. If there are any



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: CONCSPECTRE: BE AWARE OF FORTHCOMING MALWARE HIDDEN IN CONCURRENT PROGRAMS 9

TABLE V
MAIN CONCSPECTRE MALWARE SAMPLES FOR TEST

abnormal alarms, we need to partition the abnormal component
again or apply obfuscation and shelling techniques to make sure
that it does not cause any alarms. By analyzing the source code
of BullMoose, we partition it into four components to ensure that
each component would not be classi�ed as a malicious program.
A global variable is added to control the execution order of the
malware components.2

In the SPE Search & Selection module, we search the source
code of the host program to �nd all possible SPE functions.
Meanwhile, we also execute the host program and monitor its
execution traces to check how many threads are created. In fft, 14
SPE functions are found, in which eight functions could invoke
at least four threads in parallel. In the demo case, we select
function �Slavestart� as the injection point.

In the ConcSpectre Generation module, all malware sections
would be embedded into host programs at selected points. To
ensure the integrity of malware�s data �ow, we identify the
shared variables of different malware sections and set them as
global variables. Other possible errors, such as variable renam-
ing, read-write collision, etc., could be �xed during compiling.
Then, the executables of the ConcSpectre malware could be
generated.

The activation probability of ConcSpectre malware relies on
various factors, including OS, thread scheduler, host program,
malware, etc. In our work, we �rst select a control strategy
guided by the rate of malware-activated trace (e.g., Table II) and
generate a ConcSpectre malware sample. Then, the Test module
is applied to execute the sample under different system loads to
calculate its activation probability. If the probabilities meet the
requirement, we get a satisfactory sample; if not, we generate
a new sample with another activation strategy. As shown in
Table V, by injecting four malware into 77 injection points
of all host programs, we have generated 991 representative

2The code of four malware sections is provided on https://git.io/
ConcSpectre. Moreover, a VirtualBox environment is available on https://bit.
ly/ConcSpectreVM.

Fig. 11. CPU usage and activation probability.

ConcSpectre malware samples with different activation orders
for further test.

In our experiments, we have simulated various sequences
under different system loads with empty loops and recorded
their activation probabilities. According to the requirement in
current case, we select the �rst variant whose activation order
is S4 < S1 < S2 < S3 and set the number of empty loop as
120k to generate a ConcSpectre malware sample, named as
BullMoose-fft-C1.

C. Remote Triggering of ConcSpectre Malware

We further demonstrate the feasibility of remote controlling to
activate BullMoose-fft-C1 in a real network. We set up a victim
system (with Intel CORE I5 3470, 16G, JAVA 8) with Red5
Media Server [22] as a local web server. BullMoose-fft-C1 is
injected into one web page. Initially, we use a script �le to request
this page for 100 times. However, BullMoose-fft-C1 is never
triggered. This is actually reasonable as the CPU usage is only
up to 3% and there is only one user.

To simulate the real case with large-scale concurrent accesses,
we run a real-world HTTP DDoS test tool GoldenEye [23] to
visit our web server and con�gure it to work under �ve different
groups of users: 3, 6, 10, 20, and 30. Each user visits the web
server with ten concurrent sockets. Note that these sockets do
not invoke the web page containing ConcSpectre malware. At
the same time, we also launch our script to visit the web page that
contains BullMoose-fft-C1 for 100 times. As shown in Fig. 11,
we see that BullMoose-fft-C1 is activated with different prob-
abilities. In particular, when the number of attackers increases
from 0 to 3 and 30, the average CPU usage on victim�s system
increases from 3% to 23% and 70%, respectively. Consequently,
the activation probability of BullMoose-fft-C1 increases from
0% to 7% and 51%, respectively.

Although the probability of activation in real-world experi-
ments (see Fig. 11) differs from the simulation (see Fig. 8), these
real-world experiments demonstrate that ConcSpectre malware
can be remotely triggered with high probability if attackers can
perturb the system load.

D. ConcSpectre Versus Antivirus System

One design requirement of ConcSpectre malware is to escape
from the antivirus systems. Therefore, we select all antivirus
engines from VirusTotal to analyze generated ConcSpectre mal-
ware. Note that these engines are well con�gured and also up

https://git.io/ConcSpectre
https://git.io/ConcSpectre
https://bit.ly/ConcSpectreVM
https://bit.ly/ConcSpectreVM


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

Fig. 12. Detection results of VirusTotal. (a) BullMoose. (b) BullMoose-fft-C1.

to date. The set includes widely used ones such as McAfee,
Microsoft, and Symantec.

We submit the executable �le of BullMoose and BullMoose-
fft-C1 to VirusTotal. As shown in Fig. 12, the results are im-
pressive: 1) the original Bullmoose is detected by 16 out of 67
engines in Fig. 12(a) and 2) only two engines (�Cylance� and
�MaxSecure�) report anomalies from the ConcSpectre samples
in Fig. 12(b). After further analysis, these two alarms are both
false positives, which are inherited from the host program fft.

To justify whether the ConcSpectre can bypass various an-
tivirus engines, we choose 924 samples with the following three
activation strategies: C2 (S4 < S3 < S2 < S1), C3 (S4 <
S1 < S3 < S2), and C4 (S4 < S2 < S3 < S1) and submit
them to VirusTotal. The results are similar to the previous
one. The original malware samples could be detected by most
of the engines. Meanwhile, only a few engines could detect
ConcSpectre samples correctly. This exposes the potential threat
of ConcSpectre.

E. ConcSpectre Versus Dynamic Malware Analysis

To monitor the dynamic execution of a program and report
any suspicious operations, we select four popular dynamic
malware analysis systems, including Jevereg [24], Falcon [25],
Anlyz [26], and ANYRUN [27]. They are developed on different
well-known sandboxes [12], [28], [29].

Initially, we select the ConcSpectre samples generated from
the BullMoose in Table VI. Since the numbers of SPE functions
in different host programs are different, the number of malware
samples in each host program is also different (listed as #Sam-
ple). One special variant is generated with the activation strategy
S1 < S2 < S3 < S4, which would be always be activated. We
inject this variant into host program fft to generate the Conc-
Spectre malware sample BullMoose-fft-A.

Together with Bullmoose, we submit 233 programs to four
dynamic malware analysis systems. As shown in Table VI, Bull-
moose and BullMoose-fft-A have been detected by all systems.

TABLE VI
DETECTION RESULTS OF DYNAMIC MALWARE ANALYSIS

Three different activation strategies C2, C3, and C4 are marked as -C, the strategy S1 <
S2 < S3 < S4 is marked as -A, and #Sample is the number of malware samples.

Fig. 13. Detection results of Jevereg. (a) Jevereg report BullMoose-ocean_nc-
C2. (b) Jevereg report BullMoose-ocean_nc-C5.

For the ConcSpectre samples, the results are different. In partic-
ular, 150 samples from six host programs have been identi�ed as
suspicious programs by Jevereg, 87 samples have been detected
by ANYRUN, and all samples have been identi�ed as benign by
the rest two systems. As shown in Fig. 13(a), Jevereg detects
two suspicious operations (OpenCreate and WriterFile) on the
�les in /System32.

One possible reason for the high detection rate is that the
CPU resource is limited on the server of Jevereg and ANYRUN.
For example, when the server allocates one thread to execute
the uploaded samples, they would be executed sequentially, and
the malware would be triggered with high probability as in
Section IV-C. If our conjecture is true, Jevereg and ANYRUN
would fail to detect the ConcSpectre whose activation condition
contains parallel sequence. Thus, we design a hybrid activation
sequence C5 (S1 < S1 < S1 < S4 < S3 < S2) to generate
the fourth variant of Bullmoose, in which S1 would be executed
three times before S4. The �rst part S1 < S1 < S1 would be
activated with high probability under low CPU load, and the
second part S4 < S3 < S2 would be satis�ed under high CPU
load. Thus, it is not easy to trigger this sequence under any
conditions of CPU load. We generate another ten ConcSpectre
malware samples containing this variant. From Table VII, no












