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Abstract: This paper develops an efficient and robust solution technique for the steady Boussinesq model
of non-isothermal flow using Anderson acceleration applied to a Picard iteration. After analyzing the fixed
point operator associated with the nonlinear iteration to prove that certain stability and regularity properties
hold, we apply the authors’ recently constructed theory for Anderson acceleration, which yields a conver-
gence result for the Anderson accelerated Picard iteration for the Boussinesq system. The result shows that
the leading term in the residual is improved by the gain in the optimization problem, but at the cost of ad-
ditional higher order terms that can be significant when the residual is large. We perform numerical tests
that illustrate the theory, and show that a 2-stage choice of Anderson depth can be advantageous. We also
consider Anderson acceleration applied to the Newton iteration for the Boussinesq equations, and observe
that the acceleration allows the Newton iteration to converge for significantly higher Rayleigh numbers that
it could without acceleration, even with a standard line search.
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1 Introduction
Flows driven by natural convection (bouyancy) occur inmany practical problems including ventilation, solar
collectors, insulation in windows, cooling in electronics, andmany others [9]. Such phenomena are typically
modeled by the Boussinesq system, which is given in a domain Ω ⊂ ℝd (d = 2 or 3) by

ut + (u ⋅ ∇)u − ν∆u + ∇p = Ri⟨0, ϑ⟩T + f
∇ ⋅ u = 0 (1.1)

ϑt + (u ⋅ ∇)ϑ − 𝜘∆ϑ = γ

with u representing the velocity field, p the pressure, ϑ the temperature (or density), and with f and γ the
external momentum forcing and thermal sources. The kinematic viscosity ν > 0 is defined as the inverse
of the Reynolds number (Re = ν−1), and the thermal conductivity 𝜘 is given by 𝜘 = Re−1Pr−1, where Pr
is the Prandtl number and Ri is the Richardson number accounting for the gravitational force. Appropriate
initial and boundary conditions are required to determine the system. The Rayleigh number is defined by
Ra = Ri ⋅ Re2 ⋅ Pr, and higher Ra leads to more complex physics as well as more difficulties in numerically
solving the system.

Finding accurate solutions to the Boussinesq system requires the efficient solution of a discretized non-
linear system based on (1.1). We restrict our attention to those nonlinear systems arising from the steady
Boussinesq system, since for nonlinear solvers, this is the more difficult case. In time dependent problems,
for instance, linearizations may be used which allow one to avoid solving nonlinear systems [2]. If one does
need to solve the nonlinear system at each time step (e.g., in cases where there are fast temporal dynamics),
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then our work below is relevant, and the analysis as it is developed here generally applies as the time deriva-
tive term only improves the properties of the system.Moreover, at each time step one has access to good initial
iterates to each subsequent nonlinear problem (e.g., the solution at the last time step).

We will consider the Picard iteration for solving the steady Boussinesq system: Given initial u0, define
uk , ϑk, k ⩾ 1 by

(uk−1 ⋅ ∇)uk − ν∆uk + ∇pk = Ri ⟨0, ϑk⟩T + f (1.2)
∇ ⋅ uk = 0 (1.3)

(uk−1 ⋅ ∇)ϑk − 𝜘∆ϑk = γ (1.4)

with uk and ϑk satisfying appropriate boundary conditions. Our analysis will consider this iteration together
with a finite element discretization. A critical feature of this iteration is that the momentum/mass equations
are decoupled in each iteration from the energy equation. At each Picard iteration, one first solves the linear
system (1.4), and then solves the linear system (1.2)–(1.3), which will be muchmore efficient than the Newton
iteration (add (uk−uk−1) ⋅∇uk−1 and (uk−uk−1) ⋅∇ϑk−1 to themomentum and energy equations, respectively).
The difficulty with the Newton iteration is that it is fully coupled: at each iteration the linear solve is for
(uk , pk , ϑk) together. Such block linear systems can be difficult to solve since little is known about how to
effectively precondition them.

The decoupled iteration (1.2)–(1.4), on the other hand, requires solving anOseen linear system and a tem-
perature transport system;manymethods exist for effectively solving these linear systems [6, 7, 10]. However,
even if each step of the decoupled iteration is fast, convergence properties for this iteration are not as good
as those for the Newton iteration (provided a good initial guess). This motivates accelerating the nonlinear
iteration for the decoupled scheme to achieve a method where each linear solve is fast, and which produces
a sequence of iterates that converges rapidly to the solution. The purpose of this paper is to consider the
decoupled Boussinesq iteration (1.2)–(1.4) together with Anderson acceleration.

Anderson acceleration [3] is an extrapolation technique which, after computing an update step from the
current iterate, forms the next iterate from a linear combination ofm previous iterates and update steps. The
parameter m is referred to as the algorithmic depth of the iteration. The linear combination is chosen as the
one which minimizes the norm of themmost recent update steps. The technique has increased in popularity
since its efficient implementation and use on a variety of applications was described in [24], where it was
also shown that in the linear case it is ‘essentially equivalent’ to GMRES. Convergence theory can be found
in [17, 23], and its relation to quasi-Newton methods has been developed in [12, 13]. As shown in [11, 19, 20],
as well as [23], the choice of norm used in the inner optimization problem plays an important role in the
effectiveness of the acceleration. Local improvement in the convergence rate of the iteration can be shown
if the original fixed-point iteration is contractive in a given norm. However, as further discussed in [20], the
iteration does not have to be contractive for Anderson acceleration to be effective.

Herein, we extend the theory of improved convergence using Anderson acceleration to the Boussinesq
system with the iteration (1.2)–(1.4), and demonstrate its efficiency on benchmark problems for natural con-
vection. Our results show that applied in accordance with the developed theory of [20], the acceleration has
a substantial and positive impact on the efficiency of the iteration, and even provides convergence when the
iteration would otherwise fail.

Additionally, although the focus of the paper is for the Picard iteration (1.2)–(1.4), numerical testing of
Anderson acceleration for the related Newton iteration is also performed. Anderson acceleration has been
(numerically) shown on several test problems to enlarge the domain of convergence for Newton iterations. In
our tests, Anderson acceleratedNewton converges for significantly higher Rayleigh numbers than usual New-
ton, and thus similarly to a linesearch (but in our tests better), Anderson acceleration can enable convergence
in Newton iterations that would otherwise fail. Compared to a converging Newton iteration, the Anderson ac-
celerated Newton method will often converge slower since it will generally reduce the order of convergence
to subquadratic in the vicinity of a solution [11, 21].

The remainder of the paper is organized as follows. In Section 2 we provide some background on a sta-
ble finite element spatial discretization for the steady Boussinesq equations, and on Anderson acceleration
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applied to a general fixed point iteration. In Section 3 we give a decoupled fixed point iteration for the steady
Boussinesq system under the aforementioned finite element framework, and show that this iteration is Lip-
schitz Fréchet differentiable and satisfies the assumptions of [20]. Subsection 3.3 states the Anderson accel-
erated iteration specifically for, and as it is applied to the steady Boussinesq system, and presents the con-
vergence results for this problem. In Section 4 we report on results for two application problems with varying
Rayleigh number for the decoupled iteration of the steady Boussinesq system, and show that Anderson ac-
celeration can have a notable positive impact on the convergence speed, especially for problems featuring a
larger Rayleigh number. Section 5 shows numerical results for Anderson acceleration applied to the related
Newton iteration.

2 Notation and mathematical preliminaries
This section will provide notation, mathematical preliminaries, and background, to allow for a smooth anal-
ysis in later sections. First, we will give function space and notational details, followed by finite element
discretization preliminaries, and finally a brief review of Anderson acceleration.

The domain Ω ⊂ ℝd is assumed to be simply connected and to either be a convex polytope or have a
smooth boundary. The L2(Ω) norm and inner product will be denoted by ‖ ⋅ ‖ and (⋅, ⋅), respectively, and all
other norms will be labeled with subscripts. Common boundary conditions for velocity and temperature are
the Dirichlet conditions given by

u = g(x) on ∂Ω, T = h(x) on ∂Ω (2.1)

and mixed Dirichlet/Neumann conditions

u = g(x) on ∂Ω, T = h(x) on Γ1, ∇T ⋅ n = 0 on Ω\Γ1 (2.2)

where Γ1 ⊂ ∂Ω, |Γ1| > 0, and g(x), h(x) are given functions. For simplicity, we consider the homogeneous
case where g(x) = 0 and h(x) = 0, and note that our results are extendable to the non-homogeneous case.

2.1 Mathematical preliminaries

In this subsection, we consider the system (1.2)–(1.4), coupled with the Dirichlet conditions (2.1), and present
some standard results that will be used later. These results additionally hold for system (1.2)–(1.4) with the
mixed boundary conditions (2.2), which can by seen by an integration by parts. The natural function spaces
for velocity, pressure, and temperature are given by

X = H1
0(Ω)

d := {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d , v = 0 on ∂Ω}

Q = L20(Ω) := {q ∈ L
2(Ω) : ∫Ω q dx = 0}

W = H1
0(Ω).

The Poincaré inequality is known to hold in both X and W [18]: There exists CP > 0 dependent only on the
domain Ω satisfying

‖v‖ ⩽ CP‖∇v‖

for any v ∈ X or v ∈ W.
Define the trilinear form b : X × X × X → ℝ such that for any u, v, w ∈ X

b(u, v, w) := 12 ((u ⋅ ∇v, w) − (u ⋅ ∇w, v)).

The operator b is skew-symmetric and satisfies

b(u, v, v) = 0 (2.3)

b(u, v, w) ⩽ M‖∇u‖‖∇v‖‖∇w‖ (2.4)
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for any u, v, w ∈ X, with M depending only on Ω [18, Chapter 6]. Similarly, define b∗ : X ×W ×W → ℝ such
that for any v ∈ X and φ, ψ ∈ W

b∗(v, φ, ψ) := 12 ((v ⋅ ∇φ, ψ) − (v ⋅ ∇ψ, φ)).

One can easily check that b∗ also satisfies (2.3)–(2.4).
We will denote by τh a regular, conforming triangulation of Ω with maximum element diameter h. The

finite element spaces will be denoted as Xh ⊂ X, Qh ⊂ Q,Wh ⊂ W, and we require that the (Xh , Qh) pair satis-
fies the usual discrete inf-sup condition [8]. Common choices are Taylor–Hood elements [8], Scott–Vogelius
elements on an appropriate mesh [5, 25, 26], or the mini element [4].

Define the discretely divergence-free subspace Vh by

Vh := {v ∈ Xh , (∇ ⋅ vh , qh) = 0 ∀qh ∈ Qh}. (2.5)

Utilizing the space Vh will help simplify some of the analysis that follows. The discrete stationary Boussinesq
equations for (u, ϑ) ∈ (Vh ,Wh) can now be written in weak form as:

b(u, u, v) + ν(∇u, ∇v) = Ri (⟨0, ϑ⟩T , v) + (f, v) (2.6)

b∗(u, ϑ, χ) + 𝜘(∇ϑ, ∇χ) = (γ, χ) (2.7)

for any (v, χ) ∈ (Vh ,Wh). One can easily check that

‖∇u‖ ⩽ K1 := Ri C2Pν
−1𝜘−1‖γ‖−1 + ν−1‖f‖−1, ‖∇ϑ‖ ⩽ K2 := 𝜘−1‖γ‖−1 (2.8)

by choosing v = u and χ = ϑ in (2.6)–(2.7). We next present a set of sufficient conditions to guarantee the
uniqueness of the solution for the discrete stationary Boussinesq equations. We note that K1 and K2 depend
only on problem data and are independent of the mesh width h.

Lemma 2.1 (small data condition). The following are sufficient conditions for the system (2.6)–(2.7) to have a
unique solution

ν−1M (2K1 + 𝜘−1MK22) < 1, ν−1𝜘−1Ri2 C4P < 1. (2.9)

The following stronger condition will also be used in the sequel in order to simplify some of the constants.
Define η := min{ν, 𝜘}, then by the definition of K1 and K2 in (2.8), we have the following inequality

ν−1M (2K1 + 𝜘−1MK22) ⩽ η
−2M (2(Ri C2P𝜘

−1‖γ‖−1 + ‖f‖−1) + 𝜘−2M‖γ‖2−1)

ν−1𝜘−1Ri2 C4P ⩽ η
−2Ri2 C4P .

Then a stronger sufficient condition for uniqueness of solutions to (2.6)–(2.7) is given by

η−2M (2(Ri C2P𝜘
−1‖γ‖−1 + ‖f‖−1) + 𝜘−2M‖γ‖2−1) < 1, η−1Ri C2P < 1 (2.10)

which implies 𝜘−1Ri C2P < 1.

Proof. Assume (u, ϑ), (w, z) ∈ (Vh ,Wh) are solutions to the (2.6)–(2.7). Subtracting these two systems pro-
duces

b(u, u − w, v) + b(u − w, w, v) + ν(∇(u − w), ∇v) = Ri (⟨0, ϑ − z⟩T , v)

b∗(u, ϑ − z, χ) + b∗(u − w, z, χ) + 𝜘(∇(ϑ − z), ∇χ) = 0.

Setting v = u − w, χ = ϑ − z eliminates the first nonlinear terms in both equations and yields

ν‖∇(u − w)‖2 ⩽ ν−1Ri2 C4P‖∇(ϑ − z)‖
2 + 2MK1‖∇(u − w)‖2

𝜘‖∇(ϑ − z)‖2 ⩽ 𝜘−1M2K22‖∇(u − w)‖
2
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thanks to Cauchy–Schwarz, Young, and Poincaré inequalities, together with (2.4) and (2.8). Combining these
bounds, we obtain

(1 − 2ν−1MK1 − ν−1𝜘−1M2K22) ν‖∇(u − w)‖
2 + (1 − ν−1𝜘−1Ri2 C4P)𝜘‖∇(ϑ − z)‖

2 ⩽ 0. (2.11)

Under the conditions (2.9), both terms on the left-hand side of (2.11) are nonnegative, and in fact positive
unless u = w and ϑ = z, implying the solution is unique.

In the remainder, we will assume either (2.9) or (2.10) holds, to guarantee the well-posedness of the sys-
tem (2.6)–(2.7). For notational simplicity, we prefer using the stronger (2.10). All of the results in Section 3
hold as well for (2.9) with minor differences in the constants.

2.2 Anderson acceleration

The extrapolation technique known as Anderson acceleration, which is used to improve the convergence of
a fixed-point iteration, may be stated as follows [23, 24]. Consider a fixed-point operator g : Y → Y, where Y
is a normed vector space.

Algorithm 2.1 (Anderson iteration). Andersonaccelerationwithdepthm ⩾ 0anddamping factors0 < βk ⩽ 1.
Step 0: Choose x0 ∈ Y.
Step 1: Find w1 ∈ Y such that w1 = g(x0) − x0. Set x1 = x0 + w1.
Step k: For k = 2, 3, . . . Set mk = min{k − 1,m}.

(a) Find wk = g(xk−1) − xk−1.
(b) Solve the minimization problem for {αkj }

k−1
k−mk

min
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 −

k−1
∑

j=k−mk

αkj)wk +
k−1
∑

j=k−mk

αkj wj
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Y

. (2.12)

(c) For damping factor 0 < βk ⩽ 1, set

xk = (1 −
k−1
∑

j=k−mk

αkj) xk−1 +
k−1
∑

j=k−mk

αkj xj−1 + βk ((1 −
k−1
∑

j=k−mk

αkj)wk +
k−1
∑

j=k−mk

αkj wj) (2.13)

where wj = g(xj−1) − xj−1 may be referred to as the update step or as the nonlinear residual.

Depth m = 0 returns the original fixed-point iteration. For purposes of implementation with depth m > 0,
it makes sense to write the algorithm in terms of an unconstrained optimization problem rather than a con-
strained problem as in (2.12) [13, 20, 24]. Define matrices Ek and Fk, whose columns are the consecutive dif-
ferences between iterates and residuals, respectively:

Ek−1 := (ek−1 ek−2 ⋅ ⋅ ⋅ ek−mk ) , ej = xj − xj−1 (2.14)

Fk := ((wk − wk−1) (wk−1 − wk−2) ⋅ ⋅ ⋅ (wk−mk+1 − wk−mk )) . (2.15)

Then defining γk = argminγ∈ℝm
󵄩󵄩󵄩󵄩wk − Fkγ

󵄩󵄩󵄩󵄩Y , the update step (2.13) may be written as

xk = xk−1 + βkwk − (Ek−1 + βkFk)γk = xαk−1 + βkw
α
k (2.16)

where wαk = wk − Fkγ
k and xαk−1 = xk−1 − Ek−1γ

k are the averages corresponding to the solution from the
optimization problem. The optimization gain factor ξk may be defined by

󵄩󵄩󵄩󵄩w
α
k
󵄩󵄩󵄩󵄩 = ξk‖wk‖. (2.17)

The gain factor ξk plays a critical role in the recent theory [11, 20] that shows how this acceleration technique
improves convergence. Specifically, the acceleration reduces the contribution from the first-order residual
termby a factor of ξk, but introduces higher-order terms into the residual expansion of the accelerated iterate.

The next two assumptions, summarized from [20], give sufficient conditions on the fixed point operator
g, for the analysis presented there to hold.
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Assumption 2.1. Assume g ∈ C1(Y) has a fixed point x∗ in Y, and there are positive constants C0 and C1 with
1. 󵄩󵄩󵄩󵄩g󸀠(x)

󵄩󵄩󵄩󵄩 ⩽ C0 for all x ∈ Y, and
2. 󵄩󵄩󵄩󵄩g󸀠(x) − g󸀠(y)

󵄩󵄩󵄩󵄩 ⩽ C1 ‖x − y‖ for all x, y ∈ Y.

Assumption 2.2. Assume there is a constant σ > 0 for which the differences between consecutive residuals
and iterates satisfy

‖wk+1 − wk‖Y ⩾ σ‖xk − xk−1‖Y , k ⩾ 1.

Under Assumptions 2.1 and 2.2, the following result summarized from [20] produces a one-step bound on the
residual ‖wk+1‖ in terms of the previous residual ‖wk‖. This result supposes the sufficient linear independence
of the columns of each matrix Fj given by (2.15), in the following sense. Denote the direction cosine between
two vectors u and v be given by cos(u, v) = (u, v)/(‖u‖ ‖v‖). Denote the nonnegative direction sine between
u and v as | sin(u, v)| = √1 − cos2(u, v), and the direction sine between u and the subspace spanned by
{v1, . . . vm} as

| sin(u, span{v1, . . . , vm})| = √1 − cos(u, v1)2 − cos(u, v2)2 − . . . − cos(u, vm)2.

Denoting column i of matrix Fj as fj,i, for i = 1, . . . ,mj, the direction sines between each fj,i and the
subspace spanned by fj,1, . . . , fj,i−1, will be assumed bounded below by a constant cs > 0. As discussed
in [20], this assumption can be both verified and ensured, so long as the optimization problem of Algo-
rithm 3.1 is solved in a norm induced by an inner-product (as it is in the present setting), in which case it
can be solved as a least-squares problem using a (thin) QR decomposition as in [15]. Concisely, if Fj = QR,
then 󵄨󵄨󵄨󵄨 sin(fj,i , span{fj,1, . . . fj,i−1})

󵄨󵄨󵄨󵄨 = rii/‖fj,i‖. In terms of a safeguarding strategy, columns of Fj (and, respec-
tively, Ej−1) where the desired inequality fails to hold can be removed. This method is demonstrated in [20],
(see also similar filtering strategies used in [1, 16, 24]) but was not found necessary in the present numerical
results.

Theorem 2.1 (Pollock, Rebholz, 2019). Let Assumptions 2.1 and 2.2 hold, and suppose the direction sines be-
tween each column i of Fj defined by (2.15) and the subspace spanned by the preceding columns satisfies
󵄨󵄨󵄨󵄨 sin(fj,i , span {fj,1, . . . , fj,i−1})

󵄨󵄨󵄨󵄨 ⩾ cs for some constant cs > 0, for j = k − mk , . . . , k − 1. Then the residual
wk+1 = g(xk) − xk from Algorithm 2.1 (depth m) satisfies the following bound

‖wk+1‖ ⩽ ‖wk‖(ξk((1 − βk) + C0βk) +
1
2CC1
√1 − ϑ2k

× ( ‖wk‖ h(ξk) + 2
k−1
∑

n=k−mk+1
(k − n) ‖wn‖ h(ξn) + mk

󵄩󵄩󵄩󵄩wk−mk
󵄩󵄩󵄩󵄩 h(ξk−mk ))) (2.18)

where each h(ξj) ⩽ C√1 − ξ2j + βjξj, and C depends on cs and the implied upper bound on the direction cosines.

The one-step estimate (2.18) shows how the relative contributions from the lower and higher order terms
are determined by the gain ξk from the optimization problem. The lower order terms are scaled by ξk and
the higher-order terms are scaled by √1 − ξ2k . Greater algorithmic depths m generally give smaller values of
ξk as the optimization is run over an expanded search space. However, the reduction comes at the cost of
both increased accumulation and weight of higher order terms. If recent residuals are small, then this may
be negligible and greater algorithmic depths m may be advantageous (to a point). If the previous residual
terms are large however (e.g., near the beginning of an iteration), then greater depthsmmay slow or prevent
convergence in many cases.

3 A decoupled fixed point iteration for the Boussinesq system
All results in this section hold for both Dirichlet boundary conditions (2.1), and mixed boundary condi-
tions (2.2), with minor differences in the constants. We will use the Dirichlet boundary conditions for illus-
tration. One can easily extend the analysis for the mixed boundary conditions.
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We will consider the following fixed point iteration: Given u0, ϑ0, for k = 1, 2, 3, . . ., find (uk , pk , ϑk) ∈
(Xh , Qh ,Wh) satisfying for all v ∈ Xh, q ∈ Qh, and χ ∈ Wh,

b(uk−1, uk , v) + ν(∇uk , ∇v) − (pk , ∇ ⋅ v) = Ri (⟨0, ϑk⟩T , v) + (f, v) (3.1)
(∇ ⋅ uk , q) = 0 (3.2)

b∗(uk−1, ϑk , χ) + 𝜘(∇ϑk , ∇χ) = (γ, χ). (3.3)

For finite element spaces Xh , Qh satisfying the discrete inf-sup condition as described in subsection 2.1, we
have the equivalent formulation in the discretely divergence-free space (2.5): for any v ∈ Vh and χ ∈ Wh,

b(uk−1, uk , v) + ν(∇uk , ∇v) = Ri (⟨0, ϑk⟩T , v) + (f, v) (3.4)

b∗(uk−1, ϑk , χ) + 𝜘(∇ϑk , ∇χ) = (γ, χ). (3.5)

The following subsections develop a framework which will allow us to analyze this iteration.

3.1 A solution operator G corresponding to the fixed point iteration

We will consider the solution operator of the system (3.4)–(3.5) as the fixed-point operator defining the itera-
tion to be accelerated. To study this operator, we next formally define it in a slightly more abstract way.

Given f ∈ H−1(Ω)d, γ ∈ H−1(Ω), and (u, ϑ) ∈ (Vh ,Wh), consider the problem of finding (ũ, ϑ̃) ∈ (Vh ,Wh)
satisfying

b(u, ũ, v) + ν(∇ũ, ∇v) = Ri (⟨0, ϑ̃⟩T , v) + (f, v) (3.6)

b∗(u, ϑ̃, χ) + 𝜘(∇ϑ̃, ∇χ) = (γ, χ) (3.7)

for any v ∈ Vh and χ ∈ Wh.

Lemma 3.1. For f ∈ H−1(Ω)d and γ ∈ H−1(Ω), the system (3.6)–(3.7) is well-posed, and solutions satisfy the
bounds

‖∇ũ‖ ⩽ K1, ‖∇ϑ̃‖ ⩽ K2 (3.8)

where K1 and K2 are given in (2.8).

Proof. We begin with a priori bounds. Suppose solutions exist, and choose χ = ϑ̃ and v = ũ. By construction,
this vanishes the trilinear terms in each equation. After applying Cauchy–Schwarz, Poincaré, and Hölder
inequalities, it can be seen that

ν‖∇ũ‖2 ⩽ Ri C2P ‖∇ϑ̃‖‖∇ũ‖ + ‖f‖−1‖∇ũ‖

𝜘‖∇ϑ̃‖2 ⩽ ‖γ‖−1‖∇ϑ̃‖.

The second bound reduces to ‖∇ϑ̃‖ ⩽ 𝜘−1‖γ‖−1, and inserting this into the first bound produces

‖∇ũ‖ ⩽ Ri C2P ν
−1𝜘−1‖γ‖−1 + ν−1‖f‖−1.

Since the system (3.6)–(3.7) is linear in ũ and ϑ̃, and finite dimensional, these bounds are sufficient to imply
solution uniqueness and therefore existence.

Definition 3.1. Define G : (Vh ,Wh)→ (Vh ,Wh) to be the solution operator of (3.6)–(3.7). That is,

(ũ, ϑ̃) = G(u, ϑ).

By Lemma 3.1, G is well defined. The Boussinesq fixed point iteration (3.4)–(3.5) can now be written as

(uk , ϑk) = G(uk−1, ϑk−1).



330 | S. Pollock, L. Rebholz, M. Xiao, Acceleration of nonlinear solvers

Definition 3.2. Define the norm ‖(⋅, ⋅)‖B : (Vh ,Wh)→ ℝ by

‖(v, w)‖B := √ν‖∇v‖2 + 𝜘‖∇w‖2.

Theweights used in the normdefinition come from the natural norm of the Boussinesq system, and this norm
will be referred to as the B-norm. This weighted norm is used since it arises naturally out of the analysis, and
our analysis suggests it is the natural norm to use for the optimization step of the accelerated algorithm.

3.2 Continuity and Lipschitz differentiability of G

We now prove that G satisfies Assumptions 2.1 and 2.2. We begin with Lipschitz continuity.

Lemma 3.2. There exists a positive constant CG such that ‖G(u, ϑ) − G(w, z)‖B ⩽ CG‖(u, ϑ) − (w, z)‖B for any
(u, ϑ), (w, z) ∈ (Vh ,Wh). The constant CG is defined by

CG = ν−1/2η−1/2M√2K21 + 3K
2
2 .

Proof. For any (u, ϑ) ∈ (Vh ,Wh), denote (G1(u, ϑ), G2(u, ϑ)) as the components of G(u, ϑ). Let (u, ϑ), (w, z) ∈
(Vh ,Wh). Set G(u, ϑ) = (G1(u, ϑ), G2(u, ϑ)) and G(w, z) = (G1(w, z), G2(w, z)). Then for all (v, χ) ∈ (Vh ,Wh)
we have

b(u, G1(u, ϑ), v) + ν(∇G1(u, ϑ), ∇v) = Ri (⟨0, G2(u, ϑ)⟩T , v) + (f, v) (3.9)

b∗(u, G2(u, ϑ), χ) + 𝜘(∇G2(u, ϑ), ∇χ) = (γ, χ) (3.10)

b(w, G1(w, z), v) + ν(∇G1(w, z), ∇v) = Ri (⟨0, G2(w, z)⟩T , v) + (f, v) (3.11)

b∗(w, G2(w, z), χ) + 𝜘(∇G2(w, z), ∇χ) = (γ, χ). (3.12)

Subtracting (3.11)–(3.12) from (3.9)–(3.10) gives

b(u, G1(u, ϑ) − G1(w, z), v) + b(u − w, G1(w, z), v) + ν (∇(G1(u, ϑ) − G1(w, z)), ∇v)
= Ri (⟨0, G2(u, ϑ) − G2(w, z)⟩T , v) (3.13)

b∗(u, G2(u, ϑ) − G2(w, z), χ) + b∗(u − w, G2(w, z), χ) + 𝜘 (∇(G2(u, ϑ) − G2(w, z)), ∇χ) = 0 (3.14)

Choosing χ = G2(u, ϑ) − G2(w, z) in (3.14) eliminates the first term, then applying (2.4) and (3.8) gives

‖∇(G2(u, ϑ) − G2(w, z))‖ ⩽ 𝜘−1MK2‖∇(u − w)‖. (3.15)

Similarly, choosing v = G1(u, ϑ) − G1(w, z) in (3.13) eliminates the first nonlinear term, and applying (2.4),
Hölder and Poincaré inequalities produces

‖∇(G1(u, ϑ) − G1(w, z))‖ ⩽ ν−1Ri C2P‖∇(G2(u, ϑ) − G2(w, z))‖ + ν
−1M‖∇(u − w)‖‖∇G1(w, z)‖

⩽ ν−1M(𝜘−1K2Ri C2P + K1)‖∇(u − w)‖
⩽ ν−1M(K1 + K2)‖∇(u − w)‖ (3.16)

thanks to (3.8) of Lemma 3.1 and (2.10). Combining (3.15)–(3.16) gives

‖G(u, ϑ) − G(w, z)‖B ⩽ ν−1/2η−1/2M√2K21 + 3K
2
2‖(u, ϑ) − (w, z)‖B .

Thus G is Lipschitz continuous with constant CG = ν−1/2η−1/2M√2K21 + 3K
2
2.

Next, we show that G is Lipschitz Fréchet differentiable. We will first define a mapping G󸀠, and then in
Lemma 3.3 confirm that it is the Fréchet derivative operator of G.



S. Pollock, L. Rebholz, M. Xiao, Acceleration of nonlinear solvers | 331

Definition 3.3. Given (u, ϑ) ∈ (Vh ,Wh), define an operator G󸀠(u, ϑ; ⋅, ⋅) : (Vh ,Wh)→ (Vh ,Wh) by

G󸀠(u, ϑ; h, s) := (G󸀠1(u, ϑ; h, s), G
󸀠
2(u, ϑ; h, s))

satisfying for all (h, s), (v, χ) ∈ (Vh ,Wh)

b(h, G1(u, ϑ), v) + b(u, G󸀠1(u, ϑ; h, s), v) + ν(∇G
󸀠
1(u, ϑ; h, s), ∇v) = Ri (⟨0, G

󸀠
2(u, ϑ; h, s)⟩

T , v) (3.17)

b∗(h, G2(u, ϑ), χ) + b∗(u, G󸀠2(u, ϑ; h, s), χ) + 𝜘(∇G
󸀠
2(u, ϑ; h, s), ∇χ) = 0. (3.18)

Once it is established that G󸀠 is well-defined and is the Fréchet derivative of G, it follows that G󸀠(u, ϑ; ⋅, ⋅) is
the Jacobianmatrix of G at (u, ϑ). From the partially decoupled system (3.17)–(3.18), it is clear that G󸀠(u, ϑ; ⋅, ⋅)
is a block upper triangular matrix. Applied to any (h, s) ∈ (Vh ,Wh), the resulting G󸀠(u, ϑ; h, s) can be written
componentwise as (G󸀠1(u, ϑ; h, s), G

󸀠
2(u, ϑ; h, s)) ∈ (Vh ,Wh).

Lemma 3.3. The Boussinesq operator G is Lipschitz Fréchet differentiable: there exists a constant ĈG such that
for all (u, ϑ), (w, z), (h, s) ∈ (Vh ,Wh)

‖G󸀠(u, ϑ; h, s)‖B ⩽ CG‖(h, s)‖B (3.19)

and

‖G󸀠(u + h, ϑ + s;w, z) − G󸀠(u, ϑ;w, z)‖B ⩽ ĈG‖(h, s)‖B‖(w, z)‖B (3.20)

where CG is defined in Lemma 3.2.

Proof. The first part of the proof shows that G is Fréchet differentiable, and (3.19) holds. We begin by finding
an upper bound on the norm of G󸀠 and then showing G󸀠 is well-defined. Setting χ = G󸀠2(u, ϑ; h, s) in (3.18)
eliminates the second nonlinear term and gives

‖∇G󸀠2(u, ϑ; h, s)‖ ⩽ 𝜘
−1M‖∇h‖‖∇G2(u, ϑ)‖ ⩽ 𝜘−1MK2‖∇h‖ (3.21)

thanks to Lemma 3.1. Similarly, setting v = G󸀠1(u, ϑ; h, s) in (3.17) eliminates the second nonlinear term and
yields

‖∇G󸀠1(u, ϑ; h, s)‖ ⩽ ν
−1Ri C2P‖∇G

󸀠
2(u, ϑ; h, s)‖ + ν

−1M‖∇h‖‖∇G1(u, ϑ)‖
⩽ ν−1M(𝜘−1K2Ri C2P + K1)‖∇h‖
⩽ ν−1M(K1 + K2)‖∇h‖ (3.22)

thanks to Lemma 3.1, (3.21), and the small data condition (2.10). Combining the bounds (3.21)–(3.22) yields

‖G󸀠(u, ϑ; h, s)‖B ⩽ CG‖(h, s)‖B . (3.23)

Since system (3.17)–(3.18) is linear andfinite dimensional, (3.23) is sufficient to imply the system iswell-posed.
Therefore, G󸀠 is well-defined and uniformly bounded over (Vh ,Wh), since the bound is independent of (u, ϑ).

Next, we prove G󸀠 given by Definition 3.3 is the Fréchet derivative operator of G. That is, given (u, ϑ) ∈
(Vh ,Wh), there exists some constant C such that for any (h, s) ∈ (Vh ,Wh)

‖G(u + h, ϑ + s) − G(u, ϑ) − G󸀠(u, ϑ; h, s)‖B ⩽ C‖(h, s)‖2.

For notational ease, set g̃1 = G1(u + h, ϑ + s) − G1(u, ϑ) − G󸀠1(u, ϑ; h, s) and g̃2 = G2(u + h, ϑ + s) − G2(u, ϑ) −
G󸀠2(u, ϑ; h, s). To construct the left hand side of the inequality above, we begin with the following equations:
for any (u, ϑ), (h, s), (v, χ) ∈ (Vh ,Wh)

b(u + h, G1(u + h, ϑ + s), v) + ν(∇G1(u + h, ϑ + s), ∇v) = Ri (⟨0, G2(u + h, ϑ + s)⟩T , v) + (f, v) (3.24)

b∗(u + h, G2(u + h, ϑ + s), χ) + 𝜘(∇G2(u + h, ϑ + s), ∇χ) = (γ, χ) (3.25)

b(u, G1(u, ϑ), v) + ν(∇G1(u, ϑ), ∇v) = Ri (⟨0, G2(u, ϑ)⟩T , v) + (f, v) (3.26)

b∗(u, G2(u, ϑ), χ) + 𝜘(∇G2(u, ϑ), ∇χ) = (γ, χ). (3.27)
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Subtracting (3.24)–(3.25) from (3.26)–(3.27) and (3.17)–(3.18), and then choosing v = g̃1, χ = g̃2, we obtain by
application of (2.4), Hölder and Sobolev inequalities [18, Ch. 6] that

ν‖∇g̃1‖2 = −b(h, G1(u + h, ϑ + s) − G1(u, s), g̃1) + Ri (⟨0, g̃2⟩T , g̃1)
⩽ M‖∇h‖‖∇(G1(u + h, ϑ + s) − G1(u, ϑ)‖‖∇g̃1‖ + Ri C2P‖∇g̃2‖‖∇g̃1‖

𝜘‖∇g̃2‖2 = −b(h, G2(u + h, ϑ + s) − G2(u, ϑ), g̃2)

which reduces to

𝜘‖∇g̃2‖2 ⩽ 𝜘−1M2‖∇h‖2‖∇(G2(u + h, ϑ + s) − G2(u, ϑ))‖2 (3.28)

and

ν‖∇g̃1‖2 ⩽ 2ν−1M2‖∇h‖2(‖∇(G1(u + h, ϑ + s) − G1(u, ϑ)‖2

+ Ri2 C4P𝜘
−2‖∇(G2(u + h, ϑ + s) − G2(u, ϑ))‖2)

⩽ 2η−1ν−1M2‖∇h‖2‖∇(G(u + h, ϑ + s) − G(u, ϑ))‖2B (3.29)

thanks to Young’s inequality and (2.10). Combining bounds (3.28)–(3.29) produces

‖(g̃1, g̃2)‖2B ⩽ 3η
−2M2‖∇h‖2‖∇(G(u + h, ϑ + s) − G(u, ϑ))‖2B ⩽ 3η

−3M2C2G‖(h, s)‖
4
B .

By the definitions of g̃1, g̃2, this shows

‖G(u + h, ϑ + s) − G(u, ϑ) − G󸀠(u, ϑ; h, s)‖B ⩽ 2η−3/2MCG‖(h, s)‖2B (3.30)

which demonstrates Fréchet differentiability of G at (u, ϑ). As (3.30) holds for arbitrary (u, ϑ), we have that G
is Fréchet differentiable on all of (Vh ,Wh).

The second part of the proof shows that G󸀠 is Lipschitz continuous over (Vh ,Wh). By the definition of G󸀠,
the following equations hold

b(w, G1(u, ϑ), v) + b(u, G󸀠1(u, ϑ;w, z), v) + ν(∇G
󸀠
1(u, ϑ;w, z), ∇v) = Ri(⟨0, G

󸀠
2(u, ϑ;w, z)⟩T , v) (3.31)

b∗(w, G2(u, ϑ), χ) + b∗(u, G󸀠2(u, ϑ;w, z), χ) + 𝜘(∇G
󸀠
2(u, ϑ;w, z), ∇χ) = 0 (3.32)

b(w, G1(u + h, ϑ + s), v) + b(u + h, G󸀠1(u + h, ϑ + s;w, z), v)
+ ν(∇G󸀠1(u + h, ϑ + s;w, z), ∇v) = Ri(⟨0, G

󸀠
2(u + h, ϑ + s;w, z)⟩T , v) (3.33)

b∗(w, G2(u + h, ϑ + s), χ) + b∗(u + h, G󸀠2(u + h, ϑ + s;w, z), χ) + 𝜘(∇G
󸀠
2(u + h, ϑ + s;w, z), ∇χ) = 0 (3.34)

for all (u, ϑ), (w, z), (h, s), (v, χ) ∈ (Vh ,Wh). Letting e1 := G󸀠1(u + h, ϑ + s;w, z) − G
󸀠
1(u, ϑ;w, z), e2 := G

󸀠
2(u +

h, ϑ + s;w, z) − G󸀠2(u, ϑ;w, z) and subtracting (3.31)–(3.32) from (3.33)–(3.34) gives

b(w, G1(u + h, ϑ + s) − G1(u, ϑ), v) + b(h, G󸀠1(u, ϑ;w, z), v) + b(u + h, e1, v) + ν(∇e1, ∇v) = Ri(⟨0, e2⟩
T , v)

b∗(w, G2(u + h, ϑ + s) − G2(u, ϑ), χ) + b∗(h, G󸀠2(u, ϑ;w, z), χ) + b
∗(u + h, e2, χ) + 𝜘(∇e2, ∇v) = 0.

Setting v = e1, χ = e2 eliminates the last nonlinear terms in both equations and produces

ν‖∇e1‖2 ⩽ Ri C2P‖∇e2‖‖∇e1‖ +M‖∇w‖‖∇(G1(u + h, ϑ + s) − G1(u, ϑ))‖‖∇e1‖
+M‖∇h‖‖∇G󸀠1(u, ϑ;w, z)‖‖∇e1‖

𝜘‖∇e2‖2 ⩽ M‖∇w‖‖∇(G2(u + h, ϑ + s) − G2(u, ϑ))‖‖∇e2‖ +M‖∇h‖‖∇G󸀠2(u, ϑ;w, z)‖‖∇e2‖

thanks to (2.4). Thus from (3.15)–(3.16), (3.21)–(3.22), (3.23), and Lemma 3.2, we obtain

‖∇e2‖ ⩽ 2M2𝜘−2K2‖∇w‖‖∇h‖

‖∇e1‖ ⩽ ν−1Ri C2P‖∇e2‖ + 2ν
−2M2(K1 + K2)‖∇h‖∇w‖

⩽ 2ν−1η−1M2(K1 + 2K2)‖∇w‖‖∇h‖.
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Combing these bounds gives

‖(e1, e2)‖2B ⩽ 4ν
−2η−3M4(2K21 + 9K

2
2)‖(h, s)‖

2
B‖(w, z)‖

2
B = Ĉ

2
G‖(h, s)‖

2
B‖(w, z)‖

2
B

where ĈG = 2ν−1η−3/2M2(2K21 + 9K
2
2)

1/2 is the Lipschitz constant of G󸀠. Thus G󸀠(u, ϑ; ⋅, ⋅) is Lipschitz con-
tinuous with constant ĈG. As the bound holds for arbitrary (u, ϑ), we have that G is Lipschitz continuously
differentiable on (Vh ,Wh) with constant ĈG.

It remains to show that Assumption 2.2 is satisfied for the solution operator G. This amounts to finding a
constant σ > 0 such that for any (u, ϑ), (w, z) ∈ (Vh ,Wh) with ‖∇u‖, ‖∇w‖ ⩽ K1

‖F(u, ϑ) − F(w, z)‖B ⩾ σ‖(u, ϑ) − (w, z)‖B (3.35)

where F(u, ϑ) := G(u, ϑ) − (u, ϑ).

Lemma 3.4. Assume the problem data is such that G is contractive, i.e., CG < 1. Then there exists a constant
σ > 0 such that (3.35) holds for any (u, ϑ), (w, z) ∈ (Vh ,Wh) with ‖∇u‖, ‖∇w‖ ⩽ K1.

Proof. Since G is contractive, it follows from [20, Remark 4.2] that (3.35) holds with σ = 1 − CG.

This shows that Assumption 2.2 is satisfied under the data restriction that CG < 1, which is similar but not
equivalent to the uniqueness conditions in Section 2. However, in our numerical tests, which used data far
larger than these restrictions, the σk’s calculated at each iteration (i.e., (3.35) with u = uk, ϑ = ϑk, w = uk−1,
z = ϑk−1) were in general no smaller than 10−3. Hence it may be possible to prove that Assumption 2.2 holds
under less restrictive data restrictions.

3.3 Accelerating the decoupled Boussinesq iteration

In this section, we provide the algorithm of Anderson acceleration applied to the decoupled Boussinesq sys-
tem (3.4)–(3.5) with either Dirichlet (2.1) or mixed boundary conditions (2.2). The one-step residual bound is
stated below for Boussinesq solve operators G.

Algorithm 3.1 (Anderson accelerated iterative method for Boussinesq equations).
Step 0: Give an initial u0 ∈ Xh , ϑ0 ∈ Wh.
Step 1a: Find ϑ̃1 ∈ Wh satisfying for all χ ∈ Wh

b∗(u0, ϑ̃1, χ) + 𝜘(∇ϑ̃1, ∇χ) = (γ, χ).

Step 1b: Find ũ1 ∈ Vh satisfying for all v ∈ Vh

b(u0, ũ1, v) + ν(∇ũ1, ∇v) = Ri (⟨0, ϑ̃1⟩T , v) + (f, v).

Then set u1 = ũ1, ϑ1 = ϑ̃1, and w1 = ũ1 − u0, z1 = ϑ̃1 − ϑ0.
Step k: For k = 2, 3, . . . , set mk = min{k − 1,m}.

(a) Find ϑ̃k ∈ Wh by solving

b∗(uk−1, ϑ̃k , χ) + 𝜘(∇ϑ̃k , ∇χ) = (γ, χ). (3.36)

(b) Find ũk ∈ Vh by solving

b(uk−1, ũk , v) + ν(∇ũk , ∇v) = Ri (⟨0, ϑ̃k⟩T , v) + (f, v) (3.37)

and then compute wk = ũk − uk−1, zk = ϑ̃k − ϑk−1.
(c) Solve the minimization problem

min ‖(wαk , z
α
k )‖B (3.38)

for {αkj }
k−1
j=k−mk

, where (wαk , z
α
k ) := (1 −∑

k−1
j=k−mk

αkj )(wk , zk) +∑
k−1
j=k−mk

αk+1j (wj , zj).
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(d) For damping factor 0 < βk ⩽ 1, set

(uk , ϑk) = (1 −
k−1
∑

j=k−mk

αkj) (uk−1, ϑk−1) +
k−1
∑

j=k−mk

αkj (uj−1, ϑj−1)

+ βk ((1 −
k−1
∑

j=k−mk

αkj) (wk , zk) +
k−1
∑

j=k−mk

αk+1j (wj , zj)) .

As the Boussinesq operator G satisfies Assumptions 2.1 and 2.2, we have the following convergence result of
Algorithm 3.1 by directly applying Theorem 5.5 from [20].

Theorem 3.1 (convergence result for Algorithm 3.1). The k-th step residual (wk , zk) generated from Algo-
rithm 3.1 satisfies

‖(wk+1, zk+1)‖B ⩽ ‖(wk , zk)‖B (ξk(1 − βk + K̂gβk) +
1
2CĈG
√1 − ξ2k (‖(wk , zk)‖Bh(ξk)

+ 2
k−1
∑

j=k−mk+1
(k − j)‖(wj , zj)‖B h(ξj) + mk−1‖(wk−mk , zk−mk )‖B h(ξk−mk )))

where ξk := ‖(wαk , z
α
k )‖B/‖(wk , zk)‖B, h(ξj) ⩽ C√1 − ξ

2
j + βjξj, and C depends on a lower bound of the direction

sine between (wj+1, zj+1) − (wj , zj) and span{(wn+1, zn+1) − (wn , zn)}
j−1
n=j−mk+1.

4 Numerical experiments for Anderson accelerated Picard
iterations

We now demonstrate the Anderson accelerated Picard iteration for the Boussinesq system on two test prob-
lems, a benchmark differentially heated cavity problem on the unit square and a related problemwith amore
complex domain. For both problems, we observe a significant increase in convergence speed resulting from
Anderson acceleration, in particular for larger Rayleigh numbers.

4.1 Differentially heated cavity

Our first test problem is the differentially heated cavity problem from [9], with varying Rayleigh number. The
domain for the problem is the unit square, and for boundary conditions we enforce no slip velocity on all
walls, ∇T ⋅ n = 0 on the top and bottom, and T(1, y) = 1, T(0, y) = 0. The initial iterates u0 = 0 and T0 = 0,
are used for all tests. No continuation method or pseudo time stepping is employed.

The discretization uses (P2, P disc
1 ) velocity–pressure Scott–Vogelius elements, and P2 temperature ele-

ments. The mesh is created by starting with a uniform triangulation, refining along the boundary, then ap-
plying a barycenter refinement (Alfeld split, in the language of Fu, Guzman, and Neilan [14]). The resulting
mesh is shown in Fig. 1, and with this element choice provides 89,554 total degrees of freedom. We show re-
sults below for varying Rayleigh numbers, which come from using parameters ν = 0.01 and 𝜘 = 0.01, and
varying Ri. Plots of resolved solutions for varying Ra are shown in Fig. 2.

In our tests, we consider both constant algorithmic depths m, and also a 2-stage strategy that uses a
smaller m (1 or 2) when the nonlinear residual is larger than 10−3 in the B-norm, and m = 20 when the
residual is smaller. The 2-stage approach is motivated by Theorem 3.1, which suggests that greater depths m
can be detrimental early in the iteration due to the accumulation of non-negligible higher order terms in the
residual expansion. Once the residual is sufficiently small, then the reduction of the first order terms from a
greater depth m can be enjoyed without noticeable pollution from the higher-order terms, which essentially
results in an improved linear convergence rate.
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Fig. 1: The mesh used for numerical tests.
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Fig. 2: The resolved solution’s velocity streamlines (top) and temperature contours (bottom), for Ra = 105, 5 ⋅ 105, and 106,
from left to right.

We test here Algorithm 3.1, i.e., the Anderson accelerated Picard iteration for the Boussinesq system, for
varying choices of depth m and damping parameter β, and for several Rayleigh numbers: Ra = 105, 5 ⋅
105, 106, 2 ⋅ 106. For each Ra, we tested with m = 0 (no acceleration) and each fixed damping parameter
β = 0.05, 0.1, 0.15, . . . , 1, and then used the best β from all testswith thatRa. Respectively, forRa = 105, 5⋅
105, 106, 2 ⋅ 106, these parameters were β = 0.3, 0.05, 0.05, 0.05. Although we did not systematically
check that the optimal β for m = 0 was necessarily optimal for nonzero m, several preliminary tests did
indicate that this β should generally be a good choice. In these results,wedid notmonitor or enforce sufficient
linear independence of the columns of thematrix used in the least-squares problem (see the discussion above
Theorem 2.1); however, even with m = 20 we saw fast convergence once the residual was small enough, so
this was not deemed necessary. Convergence results for varying m are shown in Fig. 3, displayed in terms of
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Fig. 3: Convergence results for the differentially heated cavity with varying m, for several Rayleigh numbers.

the B-norm of the nonlinear residual versus iteration number. We note that the usual Picard iteration, i.e.,
m = 0 and β = 1, did not converge for any of these Ra numbers; after 500 iterations, the B-norm was still
larger than 10−1. With the appropriately chosen relaxation parameters, the Picard iteration did converge for
each case except when Ra = 2 ⋅ 106.

Convergence results for the lowest Rayleigh number, Ra = 105, are shown in the top left of Fig. 3 for
different values ofm and fixed β = 0.3. Here, we observe the unacceleratedmethod converges rather quickly,
and the accelerated methods that converged faster were m = 1 and m = 2 and the 2-stage method that uses
m = 1 and then switches to m = 20, with the 2-stage method giving the best results. Anderson accelerated
Picard with m = 5, 10, 20 all converged, but slower than if no acceleration was used.

Results for Ra = 5 ⋅ 105 also show lower values of m improving convergence but higher values slowing
convergence. Indeed, m = 1, 2, 5 along with 2-stage methods that used m = 1 then 20 and m = 5 then 20,
all outperformed the unaccelerated iteration, while m = 10 and m = 20 slowed convergence. For Ra = 106,
the methods with smaller constantm = 1, 2, 5 converged, all in roughly the same number of iterations as the
unacceleratedmethod, while themethods runwith largerm = 10, 20 did not convergewithin 400 iterations.
Once again, significant improvement is seen from using 2-stage choices of m, and this gave the best results.

With Ra = 2 ⋅ 106, results showed more improvement from the acceleration, as compared to those with
lowerRa. Here, the unaccelerated Picard iteration did not converge, andneither does the iterationwithm = 1.
Again, the best results come from using a 2-stage choice of m, using a lesser depth at the beginning of the
iteration, and a greater depth once the residual is sufficiently small.

The results described above show a clear advantage from using Anderson acceleration with the Picard
iteration, especially for larger Rayleigh numbers. These results are also in good agreement with our theory,
which demonstrates that Anderson acceleration decreases the first order term but then adds higher order
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Fig. 4: The mesh used for the second numerical test.
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Fig. 5: Plots above show the speed (left) and temperature (right) of the solution for the second numerical test, using Rayleigh
numbers Ra = 104 (top) and 5 ⋅ 104 (bottom).

terms to the residual bound.Henceusing greater algorithmic depthswhen the residual is large can sufficiently
pollute the solution so that the improvement found in the reduction of the first order term is outweighed by
the additional contributions from higher order terms. In all cases,m = 10, 20 slowed convergence compared
to m = 0, if the m = 0 iteration converged. Both theory and these experiments also suggest that early in
the iteration, moderate choices of algorithmic depth can be advantageous. The best results shown here come
from the 2-stage strategy, which takes advantage of the reduction in the first-order residual term, but only
once the residual is small enough that the higher-order contributions are negligible in comparison.

4.2 Differentially heated complex domain

We now present results from a second test that has a more complex domain (see Fig. 4). For temperature
boundary conditions, we use T(x, 1) = 1, T(x, 0) = 2x/7, and ∇T ⋅ n = 0 on all other boundaries. The ve-
locity boundary conditions are no-slip on all walls. We use a barycenter refined uniform triangulation mesh,
together with (P2, P disc

1 ) Scott–Vogelius velocity–pressure elements, and P2 for temperature which provides
70,068 total degrees of freedom. We use parameters ν = 0.01, 𝜘 = 0.01, and then choose the Richardson
number Ri to create Rayleigh numbers Ra = 104 and 5 ⋅ 104; plots of resolved solutions are shown in Fig. 5.
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Fig. 6: Convergence plots of Anderson accelerated Picard iteration with Rayleigh numbers Ra = 104 (left) and 5 ⋅ 104 (right),
with Anderson depth m = 0, 1, 2, 5, 10.

For each Ra, we run the Anderson accelerated Picard iteration using varying m and β = 1. Plots for con-
vergence are shown in Fig. 6, and in both cases we observe that the unaccelerated Picard iteration (m = 0)
fails to converge, as does m = 1. For Ra = 104, tests with m ⩾ 2 all converged, and m = 2, 5, 10 converged
at about the same rate. For Ra = 5 ⋅ 104, m = 2 fails but m = 5 and m = 10 both converge. As in the previ-
ous test, Anderson acceleration enables convergence of the Picard iteration if it is applied with a sufficiently
large algorithmic depth m. However, if the depth is too great, pollution from earlier iterates interferes with
convergence, at least until the error is sufficiently small. This can be seen in Fig. 6 by the reduced regularity
in the earlier stages of convergence with m = 10, as compared with m = 5.

5 Acceleration of the Newton iteration for the Boussinesq system
While the theory for this paper focuses on the Picard iteration, it is also of interest to consider the Newton
iteration for the Boussinesq system, which takes the form

(uk−1 ⋅ ∇)uk + (uk ⋅ ∇)uk−1 − (uk−1 ⋅ ∇)uk−1 − ν∆uk + ∇pk = Ri ⟨0, ϑk⟩T + f (5.1)
∇ ⋅ uk = 0 (5.2)

(uk−1 ⋅ ∇)ϑk + (uk ⋅ ∇)ϑk−1 − (uk−1 ⋅ ∇)ϑk−1 − 𝜘∆ϑk = γ (5.3)

together with appropriate boundary conditions.
The Newton iteration is often superior for solving nonlinear problems, particularly if one can find an

initial guess sufficiently close to a solution.However, for Boussinesq systems, theNewton iteration also comes
with a significant additional difficulty in that the linear systems that need to be solved at each iteration are
fully coupled. That is, one needs to solve larger block linear systems for (uk , pk , ϑk) simultaneously, whereas
for the Picard iteration one first solves for ϑk, and then solves a Navier–Stokes type system for (uk , pk). Hence
each iteration of Picard is significantly more efficient than each iteration of Newton.

We proceed now to test Anderson acceleration applied to the Newton iteration, using the same differ-
entially heated cavity problem and discretization studied above. While theory to describe how Anderson
acceleration can improve the performance of Newton iterations has yet to be developed, evidence for the
efficacy of the method has been described in [11, 21]. While the acceleration can be expected to interfere
with Newton’s quadratic convergence in the vicinity of a solution, the advantage explored here is the be-
havior of the algorithm outside of that regime. In the far-field regime, outside the domain of asymptotically
quadratic convergence, the Newton iteration may converge linearly [22], or, of course, not at all. In compar-
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Tab. 1: Iterations required for Anderson accelerated Newton iterations to converge, with β = 1 and varying m. Results of the
unaccelerated Newton method with line searches are also shown.

Ri Ra m = 0 m = 1 m = 2 m = 5 m = 10 m = 0 + LS1 m = 0 + LS2
1 1e+4 9 9 11 14 17 7 7

10 1e+5 B 17 19 81 38 B 11
20 2e+5 B B B 34 36 B 20
50 5e+5 B B B 44 56 B B

100 1e+6 B B B B B B B
150 1.5e+6 B B B B B B B
200 2e+6 B B B B B B B

Tab. 2: Iterations required for Anderson accelerated Newton iterations to converge to a nonlinear residual of 10−8 in the B-
norm, with β = 0.3 and varying m. ‘B’ denotes the nonlinear residual growing above 104, and ‘F’ denotes no convergence after
200 iterations.

Ri Ra m = 0 m = 1 m = 2 m = 5 m = 10
1 1e+4 13 11 10 11 13

10 1e+5 B 18 18 23 52
20 2e+5 B 41 32 22 44
50 5e+5 B B B 74 134

100 1e+6 B B B 95 F
150 1.5e+6 B B B B 141
200 2e+6 B B B B 156

ing accelerated Newton with Newton augmented with a line search, we demonstrate how the acceleration
can effectively enlarge the domain of convergence for Newton iterations. As shown in the experiments below,
a damped accelerated Newton iteration with algorithmic depthm = 10 can also solve the Boussinesq system
with Ra = 2 ⋅ 106.

In the following tests, convergence was declared if the nonlinear residual fell below 10−8 in the B-norm.
If residuals grew larger than 104 in the B-norm, the iteration was terminated, and the test was declared to
fail due to (essentially) blowup, and is denoted with a ‘B’ in the tables below. If an iteration did not converge
within 200 iterations but its residuals all stayed below 104 in the B-norm, we declared it to be a failure and
denote it with an ‘F’ in the tables below.

We first tested Anderson acceleration applied to the Newton iteration, with varying m and no relaxation
(β = 1). Results are shown in Table 1, and a clear improvement can be seen in convergence for higher Ra asm
increases. For comparison,we also show results of (unaccelerated)Newtonwith a line search, andgive results
from two choices of line searches: LS1 continuously cuts the Newton step size ratio in half (up to 1/64), until
either finding a step that decreases the nonlinear residual of the finite element problem, or using a step size
ratio of 1/64 otherwise. LS2 uses ‘fminbnd’ fromMATLAB (golden section search and parabolic interpolation)
to use the step size ratio from [0.01,1] that minimizes the nonlinear residual of the finite element problem.
While the line searches do help convergence of the Newton iteration, they do not perform as well as Newton–
Anderson (m = 5 or 10) for higher Ra values.

We next considered Anderson acceleration to Newton, but using relaxation of β = 0.3. Result are shown
in Table 2, and we observe further improvement compared to the case of β = 1. Lastly, we considered An-
derson acceleration applied to Newton, but choosing the β from {0.0625, 0.125, 0.25, 0.5, 1} that has the
smallest residual in the B-norm. This is essentially a look-ahead step, which increases the cost of each step of
the accelerated Newton algorithm by a factor of 4. Results from choosing β this way were significantly better
than for constant β = 1, and somewhat better than β = 0.3, although not worth the extra cost except when
using β = 0.3 failed. A clear conclusion for this section is that Anderson acceleration with a properly chosen
depth and relaxation can significantly improve the ability for the Newton iteration to converge for larger Ra.
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Tab. 3: Iterations required for Anderson accelerated Newton iterations to converge to a nonlinear residual of 10−8 in the B-
norm, with β being chosen as the best from a set of five values, and varying m. ‘B’ denotes the nonlinear residual growing
above 104, and ‘F’ denotes no convergence after 200 iterations.

Ri Ra m = 0 m = 1 m = 2 m = 5 m = 10
1 1e+4 8 9 9 13 24

10 1e+5 F 13 14 20 38
20 2e+5 123 21 27 32 61
50 5e+5 35 59 31 65 93

100 1e+6 B 42 F 68 106
150 1.5e+6 B B B F 112
200 2e+6 B B B F 150

6 Conclusions and future directions
In this paper, we studied Anderson acceleration applied to the Picard iteration for Boussinesq system. The
Picard iteration is advantageous compared to the Newton iteration for this problem because it decouples the
linear systems into easier to solve pieces. Since convergence of Picard iterations is typically slow, it is a good
candidate for acceleration. In this work we showed that the Anderson acceleration analysis framework de-
veloped in [20] was applicable to this Picard iteration, by considering each iteration as the application of
a particular solution operator, and then proving the solution operator had the required properties laid out
in [20]. This in turn proved one-step error analysis results from [20] hold for Anderson acceleration applied to
the Boussinesq system, and local convergence of the accelerated method under a small data condition. Nu-
merical tests with the 2D differentially heated cavity problem showed good numerical results demonstrating
the convergence behavior was consistent with our theory, and in particular that a 2-stage choice of Anderson
depth works very well. Anderson acceleration applied to the related Newton iteration was also considered in
numerical tests and it was found that Anderson acceleration allowed for convergence at significantly higher
Rayleigh numbers than the usual Newton iteration with common line search techniques.

For future work, we plan to consider more sophisticated ways to choose m adaptively. For the Picard
iteration, the 2-stage choice of m (small m early and larger m later) was rather crude but yet very effective
and so we expect a more sophisticated method based on our analysis should work even better. For the New-
ton iteration, adaptively choosing m in a different way than Picard (m small at first and then m = 0 later)
could be beneficial since Anderson can help Newton converge when far from a root but can slow convergence
when near a root. Optimally and adaptively choosing β at each step is also an important problem we plan
to consider. Being able to quasi-optimally and adaptively choose m and β in a systematic way will allow for
Anderson acceleration to be automated and thus be more easily and successfully used.
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