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Abstract:We introduce a new regularization model for incompressible fluid flow, which is a regularization of
the EMAC (energy, momentum, and angular momentum conserving) formulation of the Navier–Stokes equa-
tions (NSE) that we call EMAC-Reg. The EMAC formulation has proved to be a useful formulation because it
conserves energy, momentum, and angular momentum even when the divergence constraint is only weakly
enforced. However, it is still a NSE formulation and so cannot resolve higher Reynolds number flows without
very finemeshes. By carefully introducing regularization into the EMAC formulation, we create amodel more
suitable for coarser mesh computations but that still conserves the same quantities as EMAC, i.e., energy,
momentum, and angular momentum. We show that EMAC-Reg, when semi-discretized with a finite element
spatial discretization is well-posed and optimally accurate. Numerical results are provided that show EMAC-
Reg is a robust coarse mesh model.
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1 Introduction
The evolution of incompressible, viscous, Newtonian flow is determined by the Navier–Stokes equations
(NSE), which are given by

ut + (u ⋅ ∇)u + ∇p − ν∆u = f (1.1)
div u = 0 (1.2)

with u and p representing velocity and pressure, f an external force, ν the kinematic viscosity which is in-
versely proportional to theReynolds numberRe, andwith appropriate boundary and initial conditions.When
the Reynolds number gets large, simulation of (1.1)–(1.2) can be very computationally expensive or even in-
tractable due to the need for extremely fine spatial meshes in order to capture the smallest active scales of
the flow. As Kolmogorov showed in 1941, the smallest active scales in a flow are O(Re−3/4) [27, 33–35], which
means that fully resolving 3D flows requires mesh widths to be ∆x = ∆y = ∆z = O(Re−3/4), and thus the
total number of meshpoints to be O(Re9/4). Since industry routinely needs to simulate flows with Re = 106
and larger (e.g., Re ≈ 106 for a compact car at 60mph [36]), it becomes evident that such simulations can be
very costly. In some cases, it is not possible since needing to solve the resulting linear systems at each non-
linear iteration in each time step requires both vast computational resources and the need to wait for weeks
or months for a simulation to finish. Not resolving all the active scales in a NSE simulation is well known to
create inaccuracy and numerical instability [7].

To address this problem,manymodels have been developed that approximate the NSE, but can be solved
onmuch coarsermeshes than theNSE requires. Some commonexamples are k−ε typemodels [46], Smagorin-
sky typemodels [7, 54], and our interest herein is a model that fits in the class of Large Eddy Simulation (LES)
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models [7, 19, 38, 50]. LES models aim to accurately estimate the large scales of the flow andmodel the effect
of small scales on the large scales. Hence the goal of LES is not pointwise accurate solutions, but instead
solutions that agree with NSE on general or averaged flow behavior. Regularization models are our particu-
lar interest herein, and these are LES models that use filtering/averaging operations applied to the NSE to
reduce the complexity of the system by eliminating finer scales and steepening the slope of the energy cas-
cade at scales smaller than can be resolved on a given mesh. NS-α and Leray-α (and their many variants),
for example, are popular regularization models that have been extensively studied in recent years. They are
found to have many desirable mathematical properties (e.g., well-posedness, fidelity to various physical bal-
ances [15, 17, 25, 26, 28, 38, 48, 57]) and be successful in simulating high Reynolds number and turbulent
flows [8, 13–15, 18, 29, 32, 49].

Despite the attractive analytical properties that regularization models enjoy, many of these properties
can be lost in a discretization, in particular the balances of physical quantites. In fact, this is also true for
discretizations of the NSE, which after being discretized generally loses the exact balances of most (if not all)
of energy, momentum, angular momentum, helicity, and others. The situation for discretized regularization
models is worse, since the modeling process already removes or alters some important physical balances,
and then the discretization process exacerbates the problem. Of course, in any model of the NSE one must
sacrifice some physical accuracy, since one is no longer solving the NSE. However, the goal for simulations
should be to maintain as much physical accuracy as possible, so that solutions are physically meaningful
and can be confidently used as surrogates for the true physical model.

To address the issue of discretizations not preserving important physical balances, the EMAC scheme
was developed for the NSE in [11] and by design it conserves energy, momentum, and angular momentum
even when the divergence constraint is not strongly enforced (which is the typical case with finite element
and finite differencemethods). It is the first such scheme to conserve these quantities in typical finite element
discretizationswhere the divergence constraint isweakly enforced.Wenote that if newly developedpointwise
divergence-free finite elements are used, e.g., [6, 20, 30, 31, 58], then the numerical velocity foundwith EMAC
will be the same as recovered from more traditional convective and skew-symmetric formulations, and all of
themwill conserve energy,momentum, and angularmomentum.However, the development of these strongly
divergence-freemethods is still quite new. It typically requires non-standardmeshing and elements and is not
yet included into major finite element software packages such as deal.II [5].

In the series of works that followed the original EMAC paper, e.g., [12, 22, 23, 39, 41, 43, 45], the EMAC
schemewas shown to be highly accurate especially over longer time intervals compared to standard schemes.
Theory to justify this longer time accuracy was provided in [42], where it was shown that using EMAC dramat-
ically reduces the usual upper bounds on the error through removal of the Reynolds number dependence in
the Gronwall exponent. Moreover, it also eliminates lower bounds on the error caused by standard schemes’
lack of momentum conservation. It is not surprising that EMAC was able to achieve better accuracy, given
the long history of enhanced physics schemes performing better than standard schemes, especially over long
time intervals: this idea began with Arakawa’s 2D energy and enstrophy conserving scheme in 1966 [4], and
then continued on to many other physical system discretizations, e.g., [1, 21, 24, 40, 44, 47, 51, 55].

The purpose of this paper is to extend the EMAC technology to a regularization model for the NSE. As
discussed above, for larger Re it becomes necessary to replace the NSE with a surrogate model. In practice, it
is desirable for the surrogate model and its discretized solution to have as high a degree of physical accuracy
as possible. The regularization model that we will discretize takes the form

ut + w ⋅ ∇w + ∇p − ν∆u = f (1.3)
−α2∆w + w = u (1.4)

divw = 0. (1.5)

Here, (1.4) denotes the Helmholtz filter with filtering radius α, and we note this system could be written as
a fourth order problem in w. Under periodic boundary conditions, divw = 0 󳨐⇒ div u = 0 since the filter
operation commutes with the divergence operator. Also for smooth solutions to (1.3)–(1.5), we may apply div
to (1.4) and recover div u = 0. For weak solutions that are not strong, if one wishes to enforce additionally
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that div u = 0, then one may add a Lagrange multiplier (i.e., pressure) term to (1.4); however, we assume
throughout that strong solutions to (1.3)–(1.5) exist under the assumptionof homogeneousDirichlet boundary
conditions for u and w. In the periodic case, the mathematical theory for the well-known NS-αmodel can be
extended to this model in a straightforward way from [25, 26], providing well-posedness as well as regularity
of solutions depending on regularity of the problem data.

While (1.5) denotes the Helmholtz filter with filtering radius α, other types of regularization operators are
possible such other filters or approximately deconvolved filters [2, 3, 7, 10, 38, 56]. In this initial study, we
consider only the Helmholtz filter.

The specific formulation for the regularization model (1.3)–(1.5) is specifically chosen so that it fits the
formof amodel that the nonlinearity formulation2D(w)w+(divw)w (which is identical tow⋅∇wwhendivw =
0) will preserve energy, momentum, and angular momentum when divw ̸= 0. We note that the nonlinear
forms w ⋅∇u (i.e., that of Leray-α) or (∇×u)×w (i.e., that of NS-α) do not preserve each of energy, momentum,
and angular momentum when pointwise divergence free is lost for velocities and/or filtered velocities (see
Appendix A). In other words, (1.3)–(1.5) is the α regularizationmodel that naturally fits the EMAC framework.

Herein, we study and test discretizations of (1.3)–(1.5) as well as show that it conserves energy, momen-
tum, and angular momentum; we denote it as the Energy, Momentum, and Angular Momentum conserving
regularization formulation (EMAC-Reg). We formally define this scheme in Section 3, followed by showing it
is stable, well-posed, the aforementioned quantities are conserved, and is optimally accurate.

This paper is arranged as follows. Section 2 is dedicated to introducing notation and preliminary infor-
mation required for the analysis later in the paper. Section 3 covers the EMAC-Reg scheme’s stability, well-
posedness, quantity conservation, and error analysis. Section 4 describes several numerical experiments
which tests the conservation properties and robustness over coarse meshes of EMAC-Reg, and compares it
to other related models.

2 Notation and preliminaries
We consider a convex polygonal domain Ω ⊂ ℝd, d = 2, 3. Denote the L2(Ω) inner product and norm on Ω by
(⋅, ⋅) and ‖ ⋅ ‖, respectively, and we note all other norms will be labeled with subscripts. The natural velocity
and pressure spaces are

X = {v ∈ H1(Ω)d , v|∂Ω = 0} , Q = {q ∈ L2(Ω), ∫
Ω
q dx = 0} .

Let V denote the divergence-free subspace of X, V := {v ∈ X : (∇ ⋅ v, q) = 0 ∀q ∈ Q}. We also define the dual
of X and its norm,

X󸀠 = H−1(Ω), ‖f ‖X󸀠 = sup
v∈X󸀠 (f, v)‖v‖X

for any f ∈ L2(Ω).
We further consider subspaces Xh ⊂ X, Qh ⊂ Q to be finite element velocity and pressure spaces cor-

responding to a conforming triangulation Th of Ω, where h is the global mesh-size. For Th we assume the
minimal angle condition if h varies. Define the discretely divergence-free subspace of Xh by

Vh := {vh ∈ Xh , (∇ ⋅ vh , qh) = 0 ∀qh ∈ Qh}.
Most common finite element (FE) discretizations of the NSE and related systems enforce the divergence con-
straint div uh = 0 weakly and thus Vh ̸⊂ V.

Define the operator Ah by: Given φ ∈ H1(Ω), Ahφ ∈ Vh solves

(Ahφ, vh) = − (∇φ, ∇vh) (2.1)

for all vh ∈ Vh.
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We denote IhSt as the discrete Stokes projection operator [53], which is defined by: Given φ ∈ V, find
ISth φ ∈ Vh satisfying

(∇ISth φ, ∇vh) = (∇φ, ∇vh) ∀vh ∈ Vh . (2.2)

Following [53], we assume Xh = X ∩ Pk(Th) and Qh = Q ∩ Pk−1(Th), with Pk being the set of degree k poly-
nomials. Additionally we assume that these spaces satisfy the inf-sup condition and the domain is such that
the discrete Stokes operator satisfies for all divergence-free φ ∈ Hk+1(Ω):

󵄩󵄩󵄩󵄩󵄩∇ (φ − ISth (φ))󵄩󵄩󵄩󵄩󵄩 ⩽ Chk|φ|k+1 (2.3)
󵄩󵄩󵄩󵄩󵄩φ − ISth (φ)󵄩󵄩󵄩󵄩󵄩 ⩽ Chk+1|φ|k+1. (2.4)

2.1 Vector identities and trilinear forms

The EMAC formulation uses the identity

(u ⋅ ∇)u = 2D(u)u − 12∇|u|2 (2.5)

where u is a sufficiently smooth gradient field and D(u) = 1
2 (∇u+(∇u)T) is the symmetric part of the gradient.

This identity splits the inertia term into the accelerationdrivenby2D(u)andpotential term that is absorbedby
redefined pressure (defined in Theorem 3.4). Based on (2.5) the trilinear form for EMAC (Galerkin) formulation
is defined by

c(u, v, w) = 2(D(u)v, w) + (div(u)v, w).
Herein, we assume u, v, w ∈ X (no divergence free condition is assumed for any of u, v, w). The trilinear form
c was developed for EMAC in [11] as a consistent weak representation of the NSE nonlinearity that preserves
energy, momentum, and angularmomentum. Because we apply this treatment to the filtered equations (1.3)–
(1.5), we must redefine the pressure to

P = p − 12 |w|2.
We will also be utilizing these next identities several times throughout the paper,

(u ⋅ ∇v, w) = − (u ⋅ ∇w, v) − ((∇ ⋅ u)v, w) (2.6)

(u ⋅ ∇w, w) = − 12 ((∇ ⋅ u)w, w) (2.7)

(u ⋅ ∇v, w) = ((∇v)u, w) = ((∇v)Tw, u) . (2.8)

3 The EMAC-Reg scheme and its analysis
We consider the following semi-discretization of the EMAC-Regularization: Given w0

h , u
0
h ∈ Vh, find (uh , Ph ,

wh , λh) ∈ (Xh , Qh , Xh , Qh) × (0, T] for all (vh , qh , χh , rh) ∈ (Xh , Qh , Xh , Qh),
((uh)t , vh) + c(wh , wh , vh) − (Ph , ∇ ⋅ vh) + ν (∇uh , ∇vh) = (f, vh) (3.1)

(∇ ⋅ uh , qh) = 0 (3.2)
(λh , ∇ ⋅ χh) + α2 (∇wh , ∇χh) + (wh , χh) = (uh , χh) (3.3)

(∇ ⋅ wh , rh) = 0. (3.4)

Even though in the continuous model (1.3)–(1.5) the constraint div u = 0 follows from the model definition,
in a discretization it does not. Hence we enforce that the velocity be discretely divergence-free with (3.2), and
thus add the Lagrange multiplier to (3.3) so the system is not overdetermined.
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The analysis below is for the semi-discrete system (3.1)–(3.4). Extensions to particular timesteppingmeth-
ods can be done, and for A-stable methods such as backward Euler, BDF2, or Crank–Nicolson, analogous sta-
bility results can be obtained (with expected additional error depending on time step size). For conservation
properties, only Crank–Nicolsonwill allow for exact conservation; other timesteppingmethods’ discrete time
derivative term will generally contribute to the energy, momentum, and angular momentum balances. It is
believed, with some evidence from [11, 12] that this effect is much less problematic than the nonlinear term
contributing to these balances. While it is discussed in [15] that Crank–Nicolson will provide optimal conver-
gence in space and time, whether an improved Gronwall constant can be obtained is an open problem.

3.1 Stability and well-posedness

We first prove stability of the scheme, followed by well-posedness.

Theorem 3.1. Let (uh , Ph , wh , λh) solve (3.1)–(3.4)with f ∈ L2(0, T; X󸀠) and w0
h ∈ H1(Ω). The following bounds

hold:

‖wh‖2 + α2 ‖∇wh‖2 + ν [ ‖∇wh‖2L2(0,T;L2) + α2 ‖Ahwh‖2L2(0,T;L2)]
⩽ ν−1 ‖f ‖2L2(0,T;X󸀠) + ‖wh(0)‖2 + α2 ‖∇wh(0)‖2 (3.5)

‖uh‖2L2(0,T;L2) ⩽ (T + α2)ν−1 ‖f ‖2L2(0,T;X󸀠) + ‖wh(0)‖2 + α2 ‖∇wh(0)‖2 + ‖uh(0)‖2 .
Proof. Choosing vh = wh in (3.1) gives us

((uh)t , wh) + ν (∇uh , ∇wh) = (f, wh) (3.6)

where the trilinear term c(wh , wh , wh) = 0 and (Ph , ∇ ⋅ wh) = 0 by (3.4).
Next choose χh = Ahwh in (3.3) and then χh = wh in (3.3) to obtain

α2 ‖Ahwh‖2 + ‖∇wh‖2 = (∇uh , ∇wh) (3.7)

α2 ‖∇wh‖2 + ‖wh‖2 = (uh , wh) . (3.8)

To find another expression for ((uh)t , wh) , we take the temporal derivative of (3.8) to get

α2 d
dt ‖∇wh‖2 + d

dt ‖wh‖2 = d
dt (uh , wh) = ((uh)t , wh) + (uh , (wh)t)

and so

((uh)t , wh) = d
dt [ ‖wh‖2 + α2 ‖∇wh‖2] − (uh , (wh)t) . (3.9)

Choosing χh = (wh)t in (3.3) yields
α2

2
d
dt ‖∇w‖2 +

1
2

d
dt ‖wh‖2 = (uh , (wh)t) (3.10)

and now combining (3.9) and (3.10) provides

((uh)t , wh) = d
dt [ ‖wh‖2 + α2 ‖∇wh‖2] − d

dt [
α2

2 ‖∇wh‖2 + 12 ‖wh‖2]
= 12

d
dt [ ‖wh‖2 + α2 ‖∇wh‖2] . (3.11)

Using (3.7) and (3.11) in (3.6) gives us

1
2

d
dt [ ‖wh‖2 + α2 ‖∇wh‖2] + ν [ 󵄩󵄩󵄩󵄩󵄩∇w2

h
󵄩󵄩󵄩󵄩󵄩 + α2 ‖Ahwh‖2] = (f, wh) . (3.12)
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We bound the right-hand side of (3.12) using Cauchy–Schwarz and Young’s inequalities,

(f, wh) ⩽ ‖f ‖X󸀠 ‖wh‖ ⩽ ν2 ‖∇wh‖2 + 1
2ν ‖f ‖2X󸀠

and after inserting this bound into (3.12) and then integrating in time gives us the first stated estimate

‖wh‖2 + α2 ‖∇wh‖2 + ν [ ‖∇wh‖2L2(0,T;L2) + α2 ‖Ahwh‖2L2(0,T;L2)]
⩽ ν−1 ‖f ‖2L2(0,T;X󸀠) + ‖wh(0)‖2 + α2 ‖∇wh(0)‖2 .

To get the second bound, we test (3.3) with χh = uh to give us
‖uh‖2 = α2 (∇wh , ∇uh) + (wh , uh) . (3.13)

Applying (3.7) and (3.8), (3.13) becomes

‖uh‖2 = α2 [α2 ‖Ahwh‖2 + ‖∇wh‖2] + α2 ‖∇wh‖2 + ‖wh‖2 . (3.14)

Now using (3.5) in (3.14) and integrating with respect to time, we get

‖uh‖2L2(0,T;L2) ⩽ α2 [α2 ‖Ahwh‖2L2(0,T;L2) + ‖∇wh‖2L2(0,T;L2)] + Tν−1 ‖f ‖2L2(0,T;X󸀠)
+ ‖wh(0)‖2 + α2 ‖∇wh(0)‖2 + ‖uh(0)‖2 .

Finally using (3.5) to bound the the quantity in brackets yields the second result of the theorem:

‖uh‖2L2(0,T;L2) ⩽ (T + α2)ν−1 ‖f ‖2L2(0,T;X󸀠) + ‖wh(0)‖2 + α2 ‖∇wh(0)‖2 + ‖uh(0)‖2 .
Theorem 3.2. The semidiscrete EMAC-Reg system (3.1)–(3.4) is well-posed.

Proof. The nonlinearity of the system of ODEs defining wh and uh is quadratic, and thus locally Lipschitz. By
classical ODE theory we may conclude that a solution exists and is unique so long as all possible solutions
cannot blow up in finite time [36], which is established in Theorem 3.1 and due to the LBB assumption on the
finite element space it is true for Ph and λh.

3.2 Conservation of energy, momentum, and angular momentum

For NSE, energy, momentum, and angular momentum are defined by

Kinetic energy E = 12 (u, u) =
1
2 ∫Ω |u|

2 dx

Linear momentum M = ∫
Ω
u dx

Angular momentum Mx = ∫
Ω
u × x dx.

Let e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T and φi = x× ei for i = 1, 2, 3. The definition of momentum
and angular momentum can now be equivalently written as:

Mi = ∫
Ω
ui dx = (u, ei)

(Mx)i = ∫
Ω
(u × x) ⋅ ei dx = (u, φi) .

Conservation laws for models of fluid flow are determined by the model itself, and in some sense this should
be analogous to the true physical law. For EMAC-Reg, we prove below that themodel energy,momentum, and
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angular momentum conserved quantities are given by

EEMAC−Reg := 12 ∫Ω u ⋅ w dx = 12 (u, w) =
1
2 ‖w‖2 +

α2

2 ‖∇w‖2

MEMAC−Reg := ∫
Ω
u dx = (u, ei)

AMEMAC−Reg := ∫
Ω
u × x dx = (u, φi) .

For regularization models, altered quantities are generally conserved on the continuous level due to the
regularization’s modification of the physical equation. Our goal is that conserved quantities in our discretiza-
tion matches that of the continuous model.

Following [11], for our conservation law study, we notice that practical boundary conditions will alter the
balance of the quantities above. Enforcing conditions strongly or weakly will also impact the balance for the
numerical experiments. It is for these reasons that we isolate the affect on the treatment of the nonlinearity of
the quantities from the boundary conditions. We assume for the numerical experiments in Section 4 that the
finite element solution uh, Ph is supported in a compact subdomain Ω̂ ⊊ Ω. Not coincidentally, the conserved
energy is the same as is conserved by the related NS-α model and the ADM turbulence model of Stolz and
Adams [38].

Theorem 3.3. The EMAC-Reg formulation conserves energy, momentum, and angular momentum for ν = 0 and
f = 0:

EEMAC−Reg(t) = EEMAC−Reg(0)
MEMAC−Reg(t) = MEMAC−Reg(0)

AMEMAC−Reg(t) = AMEMAC−Reg(0)
for all t. Furthermore, we assume that the finite element solutions uh and ph are supported in a compact sub-
domain Ω̂ ⊊ Ω so that there exists a strip S = Ω\Ω̂ along ∂Ω where uh vanishes. This is also assumed for the
forcing function f .

Proof. We start by showing energy conservation. We test (3.1) with v = wh,

((uh)t , wh) + c(wh , wh , wh) + ν (∇uh , ∇wh) = (f, wh) .
Since c(wh , wh , wh) = 0 and we assumed f = 0 and ν = 0, we are left with

((uh)t , wh) = 0 󳨐⇒ d
dt (uh , wh) = 0

and hence energy is preserved.
For momentum conservation, we cannot simply test (3.1) with ei, because it is not in the finite element

space Xh. To remedy this, we recall that uh = 0 on the strip S. Define χ(g) ∈ Xh for g = ei and φi such that
χ(g) = g in Ω̂ and arbitrary on S = Ω\Ω̂ to satisfy the boundary conditions of Xh.

For momentum conservation we test (3.1) with χ(ei), where χ(ei) is the restriction of ei on Ω. This gives

((uh)t , ei) + c(wh , wh , ei) + ν (∇uh , ∇ei) = (f, ei) .
For the nonlinear term

c(wh , wh , ei) = ((∇wh)wh , ei) + ((∇wh)Twh , ei) + ((∇ ⋅ wh)wh , ei)
= (wh ⋅ ∇wh , ei) + (wh , (∇wh)ei) + ((∇ ⋅ wh)wh , ei)

wherewe get the above identity from (2.8). Then applying (2.6) and (2.7) to the first termandusing that∇ei = 0
gives

c(wh , wh , ei) = − (wh ⋅ ∇ei , wh) − ((∇ ⋅ wh)wh , ei) + (ei ⋅ ∇wh , wh) + ((∇ ⋅ wh)wh , ei)
= (ei ⋅ ∇wh , wh)
= −12 ((∇ ⋅ ei)wh , wh) = 0.
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Combining this with f = ν = 0, the fact that ∇ ⋅ ei = 0 and that ei doesn’t depend on t, we end up with
d
dt (uh , ei) = 0

which is precisely momentum conservation.
For angular momentum, we test (3.1) with χ(φi), where χ(φi) is the restriction of φi on Ω, which gives

((uh)t , φi) + c(wh , wh , φi) + ν (∇uh , ∇φi) = (f, φi) .
We begin by investigating ∇φi. First let x = [x1 x2 x3]T , then φi for i = 1, 2, 3 takes the form

φ1 = [[
[

0
x3
−x2
]]
]
, φ2 = [[

[

−x3
0
x1

]]
]
, φ3 = [[

[

x2
−x1
0

]]
]
.

This immediately gives

∇φ1 = [[
[

0 0 0
0 0 −1
0 1 0

]]
]
, ∇φ2 = [[

[

0 0 1
0 0 0
−1 0 0

]]
]
, ∇φ3 = [[

[

0 −1 0
1 0 0
0 0 0

]]
]
. (3.15)

With this in mind, we now investigate the nonlinear term and apply (3.15) along with ∇ ⋅ φi = 0 to get
c(wh , wh , φi) = − (wh ⋅ ∇φi , wh) − ((∇ ⋅ wh)wh , φ) + (φi ⋅ ∇wh , wh) + ((∇ ⋅ wh)wh , φi)

= − (wh ⋅ ∇φi , wh) − 12 ((∇ ⋅ φi)wh , wh)
= 0.

Combining this with f = ν = 0 provides
d
dt (wh , φi) = 0

which is angular momentum conservation.

3.3 Error analysis

In this subsection,we provide the error analysis for EMAC-Reg. The discretized formulation is subtracted from
the weak formulation and we manipulate the nonlinear term to get an appropriate error bound. Below is the
result.

Theorem 3.4. Let (uh , Ph , wh , λh) solve (3.1)–(3.4) and (u, p, w) solve (1.3)–(1.5) with wt ∈ L2(0, T; X󸀠),
w, ∇w ∈ L1(0, T; L∞), and P ∈ L2(0, T; L2). Denote eu(t) = u(t) − uh(t), ew(t) = w(t) − wh(t). We get the
following error estimates:

α2 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩ew󵄩󵄩󵄩󵄩2 + ν∫
T

0
[2α2 󵄩󵄩󵄩󵄩Ahew󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩2] dt

⩽ α2 󵄩󵄩󵄩󵄩∇ηw󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2 + ν [2α2 󵄩󵄩󵄩󵄩Ahηw󵄩󵄩󵄩󵄩2L2(0,T;L2) + 󵄩󵄩󵄩󵄩∇ηw󵄩󵄩󵄩󵄩2L2(0,T;L2)]
+ K [4ν−1 (󵄩󵄩󵄩󵄩ηwt 󵄩󵄩󵄩󵄩2L2(0,T;X󸀠) + inf

qh∈L2(0,T;Qh)
‖P − qh‖2L2(0,T;L2))]

where

K = exp [2C ( ‖w‖L1(0,T;L∞) + ‖∇w‖L1(0,T;L∞)) + Tν]
and

󵄩󵄩󵄩󵄩eu󵄩󵄩󵄩󵄩2 ⩽ α2 󵄩󵄩󵄩󵄩∇ηw󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2 + ν [2α2 󵄩󵄩󵄩󵄩Ahηw󵄩󵄩󵄩󵄩2L2(0,T;L2) + 󵄩󵄩󵄩󵄩∇ηw󵄩󵄩󵄩󵄩2L2(0,T;L2)]
+ K [4ν−1 (󵄩󵄩󵄩󵄩ηwt 󵄩󵄩󵄩󵄩2L2(0,T;X󸀠) + inf

qh∈L2(0,T;Qh)
‖P − qh‖2L2(0,T;L2))] + 3 󵄩󵄩󵄩󵄩ηu󵄩󵄩󵄩󵄩2 .
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Corollary 3.1. Let (uh , Ph , wh , λh) solve (3.1)–(3.4) and (u, p, w) satisfy the same criteria as in Theorem 3.4.
Additionally suppose u, w ∈ L∞(0, T;Hk+1), wt ∈ L2(0, T;Hk+1), and P ∈ L2(0, T;Hk). Assuming Xh =
X ∩ Pk(Tk) and Qh = Q ∩ Pk−1(Tk), where Pk denotes the set of degree k polynomials, satisfies the inf-sup
condition, we get from (2.3) and (2.4):

α2 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩ew󵄩󵄩󵄩󵄩2 + ν∫
T

0
[2α2 󵄩󵄩󵄩󵄩Ahew󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩2] dt

⩽ C (α2h2k|w|2k+1 + h2k+2|w|2k+1 + ν [2α2h2k−1 ‖w‖2L2(0,T;Hk+1) + h2k ‖w‖2L2(0,T;Hk+1)]
+ K [4ν−1 (h2k+2 ‖wt‖2L2(0,T;Hk+1) + h2k ‖P‖2L2(0,T;Hk))])

and

󵄩󵄩󵄩󵄩eu󵄩󵄩󵄩󵄩2 ⩽ C(α2h2k|w|2k+1 + h2k+2|w|2k+1 + ν [2α2h2k−1 ‖w‖2L2(0,T;Hk+1) + h2k ‖w‖2L2(0,T;Hk+1)]
+ K [4ν−1 (h2k+2 ‖wt‖2L2(0,T;Hk+1) + h2k ‖P‖2L2(0,T;Hk))] + 3h2k+2|u|2L2(0,T;Hk+1))

where K is defined in Theorem 3.4.

Proof. The result follows by applying standard interpolation estimates to Theorem 3.4 with the selected dis-
crete spaces.

Remark 3.1. Theorem 3.4 provides an optimal L2(0, T;H1) error estimate for w if α = O(h) (which we assume
is the case). An additional feature is that the Gronwall constant does not depend explicitly on the inverse of
the viscosity (which is not known to be true for discretizations of relatedmodels such as NS-α or Leray-α [38]).

Proof of Theorem 3.4. We will break up the proof for Theorem 3.4 into several steps.

Step 1: Develop error equation.
We begin by testing (1.3) by vh ∈ Vh and (1.5) by χh ∈ Vh and subtracting them from (3.1)–(3.3) to get

(ut − (uh)t , vh) + c(w, w, vh) − c(wh , wh , vh) − (P − qh , ∇ ⋅ vh) + ν (∇eu , ∇vh) = 0 (3.16)
α2 (∇ew , ∇χh) + (ew , χh) = (eu , χh) (3.17)

for any vh , χh ∈ Vh. Note that ( − λh , ∇ ⋅ χh) = 0 since χh ∈ Vh. We also obtain (P − qh , ∇ ⋅ vh) from
(P − Ph , ∇ ⋅ vh) = (P − Ph , ∇ ⋅ vh) + (Ph − qh , ∇ ⋅ vh) = (P − qh , ∇ ⋅ vh)

which holds for any qh ∈ Qh, since vh ∈ Vh.
Now let eu = φu

h + ηu and ew = φw
h + ηw where ηu = u − ISth (u), φu

h = ISth (u) − uh, ηw = w − ISth (u),
φw
h = ISth (w) − wh, and set vh = φw

h and χh = φw
h . Then after some manipulation (3.16) becomes

((φu
h)t , φw

h ) + ν (∇φu
h , ∇φw

h ) = − (ηut , φw
h ) − (c(w, w, φw

h ) − c(wh , wh , φw
h )) + (P − qh , ∇ ⋅ φw

h ) . (3.18)

Step 2: Finding suitable expressions for (∇φu
h , ∇φw

h ) and ((φu
h)t , φw

h ) in equation (3.18).
First, we use the orthogonality of the Stokes operator (2.2) to get

(∇φw
h , ∇ηw) = (∇φw

h , ∇(w − ISth w)) = 0 (3.19)

since φw
h ∈ Vh. Next we test (3.17) with χh = Ahφw

h and use (2.1) to get

α2 (∇ew , ∇Ahφw
h ) + (ew , Ahφw

h ) = (eu , Ahφw
h ) .

We use ew = φw
h + ηw to separate each term, then apply (3.19) to get

(∇φu
h , ∇φw

h ) = α2 󵄩󵄩󵄩󵄩Ahφw
h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 . (3.20)
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Now we must handle ((φu
h)t , φw

h ) . We test (3.17) with χh = φw
h and apply (2.1) to get

(φu
h , φ

w
h ) + (ηu , φw

h ) = α2 󵄩󵄩󵄩󵄩∇φw
h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2 + (ηw , φw

h ) . (3.21)

Next, take the derivative with respect to t of (3.21) and simplify,

((φu
h)t , φw

h ) = d
dt [α2
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2 + (ηw , φw

h ) − (ηu , φw
h ) ] − (φu

h , (φw
h )t)

= d
dt [α2
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2] + (ηwt , φw

h ) + (ηw , (φw
h )t)

− (ηut , φw
h ) − (ηu , (φw

h )t) − (φu
h , (φw

h )t) . (3.22)

Step 3: Finding a suitable expression for (φu
h , (φw

h )t) from (3.22).
Similar to what we did in (3.19), we will do the same for ((φw

h )t , ηw) and use (2.2) to get
(∇(φw

h )t , ∇ηw) = (∇(φw
h )t , ∇(wt − ISth w)) = 0. (3.23)

Now we test (3.17) with χh = (φw
h )t and use (3.23) to get

(φu
h , (φw

h )t) = α
2

2
d
dt
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 + 12

d
dt
󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2 + (ηw , (φw

h )t) − (ηu , (φw
h )t) . (3.24)

Substituting (3.24) into (3.22) and rearranging yields

((φu
h)t , φw

h ) = 12
d
dt [α2
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2] + (ηwt , φw

h ) − (ηut , φw
h ) . (3.25)

Now combine (3.25) and (3.20) to get the identity

((φu
h)t , φw

h ) + ν (∇φu
h , ∇φw

h ) = 12
d
dt [α2
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2]

+ (ηwt , φw
h ) − (ηut , φw

h ) + ν [α2 󵄩󵄩󵄩󵄩Ahφw
h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2] . (3.26)

Rearranging (3.26) now provides

1
2

d
dt [α2
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2] + ν [α2 󵄩󵄩󵄩󵄩Ahφw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2]

= ((φu
h)t , φw

h ) + ν (∇φu
h , ∇φw

h ) − (ηwt , φw
h ) + (ηut , φw

h ) . (3.27)

Putting together (3.18) and (3.27) and canceling the (ηut , φw
h ) term yields

1
2

d
dt [α2
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2] + ν [α2 󵄩󵄩󵄩󵄩Ahφw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2]

= − (c(w, w, φw
h ) − c(wh , wh , φw

h )) + (P − qh , ∇ ⋅ φw
h ) − (ηwt , φw

h ) . (3.28)

Step 4: Estimates for each term in equation (3.28).
Estimates for the right-hand side of (3.28) where we employ the Cauchy–Schwarz inequality and Young’s

inequality are as follows:

| (ηwt , φw
h ) | ⩽ 2ν−1 󵄩󵄩󵄩󵄩ηwt 󵄩󵄩󵄩󵄩2X󸀠 + ν2 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2 (3.29)

| (P − qh , ∇ ⋅ φw
h ) | ⩽ 2ν−1 ‖P − qh‖2 + ν2

󵄩󵄩󵄩󵄩∇φw
h
󵄩󵄩󵄩󵄩2 . (3.30)

From Theorem 3.2 in [42], we have the following bound for the nonlinear terms,

󵄨󵄨󵄨󵄨c(w, w, φw
h ) − c(wh , wh , φw

h )󵄨󵄨󵄨󵄨 ⩽ C ( 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2 ||w||L∞ + ||∇w||L∞ 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2 + [ ||w||L∞ + ||∇w||L∞ ] 󵄩󵄩󵄩󵄩φw
h
󵄩󵄩󵄩󵄩2) .
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Applying (3.29)–(3.30) to (3.28) gives us

1
2

d
dt [α2
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2] + ν [α2 󵄩󵄩󵄩󵄩Ahφw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2]

⩽ C ( 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2 ||w||L∞ + ||∇w||L∞ 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2 + [ ||w||L∞ + ||∇w||L∞ ] 󵄩󵄩󵄩󵄩φw
h
󵄩󵄩󵄩󵄩2)

+ 2ν−1 ( 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2X󸀠 + ‖P − qn‖2) + ν2 󵄩󵄩󵄩󵄩φw
h
󵄩󵄩󵄩󵄩2 + ν2
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2

and then by rearranging we get

d
dt [α2
󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2] + ν [2α2 󵄩󵄩󵄩󵄩Ahφw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2]

⩽ 2C ( 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2 ||w||L∞ + ||∇w||L∞ 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2) + 2 (C [ ||w||L∞ + ||∇w||L∞ ] + ν) 󵄩󵄩󵄩󵄩φw
h
󵄩󵄩󵄩󵄩2

+ 4ν−1 ( 󵄩󵄩󵄩󵄩ηwt 󵄩󵄩󵄩󵄩2X󸀠 + ‖P − qn‖2) .
Finally apply Gronwall’s inequality and get

α2 󵄩󵄩󵄩󵄩∇φw
h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩φw

h
󵄩󵄩󵄩󵄩2 + ν∫

T

0
[2α2 󵄩󵄩󵄩󵄩Ahφw

h
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇φw

h
󵄩󵄩󵄩󵄩2] dt

⩽ K [4ν−1 (󵄩󵄩󵄩󵄩ηwt 󵄩󵄩󵄩󵄩2L2(0,T;X󸀠) + inf
qh∈L2(0,T;Qh)

‖P − qh‖2L2(0,T;L2))]
where

K = exp [2C ( ‖w‖L1(0,T;L∞) + ‖∇w‖L1(0,T;L∞)) + Tν] .
By the triangle inequality, we get the desired error term

α2 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩ew󵄩󵄩󵄩󵄩2 + ν∫
T

0
[2α2 󵄩󵄩󵄩󵄩Ahew󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩2] dt

⩽ α2 󵄩󵄩󵄩󵄩∇ηw󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩2 + ν [2α2 󵄩󵄩󵄩󵄩Ahηw󵄩󵄩󵄩󵄩2L2(0,T;L2) + 󵄩󵄩󵄩󵄩∇ηw󵄩󵄩󵄩󵄩2L2(0,T;L2)]
+ K [4ν−1 (󵄩󵄩󵄩󵄩ηwt 󵄩󵄩󵄩󵄩2L2(0,T;X󸀠) + inf

qh∈L2(0,T;Qh)
‖P − qh‖2L2(0,T;L2))] . (3.31)

Step 5: Use the bound on ew to find a bound for eu.
Set χh = φu

h in (3.3) and expand e
u to get

󵄩󵄩󵄩󵄩φu
h
󵄩󵄩󵄩󵄩2 = α2 (∇ew , ∇φu

h) + (ew , φu
h) − (ηu , φu

h) .
Applying the Cauchy–Schwarz inequality gives

󵄩󵄩󵄩󵄩φu
h
󵄩󵄩󵄩󵄩2 ⩽ α2 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩∇φu

h
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩ew󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩φu

h
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩ηu󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩φu

h
󵄩󵄩󵄩󵄩 .

Now use the inverse inequality on the first term of the left hand side,

󵄩󵄩󵄩󵄩φu
h
󵄩󵄩󵄩󵄩2 ⩽ Cα2 1h

󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩φu
h
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩ew󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩φu

h
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩ηu󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩φu

h
󵄩󵄩󵄩󵄩 .

Recall from Remark 3.1 that α = O(h), and then we reduce to get
󵄩󵄩󵄩󵄩φu

h
󵄩󵄩󵄩󵄩 ⩽ C (α 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩ew󵄩󵄩󵄩󵄩) + 󵄩󵄩󵄩󵄩ηw󵄩󵄩󵄩󵄩 .

Squaring both sides and using Young’s inequality on the right-hand side gives us
󵄩󵄩󵄩󵄩φu

h
󵄩󵄩󵄩󵄩2 ⩽ 2C (α2 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩ew󵄩󵄩󵄩󵄩2) + 2 󵄩󵄩󵄩󵄩ηu󵄩󵄩󵄩󵄩2 .

For our error bound, we get
󵄩󵄩󵄩󵄩eu󵄩󵄩󵄩󵄩 ⩽ 2C (α2 󵄩󵄩󵄩󵄩∇ew󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩ew󵄩󵄩󵄩󵄩2) + 2 󵄩󵄩󵄩󵄩ηu󵄩󵄩󵄩󵄩2 .

Now applying (3.31) and (2.3) gives us the stated result.
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4 Numerical experiments
In this section, we provide results for several numerical experiments that test EMAC-Reg and compare it to
NSE schemes and other related models. Define α to be the filtering radius of the Helmholtz filter, typically
chosen as α = O(h). The schemes that we utilize in addition to EMAC-Reg are as follows.

NSE Skew-symmetric (SKEW): Find (uh , ph) ∈ (Xh , Qh) such that for every (vh , qh) ∈ (Xh , Qh):
((uh)t , vh) + (uh ⋅ ∇uh , vh) + 12 ((∇ ⋅ uh)uh , vh) − (ph , ∇ ⋅ vh) + ν (∇uh , ∇vh) = (f, vh)

(∇ ⋅ uh , qh) = 0.
NSE EMAC (EMAC): Find (uh , ph) ∈ (Xh , Qh) such that for every (vh , qh) ∈ (Xh , Qh):

((uh)t , vh) + 2 (D(uh)uh , vh) + ((∇ ⋅ uh)uh , vh) − (ph , ∇ ⋅ vh) + ν (∇uh , ∇vh) = (f, vh)
(∇ ⋅ uh , qh) = 0.

NS-α: Find (uh , ph , wh , λh) ∈ (Xh , Qh , Xh , Qh) such that for every (vh , qh , χh , rh) ∈ (Xh , Qh , Xh , Qh):
((uh)t , vh) + (uh × wh , vh) − (ph , ∇ ⋅ vh) + ν (∇uh , ∇vh) = (f, vh)

(∇ ⋅ uh , qh) = 0
(λh , ∇ ⋅ χh) + α2 (∇wh , ∇χh) + (wh , χh) = (uh , χh)

(∇ ⋅ wh , rh) = 0.

4.1 Convergence rate test for a problem with analytical solution

We now test the convergence results described by Theorem 3.4 on a problem that is analogous to the Chorin
problem in [16], however it is slightly adjusted for the EMAC-Regmodel. We deduce that for α ⩾ 0, the filtered
velocity, velocity, and pressure defined by

w = [− cos(πx) sin(πy)
sin(πx) cos(πy) ] e−2π

2νt

u = (1 + 2π2α2)w
p = −w ⋅ ∇w

is a solution for (1.3)–(1.5) with f = 0 and initial conditions w0 = w(0), u0 = u(0). We consider the domain
Ω = (0, 1)2 and enforce the appropriate Dirichlet boundary conditions for u and w.

Wewill be conducting three experiments: a spatial convergence testwith ∆t fixed, a temporal convergence
test with h fixed, and then a hybrid of the two. For each test, we take α = h/2, ν = 0.2 and use (P2, P1)
elements on a uniform mesh. For the spatial convergence test, we use ∆t = 0.005 with Crank–Nicolson time
stepping and fix our end time at T = 1. We calculate the error with h = 2−i, where i = 1, . . . , 7.

For the temporal convergence test, we have nearly identical parameters as the spatial convergence test.
We set h = 1/128 and ∆t = 2−i for i = 0, . . . , 6.

For the hybrid experiment, we will use incrementing values for both h and ∆t. We will start with h = 1/2
and ∆t = 1, then h = 1/4 and ∆t = 1/2, and so on. For each of these experiments, we will be calculating
L∞(0, T; L2) and L∞(0, T;H1).

We expect second order convergence for the H1 norm, and an L2 lift is expected to make the L2 conver-
gence third order for both tests. The results are displayed in Tables 1, 2, and 3 for spatial, temporal, and the
combined convergence, respectively. We observe third order accuracy in the L2 norm and second order accu-
racy in theH1 norm for spatial convergence, as expected. For temporal convergence, we observe second order
convergence at the least for L2 and mixed convergence rates for H1. We get high convergence rates starting
around ∆t = 1/4 through ∆t = 1/32, but both maintain at least second order convergence. We get similar
results for the hybrid experiment.
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Tab. 1: Spatial convergence results for both u and w for EMAC-Reg.

h ‖w − wh‖∞,0 Rate ‖w − wh‖∞,1 Rate ‖u − uh‖∞,0 Rate

1/2 8.98240e-04 — 1.33377e-02 — 8.98240e-04 —
1/4 1.07331e-04 3.06503 3.55447e-03 1.90780 1.07331e-03 3.06503
1/8 1.30963e-05 3.03484 9.11945e-04 1.96262 1.30963e-05 3.03484
1/16 1.62923e-06 3.00689 2.29787e-04 1.98865 1.62923e-06 3.00689
1/32 2.04701e-07 2.99260 5.75694e-05 1.99692 2.04701e-07 2.99260
1/64 3.32277e-08 2.62306 1.47046e-05 1.96904 3.32277e-08 2.62306
1/128 2.10578e-08 0.65803 4.66998e-06 1.65478 2.10578e-08 0.65803

Tab. 2: Temporal convergence results for both u and w for EMAC-Reg.

∆t ‖w − wh‖∞,0 Rate ‖w − wh‖∞,1 Rate ‖u − uh‖∞,0 Rate

1 1.36516e-02 — 1.70370e-01 — 1.36516e-02 —
1/2 3.99355e-03 1.77333 5.28610e-01 1.68840 3.99355e-03 1.77333
1/4 2.94349e-04 3.76207 6.19844e-03 3.09223 2.94349e-04 3.76207
1/8 1.78485e-05 4.04366 5.79085e-04 3.42006 1.78485e-05 4.04366
1/16 3.24554e-06 2.45927 6.32790e-05 3.19398 3.24554e-06 2.45927
1/32 8.03788e-07 2.01357 1.29501e-05 2.28876 8.03788e-07 2.01357
1/64 2.01230e-07 1.99797 7.41362e-06 0.80472 2.01230e-07 1.99797

Tab. 3: Convergence results for decreasing values of h and ∆t for u and w for EMAC-Reg.

h ∆t ‖w − wh‖∞,0 Rate ‖w − wh‖∞,1 Rate ‖u − uh‖∞,0 Rate

1/2 1 9.08829e-03 — 1.27869e-01 — 9.08829e-03 —
1/4 1/2 6.37691e-03 0.51115 0.11360e-00 0.17070 6.37691e-03 0.51115
1/8 1/4 4.71124e-04 3.75868 2.00927e-02 2.49922 4.71124e-04 3.75868
1/16 1/8 2.99146e-05 3.97719 2.89569e-03 2.79469 2.99146e-05 3.97719
1/32 1/16 3.59222e-06 3.05790 3.83564e-04 2.91637 3.59222e-06 3.05790
1/64 1/32 8.09962e-07 2.14895 5.08696e-05 2.91459 8.09962e-07 2.14895
1/128 1/64 2.01230e-07 2.00901 7.41362e-06 2.77855 2.01230e-07 2.00901

4.2 Gresho problem

Our next experiment is the Gresho problem, which is also referred to as the standing vortex problem.We start
with an initial condition u0 which is a solution of the steady Euler equations. Define r = √x2 + y2, and on
Ω = (−0.5, 0.5)2, the velocity and pressure solutions are defined by

r ⩽ 0.2 :
{{{
{{{{

u = [
[
−5y
5x
]
]

p = 12.5r2 + C1

0.2 ⩽ r ⩽ 0.4 :
{{{
{{{{

u = [
[

2y
r + 5y
2x
r − 5x
]
]

p = 12.5r2 − 20r + 4 log(r) + C2

r > 0.4 :
{{{
{{{{

u = [
[
0
0
]
]

p = 0
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Fig. 1: Speed contours of the true solution of the Gresho problem at
all times.

where

C2 = −12.5(0.4)2 + 20(0.4)2 − 4 log(0.4)
C1 = C2 − 20(0.2) + 4 log(0.2).

We compute solutions using EMAC-Reg, EMAC, NS-α, and SKEW with Crank–Nicolson time stepping and
Newton iterations to solve the nonlinear problem, with f = 0 and no slip boundary conditions up to T = 4.0,
and we take ν = 0 (we also ran using ν = 10−7 and obtained the same results). We computed using (P2, P1)
Taylor–Hood elements on a 48×48 uniformmesh, with a time step of ∆t = 0.01. A spatial radius of α = 1/50
was used for EMAC-Reg and NS-α. Other values of α that were O(h) were tested and gave similar results.

The Gresho problem solution is constant in time and so as time goes forward a good numerical solution
will look similar to Fig. 1, which is the initial condition plot of speed.

At time t = 0.5, we observe from Fig. 2 that EMAC-Reg and EMAC perform about equally well, whereas
NS-α and SKEW are nearly unrecognizable compared to the true solution in Fig. 1. At time t = 1, we start to
see EMAC-Reg outperform EMAC: EMAC-Reg approximately maintains the vortex shape, whereas the vortex
for EMAC is spreading out with rough edges. At time t = 4, we see both vortices are spreading out, but it is
clear that EMAC-Reg resembles Fig. 1 much better.

We also compare L2 error and predictions of important physical quantities that we hope to be preserved
with each of these formulations: energy, momentum, and angular momentum versus time. We have shown
in Theorem 3.3 that EMAC-Reg preserves energy, momentum, and angular momentum and it can be shown
that SKEW and NS-α preserve energy [36, 38].

From Fig. 3 we observe that EMAC-Reg not only conserves energy, momentum, and angular momentum,
but has significantly less L2 error than the other formulations. We note also that EMAC was shown in [11] to
have smaller L2 error compared to several other formulations.Wealso observe that eachof these schemes con-
serves energy, as expected. Momentum also appears to be conserved, noting the scale of the plot is O(10−8).
SKEWandNS-α appear to have large variation on a smaller scale, whereas EMACandEMAC-Reg stay constant
over time.

For angular momentum, as expected, SKEW and NS-α do not have constant angular momentum over
time. EMAC approximately conserves angular momentum, and EMAC-Reg does the best job of conserving it.

4.3 2D Channel flow over a step

The next experiment is flow past a forward–backward facing step. We consider a 40 by 10 channel with a 1 by
1 step placed 5 units into the channel. We enforce no-slip boundary conditions on the walls and the step, and
use a constant (with respect to time) parabolic inflow and outflow with peak velocity 1, viscosity ν = 1/600,
and no external force, i.e., f = 0.
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Fig. 2: Speed contours of our schemes at times t = 0.5, 1.0, 4.0.

Fig. 3: Plots of time versus L2 error, energy, momentum, and angular momentum.
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We ran this experiment using SKEW, EMAC, EMAC-Reg, and NS-α. We also ran SKEW on a fine mesh for
reference, and note this solution matches the reference solution in [37]. The velocity plots for each of these
formulations can be seen in Fig. 4. For each model/scheme we used (P2, P1) elements, Crank–Nicolson time
stepping, and Newton iterations to solve for the nonlinear term. We used a timestep of ∆t = 0.025 and ran
until the end time T = 40. A spatial filter of α = 1/10 was used for EMAC-Reg and NS-α. There are 3810
degrees of freedom on the coarse mesh and 145 K degrees of freedom on the reference mesh, and hence the
coarse mesh simulations represent significantly underresolved simulations.

SKEW provides an accurate and smooth solution on the fine mesh that matches results from [38] and we
use as a reference solution. However it does not perform well on the coarse mesh.

EMAC provides a better solution than SKEW on the coarse mesh, but still exhibits oscillations and does
not predict eddy detachment. EMAC-Reg provides the best coarse mesh solution, and qualitatively matches
the reference solution quite well. The NS-α coarse mesh solution is very poor.

4.4 2D Kelvin–Helmholtz

Our final numerical test is a benchmark problem from [52] for 2D Kelvin–Helmholtz instability. Our domain
is the unit square with periodic boundary conditions at x = 0, 1. The no penetration boundary condition
u ⋅ n = 0 is strongly enforced at y = 0, 1. Weak enforcement of the free-slip condition is included as well. The
initial condition is defined as

u0(x, y) = [u∞ tanh (2y − 1δ0)
0

] + cn [ ∂yφ(x, y)−∂xφ(x, y)]

where δ0 = 1/28 is the initial vorticity thickness, the reference velocity u∞ = 1, cn = 10−3 the noise/scaling
factor, and

φ(x, y) = u∞ exp( − (y − 0.5)2
δ20
) (cos(8πx) + cos(20πx)).

The Reynolds number in this case is defined by Re = δou∞/ν = 1/(28ν).
We compute solutions for Re = 1000 using EMAC and EMAC-Reg; NS-α and SKEW simulations using

similar parameter choices as EMAC-Reg became unstable, and we were unable to compute to the endtime,
even trying several choices of α. It is possible that the better results would be found with stabilizations [17] or
divergence free elements [9]. Taylor–Hood (P2, P1) elements are used for spatial discretization and BDF2 for
temporal discretization with a uniform triangulation with h = 1/48 for EMAC and EMAC-Reg, which gave us
19K velocity degrees of freedom. Note that we do lose some degree of property conservation by using BDF2
instead of Crank–Nicolson. We also computed a reference solution, which was computed using EMAC with
h = 1/128. For EMAC-Regwe computed using α = h/3.We calculated up to T = 10using step size ∆t = 0.001.
Newton’s method was used to solve the nonlinear problems and were resolved typically in 2 to 3 steps.

Figure 5 displays enstrophy contours at different times. It was shown in [42] that SKEW does not give
resolved plots and show oscillations on a mesh significantly more refined than this one. We can expect that
on a coarser mesh that SKEW performs even more poorly, which was made clear during the experiment.

It was also shown in [42] that EMAC performed well on a finer mesh, however on the coarse mesh it does
not predict important physical phenomena that happens earlier on in the simulation. Notice at time t = 1,
EMAC-Reg shows clear vortices, whereas EMAC is more grainy. At times t = 3, 4 we see a more refined plot
from EMAC-Reg of the vortices’ behavior than EMAC.

Comparing to the reference solution, the earlier times for EMAC-Reg closely resemble the resolved solu-
tion,muchmore than EMAC. Asmentioned above, we observe several small vortices in the early phases of the
experiment for EMAC-Reg, which is precisely how it is depicted in [52]. We also see that EMAC-Reg converges
to a steady solution closer to the time where the reference converges. We see convergence begin to form in the
reference solution at t = 6, whereas EMAC converges around t = 3 and EMAC-Reg converges around t = 4.
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Fig. 4: Speed contours of our 4 different schemes’ solution plotted at times t = 20 and t = 40 with SKEW on a fine mesh as
reference.
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Reference EMAC EMAC-Reg

Fig. 5: The vorticity contours for the reference solution (left), EMAC (middle), and EMAC-Reg (right) with mesh size 256 for the
reference and 48 for EMAC and EMAC-Reg, at times t = 1, 2, 3, 4, 5, 6, 10 for Re = 1000. Note the EMAC-Reg formulation used
α = h/3.
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5 Conclusions
We have introduced a new regularization model for fluid flow that not only conserves the same important
physical quantities as EMAC using a properly chosen time integrator (Crank–Nicolson), but it also performs
better than EMAC on coarser meshes. We proved well-posedness of the semidiscrete EMAC-Reg scheme and
provided an error analysis that showed optimal rates and a Gronwall constant that does not depend on the
Reynold’s number. We also showed numerically that EMAC-Reg outperforms related models on a coarser
mesh in terms of L2 error and accuracy over time. Our results show the robustness of regularization models
on coarser meshes along with models that conserve important physical quantities.

For future directions, further showing that EMAC-Reg conserves more quantities such as vorticity, en-
strophy, and helicity would make it more comparable to EMAC. The theoretical analysis of the fully discrete
scheme was not included in this paper, this is something that could be shown in a future work. We also only
showed that energy, momentum, and angular momentum are only conserved given the proper time integra-
tor. It behooves us to show this for a general case in the future. More numerical testing is also in order, in
particular, testing EMAC-Reg in 3D.
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A Momentum/angular momentum conservation of NS-α and
Leray-α formulations

Here we show that the NS-α and Leray-α formulations do not conserve momentum or angular momentum if
div u ̸= 0 and divw ̸= 0 where w represents the filtered velocity ū. Further note u = Fw where F = −α2∆I + I.

A.1 NS-α

Recall the nonlinear term of the NS-α formulation is

ut + (∇ × u) × w + ∇p − ν∆u = f. (A.1)

Test (A.1) with ei for i = 1, 2, 3. After applying the space–time divergence theorem and rearranging some we
get

(ut , ei) + ((∇ × u) × w, ei) + ν (∇u, ∇ei) = (f, ei) . (A.2)

Assuming ν = f = 0, (A.2) simplifies into

d
dt (u, ei) + ((∇ × u) × w, ei) = 0.

If the nonlinear term is equal to zero, then we will have momentum conservation. We now check this:

((∇ × u) × w, ei) = (∇ × (w × ei), u)
= ((∇ ⋅ ei)w, u) − ((∇ ⋅ w)ei , u) + (ei ⋅ ∇w, u) − (w ⋅ ∇ei , u)

where the above two equalities come from vector identities. Also note that because ei is a vector of scalars,
((∇ ⋅ ei)w, u) = (w ⋅ ∇ei , u) = 0. This leaves us with

((∇ × u) × w, ei) = − ((∇ ⋅ w)ei , u) + (ei ⋅ ∇w, u)
which we cannot conclude is zero, hence we cannot say that the NS-α formulation preserves momentum.

For angular momentum, we test (A.1) with φi and the algebra works out similar to momentum,

((∇ × u) × w, φi) = ((∇ ⋅ φi)w, u) − ((∇ ⋅ w)φi , u) + (φi ⋅ ∇w, u) − (w ⋅ ∇φi , u) .
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Since ∇ ⋅ φi = 0 for i = 1, 2, 3, we have
((∇ ⋅ φi)w, u) = 0.

Also recall using (3.15) in Theorem 3.3, we have

(w ⋅ ∇φi , u) = 0.
This gives us

((∇ × u) × w, φi) = − ((∇ ⋅ w)φi , u) + (φi ⋅ ∇w, u) .
Much like with momentum, we cannot conclude that this quantity is zero, and we expect it is not zero.

A.2 Leray-α

Recall the nonlinear term of the Leray-α formulation is

ut + w ⋅ ∇u + ∇p − ν∆u = f. (A.3)

We test (A.3) with ei for i = 1, 2, 3 and integrate. Similar to (A.2)

(ut , ei) + (w ⋅ ∇u, ei) + ν (∇u, ∇ei) = (f, ei) . (A.4)

Assuming ν = f = 0, (A.4) simplifies to

d
dt (u, ei) + (w ⋅ ∇u, ei) = 0.

If the nonlinear term is equal to zero, thenwewill havemomentum conservation. Using (2.6) on the nonlinear
term we get

(w ⋅ ∇u, ei) = − (w ⋅ ∇ei , u) − ((∇ ⋅ w)u, ei)
= − ((∇ ⋅ w)u, ei)

which is not zero when ∇ ⋅ w ̸= 0. Hence momentum is not necessarily conserved.
For angular momentum we test (A.3) with φi for i = 1, 2, 3 and it simplifies to

d
dt (u, φi) + (w ⋅ ∇u, φi) = 0.

Now similarly to the momentum proof, we have for the nonlinear term

(w ⋅ ∇u, φi) = − (w ⋅ ∇φi , u) − ((∇ ⋅ w)u, φi)
= − ((∇ ⋅ w)u, φi)

where the first term disappears by applying (3.15) similarly to Theorem 3.3 (and the angular momentum proof
for NS-α in Appendix A.1). Thus the nonlinear term does not vanish, so angular momentum is not conserved.
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