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Abstract

We analyze a number of natural estimators for the optimal transport map between two
distributions and show that they are minimax optimal. We adopt the plugin approach: our
estimators are simply optimal couplings between measures derived from our observations, ap-
propriately extended so that they define functions on R?. When the underlying map is assumed
to be Lipschitz, we show that computing the optimal coupling between the empirical measures,
and extending it using linear smoothers, already gives a minimax optimal estimator. When the
underlying map enjoys higher regularity, we show that the optimal coupling between appropri-
ate nonparametric density estimates yields faster rates. Our work also provides new bounds
on the risk of corresponding plugin estimators for the quadratic Wasserstein distance, and we
show how this problem relates to that of estimating optimal transport maps using stability ar-
guments for smooth and strongly convex Brenier potentials. As an application of our results, we
derive central limit theorems for plugin estimators of the squared Wasserstein distance, which
are centered at their population counterpart when the underlying distributions have sufficiently
smooth densities. In contrast to known central limit theorems for empirical estimators, this
result easily lends itself to statistical inference for the quadratic Wasserstein distance.

1 Introduction

Optimal transport maps play a central role in the theory of optimal transport (Rachev and Riischen-
dorf, 1998; Villani, 2003; Santambrogio, 2015), and have received many recent methodological ap-
plications in statistics and machine learning (Kolouri et al., 2017; Panaretos and Zemel, 2019).
Given two distributions P and @ with support contained in a set @ C R? an optimal transport
map Tp from P to @ is any solution to the Monge problem (Monge, 1781),

argmin / o = T() |2 dP(z), (1)

TeT(P,Q)

where T (P, Q) is the set of transport maps between P and @, that is, the set of Borel-measurable
functions T : Q — Q such that Ty P := P(T~}(-)) = Q. Equivalently, we write Ty P = Q whenever
X ~ P implies T(X) ~ Q. As we shall see in Section 2, the Monge problem admits a solution Tj
as soon as P is absolutely continuous with respect to the Lebesgue measure.

A wide range of statistical applications involve transforming random variables to ensure they
follow a desired distribution. Optimal transport maps form natural choices of such transformations



when no other canonical choice is available. For instance, optimal transport maps form a useful tool
for addressing label shift between train and test distributions in classification problems, and have
more generally been applied to various domain adaptation and transfer learning problems (Courty
et al., 2016; Redko et al., 2019; Rakotomamonjy et al., 2021; Zhu et al., 2021). A large body of
recent work has also employed optimal transport maps for defining notions of multivariate ranks
and quantiles (Chernozhukov et al., 2017; Hallin et al., 2021; Ghosal and Sen, 2022), and has
applied them to a variety of nonparametric hypothesis testing problems (Shi et al., 2020; Deb and
Sen, 2021; Deb et al., 2021a). We also note their recent uses in distributional regression (Ghodrati
and Panaretos, 2021), generative modeling (Finlay et al., 2020; Onken et al., 2021), fairness in
machine learning (Gordaliza et al., 2019; Black et al., 2020; de Lara et al., 2021), and in a wide
range of statistical applications to the sciences (Read, 1999; Wang et al., 2011; Schiebinger et al.,
2019; Komiske et al., 2020).

An important question arising in many of these applications is that of estimating the optimal
transport map between unknown distributions, based on independent samples. The aim of this
paper is to develop practical estimators of optimal transport maps achieving near-optimal risk.
Specifically, given i.i.d. samples X1,..., X, ~ P and Yi,...,Y,, ~ @, we derive estimators Ty,
which achieve the minimax rate of convergence', under the loss function

om0l = [ o)~ To(0) PP ®

The theoretical study of such estimators was recently initiated by Hiitter and Rigollet (2021), who
proved that for any estimator 7}, with n = m,

~ _ a 1
SP}BEHTnm - TOHiQ(P) 2 0 Ty o 3)

where the supremum is taken over all pairs of distributions (P, Q) admitting densities bounded away
from zero over a compact set €2, for which T lies in an a-Hé6lder ball for some o > 1, and satisfies a
key curvature condition A1()\) which we define below. The lower bound (3) is reminiscent of, but
generally faster than, the classical n=2¢/(22+d) minimax rate of estimating an a-Holder continuous
nonparametric regression function (Tsybakov, 2008), and is shown by Hiitter and Rigollet (2021)
to be achievable up to a polylogarithmic factor. Nevertheless, their estimator is computationally
intractable in general dimension, and their work leaves open the question of developing practical
optimal transport map estimators which achieve comparable risk.

In this paper, we establish the minimax optimality of several natural and intuitive estimators
of optimal transport maps, several of which have already been proposed in the statistical optimal
transport literature, but have resisted sharp statistical analyses thus far. We focus on the following
two classes of plugin estimators.

(i) Empirical Estimators. When no smoothness assumptions are placed on P and @, it is
natural to study the plugin estimator based on the empirical measures

1 — 1 &
i=1 j=1

Here and throughout, minimax rate-optimality is tacitly understood up to polylogarithmic factors.



(i)

In the special case n = m, there is an optimal transport map 7, from P, to Q;,, and more
generally there is an optimal coupling of these measures. While the in-sample estimator Ty,
is only defined over the support of P,, we readily obtain estimators defined over the entire
domain by casting the extension problem as one of nonparametric regression. We show how
linear smoothers and least-squares estimators can be used to interpolate T;,,,, leading to an
estimator T\nm defined over ). Under some conditions, fnm achieves the minimax rate for
estimating Lipschitz optimal transport maps 7j.

Smooth Estimators. In order to obtain faster rates of convergence when P and ) admit
smooth densities p and ¢, we next analyze the risk of the unique optimal transport map
between kernel or wavelet density estimators of p and ¢. In contrast to our empirical optimal
transport map estimators, we show that such smooth plugin estimators are able to take
advantage of additional regularity of the densities p and ¢, and achieve minimax-optimal
rates when these densities are Holder smooth.

While our emphasis is on optimal transport maps, an equally important target of estimation is the
optimal objective value in the Monge problem (1), which gives rise to the squared 2-Wasserstein
distance W2(P, Q) (defined formally in Section 2). Our optimal transport map estimators natu-
rally yield estimators for the Wasserstein distance, and we provide upper bounds on their risk, and
derive limit laws, as a byproduct of our study.

Our Contributions. The primary contributions of this paper are summarized as follows.

(i)

In Sections 3 and 4, we develop new stability bounds which relate the risk of plugin transport
map estimators to the plugin density estimation risk, as measured in the Wasserstein distance.
These stability bounds are quite general and enable the analysis of flexible, practical transport
map estimators. The risk of density estimation under the Wasserstein distance has been
extensively studied (Weed and Berthet, 2019; Divol, 2021), and our stability bounds enable
us to leverage this past work. Additionally, our stability bounds enable the analysis of plugin
estimators of the Wasserstein distance, once again relating the risk in this problem to the
plugin density estimation risk.

We build on our stability bounds to analyze the risk of empirical, kernel-based and wavelet-
based transport map estimators in both the one-sample setup (where the source distribution is
known exactly, and the target distribution is sampled) and the two-sample setup (where both
the source and target distributions are sampled). The rates we obtain are minimax optimal.
For example, suppose that T » 1s the optimal transport map from P to @n, where @n is a
wavelet-estimator over the domain [0,1]¢. Then, whenever P and @ admit (o — 1)-Holder
densities and satisfy several additional conditions, we show that,

n_Q(an{Hd’ d>3
-~ 2
E||T0 = To|[2py S { (logn)?/n, d=2 (4)
1/n, d=1.

As we explain in Section 2, the Holder smoothness of Tj is typically expected to be of one
degree greater than that of p and ¢, and thus our estimator achieves the minimax lower



bound (3) when these densities are (o — 1)-Hélder smooth, for any a > 17. In the two-
sample setting, we develop analogous minimax-optimal analyses, for the empirical plugin
estimator (Propositions 13-15) as well as for kernel-based and wavelet-based plugin estimators
(Theorems 17-18) when P and @ admit Holder-smooth densities. In the latter case, as we
discuss further in the sequel, we avoid complications that arise in the optimal transport
problem due to boundary effects by working over the d-dimensional flat torus.

(iii) In each of the above settings, we complement our results with upper bounds on the risk of
plugin estimators of the Wasserstein distance. For instance, in the smooth setting discussed
above, we show that,

2a
~ 1)\ 2(a—D)+d 1
E|W3(P,Qn) —W3(P,Q)| < | = V—. 5
WHRQ) - WPl 5 () = )
We also develop analogous results in the one and two-sample settings, for various empirical
and smooth plugin estimators.

(iv) We build upon these estimation results to address inference for Wasserstein distances in the
high-smoothness regime 2(« + 1) > d. We show in Section 5.1, under regularity conditions,
that whenever P # @, there exists o > 0 such that

\/E<W22(P, 0,) — W2(P, Q)) w N(0,02), asn — oco. (6)

We also develop analogous results in the two-sample setting. To the best of our knowledge,
these are the first central limit theorems for a plugin estimator of the Wasserstein distance
which is centered at its population counterpart, for absolutely continuous distributions P and
@ in arbitrary dimension. We further show that the variance o2 of the limiting distribution

can be estimated using our transport map estimators, leading to an asymptotic confidence
interval for W2(P, Q).

(v) We also develop the semiparametric efficiency theory for the Wasserstein distance functional.
In Section 5.2, we derive the efficient influence function of the Wasserstein distance, derive
asymptotic local minimax lower bounds, and show that our plugin Wasserstein distance esti-
mators are asymptotically efficient in the high-smoothness regime.

Related Work. The two recent works of Hiitter and Rigollet (2021) and Gunsilius (2021) establish
L?(P) convergence rates for transport map estimators. Gunsilius (2021) derives upper bounds on
the risk of a plugin estimator for Brenier potentials, obtained via kernel density estimation of p
and g. This analysis results in suboptimal convergence rates for the optimal transport map Ty
itself. We show in this work that such plugin estimators do in fact achieve the optimal convergence
rate when the sampling domain is the d-dimensional torus.

Building upon a construction of del Barrio et al. (2020), a consistent estimator of Tj was obtained
by de Lara et al. (2021) under mild assumptions, by regularizing a piecewise constant approximation
of the empirical optimal transport map 7,,. We do not know if quantitative convergence rates can
be obtained for their estimator under stronger assumptions. Beyond these works, a wide range of

2 As discussed in Appendix E of Hiitter and Rigollet (2021), the minimax lower bound (3) also holds under such
smoothness conditions on the densities p and ¢, as opposed to smoothness conditions on 7p.



heuristic estimators have been proposed in the literature (Perrot et al., 2016; Nath and Jawanpuria,
2020; Makkuva et al., 2020), but their theoretical properties remain unknown to the best of our
knowledge.

Rates of convergence for the problem of estimating Wasserstein distances have arguably received
more attention than that of estimating optimal transport maps. Characterizing the convergence
rate of the empirical measure under the Wasserstein distance is a classical problem (Dudley, 1969;
Boissard and Le Gouic, 2014; Fournier and Guillin, 2015; Weed and Bach, 2019; Lei, 2020) which
immediately leads to upper bounds on the convergence rate of the empirical plugin estimator of the
Wasserstein distance. While such upper bounds are generally unimprovable (Liang, 2019; Niles-
Weed and Rigollet, 2019), they have recently been sharpened by Chizat et al. (2020) and Manole
and Niles-Weed (2021) when P # @, and we employ these results to bound the convergence rates
of our empirical optimal transport map estimators in Sections 3.2 and 4.2. Though the empirical
plugin estimator of the Wasserstein distance is minimax optimal up to polylogarithmic factors under
no assumptions on P and @, it becomes suboptimal when P and ) are assumed to have smooth
densities. Weed and Berthet (2019) derive the minimax rate of estimating smooth densities under
the Wasserstein distance, and we build upon their results, together with those of Divol (2021), to
characterize the risk of our density plugin estimators (cf. Sections 3.3, 4.3, and 4.4).

Central limit theorems for the empirical quadratic cost I/V22(Pn7 Q) around its expectation have
been derived by del Barrio and Loubes (2019) under mild conditions on the underlying distributions.
As we discuss in Section 5.1, however, the centering sequence EWZQ(Pn, Q) in these results cannot
generally be replaced by its population counterpart W2(P,(Q), which is a barrier to their use
for statistical inference. Key exceptions are obtained when P and @ are one-dimensional (Munk
and Czado, 1998; Freitag and Munk, 2005) or countable (Sommerfeld and Munk, 2018; Tameling
et al., 2019), in which case non-degenerate limiting distributions for the process Wy (P, Qm) —
Wy (P, Q) are known up to suitable scaling. In contrast, our work derives central limit theorems
with desirable centering for any absolutely continuous distributions P and ) admitting sufficiently
smooth densities.

Concurrent Work. During the final stages of preparation of the first version of our manuscript,
we became aware of the recent independent work of Deb et al. (2021b), which bounds the risk
of certain plugin optimal transport map estimators that are closely related to those in our work.
In particular, assuming for simplicity that n = m, they show that an estimator derived from
the empirical plugin optimal transport coupling achieves the n=(373) convergence rate under the
squared L?(P,) loss up to polylogarithmic factors. Our work establishes an analogous result using
a distinct proof, but further shows that empirical estimators achieve this rate in squared L?(P)
norm, once suitably extended using nonparametric smoothers. We also sharpen this result to the
rate n~(1"3) under additional conditions. Deb et al. (2021b) also analyze the convergence rate
of plugin estimators based on wavelet and kernel density estimation. Their work shows that such

estimators can achieve, for instance, the faster rate n_<%vm), when the underlying densities
lie in a (o — 1)-Holder ball for some o > 1. While this upper bound illustrates an improvement
over empirical estimators in the presence of smoothness, it scales at a quadratically slower rate
than the minimax rate (3). In contrast, our work shows that wavelet density plugin estimators

_ 2
do in fact achieve the minimax rate n (1\/“2(&*1)) (up to a polylogarithmic factor when d = 2).
The current version of our manuscript extends this result to kernel density estimators, using a
significantly different proof strategy than Deb et al. (2021b). Finally, we emphasize that our sharp



analysis of estimators for the Wasserstein distance allows us to deduce that their bias is of lower
order than their variance when 2(« + 1) > d, which is a key component in our derivation of their
limiting distribution. Indeed, our results in Section 5 on statistical inference for the 2-Wasserstein
distance cannot be deduced from the work of Deb et al. (2021b).

Notation. For any a,b € R, we write a V b = max{a, b} and a A b = min{a,b}, ay = a V0. If
a > 0, |a] and [a] denote the respective floor and ceiling of a. The Euclidean norm on R? is
denoted ||-||, and the ¢, norm of a sequence (an),>1 C R is written ”(an)nZIHeP = (Xn>1 |an|P)L/P

for all 1 < p < co. Given a set €, which is either a closed subset of R? or the d-dimensional flat
torus Q = T¢ := R%/Z?, and given real numbers o > 0, s € R\ {0}, 1 < p,q < oo, the Hélder
spaces C%(Q2), Besov spaces B, ,(£2), homogeneous Sobolev spaces H#(Q), inhomogeneous Sobolev
spaces H*((2), and their respective norms ||-[l¢a(q), |- HBS L) II HHé X [l 7 (> are defined in
Appendix A. We drop the suffix {2 when the underlymg space can be understood from context. We

also define, for any M,~ > 0,

Co(: M) = { € C(Q) : [[flleay < M}, ™)
€1 M.7) = {f € CY(Q) ¢ | fllenqay < M. f > 1/ over 0} ®)

Furthermore, C>(2) denotes the set of real-valued functions on 2 which are differentiable up
to any order, and C°(f2) denotes the set of compactly-supported functions in C>(€2). Given a
measure space (£, F,v), LP(v) denotes the Lebesgue space of order 1 < p < oo, endowed with
the norm || f{| 5,y = (Jo |f(z)[Pdv(x))'/P, for any measurable function f : Q — R. We also write

Lh(v) = {f € LP(v) : [ fdv = 0}. When v is the Lebesgue measure £ on  C R?, we write LP(Q)
(or LH(£2)) instead of LP(L) (or LE(L)). We adopt the same convention when  C T¢, in which case,
by abuse of notation, £ denotes the standard Haar measure over T¢. We often write | f instead
of [ fdL. Given T : Q — €, we write by abuse of notation ||T||z2(py = ([ |T(z)||*dP(x))"/2. For
any set X and f: X — R, we Write Hf”oo = sup,cy | f(z)|. The Fourier transform of a function
K € LY(R?) is denoted F[K fRd e=2miw ¢y for all ¢ € R For any integer B > 1, the
permutation group on [B] = {1 ,B} is denoted Sp. The diameter of a set 2 C RY is denoted
diam(Q) = sup{|lz —y| : =,y € Q}7 and its interior and closure are respectively denoted Q° and
Q. For all x € R? and € >0, B(z,e) = {y € R : |z —y|| < e}. Given sequences (a,)52; and
(bn)oo, we write an < b, if there exists C' > 0 such that a, < Cb, for all n > 1, and we also
write a, < by, if b, < a, < by,. The constant C' is always permitted to depend on the dimension
d, the domain (2, and additional problem parameters, whenever they are clear from context. We
sometimes emphasize the latter case by using the symbols S¢; ¢y, OF X¢, ¢,...., indicating that the
suppressed constants depend on the problem parameters cq,co,. ...

2 Background on Optimal Transport

2.1 The Quadratic Optimal Transport Problem over R¢

We provide a brief background on the optimal transport problem over R? with respect to the
squared Euclidean cost function, and direct the reader to Villani (2003); Santambrogio (2015) for
further details. To simplify our exposition, we assume throughout the rest of the paper, except
where otherwise specified, that all measures have support contained in a set Q C R? satisfying the



following condition.
(S1) Q is a compact set such that Q C [0,1]%.

Notice that once 2 is assumed compact, the final assumption in condition (S1) can always be
guaranteed by rescaling. Let P(Q2) denote the set of Borel probability measures with support
contained in Q, and Pac(2) the subset of such measures which are absolutely continuous with
respect to the Lebesgue measure on R?. As we shall recall in Theorem | below, for any P € P,.(Q)
and @ € P(£2) the Monge problem (1) admits a minimizer T, which is uniquely defined P-almost
everywhere. The Monge problem may, however, be infeasible when the absolute continuity condition
on P is removed. This observation motivated Kantorovich (1942, 1948) to develop the following
convex relaxation of the Monge problem,

argmin / iz — gl dr(z, ). (9)
well(P,Q)

known as the Kantorovich problem, where II( P, Q) denotes the set of joint distributions on 2 with
marginal distributions P and (), known as couplings of P and (). That is,

(P,Q) ={n c P(Q?) :7(- x Q) = P,n(2 x-) = Q}.

Notice that the Kantorovich problem is always feasible since P ® @ € II(P, Q). It can be shown
in our setting that a minimizer 7 in equation (9) always exists (Theorem 4.1, Villani (2008)), and
is called an optimal coupling. In the special case where 7 is supported in the graph of a map
Tp : Q© — €, it must be the case that Ty € T (P, Q) due to the marginal constraints in the definition
of II(P, @), and it must then follow that T is precisely an optimal transport map from P to Q.
As we shall elaborate below, this situation turns out to characterize all optimal couplings when
P € Poe(92), and for such measures the Monge and Kantorovich problems yield equivalent solutions.

While an optimal coupling represents a transference plan for reconfiguring P into @, the corre-
sponding optimal value of the objective function (9) represents the optimal cost of such a reconfigu-
ration, which provides an easily interpretable measure of divergence between P and Q). Specifically,
it gives rise to the 2-Wasserstein distance,

warQ) = (_int [ o=l anta y>) | (10)

The above problem is an (infinite-dimensional) convex program with linear constraints, and it
admits a dual maximization problem, known as the Kantorovich dual problem, given by

W2(P,Q) = dP dQ, 11
2(P.Q) (;5);&/@1» +/¢Q (1)

where K is the set of pairs (¢, 1) € L1(Q) x L1(Q) such that ¢(z) +(y) < ||z — y||* for all z,y € Q.
In the present setting of the quadratic optimal transport problem over the compact set €2, it can
be shown that strong duality indeed holds in equation (11), and that the supremum is always
achieved by some pair (¢g, 1) € K. Any such pair of functions is called a pair of Kantorovich
potentials. In this case, notice that (¢, ¢§), with ¢§(y) = infyeq { ||z — y|I> - go(z)}, is itself a
pair of Kantorovich potentials, since replacing 19 by ¢§ can only increase the objective value (11),



while retaining the constraint (¢p,¢§) € K. If we define ¢g = ||-||* — 260, then ¢§ = ||-||* — 245,
where for any f: Q — R,

f(y) =sup {(z,y) — f(z)}, yeq,

€

denotes the Legendre-Fenchel conjugate of f. Under this reparametrization, the Kantorovich dual
problem is equivalent to the so-called semi-dual problem

inf / @dP + / ©*dQ, (12)

w€L(P)

in the sense that g is a solution to the semi-dual problem if and only if (||-||* — 2¢0, [|-||* — 2¢%) is
a solution to the Kantorovich dual problem (11). The significance of the semi-dual problem is in
part due to its connection to the Monge problem, as described by the following result due to Knott
and Smith (1984); Brenier (1991).

Theorem 1 (Brenier’s Theorem). Let P € Pac(2) and Q € P(Q).

(i) There exists an optimal transport map Ty between P and Q which takes the form Ty = Vo
for a convex function ¢y : R* — R which solves the semi-dual problem (12). Furthermore, Ty
1s uniquely determined P-almost everywhere.

(11) If we further have Q € Pac(), then V§ is the (Q-almost everywhere uniquely determined)
gradient of a convex function such that V@S#Q = P, and solves the Monge problem for
transporting Q@ onto P. Furthermore, for Lebesque-almost every x,y € )

Vg o Veo(z) =z, Voo Ves(y) =y.

Brenier’s Theorem implies the aforementioned fact that a unique optimal transport map exists
between any absolutely continuous distribution P and any distribution (), where uniqueness is
always understood in the Lebesgue-almost everywhere sense. It further characterizes this map as
the gradient of an optimal semi-dual potential g, which we refer to as a Brenier potential in the
sequel.

The convexity of g already implies that it will be almost-everywhere twice differentiable.
Further smoothness properties of Brenier potentials, and therefore of optimal transport maps, have
been studied via the regularity theory of partial differential equations of the Monge-Ampere type,
and we refer to De Philippis and Figalli (2014); Figalli (2017) for surveys. In short, denote by
p, q the respective Lebesgue densities of P, Q € Pac(£2), and assume ¢y is in fact everywhere twice
continuously differentiable. Then, the constraint Vo, P = @ implies by the change of variable
formula that ¢g solves the equation

det (Vpp(z)) = O x € Q. (13)

~ a(Veo(@))’

As a direct consequence of equation (13), notice that the Hessian V2pq admits a uniformly bounded
determinant whenever p and ¢ are bounded, and bounded away from zero. This observation leads
to the following simple result noted by Gigli (2011).

Lemma 2. Assume @ € C2(Q2) and v~ < p,q < for some v > 0. Then, there exists a constant
A > 0, depending only on vy and HSDOHC'Z(Q): such that g is \-strongly conver.

8



Lemma 2 shows that, whenever equation (13) has positive and bounded right-hand side, smooth
Brenier potentials are also strongly convex. We shall require this property in Section 3.1 to derive
stability bounds for the L?(P) loss. To further obtain sufficient conditions for the Holder smooth-
ness of g, notice that the Monge-Ampere equation (13) suggests that ¢y admits two degrees of
smoothness more than the densities p and ¢. This intuition indeed turns out to hold true under
suitable regularity conditions on €2, as was established in a series of publications by Caffarelli (1991,
1992a,b, 1996). The following is a summary of these results, as stated by Villani (2008, Chapter
12).

Theorem 3 (Caffarelli’s Regularity Theory). Assume 2 is convex and satisfies condition (S1).
Assume further that there exists v > 0 such that Y~ < p,q < v over Q. Then, the Brenier potential
o 18 unique up to an additive constant, and satisfies the following.

(i) (Interior Regularity) Suppose there exists a > 1, a & N, such that p,q € C*71(Q°). Then
0o € COTHQ°). Moreover, for any open subdomain Y such that ¥ C Q°, there exists a
constant C > 0 depending on v, a, Q, ol Lo ()5 HpHCa—l(Qo) , Hcha—l(Qo) such that

leollga+i(qy < C-

(ii) (Global Regularity) Assume Q admits a C* boundary and is uniformly conver. Assume further
that there exists o > 1, a € N, such that p,q € C*1(Q). Then, pg € CoTH(Q).

Theorem 3(ii) implies that, under suitable conditions, the optimal transport map Tj inherits
one degree of smoothness more than the densities p and ¢ over . Unlike the interior regularity
result of Theorem 3(i), however, Theorem 3(ii) does not imply a uniform bound on |[¢ol|ca+1(q),
and therefore does not preclude the possibility that the latter quantity diverges when p,q vary
in a C*1(Q) ball. Closely related global regularity results have also been established by Urbas
(1997) under slightly stronger conditions, but we do not know if either of these results can be made
uniform up to the boundary in an analogous way to the interior result of Theorem 3(i). Whenever
global uniform regularity results are needed in our development, we sidestep this issue by working
with the optimal transport problem over the torus, for which boundary considerations do not arise.

2.2 The Quadratic Optimal Transport Problem over the Flat Torus

Denote by T¢ = R?/Z9 the flat d-dimensional torus. Specifically, T¢ is the set of equivalence classes
[] = {z +k: ke Z9}, for all z € [0,1)%. Abusing notation, we typically write 2 instead of [z]. T¢
is endowed with the standard metric

dpa(z,y) = min{||z —y + k| : k € 2%}, z,ye T

We identify P(T?) with the set of Borel measures P on R? such that P([0,1)%) = 1 and which
are Z%-periodic, in the sense that P(B) = P(k + B) for all k € Z% and all Borel sets B C R%.
Furthermore, P,.(T%) denotes the subset of measures in P(T?) which are absolutely continuous
with respect to the Lebesgue measure on R?. A function f : T — R is understood to be a function
on R% which is Z%periodic, and we write T : T¢ — T¢ when T is a map from R? to R¢ such that
[T'(x)] = [T(y)] whenever [z] = [y].



The optimal transport problem over T? with the quadratic cost d%d largely mirrors that of the
squared Euclidean cost over R%. Define for all P, Q € Pa.(T?) the Monge problem

argmin/ dzi(z, T(z))dP(z), (14)
TeT(P,Q) JTd

where the integral is understood as being taken over [0,1)?. The Kantorovich problem and its dual
give rise to the squared Wasserstein distance over P(T%),

WiP.Q = it / 2u(,y)dn(z,y) =  sup / odP + / $dQ. (15)

mell(P.Q (ph)eKr

where ICr denotes the set of pairs of potentials (p, 1) € L*(P)x L*(Q) satisfying the dual constraint
o(x) + (y) < d2.(z,y) for all z,y € T?. We abuse notation by writing W to denote both the
2-Wasserstein distance over R? and T¢. Whenever we speak of the optimal transport problem or
Wasserstein distance between two measures P,Q € P(f2), the underlying cost function is tacitly
understood to be || - |* when © C R%, and d2,, when Q = T¢.

As in the Euclidean setting, the Kantorovich duality in the above display is equivalent to a
semi-dual problem, whose solution characterizes the Monge problem. Indeed, the following result
due to Cordero-Erausquin (1999) is an analogue of Brenier’s Theorem, together with additional
properties about the optimal transport problem over T¢.

Proposition 4. Let P € P,.(T) and Q € P(T9). Then, there exists a (P-almost everywhere
uniquely determined) optimal transport map Ty = Vo from P to Q which solves the Monge prob-
lem (14), where pg : R — R is a convex function satisfying the following properties.

(i) |17 /2 — o is Z-periodic.

(ii) To(x + k) = To(z) + k for almost every x € R? and k € Z¢.
(iii) For P-almost all x € RY, ||Tp(z) — x| < diam(T?%) = v/d/2 and ||To(z) — || = dya(z, To(z)).
Assume further that Q € Pac(T?), and denote the respective densities of P,Q by p,q. Then,

v) Vi is the (Q-almost everywhere unique) optimal transport map from @Q to P.
Vi is the (Q-almost h ] timal t t Q to P
(i) (|I-II> = 20, |-1I* = 2¢5) is a pair of optimal Kantorovich potentials in equation (15).

(vii) If oo € C*(RY), then it solves the Monge-Ampére equation

det(Vpo(2))q(Vepo(x)) = p(z), =€ R

In particular, if y~' < p,q < v for some v > 0, then @q is A-strongly convez, for some
constant A > 0 depending only on v and ||¢o||c2(ra)-

With Proposition 4 in place, regularity properties of Brenier potentials ¢y may be deduced
from smoothness conditions on p,q. The following result was stated by Cordero-Erausquin (1999)
without explicit mention of the uniformity of the Holder norms appearing therein, but can readily
be made uniform using Caffarelli’s interior regularity theory (Theorem 3(i); Figalli (2017), Chapter
4). We also note that this result was stated by Ambrosio et al. (2012) in the special case d = 2.
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Theorem 5. Let P,Q € P(T?) be absolutely continuous with respect to the Lebesgue measure, with
respective densities p,q satisfying v~ < p,q < v for some v > 0. Assume further that p,q €
Co~Y(T?) for some o > 1. Then, there exists a constant C > 0 depending only on «,~, [Pllca—1(Ta)
and ||qllga—1(pay such that, ||@ollcat1(rey < C.

3 The One-Sample Problem

Throughout this section, we let P € P,e(€2) denote a known distribution, and @ € Pac(Y) denote
an unknown distribution from which an i.i.d. sample Y7,...,Y,, ~ @ is observed. Let p and ¢
denote their respective densities, and let Ty = Vo denote the unique optimal transport map
from P to Q, with respect to a convex Brenier potential pg. We also denote by ¢o = |- || — 2¢0
and 1y = ||-||* — 2% the Kantorovich potentials induced by ¢g. We assume condition (S1) holds
throughout this section, and we may therefore assume without loss of generality that —d < ¢g <0
and 0 <y < d over  (Villani (2003), Remark 1.13).

Unlike the two-sample case which we discuss in Section 4, there exist canonical estimators of
To when the source distribution P is known. Indeed, since P is absolutely continuous, Brenier’s
Theorem implies that there exists a unique optimal transport map T between P and any estimator
@ of @, and we analyze two such examples below. We first take @ to be the empirical measure of
(@ in Section 3.2, and show that the resulting estimator T achieves the minimax risk of estimating
Lipschitz optimal transport maps, under essentially no smoothness conditions on the underlying
measures. In Section 3.3, we then take @ to be a density estimator, leading to an estimator T
achieving faster rates of convergence when () admits a smooth density. In both cases, our analysis
will hinge upon known upper bounds on the risk of @ under the Wasserstein distance, by invoking
a key stability bound which we turn to first.

3.1 A General Stability Bound
The main technical result of this section will be stated under the following curvature condition.

A1()\) The Brenier potential ¢ is a closed convex function such that ¢y € C2(Q) and (1/)\)I <
V2p0(z) = M4 for all z € Q.

Condition A1()\) implies in particular that Ty is A-Lipschitz over €. As noted in Lemma 2,
whenever P and @ both admit densities satisfying v~! < p,q < 7 over €, for some v > 0, the
second inequality of A1()\) is sufficient to imply the first, up to inflating A by a factor depending

on «. Under this condition, we prove the following stability bounds in Appendix C.

Theorem 6. Let P,Q € Pac(SY), and assume condition A1()\) holds for some A > 0. For any
Q € P(Q), let T = V@ be the unique optimal transport map from P to Q Then,

1 - . . .
JIT = Tollza(p) < W3 (P,Q) = W3 (P, Q) — /%d(Q - Q) < AWF(Q, Q).
We make several remarks regarding Theorem 6.

e Caffarelli’s regularity theory (cf. Theorem 3) provides sufficient conditions on the smoothness
of P,Q and 0f) for assumption A1(\) to hold, albeit for a non-universal constant A\ > 0. We
note, however, that our assumption is considerably weaker. For instance, condition A1(\) is
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satisfied whenever P and () differ by a location transformation, irrespective of the regularity
or positivity of their Lebesgue densities.

e We show in Section 5.2 that, under weaker assumptions than those of Theorem 6, the map
Yo — Egto(Y)] is the efficient influence function of the functional @ € P(Q) — W3 (P, Q)
with respect to the tangent space L3(Q). It follows that the linear functional

L) = / (0 — Q) (16)

is the first-order term in the von Mises expansion of W2(P, @) around W2 (P, Q). The upper
bound of Theorem 6 implies that the remainder of this expansion decays quadratically in the
topology induced by Wa, a fact which we shall use to derive upper bounds and limit theorems
for plugin estimators of the Wasserstein distance. This fact combined with the lower bound
of Theorem 6 further implies the following remarkable equivalence,

1 ~ ~ ~
T = Tyl 2y < Wa(@.Q) < IIT = T2 (1)

Notice that the second inequality always holds due to the fact that (f, Ty)x P is a coupling
of @ and Q. Equation (17) thus shows that the transport cost of this coupling is within a
universal factor of being optimal, when the curvature condition A1()\) is in force. We use this
result to obtain upper bounds on the risk of one-sample plugin estimators T by appealing to
the corresponding risk of () under the Wasserstein distance. We note that weaker analogues
of equation (17), in which the left-hand side admits an exponent greater than unity, have
previously been derived by Mérigot et al. (2019); Delalande and Mérigot (2021). Those works
adopted a weaker assumption than ours, however.

e Suppose that, in addition to the assumptions of Theorem 6, the measures ¢ and @ are
both absolutely continuous with respect to the Lebesgue measure, with respective densities
g and ¢ which satisfy y™' < ¢, ¢ < v over , for some v > 0. In this setting, it was
shown by Peyre (2018) that the 2-Wasserstein distance is equivalent to the negative-order
homogeneous Sobolev norm || - || H-1(Q) in the sense that, under suitable conditions on €2,

’Y_IHZI\_ QH%(A(Q) S WQZ(Qa Q) Sllg - (I||§'{71(Q)~ (18)
Theorem 6 and the above display then imply
1. A A ~
312 = ol o) S W3 (P.Q) = W5 (P.Q) - /%d(@ ~Q) M7~ a1 g
It follows from the upper bound that W2(P,-), when viewed as a functional of g, is Fréchet

differentiable at ¢ in the H~* (Q) topology. It moreover implies that this functional is strongly
convex and smooth with respect to the duality of the spaces H—1(Q) and H'(Q).

e Finally, one may also infer from Theorem 6 and the Kantorovich duality that,
1 ~ 2 ~ x o\ 7 A ~ 2
o IVe = Veullzzpy < [ (po = @)dP + [(p5 —$)dQ < SIVE = Veollzzp).  (19)
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Equation (19) is a direct analogue of a stability bound proven by Hiitter and Rigollet (2021,
Proposition 10), who show that similar inequalities hold when the measure @ appearing in
the above display is replaced by Q. Their result assumes, however, that ¢ itself satisfies
condition A1()). In contrast, we do not place any conditions on the estimator T beyond it
being the optimal transport map from P to ). This will permit our study of transport map
estimators which are potentially nonsmooth but easy to compute, as we show next.

3.2 Upper Bounds for the One-Sample Empirical Estimators

Recall that @, = (1/n) Y ", dy, denotes the empirical measure. Since P is known and absolutely
continuous, a natural estimator for 7T is the optimal transport map T, from P to @, defined by

T, = argmin / |z — T(x)||? dP(x). (20)
TeT(P,Qn)

By Brenier’s Theorem, the minimizer 7}, in the above display exists and is uniquely determined
P-almost everywhere. The optimization problem (20) is sometimes known as the semi-discrete
optimal transport problem, for which efficient numerical solvers are well-studied (Mérigot, 2011;
Levy and Schwindt, 2018).

In view of the stability bound in Theorem 6, the risk of 7;,, may be related to that of the
empirical measure (Q,, under the Wasserstein distance. For instance, from the work of Fournier and
Guillin (2015) we obtain the following bound, under no assumptions beyond (S1),

n71/27 d S 3
EW3(Qn, Q) S fin = { n~2logn, d=4 (21)
n=%/d, d>5.

The following bound on the risk of 7T}, is now an immediate consequence of Theorem 6, together
with the fact that the functional L in equation (16) satisfies E[L(Q,)] = 0.

Corollary 7. Let P,Q € Pac(Q) and assume condition A1()\) holds. Then,
2
EHTn - TOHL2(P) =\ E[Wg(P7 Q'Il) - W22(P7 Q)] =\ EW%(QTU Q) 5 Kp.

When d > 5, Corollary 7 implies that the empirical estimator 7;, achieves the minimax lower
bound (3) for estimating Lipschitz transport maps Tp. On the other hand, when 1 < d < 4, the
rate &, does not improve beyond n~/2, unlike the minimax lower bound (3) of Hiitter and Rigollet
(2021), which scales as fast as 1/n. This observation does not imply that the plugin estimator
T, is minimax suboptimal, since equation (3) holds under stronger assumptions than those of
Corollary 7. In particular, it assumes that these distributions admit densities which are bounded
away from zero, and thus have connected support. In contrast, Corollary 7 applies to measures P
and @ with possibly disconnected support, for which our upper bound of ,, cannot generally be
improved up to a logarithmic factor—similar considerations are discussed for the convergence rate
of the empirical measure by Bobkov and Ledoux (2019) when d = 1, and more generally by Weed
and Berthet (2019).

Nevertheless, when we further assume that ) has a positive density, the result of Corollary 7
can be strengthened to match the minimax rate of Hiitter and Rigollet (2021) even for d < 4.

13



For instance, it was shown by Ledoux (2019) and references therein that, when @ is the uniform
distribution on [0, 1]¢, Q,, achieves the following faster rate,

n~t, d=1
EW3(Qn,Q) S {ntlogn, d=2 (22)
n*Q/d, d > 3.

Such a result is also known to hold for any measure @) admitting positive density over a compact
subset of the real line (Bobkov and Ledoux, 2019), or over the flat torus (Divol, 2021). Inspired
by the latter result and by the work of Weed and Berthet (2019), we prove an analogous result for
general measures supported on the unit hypercube, at the expense of an inflated polylogarithmic
factor when d = 2.

Corollary 8. Let P,Q € Pac([0,1]%) and assume that condition A1()\) holds. Assume further that
7L < q <5 over [0,1]¢, for some vy > 0. Then,

n~t, d=1
EHT’R_TOHiQ(P) X]E[WZQ(P7Q7L)_W22(P7 Q)] XEW22<QH7Q) rgEn = Ma d:2
n~¥d 4> 3

Under the assumptions of Corollary 8, we deduce that the plugin estimator 7, is minimax
optimal for all d > 1, up to a polylogarithmic factor when d = 2. The scale of this factor is further
discussed following the statement of Theorem 18.

This result also provides a sharper bound on the bias of W(P,Q,) than could have been
deduced from Chizat et al. (2020), who show that the risk of this estimator decays at the rate k,
using distinct techniques. Indeed, Corollaries 7-8 can also be extended to recover the risk bounds
of Chizat et al. (2020) under stronger conditions, though with an improved rate of convergence
when P approaches () in Wasserstein distance.

Corollary 9. Let P,Q € Pac(Y), and assume condition A1()\) holds. Then,
E|W(P,Qn) - W3(P,Q)| S\ EWZ(Qn, Q)+ 172 < ki (23)

If we further assume that Q = [0,1]¢ and v~ < q < over Q for some > 0, then

D=

E}W;(P, Qn) - W22(P7 Q)‘ SA,W Kn + W2(Pa Q)n_ . (24)

Equation (24) exhibits an upper bound on the risk of W.2(P, Q,,) that interpolates between the
fast rate &, when Wo(P,Q) < n~/2, and the rate &, of Chizat et al. (2020), which is minimax
optimal when the distance between P and () is unconstrained (Manole and Niles-Weed, 2021). We
defer the proofs of Corollaries 8-9 to Appendix D.

3.3 Upper Bounds for One-Sample Wavelet Estimators

While the empirical estimator in the previous section achieves the minimax rate of estimating Lip-
schitz optimal transport maps, we do not generally expect it to achieve faster rates of convergence
if Ty is assumed to enjoy further regularity. We instead show that such improvements can be
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achieved when () admits a smooth density g, and when the empirical measure @), is replaced by
the distribution @,, of a density estimator g,. Specifically, define

T, = argmin / |z — T(z)||* dP(z). (25)
TeT(P,Qn

We focus on the case where ¢, is a wavelet density estimator, for which sharp risk estimates under
the Wasserstein distance have been established by Weed and Berthet (2019). In order to appeal to
their results, we assume that the sampling domain is the unit hypercube Q = [0, 1]¢.

We briefly introduce notation from the theory of wavelets, and refer the reader to Appendix A
for a detailed summary and references. To define a basis over the unit cube €2, we focus on the
boundary-corrected N-th Daubechies wavelet system, for an integer N > 2, as introduced by Cohen
et al. (1993). In short, given an integer jo > logy N, their construction leads to respective families
of scaling and wavelet functions

= {5 0< k<20 —1}, W ={d,0<k <20 —1.0€{0,1}7\{0}}, j > o,

such that UPe = dbcy (2 2o \Ifbc forms an orthonormal basis of L2(f2), with the property that ®>°
spans all polynomials of degree at most N — 1 over §). Given a probability distribution @ € P,.(€)
admitting density ¢ € L?(£2), one then has

0= 3 Bet= 3 G+ D Y bt where fe= [ €dQ, €€ v,

£ewbe fedbe J=jo §€\I/;?C

where the series converges at least in L?(Q2). The standard truncated wavelet estimator of ¢ (Kerky-
acharian and Picard, 1992) with a truncation level J,, > jo > 0 is then given by

JIn
G — Z Beg = Z Be¢ + Z Z Be€,  where Bg=/§dQn7 £ ewe,

£ewbe ¢edbe Jj=Jo ge\IJ?C

Notice that ?]ﬁ,,bc) is permitted to take on negative values, in which case it does not define a probability

density. We instead define the final estimator aﬁlbc) in equation (25) by

bc be)
~(be) _ g 1G>

q 20
n f~(bc)I ~(bc) > 0)’

over (. (26)

We drop all superscripts “bc” in the sequel whenever the choice of wavelet system is unambiguous.
Weed and Berthet (2019) bounded the Wasserstein risk of a wavelet density estimator obtained
from a distinct modification of ¢,. By appealing to L° concentration inequalities for wavelet
density estimators (Masry, 1997), we show in Appendix A.4.4 that their result carries over to
the estimator ¢,. Equipped with this result, we arrive at the following bound on the risk of the
estimator fn = ﬁsbc) defined in equation (25), and of the corresponding plugin estimator of the
squared Wasserstein distance. Recall that the Holder balls C¥(Q;-) and C%(€2;-,-) are defined in

equations (7)—(8).
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Theorem 10 (One-Sample Wavelet Estimators). Let P, Q € Pac([0,1]%) admit respective densities
p,q € CO7H([0,1]% M, ~), for some a > 1 and M,y > 0. Let 2/n < nl/(d+2(a=1)),

(i) (Optimal Transport Maps) Assume @q satisfies condition A1(\) for some A > 0. Then, there
exists a constant C > 0 depending on M, A, ~y, « such that the following hold,

1/n, d=1
< CRrn(a), where Rr,(a) = { (logn)?/n, =2 (27)

2a
n_ 2(a—1)+d d> 3.

ISH

ol )

(ii) (Wasserstein Distances) Assume that for some X > 0, @5 € CoT1([0,1]%\). Then, there
exists a constant C > 0 depending on M, \,~, « such that the following hold,

[EWZ(P,Q.) — W3(P,Q)| < CRr(a),

E[WE(P,Qn) - WE(P,Q)* < n

CRTJL(O[) +

Theorem 10 requires smoothness assumptions on both the density ¢ and the potential ¢f); in
particular, the assumption of Theorem 10(ii) requires both ¢ € C*~1(Q) and ¢} € C¥F1(Q2). Caf-
farelli’s regularity theory (Theorem 3) suggests that the former condition on ¢ should be sufficient
to imply the latter condition on ¢, but such results cannot be invoked here due to the lack of
smoothness of the boundary of the unit cube [0, 1]%. Even if the above analysis could be adapted
to a domain €2 with smooth boundary, the lack of uniformity in Caffarelli’s global regularity theory
would prevent the bounds in Theorem 10 from holding uniformly in P and @, in the absence of
a smoothness condition on ¢f. We refer to Appendix E of Hiitter and Rigollet (2021) for related
discussions. In Proposition 43 of Appendix H, we will show that an analogue of Theorem 10 holds
merely under smoothness conditions on p and ¢ when € is the d-dimensional torus T¢, which enjoys
the global regularity result of Theorem 5. Here, instead impose smoothness conditions on both ¢y
and ¢, in which case T\n achieves the minimax rate (3) of estimating an a-Hoélder optimal transport
map.

Theorem 10(ii) also proves that the bias of W2(P, @n) achieves the same convergence rate,
as does its risk when d > 2(a + 1). In the high-smoothness regime d < 2(« + 1), the risk of
WZQ(P, @n), in squared loss, does not generally improve beyond the parametric rate 1/n, except
when Varg[to(Y)] vanishes. Using Lemma 34 in Appendix I3, the latter quantity is bounded above
by W2(P,Q) up to a constant, so Theorem 10(ii) also implies

~ Wy(P,
EWE(P.Qn) = WH(P.Q) Satona Rirae) + P20, (2%)
We briefly highlight the main components of the proof of Theorem 10. Both assertions are

proven by combining the stability results of Theorem 6 with the bound EWZ (@n, Q) £ Rrn(a),
which is stated formally in Lemma 30, and extends a result due to Weed and Berthet (2019).
In particular, Theorem 10(i) follows immediately from the equivalence (17). Our proof of Theo-
rem 10(ii) additionally requires us to analyze the evaluation L(@n) of the linear functional L defined
in equation (16), for which we prove the following.
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Lemma 11. Assume the same conditions as Theorem 10(ii). Then,

~ ~ —2Jpa
E[L(Qn)] = O (2727%),  Var [L(Qn)] = %VarQ[qbo(Y)} +0 (2 - ) ,

where the implicit constants depend only on M,~, A, c.

_ Lemma 11 shows that the bias of L(@n) scales quadratically faster than the traditional bias of
Q. in estimating an (o — 1)-Holder density, which is known to be of order 2=/»(®=1) We obtain the
faster rate 272/ due to the assumed (o + 1)-Holder smoothness of the potential ¢f. The proofs
of Theorem 10 and Lemma 11 are deferred to Appendix E.

4 The Two-Sample Problem

In this section, we turn to analyzing two-sample estimators when both measures P,Q € P,.(Q)
are unknown. As in the one-sample case, we study two classes of plugin estimators. The first
consists of estimators which interpolate the empirical in-sample optimal transport coupling using
nonparametric smoothers. Such estimators will achieve the optimal rate of estimating 7y when it
is Lipschitz. The second class will consist of plugin estimators based on density estimates of P and
@, and will achieve faster rates of convergence when P and () have smooth densities. As before,
our proofs will rely on stability bounds for the two-sample problem, to which we turn our attention
first.

4.1 Two-Sample Stability Bounds

The stability bounds of Theorem 6 admit the following one-sided extension when both measures P
and @) are unknown.

Proposition 12. Let P,Q € Pac(Q), and assume condition A1()\) holds for some X > 0. Then,
for any measures P,(Q € P(2),

0 < W2(P,0) - WA(P.Q) - / dod(P — P) - / bod(@ - Q)
~ R ) (29)
<A Wa(P.P) + W2(Q.Q)

The proof is deferred to Appendix F.1. Similarly to Theorem 6, this result shows that the
remainder of a first-order expansion of W3 (]3, @) around W2(P,Q) decays quadratically in the
Wy topology. Unlike Theorem 6, however, we do not generally expect that the lower bound in
Proposition 12 can be replaced by a squared distance between (P, Q) and (ﬁ, @) for instance,
the lower bound of zero is achieved in equation (29) when P = @ # () = P, even though P
may be arbitrarily far from P in Wasserstein distance. This example shows more generally that
the bivariate functional W3 (-,-) is not strictly convex over Pac(£2) X Pac(£2), unlike the univariate
functional W (P,-) for a fixed absolutely continuous measure P (cf. Theorem 6 and Proposition
7.19 of Santambrogio (2015)).

These observations do not preclude the possibility of replacing the lower bound in Proposition 12
by A~ 1HT T0||L2 (P)’ for T the optimal transport map between P and Q We were not able to
derive such a result under the stated assumptions, except when these estimators are taken to be
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empirical measures. We describe this special case next, and show how it may be used to derive
estimators of Lipschitz optimal transport maps 1.
4.2 Upper Bounds for Two-Sample Empirical Estimators

Let Xy,..., X, ~ Pand Yy,...,Y,, ~ @ denote i.i.d. samples, and define the empirical measures
Py = (1/n) 370, 0x, and @ = (1/m) -7, dy;. Though the Monge problem between P, and @,

can be infeasible when n % m, the Kantorovich problem is always feasible, and takes the following
form
n m
T € argminz ij | X: — YJH2 ,
mE€Qnm 21 j=1

where Q,,,, denotes the set of doubly stochastic matrices 7 = (771-]- 1 <i<n, 1<j<m),
satisfying m;; > 0, 331y m; = 1/m and 0, m; = 1/n. We shall formulate the main stability
bound of this section in terms of the quantity

n m
Apm =Y Y 73 ITo(X3) = Y51
i=1 j=1

Recall that (k,) and (K, ) denote the sequences defined in equation (21) and Corollary 8 respectively.
We obtain the following result, which we prove in Appendix [.3.

Proposition 13. Let P,Q € Pac(2), and assume A1()\) holds for some X\ > 0. Then,
E[Aun] =) E[WE(Pa, Q) = WE(P,Q)] S Fnrm:

If, in addition, Q = [0,1]? and there exists v > 0 such that v~* < p,q <~ over Q, then,
ElAun] =<3 E[WE(Pa Q) = WE(P.Q)] Sy R

To gain intuition about Proposition 13, it is fruitful to consider the special case n = m. In this
setting, there exists an optimal transport map 7;, from P, to @),, and we may take

We then have A, = ||T,, — TOH%Q(PTL), and Proposition 13 implies
E Ty = Tol32p,) =< E[WE (P, Qu) — WE(P,Q)]. (30)

Equation (30) is a two-sample analogue of Corollary 7, and shows that the L?(P,) risk of the in-
sample transport map estimator is of same order as the bias of the two-sample empirical optimal
transport cost. While the estimators T,, and 7 are only defined over the support of P,, we next
show how they may be extended to the entire domain 2. We begin with an estimator inspired by
the classical method of nearest-neighbor nonparametric regression (Cover, 1968).

One-Nearest Neighbor Estimator. Define the Voronoi partition generated by Xi,..., X, as

Vi={eeQlle- X <lle—Xill, Vi#i}, j=1...n. (31)
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Then, we define the one-nearest neighbor estimator of Ty by

n m
TN@) =" (n@i)I(z € V)Y;, z€Q. (32)
i=1 j=1
In order to state an upper bound on the convergence rate of fﬁﬁN, we place the following mild

condition on the support €. Recall that £ denotes the Lebesgue measure on R,

(S2) Q is a standard set, in the sense that there exist €y, 09 > 0 such that for all z €  and
e € (0,¢e0), we have L(B(z,e) N Q) > §oL(B(z,¢€)).

Condition (S2) arises frequently in the literature on statistical set estimation (Cuevas and Fraiman,
1997; Cuevas, 2009), and prevents 2 from admitting cusps. Under this condition, we arrive at the
following upper bound, which we prove in Appendix G.1.

Proposition 14. Let P € P,.(Q) admit a density p such that v~ < p < v over Q, for somey > 0,
and let Q € Pac(Y). Assume conditions A1()\) and (S1)-(S2) hold. Then,

-~ 2
EHT&EN - T0HL2(p) 5/\7%60,60 (log ”)Q’fn/\m-
Furthermore, if Q = [0,1]% and we additionally assume that v~ < q <~ over Q, then
=~ 2 _
EHTégN - TOHLQ(P) 5)\,—\/,50,60 (log n)Q"fn/\m'

Proposition 14 proves that the one-nearest neighbor estimator achieves the minimax rate in
equation (3), up to a polylogarithmic factor. This result is in stark contrast to standard risk bounds
for K-nearest neighbor nonparametric regression, for which the number K of nearest neighbors
is typically required to diverge in order to achieve the minimax estimation rate of a Lipschitz
continuous regression function (Gyorfi et al., 2006). Though increasing K reduces the variance of
such estimators, in our setting, Propositions 13-14 suggest that the variance of ﬁ%}le is already
dominated by its large bias, stemming from that of the in-sample coupling 7, thereby making it
sufficient to use K = 1 to obtain a near-optimal rate. While the one-nearest neighbor estimator
is simplest to analyze, it is natural to expect that any linear smoother with sufficiently small
bandwidth may be used to smooth the in-sample coupling 7,,, and lead to a similar rate.
Convex Least Squares Estimator. Though nearly minimax optimal, the estimator ﬁ%N is
typically not the gradient of a convex function, and is therefore not an admissible optimal transport
map in its own right. We next show how this property can be enforced using an estimator inspired
by nonparametric least squares regression. Let ) denote the class of functions ¢ : 2 — R which
are convex and have A-Lipschitz gradients V. Define the least squares estimator

n m
T — vekS | where 355 € argminz Zﬁij Y — Vo(X)|?.
YEIT N i=1 j=1

The computation of the above infinite-dimensional optimization problem can be reduced to that
of solving a finite-dimensional quadratic program, by a direct extension of well-known solvers for
shape-constrained nonparametric regression with Lipschitz and convex constraints (cf. Seijo and
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Sen (2011), Mazumder et al. (2019), and references therein). We obtain the following upper bound
by a simple extension of Proposition 14.

Proposition 15. Proposition 1/ continues to hold when fégN is replaced by T\,I;Sl

4.3 Upper Bounds for Two-Sample Wavelet Estimators

We next study two-sample estimators under stronger smoothness assumptions on P and Q). As
discussed in Section 4.1, we do not know of a two-sample stability bound for the L?(P) loss which
is analogous to Theorem 6, and only places regularity conditions on the population potential ¢q.
Therefore, unlike Theorem 10, in which smoothness conditions on ¢ and ¢ were sufficient to
obtain sharp upper bounds, in the two-sample case our analysis will also rely on the smoothness
of estimators Ppn, of the potential pg. In order to quantify their regularity, we shall require a
uniform analogue of Caffarelli’s global regularity theory (Theorem 3(ii)). Since we are unaware of
such results for generic compact domains  C R%, we instead assume throughout the remainder
of this section that  is taken to be the d-dimensional torus T¢, thus allowing us to appeal to
Theorem 5. We note that such periodicity constraints are commonly imposed in nonparametric
estimation problems to mitigate boundary issues (Efromovich, 1999; Krishnamurthy et al., 2014;
Han et al., 2020). In many such cases, an alternative is to assume that the underlying probability
measures place sufficiently small mass near the boundary. Such an assumption cannot be used in
our context since, as before, we shall require all densities to be bounded away from zero throughout
their support. Optimal estimation rates under Wasserstein distances differ dramatically in the
absence of a density lower bound condition (Bobkov and Ledoux, 2019; Weed and Berthet, 2019),
and we do not address this setting here.

Recall the background on the quadratic optimal transport problem over T¢ in Section 2.2. Let
P,Q € Pac(T?) be absolutely continuous measures admitting respective Z%periodic densities p and
q. We now denote by Ty the optimal transport map from P to (), with respect to the cost d%d. As
outlined in Proposition 4, T} is the gradient of a convex potential o : R — R, and is uniquely
determined P-almost everywhere. We continue to denote by ¢g = ||-||* — 20 and 19 = ||-]|* — 25 a
corresponding pair of Kantorovich potentials. Let Xy,..., X, ~ P and Y1,...,Y;;, ~ Q denote i.i.d.
samples, which are independent of each other, and let ]3n, @m respectively denote the distributions
induced by density estimators Dy, g of p, q over T¢, to be defined below. Our aim is to bound the
risk of the estimator

~

Frm = V@nm = argmin / @24(T (), 2)dP, (). (33)
TET(Pn,Qm)

Note that ﬁn and @m are absolutely continuous, thus there indeed exists a unique solution to the
above minimization problem, by Proposition 4. We continue to quantify the risk of T,,, in terms
of the L?(P) loss

-~ 2 -~ 2
| B = o2 = /1I | T (@) — To(a)|dP ().
Notice that the integrand on the right-hand side of the above display is Z%-periodic by Proposi-
tion 4(ii) and by the optimality of Ty, and Tp, thus it indeed defines a map T? — R. As before, we

shall also obtain upper bounds on the bias and risk of Wg(ﬁn, @m) as a byproduct of our proofs.
Indeed, our main results hinge upon the stability bounds derived in previous sections, which can
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easily be shown to hold in the present context.

Proposition 16. Assume ¢q satisfies condition A1()\), in the sense that po is a closed convex
function over R? satisfying A1 1; < V2po(x) < My for all z € RY. Then, Theorem ¢ and Proposi-
tion 12 hold with Q = T¢.

As in the one-sample case, we focus on the situation where ﬁn and @m are the distributions of
wavelet density estimators. Unlike the boundary-corrected wavelet system used in Section 3.3, it
will be convenient to introduce a simpler basis which guarantees that the density estimators are
periodic. Specifically, we describe in Appendix A.2.2 how the standard Daubechies wavelet system
may be periodized to obtain a set of Z%periodic functions

oo
TP = {13 u [ J OB, where WP = {0 0<k <21 e {0,139\ {0}}, j >0,
j=0
which forms an orthonormal basis of L?(T%) (Daubechies, 1992; Giné and Nickl, 2016). Whenever
the densities p, ¢ lie in L?(T?), they admit wavelet expansions of the form

P=1+> > g, q=1+Y > B,

= per = per
J=0¢ev? J=0¢ev?

where o = [ €dP and ¢ = [£dQ. We then define the wavelet density estimators

Jn Im
P =1+3" 3 @, @ =1+> 3 e,

= per P — per
J=0¢ev’ J=0 ¢’

where ¢ = [&dP, and Bg = [&dQ,,. By orthonormality of WP, it is straightforward to see
that ﬁper), Z]{,,I;er) integrate to unity, but may nevertheless be negative. We therefore define the final

density estimators by
PP o< P B 2 0), a8 o RG> 0), (39

where the proportionality constants are to be chosen such that ﬁ,(@per) and f]ﬁfer) are probability
densities, which respectively induce probability distributions ﬁ,&per), OEer) ¢ Poc(T?). Once again,
we drop all superscripts “per” whenever the choice of density estimator is unambiguous. As we state
in Proposition 43, Appendix H, the one-sample results from Theorem 10 may readily be extended
to the present periodic setting, by replacing the boundary-corrected wavelet estimator therein by
the periodic wavelet estimator @, in the above display. Building upon this observation, we arrive
at the following bound for the two-sample estimator fnm = ﬁ&‘;fr) in equation (33), together with
the associated plugin estimator of the squared Wasserstein distance. Recall the sequence Rr (o)

defined in Theorem 10.

Theorem 17 (Two-Sample Wavelet Estimators). Let P,Q € Pac(T?) admit densities p,q €

1
Ca_l(Td;M,’y) for some o > 1 and M,~v > 0. Assume 2/» =< nd+¥2=1_ Then, there exists a
constant C > 0 depending only on M,~,« such that the following statements hold.
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(i) (Optimal Transport Maps) We have,

Eanm - TOH%Q(P) S CRT,’)’L/\m(a)'

(ii) (Wasserstein Distances) When o € N, we have

|EWZ(Py, Q) — WE(P,Q)| < CRrpnam(a),
2

Varp[gf)o(X)] X VaI'Q [¢O(Y)]

5 A 2
E|W5 (Pa, Qm) = W2(P, Q)] < - -

CRT7n/\m<C¥>+\/

The proof appears in Appendix H.1. Theorem 17 shows that the plugin estimators fnm and
WQQ(Pn, Q) achieve the same convergence rates as in the one-sample setting. Unlike the latter
results, we also note that Theorem 17 places no conditions on the regularity of T or ¢g. Indeed,
over T?, these can be inferred from the assumption p,q € C*~(T¢; M,~), due to Theorem 5. We
exclude the case @ € N from Theorem 17(ii) due in part to our use of this result. Nevertheless,
even when a € N, Theorem 17(ii) implies that

[EW3(Pr. Qm) — WE(P,Q)| < (n A m)*Rrpam(),

for any € > 0, and similarly for the risk of V[/22(13n7 @m)
Similarly as in Section 3.3, we may deduce from Theorem 17(ii) and Lemma 34 that

E|W2 (P, Qm) — WP, Q)| Sia Rrnm (@) + (n Am) "2 Wy(P,Q).

Thus, in the high-smoothness regime 2(a + 1) > d, the risk of W2 (P,,Qm) decays at a rate which
adapts to the magnitude of the Wasserstein distance between P and Q.

If one is willing to place assumptions on the regularity of the potentials o and ¢f, Theo-
rem 17(ii) may be extended to the case where the sampling domain is taken to be the unit cube
[0,1]¢. Such a result is stated in Proposition 44 of Appendix 1, and is made possible by the fact
that Proposition 12 does not require any regularity of the fitted potentials.

4.4 Upper Bounds for Two-Sample Kernel Estimators

Though our main focus has been on wavelet density estimators, the absence of a boundary on the
sampling domain T? also facilitates the analysis of kernel estimators, which we briefly discuss here.

Given P,Q € Pac(T?), we again denote by Xi,...,X,, ~ P and Yi,...,Y,, ~ Q two i.id.
samples which are independent of each other. Given a kernel K € C°(R?) and a bandwidth
hy > 0, write Kj,, = h %K (-/hy,), and define the kernel density estimators of p and ¢ by

D = Py« K, = /]R K, (- — 2)dPa(z), 5D = Quux K, = /R K (- = 2)dQm(2).

Recall that integration over RY with respect to a measure in P(T%) is understood as integration
with respect to this measure extended to R? via translation by Z%-periodicity. The above estimators

22



may take on negative values, thus we again define the final density estimators by

;b\glker) o mker)l(ﬁglker) > 0), é\(nl;er) o Z]{Wl:er)l(a(wlzer) > 0),

and their induced probability distributions by 13,(}‘“) and @ﬁ};"”. Furthermore, T\,(Llfﬁr) denotes the
optimal transport map between these measures.
We shall require the following condition on the kernel K, for given real numbers (, x > 0.

K1(¢, k) K € C*(R%) is an even kernel, whose Fourier transform F|[K| satisfies

sup [ FIK](z) - 1[|lz] ¢ < &. (35)
2€R\{0}

A sufficient condition for equation (35) to hold is for K € L>(R%) to be a kernel of order § = [¢—1].
Such a statement appears for instance in Tsybakov (2008) when d = 1, and can easily be generalized
to d > 1. Multivariate kernels of order B which additionally lie in C2°(R?) can readily be defined;
for example, one may start with a univariate even kernel Ky € C>°(R) of order f3, constructed for
instance using the procedure of Fan and Hu (1992), and then set K(z) = H?Zl Ko(zi) (Giné and
Nickl, 2016).

Divol (2021) stated that their work may be used to show that P achieves a comparable rate
of convergence as the boundary-corrected wavelet estimator ﬁ(lbc), in Wasserstein distance. We
provide a formal statement and proof of this fact in Lemma 46 of Appendix [, and use it to derive
the following result.

Theorem 18 (Kernel Estimators). Assume the same conditions on P and Q as in the statement
of Theorem 17. Assume further that K is a kernel satisfying condition K1 (2. ) for some k > 0.
Let hy, =< n~Y(@+2@=0)  Then, there exists a constant C > 0 depending only on K, M,~,a such
that the following statements hold.

(i) (Optimal Transport Maps) We have,

___2a_
n 2((:!71)4,»(17 d Z 3

IEHT\S;?) — T0|’i2(P) < CRgnam(a), where Ry n(a) = ¢ logn/n, d =
1/n, d=1

(i) (Wasserstein Distances) Assume further that o ¢ N. Then,

[EWZ (P, QD) — W(P, Q)| < CRi nam(c),
2

Varp[go(X)] | Varg [1o(Y)]

E|W3 (P, Qi) - w2(P,Q)|* < CRK,Mm<a>+\/

Theorem 18 shows that kernel plugin estimator of Ty achieves the same minimax convergence rate
as the wavelet estimators analyzed in Theorems 10 and 17, when d # 2. In contrast, when d = 2,
Theorem 18 exhibits an improved convergence rate, scaling as logn/n instead of (logn)?/n, which

we now briefly discuss. This rate arises from our upper bound on EW} (ﬁéker), P) in Lemma 46,
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which makes use of the inequality (18) comparing W5 to a negative-order homogeneous Sobolev
norm (Peyre, 2018). This last implies

Wz(P’nger)7P) S H/{nker) —p”Hfl(Td) = ”Agzker) _pHBQ,;(Td)- (36)

In contrast, when P € P,.(]0,1]%), our upper bounds for wavelet estimators (and implicitly for
empirical estimators in Corollary 8) employed the following distinct relation, arising from the work
of Weed and Berthet (2019),

~

Wa (P, P) < 110 = pllgs1 oy (37

n

and similarly for the estimator ﬁ,&per). It can be seen that the B, % norm is weaker than the 5, %
norm. While either of these norms provide sufficiently tight upper bounds in equations (36) and (37)
to obtain the minimax rate for density estimation in Wasserstein distance when d # 2, the former
allows for a tighter logarithmic factor to be derived when d = 2. Inspired by the celebrated Ajtai—
Komlés—Tusnady matching theorem (Ajtai et al., 1984; Talagrand, 1992), it is natural to conjecture
that the rate logn/n in the definition of R ,(a) cannot be further improved when d = 2, for any
of the conclusions of Theorem 18.

Theorem 18 is proved in Appendix I, where the main difficulty is to show that the evaluation
L( AS;“)), of the linear functional L from equation (16), has bias decaying at the quadratic rate
h2¥. As for our analysis of wavelet estimators, this rate improves upon the naive upper bound
\EL(@%H)H < k2! which could have been deduced from the traditional bias of kernel density
estimators in estimating an (a — 1)-Holder continuous density (Tsybakov, 2008). Similar consider-
ations arise in the analysis of kernel-based estimators for other important functionals, such as the
integral of a squared density (Giné and Nickl, 2008).

5 [Efficient Statistical Inference for Wasserstein Distances

We now complement our results on estimation rates for Wasserstein distances by deriving limit laws,
in Section 5.1, for the plugin estimators studied in Sections 3—4. We then derive lower bounds in
Section 5.2, which show that these estimators are asymptotically efficient under suitable conditions.

5.1 Central Limit Theorems for Smooth Wasserstein Distances

Recall that we respectively denote by P,, ﬁ,sbc), ﬁ,ﬁker), ﬁT(Lper) the empirical measure and the dis-

tributions induced by the boundary-corrected, periodic, and kernel density estimators of p (and
similarly for ¢), as defined in Sections 3—4. Given a smoothness parameter o > 1 to be specified,
let their tuning parameters be chosen as 277 = hot < nt/(d+2(a=1)) "and assume that the kernel K
satisfies condition K1(2a, x) for some x > 0. Furthermore, in what follows, Xi,...,X,, ~ P and
Y1,..., Y, ~ @ denote i.i.d. samples which are independent of each other, and we write

0, = (1= p) Varp[go(X)] + p Varg[to(Y)], for any p € [0,1],

where we recall that ¢g = || - |2 — 200 and ¥y = || - |2 — 2}, for any Brenier potential ¢g in the
optimal transport problem from P to ). Our main result will be to derive one- and two-sample
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central limit theorems based on the various estimators ]3” and @m under consideration, which take
the following form:

V(W3 (Pa, @) = WE(P.Q)) ~ N(0,08), asn— o0, and (38)

nm

(W2 (P Qu) — WE(P.Q)) ~ N(0,0%), as n,m — ox, o (39)

n-+m n-+m

for some p € [0,1]. Our main result is the following.

Theorem 19 (Central Limit Theorems). Let  denote T or [0,1]¢. Assume that P,Q € Pac(9)
admit positive and bounded densities p,q over Q). Then, the following assertions hold.

(i) (Density Estimation over the Torus) Let Q = T% and assume p,q € C*~1(Q) for some o > 1,
a € N, satisfying 2(a+ 1) > d. Then, equations (38)—(39) hold when

(P, Q) = (B, Q0m), or (P, Q) = (PP, Q™).

(i) (Density Estimation over the Hypercube) Let Q = [0,1]¢, and assume p,q € C*1(Q) for
some a > 1 satisfying 2(a + 1) > d. Assume additionally that ¢g,¢f € C*TH(Q). Then,
equations (38)—(39) hold when

(Pa, Q) = (PP, Q).

(i4i) (Empirical Measures) Let Q be either T¢ or [0,1]%. Assume d < 3, and that o, ¢ € C*(Q).
Then equations (38)—(39) hold when

(ﬁna @m) = (Pna Qm)

To the best of our knowledge, Theorem 19 provides the first known central limit theorems
for plugin estimators of the squared Wasserstein distance in arbitrary dimension d > 1 which are
centered at their population counterpart WQQ(P, Q). We emphasize that the parametric scaling in
the above result is made possible by the smoothness condition 2(a+ 1) > d. We do not generally
expect that a central limit theorem for W2(P,, Q) centered at W2(P,Q) can be obtained when
d > 2(a+ 1), as we then expect the squared bias of this estimator to dominate its variance (cf.
Theorems 10 and 17). In contrast, even in the absence of any smoothness conditions, del Barrio
and Loubes (2019) derived limit laws of the form

V(W3 (P, Q) — EW3(Py, Q)) ~ N(0, Var[go(X)]), n — oo, (40)

and two-sample analogues, for any d > 1. While such results are important and hold under milder
regularity conditions than those of Theorem 19(v), their centering sequence is a barrier to their use
for statistical inference for Wasserstein distances.

The proof of Theorem 19 is a consequence of the stability bounds in Theorem 6 and Proposi-
tion 12, which we use to show that W;(ﬁn, Q) — W2(P, Q) asymptotically has same distribution as
the linear functional F' (]3”) = ¢0d(]3n — P), under the stated smoothness conditions. We defer the
proof to Appendix J. Though our arguments differ significantly from those used by del Barrio and
Loubes (2019), this same linear functional also plays an important role in their work. Indeed, they
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prove that n Var[W2(P,, Q) — F(P,)] = o(1) under mild conditions. In Appendix I, we provide an
alternate proof of Theorem 19 which does not make use of our stability bounds, and which instead
combines a generalization of the proof strategy of del Barrio and Loubes (2019), together with our
convergence rates for optimal transport maps in Theorems 10, 17 and 18.

The variance 02 is positive if and only if ¢y and vy are non-constant, which is equivalent to
Ty being different than the identity map. Thus, the distributional limits in Theorem 19 are non-
degenerate whenever P # (). When P = @, it could already have been deduced from Lemma 30
that, for instance, the correct scaling for the process W2 (E(Lbc), Q) is of larger order than /n, and
we leave open the question of obtaining limit laws under this regime.

The variances appearing in Theorem 19 can be consistently estimated using estimators for
the Kantorovich potentials ¢¢ and 1. Notice that the majority of our optimal transport map
estimators in Sections 3-4 take the form 7 = V@ for a convex Brenier potential @, in which case
(I - 11> = 2@, || - |I> — 2¢*) forms a natural estimator for the pair (¢g,10). This estimator turns out
to be consistent in most cases that we considered, and leads to the following result, which we only
state for the setting of Theorem 19(i) in the interest of brevity.

Corollary 20 (Variance Estimation). Let P,Q € Pac(T?) be distributions with positive densities
p,q over T, and suppose p,q € C*~Y(T?) for some o > 1. Furthermore, let Toom = V@nm denote the
optimal transport map from B o @,(ﬁer), and set ((?)\nm, @nm) = (I1*=2Bnm. |I-I*—23%,.,). Then,
as m,m — 0o,

52 = Vargep, [bnm(U)] = 03, and, 33, := Vary.g,, [nm (V)] -2 o7.

=2 =2
mJO,nm+n01,nm

s , we deduce from Theorem 19(i) and Corollary 20 that

Letting 52, =

n-—+m

2/ p(ker) A(ker ~

W2 (Pé )7Q7(n ))ianmzé/Q nm
is an asymptotic, two-sample (1 — §)-confidence interval for WZ(P, Q) under the conditions of
Corollary 20, and under the additional condition P # Q. Here 25/, denotes the §/2 quantile
of the standard Gaussian distribution, for any ¢ € (0,1). To the best of our knowledge, this is
the first practical confidence interval for the Wasserstein distance between absolutely continuous
distributions in general dimension, albeit under the strong smoothness condition 2(aw + 1) > d.
Similar confidence intervals can be obtained for the Wasserstein distance over the unit hypercube
[0,1]¢, by replacing fnm with the estimator j?;,% defined in Section 4.2. In the sequel, we further
derive efficiency lower bounds, showing that the asymptotic variances appearing in these results
cannot be improved by any other regular estimator of W2 (P, Q).

5.2 Efficiency Lower Bounds for Estimating the Wasserstein Distance

In discussing semiparametric efficiency theory, we follow the definitions and notation of van der
Vaart (1998, 2002). We begin with a derivation of the efficient influence function of the functional

®q:P(Q) =R, o(P)=W;(P,Q),

where  is either T? or a subset of R?, and Q € P,.(€Q) is given. Santambrogio (2015, Proposition
7.17) has previously derived the first variation of this functional. The following result generalizes
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their argument, and states it in a language suitable for our development.

Lemma 21 (Efficient Influence Function). Let Q be T or any connected and compact subset of
RY, and let P,Q € P..(Q). Assume that the density of at least one of P and Q is positive over €.
Let (¢o,v0) denote a pair of Kantorovich potentials in the optimal transport problem from P to Q,
uniquely defined up to translation by a constant, and define the map

(PQ)( /(ﬁodp x € Q.

Let Pp C L2( ) be any tangent set containing :IS(pQ) Then, the functional ®¢ is differentiable
relative to Pp, with efficient influence function given by <I>(p Q)-

Lemma 21 is proved in Appendix K. The assumption that P or () have support equal to €
is only used to ensure that ¢g is unique, up to translation by a constant (cf. Proposition 7.18
of Santambrogio (2015)). While this condition is not necessary (Staudt et al., 2022), we retain it
for simplicity since we require it for our upper bounds.

By combining this result with the Convolution Theorem (van der Vaart (1998), Theorem 25.20),
it immediately follows that any regular estimator sequence of ®g(P) has asymptotic variance
bounded below by Varp[¢o(X)]/n. The one-sample plugin estimators in Theorem 19 are thus
optimal among regular estimators.

We next complement this result with an asymptotic minimax lower bound, which relaxes the
assumption of regularity of such estimator sequences, at the expense of only comparing their worst-
case risk. In this case, we also provide lower bounds for the two-sample functional

U:P(Q) x P(Q) =R, U(P,Q)=W3PQ).

Using a construction of van der Vaart (1998), we fix two differentiable paths (P , )¢>0 and (Q¢ s, )t>0,
for any (h1,h2) € R?, with respective score functions hlzﬁ(p@) and hglil(RQ), where \II(RQ) (y) :==
Yo(y) — [ 1odQ. These paths are defined in equations (104-105) of Appendix K, and we use them
to obtaln the following asymptotic minimax lower bound.

Theorem 22 (Asymptotic Minimax Lower Bound over T¢). Given M,y > 0 and o > 1, let
P,Q € Pac(T?) admit densities p,q € C*~ (T M,~). Let (¢o,%0) denote a pair of Kantorovich
potentials between P and Q, unique up to translation by a constant. Then, there exist M7, > 0,
depending only on M,~, «, such that Py p,, and Q¢ p, admit densities in Co~Y(T9; M,7), for allt >0
and hy, hy € R satisfying t(|h1| V |ha|) < @. Furthermore,

(i) (One Sample) For any estimator sequence (Up)n>1, we have

sup lim inf sup nEy, 5 |Up — @ (B, -1/ h)}Q > Varp[¢po(X)].
ICR "7 heT ’
|Z|<oo

where K, , denotes the expectation taken over the probability measure P 12
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(11) (Two Sample) For any estimator sequence (Upm)nm>1, we have

o nm 2
sup liminf sup ———Ep i py by |(Unm — Y (Pp-1/2 1,5 Q172 1y )
IQRZ 7,M—>00 (hl,hQ)e_Z n + m

|Z|<o0

> (1 — p) Varp[go(X)] + p Varg[o(Y)],

where the limit inferior is taken as n/(n +m) — p € [0,1], and E, ypn, n, denotes the

expectation taken over the probability measure Pfﬁ s2p, @ Q?;Tl /2 by

The proof of Theorem 22 appears in Appendix K. For technical purposes, our statement assumes
that P,Q admit densities lying in a strict subset C*~(T%; M, ~) of C*~*(T¢; M,7), the latter being
the class in which our differentiable paths are shown to lie. With this caveat, our plugin estimators
achieve the asymptotic minimax lower bounds of Theorem 22. For example, under the conditions
of Theorems 18, when 2(a+ 1) > d we deduce that

nm 2

sup liminf sup Envmor by | U (P, Q) —W(P, 1y, Q12

ICR2 ™R (b hy)ez M
|Z|<oo
= (1 — p) Varp[po(X)] + p Varg[vo(Y)],

and a similar assertion holds for the periodic wavelet estimators 13,9’”), Aﬁ,‘ier).

It can be verified that Theorem 22 continues to hold with T? replaced by [0,1]¢, under the
additional condition that ¢, ¢f € C**1([0,1]?). We were unable, however, to derive differentiable
paths Q¢ = (Vrn)4 P which simultaneously satisfy the Holder continuity properties of Theo-
rem 22 while also having Brenier potentials ¢y, ¢} ), with uniformly bounded Co*1([0,1]%) norm.
We therefore leave open the question of whether our estimators over [0,1]¢ are asymptotically
minimax optimal.

6 Discussion

We have shown that several families of plugin estimators for smooth optimal transport maps are
minimax optimal. Our analysis hinged upon stability arguments which relate this problem to
that of estimating the Wasserstein distance between two distributions, and, in turn, to that of
estimating a distribution under the Wasserstein distance. The latter question is well-studied in the
literature, and formed a key component in deriving convergence rates for the former two problems.
As a byproduct of our stability results, we derived central limit theorems and efficiency lower
bounds for estimating the Wasserstein distance between any two sufficiently smooth distributions.
These results lead to the first practical confidence intervals for the Wasserstein distance in general
dimension.

The estimators in this work are simple to compute and minimax optimal, but we make no claim
that their computational efficiency is optimal. For example, our plugin estimators of the Wasserstein
distance between (a — 1)-smooth densities can be approximated by sampling N observations from
our density estimators, and computing the Wasserstein distance between the empirical measures
formed by these observations, which can be done in polynomial time with respect to N (Peyré et al.,
2019). In order for this approximation to achieve comparable risk to our theoretical estimators in
the high-smoothness regime o > d, one must take N =< n°@ for some ¢ > 1. Our estimator
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thus requires computation time depending exponentially on d. Vacher et al. (2021) analyzed an
alternative estimator with more favorable computational properties; though their estimator is not
minimax optimal, it can be computed in polynomial time if o 2 d. It is an interesting open question
to derive polynomial-time estimators in d which are also minimax optimal.

In our analysis of smooth two-sample optimal transport map estimators, we required the fitted
optimal transport map to be twice Holder-smooth, for which we appealed to Caffarelli’s regularity
theory. Since we do not know whether Caffarelli’s boundary regularity estimates hold uniformly
in the various problem parameters, we resorted to working over T?, where a uniform analogue of
Caffarelli’s theory is available (cf. Theorem 5). We leave open the question of bounding the risk of
our estimators when the sampling domain is a subset of R

Finally, our work leaves open the question of estimating optimal transport maps when the
ground cost function is not the squared Euclidean norm. While each of the plugin estimators in
this paper can be naturally defined for generic cost functions, their theoretical analysis presents a
breadth of challenges. For example, although the regularity theory of Caffarelli has been generalized
to cover a large collection of cost functions (Ma et al., 2005), this collection does not include the
costs ||+ ||P for p # 2 and p > 1, which are arguably most widely-used in statistical applications. For
such costs, it remains unclear what regularity conditions are sensible to place on the population
optimal transport map in order to obtain analogues of our risk bounds, and we hope to explore
such questions in future work.

A Smoothness Classes and Wavelet Density Estimation

In this Appendix, we collect several definitions and properties of Holder spaces, Besov spaces, and
Sobolev Spaces, as well as properties of wavelet and kernel density estimators.

A.1 Holder Spaces

Given a closed set 2 C RY, let C,(92) denote the set of uniformly continuous real-valued functions
on ). For any function f :  — R which is differentiable up to order £ > 1 in the interior of €,
and any multi-index v € N%, we write |y| = Zle i, and for all |y| <k,

Given o > 0, the Holder space C*(£2) is defined as the set of functions f € C,(€2) which are
differentiable to order |a] in the interior of €, with derivatives extending continuously up to the
boundary of €2, and such that the Holder norm

o]
I£llgaqy =Y sup [Dfllo+ Y sup

— |y|= yEN® T —
j=o =i lyl=|e) ’fi/#y | yll

[D7f(x) = D7 f(y)|

a—|af

is finite. Furthermore, for any o > 0, C%(T%) (resp. C,(T?)) is defined as the set of Z?-periodic
functions f : RY — R such that f € C*(R%) (resp. f € C,(R%)).

Recall that C%(2; \) denotes the closed C*(2) ball of radius A > 0. We occasionally use the
following simple observation.
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Lemma 23. Let Q be T? or a closed subset of RE. Then, for all A\,a > 0, there exists a constant
Cx,a > 0 such that

sup || fgllca) < Cra-
f,9€C*(42)
Lemma 23 is stated for aw < 1 by Gilbarg and Trudinger (2001, equation (4.7)), and can easily
be extended to all @ > 1 using the general Leibniz rule.

A.2 Wavelets and Besov Spaces

Recall that in Sections 3.3 and 4.3, we made use of the boundary-corrected wavelet system ¥P¢ over
the unit cube [0, 1]d, and of the periodic wavelet system WP®* over the flat torus T¢. In this section,
we provide further descriptions and properties of these wavelet bases, before turning to definitions
and characterizations of Besov spaces over [0,1]? and T¢. For concreteness, we describe these
constructions in terms of the compactly-supported N-th Daubechies scaling and wavelet functions
€0, &0 € C"(RY), where r = 0.18(N — 1) for an integer N > 2 (Daubechies (1988); Giné and Nickl
(2016), Theorem 4.2.10). We also extend this definition to the case N = 1 by taking (p, & to be
the (discontinuous) Haar functions (Giné and Nickl (2016), p. 298). Throughout the sequel and
throughout the main manuscript, whenever we work with a Besov space B, , or a Holder space C*
with s > 0, we tacitly assume that the parameter N is chosen such that the regularity r is strictly
greater than the parameters [s] or «, in which case it must at least hold that N > 2.

Our exposition closely follows that of Giné and Nickl (2016), and we also refer the reader
to Cohen et al. (1993); Cohen (2003); Hérdle et al. (2012) and references therein for further details.

A.2.1 Boundary-Corrected Wavelets on [0, 1]¢

It is well-known that the N-th Daubechies wavelet system

Cor = Co(- — k),  ojx = 2%50(2j(') —k), j>0, keZ,

forms a basis of L?(R), with the property that {Cor : & € Z} spans all polynomials on R of
degree at most N — 1. While this family may easily be periodized to obtain a basis for L2([0,1]),
as in the following subsection, doing so may not accurately reflect the regularity of functions
in L?([0,1]) via the decay of their wavelet coefficients, near the boundaries of the interval. This
consideration motivated Meyer (1991) and Cohen et al. (1993) to introduce the so-called boundary-
corrected wavelet system on [0, 1], which preserves the standard Daubechies scaling functions lying
sufficiently far from the boundaries of the interval, and adds edge scaling functions such that their
union continues to span all polynomials up to degree N — 1 on [0, 1]. In short, given a fixed integer
Jjo > logy N, the construction of Cohen et al. (1993) leads to smooth scaling and wavelet edge basis
functions

C(l)‘;gtk,f(lf;f;k supported in [0, (2N — 1)/27°],

CS;%}:,%;%}: supported in [1 — (2N —1)/2°,1], k=0,...,N —1.
In this case, if one defines,

J—Jo

Qojk = 23" ook (Z777°0)) & =277 & (27770()), for all j > jo, a € {left, right},
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then the family

DB =G 0 <k <270 — 1= { il G Com 0 SES N = LN <m <20 — N -1},
Woe={E0, 1 0 <k <2 — 1,5 > jo}
=l e om0 S K SN = LN <m <20 - N = 1,5 > jo},
form an orthonormal basis of L2([0, 1]), with the property that ®>¢ spans all polynomials on [0, 1]

of degree at most N — 1. We then define a tensor product wavelet basis of L?([0, 1]%) by setting for
all j > jo and all £ = (¢4,...,44) € {0,1}9\ {0},

]Ok HCOJOk and ]kf H C()Jk -'Ez H 5()]]c I’Z T € [0, ].]d,

i:4;=0 i:l;=1

where in the definition of ] % the index k = (K1, ..., kq) ranges over K(jo) := {1,..., 2Jo — 114,
while in the definition of f °¢s, k ranges over KC(j). In this case, the wavelet system

T =oPeu | Job, b = {05 ke K(jo)}, W ={ ke K} > o,
J=jo

announced in Section 3.3 forms a basis of L?([0, 1]¢). We sometimes make use of the abbreviation
U,y = .
A.2.2 Periodic Wavelets on T¢

When working over T¢, a simpler construction may be used due to the periodicity of the functions
involved. Denote the periodization on T of dilations of the maps (y, & by

PE=) G-k =1, §F=> 2242 —k), j=0.

keZ keZ

In this case, the collection

PP = {1,55;,‘; (- —277k):0<k<P — 15> 0}
forms an orthonormal basis of L?(T), which may again be extended to L?(T%) using tensor product
wavelets. Specifically, if {5 = H?:1(§per) for all £ = (f4,...,44) € {0,1}¢\ {0}, then

Ut = (13U | J OB, with OP = {& k€ K(j), £ € {0,139\ {0}}, j >0,
=0

forms an orthonormal basis of L?(T¢) (Daubechies (1992), Section 9.3; Giné and Nickl (2016),
Section 4.3).
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A.2.3 Properties of Boundary-Corrected and Periodic Wavelet Systems

In both of the preceding constructions, one obtains a family ® of scaling functions and a sequence
of families (¥;);>;, of wavelet functions, such that

(I)bc U = \I,bc
{1}, @ =gper,
wbe, W= ghe

TP W= e

=V, 1 ={G:keK(o)}= {

J > Jo,

U = {&re: k € K(j), € €{0,1}9\ {0}} = {
| logy N, W =whe

o, U — grer,
K(j):{ov""2j_1}da 7= Jo.

In both cases, the wavelet system is defined over a domain 2, which is to be understood as either
[0,1]¢ in the boundary-corrected case, or as T (which itself may be identified with (0,1]%) in the
periodic case. In either of these settings, the wavelet system

o0
v=2ou Y, (41)
Jj=Jjo

forms a basis of L?(£2). The following simple result collects several properties and definitions which
are common to both of the above bases.

Lemma 24. Let N > 1. There exist constants C,Cy > 1 depending only on N,d and on the
choice of basis W € {WP WPeTY sych that the following properties hold.

(i) |®| < Ch, | ;] < C29 for all § > jo.

(ii) For all j > jo and & € V;, there exists a rectangle I¢ C Q such that diam(I¢) < C1277,
supp(§;) C I¢, and Hzge% I(- e ]g)HLOO < Oy,

(i1i) £ € CT(QQ) for all € € V.
(iv) Polynomials of degree at most N — 1 over Q lie in Span(®).

(v) If N > 2, we have,

sup sup ||D7¢|| .~ < Ch, sup sup sup 9=i(5+h1) | DYE]| foe < Co.
0<|y|<[r] C€® 0<yILr] 320 €Y

A.2.4 Besov Spaces

We next define the Besov spaces Bf)’q(Q), for s > 0, p,qg > 1. Once again, ) is understood to be
one of [0,1]¢ or T?, and ¥ is understood to be the corresponding wavelet basis as in equation (41).
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Let f € LP(S2) admit the wavelet expansion

fZZﬁgC—i- Z Z Be&,  over Q,

ced Jj=Jjo £€Y;
with convergence in LP(Q), where B¢ = [£f for all £ € U. Then, the Besov norm of f may be
defined by

11 o0 = N8)ccnll, + (2452 B0eews ) (12)

izjolle,

and we define
L9 Ifllsy @ < 0}, 1<p<oo

f € Cul®) I fllgg, oy <0} p=o0.

We extend the above definition to s < 0 by the duality B, ,(2) = (BI;S(Q))*, where z% + % =
1

7T L'— 1. Tt can be shown that the resulting norm on the space By . (Q) is equivalent to the
sequence norm || - ||gs, (o) in equation (42) (cf. Cohen (2003), Theroem 3.8.1), thus we extend its
definition to s < 0. o

We shall often make use of Besov spaces in order to characterize Holder continuous functions
in terms of the decay of their wavelet coefficients, via the following classical result.

B () =

Lemma 25. For all0 < s <r, and d > 1, we have
C*([0,1]%) € B, o([0,1]%),  C3(T%) C B3, oo (TY), (43)
and there exist C1,Co > 0 such that

Illss, qo.gay < Cill-llesqongay,  llss, cray < Call-lles pay -

If s ¢ N, then equation (43) holds with equalities, and with equivalent norms.

An analogue of Lemma 25 is well-known to hold for the Daubechies wavelet system over RY,
in which case it can readily be proven using an equivalent characterization of Besov spaces in
terms of moduli of smoothness (Giné and Nickl (2016), Section 4.3.1). Such characterizations are
also available for the periodized and boundary-corrected wavelet systems (Giné and Nickl (2016),
Theorem 4.3.26 and discussions in Sections 4.3.5-4.3.6), and at least in the periodized case can be
shown to lead to Lemma 25 (Giné and Nickl (2016), equation (4.167)). For the boundary-corrected
case, Lemma 25 is known to hold in the special case d = 1 (Cohen et al. (1993), Theorem 4; Giné
and Nickl (2016), equation (4.152)), but we do not know of a reference stating this precise result
when d > 1, in part due to the potential ambiguity of defining the Holder space C*([0, 1]¢) over the
closed set [0,1]¢. We thus provide a self-contained proof of Lemma 25 in the boundary-corrected
case for completeness, using standard arguments.

Proof of Lemma 25 (Boundary-Corrected Case). Let Q = [0,1]%. Suppose first that f €
B5, »(§2) for some s ¢ N, with wavelet expansion

F=Y BL+> > B

¢(edbe J=jo gewbe
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We wish to show that || fllcsi) S [Ifllss, () By Lemma 24, § € C"(Q) for all £ € Wbe where
recall that s < r, thus we may define the map

Fo= Y 8D+ Y N BeDYe, forall 0< |n| < |s).

cedbe J=jo fG‘II?C
NOtice that ||D’Y<||LOO S 1 fOI' all C c (I)bc7 and for all ] 2 j[)7 k S IC(])7 E S {07 1}d \ {0}7
Dvg;?lge — Q(J'*J'O)(%Jrl'y')D7£?0Ck5(2j_j0('))

Then, it follows from Lemma 24 that for all x € Q°,

(@) < D 1BcDY(x) !+Z > 1BeDYE(x)

(edbe =Jjo gexp‘;c

0 191 3 1B )ecane e 207D 37 1(g@)] > 0)

S H(BC)Cecpbc

J=jo gewbe
©
< N Bodeeanell, + S 2ED(Be)ceppellen
Jj=jo
< 9i(5+s) 9 < 44
S NGoleewnll,, + Goecorln) | > oy o (40
=Moo j=jo

where on the final line, we used the fact that s is not an integer, thus |y| < s. An analogous
calculation reveals that the series defining f, converges uniformly for any 0 < |y| < [s], thus it
must follow that f is differentiable up to order |s| with derivatives given by D7 f = f,, which by
equation (44) must satisfy [D7 f(z)| < C'[|f|gs, _ (o) for all z € Q°, for a constant C' > 0 depending

only on d and » We next prove that D7 f is unlformly (s — | s])-Hélder continuous over §2°, for all
|v| = [s]. For all z,y € Q°, we have,

1DV f(x) - D f()l < Y 1BIIDY¢(x) — DV(y r+Z > 1BelIDE(x) — DYE(y))-
edbe J=jo gew?c

Since ¢ € C"(R) for all ¢ € ®P°,

D 1BIDYC() = DY) S 1 llgs, oy 12T Nl =yl S 11l oy Iz = wll-

Ce@bc

Furthermore, using the definition of the boundary-corrected wavelet basis and its locality property
in Lemma 24(ii), we have

> 1BlIDE(x) — DY)

J=jo ge\I/;?C
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27 -1
3 1By 2970 G DV (290 (2)) — D€ jore(20 ()]

k=0 1{0,1]4\{0}

Mz 1M

.. d .. .

S 2 1Be)gcwvellew oU=i0)(5+1) (|23 ~do — 97 =Joy|| A 1) > I([E(@)| v IE(y)] > 0)
Jj=jo 56\1};"3

< Z H(ﬁf)ge\ybcné 2(j*j0)(%+"7\)(2j—j0”x —yl A1)
j=]0

<y 1B)ecus, e 2210 (2] — g A1)
=0
& (4+h1+) N (4+h1)

J(5+v[+1 _ Jl5+y

Z [[(Be) gewbs [ |z —yll + Z H(ﬁ&)geqfﬁjo”foﬂ 2 ;
J=0 j:J(Zvy)

where J(z,y) is the smallest integer j > 0 such that 27|z — y| > 1; in particular,

271@Y) <z —y|| < 27/ @WHL (45)
Now, since 2/(3 H(/B&')ge\ybc Nlew ||f||Bg ) < 00, and since |y| < s € N, we obtain
J(Z,y) o0
-1 i(|v|—s i(|v|—s
1715 _o|D7 @) = D) Sl -yl Y 2Pl 3 il
j=0 j=J(z)

< lw — yHQJ(x,y)(Ivl—sH) + 9J@y)(vl=s) < |z — stflvl ,

where the final inequality is due to equation (45). It readily follows that || f[|c.(q) < HfHBf;c,oo(Q)‘

Furthermore, since D7 f is uniformly Holder continuous over (0, l)d, it is in particular uniformly
continuous and hence extends to a continuous function over [0,1]¢, thus f € C*([0,1]%). We next
show that C*([0,1]%) C B, ,([0,1]%) for all s > 0, with the requisite Holder norms. Assume
||fHC5(Q) < 00, and let B = [ f€ for all € € UPc, By definition of the Besov norm, it will suffice to
prove that

_i(das . .
108 ceavell S Wfllesqogey s [1(Becwrell S Mfllesqoye 27, 5 = ji.

The first bound is immediate, since f is bounded above by || f||¢s 014y over [0, 1]¢. To prove the

second bound, let 2o € (0,1)%, and let s denote the largest integer strictly less than s. By a Taylor
expansion to order s, there exists c¢; > 0 such that

fx)= Y DVf(wo)(x —20)7| < e | flles(o lz —ol*, 2 €9 (46)

0<|v|<s

where (z — x9)? = Hle(:vi — x0;)"". In particular, for any given £ € \I/?C, j > jo, choose zy €
I N (0,1)4, where diam(l) < 277 and I¢ is a set containing the support of &, as defined in
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Lemma 24(ii). We then have,

[ers|[e0) & 0 s - a

0<]v|<s
N fllesn / @) N1z — zoll° dz = || flles(o / @)l — zo||* da,

where the final equality uses the fact that polynomials of degree at most |r| lie in Span(®"°) by
Lemma 24(iv), and are therefore orthogonal to £&. We thus have,

1Bel < 1 llescoy /Q @) |1z — o|* da
= I lle=co /I €(@)] |z — ol do
3
j : s —j(2+s
< 1 Flles (e 2%9/? diam(Ie)* L(Te) S || flles(ey2 75 F9).

The claim readily follows. O

A.3 Sobolev Spaces

For our analysis of the kernel plugin estimators appearing in Section 4.3, we briefly recall a Fourier
analytic description of the Sobolev spaces H*(T%) = BS}Q(Td) over the torus, and refer the reader
to Roe (1999); Grafakos (2009); Bahouri et al. (2011) for further details. Given a function ¢ €
L?(T%), denote its sequence of Fourier coefficients by

Flo)(&) = /¢(m) exp(—27rixT§)da:, cez’.

If instead ¢ € L'(R%), we continue to denote by F[#] the Fourier transform of ¢, now defined for
all ¢ € R The inhomogeneous Sobolev norm of order s € R is defined by

1l cray = 14 FIE1O) gy

where (€) = (1 + [|€]|*)"/?, and the inhomogeneous Sobolev space H*(T?) is then defined as the
completion of C*° (’]Td) in the above norm. In the special case where s € N, one may equivalently
write

H3(Q) = WSX(T%) = {f € L2(T%) : DVf € L3(T%),0 < |y| < 3} ,

where differentiation is understood in the distributional sense, and the norm || - ||gs(e) is then
equivalent to the norm

Iollwszeray = D I1D7@|l r2cpa)-

0<|v|<s

We also denote the homogeneous Sobolev seminorm of a map ¢ € L?(T%) by

161 s pay = - IPFTEI O 2 -
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for any s € R, with the convention 0/0 = 0. H‘HHS(W) is in fact a norm on L3(T¢), and we define

the homogeneous Sobolev space H*(T%) as the completion of L2(T%) N C>°(T%) under this norm.
As before, one may equivalently write for s € N,

(%) = { f € L3(T%) : D7 € LX(T?), |y = s}
The following result summarizes some elementary identities (cf. Theorem 1.122 of Triebel (2006)
and Section 4.3.6 of Giné and Nickl (2016)).
Lemma 26. Let s > 0. Then, there exists a constant C' > 0 depending only on d and s such that
|- [ zs(ray < Cl - lles ey, and hence C*(T?%) C H*(T%). Also, for any s € R,
H*(T%) = B3 5(T7),

with equivalent norms.

A.4 Wavelet Density Estimation

We next state several properties of wavelet density estimators over Q € {T9,0,1]}, with the
corresponding basis U € {WP WPl as in Section A.2.3. Let ¢ € L?() denote a probability
density with corresponding probability distribution ), and with corresponding wavelet expansion

EDILISDIP IS

ce® J=Jjo €V,

Given an i.i.d. sample Y7,...,Y, ~ Q with corresponding empirical measure @, = (1/n) Y ", dy;,
define the unnormalized and normalized wavelet density estimators of the density ¢ of @,

JIn ~ ~
=0+ Y Bt = @20 (47)

Ced j=j0 €T, Jazo Tk

where J, > jo is a deterministic threshold, and B\g = [£&dQ, for all £ € ¥, jo < j < J,. The
following simple result guarantees that ¢, integrates to unity since q is a probability density.

Lemma 27. We have fQ Gn = 1. In particular, it follows that de«b B@“ fQ (=1

The proof of Lemma 27 appears in Appendix A.4.1. In the special case of the periodic wavelet
system, for which ®P®" consists only of the constant function 1, Lemma 27 implies that the cor-
responding estimated coefficient satisfies 31 = 1 deterministically, thus the definition of ¢, in
equation (47) coincides with that given in Section 4.3.

With this result in place, we turn to L° concentration results for g,, as well as for Besov norms
of g, which we frequently use throughout our proofs. In what follows, write

Jn
47,(y) = Elgs, (y)] = Z/BcC + Z Z Be&, ye.

ced Jj=Jjo £€VY;
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Lemma 28. Let N > 2 and q € B3, () for some s > 0. Then, there erist constants v,b > 0
depending only on the choice of wavelet system, such that for any J, > jo, and all u > 0,

-~ nu2
P <supw< NP u) s,exp{—}, (48)
Ced b

nu2

_ o < 4 < J,. 49
v+2]d/2bu}7 Jo>J) > ( )

P sup\@—&]Zu §2d2jexp{—
Eev;

1
Furthermore, if 277 = con@ 2 for some co > 0, then there exists a constant C > 0, depending on
co and on the choice of wavelet system W, such that the following assertions hold.

(i) For all0 <u <1,
Poﬁﬂ%gam>2“+ﬁﬂ%zam)fﬂC%ﬁmham(—wPT*/C)

(ii) For all 277n <u <1,

P (1gn — q1, | 2oo ) = 1) < C Jp,27nUd+3) exp (- nu22_dJ"/C).

Lemma 28(ii) is implicit in the proofs of almost sure L* bounds for wavelet estimators by
Masry (1997) and Guo and Kou (2019), as well as Giné and Nickl (2009) when d = 1. While these
results are based on wavelet estimators over R, they can readily be adapted to the wavelet systems
considered here, as consequences of inequalities (48)—(49). For completeness, we provide a proof of
Lemma 28(ii), along with the remaining assertions of Lemma 28, in Appendix A.4.2.

Using Lemmas 27 and 28(ii), the following result is now straightforward.

Lemma 29. Let N > 2. Assume there exist vv,s > 0 such that ¢ > 1/~ over Q, and such that
q € B5, (). Then, there exists ¢y > 0 depending on 7, Hq||330700(9) such that with probability at
least 1 — c1/n?, Gn is a valid probability density over Q, and hence G = Gn. If we instead have
N =1, then under no conditions on q it holds that ¢, = g, almost surely.

Having now established that ¢, is a valid density with high probability, we may speak of its
convergence in Wasserstein distance. Weed and Berthet (2019) previously derived upper bounds
on the risk, in Wasserstein distance over [0, 1]d, of a projection of ¢, onto the set 0£ probability
densities. Using Lemma 29, we are able to extend their result to the estimator @, i.e. the
distribution function of the density ¢, defined in equation (47). We also state this result for a
general exponent of the 2-Wasserstein distance.

Lemma 30. Let ¥ = "¢ with N > 2. Assume that q € B, ,,([0,1]%) for some s > 0. Assume

further that ¢ > 1/~ over [0,1]% for some v > 0. Let 2/» =< n'/(@425) " Then, for any p > 0, there
exists a constant C > 0 depending on M,~, p,s such that

_ p(s+1)

n_ 2std d>3
EWE(Qn,Q) < CX (logn/y/n)P, d= (50)
1/nP/?, d=1.
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Furthermore, when N = 1, equation (50) continues to hold with s = 0 for any density satisfying
7t < g <y over [0,1]¢, for some v > 0.

The proof appears in Appendix A.4.4.

A.4.1 Proof of Lemma 27

Recall that Span(®) contains all polynomials of degree at most N — 1 over €, by Lemma 24(iv). In
particular, it contains the constant function 1, thus if Bé = [ ¢, we obtain 1 = de@ ﬁé( . It then
follows by orthonormality of ¥ that

/qn—/ > B ZﬁCCJrZZ/Bgf ZZ/Béggz/ S| dQn =1.

Ced (ed J=Jjo £€Y; (ed Ced

This proves the claim. O

A.4.2 Proof of Lemma 28

Throughout the proof, b,v,c > 0 denote constants depending only on ¢y and the choice of wavelet
system, whose value may change from line to line. To prove inequality (48), recall first from
Lemma 24(v) that

Sup [[Cllro(e) < b, sup2” 42 sup [|€]| oo () < b (51)
¢ed J=jo £ev;

By Hoeffding’s inequality, equation (51) implies that for all u > 0,
nu?
sup|5<—6<|>u <D P(|[¢d@u-Q)|Zu) Sexpy——5 (52)
Ced
where we have used the fact that |®| < 1 by Lemma 24(i). To prove equation (49), notice that for

all £ € ¥; and j > jo, given Y ~ @,

Varlé /52 Wy < [1¢ = /s )y = llz(y < v,

where we used the fact that ¢ € BS, (€2) € L>(Q2). Therefore, by Bernstein’s inequality, we have
for all w > 0 and jo < j < Jp,

2

B ~ o < dj . nu

(gsup 1B — e >u> < > P18~ Bel zu) 2 exp{ HW%U}- (53)
£ev;

Here, the last inequality uses the fact that |¥;| < 29 by Lemma 24(i) for all j > jo.

To prove part (i) from here, let 0 < w < 1. A union bound combined with the above display
leads to

2
B — < ] 9dJn oo
P( sy sup | ﬁs|2u>an2 exp{ s | (54

Jo<j<Jn £€Y;

39



1
whence, since 277 =< nd+z

P(ﬂ(i”’ sup H(ﬁg—ﬂg)ge%ugmm) (55)

Jo<j<Jn

nu22—Jn (s+d)

< Jp2%mexp { — P Ay < Jp2%m exp {—cu22°7"5} .
v+b272 2772 T2

Combining this fact with equation (52), we have

P (Han - QJ,LHB%QOO > u)

<P (H(gc — Be)ceal|,, = U/2) +P (2M§+S) sup  |[(Be = Be)eew, ||, > U/2>

Jo<y<Jn

< CJp2%m exp{—u?27"% /C},
for a large enough constant C' > 0. Thus, we have
1l gz, < Nan = anllgez, + g llgsrz = wtllallgyz
with probability at least 1 — C.J,,2%/n exp{—u?277¢/C}. Part (i) thus follows. To prove part (ii),

let 8, < 27/7(4+2) /(4C}), for a constant Cy > 0 to be specified below. Notice that for all z,y € Q,

In
() — @) < D BelC@) — |+ D Y Belé(x) — ()

ced Jj=jo EE\IIJ'

In
<SS 1Bz —yll + 3" 270G Bz —yll Y I(E(@) A€ly) > 0)

ced J=Jjo 56‘1/]'

Jn
(d
Sz —yl+ Y 2E|e]| e lle — vl

Jj=jo
Jn -
S D@D g —y|| < 27Dz — gy,
J=Jo

where we have again used the properties appearing in Lemma 24. Upon repeating an analogous
calculation, we deduce that both g, and g, are Cp277(d+1)_Lipschitz.

Let K,, = O(1/6%) = 0(2=44*+2)) denote the §,-covering number of the unit cube [0,1]¢ with
respect to the Euclidean norm, and let {zg; : 1 < k < K} be a corresponding d,-cover. Letting
I, = {z €[0,1]%: ||z — zox|| < ,}, we have (for both Q € {[0,1]¢, T?}),

ldn — @110y < max  sup [gn(z) — g, ()]

1<k<Kn el

_ N
< mex 222 Gn () — Gn(wor)]
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+ 1?133}1(@ 22}’ g, (zor) — q., (z)] + lé%ax |Gn(zok) — qJ, (Tok)|

< 20275 4  Jnax |@n(xok) — ¢, (zok)]

<27In/9 - .
< / +1Sr§clg>l<(n!qn(:c0k) q., (o) |

Thus, for any 277/» < u < 1, using Lemma 24 and the bounds (52)—(54), we have
P (g0 = ¢s.ll () = u)

<P ( max [u(z06) — 0, (z08)] > u/2>

1<k<K,
Ky In
<SP D (B = B)Cror) + Y Y (Be — Be)é(won)| > u/2
k=1 CeD J=jo £€V;

Ky JIn
<SP DB =B | = ufa | + D PSS (Be — Be)élwon)| = u/4

k=1 Ced k=1 J=jo £€Y;

J0<I<JIn E€Y;

< K,P (21615 |§< — B¢l > cu) + K, P (Jn2dén sup sup |B§ — Be| > cu)
< Ky exp(—nc?u?/b%) + J, K, 2% exp ( ncu?2=n /(20 + cbJ, u))
It follows that, for a sufficiently large constant C' > 0,
P (|G — s, |l zooe) = u) < CJp2724H3) exp (— w274 /(7,C)),

for all 27/» < u < 1. The claim readily follows. O

A.4.3 Proof of Lemma 29

The claim for N = 1 follows by definition of the Haar system, thus we assume s > 0 and N > 2.
Recall that ¢, integrates to unity by Lemma 27, thus it suffices to show that g, > 0 with high
probability. Apply Lemma 28 to deduce that

1Gn — @, |l o) =771 /4,

1

except on an event with probability at most c;/n?, for some ¢; > 0 depending on y~! and

lqllBs, (o) Furthermore, using Lemma 24, the bias of g, satisfies

dj
lgs, = dllze@y = > 22 (Be)eew, e

j>Jn+1

4 ~ B
<lallss, @ Y 2770%) Sllallss @27 <774,
j2JIn+1
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for all n larger than a universal constant depending only on ||¢||zs. _(a). Therefore, after possibly
increasing ¢; > 0, we have with probability at least 1 — ¢;/n? that for all n > 1,

1Gn — qll ooy <77 1/2.

1

Since ¢ > v~ !, we deduce that ¢, > v~!/2 > 0, over the same high probability event. ]

A.4.4 Proof of Lemma 30

By Jensen’s inequality, it suffices to assume that p > 1. It is straightforward to verify from
Lemma 24 that the wavelet system WPC satisfies Assumptions E.1-E.6 of Weed and Berthet (2019),
except Assumption E.2 in the special case N = 1. We also have v~ < ¢ < v over [0, 1]d. These
conditions are sufficient to invoke their Theorem 4 for any N > 1, leading to

Wa(Qn, Q) S’Y 1Gn — Q|’B;}([0,1}d) :

Furthermore, it follows from Lemma 29 that the event A,, = {g, = ¢} satisfies P(AS) < n~2. Let
qJ,, = E[gy], so that

EW(Qn, Q) = E[WF(Qu, QL. +E[WF(Qu, Q) Ls| S Eldn = allf 1 g0+
Now, we make use of the following result which can be deduced from the proof of Theorem 1 and
Proposition 4 of Weed and Berthet (2019).

Lemma 31 (Weed and Berthet (2019)). Let g be a density satisfying v+ < q < v over [0,1]%.
Assume further that q € B3, ([0, 1]9) for some s > 0. Then,

_4lIP < 9—pJn(s+1)

E\}(Bg—ﬂo@m f S El|(Be — Bedecurelly, S2Y/mP?j > o,

£

Let p' > 1 satisfy % + % = 1. Lemma 31 implies,

IEHZjn—qH Ol}d)

S Ellgn — QJan Lo Tl = qH i
In 14
~ ) o e
SEI(Be = Bc)cearelr, +E | D 27II(Be ~Beecurelly, | +27° ey
J=jo
JIn 4 R Jn . i
<n Z 200~ DIE|| (B — Be)ecure|l Z 9—p'nj 1 9—pTalst1)
J=Jo ’ J=Jjo
R
JIn Jn o’
<n %f4nt Z op(n+5-1)j Z 9—p'nj 4 9 pIal(sH1)
J=do J=Jo
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for any n € R. Now, when d > 3, choose 1 — g < 1 < 0. In this case, the above display is of order

b olpntd—D=pildn 4 9=plu(s+1) _ 9p($=1)Ju | g=pdu(s+1) < 555

which proves the claim for d > 3. When d < 2, choose 7 = 0. Then, the penultimate display is
dominated by its second term, which is of order n=#/2 when d = 1 and of order (logn/,/n)? when
d = 2. The claim follows. d

A.5 Kernel Density Estimation

We close this appendix with several properties of kernel density estimators. We adopt the same
notation as in Section 4.3. Specifically, K : R? — R denotes an even kernel, we write Ky, =
h 74K (-/hy) for some bandwidth h,, > 0, and we consider the kernel density estimator

i = Qur Ko = [ K= 2)dQu(:).

where @, € P(T9) denotes the empirical measure based on an i.i.d. sample Yj,...,Y, ~ Q €
Pac(’]I‘d). In the above display, recall that integration over R¢ with respect to the measure Q,, is
understood as integration with respect to its extension to R? by Z%periodicity, namely the measure

1 n
D 9) o
kezd i=1
Equivalently, we may write
Gn = / KR = 2)dQu(z), where KX = 37 Ky (-4 ).
T
kezd

With the same conventions, we define

an, (y) = E[Ga(y)] = Q* Kp, (y), ye T

We begin by proving an L°°(T%) concentration inequality for the estimator g, about its mean.
Though such concentration inequalities have previously been established by Giné and Guillou (2002)
under very general conditions on K, the following simple result will suffice for our purposes.

Lemma 32. Assume q <y over T¢ for some v > 0, and that K € C'(RY). Then, there exists a
constant C > 0 depending only on 7, || K||c1 gay such that for all hy < u <1,

P (Hz.lvn - thHLoo(Td) > u) < Ch;d(dﬂ) exp ( . nu2hi/0).

The proof appears in Appendix A.5.1. When the true density ¢ is Holder continuous with any
positive exponent, and bounded below by a positive constant, it is easy to infer from this result
that ¢, defines a valid density except on an event with exponentially small probability. We shall
additionally require the following result, which ensures that the fitted density ¢, enjoys a nonzero
amount of Holder regularity.
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Lemma 33. Assume nhl =< n® for some a € (0,1). Assume further that ¢ € C*(T?) for some
5> 0, and that K € CY{RY)NLY(R?). Then, there exist constants C,c; > 0, € (0,sA1) depending
only on |[qllescpay s 1K ||er ray s 1K 1 (ray > as s, d such that for all n > 1, with probability at least
1—c1/n?,

1nlles(ray < C.

The proof appears in Appendix A.5.2.

A.5.1 Proof of Lemma 32

Let 6, < hdt2/(4 [ Kl¢1(ray)- By a direct calculation, it can be seen that

d
1Gnllcrcray V llan, llerpay < 11K g1 ggay R FY.

Let J, = O(1/6%) = O(h;d(d+2)) denote the d,-covering number of the unit cube [0,1]? with
respect to the Euclidean norm, and let {zp; : 1 < j < J,} be a corresponding d,-cover. Letting
Ij ={z €0,1]¢: ||z — zq;]| < dn}, we have,

_ o -
lGn = an, || oo (ray < 55, Sup |Gn(2) = an,, (@)

< a. .
5%, S0P |4 (x) = Gn (o)

+lgg§n§g§>\qhn(foﬂ) Gha (2)] + max |n(20;) — qn,(205)|

< 2||K e gray b TV + 8% [@n(20;) = an, (20;)]

< hp/2 +  Jax |Gn(z05) — qn, (20j)]-

Thus, for any h, <u <1,
P (110 — ol zov ey = )

<P <lg}aX |Qn($0]) ah, (xoj)’ > u/2>

< Z]P’ (Ian(z05) — an,, (wo5)| = u/2)

()

n

> B (o = Xl) = E{ K32 (fos — Xl

i=1

2u/2)

nu2

<2J,exp | —
8 (VI | ooy + bz | KED)]| e ) /3)

where we invoked Bernstein’s inequality by noting that

<=~ 10| T .

Loo(T4)
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2
and, Var K,Ef‘”)(nx—xin)] < hy / [K@ef) (”mhym q(y)dy
n

<K et [ K2 (o ) dy
= || K ®en) HLOO(Td)hEd-
It follows that, for a sufficiently large constant C' > 0 depending on 7 and || K||¢1(gay, we have
P (H(?n — Ghy |l Loo(ray 2 u) < Ch;M4+2) oxp (- nu2hZ/C).
The claim readily follows. O

A.5.2 Proof of Lemma 33

By Lemma 32, there is a constant ¢; > 0 and an event A, satisfying P(4,) > 1 — 1/n? such that

~ logn
1 = Gho [l oo (ray < 0 = €1y | i

All subsequent statements are made over the event A4,,. Now, given 5 € (0,5 A 1) to be specified
below, and z,y € T?, we have

(@) = an (V)] < 2[|@n — an, [ oo (ray + lan, (%) = an, (¥)]
< 29, + /d ‘K(z) [q(a: — hpz) —q(y — hnz)] ‘ dz
R
< 29 + llalles oray 1 K || 1 ey 12 — 1|

< Ci(m + llz = yll”),

for a large enough constant C; > 0. If ||z — Z/HB > “n, then g, already satisfies the condition of
B-Holder continuity, thus it suffices to assume ||z —y Hﬁ < 7. Recall that

1Gnllcrray < 1K leaggay by 0.

We deduce that for all z,y such that ||z — y“'g < Yn,

1

1

. _ lz —yll _ w

Gn(2) = @)l S g < ol -
n n

(n*/ logn)* (1=
yll” <

nla—1)(d+1) ”x - yHﬁ S; ”x - yHB )

for any small enough choice of 5. The claim follows. O

B On the Variance of Kantorovich Potentials

We state a straightforward technical result which will be used throughout our proofs.
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Lemma 34. Let Q be equal to [0,1] or T¢. Given P,Q € Pac(), let (¢o,%0) be a pair of
Kantorovich potentials in the optimal transport transport problem from P to Q). Assume further
that the density q of Q satisfies v~ < q < v over Q, for some v > 0. Define g = g — fQ Up.
Then, there exists a constant C' > 0 depending only on d such that

[9ollr2(Q) < CYWa(P, Q).

In particular,
Varg[io(Y)] < (C)*W3 (P, Q).

The proof will follow from Poincaré inequalities over [0, 1]d and T¢, which we recall here as they
will be needed again in the sequel. The following is a special case of the Poincaré inequality for
convex domains (see for instance Leoni (2017), Theorem 12.30).

Lemma 35. Let 0 < a < b < oo and 2 = |a, b]d. Then, there exists a constant C > 0 depending
only on d such that for all f € H*(Q) satisfying [, f =0,

1fllz2 @) < €0 = a) [[VFliL2q) -

We also state the following classical periodic Poincaré inequality (see for instance Steinerberger
(2016) for a simple proof).

Lemma 36. Let f € H' (T?) satisfy [pa f =0. Then, 11 2eray < IVl p2(pay -

Proof of Lemma 34. Since 19 € H*(f2) by definition, we may apply the Poincaré inequality
over © (namely, Lemma 35 when Q = [0, 1]¢, or Lemma 36 when Q = T%). This fact, together with
the assumption v~! < ¢ < ~, implies

H"EOH%Q(Q) < 7”1;0“%2([0,1]4) = CQ”YHV%H%?([O,W) < (C’Y>2HV¢OH%2(Q) = (Cy)*WE(P,Q),
which then also implies
Vargiho(Y)] = Varg[o(Y)] < [[Yoll72(q) < (C7)*W3(P,Q),

as claimed. O

C Proofs of Stability Bounds

C.1 Proof of Theorem 6

Recall that ¢y denotes a Brenier potential from P to Q, while ¢ = ||-||* — 20 and o = ||-||* — 2
denote the corresponding Kantorovich potentials. Since we have assumed that both P and Q
are absolutely continuous distributions, Brenier’'s Theorem implies that Sy = V() is the optimal
transport map from @ to P. Since (g is closed, the assumption

1
1 = Vi < My,
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from condition A1(\) also implies (Hiriart-Urruty and Lemaréchal (2004), Theorem 4.2.2),
1 2 %
XId <XV = Ay

Combining this bound with a second-order Taylor expansion of ¢ leads to the following inequalities

% lz = ylI* < ¢5(y) — wi(x) — (So(),y —x) < % lz —yl*, w,yeQ. (56)
With these facts in place, we turn to proving the theorem, namely that
%Hf — TollF2(p) < W3 (P,Q) — W3 (P,Q) — / Yod(Q — Q) < AWE(Q, Q). (57)
We begin with the first inequality. Since T is the optimal transport map from P to @, we have,
Wi P.Q) = [ I7(w) - xlPap(a)
~ [ 11@) - alPap(a)
+ [2@) . T - 0+ [ 1@ - T ap)
—WHP.Q) + [ «ATo(w) - 2.T(@) - To(@)dP(z) + | - Tollp)
To bound the cross term, notice that equation (56) implies
2 / (Ty(x) — x, T(x) — To(z))dP(z)
=2 [ (@) - So(To(@). T(a) ~ Tola)}dP(o)
>2 [ (@) Fo) - Tato)
+ 95 (To(x) — 9p(T () + %Ilf(w) - To(x)llﬂ dP(z)
= / [\ﬂxm? — I To(@)I* = T () — To )|
+263(Tule) - 26(T(@) + 5 1T0) = TP aP(a)
(57 1) 1T~ Tollagry + [ 0@ Q)

We deduce )
WHP,Q) 2 W3(P.Q) + 11T = Tolfagey + [ 40d(Q - Q),
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To prove the second inequality in equation (57), let @ denote an optimal coupling between @ and
Q. Then, the measure 7g, = (So, Id)47 is a (possibly suboptimal) coupling between P and @, thus

W3 (P,Q) S/HI—ZIIQdﬁso(%Z)Z/HSo(y)—ZIIQdﬁ(y,Z)- (58)

The claim is now a consequence of the following technical Lemma, which will be used again in the
sequel.

Lemma 37. We have,
1500 — 21 di(y.2) < WEP.Q) + [ nd(@- @) +A13@. @)

C.2 Proof of Lemma 37
We have,

[ 150(0) = 211 az(.2)
— [ 1500) ~ 1P Q)+ [ Iy = 1 dR(w. )2 [ (So(w) — vy~ 2)dR(0,2)
= WH(P.Q) + WH@.Q)+2 [ (S0(0) — oy — )iy, 2).
Now, notice that by (56),
36) = #52) + 3 Iy =311 7o 2

/
=2 / Phd(Q — Q)+ AWE(Q,Q),

and,
2/< —y,y — 2)dn(y, 2)
= [ 1= e = ol = ] i) = [ IHRA@ - @) - WEQ.Q),
Therefore,
W3 (P,Q) — W3 (P,Q)
< [ (17 - 265) 4@ - Q) + M3 @) = [ wnd(@- @) + MZ(Q. Q)
and the claim follows. O
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D Proofs of Upper Bounds for One-Sample Empirical Estimators

In this Appendix, we prove Corollaries 8 and 9.

D.1 Proof of Corollary 8

We shall make use of the notation introduced in Section 3.3 and Appendix A.2.4, regarding wavelet
density estimation over [0, 1]%. In particular, let ¥ = UP° with N = 1, so that U is the Haar wavelet
basis on [0, 1]%.

Lemma 38. Let J > 1 be an integer. For any p € P([0,1]9), let py € Pac([0,1]¢) denote the
measure admitting density

J
w143 3¢ [ean
J=0 €€,

with respect to the Lebesque measure on [0,1]4. Then, Wa(u, py) < Vd277.

Proof. The Lemma is a straightforward consequence of dyadic partitioning arguments which have
previously been used by Boissard and Le Gouic (2014); Fournier and Guillin (2015); Weed and
Bach (2019); Lei (2020). In particular, for all j > 0, let Q; denote the natural partition (up to
intersections on Lebesgue null sets) of [0,1]¢ into 2% cubes of length 277. Then, Proposition 1
of Weed and Bach (2019) implies

J

W3 (p, ) < d 2727 437272070 3 1u(8) — s (9)]
j=1 SeQ;

To prove the claim, it thus suffices to show that p(S) = ps(S) forall S € Q;and j=1,...,J.
Let j > 0, S € Qj, and recall that Ig is the indicator function of S. Denote its expansion in
the Haar basis by

o0
Ingyg—i—z Z’yg{, where fyw:/lgw,we\ll.

(=0 £,

Notice that for any £ > j and £ € ¥, we have

supp(§) € Is, or supp(§) NIs = 0.

Furthermore, since ¢ = I ;)a, and the Haar basis is orthonormal, we must have f[o 1) & =0 for any
£ €W, j > 0. It must follow that

75:/I5§:0, for all £ € Uy, 0 > 7,

that is, Ig € Span (<I> U Uz;é qu). We therefore have,

1 (S) = / Is(y)as (y)dy
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L9+Y Y ([ &) ([ rstea)

7=0 fG\I/j

J
= L(S) + ]Z%%;j (/ édu> Ve
:/ L(S) +ZJ: > e | dp= /Isdu = p(S).

Jj=0¢&ev;
The claim follows. O
To prove the claim from here, let 277 < nl/4 and let @n be the distribution with density
JIn
) =1+ > (/wczn) & yelo1”
j=0£€0;
Apply Lemma 38 to the measure y = @, to obtain
W3 (@Qn, @) £ W3(Qn Qn) + W3(Qn, Q) S 2727 + W3 (Qn Q) S 0™ + W(Qn, Q).
Furthermore, recall that vy~! < ¢ < v, thus we may apply Lemma 30 to deduce

n=2/d

d
EWQZ(@’VU Q) < (log n)2/n7 d =
1/n, d

The claim follows. O

D.2 Proof of Corollary 9
By Theorem 6,

E[W2(P.Qn) — W2(P.Q)| < EW2(Qn, Q) +E\ [woic@, - Q)'-

By Jensen’s inequality, the final term satisfies

[

E ‘/%d(Qn - Q)‘ <n~2y/Varg[tho(Y)].
Since g is uniformly bounded by a constant depending only on d, the right-hand side of the above
display is of order n~/2. Furthermore, by equation (21), we have EWZ(Qn, Q) < fin, thus the first
part of the claim follows.

Under the assumptions of the second part of the claim, we may instead use Corollary 8 to obtain
the stronger bound EWZ(Qn, Q) < Ky, as well as Lemma 34 to derive Varg[vo(Y)] < WE(P,Q).
The claim then follows. O
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E Proofs of Upper Bounds for One-Sample Wavelet Estimators

E.1 Proof of Theorem 10

Under the assumptions of part (i), we may apply Theorem 6 and Lemma 30 to obtain,
~ 2 ~
E[|T0 = To|| 2 py Sx EWS (Qn, Q) Satyia Rrn(a),

which immediately leads to the first claim. To prove the second claim, recall that we have assumed
a > 1, whence the assumption on ¢y implies in particular that [[¢ollcz2(q) < A. Since the densities

p, ¢ are bounded from below by y~1 over [0, 1]d, and also bounded from above due to their Holder
continuity and the compactness of [0, 1]%, it follows by Lemma 2 that g satisfies condition A1()\),
after possibly modifying the value of A in terms of v. We may therefore invoke Theorem 6 to obtain,

L(Qn) < W(P,Qn) — WE(P,Q) < AWZ(Qn, Q) + L(Qn).

Let C > 0 be a constant depending only on M, A, v, a, whose value may change from line to line.
By Lemma 30, we have

EW3(Qn, Q) < CRrn(a), and EW3(Qn, Q) < CRj,(a).
Furthermore, by Lemma 11, we have

[EL(Qn)| < CRr(e)

Var [1(@0)] < - (Vargluo(v)] + 2-20s0) < VWO | oy o)
BL(@0)[* = [ELQ)[* + Var [L(@u)] < YTy opg (o).

Combining the preceding three displays, we deduce that
[EWZ (P, Qn) = W3(P, Q)| < AEWZ(Qn, Q)+|EL(Qn)|<CRr.n(a), (59)
and,
~ 2
E[W3(P,Qn) — W3 (P,Q)]
o, A ~ 2
<£[ (W00 @) +12(@0])’]

< NEWS(Qn, Q) +20E [WE(@Qn, Q)|L(@n)|| +E|L(Q)[*

|2

< NEWE(Qn, Q) + 2>\\/(EW24(@m Q)) E|L(Q.)|* + E|L(Qy)

Varg [ZO(Y)]> | Varg [;/JO(Y )]

< N3 () + W O (o) (O ) +

Varg[io(Y)] n Varg[io(Y)]

n n

< C’R%, (@) + 2CRyp()

o1



n

< (CRTn(a) + W)Q

The claim follows O]
It thus remains to prove Lemma 11.

E.2 Proof of Lemma 11

In order to bound the bias of [ gy, recall from Lemma 29 that the event A, = {g,, = ¢, } satisfies
P(AS) < n~2. Since 1 is bounded by a constant depending only on d, we have,

<E ('/wo@ 3

L@ 5| [ vold,— )| +

E| [ vota, - L) S PUAD) 1/

We deduce that

thus we are left with bounding the bias of f 1ogn. Recall that Bg is an unbiased estimator of S, for

all £ € ¥, so that
JIn
g1, =BG =D BcC+ DD ek

ce® J=Jjo £EV;

Write the expansion of ¢ in the basis ¥ as

Yo=Y C+ D> Y vl where e = /wog for all £ € W,
ced J=jo £€Y;
where the series converges uniformly due to the Holder regularity of v, so that,
[N RO IEPED 35 SET N 1D SED OEYS B Sl SES

CE‘:I) ]:JO {E\I/]- ]:Jn+1 §E‘Ifj J:Jn+1 fE\I’j

by orthonormality of the basis ¥. By Lemma 24(i) in Appendix A.2, we have |¥;| < 24 therefore

\ [wola-wils S S hetds 3 HlGeeen, el @ects oo ()

On the other hand, we have ||z ©) S H'Hcs(ﬂ) for all s > 0 by Lemma 25. Therefore, by
assumption on ¢ and ¢{, we obtain 7
1(Be)ecw; lew < llgllgams gy 277HoDFE] g gdllemt+a],

il(at1)+ 4 a1y d
1e)eew, lew < lollpary (g 2771 F] < 27illed D3]

(61)
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for all j > jo. Combine equations (60)—(61) to deduce
o o 2
\EL(@n)\ < Z odig—illat+1)+§lg—jlla~1)+5] < Z 9-2ja < 9=2Jna "3 1T
j=Jdn+1 j=Jn+1
We next bound the variance Varg [L(Qn)]. Denote by

Jn
i, =) CH+ DD &

ced J=Jjo €Y

the projection of 1)y onto Span <<I> U Uj; Jo LG j) . By again applying Lemma 29, it is a straightforward

el o] ]

thus it suffices to show that Var [ [ 10gn| = Varg[vo(Y)]/n + O(272/*/n). Notice that

/%%ZZE@/%CJF i ZB&/%f

ced Jj=jo—1&€V;

observation that

< n72

~ Y

Jn n JIn
=SBt X X Boe= X [T+ > X €| = [ wndQn
ced j=jo—1¢€€W, i=1 | Ced j=jo—1£€Y;
(62)

whence,

Var | [ ] = & Varglvu, ()

1 1
=~ Varq[yo(V)] + - (Varglis, (¥)] - Varg[to(Y)]).
It thus remains to bound the final term. Notice that

) Varg[i, (Y)] — Vargyo(Y)] ‘

< [Bqlv3, (V) = ()]| + [Eqlu, (Y) = vo(¥)]| = (1) + (D).

We begin by bounding (7). Letting g, = (s, + 10)q, we have,

() = ‘/(dun — o) (¢, +¢0)Q’ = ‘/(Wn —%0)9n

It is clear that HT,Z)JHHB&-Q:;O([OJ]d) < ||¢0HB§J§O([O,1]‘1) < A, thus for any fixed e > 0 sufficiently small,

the map v, + 1o lies in C*T17¢(]0, 1]%) with uniformly bounded norm, by Lemma 25. Note that
one may take e = 0 if « is not an integer. On the other hand, we also have [|gql|ca-1(g,1j2) < M.
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Deduce that sup,,>; [|gnllca-1(jo174) S 1, by Lemma 23. By following the same argument as in the
first part of this proof, and using again the fact that ||w0||Ca+1([0’1}d) < A, we may deduce that

o
(I) < Z 9dig=illa+l)+5lg=illa=+5] < 9=2Jnar
j:Jn+1

Likewise, we have

(11) = ] [~ %)q] < g-2ho,

and the claim follows from here. O

F Proofs of Two-Sample Stability Bounds

F.1 Proof of Proposition 12

Due to the absolute continuity of P and @, the optimal transport map from ) to P is given by
So = V§. Furthermore, by absolute continuity of P, there exists an optimal transport map o
from P to P. We clearly have,

(G0 50)4Q = P.
Also let 7 € TI(Q, @) be the optimal coupling between @ and @, so that

(@ 0 S, Id) 47 € TI(P, Q).
We deduce,
WE(P,0) < /HaoSo )~ 2|2 d7(y, 2)
- / 15 0 So(y) — So()I12 + 1o(y) — 211 dA(y. =)

+2 [(30S0(w) = So(w). So(w) - 2)dR(w.2). (63)
Notice that
132500 = Ss(wI* afy.2) = [ [5() - alPdP () = WE(P.P). (64)
Furthermore, we have
[ 18000~ 2IPar(s.2) < WRPQ) + [ vnd(@ - @)+ WWEQ.Q). (65)

by Lemma 37. Additionally, the cross term in equation (63) is bounded as follows.
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Lemma 39. We have,
2 [(6 0 50(s) — Solu)Soly) — R (5.2
< / pod(P — P) + 2Wa(P, PYW(Q, Q) + (A — YWE(P, P).
We prove Lemma 39 in Appendix F.2 below. By equations (63-65) and Lemma 39, we obtain

W3(P,Q) < W(P,Q) + \W3(P, P) + \W(Q,Q)
4 / God(0 — Q) + / dod(P — P) + 2Wa(P, PYWa(3, Q)

<WHP.Q)+ A [Wa(P.P)+ Wa(Q.Q)] + [60d@- @)+ [ éud(P - P).

This proves the upper bound of the claim. To prove the lower bound, notice that, by the Kantorovich

duality,
WHP,Q) = [onaP + [ v0dQ
= /¢0dP+ /won—l-/gbod(ﬁ—P) +/wod(@— Q)
~WHP.Q) + [and(P-P)+ [ (@~ Q).
The claim follows. O

F.2 Proof of Lemma 39

Write
2/(3 0 So(y) — So(y), So(y) — z)dm(y,z) = (1) + (II) + (III), (66)

where
(1) =2 / (@ 0 So(y) — So(y),y — 2)dR(y, 2)
(I1) =2 / (6 0 So(y) — So(y). —y)d7 (y, 2)
(I17) =2 / (6 0 S0(y) — So(y). So(y))d7 (y, 2).

Regarding (1), the Cauchy-Schwarz inequality implies

n<2( [ 150 5i) - S|P dity. - ) ([ 1w=212 0 >)
—2( [ 160) - alP arta ) (/=212 e >)
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= 2Wa(P, P)W2(Q. Q). (67)
Regarding term (I7), recall that ¢( satisfies assumption A1()\), thus we have
o= Nz~ 3l < o) — o) — (Tofa),y —2) < Sz~ I, zyen
We deduce that,
(1) =2 [ 6 Sy(0)  Solw). =T Soy) i (1)
<2 [ [oalSa) = 065 o Sa(00) + 5 150l0) ~ & 0 Sulw) || (s,
= / 200d(P — P) + \W2(P, P). (68)
Finally, term (I11) satisfies
(I11) = / [13 0 So@)II* = 113 © So() — So@I* — 1S0(w) 2] i (y, 2)
= [P - P) - W3 (P, P). (69)
Combine equations (67)—(69) with equation (66) to deduce the claim. O

F.3 Proof of Proposition 13

Once again, denote by Sy = V¢ the optimal transport map from @) to P. Recall from the proof
of Theorem 6 (equation (56)) that, due to assumption A1(\),

1 . . A
o e = ylI? < @5(y) — ei(@) = (So(x),y — ) < 5 llz = yll?,
for all z,y € Q. Now, we have,

W3 (P, Qm) = Y Y 7l X — Y52

i=1 j=1

=D 7 [||T0(Xz') - Xi|”

i=1 j=1

+2(To(X;) — X3, Yy — To(X0) + 1Y — To(X3) |12

Notice that

n

|
=

n m
SO wGITo(X) — Xl

i=1 j=1 i=1

m
Z 1 To(X:) — Xi|?
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1 n
=B D ITo(X) — Xil?| = W3 (P,Q),
=1

where we have used the marginal constraint on the coupling 7 in the first equality of the above
display. Recalling that Apm =370 Y70 7| X — Y;||?, thus we obtain,

E[W3(P.Qum) — W(P,Q)

= E[Anm] + 2E Z Z%ij<T0(Xi) — X, Y; — To(Xy))
=1 j=1

= E[Anm] +2E | Y Y @i{To(Xs) = So(To(X2), Y; — To(X:)
|i=1 j=1

Now,
* * 1
2(=S0(To(X1)), Y; — To(X)) > 205(To(Xs)) — 205(Y;) + § [1To(X3) = Y3I* (70)
whence, we obtain,

n m

3% i 260(T050) - 265(1)

i=1 j=1

E|W2(Py, Q) — W2(P,Q)| > E[Anm] +E

1
+ 5 ITo(X3) = Y51° + 2To(X), ¥ — To(Xi))>]
Now, notice that

2To(X3),Y; — To(Xy)) = — | To(Xs) = Y3|* + [[V511° — || To(X0) || -

Thus, continuing from before, we have

E[W3(Pr, Q) ~ W3 (P.Q)]

> %E[Anm] +E DD 7y (2903(T0(Xi)) — 205(Y5) + |Y;511* — HTO(X@')||2>
i=1 j=1
— BB +E | 3 (%1 - 265()
R
~E [; S (ITs(xa)? - 2soz-;<To<Xi>>)] = SE{Aun].
=1
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This proves one of the inequalities of the claim. To obtain the other, return to equation (70) and
notice that one also has

2(=S0(To(X4)), Y; — To(X)) < 2¢5(Th(X:)) — 205(Y;) + A [ To(X) — Y512
The proof then proceeds analogously. This proves that
E[A ] = B|W (P, Qu) = WE(P.Q)].
To conclude, apply Proposition 12 to deduce
E|W3(Po, Q) = W3 (P.Q)]

<E [ 6ud(P, — P) +E [ 60d(@n — Q) + 2A[EWE (P P) + EWE (@, Q)

— 2\ []EWQQ(PH, P) + EW2(Qm, Q)]
The above display is of the order kpam due to equation (21). When we additionally assume that

Q =0,1]% and v~ ! < p,q < ~, we may instead bound it from above by F,am, due to Corollary 8.
The claim follows. O

F.4 Proof of Proposition 16

The claim follows along the same lines as the proofs of Theorem 6 and Proposition 12, thus we
only provide a brief proof of the analogue of Theorem 6 over the torus. It will suffice to prove

AT = Tl < WEP.Q) - WEHP.Q) - [ vnd(@ - Q) < W3(Q.Q). (71)
Recall that T is the optimal transport map from P to @ By Proposition 4(iii), we therefore have
dpa(T(2),2) = |T(2) ol dpa(To(2),2) = |To(w) ]|,z €T
It follows that
WHP.Q) -~ WP.Q) = [ IT(2) - alPaP(e) - [ [Ty(w) - ol *dP()
From here, it follows identically as in the proof of Theorem 6 that

WHP.Q) = WHP.Q) = {I1T = Tolfagpy + [ 40dlQ - Q).

To prove the second inequality in equation (71), let 7 denote an optimal coupling between @ and
@ with respect to the cost d%d. Notice similarly as before that Proposition 4(iii) implies

W (P.Q) = / 150() — yIPdQy). WE(Q.0) = / ly - 2[2d7 (v, 2),
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thus, since (Sp, Id)x7 € (P, Q), and using the fact that dpa < || - ||, we have

W3(P,Q)

/d 2)dm(y, z)

< / 1S0() — 2[%d7 (v, =)
/ 150(y) — yl? dQ(y / ly — 22 d7 (, 2) + 2 / (So(y) — v,y — 2)d(y, 2)
—WE(P.Q) + WE(Q.Q) +2 / (Soly) — v,y — =) (y, 2).

By the same argument as in Theorem 6, the cross term is bounded above by (A — 1)W22(@, Q)+
[ 1od(Q — @), thus the claim follows. O

G Proofs of Upper Bounds for Two-Sample Empirical Estimators

In this Appendix, we prove Propositions 14 and 15. We begin with the following result.

Lemma 40. Let Q satisfy conditions (S1)-(S2). Let P € Pac(Q) admit a density p such that
vt <p <y for somey > 0. Let Vi,...,V, denote the Voronoi partition in equation (31), based
on an i.i.d. sample X1,...,X, ~ P. Then, there exist constants C1,Cy > 0 depending only on
d, "y, €o, 00 such that,

(i) For all 6 € (0,1), we have,

> &
n

P (12% P(V;) > [dlogn +log (1/5)]) 3.

(ii)) We have,

2
a

E [max diam(Vi)z] <y (logn)
1<i<n n

Proof of Lemma 40. We shall make use of the relative Vapnik-Chervonenkis inequality (Vap-
nik, 2013; Bousquet et al., 2003), in the following form stated by Chaudhuri and Dasgupta (2010).

Lemma 41. Let B denote the set of balls in R%. Then, there exists a universal constant C > 0
such that for every § € (0,1), we have with probability at least 1 — & that for all B € B,

P(B) > % [dlogn +log <(15>] — Py(B)>0.

We now turn to the proof. Recall that Q is a standard set by condition (S2), and recall
the constants €y,dp > 0 therein. Fix 1 < i < n. Pick z; € V; for all 1 < i < n, and let
pi = (e0/2d) ||z; — X;||. Since diam(2) < v/d by condition (S1), we have p; < €. We also have
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pi < |lzi — X;||, thus the balls B(z;,p;) of radius p; centered at x; contain no sample points.
Therefore, by Lemma 41, we have that for any ¢ € (0, 1), with probability at least 1 — 4,

C 1
IQ%P(B(:U@,M)) < [dlognﬂog <5>] : (72)

Now, since y~! < p < «, the assumption of standardness on €2 leads to the bound
P(B(wi, pi)) 2 v~ ' L(B(wi, pi) N Q) > 60y L(B(wi, pi) = pf,

thus equation (72) reduces to

1
max pf-l < % [dlogn—i—log (5)} .

1<i<n

By definition of p;, we deduce that for some constant C; > 0 not depending on §, we have with
probability at least 1 — ¢,

max diam(V;) < Cy

1<i<n n

{dlognﬂogu/é)r

To prove claim (i), notice that since the density of P is bounded from above, we also have with
probability at least 1 — 4,

1
. ) < i < =
[nax. P(V;) < Y max LV;) S 112%d1am(%) S - [dlogn + log (1/6)]

To prove claim (ii), let t, = 2C¢((d+2)logn/n)*?. Set § = n exp (—“Cd—c’}> for any u > 0 to obtain
1

E [max diam(Vi)Q] = / P <max diam(V;)? > u> du
0

1<i<n 1<i<n

The claim follows. O
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G.1 Proof of Proposition 14
Abbreviate fﬁﬁN by Tpm. We have,

T — Tol| 2y = /||Tnm — To(X:) + To(X;) — To(x)||*dP(x)

S ; /V [”Tnm(»‘v) — To(X)|* + 1 To(X4) — To(x)HQ] dP(z).

To bound the first term, notice that,

2

Z/Vuﬁm(x)— o(X0)|2dP () anjy To(Xy)| aP()
=1V =

_ZP 2

J
n m

<PV (@) 1Y — To(X)|°,
i=1 j=1

m
> (7)Y — To(X;)
=1

by convexity of ||-||*. Therefore, setting M,, = maxj<;<, P(V;), we obtain

Since Tj is A-Lipschitz by condition A1()), the claim is now a consequence of the following simple
Lemma, which we isolate for future reference.

Lemma 42. Under the conditions of Proposition 1/, we have for any A-Lipschitz map F : Q — €,

2/ |F(X;) — F(x)|?dP(z)

E [nAnm <1max P(Vl))] Shveodo (108 1) Kpam.

<i<n

oy (logn/n)*/,

G.1.1 Proof of Lemma 42
The first quantity is easily bounded as follows,

5|3 [ 1) - oG

n

> 1% - alPar(

7

< NE

n

Z P(V;) diam(V;)?

< \’E
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2
a
< NE [max diam(Vi)z] S <logn> ,
1<i<n n

where the final inequality is due to Lemma 40(ii). To bound the second quantity, let M, =
maxi<;<p P(V;). By Lemma 40(i) with § = 1/n?, there is a large enough constant ¢ > 0 such that
if m,, = clogn/n, then P(M,, > m,,) < 1/n% We have,

E [nMpAnm) = E[nMpI(M, > my)Anm] + E My I(M, < m,)Apm] .

Notice that A, is bounded above by diam(£2)?, and 0 < M,, < 1, thus, by Proposition 13,

E [nM,App] S nP(My, > my) + mpnE [App] S

+ (logn)E [Apm] < (logn)Bnam.

S|

This proves the claim. O

G.2 Proof of Proposition 15

Abbreviate fg;% by Tpm. Notice first that we have
= 2 IR 2
HTnm - TOHLQ(Pn) = ﬁ z; HTnm(Xi) - TO(XZ)H
1=

=SS F | T (X5) — To(X5)

—1 j—1
Zn ]m . ) n m ,
SN w | Tam(X0) = 5|7+ 30D |5 — To(X0)|
i=1j=1 i=1 j=1
n m
<233 Fw [V - To(X)|)” = 280m, (73)
i=1 j=1

where the final inequality follows by definition of fnm, since ¢y € Jy under assumption A1(\).
Therefore,

T = Toll 22y = D /V | Tom = TollaP < 3 /V 1T (2) = T (X1
i=17"Vi i=1""i
T (X3) = To (X + ITo(X) = To()|2] dP ().

By definition of J) and by assumption A1(\), fnm and Tj are both A-Lipschitz, thus by Lemma 42,

2
N 1 i
EHTnm —T0Hi2(p) S < Oin> +E

2
logn\ ¢ T :
< (%) = [+ (i r0) Vo - Bl

> /V B (X:) — To(X0)[2dP ()
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2
a
< (logn) +E [n (max P(VZ)> Anm] ,
n 1<i<n

where we used equation (73). Lemma 42 may now be applied to bound the right-hand term in the
above display, leading to the claim. O

H Proofs of Upper Bounds for Two-Sample Wavelet Estimators

The aim of this section is to prove Theorem 17. We first note that the one-sample results from
Section 3.3 may readily be extended to the optimal transport problem over T¢.

Proposition 43. Assume P,Q € Pac(T?) admit densities p,q € C* (T M,~) for some a > 1,

a ¢ N, and M,~ > 0. Let ¢, = A(pe) be the periodic wavelet estimator defined in equation (34),
and let Qm be the induced probabzlzty distribution. Let

T, = argmin /d%d(x,T(x))dP(x).
Te€T(P,Qm)

1
Furthermore, let 2/m =< m2@=0+%d_ Then, there exists a constant C > 0 depending only on M,~, «
such that the following statements hold.

(i) We have EW2(Qm, Q) < CRym(a) and EWE(Qm, Q) < CR3.,,(a).
(ii) We have,

m m
(ii) We have,
E|Twm —Toll72(p) < CRrm(e),
[EWS (P, Q) = W3(P.Q)| < CRrm(e),
2
E|W3(P,Qm) — W3 (P,Q)|" < | OB}, () + VanEnWYN

Notice that the only properties of the boundary-correct wavelet basis used in the proofs of
Lemma 30 and Theorem 10 are those contained in Lemmas 24 and Lemma 28 of Appendix A.2,
which are also stated to hold for the periodic wavelet basis. The proof of Proposition 43 is therefore
a direct extension of these results. Notice that, unlike Theorem 10, we no longer require any
conditions on the smoothnes of g itself, due to the torus regularity result of Theorem 5. Indeed,
under the assumptions of Proposition 43, the latter implies that there exists a constant C' > 0
depending only on a, v, M such that HcpoHcaH(qrd) < (', assuming o ¢ N.

63



H.1 Proof of Theorem 17

Throughout the proof, we use the abbreviations

F(B,) = / ood(By — P). L) = / $od(O — Q).

We begin by proving part (ii). Under the assumptions of this case, Theorem 5 implies that
”900||ca+1(1rd) < M, for a universal constant My > 0 depending only on «, v and M. In particular, it
also follows from Proposition 4(vii) that ¢ is strongly convex, and thus satisfies condition A1(\)
for some A > 0 depending only on My and v. We may therefore invoke the two-sample stability

bound over T¢ in Proposition 13 (arising from Proposition 12) to deduce

F(ﬁn) + L(Q\m) S Wg(ﬁna@m) - W22(P, Q)
< F(Po) + L(Qm) + 2\ |[WE(Po, P) + W3 (Qm, Q)| -

From Proposition 43(ii), it can be deduced that

UEF(ﬁn)‘ \ ‘EL(@\m)‘ 5 RT,n/\m(a) (74)
Var [F(P,)] < Varp[jj()(X)] +CR%,,(a) (75)
Var [L(Qm)] < Vargldo(¥)] | CRZ,, (), (76)

m

for a constant C' > 0 depending only on M, ~, a, whose value we allow to change from line to line
in the remainder of the proof. Thus, recalling Proposition 43(i),

S |EF(B,)| + |EL(Qm)| + EWE(Pa, P) + EWZ(Qm, Q) S Rrnam(@).

Furthermore,
E[W3 (Po, Qm) = W3 (P, Q)"
<E [(!F(ﬁn)} +|L(Qum)| + 22 (W3 (P, P) + W3 (Qpm, Q)))T — (1) + (1) + (I11),
where
()= |(|F(B)]+2@n]) ]
(IT) = 4NE {(Wf(ﬁn, P) + W2(Qm, Q)ﬂ

(IT) = 4\E [(Wf(ﬁn, P) + W2(Qom, Q)) (|F(13n)\ + \L(@m)y)] .
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Regarding term (I), recall that we have assumed that X; is independent of Y; for all i,j =1,...,n.
Therefore, using equations (74-76),

(I) = E[F*(P,)] + E[L*(Qm)] + 2E|F(P,)L(Qm)]
=E[F*(P,)] + E[L*(Qn)] + 2E|F(P, \E\L Q)|
= Var [F(P,)] + Var [L(Qm)] + [EF(B,)|* + [EL(Qn)|* + 2E|F(B,) |E|L(Qnm) |
< Yarp[po(X)] | Varg[go(Y)] LORE (o).

Furthermore, by Proposition 43(i) we have
(I1) < 83 (EWS (Py, P) + EWZ(Qm, Q)) < CB} (@),

and, using the Cauchy-Schwarz inequality and equations (74-76), we obtain

(IT1) < c\/(Ewg(ﬁn,PHEWg(@m, Q) (E[F(P)| +E[L@um)[*)

Varp|¢o(X)] n Varg WO(Y)])

n m

S C\/R%,n/\m(a) (CR%,nAm(a) +

S CR%’,nl\m<a) + CRT,n/\m(a) \/Varp [¢O(X)] + VarQ [wO(Y)] '

n m

Deduce that

n m

2
() + (IT) + (I11) < (CRT,nAm(a) + \/VMPWO(X)] + Var@[%(y)]> :

Claim (ii) follows from here.

To prove part (i), we shall make use of the one-sample optimal transport problem from P to
@m Denote by @y, an optimal Brenier potential for this problem, so that T,,, = V,, is the optimal
transport map pushing P forward onto Qm, with respect to the cost function d . Furthermore,
denote by

Sm = 1I* = 26m:  Pm = |I-I” = 285,
a corresponding pair of optimal Kantorovich potentials. We proceed with three steps.
Step 1: Regularity of the Fitted Potentials. Recall that @ > 1, and fix ¢ € (0,1 A %) By
Lemma 28(i) and Lemma 29, under our choice of threshold .J,,, notice that the event

E m:{ﬁn:ﬁn}m{am =qu}
N {Pnllse, o rey < 2Pl ooy} O {lmllse . rey < 2alles o }

satisfies P(ES,,,) < (n Am)~2. Note that € ¢ N, thus by Lemma 25, we have on the event Eypn,,

1@mllcecray S N@mllse, . (ray S Nlallpecs ray S lldllca-r(pay < M,
)
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and similarly for p,. Thus, there exists M; > 0 depending only on M, such that
1Pnllee(ray > 1@mlle(ray < M, on Eppp.
Furthermore, by Lemma 28(ii), there exists 79 > 0 depending only on ~ such that
—1

Yo < ﬁnya\m <7, on Enm.

Under the preceding two displays, together with the smoothness assumptions on the population
densities p,q themselves, we may apply the regularity Theorem 5 to deduce that there exists a
constant Ms > 0 depending only on My, My, v such that

loollezse ey V [ Bumllcareqaay V 1B llezse ey < M, (77)

on E,,,. Apply Proposition 4(vii) to deduce that @y, and @,, satisfy the curvature condition A1(\)
almost surely, up to modifying the value of A > 0 in terms of M5y and v, namely:

Ay = V200(2), Viom(2), V2Bnm(z) < My, for all z € RY n,m > 1, (78)

on the event E,,,.
Step 2: Reduction to Optimal Transport Problems with Same Source Distribution. In
order to appeal to the one-sample stability bounds of Theorem 6, write

[Tom = Toll 2y S |1 Tom = Tonll gy + 11Tom = Toll ey (79)

The first term in the above display compares transport maps which are optimal for distinct source
distributions. We therefore proceed with the following reduction, over the event F,,,:

[T = Tl = [ 1 Fon@) = Tu(@)|aP(a)
= ) T (T ) = 9| dQum ()

= [T T3 ) = T T ) ), 50)

where the second line follows from the fact that (T,,)xP = @m, and the third follows from in-

vertibility of Tum, which is ensured by the strong convexity of @, in equation (78). This same
equation implies that, over the event Fy.,, Thm = V@Onm is Lipschitz with a universal constant. It
follows that

|Toom = Tl 32y < / NToh @) = T W dQun) = [T = Tl 20, (81)
T

Step 3: Stability Bounds. Due to the inequalities (78), the stability bounds of Proposition 16
(arising from Theorem 6) imply

Tt = Tl 2,y < NWE(Pa ), [T = Toll2(py < NW3(Qum, Q). (82)
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7(

Thus, combined with equations (79) and (81), we have on the event E,,,,

(T = Toll72 ) S WE(Pr P+ W3 (Qum Q).

We deduce,
E| T~ Toll sy = E [1Tom = Toll 720 L2 | + B || Tom = Tol| o oy L5
SE W2 (Po, P)lg,,, | +E W3 Qs Q)IE,, | +P(ES)
<E W} (Po, P)| +E |W3(@Qm, Q)| + P(EE,,)
< Rrn(a) + Rygn (@) + (n Am) ™2 < Repam(a),
where we made use of Proposition 43(i) on the final line. The claim follows. O

We now state an extension of Theorem 17(ii) to the unit hypercube [0, 1]%. Let P, Q € Pac([0, 1]d)
and denote by ﬁ( and Qm the boundary corrected wavelet estimators defined in Section 3.3

Proposition 44. Let P,Q € Pa.([0,1]%) admit densities p,q € C*~1([0,1]%; M, ~) for some o > 1
and M,y > 0. Assume further that for some X\ > 0,

w0, @5 € CUFH([0,1]% ). (83)
1
Let 277 =< ndt2(a=1) | Then, there exists a constant C > 0 depending only on M, \,~,« such that,

[EWF (L, QR) ~ WE(P,Q)] < CRnm(0)
2

VarP[¢O(X)]+VarQ[1/JO<Y)]

n m

E|W3(PP), Qb)) — w2 (P, Q)|

CRTm/\m(O{)‘f‘\/

The proof follows along similar lines as that of Theorem 17(ii), and is therefore omitted.

Condition (83) places a smoothness assumption on ¢j, in addition to ¢g. If our analysis could
be carried out over a domain Q C R¢ with smooth boundary, then, under appropriate boundary
conditions on the potentials and under the assumptions made on p, g, the Evans-Krylov Theorem
for uniformly elliptic fully nonlinear partial differential equations could be applied to the Monge-
Ampere equation to obtain that of € CAT1(Q) as soon as ¢g € C?(£2), with uniform Hélder norms
(see, for instance, the discussion in Appendix A.5.5 of Figalli (2017)). We do not know whether
analogues of such results can be applied over the hypercube [0, 1]d, thus we have placed assumptions
both on ¢ and its convex conjugate.

I Proofs of Upper Bounds for Kernel Estimators

The goal of this Appendix is to prove Theorem 18. For ease of notation, we omit the superscript
“ker” in all kernel-based estimators, and write

Ph () = E[pn(2)] = (0% Kn, ) (@),  ah,, (y) = ElGn(¥)] = (¢ % Kn,,)(y), x,y €T

67



We begin with the following technical result.

Lemma 45. Let t,s > 0, and assume p € H*(T?). Assume further that the kernel K satisfies
condition K1(s+t,r) for some k > 0. Then, for any h, >0,

1Ph,, = Pll g+ (pay < 5 1Dl s ray B
Proof of Lemma 45. By definition of the H—*(T%) norm,
P, —pHH—t = HH ) ||7t}—[Phn —p](')HeQ(zd)'
Furthermore, using standard properties of the Fourier transform,

Flpon, —p] = Flpx Kp, — p| = (FIK](hy-) — 1) F[p].

Thus, using assumption K1 (s + ¢, x), we have

1 2
1n = PlFr-epay = D | FIEN () — 1" FI()
SGZd H€||
2 g 7l
pI*(€)
222 HE
= KZR2CTD N " IE)* Flpl*(€) < k7Rt Pl s ey
cezd
as claimed. O

While Lemma 45 will be needed in the proof ofA Theorem 18 below, we begin by showing how it
may also be used to derive a rate of convergence of 2, under the Wasserstein distance. The following
result was anticipated by Divol (2021), who derived a Fourier-analytic proof of the convergence rate
of the empirical measure under the Wasserstein distance on T¢. Our proof follows along similar
lines, and is simplified by the fact that we work only with the Wasserstein distance of second order,
but is complicated by the fact that we require general exponents p > 1.

Lemma 46. Let s > 0. Assume P € Poc(T?) admits a density p such that

”pHHS(’]I‘d)§R<OO, 0<’y*1§p§ry<oo,

1
Assume further that the kernel K satisfies condition K1(s-+1,r) for some k > 0. Set h, < n?+d.

Then, for any p > 0,
_p(s+1)

no 2std | d>3
EW;(PTH P) SR,p,'y,s (log n/n)p/z, d =2
(1/n)°/2, d=1.

Proof. By Jensen’s inequality, it suffices to prove the claim for p > 2. It is a direct consequence of
Lemma 32 and the assumption 7! < p < ~ that the event A,, = {p, = pn} satisfies P(4,) < 1/n?.
Furthermore, recall from equation (18), arising from the work of Peyre (2018), that

Wa(Pp, P) S |[Bn — ll g1
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We therefore have,
EWY(B,, P) = E[Wg’(ﬁn,P)IAn}+E[W§(ﬁmp)f,4%
E[lpn — Pl Ta,| +1/n°
E[lpn - Pl Ia, | +1/n°
1ph, — B1%,, + Bl — proll%y ., + 1/n
BECHD L B3 — pi, 6, + 1/n, (84)

I A

/AR 24N

where we used Lemma 45 on the final line, together with the assumption K1 (s + 1.#). To bound
the variance term, write E||p, — phnHH L S Sp + Sp2, where

-
2
Sp1i=E S el | F B e O | |
€4 ||hnglI<1
B:
2
Sna=E S el | F B — prJ @)
€€z, hn€>1

We begin by bounding S, 1. Recall that

Flpn = pn,)(€) = F (7259 — Fpl(©)), ez,

] 1

where i2 = —1. In fact, since p,, and py,,, integrate to the same constant, we have F[p,, —pp,](0) = 0.
Furthermore, let p/ € R satisfy % + % = % Then, for any € R, we have by Holder’s inequality,

P

2

—2 2(n—1 ~ 2
Sp1 =E ST el P [ FlBn — pra) ()]
€74 ||hn€|<1
4
P
_ —1 ~
<[ >l Bl 1l | Flpn — ()
€€z £#0 ¢€z9 £40
[|hn€ll<1 [hnéll<1
P
p’

| X a1 AR E S 24

AR AR J=1
lIhnéll<1 lhngll<1

where Z;(£) = e 27(X8) — F[p|(¢), for all j = 1,...,n and & € Z%. Since p > 2, it can be deduced

69



from Rosenthal’s inequalities (Rosenthal, 1970, 1972) that,

P
B2 37| Sn7f (EA©P) +n VEIZEL
j=1

Notice that |Z;(£)| < 2 for any ¢ € Z%, and p/2 < p — 1, thus we deduce from the previous two
displays that,

Spa<n S| ST el XD el | FIE) ()| (85)
£€74 £50 €€ ,£40
Ihnéll<1 | hnél <1
4
P
_P — _
O DD 3l D W 3 (S (86)
€€z .40 €€z 640
Ihnéll<1 | hn <1

where the final inequality follows from the fact that the Fourier transform of K is bounded over
the unit ball, since K € CCOO(IR{d). When d > 3, due to the condition + + 4 = %, we may choose 7

e 111
satisfying
1 1 d

d{=—=)<n<-. g7
(d p) = (87)

In particular, we then have —d < p( — 1) and —d < —pn, so that

ﬁ _ =
Sp1 Sn72 (hﬁ/n—d> o ppn=D=d _ =8yl d(f+1) _ n‘ghﬁ(l_%),

If d = 2, we choose 1 such that the strict inequalities in equation (87) both hold with equality. In
this case, we have p'n = d and p(n — 1) = —d, thus

L+1
P
Sasn S 3 el s Elog(hy )T = (log(hy ) /)
£€Z,||hnkl|<1
Finally, if d = 1, choose n such that
1 1
1——>n>—. 88
p I (88)

In this case, both sequences in equation (86) are summable, and we obtain S, ; < n~P/2 In
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summary, we deduce

_d
hp(l )7 d>3
_P
Snt S Bn =172 ¢ (log(hy1)”?, d=2 (89)
1, d=1

We next bound S, 2. Let n < d/p’. Apply a similar reduction as in equation (85), to obtain

P

P

S el ST el | FIE] (ha)|

£€Z4 || hng]|>1 £€Z4 || hng]|>1

~|

SIS

SnQSn_

)

Since K € C2°(R%), notice that K and F[K] are Schwartz functions. In particular, F[K](¢) < ||€]|~*
for any ¢ > 0. Choose ¢ > 0 such that p(n — 1 — ¢) < —d. We then have,

45
P

Spa S8 ST el O N 13 (A

§€Z || hngl|>1 £€L4 || hngl[>1

R d
177
S8 (W) hh 0 < bR <

Combine this bound with those of equations (84) and (89)

_p(s+1)
n  2s+d , d Z 3
EWS(P,, P) S WSt 4 8, +1/n% < (logn/n)P/?, d=2
(1/n)°/?, d=1.
The claim follows. O

We are now in a position to prove Theorem 18.

I.1 Proof of Theorem 18

In view of Lemmas 32, 33, 45, and 46, the proof of the claim is analogous to that of Theorem 17,
thus we only provide brief justifications.

Regarding part (i), apply Lemmas 25 and 32-33 to deduce that there exists € € (0,1 A "T_l)
and an event of probability at least 1 — 1/n? over which Py, @, coincide with P, ¢, respectively,
and are of class C¢(T?), with Holder norm uniformly bounded in n. By Theorem 5, it follows that,
over this same high-probability event, any mean-zero Brenier potential in the optimal transport
problem from P to Q, or from P, to Qpm, is of class C%*+¢(T%), again with a uniformly bounded
Holder norm. Arguing as in Step 1 of the proof of Theorem 17(i), we deduce that these potentials
achieve the conclusion of equation (78) therein. The same argument as in Steps 2-3 of that proof,
coupled with Lemma 46 stating the convergence rate of the kernel density estimator in Wasserstein
distance, can then be used to deduce that the optimal transport map Tnm from P to Qm satisfies

1

[T = Do) S EWE (P P) + EWF (@ Q)+ s

5 RK,n/\m (Oé)
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In applying Lemma 46, we note that our stated assumption K1 (2., ) implies K1 (o + 1, %) for a
constant ' > 0 depending only on « and . This proves part (i). To prove part (ii), we use the
following observation.

Lemma 47. Under the assumptions of Theorem 18, we have

B[ [ onton—p)] =002, Var[ [ ntpa -] = HEOEL Lo (1) g

where the implicit constants depend only on M,~y,

Using Lemmas 46-47, the same argument as in the proof of Theorem 17(ii) leads to the claim
of part (ii). O

It thus remains to prove Lemma 47.

1.2 Proof of Lemma 47

Using Lemma 32, and arguing similarly as in the proof of Lemma 11, it will suffice to prove that

[ ooto =y = 02, w{/%@—%ﬂzwwmﬁm+ocw) (91)

n n

Under the condition a € N, a > 1, we deduce from Theorem 5 that there exists A > 0 depending

only on M, ~y, a such that
0,10 € COTH(TEN). (92)

Now, by Parseval’s Theorem,

/Td ¢o(p — Ph,,)

= 1> Flool(©)Flp — pn,](©)

gezd
- 192 F Lol Ol o gy 1 - 17TV F o = D, J O

= H¢0”Ha+1(qrd)Hp—phnHHf(aH)(Td) S e —=pnallg- (a+1) (Td) 5

IN

where we used equation (92) and the fact that H¢0||Ha+1(q1~d) < ll¢oll ga+1(ray S llPollcatr(ray (cf.
Lemma 26). Apply Lemma 45, under the assumption K1 (2, ~), to deduce

/T _bod(p — pn,)

To prove the variance bound, notice that

< h2 < Rgpam(@).

Ve | [ outfn = )| = Var | [(60 K (P, = P)| = 2 Vasplon, (X)),

where ¢p, = ¢o x Kp,,,. Thus, reasoning as in the proof of Lemma 11, we have

’Var [/ b0(Pr, —phn)] - :LVarP[cf)o(X)]‘
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IN

L Varp (o1, (X)] - Varp[60(X)]

|17, (0) — 3001+ [Blon, (X) — 6o(X)]| = - [(1) + (11)].

IN

We shall again bound term (/), and a similar proof can be used for term (I7). Notice that

(1) = ] / (68, — 60) (D, + ¢0)p‘ < bt — G0l i7- -y | (D, + G0)Pl o (pay-

It is a straightforward observation that ||¢p,, [|cet1(ray < [[Pollcat1(ray for all n > 1, thus the function
(¢n,, + ¢o)p has uniformly bounded C®~!(T%) norm, by Lemma 23. Since ¢9 € C¥(T%;\), we
deduce that

(D) S 6h, = Gollir—comvra) S B2,

by Lemma 45. The claim follows from here. O

J Proofs of Central Limit Theorems

The aim of this appendix is to prove Theorem 19 and Corollary 20. We begin by deriving limit laws

for the functional [ ¢o(p,—p). Here, once again, p, is one of the estimators A(bc), ﬁnper), ﬁﬁ}‘er) which

respectively arise from the classical boundary-corrected, periodic, and kernel density estimators

A{nbc)i?{nper) Aﬁ{er). We also write

p5,) =B, o7 =EEPL b = EE)

n n ) n n

Lemma 48. Let €,5 > 0, and let h;l = 27" 4 0.

(i) (Unit Hypercube) Let p € C¢([0,1]%) be positive over [0,1]%. Assume that ¢ € C*([0,1]%)
satisfies Varp[¢po(X)] > 0. Then, as n — oo,

\f/dﬁ /\(bc (bC) ~» N(0, Varp[po(X)])-

(ii) (Flat Torus) Let p € C¢(T%) be positive over T?. Assume that ¢g € C*(T?) satisfies Varp[go(X)] >
0. Then, as n — o0,

No / Do (P — pPD) s N (0, Varp [ (X)),
NG / B0 (5D — p*™) v N(0, Varp o (X)]).

J.1 Proof of Lemma 48

The proof is standard, thus we only prove claim (i). The remaining claims can be proven similarly.
For simplicity, we write \I/';OC_I = &P throughout the proof. Reasoning as in the proof of Lemma, 11,
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and in particular using Lemma 29, it holds that
vin [ @9 - p) = v [ on(p - pE}”)) v [ 100 - 5
= Vn / B~ p§) + 0p(1)

\f Z nag n 7 )
where we write

Z Zﬁ i)Yes

j=jo—lgewbe

and where ¢ = [ ¢o for all £ € ¥, By Lyapunov’s central limit theorem (Billingsley (1968),
Theorem 7.3), it holds that

Zn]) ~ N(0,1), (93)

\/Zz lvar n7f Z nl_

provided that for some p > 2,
Z?:l E [’Zn,i — EZn,i’p]

(94)
(3o Var(Z, )"
Now, using Lemma 24, it holds that
sup sup |Z,l <sup Z Z £
n>11<i<n 21l i=jo— 1§€‘1le
Lo>=([0,1]%)
o0
< JZ 1 1) ecwre lle Silélic 1€ 11 oo j0,179) Zb I([¢] > 0)
= ’ ¢ L% ([0,1)%)
Z 2-i(5+5)2% < 97Jns — o(1). (95)
Jj=Jn+1
On the other hand, under the stated conditions, it follows from Lemma 11 that
n
> " Var(Zy,] = n(Varplgo(X)] + o(1)). (96)

=1

Since Varp[go(X)] > 0, the denominator in equation (94) is of the order n?/2, while the numerator
is of order n by equation (95). It follows that Lyapunov’s condition (94) holds for all p > 2. The
claim thus follows from equations (93) and (96). O
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J.2 Proof of Theorem 19

Assume first that og, 01 > 0. We begin with part (i). Apply the stability bound of Theorem 6 to
obtain,

0 < W3 (PP, Q) — W3 (P,Q) — / od(PP) — P) < W3 (PP, P),

H(per)

Using the convergence rate of Py
the bias of [ ¢0d137§per), we obtain

under W2 in Proposition 43(i), and Proposition 43(ii) regarding

n

Wg(ﬁrgper)7Q) W2(P,Q) = /% (prer) _pf];:ler)) Lo, (n—Q(aE‘;Hd v (log n)2> |
Using the assumption 2(« + 1) > d, deduce that
Vi (WHPP,Q) = WH(P.Q)) = Vit [ o™ =~ of™) + 0y(1).
Apply Lemma 48 to deduce that

Vi (WH(BP™,Q) ~ WE(P.Q))  N(0,08), asn— o,

By the same reasoning, but now using the two-sample stability bound of Proposition 12, we also
have

nm

(W (PPe), Q) - W3 (P,Q))

n+m
(1—p /¢0 ’\(per _ per +\/7/1/10 ’\(per . (Per))+0p(1)

as n,m — oo such that n/(n + m) — p € [0,1]. By Lemma 48 and the independence of
Xi,..., X, Y1,..., Y, we deduce that

nm
n—+m

(WR(PP, Q) = Wi (P.Q)) ~ N(0.02),

as n, m — oo such that n/(n +m) — p. This proves claim (i) for the periodic wavelet estimators.
Claim (i) for kernel estimators (resp. claim (ii) for boundary-corrected wavelet estimators) follows

analogously by now using Lemma 47 (resp. Lemma 11) to bound the bias of [ qbodﬁ(ker) (resp.

[ 9o dﬁ(bc)) Lemma 46 (resp. Lemma 30) to bound the convergence rate of plker) (resp. P(bc))
in Wasserstein distance, and Lemma 48 to obtain the limiting distribution of [ ¢o(p A(ker) ;Ll;er))

(resp. [ G0y — pPY).

n

Finally, to prove part (v), apply Corollary 8 and the result of Divol (2021) to deduce that, for
Q € {[0,1]%, T?}, since the densities p and ¢ are bounded and bounded away from zero, we have

VAWE (P, P) = 0,(1),  VmWE(Qm, Q) = 0,(1),

as n,m — 0o, whenever d < 3. Therefore, using Theorem 6, Proposition 12, and Proposition 16,
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we obtain
V(W3 (P.Q) - W3(P.Q)) = v / bod(Pa — P) + 0p(1),
(W3 P Qm) = WE(P.Q)) =T = ol [ dud(P ~ P)
+ \/W/Tﬁod(Qm — Q) +0p(1).

n-+m

Claim (v) then follows by the classical central limit theorem. It thus remains to consider the
situation where o1 = 0 or g9 = 0. Notice that the Kantorovich potentials ¢g and g are almost
everywhere constant if and only if P = ). As a result, the statements “og = 07, “o1 = 07, and
“P = (@7 are equivalent, thus it remains to prove the claim when P = (). In this case, it suffices

to show that \/ﬁwg(ﬁn, P) = 0,(1) and myy2 (P, Q) = op(1) for the various estimators P,

n+m

and @m under consideration. But these assertions are a direct consequence of the aforementioned
convergence rates of these estimators in Wasserstein distance, under the assumptions of each of
parts (i)—(iii). The claim thus follows. O

J.3 Proof of Corollary 20

Throughout the proof, we write
?Lm = Qnm — / (¢nm - QZ)O)a gbm = Ypm — / (T;Z)nm - Q;ZJO)
Td T
Recall from Proposition 4 that the Kantorovich potentials ¢y, qgnm,m),q;nm are Z%periodic, and

may be taken to be uniformly bounded over R? due to the compactness of T¢. The same is then
also true of gbnm, wnm, and we obtain,

58 — 081 = [Varp, [Bun (U)] = Var plo (X))

= [Vap, (@, ()] ~ Varploo(X)|

/Td(A%mﬁdpn - /Td ¢3dP| + ‘/Td & dp, _/Td ¢0dp‘

[ Garae, )|+ \ [ Bt - P)] #1182 60l

_ / (#%,)2d(P, — P)
0.1

N

A

d(P, — P)

+ (|85 — (Z)OHLZ(P)' (97)

Since ggflm is convex up to translation by a quadratic function, and uniformly bounded, it must be
Lipschitz with respect to || - || over the compact set [0, 1]¢, with a uniform constant depending only
on the diameter v/d of this set (lelart Urruty and Lemaréchal (2004), Lemma 3.1.1, p. 102). Thus,
( ?Lm) is also Lipschitz over [0,1]¢ with uniform constant. The set of Lipschitz functions with a
uniformly bounded Lipschitz constant, over any given compact domain, forms a Glivenko-Cantelli

class (van der Vaart and Wellner (1996), Theorem 2.7.1), thus the first two terms on the right-hand
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side of the above display vanish in probability.

We next bound the third term. Since p is positive over T and lies in C*~(T?), implying that
it is continuous, there must exist a real number v > 0 (depending on p) such that 2/y < p < /2
over T?. Thus,

o Y1 o
H¢nm - ¢0Hi2(P) < *H(bnm - ¢0H312(Td)'

Now, notice that fﬂ.d g/zﬁ\flm = de ¢ for all n,m > 1. As a result, we may apply the Poincaré
inequality over T? (Lemma 36) to deduce that

85 = GollZ2 0y <9 (= S0 22y =l Tom = Toll 2oy SN Toom = Toll 7oy (98)

By Theorem 18(i), E|[Tpm — TOH%Q( py — 0. Combine this fact with equations (97-98) to deduce
that |387nm — 02| = 0p(1) as n,m — oo, as claimed.

7

To prove an analogous result for Ef’nm, apply the same reduction as in equation (97) to obtain

that, as n, m — oo,

6 = 11 S [nm — o[y + 0p(1)- (99)

By the same reasoning as before, up to modifying the value of v > 0, it holds that 2/y < ¢ < ~/2
over T Therefore,

an - @Z’OH;(Q) N H@an - wOHiQ(Td) = HTEn}L - TU_IHiQ(’JI‘d)’

where the final inequality again follows from the Poincaré inequality (Lemma 36), since [r4 ﬂ;\nm =
de Yo. It can further be deduced from Lemma 32 that P(y™! < Dp,Gm < 7 over T?) — 1 as
n, m — oo, thus the above display also leads to

[Gam — 9ol 32y < Tk = To (220,

with probability tending to one. Now, since 2/v < p,q < /2 and p,q € Cafl(Td), we deduce from
Theorem 5 that ¢y € C*T1(T?). In particular, T, 1is Lipschitz, thus continuing from the above
display, we have over the event v~! < D, g < v, which has probability tending to one, that,

[Fum — w0l ey S 17~ 757 o Faml2ar
= 5 o Ty~ T o T,

P,
ST = Tamllz2p,) < 1To = Tl = 0p(1),

where the final order assessment again follows from Theorem 18(i). The claim follows. O

K Proofs of Efficiency Lower Bounds

Throughout this appendix, given @@ € P,.(2), we abbreviate the functional ®g by @, and the

influence functions @ p ) and ¥ pq) by ® and (IVJ, respectively.
We begin by defining the differentiable paths (P, )i>0 and (Q¢ p,)t>0, for all (h1, he) € R?, as
announced in Section 5.2. We follow a construction from Example 1.12 of van der Vaart (2002).
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Recall P,Q € Pac(Q) admit respective densities p,q. Let ¢ € C*°(R) N C?(R) be a bounded non-
negative map, which is bounded away from zero over R by a positive constant, and which satisfies
¢(0) = ¢’(0) = ¢”(0) = 1. For any functions f € L2(P) and g € L2(Q), define P/, QY € Pue(Q) to
be the distributions with densities

pl(x) o< C(tf(@))p(a), af(y) o< C(ta(y))a(y), (100)

for all z,y € 2 and t > 0. Since ¢ is bounded away from zero over R, notice that the implicit
normalizing constants in the above display are bounded from above by a constant which does not
depend on t, f, g,p,q. We now turn to the proofs of Lemma 21 and Theorem 22.

K.1 Proof of Lemma 21

To prove the claim, we shall make use of the following stability result for Kantorovich potentials
over compact metric spaces, due to Santambrogio (2015, Theorem 1.52), which we only state in
the generality required for our proof.

Lemma 49 (Santambrogio (2015)). Let Q be equal to T¢, or to a compact and connected subset
of R, Let P,Q € Pa.c(Q), and assume that at least one of P and Q has support equal to Q. Let
(P)k>1, (Qr)k>1 C P(Q) be sequences which respectively converge to P,Q weakly. Let (¢, V)
denote a pair of Kantorovich potentials in the optimal transport problem from Py to Qp, for all
k > 1. Then, up to taking subsequences, it holds that ¢p — fo and Y — go as k — oo, the
convergence being uniform over Q, for some pair of Kantorovich potentials (fo, go) in the optimal
transport problem from P to @, which is uniquely defined up to translation by constants.

Returning to the proof, let f € Pp be an arbitrary score function, and abbreviate the dif-
ferentiable path P; := Ptf , and its density p; = p{ , for all ¢t > 0. Here, we use the definition
in equation (100). Let (¢¢, 1) denote a pair of Kantorovich potentials in the optimal transport
problem from P, to (), which we may and do choose to be uniformly bounded by diam(f2), and
hence uniformly bounded in t. By the Kantorovich duality, one has

O(P) — ®(P) = sup me+/wq /%M /%m

(p0)ek

z/wm+/%m—/%w—/%m=/%w%wx (101)
O(P, /qﬁtht-F/wtdQ— ¢S;,1Ié}c [/ gf)dP—/wdQ] < /d)td(Pt—P).

By construction, the map t € [0, 00) — p¢(x) is differentiable for every = € €2, and letting A.(z) =

(pe(x) — p(x))/t, we have )
lim Ay(z) = apt(g;)

t—0

= f(z)p(x). (102)

t=0

Now, notice that for all ¢ > 0,

auto)] 5| D= ) L= 0N

p(x) < [[Cller ray f (@)p()-
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Since f € L(P) C L§(P), we deduce that A.(x) is dominated by an integrable function, uniformly
in t. Since ¢ is uniformly bounded, we also deduce that the map |¢pg||As — fp| is dominated by an
integrable function. We then have, by equation (102) and the Dominated Convergence Theorem,

lim inf w
t—0

> lim inf / Do ArdL
t—0 Q
—/¢0fdp+hm1nf/ ¢0 [At—fp] dL
QO t—0 Q
> / g0 fdP — limsup / 6ol 1A — fpl dL
(9] t—0 Q
> / g0 fdP / (o lim sup | A — fp| L = / dofdP,  (103)
Q Q t—0

and similarly,

d(P) — ®(P
lim sup M < lim sup/gbtAtdﬁ
t—0 t t—0

< 11msup/¢tfdP+ <sup||¢>t|Loo<Q ) hmsup/lAt — fpldL

:limsup/<btfdP.
t—0

Let ¢ J 0 be a sequence achieving the limit superior, in the sense that limy_,oo [ ¢y, fdP =
limsup,_,o [ ¢:dP. Up to taking a subsequence of (f;), Lemma 49 implies that ¢, converges
uniformly to a Kantorovich potential fy from P to (), which is unique up to translation by a
constant, and which therefore takes the form fo = ¢g + a for some a € R. The limit superior
clearly continues to be achieved along this subsequence, thus we replace it by (¢, ) without loss of
generality. We thus have

iimsup [ 6.fdP = tim [ o0, faP = | (klggo m) fap = [(6o+a)fap = [ osap

where the interchange of limit and integration holds again by the Dominated Convergence Theorem,
since ¢; are uniformly bounded, and f € L3(P). Combine this fact with equation (103) to deduce

that B(P)_ B(P
%g%(t)t_() :/¢0fdp-

It follows that ® = ¢ — | ¢podP is an influence function of ® with respect to Pp. Since we assumed

that ® € Pp, it must in fact be the case that ® is the unique efficient influence function of ® with
respect to Pp (van der Vaart, 2002), and the claim follows. O
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K.2 Proof of Theorem 22
We shall use the following abbrevations of the differentiable paths defined in equation (100). For
any h € Rand t >0, if f =h® and g = h¥, we write

Poni= P/, pen(a) = pl(2) = en(t)((thd(2))p(), (104)

Qun=Qf, an(y) =l (y) = kn()CERT (y))q(y), (105)

for all ,y € T¢, where the normalizing constants are explicitly denoted

-1

-1
o) = ( [ codenare) . mo= ([ coniwiaem)

In this case, the collections {(P;5)i>0 : b € R} and {(Q¢n)i>0 : b € R} respectively have score
functions given by the tangent spaces

'sz{h&)IhER}, 'PQ:{h‘i’hER}

We begin by showing that there exist M,5 > 0 such that p;; € C*1(T¢; M,7) uniformly in
t,h. An identical argument may then be used to show that g} € Co‘*l(']l‘d; M, 7) for all appropriate
t,h. Our proof then proceeds by proving parts (i) and (ii).

Since p > ~~!, and since ¢ is bounded from below by positive constants, it is clear that there
must exist ¥ > 0 depending on M and (¢ such that

37 < pep over T forallt > 0,h € R. (106)

We next prove the uniform Hoélder continuity of p; . We begin by studying the Holder continuity
of the map ((th®(-)). Since p,q € C* Y(T? M,~), and since we assumed a ¢ N, we have by
Theorem 5 that, for some constant A > 0 depending only on M,~, «

1D as1(pay < A (107)

Furthermore, recall that ¢ € C*°(R). Thus, by the multivariate Faa di Bruno formula (see, for
instance, Encinas and Masque (2003)), it holds that for all multi-indices 1 < |8] < |+ 1],

[l

DPChD(-)) = B (th) O (thd(. ZH@ ' <T|DT ))

=0

where the second summation is taken over all tuples (er)1<|r|<;gy € N such that ) e, = ¢, and
the product is taken over all 1 < || < £ such that ) _e,7 = . Furthermore, 8! = 5!... 54!
Since ¢ € C*°(R), its derivatives of all orders less than a + 1 are uniformly bounded over any fixed
compact set. Since @ is bounded, we deduce for any u > 0,

sup sup[|(th) ¢ (th())l|oo Saa 1-
0<t<|a+1] t2|2’\h<€*R
t|h|<u

Furthermore, we have || D™®||o < A for any 0 < |7| < |a+1]. This fact together with the preceding
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two displays implies

sup sup || DPCtRD())[loo Saaar 1- (108)
0<|BI< la+1] tZO,‘heR
t|h|<u

Now, recall that p. ,(-) = cp (t)C(th®(-))p(-), and that ¢ (t) is uniformly bounded in h and ¢ because
¢ is bounded away from zero by a positive constant. Thus, using the above display, the fact that
p € C* (T4 M), and Lemma 23, we deduce there exists a constant M > 0, depending only on
M, u, « and the choice of ¢, such that

sup ”pt,thwl(w) < M.
t>0,heR
t|h|<a

Combine this fact with equation (106) to deduce that
pen € COTN T M,7), forallt >0,h € R, th| < a.

We now prove part (i). Since P e Pp, it follows from Lemma 21 that ® is the efficient influence
function of ® relative to Pp. Since Pp is a vector space, it follows from Theorem 25.21 of van der
Vaart (1998) that for any estimator sequence U,

sup liminf sup nE, ,|Up — ®q(P,-1/2 h)|2 > Varp[po(X)],
ICR M7 hel ’
|Z|<o0

where the infimum is over all estimator sequences.

We next prove part (ii). Inspired by the proof of Theorem 11 of Berrett and Samworth (2019),
our goal will be to invoke a more general version of Theorem 25.21 of van der Vaart (1998), given in
Theorem 3.11.5 of van der Vaart and Wellner (1996), whose statement we briefly summarize here.
Let H be a Hilbert space with inner product (-, -) g, and norm ||-|| ;. Let (X, Ay, i : h € H) be
a sequence of asymptotically normal experiments (as defined in Section 3.11 of van der Vaart and
Wellner (1996)). A parameter sequence (kn(h) : h € H) C R is said to be regular if there exists a
nonnegative sequence (r,) such that

rn(ﬁn(h> - Hn(O)) — H(h), h € H,

for a continuous linear map £ : H — R. Denote by £#* : R — H the adjoint of £, namely the map
satisfying (£*(0*), h)g = b*k(h) for all h € H.

Lemma 50 (van der Vaart and Wellner (1996), Theorem 3.11.5). Let the sequence of experiments
(X, A, pinp = b € H) be asymptotically normal, and let the parameter sequence (k,(h) : h € H)
be regular. Suppose there exists a Gaussian random variable G such that for oll b* € R, b*G ~
N(0, ||&*(b*)||%). Then, for any estimator sequence (Up)n>1,

sup liminfsupr2E, , (U, — kn(h))? > Var[G].
ICH M7 peT '
|Z|<oo
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Returning to the proof, define the Hilbert space H = R? with inner product
<(h1’ h2)v ( ,17 hl2)>H = hlhll VarP[¢0(X)] + h2h/2 VarQW}O(Y)]v (hlv h2)7 ( /17 h/2) €H,
and the sequence of experiments

Mn.h = Pf_nl/Qﬁl ® Q?yﬁuz’hw h = (hla h2) € R27
endowed with the standard Borel o-algebra. Here, m is viewed as a function of n which satisfies
n/(n+m)— p € [0,1] as n — co. The following result can be deduced from Section 7.5 of Berrett
and Samworth (2019) with minor modifications, using our assumptions placed on (.

Lemma 51 (Berrett and Samworth (2019)). The sequence of experiments (pnpn @ h € H) is
asymptotically normal.

For all h = (h1,h2) € H, let kn(h) = W(P,-1/2,,Qyy-1/2,), Where again m is treated as a
function of n. Notice that k,(0) = ¥(P,Q) for any n > 1. By following the same argument as
in the proof of Lemma 21, using the Kantorovich duality and the stability result for Kantorovich

potentials in Lemma 49, one has
nlh) = 5a0) = [ G0d(Psa g, = P+ [ (@i, = Q)+ o(0)
Now, since ¢(0) = ¢’(0) =1 and [ ®dP = 0, we have for all t > 0,

1

o) !

S Cllezm) R3] o).

_ ‘ / [Ctm® (@) — 1~ B ()] dP(z)

Recall that p and ¢ are bounded, and that ¢, -1/2(h1) is uniformly bounded in h; and n, thus for
all z € T,

Pn-1/2, (2) — p(x) = p(2) [Chl(nfl/Q)C(hm*l/Q‘%(a?)) - 1}
= p(z) [C(hln_l/z‘i(x)) _ 1] L0 <Hp||00|lf||00h%>
= p(x)hin 2@ (z) + O (h%/n) ,
where we again used the fact that ¢(0) = ¢’(0) = 1. Similarly, for all y € T,

1721, W) — a(y) = q(y)ham*U(y) + O (h3/m) |

implying that,

() = 5 (0) = ™ [ 0B+ a2 [ gTdQ + O/ + b m)

= hin~ Y2 Varp[¢o(X)] + ham™Y? Varg[vo(Y)] + O(h3 /n + b3 /m).
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We deduce that

nm

(hn(h) = £n(0)) — &(h) = (V1 = p,V/P), (1, h2)) b,

m-+m

as n, m — oo such that n/(n+m) — p. It follows that the sequence of parameters (kn(h) : h € H)
is regular. Furthermore, the adjoint of & is easily seen to be £*(b*) = b*(\/1 — p, \/p), for all b* € R,
and one has

I (") 113, = b* ((1 = p) Varplgo(X)] + p Varglto(Y)] ).

The claim now follows from Lemma 50. O

L Alternate Proof of Central Limit Theorems

In this Section, we provide an alternate proof of Theorem 19 which does not rely on our stability
bounds in Theorem 6 and Proposition 12. We instead follow the strategy developed by del Barrio
and Loubes (2019) for obtaining limit laws of the distinct process /n(W2(P,,Q) — W2(P,Q)).
For the sake of brevity, we only prove the one-sample case of Theorem 19(ii), and the remaining
assertions of Theorem 19 can be handled similarly. Throughout this section, we abbreviate ¥ = ¥P¢
and ]3n = ﬁsbc).

We shall make use of the classical Efron-Stein inequality (see for instance Boucheron et al.
(2013), Theorem 3.1) for bounding the variance of functions of independent random variables,
stated as follows.

Lemma 52 (Efron-Stein Inequality). Let X1, X1, X2, X5, ..., Xy, X/, be independent random vari-
ables, and let R, = f(X1,...,Xy) be a square-integrable function of X1,...,X,. Let

R;m = f(Xl, e ,Xz',l,XZ{,XZ'le, e ,Xn), 1= 1, ey N
Then,
n
Var[R,] <Y E(R, — R},,)3.
i=1
With these results in place, we turn to proving the one-sample case of Theorem 19(ii). In view of

Lemma 30, it suffices to assume P # Q, in which case Var[¢o(X)] > 0. We abbreviate P, = B,
and we begin with the following result.

Proposition 53. Assume the same conditions as Theorem 19(1i). Define
Ry = W3(Po,Q) ~ [ éudP.

Then, as n — oo, n'Var(R,) — 0.
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L.1 Proof of Proposition 53

Let X| ~ P denote a random variable independent of X1,..., X, and let
1 1<
1=

denote the corresponding empirical measure. Let ]3,’1 be the distribution with density
~, Jn ~,
SR Y A= 3 YAk whee = B, cew
ced J=jo £€Y; Jj=Jjo—1&£€V;

where we write ¥ ;,_; = ® for ease of notation. Set
R, = W3(P,Q) ~ [ éudP.

By Lemma 52, it will suffice to prove that n*E(R, — R},)% = o(1). Let ((gn,?/ﬁ\n) be a pair
of Kantorovich potentials between P, and (. Without loss of generality, we may assume that
[ ¢ndL = [ $odL for all n > 1. By the Kantorovich duality, we have

W2(B,,Q) = / Gnd P, + / $ndQ,

W3(P, Q) = dP, + [ ¢d
5 ( ¢81};1)I;IC/¢ /w Q

> [6udPl+ [ GdQ = Wi PLQ) + [ GudlP - Py

It follows that, on the event FE,,
Ry~ B, < [ (60— 60)d(Py - ),

(1).

In view of Lemma 52, the claim will follow if we are able to show that n’E(R, — R.,)+
<n73, Usmg

Arguing similarly as in the proof of, for instance, Lemma 11, it holds that P(p,, = p,)
this fact and the above inequality, it will suffice to prove that the quantity

Bi= ([ @ = o) e

+

vanishes as n — oo. To this end, notice that

Jn
[ G 0@~ Fdc = [@n-an) | 3 3 (B Bl

j=jo—1€€W;
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J"

S (%) - £(X0)) / (B0 — d0)e.

Jj=jo—1&€Y;

Using the locality of the wavelet basis (Lemma 24(ii)) and the Cauchy-Schwarz inequality, we obtain

Mg 30 Y B 0 [ 1180 = ol 5 0, 5 J 18- solPep

J=jo—1&€V; Jj=jo—1

In the final step, we again used Lemma 24(ii) together with the fact that p is bounded over [0, 1]¢
(since p € C*~1(]0,1]%)), implying that

/§2 dw</§2

By Lemma 24, for all ¢ € ¥; and j > jjo, we have supp(€&) C I¢ for a rectangle Iz C [0, 1]¢ satisfying
diam(I¢) <277, and [[SFEIGADS 24/2. Thus,

2B(R, — R)2 S Jn Z 2df/ 13 — b0l

Jj=jo—1

Apply the Poincaré inequality in Lemma 35 together with the bound diam(I¢) < 277 to deduce

Tn
’E(R, — R})2 ST Z 2(d=2); /HV ¢0)H2§Jn Z Q(d_Z)jHTn_TOHi%P)

Jj=jo—1 Jj=jo—1

where the final inequality holds due to the assumption that p has a positive density over [0, 1],
which, due to the continuity of p, implies that there is a constant y~' > 0 such that p > v~! over
[0,1]¢. Apply Theorem 10 to deduce that

J,
- 9 9a logn)?
“E(Ry — Ry) +~J Z 24 2)] ‘T TOHLz(p In <2J”(d 22 )\/“gn)>.
Jj=jo—1

Since d < 2(a+ 1) and J,, < logn, the above display is of order o(1), thus the claim follows from
Lemma 52. O
To prove the claim from here, write

V(W3 (P, Q) ~ EWF(Po,Q)) = Vit [ 60(hn — p1,) + Vi (B~ EIR.)).

where recall that pj, = E[p,]. It follows from Proposition 53 that the final term of the above
display converges to zero in probability. Furthermore, v/n [ ¢o(pn — pJ,) ~ N(0, Var[po(X)]) by
Lemma 48, and the claim follows. ]
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