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We introduce a mimetic dual-field discretization which conserves mass, kinetic energy and 
helicity for three-dimensional incompressible Navier-Stokes equations. The discretization 
makes use of a conservative dual-field mixed weak formulation where two evolution 
equations of velocity are employed and dual representations of the solution are sought 
for each variable. A temporal discretization, which staggers the evolution equations and 
handles the nonlinearity such that the resulting discrete algebraic systems are linear and 
decoupled, is constructed. The spatial discretization is mimetic in the sense that the finite 
dimensional function spaces form a discrete de Rham complex. Conservation of mass, 
kinetic energy and helicity in the absence of dissipative terms is proven at the discrete 
level. Proper dissipation rates of kinetic energy and helicity in the viscous case are also
proven. Numerical tests supporting the method are provided.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Relevance of structure preserving methods with focus on kinetic energy and helicity conservation

In this work we address the discretization of the incompressible Navier-Stokes equations, defined on a periodic domain 
� ⊂ R3 and time interval (0, tF ]. These well known equations govern the dynamics of an incompressible fluid’s velocity, 
u : � ×(0, tF ] �→R3, and pressure, p : � ×(0, tF ] �→R, subject to a body force, f : � ×(0, tF ] �→R3, and an initial condition, 
u0 : � �→R3. A general dimensionless form of these equations is

∂u

∂t
+ C(u) − 1

Re
D(u) + ∇p = f , in � × (0, tF ] , (1a)

∇ · u = 0 , in � × (0, tF ] , (1b)

u|t=0 = u0, in �, (1c)

where C(u) and D(u) represent the nonlinear convective term and the linear dissipative term, respectively, and Re is the 
Reynolds number. The operators C and D can take different forms, all analytically equivalent at the continuous level, see 
for example [1–7].
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The four most common forms of the nonlinear convective term C(u) present in the literature, e.g., [3,5,8], are

Advective form: C(u) := u · ∇u , (2a)

Conservative (or divergence) form: C(u) := ∇ · (u ⊗ u) , (2b)

Skew-symmetric form: C(u) := 1

2
∇ · (u ⊗ u) + 1

2
u · ∇u , (2c)

Rotational (or Lamb) form: C(u) := ω × u + 1

2
∇ (u · u) , (2d)

where ω := ∇ × u is the vorticity field. Besides these most common forms, it is also possible to construct a wide range of 
nonlinear convective terms as linear combinations of the above mentioned ones and/or employing vector calculus identities. 
For example, one such choice with interesting properties is the EMAC scheme [9]. Following similar ideas, it is possible to 
construct analytically equivalent representations for the dissipative term D, for example,

D(u) := Δu, and D(u) := −∇ × ∇ × u = −∇ × ω , (3)

where the latter representation can be derived from the former by using the identity Δu = ∇ (∇ · u)−∇ × (∇ × u) and the 
divergence free condition (1b).

As mentioned before, these different forms are equivalent at the continuous level and, therefore, may be used inter-
changeably. At the discrete level, see for example [3,5,8], a particular choice of convective term used as the starting point of 
the discretization process leads to numerical schemes with substantially different properties.

One interesting aspect of the incompressible Navier-Stokes equations (1) is the fact that, in the inviscid limit (Re → ∞) 
and when the external body force is conservative (there exists a scalar field ϕ such that f = ∇ϕ), its dynamics conserves 
several invariants. Some of these invariants are the total kinetic energy K (in 2D and 3D), total enstrophy E (in 2D), and 
the total helicity H (in 3D),

K := 1

2

∫
�

u · u , E := 1

2

∫
�

ω · ω, and H :=
∫
�

u · ω , (4)

provided there is no net in- or out-flow of kinetic energy, enstrophy or helicity over the domain boundary. Note that, in 
2D, vorticity can be regarded as a vector field constrained to the direction orthogonal to the planar 2D domain and velocity 
can be regarded as a vector field whose component along the direction orthogonal to the planar 2D domain is zero, i.e.,
ω = [0,0,ω]T and u = [u, v,0]T . Thus helicity is trivially zero in 2D flows.

The proofs for these conservation laws are straightforward. For illustration purposes and as an introduction to some of 
the ideas discussed later in this work, we present these proofs here for the case of no external force, i.e., f = 0, and periodic 
boundary condition. For simplicity, and without loss of generality, we use the rotational (or Lamb) form for the nonlinear 
convective term, (2d). The total (or Bernoulli) pressure is defined as

P := p + 1

2
u · u .

Kinetic energy conservation (in 2D and 3D) corresponds to 
dK
dt

= 0. Differentiating K as defined in (4) with respect to 
time and taking (1) in the inviscid limit, Re → ∞, leads to

dK
dt

=
∫
�

∂u

∂t
· u (1)= −

∫
�

C(u) · u −
∫
�

∇p · u = −
∫
�

(ω × u) · u +
∫
�

P∇ · u = 0 ,

where we have used (i) the vector calculus relation that the cross product of two vectors is perpendicular to either vector, 
i.e.,

(a × b) ⊥ a and (a × b) ⊥ b , (5)

(ii) integration by parts on the total pressure term and (iii) the divergence free condition (1b).

Enstrophy conservation (in 2D) equates to 
dE
dt

= 0. As done above for kinetic energy, time differentiation of E as defined 
in (4) gives

dE
dt

=
∫
�

∂ω

∂t
· ω . (6)

Computing the curl of the momentum equation in (1) with Re → ∞ and substituting ω = ∇ × u into (6) results in
2
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dE
dt

= −
∫
�

∇ × (ω × u) · ω = −1

2

∫
�

(u · ∇ω)ω − 1

2

∫
�

∇ · (uω)ω = 1

2

∫
�

ω∇ · (uω) − 1

2

∫
�

∇ · (uω)ω = 0 ,

where we first used the vector calculus identity

∇ × (ω × u) = 1

2
(u · ∇ω) + 1

2
∇ · (uω) ,

followed by integration by parts on the first term of the second equality.

Helicity conservation (in 3D) stands for 
dH
dt

= 0. Expanding the time derivative of H as defined in (4) leads to

dH
dt

=
∫
�

∂u

∂t
· ω +

∫
�

u · ∂ω

∂t
. (7)

If we now use the momentum equation in (1) and its curl, (7) may be rewritten as

dH
dt

= −
∫
�

(ω × u) · ω −
∫
�

u · ∇ × (ω × u) +
∫
�

∇ × ∇ P · u +
∫
�

∇ P · ω

= −
∫
�

(ω × u) · ω −
∫
�

ω · (ω × u) +
∫
�

∇ × ∇ P · u −
∫
�

P · ∇ · ∇ × u = 0 ,

where we have used (i) the definition of vorticity ω := ∇ ×u, (ii) integration by parts on the second and fourth terms in the 
right side of the first identity, (iii) the vector calculus relation (5), and (iv) the identities ∇ × ∇ (·) ≡ 0 and ∇ · ∇ × (·) ≡ 0.

These conservation laws for kinetic energy (in 2D and 3D), enstrophy (in 2D), and helicity (in 3D), are the expression 
of a more general structure underlying the incompressible Euler equations: the Hamiltonian structure, [10–16]. A system of 
partial differential equations (PDEs) is Hamiltonian if it can be cast in the general form, see for example [12,17],

∂ y

∂t
= S

δH(y)

δ y
,

where S is a skew-adjoint operator, such that the induced bilinear form must also be a derivation and satisfy the Jacobi-
identity, and H is the Hamiltonian functional.

The system of equations (1), in the inviscid limit, is not in Hamiltonian form but may be rewritten in this form if pressure 
is eliminated and the Hamiltonian functional is set to the kinetic energy K. This can be achieved by either: (i) restricting 
the momentum equation to divergence free velocity fields (e.g., by making use of the stream function (in 2D) or the stream 
vector field (in 3D) ψ such that u = ∇ ×ψ ) [18], or (ii) taking the curl of the momentum equation (transforming it into the 
vorticity equation) [12].

Noether’s theorem establishes a connection between conservation laws of a Hamiltonian system and its underlying sym-
metries, [19–22], thus highlighting the strong connection between the (geometric) structure of a system of PDEs and its 
dynamics. For example, spatial translation symmetry gives rise to conservation of linear momentum, and temporal transla-
tion symmetry results in energy conservation.

Helicity, on the other hand, is a more subtle quantity. Helicity as introduced in (4) is a particular case of the general 
concept of helicity of a divergence-free vector field, v , tangent to the boundary ∂� of a simply connected domain � ⊂ R3, 
see for example [20,23],

H(∇ × v) :=
∫
�

v · ∇ × v ,

which measures the average linking of its field lines.
The 19th century works of Helmholtz [24] and Kelvin [25] contain the seminal ideas for the modern concept of helicity, 

[26]. A renewed interest in these ideas appeared only later in the mid 20th century, first in the context of magnetohydrody-
namics (MHD), [27], and then for hydrodynamics, [28,29]. Moreau, [28], discovered the law of conservation of helicity, and 
the term helicity appeared first in the work by Moffatt, [29], where the topological nature of this quantity was highlighted. 
For a detailed historical discussion of helicity see the very informative works by Moffatt [30,31].

It is possible to show, see for example [23], that helicity of any divergence-free vector field is preserved under the action 
of any volume preserving diffeomorphism. This property shows that helicity is not a dynamical invariant but a topological 
invariant, since its conservation is independent of the specific diffeomorphism, [20]. In fact, helicity is associated to the 
nontrivial kernel of the operator S , and is a Casimir for the Hamiltonian formulation of the inviscid Navier-Stokes equations, 
[20]. In the same way, in 2D, enstrophy is also a Casimir of the inviscid Navier-Stokes equations (as are all integral powers 
of vorticity).
3
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This very brief digression into Hamiltonian formalism intends to show the connection between the physical properties 
of a system of PDEs and its underlying geometrical structure. Invariants are not mere incidental features of the dynamics of 
a system, they are expressions of the underlying structure of the equations.

Helicity plays an important role in the generation and evolution of turbulence, [32–34]. The joint cascade of energy and 
helicity, [35], is an active field of research, [36–40]. Particularly important is the interaction between the two and how helic-
ity impacts the energy cascade and, therefore, turbulence, [29,32,34,38,41–43]. This complex interaction between the energy 
cascade and the helicity cascade and especially the suppressive role of helicity motivates the focus on the development of 
discretization schemes that, besides conserving energy, conserve helicity. In the same way as energy conserving schemes 
have shown to substantially contribute to a higher fidelity in simulations, see for example [3,44–49], due to the connection 
between the cascades of energy and helicity, helicity conserving schemes should also present a positive impact towards 
improving the simulation accuracy.

1.2. Overview of structure-preserving methods for fluid flows

As highlighted above, the solutions to systems of PDEs (of which the Navier-Stokes are a particular example) satisfy 
strong constraints [50,51]. These constraints reflect the underlying mathematical structure of the equations (e.g., Hamiltonian 
structure, Poisson structure, de Rham sequence). These fundamental mathematical structures have long played an essential 
role in modern physics and pure mathematics. Owing to the fundamental nature of these structures and their impact on 
the dynamics of the systems under study, in recent years there has been an increasing interest in the various aspects of 
structure preservation at the discrete level [50,52,53]. This interest is rooted in three important points. First, there are well 
known connections between discrete structure preservation and standard properties of numerical methods [50,54,55]. Second, 
standard properties only guarantee physical fidelity in the limit of fully (at least highly) resolved discretizations. Reaching this 
limit requires infeasible computational resources (e.g., [56]). In contrast, structure preserving discretizations, by construction, 
generate solutions that satisfy the underlying physics even in highly under-resolved simulations. This is extremely relevant 
since most (if not all) simulations are inherently under-resolved. Third, physics preservation is fundamental when coupling 
systems in multiphysics problems [57].

The underlying principle behind structure preserving discretizations is to construct discrete approximations that retain as 
much as possible the structure of the original system of PDEs. A departure from this principle introduces spurious unphysical 
modes that pollute the physics of the system being modeled [54,58,59]. For example, as seen before, turbulence plays a 
fundamental role in the dynamics of the flow. A correct representation of the turbulent dynamics of a fluid is paramount 
in order to achieve accurate simulations. For this reason, if a numerical discretization introduces spurious unphysical energy 
dissipation into the system, it will fail to accurately capture the energy cascade and consequently the turbulent dynamics, 
[60–62]. The main focus of structure preserving discretizations for flow problems has been on energy conservation, e.g. 
[3,44,45,61]. As noted in the previous section, there is a growing knowledge on the role played by helicity and its impact 
on the energy cascade. For this reason, more recently, helicity conservation at the discrete level has been addressed in the 
literature, see for example [5,62,63].

Most standard structure preserving discretizations can be seen as variations of staggered grid methods which date back to 
the pioneering works of Harlow and Welch [64], and Arakawa and colleagues [65,66]. These methods employ a discretization 
that distributes the different physical quantities (pressure, velocity, vorticity, etc) at different locations in the mesh (vertices, 
faces, cell centres). It can be shown that, by doing so, important conservation properties can be maintained. Since then, 
much work has been produced and a rich variety of different flavours of structure preserving discretizations have been 
presented: finite differences/finite volumes [67–71], discrete exterior calculus (DEC) [72], finite element exterior calculus 
(FEEC) [55,73,74] and the works by the authors [8,75–78].

More recently, another approach develops a discretization of the physical field laws based on discrete variational princi-
ples. This approach has been used in the past to construct variational integrators for Lagrangian systems, e.g. [79,80]. These 
ideas have been extended to magnetohydrodynamics [81–83], incompressible flows [84], and geophysical flow [85,86].

1.3. Objective

In this work, extending the initial ideas introduced for the 2D case, see [8], we combine (i) a particular choice for the 
formulation of the Navier-Stokes equations with (ii) a structure preserving discretization. Specifically, we will present two 
velocity evolution equations (dual-field) in a rotational form, discretized by the mimetic spectral element method (MSEM) 
[75,87,88].

This formulation attempts to address the dual character of the velocity field in the incompressible Navier-Stokes equa-
tions. This dual character implies that it is natural to look for a solution for the velocity field in H(div; �) ∩ H(curl; �). At 
the continuous level this is easily achievable, but that is not true at the discrete level since the space H(div; �) ∩ H(curl; �)

is hard to discretize. The use of two velocity field evolution equations enables the representation of this dual character. It is 
shown that in this way the resulting discretization conserves mass, kinetic energy, and helicity in 3D.

The vorticity fields in the rotational form of the nonlinear convective term, see (2d), serve as a means of exchanging 
information between the two evolution equations. Additionally, this leads to a leap-frog like scheme that handles the non-
4
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linear rotational term by staggering in time the velocity and vorticity such that the resulting discrete algebraic systems are 
linearized and decoupled.

Overall, the objective of this novel approach is the construction of a discretization which conserves mass, kinetic energy 
and helicity for the incompressible Navier-Stokes equations in the absence of dissipative terms and predicts the proper 
decay rate of kinetic energy and helicity based on the global enstrophy and an integral quantity of vorticity, respectively.

1.4. Outline of paper

The outline of the paper is as follows: In Section 2, we introduce a dual-field mixed weak formulation and prove that 
it preserves the desired conservation properties. In Section 3, a conservative staggered temporal discretization scheme is 
applied to the formulation, which is followed by a mimetic spatial discretization in Section 4. Numerical results that support 
the method are presented in Section 5. Finally, a summary is given and potential future work is listed in Section 6.

2. A mass-, kinetic energy- and helicity-conserving formulation

In this section, we propose a new conservative formulation for the Navier-Stokes equations in periodic domains. As we 
will only consider periodic domains in this paper, from now on, � represents a 3D periodic domain. The function spaces are 
the classic Hilbert spaces which form an exact complex, namely, the well-known de Rham (or Hilbert) complex [8,55,58,59]:

R ↪→ H1(�)
∇−→ H(curl;�)

∇×−→ H(div;�)
∇·−→ L2(�) → 0 . (8)

This complex plays a fundamental role in the proofs and analysis of the presented work.

2.1. The rotational form of the incompressible Navier-Stokes equations

If in (1) we use the rotational (or Lamb) form for the nonlinear convective term, (2d), and use the representation
D(u) = −∇ × ω for the linear dissipative term, (3), we obtain the rotational form of the incompressible Navier-Stokes 
equations,

∂u

∂t
+ ω × u + 1

Re
∇ × ω + ∇ P = f , (9a)

ω = ∇ × u , (9b)

∇ · u = 0 . (9c)

We have proven that, in 3D and in the inviscid limit (Re → ∞), these equations preserve total kinetic energy and total 
helicity over time for the case of no external body force, f = 0, in Section 1.1. For non-zero conservative external body 
force, f = ∇ϕ �= 0, we can include it by replacing the total pressure by an extended total pressure

P ′ := P − ϕ . (10)

All analysis and proofs remain valid. Without loss of generality, in this paper we will only use zero external body force for 
the analysis and proofs.

When the flow is viscous, Re < ∞, the viscosity dissipates kinetic energy of the incompressible Navier-Stokes equations 
at rate

dK
dt

= − 2

Re
E , (11)

while it dissipates or generates helicity at rate

dH
dt

= − 2

Re
〈ω,∇ × ω〉� , (12)

where 〈·, ·〉� denotes the inner product, i.e.,

〈a,b〉� =
∫
�

a · b and 〈c,d〉� =
∫
�

cd ,

if a, b are vectors and c, d are scalars. The viscosity always dissipates kinetic energy because the total enstrophy cannot 
be negative, E ≥ 0, see the definition of the total enstrophy in (4). It either dissipates or generates helicity because the 
term 〈ω,∇ × ω〉� generally can be either positive or negative (or zero). This means the dissipation rate of helicity can be 
negative.
5
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2.2. A conservative dual-field mixed weak formulation

We propose the following dual-field mixed weak formulation for the rotational form of the incompressible Navier-
Stokes equations: Given f ∈ [

L2(�)
]3
, seek (u1,ω2, P0) ∈ H(curl; �) × H(div; �) × H1(�) and (u2,ω1, P3) ∈ H(div; �) ×

H(curl; �) × L2(�) such that,〈
∂u1

∂t
,ε1

〉
�

+ 〈ω1 × u1,ε1〉� + 1

Re
〈ω2,∇ × ε1〉� + 〈∇ P0,ε1〉� = 〈 f ,ε1〉� ∀ε1 ∈ H(curl;�) , (13a)

〈∇ × u1,ε2〉� − 〈ω2,ε2〉� = 0 ∀ε2 ∈ H(div;�) , (13b)

〈u1,∇ε0〉� = 0 ∀ε0 ∈ H1(�) , (13c)〈
∂u2

∂t
,ε2

〉
�

+ 〈ω2 × u2,ε2〉� + 1

Re
〈∇ × ω1,ε2〉� − 〈P3,∇ · ε2〉� = 〈 f ,ε2〉� ∀ε2 ∈ H(div;�) , (13d)

〈u2,∇ × ε1〉� − 〈ω1,ε1〉� = 0 ∀ε1 ∈ H(curl;�) , (13e)

〈∇ · u2, ε3〉� = 0 ∀ε3 ∈ L2(�) . (13f)

Remark 1. In this formulation, the terms (ωi × ui) · ε i are not known to be L2-integrable for the vector fields that belong to 
the infinite dimensional function spaces H(curl; �) (i = 1) and H(div; �) (i = 2). Showing this integrability requires proving 
additional regularity of the velocity and vorticity variables, which we currently are unable to do. However, in the finite 
dimensional case, the known regularity is sufficient, see Section 4. Thus, despite the potential mathematical issue, we still 
write this formulation above for its clear interpretation and to motivate the discrete scheme.

The formulation (13) is called dual-field because it contains two evolution equations, (13a) and (13d), and, for each 
variable, dual representations of its solution are sought: For velocity, we seek (u1,u2) ∈ H(curl; �) × H(div; �), for vorticity, 
we seek (ω2,ω1) ∈ H(div; �) × H(curl; �), and, for total pressure, we seek (P0, P3) ∈ H1(�) × L2(�). If all variables are 
sufficiently smooth, integration by parts will show that either (u1,ω2, P0) or (u2,ω1, P3) solves the Navier-Stokes equations 
in rotational form, (9). Note that the de Rham complex (8) and the constraint (13b) ensure

ω2 = ∇ × u1 . (14)

Therefore, in practice, ω2 may be dropped from (13) if we replace it by ∇ × u1. We leave in ω2 above to maintain the 
clearness of the formulation.

2.3. Properties of the formulation

We now show that the proposed dual-field formulation (13) conserves (i) the mass in terms of u2 and, in the case of 
conservative external body force and zero viscosity, (ii) the kinetic energy in the formats

K1 = 1

2
〈u1,u1〉� and K2 = 1

2
〈u2,u2〉� ,

and (iii) the helicity in the formats

H1 =
∫
�

u1 · ω1 = 〈u1,ω1〉� and H2 =
∫
�

u2 · ω2 = 〈u2,ω2〉� .

We will also analyze the dissipation rate of kinetic energy and helicity in the viscous case for the proposed formulation.
Note that, in this subsection, everything is still at the continuous level. The purpose is to show that the proposed weak 

formulation possesses the same properties as the strong formulation does.

2.3.1. Mass conservation
For the mass conservation, since we have restricted u2 to space H(div; �), the de Rham complex (8) and the constraint 

(13f) ensure that the relation

H(div;�) � u2
∇·−→ 0 ∈ L2(�)

is strongly satisfied; no integration by parts is required. Therefore, the mass conservation is satisfied for velocity u2. Such 
an approach is widely used to construct mass conserving discretizations. While for u1 ∈ H(curl; �), the mass conservation 
is only weakly satisfied, see (13c).
6
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2.3.2. Time rate of change of kinetic energy
In the inviscid limit (Re → ∞) and when f = 0, the kinetic energy conservation is equivalent to

dK1

dt
=

〈
∂u1

∂t
,u1

〉
�

= 0 and
dK2

dt
=

〈
∂u2

∂t
,u2

〉
�

= 0 .

Because (13a) is valid for all ε1 ∈ H(curl; �), we can select ε1 to be u1 ∈ H(curl; �). As a result, we get〈
∂u1

∂t
,u1

〉
�

+ 〈ω1 × u1,u1〉� + 〈u1,∇ P0〉� =
〈
∂u1

∂t
,u1

〉
�

= 0 .

The second term vanishes because of (5). Meanwhile, from (13c), we know that 〈u1,∇ P0〉� = 0 because P0 ∈ H1(�). 
Therefore, the third term also vanishes, which accomplishes the proof of kinetic energy conservation for K1. Similarly, by 
selecting ε2 of (13d) to be u2, we can get〈

∂u2

∂t
,u2

〉
�

+ 〈ω2 × u2,u2〉� − 〈P3,∇ · u2〉� =
〈
∂u2

∂t
,u2

〉
�

= 0 ,

where the second and third terms vanish because (5) and (13f), respectively. Thus we can conclude that K2 is also preserved 
over time.

In the viscous case, Re < ∞, if we repeat the above analysis, the viscous terms will remain. We will eventually obtain 
the following kinetic energy dissipation rates,

dK1

dt
=

〈
∂u1

∂t
,u1

〉
�

= − 1

Re
〈ω2,∇ × u1〉� = − 1

Re
〈ω2,ω2〉� = − 2

Re
E2 ≤ 0 , (15)

dK2

dt
=

〈
∂u2

∂t
,u2

〉
�

= − 1

Re
〈∇ × ω1,u2〉� (13e)= − 1

Re
〈ω1,ω1〉� = − 2

Re
E1 ≤ 0 , (16)

where the total enstrophy E1 and E2 are defined as

E1 = 1

2
〈ω1,ω1〉� and E2 = 1

2
〈ω2,ω2〉� .

This is in agreement with the kinetic energy dissipation rate of the strong formulation, see (11).

2.3.3. Time rate of change of helicity
If Re → ∞ and f = 0, the helicity conservation is equivalent to

dH1

dt
= d

dt
〈u1,ω1〉� =

〈
∂u1

∂t
,ω1

〉
�

+
〈
u1,

∂ω1

∂t

〉
�

= 0 ,

dH2

dt
= d

dt
〈u2,ω2〉� =

〈
∂u2

∂t
,ω2

〉
�

+
〈
u2,

∂ω2

∂t

〉
�

= 0 .

Replacing ε1 in (13a) by ω1 ∈ H(curl; �) leads to〈
∂u1

∂t
,ω1

〉
�

+ 〈ω1 × u1,ω1〉� + 〈ω1,∇ P0〉� =
〈
∂u1

∂t
,ω1

〉
�

= 0 . (17)

The second term vanishes because of (5). Meanwhile, we have (13e) saying

−〈u2,∇ × ε1〉� + 〈ω1,ε1〉� = 0 ∀ε1 ∈ H(curl;�) . (18)

And because P0 ∈ H1(�), we have ∇ P0 ∈ H(curl; �) (in particular, ∇ P0 is in the null space of H(curl; �) with respect to 
∇×). Thus we can replace ε1 in (18) by ∇ P0 and get

−〈u2,∇ × ∇ P0〉� + 〈ω1,∇ P0〉� = 0 . (19)

This implies 〈ω1,∇ P0〉� = 0 because ∇ × ∇(·) ≡ 0 showing that the third term of (17) vanishes.
If we take the time derivative of (18), we have〈

∂u2

∂t
,∇ × ε1

〉
�

=
〈
∂ω1

∂t
,ε1

〉
�

∀ε1 ∈ H(curl;�) . (20)

In addition, we know that, (13d),〈
∂u2

,ε2

〉
+ 〈ω2 × u2,ε2〉� − 〈P3,∇ · ε2〉� = 0 ∀ε2 ∈ H(div;�) . (21)
∂t �

7
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Therefore, given any ε1 ∈ H(curl; �), (21) must hold for ∇ × ε1 ∈ H(div; �), i.e.,〈
∂u2

∂t
,∇ × ε1

〉
�

+ 〈ω2 × u2,∇ × ε1〉� − 〈P3,∇ · ∇ × ε1〉� = 0 ∀ε1 ∈ H(curl;�) . (22)

If we insert (20) into (22), we obtain〈
∂ω1

∂t
,ε1

〉
�

+ 〈ω2 × u2,∇ × ε1〉� − 〈P3,∇ · ∇ × ε1〉� = 0 ∀ε1 ∈ H(curl;�) .

Because u1 ∈ H(curl; �), we now replace ε1 in above equation with u1 and obtain〈
∂ω1

∂t
,u1

〉
�

+ 〈ω2 × u2,∇ × u1〉� − 〈P3,∇ · ∇ × u1〉� =
〈
∂ω1

∂t
,u1

〉
�

= 0 . (23)

Since ω2 = ∇ × u1, see (14), is exactly satisfied, the second term of (23) vanishes due to (5), and the third term is zero 
because ∇ · ∇ × (·) ≡ 0. Overall, (17) and (23) together prove that helicity H1 is preserved over time.

We now reuse (13e) and select ε1 to be u1 ∈ H(curl; �). As a result, we get

−〈u2,∇ × u1〉� + 〈ω1,u1〉� = 0 ,

which implies

H2 = 〈u2,ω2〉� = 〈u2,∇ × u1〉� = 〈ω1,u1〉� = H1 .

Thus both H1 and H2 are preserved over time.
In the viscous case, Re < ∞, if we repeat above analysis, the viscous contribution will not cancel and we will obtain the 

following helicity dissipation rate,

∂H1

∂t
= ∂H2

∂t
= − 2

Re
〈ω2,∇ × ω1〉� ,

which is consistent with that of the strong formulation, see (12).

3. Temporal discretization

Inspired by a mass, energy, enstrophy and vorticity conserving (MEEVC) [8] scheme for the 2D incompressible Navier-
Stokes equations, we construct a staggered temporal discretization for the two evolution equations in the dual-field formu-
lation (13). The MEEVC scheme, as well as the presented method, starts with a formulation of two evolution equations. The 
two evolution equations are discretized temporally at two sequences of time steps respectively using a Gauss integrator. The 
two sequences of time steps are staggered such that the endpoints of time steps in one sequence are exactly the midpoints 
of time steps in the other sequence. Thus at each time step either discrete evolution equation can use the solution from the 
other one as known variable at the midpoint, see Fig. 1.

We use a lowest order Gauss integrator as the time integrator [89–91]. For example, if we apply the integrator to an 
ordinary differential equation (ODE) of the form

d f (t)

dt
= h ( f (t), t)

at a time step from time instant tk−1 to time instant tk , we obtain

f k − f k−1

Δt
= h

(
f k−

1
2 , tk−1 + Δt

2

)
, (24)

where Δt = tk − tk−1, f k = f (tk). Additionally, we will use the midpoint rule, namely,

f k−
1
2 = f (tk−1 + Δt

2
) := f k + f k−1

2
. (25)

We further introduce two time sequences, the integer time steps and the half-integer time steps. The integer time steps use 
time instants indicated with integer superscripts. For example, kth (k = 1, 2, · · · ) integer time step (denoted by Sk) is 
from tk−1 to tk . The half-integer time steps use time instants indicated with half-integer superscripts. For example, kth 
(k = 1, 2, · · · ) half-integer time step (denoted by Ŝk) is from tk− 1

2 to tk+ 1
2 . These time steps satisfy

Δt = ti − ti−1 = t j+
1
2 − t j−

1
2 and tk−

1
2 = tk + tk−1

2
∀i, j,k = 1,2, · · · .

In other words, we restrict ourselves to constant time intervals equal for both time sequences.
8
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3.1. Temporal discretizations at staggered time steps

We now apply the time integrator (24) to evolution equations (13d) and (13a) at integer and half-integer time steps, 
respectively.

3.1.1. Temporal discretization at integer time steps
If we apply the time integrator (24) to the evolution equation for u2 (13d) at integer time steps, with the midpoint 

rule, see (25), and constraints (13e) and (13f), we can obtain a semi-discrete weak formulation at, for example, kth integer 

time step Sk: Given 
(
ωk−1

1 ,uk−1
2 , f k−

1
2 ,ω

k− 1
2

2

)
∈ H(curl; �) × H(div; �) × [

L2(�)
]3 × H(div; �), find 

(
ωk

1,u
k
2, P

k− 1
2

3

)
∈

H(curl; �) × H(div; �) × L2(�) such that〈
uk
2 − uk−1

2

Δt
,ε2

〉
�

+
〈
ω

k− 1
2

2 × uk
2 + uk−1

2

2
,ε2

〉
�

(26a)

+ 1

Re

〈
∇ × ωk

1 + ωk−1
1

2
,ε2

〉
�

−
〈
P
k− 1

2
3 ,∇ · ε2

〉
�

=
〈
f k−

1
2 ,ε2

〉
�

∀ε2 ∈ H(div;�) ,

〈
uk
2,∇ × ε1

〉
�

−
〈
ωk

1,ε1

〉
�

= 0 ∀ε1 ∈ H(curl;�) , (26b)〈
∇ · uk

2, ε3

〉
�

= 0 ∀ε3 ∈ L2(�) , (26c)

where ωk− 1
2

2 is borrowed from the other time sequence, in particular, is the solution of ω2 at (k − 1)st half-integer time 
step and, therefore, is known.

3.1.2. Temporal discretization at half-integer time steps
Similarly, we apply the time integrator (24) to the evolution equation for u1 (13a) at half-integer time steps. With 

the midpoint rule, see (25), and constraints (13b) and (13c), we can get a second semi-discrete weak formulation at, for 

example, kth half-integer time step Ŝk: Given 
(
u
k− 1

2
1 ,ω

k− 1
2

2 , f k,ωk
1

)
∈ H(curl; �) × H(div; �) × [

L2(�)
]3 × H(curl; �), seek (

Pk
0,u

k+ 1
2

1 ,ω
k+ 1

2
2

)
∈ H1(�) × H(curl; �) × H(div; �) such that

〈
u
k+ 1

2
1 − u

k− 1
2

1

Δt
,ε1

〉
�

+
〈
ωk

1 × u
k+ 1

2
1 + u

k− 1
2

1

2
,ε1

〉
�

(27a)

+ 1

Re

〈
ω

k+ 1
2

2 + ω
k− 1

2
2

2
,∇ × ε1

〉
�

+
〈
∇ Pk

0,ε1

〉
�

=
〈
f k,ε1

〉
�

∀ε1 ∈ H(curl;�) ,

〈
∇ × u

k+ 1
2

1 ,ε2

〉
�

−
〈
ω

k+ 1
2

2 ,ε2

〉
�

= 0 ∀ε2 ∈ H(div;�) , (27b)

〈
u
k+ 1

2
1 ,∇ε0

〉
�

= 0 ∀ε0 ∈ H1(�) , (27c)

where ωk
1 is borrowed from the other time sequence and, more specifically, is the solution of ω1 at kth integer time step, 

see (26). Thus it is known. The solution ωk+ 1
2

2 can be sequentially used for the next, the (k + 1)st, integer time step. Thus 
iterations can proceed.

3.1.3. Overall temporal discretization

One may notice that to start the iterations we need to know u
1
2
1 , ω

1
2
2 . Therefore we need a 0th time step, ŝ0, computing 

from t0 to t
1
2 for u

1
2
1 , ω

1
2
2 . The simplest approach for the 0th time step is applying the explicit Euler method to evolution 

equation (13a) which, together with constraints (13b) and (13c) at t
1
2 , leads to a semi-discrete system similar to (27). More 

accurate approaches, like directly applying the Gauss integrator (24) or other (higher order) integrators to formulation (13), 
could also be used. These methods will eventually lead to nonlinear discrete algebraic systems for which more expensive 
9
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Fig. 1. An illustration of the proposed staggered temporal discretization scheme. Integer time steps are denoted by Sk , half-integer time steps are denoted 
by Ŝk , and the 0th time step is denoted by ŝ0. The iterations proceed in a sequence: ŝ0 → S1 → Ŝ1 → S2 → Ŝ2 → ·· · . The kth integer time step also 
computes Pk− 1

2
3 and the kth half-integer time step also computes Pk

0.

iterative methods like the Newton–Raphson method are needed. After the 0th time step, ŝ0, standard iterations, S and Ŝ , 
can proceed.1 The overall temporal scheme is illustrated in Fig. 1.

It is easy to see that, instead of applying a standard temporal discretization directly to the dual-field mixed weak formu-
lation (13), using the presented staggered temporal discretization can greatly reduce the computational cost. Although the 
dual-field formulation doubles the variables, we will only solve for half of them at each time step as the staggered temporal 
discretization decouples the dual-field formulation. Meanwhile, since each semi-discrete formulation borrows the solution 
from the other for the nonlinear terms, see the second terms of (26a) and (27a), the semi-discrete formulations will lead to 
linearized discrete algebraic systems.

3.2. Properties after temporal discretization

In this part, we check whether the conservation (in the inviscid case) and dissipation (in the viscous case) properties 
proven at the continuous level, see Section 2.3, are preserved after the proposed staggered temporal discretization. Note 
that we have not yet applied a spatial discretization; the function spaces are still the infinite dimensional Hilbert spaces in 
the de Rham complex, (8).

3.2.1. Mass conservation after temporal discretization
The mass conservation is not influenced by the temporal discretization. Due to the same proof as given in Section 2.3.1, 

for uk
2 ∈ H(div; �), ∇ ·uk

2 = 0 is exactly satisfied at all integer time instants, and for uk+ 1
2

1 ∈ H(curl; �) the mass conservation 
is only weakly imposed through integration by parts, see (27c).

3.2.2. Time rate of change of kinetic energy after temporal discretization

Let Re → ∞ and f = 0. We replace ε2 by 
uk−1
2 + uk

2

2
in (26a) and replace ε1 by 

u
k+ 1

2
1 + u

k− 1
2

1

2
in (27a). Following the 

same process used for the proof at the continuous level, see Section 2.3.2, one can get〈
u
k+ 1

2
1 − u

k− 1
2

1

Δt
,
u
k+ 1

2
1 + u

k− 1
2

1

2

〉
�

= 0 and

〈
uk
2 − uk−1

2

Δt
,
uk
2 + uk−1

2

2

〉
�

= 0 ,

which then leads to

Kk+ 1
2

1 = 1

2

〈
u
k+ 1

2
1 ,u

k+ 1
2

1

〉
�

= 1

2

〈
u
k− 1

2
1 ,u

k− 1
2

1

〉
�

= Kk− 1
2

1 , (28)

Kk
2 = 1

2

〈
uk
2,u

k
2

〉
�

= 1

2

〈
uk−1
2 ,uk−1

2

〉
�

= Kk−1
2 . (29)

Thus the kinetic energy is preserved at both integer and half-integer time steps.
If Re < ∞, with the same analysis, we will obtain〈

u
k+ 1

2
1 − u

k− 1
2

1

Δt
,
u
k+ 1

2
1 + u

k− 1
2

1

2

〉
�

= − 1

Re

〈
ω

k− 1
2

2 + ω
k+ 1

2
2

2
,∇ × u

k+ 1
2

1 + u
k− 1

2
1

2

〉
�

,

〈
uk
2 − uk−1

2

Δt
,
uk−1
2 + uk

2

2

〉
�

= − 1

Re

〈
∇ × ωk

1 + ωk−1
1

2
,
uk
2 + uk−1

2

2

〉
�

.

1 It is also fine to switch time sequences for the evolution equations.
10
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With (26b), (27b), we can conclude that

Kk+ 1
2

1 −Kk− 1
2

1

Δt
= − 1

Re

〈
ω

k+ 1
2

2 + ω
k− 1

2
2

2
,
ω

k+ 1
2

2 + ω
k− 1

2
2

2

〉
�

(25)= − 2

Re
Ek
2 ≤ 0 , (30)

Kk
2 −Kk−1

2

Δt
= − 1

Re

〈
ωk

1 + ωk−1
1

2
,
ωk

1 + ωk−1
1

2

〉
�

(25)= − 2

Re
Ek+ 1

2
1 ≤ 0 . (31)

This shows that the boundedness of the kinetic energy (15) and (16) is preserved by this staggered temporal discretization, 
which can contribute to the stability of the scheme.

3.2.3. Time rate of change of helicity after temporal discretization
Let Re → ∞ and f = 0. We select ε1 in (27a) to be ωk

1 and perform the same process for proving (17). We will get〈
u
k+ 1

2
1 − u

k− 1
2

1

Δt
,ωk

1

〉
�

= 0 . (32)

Analogously, by repeating the proof for (23), we can obtain〈
ωk

1 − ωk−1
1

Δt
,u

k− 1
2

1

〉
�

= 0 . (33)

Equations (32) and (33) together imply〈
u
k+ 1

2
1 ,ωk

1

〉
�

=
〈
u
k− 1

2
1 ,ωk

1

〉
�

=
〈
u
k− 1

2
1 ,ωk−1

1

〉
�

. (34)

At the half-integer time step Ŝk−1 (assume k ≥ 2), (32) reads〈
u
k− 1

2
1 − u

k− 3
2

1

Δt
,ωk−1

1

〉
�

= 0 . (35)

With this relation, we can extend (34) to〈
u
k+ 1

2
1 ,ωk

1

〉
�

=
〈
u
k− 1

2
1 ,ωk

1

〉
�

=
〈
u
k− 1

2
1 ,ωk−1

1

〉
�

=
〈
u
k− 3

2
1 ,ωk−1

1

〉
�

.

If we further apply the midpoint rule, (25), to the first two terms and the last two terms of above equation, we obtain〈
u
k+ 1

2
1 + u

k− 1
2

1

2
,ωk

1

〉
�

(25)=
〈
uk
1,ω

k
1

〉
�

= Hk
1

= Hk−1
1 =

〈
uk−1
1 ,ωk−1

1

〉
�

(25)=
〈
u
k− 1

2
1 + u

k− 3
2

1

2
,ωk−1

1

〉
�

.

(36)

In addition, since (26b) holds for all ε1 ∈ H(curl; �), we can fill uk
1
(25)= u

k+ 1
2

1 + u
k− 1

2
1

2
∈ H(curl; �) in it and obtain

〈
ωk

1,u
k
1

〉
�

=
〈
uk
2,∇ × uk

1

〉
�

=
〈
uk
2,∇ × u

k+ 1
2

1 + u
k− 1

2
1

2

〉
�

=
〈
uk
2,

ω
k+ 1

2
2 + ω

k− 1
2

2

2

〉
�

. (37)

Again, as ω2 is only solved at half-integer time instants, see (27), we use the midpoint rule, (25), to bring it to the integer 

time instants, namely, ωk
2 = ω

k+ 1
2

2 + ω
k− 1

2
2

2
. As a result, (37) implies

Hk
1 =

〈
uk
1,ω

k
1

〉
�

=
〈
uk
2,ω

k
2

〉
�

= Hk
2 . (38)

And with (36), we can finally conclude that

Hk = Hk = Hk−1 = Hk−1 = C .
1 2 1 2

11



Y. Zhang, A. Palha, M. Gerritsma et al. Journal of Computational Physics 451 (2022) 110868
In the viscous case, Re < ∞, repeating above analysis at the half-integer time step Ŝk and at the integer time step Sk
(see (32) and (33)) leads to〈

u
k+ 1

2
1 − u

k− 1
2

1

Δt
,ωk

1

〉
�

= − 1

Re

〈
ω

k+ 1
2

2 + ω
k− 1

2
2

2
,∇ × ωk

1

〉
�

, (39)

〈
ωk

1 − ωk−1
1

Δt
,u

k− 1
2

1

〉
�

= − 1

Re

〈
∇ × ωk

1 + ωk−1
1

2
,ω

k− 1
2

2

〉
�

. (40)

If we combine the above two equations, i.e., (39) + (40), and use the midpoint rule, (25), we obtain

1

Δt

〈
u
k+ 1

2
1 ,ωk

1

〉
�

− 1

Δt

〈
u
k− 1

2
1 ,ωk−1

1

〉
�

= − 1

Re

〈
ωk

2,∇ × ωk
1

〉
�

− 1

Re

〈
∇ × ω

k− 1
2

1 ,ω
k− 1

2
2

〉
�

. (41)

Again, (39) is still valid at (k − 1)st half-integer time step, Ŝk−1, (assume k ≥ 2) where it reads〈
u
k− 1

2
1 − u

k− 3
2

1

Δt
,ωk−1

1

〉
�

= − 1

Re

〈
ω

k− 1
2

2 + ω
k− 3

2
2

2
,∇ × ωk−1

1

〉
�

. (42)

If we now combine (40) and (42), and use the midpoint rule, (25), we get

1

Δt

〈
u
k− 1

2
1 ,ωk

1

〉
�

− 1

Δt

〈
u
k− 3

2
1 ,ωk−1

1

〉
�

= − 1

Re

〈
ωk−1

2 ,∇ × ωk−1
1

〉
�

− 1

Re

〈
∇ × ω

k− 1
2

1 ,ω
k− 1

2
2

〉
�

. (43)

We now can combine (41) and (43) and obtain〈
u
k+ 1

2
1 + u

k− 1
2

1 ,ωk
1

〉
�

Δt
−

〈
u
k− 1

2
1 + u

k− 3
2

1 ,ωk−1
1

〉
�

Δt

(25)= 2

〈
uk
1,ω

k
1

〉
�

−
〈
uk−1
1 ,ωk−1

1

〉
�

Δt

= 2
Hk

1 −Hk−1
1

Δt

= − 2

Re

〈
∇ × ω

k− 1
2

1 ,ω
k− 1

2
2

〉
�

−
〈
ωk

2,∇ × ωk
1

〉
�

+
〈
ωk−1

2 ,∇ × ωk−1
1

〉
�

Re
.

Finally, because (38) still holds, the viscosity dissipates Hk
1 and Hk

2 at the same rate, denoted by

D(ω1,ω2) := Hk
1 −Hk−1

1

Δt
= Hk

2 −Hk−1
2

Δt
= −

〈
∇ × ω

k− 1
2

1 ,ω
k− 1

2
2

〉
�

Re

−
〈
ωk

2,∇ × ωk
1

〉
�

+
〈
ωk−1

2 ,∇ × ωk−1
1

〉
�

2Re
.

(44)

4. Mimetic spatial discretization

It has been shown that the de Rham complex plays an essential role in the proofs and analysis of the conservation 
properties and the dissipation rates for the proposed dual-field formulation at both continuous and semi-discrete lev-
els. For example, (19) is valid because we have chosen P0 ∈ H1(�) such that ∇ P0 ∈ H(curl; �) is guaranteed. Choosing 
u1 ∈ H(curl; �) and ω2 ∈ H(div; �) ensures that the relation ω2 = ∇ × u1 is satisfied exactly. In addition, as shown in 
Section 2.3.1, the de Rham complex is essential for the mass conservation ∇ · u2 = 0 where u2 ∈ H(div; �).

In this work we consider a set of discrete function spaces,

{G(�),C(�), D(�), S(�)} ,

where

G(�) ⊂ H1(�) , C(�) ⊂ H(curl;�) , D(�) ⊂ H(div;�) , S(�) ⊂ L2(�) ,
12
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such that

R ↪→ G(�)
∇−→ C(�)

∇×−→ D(�)
∇·−→ S(�) → 0 , (45)

i.e., they constitute a discrete de Rham complex. In order to enable the validity of the proofs and analysis at the fully 
discrete level, we need to employ such a set of discrete spaces for the spatial discretization.

Any sequence of discrete function spaces that satisfies (45) is equally valid. One possible choice is to employ G(�) = CGN , 
C(�) = NED1

N , D(�) = RTN , and S(�) = DGN−1, where CGN are the Lagrange polynomials of degree N , NED1
N are the 

Nédélec H(curl)-conforming spaces of the first kind of degree N , see [92], RTN are the Raviart-Thomas spaces of degree 
N , see [92,93], and DGN−1 are the discontinuous Lagrange spaces of degree (N − 1). Another possible exact sequence of 
discrete function spaces employing b-splines is employed in the works by Hiemstra et al. [94], Buffa et al. [95], and Ratnani 
and Sonnendrücker [96]. We call these spaces structure-preserving or mimetic spaces, see another example, the mimetic 
polynomial spaces [8,75,87,88,97]. Note that variables in the finite dimensional spaces C(�) and D(�) possess the regularity 
that ensures the L2-integrability of the convective terms in the weak formulation (13), see Remark 1.

4.1. Fully discrete systems

Applying a particular set of mimetic spaces to the semi-discrete problems (26) and (27) leads to two local fully discrete 
linear algebraic systems, one for the kth integer time step Sk , i.e.,

N
�uk
2 − �uk−1

2

Δt
+ Rk− 1

2
�uk
2 + �uk−1

2

2
+ 1

Re
C

�ωk
1 + �ωk−1

1

2
− DT �Pk− 1

2
3 = fk−

1
2 , (46a)

CT �uk
2 − M �ωk

1 = 0 , (46b)

D�uk
2 = 0 , (46c)

and one for the kth half-integer time step Ŝk , namely,

M
�uk+ 1

2
1 − �uk− 1

2
1

Δt
+ Rk �uk+ 1

2
1 + �uk− 1

2
1

2
+ 1

Re
CT �ωk+ 1

2
2 + �ωk− 1

2
2

2
+ G�Pk

0 = fk , (47a)

C�uk+ 1
2

1 − N �ωk+ 1
2

2 = 0 , (47b)

GT �uk+ 1
2

1 = 0 , (47c)

where we have used the vector sign to indicate the vector of the expansion coefficients of a discrete variable. And, if 
γ , τ , σ , χ are basis functions of mimetic spaces

G(�) , C(�) , D(�) , S(�) ,

respectively, M and N are the symmetric mass (or stiffness) matrices of spaces C(�) and D(�),

Mi j =
〈
τ j, τ i

〉
�

and Ni j =
〈
σ j, σ i

〉
�

,

and the entries of matrices C, D, G, Rk− 1
2 , Rk and vectors fk− 1

2 , fk are

Ci j =
〈∇ × τ j, σ i

〉
�

,

Di j =
〈∇ · σ j, χi

〉
�

,

Gi j =
〈∇γ j, τ i

〉
�

,

R
k− 1

2
i j =

〈
ω

k− 1
2

2 × σ j, σ i

〉
�

,

Rk
i j =

〈
ωk

1 × τ j, τ i

〉
�

,

f
k− 1

2
i =

〈
f k−

1
2 ,σ i

〉
�

,

fki =
〈
f k,τ i

〉
�

.

If we rearrange the systems (46) and (47) and write them in linear algebra format, we can obtain following linear systems,
13
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⎡
⎢⎣

1

Δt
N + 1

2
Rk− 1

2
1

2Re
C −DT

CT −M 0
D 0 0

⎤
⎥⎦

⎡
⎢⎣

�uk
2

�ωk
1

�Pk− 1
2

3

⎤
⎥⎦ =

⎡
⎢⎢⎣

(
1

Δt
N − 1

2
Rk− 1

2

)
�uk−1
2 − 1

2Re
C �ωk−1

1 + fk− 1
2

0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎣

1

Δt
M + 1

2
Rk 1

2Re
CT G

C −N 0
GT 0 0

⎤
⎥⎦

⎡
⎢⎢⎣

�uk+ 1
2

1

�ωk+ 1
2

2�Pk
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

(
1

Δt
M − 1

2
Rk

)
�uk− 1

2
1 − 1

2Re
CT �ωk− 1

2
2 + fk

0
0

⎤
⎥⎥⎦ .

A similar spatial discretization can be applied to the semi-discrete system for the 0th time step ŝ0, see Fig. 1.
Suppose a mesh has been generated in the computational domain �. We can perform such discretizations in all elements. 

After applying the initial condition and assembling the local systems, we will eventually obtain global linear systems ready 
to be solved in the sequence shown in Fig. 1.

4.2. Properties of the fully discrete systems

Since we have used a sequence of function spaces which form a discrete de Rham complex, the proofs for the con-
servation properties and the analysis for the dissipation rates of kinetic energy and helicity at the semi-discrete level, see 
Section 3.2, remain valid at the fully discrete level.

5. Numerical experiments

We now test the proposed mimetic dual-field method with two manufactured solutions and a more general flow, the 
well-known Taylor-Green vortex.

For all tests, we use the mimetic polynomial spaces as our mimetic spaces and do the spatial discretization under the 
framework of the MSEM. Meshes are uniform orthogonal structured hexahedral meshes. The mesh size, namely, the edge 
length of the cubic element cell, is denoted by h. The degree of the mimetic polynomials is denoted by N . And we use the 
explicit Euler method for the temporal discretization of the 0th time step, i.e., ŝ0 in Fig. 1. The implementation is conducted 
in Python.

5.1. Manufactured solution tests

Two manufactured solutions are taken from [62]; one for testing the conservation properties and one for investigating 
the convergence rate of the method. The domain is selected to be the periodic unit cube � := [0, 1]3.

5.1.1. Conservation properties and dissipation rates
For these first tests, we select the initial condition

u|t=0 = [cos(2π z), sin(2π z), sin(2πx)]T .

Such an initial condition possesses kinetic energy K|t=0 = 0.75 and helicity H|t=0 = −6.283. The problem is solved until 
t = 10 on an extremely coarse mesh of h = 1/3 and N = 2.

We first try to verify that the proposed method does preserve mass, kinetic energy and helicity if in the inviscid limit 
Re → ∞ and f = 0. In Fig. 2 some results are presented. The results of 

∥∥∇ · uk
2

∥∥
L∞ in the bottom-right diagram imply that 

the pointwise mass conservation is always satisfied. In the bottom-left diagram, the results show that both Hk
1 and Hk

2
are preserved. The fact that the two lines coincide with each other up to O(10−10) verifies (38). As for kinetic energy, the 

results are present in the top diagrams where the discrete conservation for both Kk− 1
2

1 and Kk
2 at their corresponding time 

steps are shown.
We then keep f = 0 and use a Re < ∞; we let the viscosity dissipate kinetic energy and helicity. Some results for 

Re = 100 are presented in Fig. 3 where the results shown in the top diagrams verify the dissipation rate of kinetic energy 
derived in (30) and (31) and the results in the bottom-left diagram are in agreement with the dissipation rate of helicity, 
see (44). The pointwise conservation of mass is still satisfied at all time steps as shown in the bottom-right diagram of 
Fig. 3.

In Fig. 4, some results of the magnitude of 
∥∥∥∥∇ · uk+ 1

2
1

∥∥∥∥
L∞

are presented. It is seen that for both the convergence and 

dissipation tests the conservation of mass is not satisfied for uk+ 1
2

1 . It is not surprising that the error is large especially for 
the inviscid case as we have used an extremely coarse mesh. This is consistent with the analysis that the constraint of mass 

conservation is only weakly imposed for uk+ 1
2

1 ∈ C(�) ⊂ H(curl; �), see Section 3.2.1. Also see the analysis at the continuous 
level in Section 2.3.1.
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Fig. 2. Some results of the conservation test for h = 1/3, N = 2 and Δt = 1/20.

Fig. 3. Some results of the dissipation test for Re = 100, h = 1/3, N = 2 and Δt = 1/20. D(ωh
1,ω

h
2) is the dissipation rate of helicity, see (44).

Note that these tests are also valid for the non-zero conservative external body force. If ϕ is known and f = ∇ϕ �= 0, we 
can still first conduct the test with f = 0 and get the same results. The only difference is that we now obtain the solution 
for the extended total pressure P ′ , see (10). We can post-process P ′ with the known ϕ to retrieve the solution for total 
pressure P .
15
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Fig. 4. Some results of the magnitude of 
∥∥∥∥∇ · uk+ 1

2
1

∥∥∥∥
L∞

for both the conservation and dissipation tests at h = 1/3, N = 2 and Δt = 1/20. The divergence is 
computed per element.

5.1.2. Convergence tests
We now investigate whether the proposed method produces converging solutions and, if yes, what is the convergence 

rate of the proposed method with a manufactured solution. Assume

u = [(2− t) cos(2π z), (1+ t) sin(2π z), (1− t) sin(2πx)]T

and

p = sin(2π(x+ y + t))

solve the Navier-Stokes equations with Reynolds number Re = 1 and the body force f which can be calculated from u, p
and Re using the Navier-Stokes equations. The exact solutions of vorticity ω and total pressure P can also be calculated. We 
use u|t=0 as initial condition and let the flow evolve for different mesh element sizes and polynomial space degrees. Errors 
are then measured at t = 2.

Results are presented in Fig. 5 where the optimal convergence rates are observed for all variables of the dual-field for-
mulation when the mesh is h-refined under different polynomial degrees. The plot of 

∥∥∇ · uh
2

∥∥
L∞ shows that the pointwise 

conservation of mass is satisfied up to the machine precision in all cases.
We can also measure the difference between the two dual solutions of one physical variable. The results of 

∥∥uh
2 − uh

1

∥∥
L2

and 
∥∥ωh

2 − ωh
1

∥∥
L2 at t = 2 are shown in Fig. 6. Note that, since uh

1 and uh
2 (ωh

1 and ωh
2) are staggered in time, we have used 

the midpoint rule, (25), to uh
1 (ωh

1) such that it can be compared to uh
2 at t = 2, an integer time instant. It is not surprising 

that they converge under p- or h-refinement. This suggests that we can use them for accuracy indicators, for example,∥∥uh
2 − uh

1

∥∥
L2∥∥uh

1

∥∥
L2

,

∥∥uh
2 − uh

1

∥∥
L2∥∥uh

2

∥∥
L2

or
2
∥∥uh

2 − uh
1

∥∥
L2∥∥uh

1 + uh
2

∥∥
L2

,

which can be very helpful for general (non-manufactured) simulations. More interestingly, one can measure the local differ-
ence of the dual solutions and use it as an indicator for mesh adaptivity, which is outside of the scope of the current paper. 
From this aspect, the existence of dual representations of the solution for one variable can be regarded as an advantage 
for the proposed method. Despite the existence of the difference between the dual representations, both of them should 
be considered as equally important solutions of the variable. Recall the dual character of the velocity field which is hard to 
capture in one discrete space, see Section 1.3. The dual representations together can be regarded as a discretization of its 
dual character.

5.2. Taylor-Green vortex

We now test the method with a more general flow, the Taylor-Green vortex (TGV) flow. The domain is given as � :=
[−π, π ]3 and is periodic. V = 8π3 denotes the volume of the domain. The body force is set to f = 0 and the initial 
condition is selected to be

u|t=0 = [sin(x) cos(y) cos(z),− cos(x) sin(y) cos(z),0]T .

Such an initial condition possesses kinetic energy K|t=0 = 0.125 and zero helicity. We solve the flow using the proposed 
mimetic dual-field method at Re = 500.

Iso-surfaces of ωx
1 = −3

(
ωh

1 = (
ωx

1,ω
y
1 ,ωz

1

))
at some time instances are shown in Fig. 7. It is seen that the flow initially 

induces vortices of clear structures which then break down and finally are dissipated by the viscosity.
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Fig. 5. ph-convergence and mass conservation results of the convergence tests. 
t = 1/50.

In Fig. 8 and Fig. 9, results of total kinetic energy and total enstrophy are presented. These results are compared to 
benchmarks taken from [98]. In Fig. 8 we can see that the proposed mimetic dual-field method, compared to a discontinuous 
Galerkin (DG) method of the same order (p = 2) and in the same mesh (32 × 32 × 32 elements), produces better results in 
terms of the error to the results produced by a reference, a very high (128th) order spectral method. This is mostly clear 
in the enstrophy results near t = 9 when the total enstrophy reaches its peak; the DG method is not able to capture the 
peak of the total enstrophy while the mimetic dual-field method captures it well for both of the dual solutions. Similar 
17



Fig. 6. ph-convergence results of the L2-differences between the dual representations of the solution of velocity (Left) and vorticity (Right) for the conver-
gence tests. 
t = 1/50.

comparisons are made for more resolved simulations in Fig. 9, where improved results are seen especially near the peak of 
total enstrophy; the DG method now is able to capture the peak and the mimetic dual-field method captures the shape of 
the peak better.

In Fig. 10, some results of the total helicity versus time for the TGV flow are shown. It is seen that, as the flow evolves, 
the total helicity remains zero (to the machine precision). Such a phenomenon is consistent with the fact that the dissipation 
rate of helicity, see (44), is constantly zero (to the machine precision) as shown in the same diagram.

In Fig. 11, the results of kinetic energy spectra at t = 9.1 are presented. In the left diagram, it is seen that, in terms of 
kinetic energy, the mimetic dual-field method has similar accuracy as the DG method for large scales (k ≤ 10). For medium 
scales (10 < k ≤ 35), both methods start to deviate from the high order spectral reference results with the proposed dual-
field method showing less overdissipation. For small scales (k > 35), both methods show large deviations from the reference 
results. The interesting aspect is that, for small scales, the DG method and the proposed dual-field method present different 
behaviors: the DG method over dissipates the energy and the dual-field method accumulates energy. The accumulation of 
energy at small scales is expected due to the energy conservation properties of the dual-field method. The energy cascade 
occurs up to the resolved scales and then it is stored (and accumulates at the smaller scales). It is the authors opinion that 
this can be an advantage of this method since subscale grid methods can specifically target these small scales and introduce 
the required dissipation that is not resolved. In opposition, the DG method already over dissipates the energy, therefore it 
is challenging for a dissipation based sub-grid scale model to improve the results for these smaller scales. This is a topic of 
interest for the authors and will be further researched in the future. A partial support for this claim is the results presented 
in the right diagram of Fig. 11 where it is seen that the value of k where energy accumulation starts decreases when a less 
resolved discretization is employed.

6. Summary and future work

6.1. Summary

In this paper, we introduce a discretization which satisfies pointwise mass conservation and, if in the absence of dis-
sipative terms, conserves total kinetic energy and total helicity and, otherwise, properly captures the dissipation rates of 
total kinetic energy and total helicity for the 3D incompressible Navier-Stokes equations. The discretization is based on a 
novel dual-field mixed weak formulation where two evolution equations are employed. A staggered temporal discretization 
linearizes the convective terms and reduces the size of the discrete systems, which can be regarded as a big advantage of 
the proposed method in terms of the computational efficiency. A mimetic spatial discretization enables the validity of the 
conservation properties and the dissipation rates at the fully discrete level.

6.2. Future work

In this paper, u1 and u2 (ω1 and ω2) are approximated in different function spaces, and, therefore, equality between 
them will not hold unless the flow is fully resolved. In other words, we are not able to construct a square, time-independent 
and explicit discrete Hodge operator. Instead, this method implicitly defines a time-dependent discrete Hodge operator. By 
allowing the time evolution of the discrete Hodge operator we can construct a helicity conserving scheme. Based on the 
promising results reported in this paper, we want to apply the algebraic dual polynomial spaces, [99], such that solutions 
uh
1 and uh

2 (ωh
1 and ωh

2) are two representations in a pair of algebraic dual polynomial spaces. As a result, we expect the 
difference between uh

1 and uh
2 (ωh

1 and ωh
2) to be smaller and using the vorticity from the other subset of equations, see 

(26) and (27), to be more consistent.
In the kinetic energy spectra of the dual field formulation, Fig. 11, we see that for high wave numbers the energy decay 

is insufficient. This is attributed to the fact that the scheme is non-dissipative and the grids are too coarse for energy at the 
Y. Zhang, A. Palha, M. Gerritsma et al. Journal of Computational Physics 451 (2022) 110868
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Fig. 7. Iso-surface of ωx
1 = −3

(
ωh

1 = (
ωx

1,ω
y
1 ,ωz

1

))
for the TGV test using MDF-24p3. MDF-24p3 stands for the mimetic dual-field method at h = 1/24

using polynomial spaces of degree 3. The time step interval is selected to be Δt = 1/50.
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Fig. 8. A comparison of kinetic energy and enstrophy results of the TGV test. The reference and the DG-32p2 results are taken from [98]. The reference 
method is a 128th order spectral method. DG stands for a discontinuous Galerkin method. MDF stands for the mimetic dual-field method. 32p2 represents 
h = 1/32 and the degree of the polynomial spaces is 2. The time step interval is selected to be Δt = 1/50 for MDF-32p2.

Fig. 9. A comparison of kinetic energy and enstrophy results of the TGV test. The reference and the DG-24p3 results are taken from [98]. The reference 
method is a 128th order spectral method. DG stands for a discontinuous Galerkin method. MDF stands for the mimetic dual-field method. 24p3 represents 
h = 1/24 and the degree of the polynomial spaces is 3. The time step interval is selected to be Δt = 1/50 for MDF-24p3.

small scales to dissipate. In future work we want to add a sub-grid scale model on the momentum equations for u1 and u2

of the form ε
(u1 − u2) to the u1 equation, (13a) and ε
(u2 − u1) to the u2 equation, (13d). If we define

ū = 1

2
(u1 + u2) ,

this sub-grid scale diffusion cancels from the average, while it only acts on the difference between the two fields
20
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Fig. 10. Total helicity and its dissipation rate D(ωh
1, ωh

2), see (44), versus time of the TGV test for MDF-8p2. The time step interval is selected to be 
Δt = 1/20.

Fig. 11. Kinetic energy spectra of the TGV test. The reference and the DG-32p2 results are taken from [98]. The reference method is a 128th order spectral 
method. DG stands for a discontinuous Galerkin method. MDF stands for the mimetic dual-field method. 32p2, 24p2 and 16p2 represents that the mesh 
size h = 1/32, 1/24 and 1/16, respectively, and the degree of the polynomial spaces is 2. The time step interval is selected to be Δt = 1/50, 1/40 and 1/30
for MDF-32p2, MDF-24p2 and MDF-16p2, respectively.

u′ = 1

2
(u1 − u2) .

So the numerical dissipation only acts on the difference of the two fields. This implies that the added diffusion is only active 
for the large wave numbers, where the difference between u1 and u2 is significant, while for the small wave numbers where 
u1 and u2 are almost the same, no dissipation takes place of u′ . In this sense the dual field formulation can be used as a 
turbulence model. Future work needs to establish how the parameter ε should be chosen.

Other steps we want to report in the future include, for example, error analysis, mesh adaptivity based on the local 
difference between uh

1 and uh
2 (ωh

1 and ωh
2) and the extension from periodic boundary conditions to general boundary 

conditions.
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