
Recursive Rules with Aggregation:
A Simple Unified Semantics⋆

Yanhong A. Liu and Scott D. Stoller

Computer Science Department, Stony Brook University, Stony Brook, NY, USA
{liu,stoller}@cs.stonybrook.edu

Abstract. Complex reasoning problems are most clearly and easily specified
using logical rules, but require recursive rules with aggregation such as counts
and sums for practical applications. Unfortunately, the meaning of such rules
has been a significant challenge, leading to many disagreeing semantics.
This paper describes a unified semantics for recursive rules with aggrega-
tion, extending the unified founded semantics and constraint semantics for
recursive rules with negation. The key idea is to support simple expression
of the different assumptions underlying different semantics, and orthogonally
interpret aggregation operations using their simple usual meaning. We present
formal definition of the semantics, prove important properties of the seman-
tics, and compare with prior semantics. In particular, we present an efficient
inference over aggregation that gives precise answers to all examples we have
studied from the literature. We also applied our semantics to a wide range
of challenging examples, and performed experiments on the most challenging
ones, all confirming our analyzed results.

1 Introduction

Many computation problems, including complex reasoning problems in particular,
such as program analysis, networking, and decision support, are most clearly and
easily specified using logical rules [39]. However, such reasoning problems in practical
applications, especially for large applications and when faced with uncertain situa-
tions, require the use of recursive rules with aggregation such as counts and sums.
Unfortunately, the meaning of such rules has been challenging and remains a subject
with significant complication and disagreement.

As a simple example, consider a single rule for Tom to attend the logic seminar:
“Tom will attend the logic seminar if the number of people who will attend it is at
least 20.” What does the rule mean? If 20 or more other people will attend, then surely
Tom will attend. If only 10 others will attend, then Tom will not attend. What if only
19 other people will attend? Will Tom attend, or not? Although simple, this example
already shows that, when aggregation is used in recursive rules—here count is used
in a rule that defines "will attend" using "will attend"—the semantics can be tricky.
⋆ This work was supported in part by NSF under grants CCF-1954837, CCF-1414078,

and IIS-1447549 and by ONR under grants N00014-20-1-2751 and N00014-21-1-2719.

2 Yanhong A. Liu and Scott D. Stoller

Some might say that this statement about Tom is ambiguous or ill-specified.
However, it is a statement allowed by logic rule languages with predicates, sets,
and counts. For example, let predicate will_attend(p) denote that p will attend
the logic seminar; then the statement can be written as will_attend(Tom) if count
{p: will_attend(p)} ≥ 20. So the statement must be given a meaning. Indeed, “am-
biguous” is a possible meaning, indicating there are two or more answers, and
“ill-specified” is another possible meaning, indicating there is no answer. So which
one should it be? Are there other possible meanings?

In deductive databases, to avoid challenging cases of aggregation as well as nega-
tion, processing of recursive rules with aggregation is largely limited to monotonic
programs, i.e., adding a new fact used in a hypothesis cannot make a conclusion
change from true to false. However, note that the rule about Tom attending the
logic seminar is actually monotonic: adding attend(p) for a new p can not make the
conclusion change from true to false. So, even restricted deductive databases must
give a meaning to this rule. What should it be?

In fact, the many different semantics of recursive rules with aggregation are more
complex and trickier than even semantics of recursive rules with negation. The latter
was already challenging for over 120 years, going back at least to Russell’s paradox, for
which self-reference with negation is believed to form vicious circles [35]. Many different
semantics, which disagree with each other, have been studied for recursive rules with
negation, as summarized in Section 6. Two of them, well-founded semantics (WFS) [66,
64] and stable model semantics (SMS) [26], became dominant since about 30 years ago.

Semantics of recursive rules with aggregation has been studied continuously
since about 30 years ago, and more intensively in more recent years, as discussed
in Section 6, especially as they are needed in graph analysis and machine learning
applications. However, the many different semantics proposed, e.g., [63, 30], are even
more intricate than WFS and SMS for recursive rules with negation, and include
even different extensions for WFS, e.g., [36, 63, 59], and for SMS, e.g., [36, 47, 30].
Some authors also changed their own minds about the desired semantics, e.g., [25, 30].
Such intricate and disagreeing semantics would be too challenging to use correctly.

This paper describes a simple unified semantics for recursive rules with aggregation
as well as negation and quantification. The semantics is built on and extends the
founded semantics and constraint semantics of logical rules with negation and quantifi-
cation developed recently by Liu and Stoller [41, 42]. The key idea is to capture, and
to express in a simple way, the different assumptions underlying different semantics,
and orthogonally interpret aggregation operations using their simple usual meaning.
We present formal definition of the semantics and prove important properties of the
semantics. In particular, we present an efficient derivability relation for comparisons
containing aggregations; it can be computed in linear time and gives precise answers
on all examples we have studied from the literature.

We also compared with main prior semantics for rules with aggregation, and
showed how our semantics is direct and follows precisely from usual meanings of ag-
gregations. We further applied our semantics to a wide range of challenging examples,
and showed that our semantics is simple and matches the desired semantics in all
cases. Additionally, we performed experiments on two most challenging examples,

Recursive Rules with Aggregation: A Simple Unified Semantics 3

confirming the correctness of our computed results, while also discovering worse
performance and some wrong results from well-known systems. Additional results
from these comparisons, examples, and experiments are described in [44].

2 Problem and solution overview

The semantics of recursion with negation and aggregation is challenging for several
reasons. First, recursion involves self-referencing and cyclic reasoning, for which it
is already non-trivial to properly start and finish. Then, negation in recursion incurs
self-denying and conflict in cyclic reasoning, which can lead to contradiction. Finally,
aggregation generalizes negation to give rise to even greater challenges in recursion,
because a negation essentially corresponds to only the simple case of a count being zero.

The first reason alone already called for a least fixed point semantics, which is
beyond first-order logic. The second reason led to major different semantics that are
sophisticated and disagreeing when trying to solve conflicts differently. The third
reason exacerbated the sophistication and variety to tackle the even greater challenges.

A smallest example. Consider the following recursive rule with aggregation. It
says that p is true for value a if the number of x’s for which p is true equals 1:

p(a) ← count {x: p(x)} = 1

This rule is recursive because inferring a conclusion about p requires using p in a
hypothesis. It uses an aggregation of count over a set. While each of recursion and
aggregation by itself has a simple meaning, allowing recursion with aggregation is
tricky, because recursion is used to define a predicate, which is equivalent to a set,
but aggregation using a set requires the set to be already defined.

We use this example in addition to our Tom example in Section 1, for two
reasons. First, this and similar small examples are used for comparisons in previous
papers, e.g., [19, 27, 29]. Second, this example differs from the Tom example in that the
comparison with count in this example is non-monotonic, i.e., adding more x’s for which
p(x) is true can change the value of the comparison, and thus the conclusion, from
true to false; using only one example is insufficient to show the main different cases.

– Two models: Kemp-Stuckey 1991, Gelfond 2002. According to Kemp and
Stuckey [36] and Gelfond [25], the above rule has two models: one empty model,
i.e., a model in which nothing is true and thus p(a) is false, and one containing
only p(a) being true.

– One model: Faber et al. 2011, Gelfond-Zhang 2014-2019. According to
Faber, Pfeifer, and Leone [19] and Gelfond and Zhang [27, Examples 2 and 7],
[29, Examples 4 and 6], and [30, Example 9], the rule above has only one model:
the empty model.

As one of the several main efforts investigating aggregation, Gelfond and Zhang [25,
27, 73, 28–30] have studied the challenges and solutions extensively, presenting dozens
of definitions and propositions and discussing dozens of examples [30]. Their examples

4 Yanhong A. Liu and Scott D. Stoller

where count is used in inequalities, greater than, etc., with additional variables, with
more hypotheses in a rule, or with more rules and facts, are even more complicated.

Extending founded semantics and constraint semantics for aggregation. Ag-
gregation, such as count, is a simple concept that even kids understand. So it is
stunning to see so many sophisticated treatments for figuring out its meaning when
it is used in rules, and to see the many disagreeing semantics resulting from those.

We develop a simple and unified semantics for rules with aggregation as well
as negation and quantification by building on founded semantics and constraint
semantics [41, 42] for rules with negation and quantification. The key insight is that
disagreeing complex semantics for rules with aggregation are because of different
underlying assumptions, and these assumptions can be captured using the same
simple binary declarations about predicates as in founded semantics and constraint
semantics but generalized to include the meaning of aggregation.

Certain. First, if there is no potential non-monotonicity, including no aggregation
in recursion, then the predicate in the conclusion can be declared “certain”.
Being certain means that assertions of the predicate are given true or inferred
true by simply following rules whose hypotheses are given or inferred true, and
the remaining assertions of the predicate are false. This is both the founded
semantics and constraint semantics.
For the Tom example, there is no potential non-monotonicity; with this decla-
ration, when given that only 19 others will attend, the hypothesis of the rule is
not true, so the conclusion cannot be inferred. Thus Tom will not attend.

Uncertain. Regardless of monotonicity, a predicate can be declared “uncertain”.
It means that assertions of the predicate can be given or inferred true or false
using what is given, and any remaining assertions of the predicate are undefined.
This is the founded semantics.
If there are undefined assertions from founded semantics, all combinations of true
and false values are checked against the rules and declarations as constraints,
yielding a set of possible satisfying combinations. This is the constraint semantics.

Complete, or not complete. An uncertain predicate can be further declared
“complete” or not.
Being complete means that all rules that can conclude assertions of the predicate
are given. Thus a new rule, called completion rule, can be created to infer negative
assertions of the predicate when none of the given rules apply.
Being not complete means that negative assertions cannot be inferred using
completion rules, and thus all assertions of the predicate that were not inferred
to be true are undefined.
For the Tom example, the completion rule implies: Tom will not attend the logic
seminar if the number of people who will attend it is less than 20.
When given that only 19 others will attend, due to the uncertainty of whether Tom
will attend, neither the given rule nor the completion rule will fire. So whether

Recursive Rules with Aggregation: A Simple Unified Semantics 5

one uses the declaration of complete or not, there is no way to infer that Tom
will attend, or Tom will not attend. So, founded semantics says it is undefined.
Then constraint semantics tries both for it to be true, and for it to be false; both
satisfy the rule, so there are two models: one where Tom will attend, and one
where Tom will not attend.

Closed, or not closed. Finally, an uncertain complete predicate can be further
declared “closed” or not.
Being closed means that an assertion of the predicate is made false if inferring
it to be true requires itself to be true.
Being not closed means that such assertions are left undefined.
For the Tom example, with this declaration, if there are only 19 others attending,
then Tom will not attend in both founded semantics and constraint semantics. This
is because inferring that Tom will attend requires Tom himself to attend to make
the count to be 20, so it should be made false, meaning that Tom will not attend.
Note that this is the same result as using "certain". Because the rule for deciding
whether Tom will attend has no potential non-monotonicity, using “certain” is
much simpler and has the same meaning as using “closed”, as stated in general
in Section 4.5.

For the smallest example about p near the beginning of this section, the equality
comparison is not monotonic. Thus p must be declared uncertain. This example also
shows different semantics when using the declarations of not complete and complete,
unlike the Tom example.

– Not complete. Suppose p is declared not complete. Founded semantics does not
infer p(a) to be true using the given rule because count {x: p(x)} = 1 cannot be
determined to be true, and nothing infers p(a) to be false. Thus p(a) is undefined.
So is p(b) for any constant b other than a because nothing infers p(b) to be
true or false. Constraint semantics gives a set of models, each for a different
combination of true and false values of p(c) for different constants c such that
the combination satisfies the given rule. This corresponds to what is often called
open-world assumption and used in commonsense reasoning.

– Complete. Suppose p is declared complete but not closed. A completion rule is
first added. The precise completion rule is:

¬ p(x) ← x ≠ a ∨ count {x: p(x)} ≠ 1

Founded semantics does not infer p(a) to be true or false using the given rule
or completion rule, because count {x: p(x)} ≠ 1 also cannot be determined to
be true. Thus p(a) is undefined. Founded semantics infers p(b) for any constant
b other than a to be false using the completion rule. Constraint semantics gives
two models: one with p(a) being true, and p(b) being false for any constant b
other than a; and one with p(c) being false for every constant c. This is the same
as the two-model semantics per Kemp-Stuckey 1991 and Gelfond 2002.

6 Yanhong A. Liu and Scott D. Stoller

– Closed. Supposed p is declared complete and closed. Both founded semantics
and constraint semantics give only the second model above, i.e., p(c) is false for
every constant c. They have p(a) being false because inferring p(a) to be true
requires p(a) itself to be true. This is the same as the one-model semantics per
Faber et al. 2011 and Gelfond-Zhang 2014-2019.
We see that simple binary declarations of the underlying assumptions, with simple

inference following rules and taking rules as constraints, give the different desired
semantics.

Relationship with prior semantics. Table 1 summarizes relationships between our
unifying semantics and major prior semantics. With different predicate declarations
capturing different underlying assumptions, founded semantics and constraint seman-
tics for rules with aggregation extend different prior semantics for rules with negation
uniformly, as shown in Table 1 left and middle columns. These extend the matching
relationships proved for rules with negation in [41, 42]. All these relationships are when
all predicates in a program have the same declarations, but our founded semantics
and constraint semantics also allow different predicates to have different declarations.

Among many different prior semantics for rules with aggregations, there are even
different extensions for the same prior semantics for rules with negation, as shown
in the right column in Table 1. Unfortunately, most of them are defined for limited
cases, or add some case-specific definitions. In particular, simple formal explanations
for the disagreements, including among all different extensions for each of WFS and
SMS, are completely missing. We are only aware of comparisons by examples or very
restricted cases, even for disagreeing semantics by the same authors. However, for
all such examples and cases we examined, we found that the desired results for them
correspond to our semantics under some appropriate declarations for some predicates.
These results are described in [44].

3 Language

We consider Datalog rules extended with unrestricted negation, disjunction, quan-
tification, aggregation, and comparison containing aggregation.

Domain. The domain of a program is the set of values that variables can be
instantiated with. These values are called constants. The domain includes the values
that appear in the program and a set Num of numbers. Num is a bounded range of
numbers determined by a numeric representation bound NRB and a numeric repre-
sentation precision NRP, i.e., Num contains all numbers in the range [−NRB, NRB]
with at most NRP decimal places. Numbers with more than NRP decimal places that
appear in the program or arise during evaluation can be rounded to NRP decimal
places, or a higher-precision representation can be used.

This rounding or increasing precision is not shown explicitly in the semantics,
because the rule language in this paper does not include numeric operations that
increase the number of decimal places. We use an NRP that is at least the maximum
number of decimal places in numbers that appear in the program, so all numeric

Recursive Rules with Aggregation: A Simple Unified Semantics 7

Declarations Semantics Extending Reference Prior Extensions
certain Founded, Stratified Van Gelder 1986 e.g., [49, 53]

Constraint (Perfect) [62]
uncertain, Founded (none found) (none found)
not complete Constraint First-Order Logic e.g., [33]
uncertain, Founded Fitting Fitting 1985 [22] Pelov et al. 2007 [50]
complete, (Kripke-Kleene)
not closed Constraint Supported Apt et al. 1988 [7] Pelov et al. 2007 [50]
uncertain, Founded WFS Van Gelder et al. 1988 Kemp-Stuckey 1991 [36]
complete, [65, 66] Van Gelder 1992 [63]
closed Pelov et al. 2007 [50]

Constraint SMS Gelfond-Lifschitz 1988 Kemp-Stuckey 1991 [36]
[26] Pelov et al. 2007 [50]

Faber et al. 2011 [19]
Gelfond-Zhang
2014-2019 [30]

Table 1. Founded semantics and constraint semantics for rules with aggregation with
different declarations (for all predicates in a program), extending prior semantics for rules
with negation, and prior extensions.

computations are exact. Our semantics detects and can report cases where an in-
ference is blocked because it involves a value outside the range [−NRB, NRB]; for
details, see the description of range-blocked inference in [44].

Datalog rules with unrestricted negation. We first present a simple core form
of rules and then describe additional constructs that can appear in rules. The core
form of a rule is the following, where any Pi may be preceded with ¬:

Q(X1, ..., Xa)← P1(X11, ..., X1a1) ∧ ... ∧ Ph(Xh1, ..., Xhah
)

Q and Pi’s are predicates, and each argument Xk and Xij is a constant or a variable.
In arguments of predicates in examples, we use numbers and quoted strings for
constants and letters for variables.

If h = 0, there are no Pi’s or Xij’s, and each Xk must be a constant, in which case
Q(X1, ..., Xa) is called a fact. For the rest of the paper, “rule” refers only to the case
where h ≥ 1, in which case the left side of← is called the conclusion, the right side is
called the body, and each conjunct in the body is called a hypothesis. Note that we do
not require variables in the conclusion to be in the hypotheses; it is not needed because
rules are used with variables replaced by constants, and the domain of variables is finite.

Disjunction. In a rule body, hypotheses may be combined using disjunction as well
as conjunction. Conjunction and disjunction may be nested arbitrarily.

Quantification. A hypothesis in a rule body can be an existential or universal
quantification of the form

8 Yanhong A. Liu and Scott D. Stoller

∃ X1, ..., Xa | B existential quantification
∀ X1, ..., Xa | B universal quantification

where each Xi is a variablethat appears in B, and B has the same form as a rule
body. Note that this recursive definition allows nested quantifications. Each quantified
variable Xi ranges over the domain of the program. The quantifications return true iff
for some or all, respectively, combinations of values of X1, ..., Xa, the body B is true.

Aggregation and comparison. A set expression has the form {X1, ..., Xa : B},
where each Xi is a variable in B, and the body B has the same form as a rule body.
The arity of this set expression is a. The body of each set expression is first rewritten
to have the same form as the body of a core-form rule, by introducing auxiliary
predicates, e.g., max {Y: ∃ X | p(X,Y)} > 0 is rewritten to max {Y: q(Y)} > 0 to-
gether with q(Y) ← ∃ X | p(X,Y). Each auxiliary predicate has default declarations,
except that it is declared closed if some predicate in the body of the rule defining
the auxiliary predicate is declared closed.

An aggregation has the form agg S, where agg is an aggregation operator (count,
max, min, or sum), and S is a set expression. The aggregation returns the result of
applying the respective agg operation (cardinality, maximum, minimum, or sum) to the
set value of S. max and min use the order on numbers, extended lexicographically to an
order on tuples. sum is on numbers, and on tuples whose first components are numbers;
in the latter case, the first components are summed. Note that count and sum applied
to the empty set equal 0, while max and min applied to the empty set give an error.

A hypothesis of a rule may be a comparison of the form

agg S ⊙ k or agg S ⊙ agg′ S′

where agg S and agg′ S′ are aggregations, the comparison operator⊙ is an equality (=)
or inequality (̸=, <≤, >,≥), and k is a variable or numeric constant or, if the aggrega-
tion operator is max or min, a tuple of variables or numeric constants. Comparisons of
the second form are first rewritten as two comparisons of the first form by introducing
a fresh variable. For example, agg S ≠ agg′ S′ is rewritten as agg S ≠ V ∧agg′ S′ = V ,
and agg S < agg′ S′ is rewritten as agg S < V ∧ agg′ S′ ≥ V , where V is a fresh vari-
able. The latter rewrite uses two inequalities, instead of an inequality and an equality,
to increase the cases where occurrences of predicate atoms are positive (defined below).

Note that negation applied to comparisons can be eliminated by reversing the com-
parison operators; for example, the negation of a comparison using ≤ is a comparison
using >.

The key idea here is that the value of a comparison (containing an aggregation)
is undefined if there is not enough information about the predicates used to deter-
mine the value, or if applying the comparison (containing an aggregation) gives an
error, such as a type error. Our principled approach can easily support additional
aggregation and comparison functions, e.g., on other data types such as strings.

Programs, atoms, and literals. A program π is a set of rules and facts, plus
declarations for predicates, described after dependencies are introduced next.

An atom of π is either a predicate symbol in π applied to constants in the domain
of π and variables, or a comparison formed using predicate symbols in π, constants in

Recursive Rules with Aggregation: A Simple Unified Semantics 9

the domain of π, and variables. These are called predicate atoms for P and comparison
atoms, respectively.

A literal of π is either an atom of π or the negation of a predicate atom of π.
These are called positive literals and negative literals, respectively. A literal containing
a predicate atom or comparison atom is called a predicate literal or comparison literal,
respectively. Note that negation of a comparison atom is not needed because the
negation will be eliminated by reversing the comparison operator.

Dependency graph. The dependency graph of a program characterizes dependen-
cies between predicates induced by the rules, distinguishing positive from non-positive
dependencies.

An occurrence A of a predicate atom in a hypothesis H is a positive occurrence
if (1) H is A, which is a positive literal, (2) H is a quantification, and A is a positive
literal in its body, (3) H is a comparison atom of the form count S ≥ k, count S >
k, max S ≥ k, max S > k, min S ≤ k, or min S < k, and A is in a positive literal in
the set expression S, or (4) H is a comparison atom of the form count S ≤ k, count
S < k, max S ≤ k, max S < k, min S ≥ k, or min S > k, and A is in a negative literal
in the set expression S; otherwise, the occurrence is a non-positive occurrence.

This definition conservatively ensures that hypotheses are monotonic with respect
to positive occurrences of predicate atoms, i.e., making a positive occurrence of a
predicate atom in a hypothesis true cannot make the hypothesis change from true.
This definition can be extended so that any occurrence A of a predicate atom in a
hypothesis H is a positive occurrence if H can be determined to be monotonic with
respective to A. For example, if predicate p holds for only non-negative numbers,
then p(x) is a positive occurrence in sum {x: p(x)} > k.

The dependency graph DG(π) of program π is a directed graph with a node
for each predicate of π, and an edge from Q to P labeled positive (respectively,
non-positive) if a rule whose conclusion contains Q has a hypothesis that contains a
positive (respectively, non-positive) occurrence of an atom for P . If there is a path from
Q to P in DG(π), then Q depends on P in π. If the node for P is in a cycle containing
a non-positive edge in DG(π), then P has circular non-positive dependency in π.

Declarations. A predicate declared certain means that each assertion of the pred-
icate has a unique true (True) or false (False) value. A predicate declared uncertain
means that each assertion of the predicate has a unique true, false, or undefined
(Undef) value. A predicate declared complete means that all rules with that predicate
in the conclusion are given in the program. A predicate declared closed means that
an assertion of the predicate is set to false, called self-false, if inferring it to be true
using the given rules and facts requires assuming itself to be true.

A predicate must be declared uncertain if it has circular non-positive dependency,
or depends on an uncertain predicate; otherwise, it may be declared certain or un-
certain and is by default certain. A predicate may be declared complete or not only
if it is uncertain, and it is by default complete. A predicate may be declared closed
or not only if it is uncertain and complete, and it is by default not closed.

10 Yanhong A. Liu and Scott D. Stoller

We do not give a syntax for predicate declarations, because it is straightforward,
and most examples use default declarations. However, the language in [43, 45] supports
such declarations.

Notations. In presenting the semantics, in particular the completion rules, we allow
negation in the conclusion of rules, and we allow hypotheses to be equalities (=) and
negated equalities (̸=) between two variables or a variable and a constant.

4 Formal semantics

This section extends the definitions of founded semantics and constraint semantics
in [41, 42] to handle aggregation and comparison. We introduce a new relation, namely,
derivability of comparisons, and extend most of the foundational definitions, including
the definitions of atom, literal, and positive occurrence in Section 3, and of comple-
ment, ground instance, truth value of a literal in an interpretation, completion rule,
naming negation, unfounded set, and constraint model in this section. By carefully
extending these foundational definitions, we are able to avoid explicit changes to the
definitions of other terms and functions built on them, including the definition of
completion and the definition of the least fixed point at the heart of the semantics,
embodied mainly in the function LFPbySCC .

4.1 Interpretations and derivability
Complements and consistency. The predicate literals A and ¬A are complements
of each other. The following pairs of comparison literals are complements of each
other: agg S = k and agg S ≠ k; agg S ≤ k and agg S > k; agg S ≥ k and agg S < k.

A set of predicate literals is consistent if it does not contain a literal and its
complement.

Ground instance. An occurrence of a variable X in a quantification Q is bound in Q
if X is a variable to the left of the vertical bar in Q. An occurrence of a variable X in a
set expression S is bound if X is a variable to the left of the colon in S. An occurrence of
a variable in a rule R is free if it is not bound in a quantification or set expression in R.

A ground atom or ground literal is an atom or literal, respectively, not containing
variables. A ground instance of a rule R in a program π is any rule obtained from
R by expanding universal quantifications into conjunctions over all constants, instan-
tiating existential quantifications with any constants, and instantiating the remaining
free occurrences of variables with any constants (of course, all free occurrences of
the same variable are replaced with the same constant). A ground instance of a
comparison atom A is a comparison atom obtained from A by instantiating the
free occurrences of variables in A with any constants. A ground instance of a set
expression {X1, ..., Xa : B} is a pair ((X1, ..., Xa), B) obtained by instantiating all
variables in X1, ..., Xa and B with any constants.

Interpretations. An interpretation of a program π is a consistent set of ground
predicate literals of π. Interpretations are generally 3-valued: a ground predicate

Recursive Rules with Aggregation: A Simple Unified Semantics 11

π, I ⊢L count S = k ⇔ |G(S, I, True)| = k ∧G(S, I, Undef) = ∅
π, I ⊢L count S > k ⇔ |G(S, I, True)| > k

π, I ⊢L count S < k ⇔ |G(S, I, True)∪G(S, I, Undef)| < k

π, I ⊢L max S = k ⇔ k ∈ G(S, I, True)∧ ∀ i ∈ G(S, I, True)∪G(S, I, Undef) | i ≤ k

π, I ⊢L max S ≠ k ⇔ k ∉ G(S, I, True)∪G(S, I, Undef)∨ ∃ i ∈ G(S, I, True) | i > k

π, I ⊢L max S > k ⇔ ∃ i ∈ G(S, I, True) | i > k

π, I ⊢L max S < k ⇔ ∃ i ∈ G(S, I, True)∧ ∀ i ∈ G(S, I, True)∪G(S, I, Undef) | i < k

π, I ⊢L sum S = k ⇔ sum G(S, I, True) = k ∧ {first(i) : i ∈ G(S, I, Undef)} ⊆ {0}
π, I ⊢L sum S > k ⇔ sum (G(S, I, True)∪ {i ∈ G(S, I, Undef) : first(i) < 0}) > k

π, I ⊢L sum S < k ⇔ sum (G(S, I, True)∪ {i ∈ G(S, I, Undef) : first(i) > 0}) < k

Fig. 1. Linear-time derivability relation for comparisons. first(i) returns the first component
of i if i is a tuple, and returns i otherwise. Biconditionals (⇔) for derivability of other
comparisons are obtained from those given as follows. (1) Biconditionals for deriving com-
parisons using min are obtained from those for max by replacing max with min, interchanging
≤ and ≥, and interchanging < and >. (2) For aggregation operator agg being count or
sum, the right side of the biconditional for deriving agg S ≠ k is the disjunction of the right
sides of the biconditionals for deriving agg S > k and agg S < k. (3) For each aggregation
operator agg, biconditionals for deriving agg S ≥ k and agg S ≤ k are obtained from the
given biconditionals for agg S > k and agg S < k, respectively, by replacing > k with ≥ k
and replacing < k with ≤ k.

literal is true (i.e., has truth value True) in interpretation I if it is in I, is false (i.e.,
has truth value False) in I if its complement is in I, and is undefined (i.e., has truth
value Undef) in I if neither it nor its complement is in I. An interpretation of π
is 2-valued if it contains, for each ground predicate atom A of π, either A or its
complement. Interpretations are ordered by set inclusion ⊆.

Let G(S) denote the set of ground instances of set expression S. For a set
expression S, interpretation I, and truth value t, let

G(S, I, t) = {x | (x, B) ∈ G(S)∧B has truth value t in I}

That is, G(S, I, t) is the set of combinations of constants for which the body of set
expression S has truth value t in I.

Derivability of comparisons. Informally, a ground comparison atom agg S ⊙ k
is derivable in interpretation I of π, denoted π, I ⊢ agg S⊙ k, if the comparison must
be true in I, regardless of whether atoms with truth value Undef are true or false.

Precisely, founded semantics uses the linear-time derivability relation ⊢L defined
in Figure 1 based on the aggregation operator and the comparison operator. It can
be computed straightforwardly in linear time in |G(S, I, True)|+ |G(S, I, Undef)|.

Derivability for each comparison in Figure 1 has also a condition that the com-
parison does not give an error. It gives an error if the aggregation gives an error, or if
there is a type error, i.e., either the aggregation is count or sum, or is max or min with
arity of S being 1, and k is not a number, or the aggregation is max or min with arity

12 Yanhong A. Liu and Scott D. Stoller

a of S greater than 1, and k is not an a-tuple of numbers. The aggregation gives an
error if it is max or min and G(S, I, True) ∪G(S, I, Undef) is empty, or if there is a
type error, i.e., either it is max or min and G(S, I, True) or G(S, I, Undef) contains
either a non-number or a tuple containing a non-number, or it is sum and S has arity
1 and G(S, I, True) or G(S, I, Undef) contains a non-number, or it is sum and S has
arity greater than 1 and G(S, I, True) or G(S, I, Undef) contains a tuple whose first
component is not a number. Comparisons that give errors can easily be detected and
reported by checking these conditions.

This definition of derivability is relatively strict about errors, for example, it always
makes a comparison give an error if the aggregation in it gives an error. One can be
less strict about errors, for example, a comparison containing max or min applied to the
empty set and using negated equality could be allowed to hold even if the aggregation
in it gives an error, taking the view that an error is not equal to a value or a tuple of
values in the domain. This generally yields more literals that are true or false, rather
than undefined. Choices for error handling could also be specified using declarations.

An alternative to linear-time derivability is exact derivability, denoted ⊢E. Infor-
mally, π, I ⊢E agg S⊙ k holds iff (1) agg S⊙ k holds in all 2-valued interpretations I′

that extend I and satisfy the part of π that S depends on, and (2) there is at least one
such interpretation I′. Exact derivability is based on enumeration of interpretations
and hence is less appropriate for founded semantics, which is designed to leave such
enumeration for constraint semantics. Although exact derivability can be more precise
in principle, linear-time derivability gives the same result as exact derivability for all
examples we found in the literature.

Interpretations provide truth values for comparison literals similarly as for pred-
icate literals. Let DC(π, I) be the set of comparisons derivable for program π and
interpretation I. A comparison literal A for π is true in I if it is in DC(π, I), is false
in I if its complement is in DC(π, I), and is undefined in I otherwise.

Models. An interpretation I of a program π is a model of π if it (1) contains all facts
in π, and (2) satisfies all rules of π, interpreted as formulas in 3-valued logic [22] (i.e.,
for each ground instance of each rule, if the body is true in I, then so is the conclusion).

One-step derivability. The one-step derivability function Tπ for program π per-
forms one step of inference using rules of π. Formally, A ∈ Tπ(I) iff (1) A is a fact
of π, or (2) there is a ground instance R of a rule of π with conclusion A such that
the body of R is true in interpretation I.

4.2 Founded semantics without closed declarations

We first define a version of founded semantics, denoted Founded0, that ignores dec-
larations that predicates are closed. We then extend the definition to handle those
declarations. Intuitively, the founded model of a program π ignoring closed-predicate
declarations, denoted Founded0(π), is the least set of literals that are given as facts
or can be inferred by repeatedly applying the rules. Formally, we define

Founded0(π) = UnNameNeg(LFPbySCC(NameNeg(Cmpl(π)))),

Recursive Rules with Aggregation: A Simple Unified Semantics 13

where functions Cmpl, NameNeg, LFPbySCC , and UnNameNeg are defined as fol-
lows.

Completion. The completion function Cmpl(π) returns the completed program of π.
Formally, Cmpl(π) = AddInv(Combine(π)), where Combine and AddInv are defined
as follows.

The function Combine(π) returns the program obtained from π by replacing
the facts and rules defining each uncertain complete predicate Q with a single com-
bined rule for Q, defined as follows. First, transform the facts and rules defining Q
so they all have the same conclusion Q(V1, ..., Va), by replacing each fact or rule
Q(X1, ..., Xa)← B with

Q(V1, ..., Va) ← (∃ Y1, ..., Yk | V1 = X1 ∧ ... ∧ Va = Xa ∧B)

where V1, ..., Va are fresh variables (i.e., not occurring in any given rule defining Q),
and Y1, ..., Yk are all variables occurring free in the original rule Q(X1, ..., Xa) ← B.
Then, combine the resulting rules for Q into a single rule defining Q whose body
is the disjunction of the bodies of those rules. This combined rule for Q is logically
equivalent to the original facts and rules for Q.

The function AddInv(π) returns the program obtained from π by adding, for each
uncertain complete predicate Q, a completion rule that derives negative literals for Q.
The completion rule for Q is obtained from the inverse of the combined rule defining Q
(recall that the inverse of A← B is ¬A← ¬B), by (1) putting the body of the rule in
negation normal form, i.e., using laws of predicate logic to move negation inwards and
eliminate double negations, and (2) eliminate negation applied to comparison atoms
by reversing the comparison operators. As a result, in completion rules, negation is
applied only to predicate atoms.

Similar completion rules but without aggregation are used in Clark’s comple-
tion [14] and Fitting semantics [22].

Least fixed point. The least fixed point is preceded and followed by functions that
introduce and remove, respectively, new predicates representing the negations of the
original predicates.

The function NameNeg(π) returns the program obtained from π by replacing, ex-
cept where P(X1, ..., Xa) is a positive occurrence,¬P(X1, ..., Xa) with n.P(X1, ..., Xa)
and P(X1, ..., Xa) not in ¬P(X1, ..., Xa) with ¬ n.P(X1, ..., Xa). The new predicate
n.P represents the negation of predicate P . Since P(X1, ..., Xa) and ¬P(X1, ..., Xa)
are complements of each other, we now also define P(X1, ..., Xa) and n.P(X1, ..., Xa)
to be complements of each other.

Note that n.P(X1, ..., Xa) is introduced to make the one-step derivability function
explicitly monotonic, while maintaining consistency. We replace ¬P(X1, ..., Xa) for
any conclusion and any negative occurrence of P(X1, ..., Xa) (where negative occur-
rence is defined symmetrically as positive occurrence) to allow negative conclusions to
be derived and used as facts. We replace any negative occurrence of P(X1, ..., Xa) not
in ¬P(X1, ..., Xa) with ¬ n.P(X1, ..., Xa) also to use these facts. Other occurrences,
if any due to positive (and negative) occurrence being conservative, can be either
replaced or left, with the result still being a model, because all derivation and use of

14 Yanhong A. Liu and Scott D. Stoller

n.P(X1, ..., Xa) and P(X1, ..., Xa) follow the one-step derivability. We have not seen
any example that needs this, but one might obtain a more precise model, i.e., more
atoms that are true or false, by trying all combinations of replacing and leaving. It
is an open question whether some combination leads to a unique most precise model.

The function LFPbySCC(π) uses a least fixed point to infer facts for each strongly
connected component (SCC) in the dependency graph of π, as follows. Let C1, ..., Cn

be a list of the SCCs in dependency order, so earlier SCCs do not depend on later
ones; it is easy to show that any linearization of the dependency order leads to the
same result for LFPbySCC . The projection of a program π onto an SCC C, denoted
Proj(π, C), contains all facts of π whose predicates are in C and all rules of π whose
conclusions contain predicates in C.

Define LFPbySCC(π) = In, where I0 = ∅ and Ii = AddNeg(LFP(TProj(π,Ci)∪Ii−1),
Ci) for i ∈ 1..n. LFP is the least fixed point operator. AddNeg(I, C) returns the
interpretation obtained from interpretation I by adding completion facts for the
certain predicates in C to I; specifically, for each certain predicate P in C, and each
combination of values v1, ..., va of arguments of P , if I does not contain P(v1, ..., va),
then add n.P(v1, ..., va). The least fixed point is well-defined, because the one-step
derivability function TProj(π,Ci)∪Ii−1 is monotonic with respect to ⊆, i.e., for all
interpretations J and J ′, TProj(π,Ci)∪Ii−1(J) ⊆ TProj(π,Ci)∪Ii−1(J ′) whenever J ⊆ J ′;
the proof is straightforward [44].

The function UnNameNeg(I) returns the interpretation obtained from interpre-
tation I by replacing each atom n.P(X1, ..., Xa) with ¬P(X1, ..., Xa).

4.3 Founded semantics with closed declarations
Informally, when an uncertain complete predicate is declared closed, an atom A of
the predicate is false in an interpretation I for a program π, called self-false in I,
if every ground instance of a rule that concludes A has a hypothesis that is false in
I or, recursively, is self-false in I. To simplify the formalization, we first transform
ground instances of rules to eliminate disjunction, by putting the body of each ground
instance R of a rule into disjunctive normal form (DNF) and then replacing R with
multiple rules, one per disjunct of the DNF.

A set U of ground predicate atoms for closed predicates is an unfounded set of
π with respect to an interpretation I of π iff U is disjoint from I and, for each atom
A in U , and each ground instance R of a rule of π with conclusion A,
(1) some hypothesis of R is false in I,
(2) some positive predicate hypothesis of R is in U , or
(3) some comparison hypothesis H of R is false when all atoms in U are false, i.e.,

π, I ∪¬ ·U ⊢L ¬H,
where, for a set S of positive literals, ¬·S = {¬P(c1, ..., ca) |P(c1, ..., ca) ∈ S}, called
the element-wise negation of S, and where ¬H is implicitly simplified to eliminate
negation applied to H by changing the comparison operator in H.

Note that this definition differs from the standard definition of unfounded set [66]
in that we restricted the unfounded set to atoms for closed predicates, added clause
(3), and added the disjointness condition. Because a comparison hypothesis depends

Recursive Rules with Aggregation: A Simple Unified Semantics 15

non-conjunctively on the truth value of multiple literals for predicates used in the
aggregation, and these literals may be spread across I and U, clause (3) checks
whether H is false when all atoms in U are set to false in I. The explicit disjointness
condition is not needed in WFS or founded semantics without aggregation, because
one can prove in those settings that unfounded sets are disjoint from interpretations
that arise in the semantics (e.g., see [66, Lemma 3.4]). The disjointness condition is
needed here to ensure that the interpretation I ∪¬ ·U in clause (3) is consistent and
hence the meaning of the clause is well-defined.

The definition of unfounded set U ensures that extending I to make all atoms
in U false is consistent with π, in the sense that no atom in U can be inferred to
be true in the extended interpretation. We define SelfFalseπ(I), the set of self-false
atoms of π with respect to interpretation I, to be the greatest unfounded set of π
with respect to I. Note that this set is empty when no predicate is declared closed.

The founded semantics is defined by repeatedly computing the semantics given by
Founded0 (founded semantics without closed declarations) and then setting self-false
atoms to false, until a least fixed point is reached. Formally, the founded semantics is
Founded(π) = LFP(Fπ), where Fπ(I) = Founded0(π∪I)∪¬·SelfFalseπ(Founded0(π∪
I)).

4.4 Constraint semantics
Constraint semantics is a set of 2-valued models based on founded semantics. A
constraint model M of a program π is a 2-valued interpretation of π such that (1)
Founded(π) ⊆M , (2) M is a model of Cmpl(π), and (3) if there are closed predicates,
there is no non-empty subset S of M \Founded(π) such that S contains only positive
literals for closed predicates and S = SelfFalseπ(M \ S). Intuitively, condition (3)
says that M should not contain a set S of positive literals for closed predicates that
are not required to be true by the founded semantics and can be set to false.

We also require that an interpretation that leads to an error in a comparison is not
a constraint model. Precisely, we require that for interpretation M to be a constraint
model, no ground instance of a rule of π contains a comparison that gives an error
in M . Errors are defined the same as in Section 4.1, but note that G(S, I, Undef) is
empty here. This definition of constraint models could be made less strict about errors.

Note that condition (3) differs from the corresponding condition in constraint
semantics without aggregation [41, 42], which is ¬ · SelfFalse(M) ⊆M. The change
is needed because of the new disjointness condition for unfounded sets. With the
new disjointness condition, for any 2-valued interpretation M , SelfFalse(M) must be
empty, and hence ¬ · SelfFalse(M) ⊆M is vacuously true.

We define Constraint(π) to be the set of constraint models of π. Constraint
models can be computed by iterating over interpretations M that are supersets of
Founded(π), satisfying condition (1), and then checking whether the other conditions
in the definition of constraint model are satisfied.

4.5 Properties of the semantics
We briefly state several important properties of the semantics; detailed statements
and proofs are in [44]. (1) Consistency: The founded model and constraint models

16 Yanhong A. Liu and Scott D. Stoller

of a program π are consistent. (2) Correctness: The founded model of a program
π is a model of π and Cmpl(π). The constraint models of π are 2-valued models of
π and Cmpl(π). (3) Same SCC, same certainty: All predicates in an SCC have the
same certainty. (4) Higher-order programming: Founded semantics and constraint
semantics are preserved by a transformation that facilitates higher-order programming
by replacing a set S of compatible predicates with a single predicate holds whose
first argument is the name of one of those predicates. (5) Equivalent declarations:
Changing predicate declarations from uncertain, complete, and closed to certain when
allowed, or vice versa, preserves founded and constraint semantics.

5 Examples: company control and double win

We discuss the well-known challenging company control problem [13, 54, 19, 30] and
an even more challenging game problem that generalizes the well-known win-not-win
game [41, 42].

5.1 Company control—a well-known challenge
This is Examples 1.1 and 2.13 in [19] and is also used in Example 12 in [30]. The
problem was also discussed repeatedly before [49, 36, 63, 54, 50] and earlier [13]. It
considers a set of facts of the form company(c), denoting that c is a company, and a set
of facts of the form ownsStk(c1,c2,p), denoting the percentage p of shares of company
c2 that are owned by company c1. It defines that company c1 controls company c2,
denoted controls(c1,c2), if the sum of the percentages of shares of c2 that are owned
either directly by c1 or by companies controlled by c1 is more than 50.

controlsStk(c1,c1,c2,p) ← ownsStk(c1,c2,p)
controlsStk(c1,c2,c3,p) ← company(c1)

∧ controls(c1,c2) ∧ ownsStk(c2,c3,p)
controls(c1,c3) ← company(c1) ∧ company(c3)

∧ sum {p,c2: controlsStk(c1,c2,c3,p)} > 50

It introduces controlsStk(c1,c2,c3,p), denoting that company c1 controls p percent
of shares of company c3 through company c2. It has become a most well-known
challenging example for recursion with aggregation, because it involves aggregation
in mutual recursion.

Founded semantics and constraint semantics are straightforward to compute.
First, company and ownsStk as given are certain. Then, controlsStk and controls are
certain by default, despite that controlsStk and controls are mutually recursive while
involving aggregation, because controlsStk(c1,c2,c3,p) holds for only non-negative
p, making the dependency through the comparison positive. Therefore, the semantics
is simply a least fixed point using the given rules, giving the same result for founded
semantics and constraint semantics. This is the desired result, same as in [19].

5.2 Double-win game—for any kind of moves
Consider the following game, which we call the double-win game. Given a set of
moves, the game uses the following single rule, called double-win rule, for winning:

Recursive Rules with Aggregation: A Simple Unified Semantics 17

dwin(x) ← count {y: move(x,y) ∧ ¬ dwin(y)} ≥ 2

It says that x is a winning position if the number of positions, y, such that there is
a move from x to y and y is not a winning position, is at least two. That is, x is a
winning position if there are at least two positions to move to from x that are not
winning positions.

We created the double-win game by generalizing the well-known win-not-win
game [41, 42], which has a single rule, stating that x is a winning position if there
is a move from x to some position y and y is not a winning position:

win(x) ← move(x,y) ∧ ¬ win(y)

One could also rewrite the double-win rule using two explicit positions y1 and y2 and
adding y1!=y2, but this approach does not scale when the count can be compared
with any number, not just 2, and is not necessarily known in advance.

By default, move is certain, and dwin is uncertain but complete. First, add the
completion rule:
¬ dwin(x) ← count {y: move(x,y) ∧ ¬ dwin(y)} < 2

Then, rename ¬ dwin to n.dwin, in both the given rule and the completion rule,
except the positive occurrence of dwin in the body of the completion rule, yielding:

dwin(x) ← count {y: move(x,y) ∧ n.dwin(y)} ≥ 2
n.dwin(x) ← count {y: move(x,y) ∧ ¬ dwin(y)} < 2

Now compute the least fixed point. Start with the base case, in the second rule, for
positions x that have moves to fewer than 2 positions; this infers n.dwin(x) facts for
those positions x. Then, the first rule infers dwin(x) facts for any position x that can
move to 2 or more positions for which n.dwin is true.

This process iterates to infer more n.dwin and more dwin facts, until a fixed point
is reached, where dwin gives winning positions, n.dwin gives losing positions, and the
remaining positions are draw positions, corresponding to positions for which dwin is
true, false, and undefined, respectively.

5.3 Experiments
We also performed experiments with our new semantics. We implemented straight-
forward and incremental least fixed-point computations for example problems in
DistAlgo [46], an extension of Python. We also compared with results computed by
three systems that support negation and aggregation in recursion: XSB [60], the most
well-known such system that computes WFS, and clingo [4] and DLV [20, 2], the
most well-known such systems that compute SMS.

For the company control problem, our incremental program in DistAlgo (v.1.1.0b15
on Python 3.7) was the fastest; followed by clingo (v.5.4.0), about 7 times slower;
followed by XSB (v.3.8.0), our straightforward program in DistAlgo, and DLV (https:
//www.dbai.tuwien.ac.at/proj/dlv/dlvRecAggr/ (accessed 2020-09-21))1, each

1 That version of DLV supports recursive aggregates, while the current release of DLV
“does not yet contain a full implementation of recursive aggregates” according to
http://www.dlvsystem.com/dlv/ (last accessed 2021-11-04).

18 Yanhong A. Liu and Scott D. Stoller

asymptotically and drastically slower than the preceding one. Most recent investi-
gation found that changing the order of hypotheses in rules in XSB can improve the
running times for this problem asymptotically.

For the double win problem, clingo and DLV cannot compute the desired 3-
valued semantics, and XSB was found to compute incorrect results on some of our
benchmarks. Most recent investigation found that SWI-Prolog [69] added support
for computing WFS, but was found to compute incorrect results for this problem
on some smallest inputs. Both SWI-Prolog and XSB have since found and fixed bugs
that caused these incorrect results.

6 Related work and conclusion

The study of recursive rules with negation goes back at least to Russell’s paradox,
discovered over 120 years ago [35]. Many logic languages and disagreeing semantics
have since been proposed, with significant complications and challenges described
in various survey and overview articles, e.g., [8, 52, 23, 61], and in works on relating
and unifying different semantics, e.g., [18, 51, 55, 37, 17, 34, 10, 42].

Recursive rules with aggregation have been a subject of study soon after rules
with negation were used in programming. They received an even larger variety of
disagreeing semantics in 20 years, e.g., [36, 63, 59, 15, 54, 57, 25, 48, 47, 50, 58, 20, 38, 19,
21], and even more intensive studies in the last few years, e.g., [27, 56, 4, 6, 1, 5, 73, 28,
72, 3, 11, 29, 12, 30, 31, 16, 71, 68, 67], especially as they are needed in graph analysis
and machine learning applications.

Major related works are as shown in Table 1, right column. They give disagreeing
semantics with each other, without simple formal explanations for the disagreement,
as explained there. More detailed comparisons with work by Kemp and Stuckey [36],
Van Gelder [63], Pelov, Denecker, and Bruynooghe [50], Faber, Pfeifer, and Leone [19],
Gelfond and Zhang [30], and Hella et al. [32, 33] appear in [44]. Among all, Pelov et
al.’s work [50], recently reworked for ASP [67], is notable for proposing a framework
that can be instantiated to extend several prior semantics to handle aggregation. They
develop several separate extended semantics. In contrast, our approach uses simple
predicate declarations to capture different assumptions made by different semantics
in a unifying single semantics.

Many other different semantics have been studied, all focused on restricted classes
or issues. The survey by Ramakrishnan and Ullman [52] discusses some different
semantics, optimization methods, and uses of recursive rules with aggregation in
earlier projects. Ross and Sagiv [54] studies monotonic aggregation but not general
aggregation. Beeri et al. [9] presents the valid model semantics for logic programs with
negation, set expressions, and grouping, but not aggregation. Sudarshan et al. [59]
extends the valid model semantics for aggregation, gives semantics for more programs
than Van Gelder [63], and subsumes a class of programs in Ganguly et al. [24], but it
is only a 3-valued semantics. Hella et al. [32, 33] study expressiveness of aggregation
operators but without recursion. Liu et al. [38] give a semantics for logic programs
with abstract constraints, which can represent aggregates, and show that, for positive

Recursive Rules with Aggregation: A Simple Unified Semantics 19

programs, it agrees with one of Pelov et al.’s semantics [50]. A number of other works
have followed Gelfond and Zhang’s line of study for ASP [11, 12, 30].

Zaniolo et al. [24, 70, 72, 31, 16, 71] study recursive rules with aggregation for
database applications, especially including for big data analysis and machine learning
applications in recent years. They study optimizations that exploit monotonicity
as well as additional properties of the aggregation operators in computing the least
fixed point, yielding superior performance and scalability necessary for these large
applications. They discuss insight from their application experience as well as prior
research for centering on fixed-point computation [72], which essentially corresponds
to the assumption that predicates are certain.

Our founded semantics and constraint semantics for recursive rules with aggrega-
tion unify different previous semantics by allowing different underlying assumptions to
be easily specified explicitly, and furthermore separately for each predicate if desired.
Our semantics are also fully declarative, giving both a single 3-valued model from
simply a least fixed-point computation and a set of 2-valued models from simply
constraint solving.

The key enabling ideas of simple binary choices for expressing assumptions and
simple lease fixed-point computation and constraint solving are taken from Liu and
Stoller [41, 42], where they present a simple unified semantics for recursive rules with
negation and quantification.

Our semantics can be extended for rules with negation in the conclusion, in the
same way as in [41]. It can also easily be extended for hypotheses that are equalities
or negated equalities between variables and constants, because such hypotheses are
already used in presenting the semantics.

There are many directions for future research, including additional language
features, efficient implementation methods, and precise complexity guarantees [40]
when possible.

Acknowledgement. We would like to thank David S. Warren and Jan Wielemaker
for their excellent help with using XSB and SWI-Prolog.

References

1. Alviano, M.: Evaluating answer set programming with non-convex recursive aggregates.
Fundamenta Informaticae 149(1-2), 1–34 (2016)

2. Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P., Zangari, J.: The ASP system DLV2. In: International Conference on Logic
Programming and Nonmonotonic Reasoning. pp. 215–221. Springer (2017)

3. Alviano, M., Dodaro, C., Maratea, M.: Shared aggregate sets in answer set programming.
Theory and Practice of Logic Programming 18(3-4), 301–318 (2018)

4. Alviano, M., Faber, W., Gebser, M.: Rewriting recursive aggregates in answer set
programming: back to monotonicity. Theory and Practice of Logic Programming
15(4-5), 559–573 (2015)

5. Alviano, M., Faber, W., Gebser, M.: From non-convex aggregates to monotone
aggregates in ASP. In: Proceedings of the International Joint Conference on Artificial
Intelligence. pp. 4100–4104 (2016)

6. Alviano, M., Leone, N.: Complexity and compilation of GZ-aggregates in answer set
programming. Theory and Practice of Logic Programming 15(4-5), 574–587 (2015)

20 Yanhong A. Liu and Scott D. Stoller

7. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan
Kaufmann (1988)

8. Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. Journal of Logic
Programming 19, 9–71 (1994)

9. Beeri, C., Ramakrishnan, R., Srivastava, D., Sudarshan, S.: The valid model semantics
for logic programs. In: Proceedings of the 11th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. pp. 91–104 (1992)

10. Bruynooghe, M., Denecker, M., Truszczynski, M.: First order logic with inductive
definitions for model-based problem solving. AI Magazine 37(3), 69–80 (2016)

11. Cabalar, P., Fandinno, J., Del Cerro, L.F., Pearce, D.: Functional ASP with intensional
sets: Application to Gelfond-Zhang aggregates. Theory and Practice of Logic
Programming 18(3-4), 390–405 (2018)

12. Cabalar, P., Fandinno, J., Schaub, T., Schellhorn, S.: Gelfond-zhang aggregates as
propositional formulas. Artificial Intelligence 274, 26–43 (2019)

13. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer (1990)
14. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases,

pp. 293–322. Plenum Press (1978)
15. Consens, M.P., Mendelzon, A.O.: Low-complexity aggregation in GraphLog and

Datalog. Theoretical Computer Science 116(1), 95–116 (1993)
16. Das, A., Li, Y., Wang, J., Li, M., Zaniolo, C.: Bigdata applications from graph analytics

to machine learning by aggregates in recursion. In: Proceedings of the 35th International
Conference on Logic Programming (Technical Communications). pp. 273–279 (2019)

17. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM
Transactions on Computational Logic 9(2), 14 (2008)

18. Dung, P.M.: On the relations between stable and well-founded semantics of logic
programs. Theoretical Computer Science 105(1), 7–25 (1992)

19. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175(1), 278–298 (2011)

20. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation
of aggregate functions in the DLV system. Theory and Practice of Logic Programming
8(5-6), 545–580 (2008)

21. Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM
Transactions on Computational Logic 12(4), 1–40 (July 2011)

22. Fitting, M.: A Kripke-Kleene semantics for logic programs. Journal of Logic
Programming 2(4), 295–312 (1985)

23. Fitting, M.: Fixpoint semantics for logic programming: A survey. Theoretical Computer
Science 278(1), 25–51 (2002)

24. Ganguly, S., Greco, S., Zaniolo, C.: Minimum and maximum predicates in logic
programming. In: Proceedings of the 10th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. pp. 154–163 (1991)

25. Gelfond, M.: Representing knowledge in A-Prolog. In: Computational Logic: Logic
Programming and Beyond, pp. 413–451. Springer (2002)

26. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference and Symposium on Logic Programming.
pp. 1070–1080. MIT Press (1988)

27. Gelfond, M., Zhang, Y.: Vicious circle principle and logic programs with aggregates.
Theory and Practice of Logic Programming 14(4-5), 587–601 (2014)

28. Gelfond, M., Zhang, Y.: Vicious circle principle and formation of sets in ASP based
languages. In: International Conference on Logic Programming and Nonmonotonic
Reasoning. pp. 146–159. Springer (2017)

29. Gelfond, M., Zhang, Y.: Vicious circle principle and logic programs with ag-
gregates. Computing Research Repository cs.AI(arXiv:1808.07050) (2018),
https://arxiv.org/abs/1808.07050

30. Gelfond, M., Zhang, Y.: Vicious circle principle, aggregates, and formation of sets in
ASP based languages. Artificial Intelligence 275, 28–77 (Oct 2019)

31. Gu, J., Watanabe, Y.H., Mazza, W.A., Shkapsky, A., Yang, M., Ding, L., Zaniolo, C.:
RaSQL: Greater power and performance for big data analytics with recursive-aggregate-
SQL on Spark. In: Proceedings of the 2019 International Conference on Management
of Data. pp. 467–484 (2019)

Recursive Rules with Aggregation: A Simple Unified Semantics 21

32. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. In:
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science. p. 35.
IEEE Computer Society (1999)

33. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. Journal
of the ACM 48(4), 880–907 (2001)

34. Hou, P., De Cat, B., Denecker, M.: FO(FD): Extending classical logic with rule-based
fixpoint definitions. Theory and Practice of Logic Programming 10(4-6), 581–596 (2010)

35. Irvine, A.D., Deutsch, H.: Russell’s paradox. Stanford Encyclopedia of Philosophy
(2020), https://plato.stanford.edu/entries/russell-paradox/ First published
Fri Dec 8, 1995; substantive revision Mon Oct 12, 2020. Accessed Jan 3, 2021

36. Kemp, D.B., Stuckey, P.J.: Semantics of logic programs with aggregates. In: Proceedings
of the International Symposium on Logic Programming. pp. 387–401 (1991)

37. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157(1-2), 115–137 (2004)

38. Liu, L., Pontelli, E., Son, T.C., Truszczynski, M.: Logic programs with abstract
constraint atoms: The role of computations. Artificial Intelligence 174(3), 295–315 (2010)

39. Liu, Y.A.: Logic programming applications: What are the abstractions and implementa-
tions? In: Kifer, M., Liu, Y.A. (eds.) Declarative Logic Programming: Theory, Systems,
and Applications, chap. 10, pp. 519–557. ACM and Morgan & Claypool (2018)

40. Liu, Y.A., Stoller, S.D.: From Datalog rules to efficient programs with time and space
guarantees. ACM Transactions on Programming Languages and Systems 31(6), 1–38
(2009)

41. Liu, Y.A., Stoller, S.D.: Founded semantics and constraint semantics of logic rules. In:
Proceedings of the 2018 International Symposium on Logical Foundations of Computer
Science. Lecture Notes in Computer Science, vol. 10703, pp. 221–241. Springer (Jan 2018)

42. Liu, Y.A., Stoller, S.D.: Founded semantics and constraint semantics of logic
rules. Journal of Logic and Computation 30(8), 1609–1638 (Dec 2020), also
http://arxiv.org/abs/1606.06269

43. Liu, Y.A., Stoller, S.D.: Knowledge of uncertain worlds: Programming with logical
constraints. In: Proceedings of the 2020 International Symposium on Logical Foundations
of Computer Science. Lecture Notes in Computer Science, vol. 11972, pp. 111–127.
Springer (Jan 2020)

44. Liu, Y.A., Stoller, S.D.: Recursive rules with aggregation: A simple unified se-
mantics. Computing Research Repository cs.DB(arXiv:2007.13053) (July 2020),
http://arxiv.org/abs/2007.13053

45. Liu, Y.A., Stoller, S.D.: Knowledge of uncertain worlds: Programming with logical
constraints. Journal of Logic and Computation 31(1), 193–212 (Jan 2021), also
https://arxiv.org/abs/1910.10346

46. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to efficiency for distributed algorithms. ACM
Transactions on Programming Languages and Systems 39(3), 12:1–12:41 (May 2017)

47. Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Logic
Programming and Nonmonotonic Reasoning. pp. 167–179. Springer (2004)

48. Marek, V.W., Truszczynski, M.: Logic programs with abstract constraint atoms. In:
Proceedings of the 19th National Conference on Artificial Intelligence, 16th Conference
on Innovative Applications of Artificial Intelligence. pp. 86–91. AAAI Press / The MIT
Press (2004)

49. Mumick, I.S., Pirahesh, H., Ramakrishnan, R.: The magic of duplicates and aggregates.
In: Proceedings of the 16th International Conference on Very Large Databases. pp.
264–277. Morgan Kaufmann (1990)

50. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic pro-
grams with aggregates. Theory and Practice of Logic Programming 7(3), 301–353 (2007)

51. Przymusinski, T.C.: Well-founded and stationary models of logic programs. Annals
of Mathematics and Artificial Intelligence 12(3), 141–187 (1994)

52. Ramakrishnan, R., Ullman, J.D.: A survey of deductive database systems. Journal of
Logic Programming 23(2), 125–149 (1995)

53. Ross, K.A., Sagiv, Y.: Monotonic aggregation in deductive databases. In: Proceedings
of the 11th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. pp. 114–126 (1992)

22 Yanhong A. Liu and Scott D. Stoller

54. Ross, K.A., Sagiv, Y.: Monotonic aggregation in deductive databases. Journal of
Computer and System Sciences 54(1), 79–97 (1997)

55. Schlipf, J.S.: The expressive powers of the logic programming semantics. Journal of
Computer and System Sciences 51(1), 64–86 (1995)

56. Shkapsky, A., Yang, M., Zaniolo, C.: Optimizing recursive queries with monotonic
aggregates in DeALS. In: Proceedings of the 2015 IEEE 31st International Conference
on Data Engineering. pp. 867–878 (2015)

57. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

58. Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary abstract
constraint atoms. Journal of Artificial Intelligence Reseearch 29, 353–389 (2007)

59. Sudarshan, S., Srivastava, D., Ramakrishnan, R., Beeri, C.: Extending the well-founded
and valid semantics for aggregation. In: Proceedings of the 1993 International
Symposium on Logic programming. pp. 590–608 (1993)

60. Swift, T., Warren, D.S., Sagonas, K., Freire, J., Rao, P., Cui, B., Johnson, E., de Castro,
L., Marques, R.F., Saha, D., Dawson, S., Kifer, M.: The XSB System Version 3.8,x
(2017), http://xsb.sourceforge.net

61. Truszczynski, M.: An introduction to the stable and well-founded semantics of logic
programs. In: Kifer, M., Liu, Y.A. (eds.) Declarative Logic Programming: Theory,
Systems, and Applications, pp. 121–177. ACM and Morgan & Claypool (2018)

62. Van Gelder, A.: Negation as failure using tight derivations for general logic programs. In:
Proceedings of the 3rd IEEE-CS Symposium on Logic Programming. pp. 127–138 (1986)

63. Van Gelder, A.: The well-founded semantics of aggregation. In: Proceedings of the 11th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
pp. 127–138. June 2-4, 1992, San Diego, California (1992)

64. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal of
Computer and System Sciences 47(1), 185–221 (1993)

65. Van Gelder, A., Ross, K., Schlipf, J.S.: Unfounded sets and well-founded semantics for
general logic programs. In: Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. pp. 221–230 (1988)

66. Van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic
programs. Journal of the ACM 38(3), 620–650 (1991)

67. Vanbesien, L., Bruynooghe, M., Denecker, M.: Analyzing semantics of aggregate answer
set programming using approximation fixpoint theory. Computing Research Repository
cs.AI(arXiv:2104.14789) (2021), https://arxiv.org/abs/2104.14789

68. Wang, Q., Zhang, Y., Wang, H., Geng, L., Lee, R., Zhang, X., Yu, G.: Automating
incremental and asynchronous evaluation for recursive aggregate data processing. In:
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of data. pp. 2439–2454 (2020)

69. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice
of Logic Programming 12(1-2), 67–96 (2012)

70. Zaniolo, C., Arni, N., Ong, K.: Negation and aggregates in recursive rules: The LDL++
approach. In: International Conference on Deductive and Object-Oriented Databases.
pp. 204–221. Springer (1993)

71. Zaniolo, C., Das, A., Gu, J., Li, Y., Li, M., Wang, J.: Monotonic properties
of completed aggregates in recursive queries. Computing Research Repository
cs.DB(arXiv:1910.08888) (2019), http://arxiv.org/abs/1910.08888

72. Zaniolo, C., Yang, M., Das, A., Shkapsky, A., Condie, T., Interlandi, M.: Fixpoint
semantics and optimization of recursive datalog programs with aggregates. Theory and
Practice of Logic Programming 17(5-6), 1048–1065 (2017)

73. Zhang, Y., Rayatidamavandi, M.: A characterization of the semantics of logic programs
with aggregates. In: Proceedings of the International Joint Conference on Artificial
Intelligence. pp. 1338–1344 (2016)

