A Distributed Simplex Architecture
for Multi-Agent Systems*

Usama Mehmood!, Scott D. Stoller!, Radu Grosu?,
Shouvik Roy', Amol Damare', and Scott A. Smolka'

! Department of Computer Science, Stony Brook University, USA
2 Department of Computer Engineering, Technische Universitit Wien, Austria

Abstract. We present the Distributed Simplex Architecture (DSA), a new
runtime assurance technique that provides safety guarantees for multi-
agent systems (MASs). DSA is inspired by the Simplex control archi-
tecture of Sha et al., but with some significant differences. The tradi-
tional Simplex approach is limited to single-agent systems or a MAS
with a centralized control scheme. DSA addresses this limitation by ex-
tending the scope of Simplex to include MASs under distributed control.
In DSA, each agent runs a local instance of traditional Simplex such that
the preservation of safety in the local instances implies safety for the en-
tire MAS. Control Barrier Functions play a critical role. They are used to
define DSA’s core components (the baseline controller and the decision
module’s switching logic between advanced and baseline controllers) and
to verify the safety of a DSA instance in a distributed manner. We pro-
vide a general proof of safety for DSA, and present experimental results
for several case studies, including flocking with collision avoidance, safe
navigation of ground rovers through way-points, and the safe operation
of a microgrid.

Keywords: Runtime assurance - Simplex architecture - Control Barrier
Functions - Distributed flocking - Reverse switching.

1 Introduction

A multi-agent system (MAS) is a group of autonomous, intelligent agents that work
together to solve tasks and carry out missions. MAS applications include the design
of power systems and smart-grids [} 2], autonomous control of robotic swarms for
monitoring, disaster management, military battle systems, etc. [3]], and sensor networks
[4]. Many MAS applications are safety-critical. It is therefore paramount that MAS
control strategies ensure safety.

In this paper, we present the Distributed Simplex Architecture (DSA), a new run-
time assurance technique that provides safety guarantees for MASs under distributed

* This work is supported in part by NSF awards OIA-2040599, CCF-1918225, CCF-
1954837, CPS-1446832 and ONR award N000142012751.

2 U. Mehmood et al.

DSA Fosa
| DSA |
l Advanced Decision F Agent j 1
CO(TKrCD)IIer Module D =" N
(DM) N ——) N \
— Agemi}»» J LDsal) 7 JLBAL) g i
- o ~ T Agenti f¢---f Agentk . ¢ i HS
Baseline y v s N Network L
Controller Ve N \ : S 7
®C) . hom P T W !
_/
Agent |

Fig. 1: Architectural overview of DSA. Agents are homogeneous and operate under
DSA control; the figure zooms in on DSA components for agent ¢. Sensed state of
agent i’s j*" neighbor denoted as Si.j. AC, BC, and DM take as input the state of the
agent and its neighbors.

control. DSA is inspired by Sha et al.’s Simplex Architecture [5, 6], but differs from
it in significant ways. The Simplex Architecture provides runtime assurance of safety
by switching control from an unverified (hence potentially unsafe) advanced controller
(AC) to a verified-safe baseline controller (BC), if the action produced by the AC could
result in a safety violation in the near future. The switching logic is implemented in a
verified decision module (DM). The applicability of the traditional Simplex Architec-
ture is limited to systems with a centralized control architecture.

DSA, illustrated in Fig. [I] addresses this limitation by re-engineering the traditional
Simplex architecture to widen its scope to include MASs. Also, as in [7], it implements
reverse switching by reverting control back to the AC when it is safe to do so.

In DSA, for each agent, there is a verified-safe BC and a verified switching logic
such that if all agents operate under DSA, then safety of the MAS is guaranteed. The BC
and DM along with the AC are distributed and depend only on local information. DSA
itself is distributed in that it involves one local instance of traditional Simplex per agent
such that the conjunction of their respective safety properties yields the desired safety
property for the entire MAS. For example, consider our flocking case study, where
a group of robotic agents is moving cohesively, and we want to establish collision-
freedom for the entire MAS. This can be accomplished in a distributed manner by
showing that each local instance of Simplex, say for agent ¢, ensures collision-freedom
for agent ¢ and its neighboring agents.

DSA allows agents to switch their mode of operation independently. At any given
time, some agents may be operating in AC mode while others are operating in BC
mode. Our approach to the design of the BC and DM leverages Control Barrier Func-
tions (CBFs), which have been used to synthesize safe controllers [8l (9} [10], and are
closely related to Barrier Certificates used for safety verification of closed dynamical
systems [[11, [12]. A CBF is a mapping from the system’s (i.e., plant’s) state space to
a real number, with its zero level-set partitioning the state space into safe and unsafe
regions. If certain inequalities on the derivative of the CBF in the direction of the state
trajectories (also known as Lie derivative) are satisfied, then the corresponding control
actions are considered safe (admissible).

In DSA, the BC is designed as an optimal controller with the goal of increasing a
utility function based on the Lie derivatives of the CBFs. As CBFs are a measure of
the safety of a state, optimizing for control actions with a higher Lie derivative values

A Distributed Simplex Architecture for Multi-Agent Systems 3

provides a direct way to make the state safer. The safety of the BC is further guaranteed
by constraining the control action to remain in a set of admissible actions that satisfy
certain inequalities on the Lie derivatives of the CBFs. CBFs are also used in the design
of the switching logic, as they provide an efficient method for checking whether an
action could lead to a safety violation during the next time step.

We demonstrate the effectiveness of DSA on several example MASs, including a
flock of robots moving coherently while avoiding inter-agent collisions, ground rovers
safely navigating through a series of way-points, and safe operation of a microgrid.

2 Background

2.1 Simplex Architecture

The Simplex Control Architecture relies on a verified-safe baseline controller (BC) in
conjunction with the verified switching logic of the Decision Module (DM) to guarantee
the safety of the plant, while permitting the use of an unverifiable, high-performance
advanced controller (AC); see agent ¢ in Fig.

Let the admissible states of a system be those which satisfy all safety constraints
and operational limits. All other states are inadmissible. The goal of the Simplex Ar-
chitecture is to ensure that the system never enters an inadmissible state. The set R of
recoverable states is a subset of the admissible states such that the BC, starting from
any state in R, guarantees that all future states are also in R. The recoverable set takes
into account the inertia of the physical system, giving the BC enough time to preserve
safety.

The DM’s forward switching condition (FSC) evaluates the control action proposed
by the AC and decides whether to switch to the BC. A common technique used to
develop an FSC is to shrink the recoverable region by a margin based on the maximum
time derivative of the state and the length of a time step, and switch to BC if the current
state lies outside this smaller set.

2.2 Control Barrier Functions

Control Barrier Functions (CBFs) [13}[14] are an extension of the Barrier Certificates
used for safety verification of hybrid systems [[11}, [12]. CBFs are a class of Lyapunov-
like functions used to guarantee safety for nonlinear control systems by assisting in
the design of a class of safe controllers that establish the forward-invariance of safe
sets [10} [15]]. Our presentation of CBFs is based on [[14].

Consider a nonlinear affine control system

&= f(z) + g(x)u (D

with state x € D C R", control input v € U, and functions f and g that are locally
Lipschitz. The set R of recoverable states is defined as the super-level set of a continu-
ously differentiable function h : D C R™ — R. The recoverable set R and its boundary
OR are given by:

@)

R ={x € D CR"|h(z) >0}
0} (3)

OR ={x € D CR"|h(x) =

4 U. Mehmood et al.

The time derivative of h(x) along the direction of the state evolution is

dh(z) Oh(x) . Oh(x)

which can be restated in the Lie derivative formulation as

dh(x)
dt

= Lyh(z) + Lyh(z)u. Q)

For all z € D, if there exists an extended class K function o : R — R (strictly
increasing and «(0) = 0) such that the following condition on the Lie derivative of h is
satisfied:

sug [Lih(x) + Lgh(z)u + a(h(z))] >0 (6)

ue
then A is a valid CBF. Condition (6) implies the existence of a control action for all « €
D, such that the Lie derivative of 4 is bounded from below by —«(h(x)). Furthermore,
for z € OR, condition @) reduces to a result for set invariance known as Nagumo’s
theorem [16, [I7]. Condition (6) is used to define the set K (z) of control actions that
establish the forward invariance of set R; i.e., starting from z € R, the state will always
remain inside the set R:

K(z) ={ueU: Lih(z) + Lyh(z)u+ a(h(z)) > 0} @)
The following theorem is from [14].

Theorem II.1 For the control system given in Eq. (I)) and recoverable set R defined in
([2) as the super-level set of some continuously differentiable function h : R™ — R, if
his a CBF for all x € D and g—g % 0 for all x € OR, then any controller u such that
Vo € D : u(x) € K(x) ensures forward-invariance of the set R.

Proof. See [14]. Condition @) on the Lie derivative of h reduces, on the boundary of R,
to the set invariance condition of Nagumo’s theorem: for x € OR, h > —a(h(z)) = 0.
Hence, according to Nagumo’s theorem [16,|17], the set R is forward-invariant.

A widely used technique for the synthesis of CBFs is SOS-optimization [18]] based
search, which can be applied to a polynomial approximation of the systems dynamics.
Other methods of synthesizing CBFs are surveyed in [14].

3 Distributed Simplex Architecture

This section describes the Distributed Simplex Architecture (DSA). We formally intro-
duce the MAS safety problem and then discuss the main components of DSA, namely,
the distributed baseline controller (BC) and the distributed decision module (DM).

Let an instance of DSA be symmetric if every agent uses the same switching condi-
tion and baseline controller. Moreover, DSA, or more precisely the MAS it is control-
ling, is homogeneous if every constituent agent is an instance of the same plant model.

A Distributed Simplex Architecture for Multi-Agent Systems 5

Consider a MAS consisting of & homogeneous agents, denoted as M = {1, ..., k},
where the nonlinear control affine dynamics for the i*” agent are:

T = (o) + g(wi)u; (®)

where ©; € D € R" is the state of agent < and v; € U C R™ is its control input.
For an agent i, we define the set of its neighbors N; C M as the agents whose state is
accessible to ¢ either through sensing or communication. Depending on the application,
the set of neighbors could be fixed or vary dynamically. For example, in our flocking
case study (Section [4), agent i’s neighbors (in a given state) are the agents within a
fixed distance r of agent ¢; we assume agent ¢ can accurately sense the positions and
velocities of these agents.

We denote a combined state of all of the agents in the MAS as the vector z = {27,
z3, ... 2T }T and denote a state of the neighbors of agent i (including i itself) as 7.
DSA uses discrete-time control: the DMs and controllers execute every n seconds. We
assume that all agents execute their DM and controllers simultaneously; this assumption
simplifies the analysis.

Admissible States The set of admissible states A C R*" consists of all states that
satisfy the safety constraints. A constraint C' : D* — R is a function from k-agent MAS
states to the reals. In this paper, we are primarily concerned with binary constraints
(between neighboring agents) of the form C; : D x D — R, and unary constraints
of the form C; : D — R. Hence, the set of admissible states, A C R*” are the MAS
states of x € R¥™ such that all of the unary and binary constraints are satisfied.

Formally, a symmetric instance of DSA is tasked with solving the following prob-
lem. Given a MAS defined as in Eq. (8) and x(0) € A, design a BC and DM to be used
by all agents such that the MAS remains safe; i.e. x(t) € A, V¢ > 0.

Recoverable States For each agent i, the local admissible set . A; C R" is the set of
states x; € R" that satisfy all unary constraints. The set S; C A; is defined as the super-
level set of the CBF h; : R” — R, which is designed to ensure forward-invariance of
Aj;. Similarly, for a pair of neighboring agents ¢, j where ¢ € M, j € N;, the pairwise-
admissible set A;; C R?™ is the set of pairs of states that satisfy all binary constraints.
The set S;; C Aj;; is defined as the super-level set of the CBF h;; : R 5 R designed
to ensure forward-invariance of A;;. The recoverable set R;; C R?", for a pair of
neighboring agents ¢, j where i € M, j € N, is defined in terms of S;, S; and S;;.

Sij = {(wi, x;) € R |hyj(ws, 5) > 0} (10)
Rij = (Sz X 8]) ﬂSij (11)

The recoverable set R C A for the entire MAS is defined as the set of system states for
which (z;,2;) € R,; for every pair of neighboring agents ¢, j. Note that if agent ¢ and
j’s controllers satisfy the following constraints based on the Lie derivatives of h;, h;

6 U. Mehmood et al.

and h;;, similar to the constraints in , the pairwise state of agents 7 and j will remain
in R;; according to Theorem |II.

Lyhi(zs) + Lghi(x:)u; + a(hi(z;)) >0 (12a)

Lyhj(x;) + Lgh;(x;)u; + a(h;(z;)) 2 0 (12b)

thij(xi,xj) + Lghij(l‘i,l‘j) |:32:| + Oé(hij(l‘i,l‘j)) >0 (12¢)
j

Constraint Partitioning Note that the constraints in are linear in the control vari-
able. For ease of notation, we write the unary constraints as A;u; < b; and the binary
constraints as [Pi; Qi; | [u}] < byj.

The binary constraint in is a condition on the control actions of a pair of
agents. For a centralized MAS, the global controller can pick coordinated actions for
agents ¢ and j to ensure the binary constraint is satisfied. For a decentralized
MAS, however, the distributed control of the two agents cannot independently satisfy
the binary constraint without running an agreement protocol.

As DSA is a distributed control framework, we solve the problem of the satisfaction
of binary constraints by partitioning a binary constraint into two unary constraints such
that the satisfaction of the unary constraints by agents ¢ and j implies the satisfaction of
the binary constraint (but not necessarily vice versa) [10].

Piju; < bij/2 . | -
Qiju; < sz/?} = [P” Q”} |:UJ < by (13)

Moreover, the equal partitioning of the binary constraint ensures that the agents share
an equal responsibility in maintaining it. The admissible control space for agent ¢, de-
noted by £;, is the intersection of half-spaces of the hyper-planes defined by the linear
constraints.

Theorem IIL.1 Given a MAS indexed by M and with dynamics as in (8)), if the con-
troller for each agent i € M chooses an action u; € L;, thereby satisfying the Lie
derivative constraints on the respective CBFs, and x(0) € R, then the MAS is guaran-
teed to remain safe.

Proof. 1f all agents choose an action from their respective admissible control spaces £;,
then the forward-invariance of the set S; foralli € M and S;; foralli € M, j € N; is
established by Theorem Therefore, R;; is forward-invariant forall i € M, j € N;
and consequently R is forward-invariant.

3.1 Baseline Controller

The BC is a distributed controller tasked with keeping the state of an agent in the safe
region. For an agent 7, the BC’s control law depends on ¢’s state z; and the states of

A Distributed Simplex Architecture for Multi-Agent Systems 7

its neighbors z;,Vj € N;. In our design, the BC is strictly focused on safety, leav-
ing mission-critical objectives to the AC. Specifically, the BC is designed to move the
system away from unsafe states and toward safer states as quickly as possible.

We design the BC as the solution to the following constrained multi-objective op-
timization (MOO) problem where the utility function is the weighted sum of objective
functions based on the Lie derivatives of the CBFs h; and h;; introduced above:

1 1 .
uf = argmaz - (Lyhi + Lohsus) + Y 7—(Lhi; + Lohyy [16])
s.t. u; € L;

The bottom component of the column vector in the last term is agent ¢’s prediction
for agent j’s next control action u;. Since we consider MASs in which agents are unable
to communicate their planned control actions, agent 7 simply predicts that u; = 0. This
approach has been shown to work well in prior work on distributed model-predictive
control for flocking [19] , where the control actions are accelerations. Despite its com-
plex form, at any given time, the utility function in Eq. (T3) is linear in w;, as the values
of all other quantities are fixed. Since the constraints are also linear, the optimization
problem in Eq. is a linear program and hence can be efficiently solved in real-time.

Recall that, by definition, the CBFs quantify the degree of safety of a state with
respect to the given safety constraints, with larger (positive) values indicating safer
states. A positive value of the Lie derivative indicates that the proposed action will lead
to a state that has a higher CBF value and therefore is safer.

The solution to the optimization problem is a control action that maximizes
the weighted sum of the Lie derivatives of the CBFs. We note that in a weighted-sum
formulation of a MOO problem, it is possible that some objective functions are negative
in the optimal solution. We ensure the selected action u; is safe by constraining u; to
be in the admissible control space £;, defined in Eq. (T4).

The weights in the utility function in Eq. prioritize certain safety constraints
over others. We use state-dependent weights in the form of inverses of the CBFs, thereby
giving more weight to maximizing the Lie derivatives of CBFs corresponding to safety
constraints that are closer to being violated.

3.2 Decision Module

Each agent’s DM implements the switching logic for both forward and reverse switch-
ing. Control is switched from the AC to the BC if the forward switching condition
(FSC) is true. Similarly, control is reverted back to the AC (from the BC) if the reverse
switching condition (RSC) is true. For an agent ¢, the state of the DM is denoted as
DM; € {AC, BC}, with DM; = AC (DM; = BC) indicating that the advanced
(baseline) controller is in control. DSA starts with all agents in the AC mode; i.e.,
DM;(t) = AC forallt < 0 and ¢ € M, this is justified by the assumption that
x(0) € R.

We derive the switching conditions from the CBFs as follows. To ensure safety, the
FSC must be true in a state z, (¢) if an unrecoverable state is reachable from xar, (¢)

8 U. Mehmood et al.

in one time step 1. The check for one-step reachability of an unrecoverable state is
based on computing the Taylor series approximation of the CBF at the current time
t, and evaluating it one time step in the future, i.e., at time ¢ + 7). The Taylor series
approximation of the CBF depends on its time-derivatives which can be regarded as a
function of time based on the dynamics of the system for a given value of the control
input; we take that control input of agent ¢ to be the command proposed by the AC at
time ¢ and use the worst-case commands as the control inputs for the neighboring agents
j € N;. The worst-case commands are defined as the control inputs that minimize the
value of the Taylor approximation of the CBF. If the Taylor series approximation of any
of the CBFs is negative during the next time step 71, we switch control to the BC. We
denote the Taylor series approximation of the CBF h as h. This results in an FSC of the
following form:

FSC(z,,t) = 3t. € (t, t+1] | (hi(te) <0)V (35 € N; | hij(te) <0) (16)

We derive the RSC using a similar approach, except the inequalities are reversed,
the worst-case commands are used as the control inputs for all the agents, and an m-
time-step reachability check with m > 1 is used; the latter is to prevent frequent back-
and-forth switching between the AC and BC. The RSC holds if the Taylor series ap-
proximations of all the CBFs remain positive during the next m -) seconds.

RSC(zp,,t) =Vt € (t, t+m-n] | (hi(te) > 0) A (Vf € N; | hij(te) > 0) (17)

We experimented with various orders of Taylor series approximations in our case
studies. Since the time step 7 is typically small, even low-order Taylor series approxi-
mation gives very good results, i.e., h(t + 1) is very close to the exact value h(t + 7).
The switching condition can be made more rigorous by taking into account the remain-
der error in the Taylor series approximation; Taylor’s theorem provides a bound on the
remainder error. We will explore this idea in future work.

3.3 Safety Theorem

Our main result is the following safety theorem for DSA.

Theorem IIL.2 Given a MAS indexed by M with dynamics specified as in Eq. (8), if
each agent operates under DSA with the BC as in Eq. (I3), the switching logic as in
Eqgs. (@) and , and x(0) € R C R¥™, then the MAS will remain safe.

Proof. The proof proceeds by considering both possible DM states for an arbitrary
agent ¢, and establishing that ¢’s next state is safe. First, consider agent ¢ at time ¢ with
DM;(t) = AC. As the FSC is false, the one-step reachability check associated with the
FSC ensures that the CBFs for unary and binary safety constraints are strictly positive in
the next state z;(t+n); i.e. hi(z;(t+n)) > 0and Vj € N; : hy;(zi(t+n), z;(t+n)) >
0. Hence the next state is recoverable.

Subsequently, consider agent ¢ at time ¢ with DM;(t) = BC. The unary safety
constraint is satisfied for agent ¢ as the BC’s action is constrained within the admissi-
ble control space. Next, we show that the binary safety constraints with all neighboring

A Distributed Simplex Architecture for Multi-Agent Systems 9

agents are also satisfied. We divide the neighbors of ¢ into two sets based on their DM
states: the set of neighbors in AC mode and the set of neighbors in BC mode are denoted
as NAC and NP, respectively. The neighbors in BC mode choose their control ac-
tions from their corresponding admissible control spaces as in Eq. (I4). As agent ¢ also
chooses its control action from its admissible control space, according to Theorem|[[IL1]
the neighbors in BC mode will satisfy the binary safety constraints with agent . As for
neighbors in AC mode, due to the one-step reachability check in their FSC, in state
z;(t + 1), the pairwise CBFs satisfy h;;(z;(t + 1), z;(t + 1)) > 0 for all j € NAC.
Hence, ;(t + n) is recoverable for DM, (t) = BC. We have proven that for any agent
i and time step ¢, if x;(¢) is recoverable, then x;(t 4 1) is recoverable. By assumption,
x(0) € R. Therefore, by induction, x(t) € R for t > 0.

4 Flocking Case Study

We evaluate DSA on the distributed flocking problem with the goal of preventing inter-
agent collisions. Consider a MAS consisting of k robotic agents with double integrator
dynamics, indexed by M = {1,... k}:

Di| |0 Laxa| |ps 0 '
=l] L) s

where p;, v;, a; € R? are the position, velocity and acceleration of agent i € M,
respectively. The magnitudes of velocities and accelerations are bounded by v and a,
respectively. Acceleration a; is the control input for agent 7. As DSA is a discrete-time
protocol, the state of the DM and the a;’s are updated every 7 seconds. The state of an
agent i is denoted by the vector s; = [p/ v]']T. The state of the entire flock at time ¢ is
denoted by the vector s(t) = [p(t)” v(t)T]T € R, where p(t) = [pT (t) - - - pL'(¢)]T

and v(t) = [vI'(t) - - - vI(¢)]T are the vectors respectively denoting the positions and

n
velocities of the flock at time ¢.

We assume that an agent can accurately sense the positions and velocities of nearby
agents within a fixed distance r. The set of the spatial neighbors of agent ¢ is defined as
Nip)={jeM|j#iN]|pi —p;| <r}, where || - || denotes the Euclidean norm.
For ease of notation, we sometimes use s and s; to refer to the state variables s(¢) and
s;(t), respectively, without the time index.

The MAS is characterized by a set of operational constraints which include physical
limits and safety properties. States that satisfy the operational constraints are called
admissible, and are denoted by the set A € R**. The desired safety property is that no
pair of agents is in a “state of collision”. A pair of agents is considered to be in a state of
collision if the Euclidean distance between them is less than a threshold distance d,,,;,, €
R™, resulting in a binary safety constraint of the form: ||p; — p;|| — dmin >0V i €
M,j € N;. Similarly, a state s is recoverable if all pairs of agents can brake (de-
accelerate) relative to each other without colliding. Otherwise, the state s is considered
unrecoverable.

10 U. Mehmood et al.

4.1 Synthesis of Control Barrier Function

LetR;; C R?® be the set of recoverable states for a pair of agents 7,7 € M. The flock-
wide set of recoverable states, denoted by R C R**_is defined in terms of Rij. Asin
[15], the set R;; is defined as the super-level set of a pairwise CBF h;; : R® — R:
Rij = {si,s; | hij(s:,5;) > 0}. The flock-wide set of recoverable states R C A is
defined as the set of system states in which (s;, s;) € R,;, for every pair of neighboring
agents ¢, j.

In accordance with [15], the function h;; (85,8 j) is based on a safety constraint over
a pair of agents i,j € M. The safety constraint ensures that for any pair of agents,
the maximum braking force can always keep the agents at a distance greater than d,;,;,,
from each other. As introduced earlier, d,,,;,, is the threshold distance that defines a
collision. Considering that the tangential component of the relative velocity, denoted
by Aw, causes a collision, the constraint regulates Av by application of maximum ac-
celeration to reduce Aw to zero. Hence, the safety constraint can be represented as the
following condition on the inter-agent distance | Ap;;|| = ||p; — p;||, the braking dis-
tance (Av)?/4a, and the safety threshold distance d,,;,,:

(Av)?
4P| — 7= = dumin (19)
hij(si, s;5) \/4a |Apl]H dmin) — Av >0 20)

The braking distance is the distance covered while the relative speed reduces from Av
to zero under a deceleration of 2a. The constraint in Eq. is re-arranged to get the
CBF h;; given in Eq. (20).

Combining Eqgs. (20) and (I2c), we arrive at the linear constraint on the accelera-
tions for agents ¢ and j, which constrains the Lie derivative of the CBF in @ to be
greater than —a(h;). We set a(hq;) = vh3;, as in [15], where y € R, resulting in the
following constraint on the accelerations of agents i, j:

AP%(Aaij) B (AVTAP’LJ) HAVin2
[Aps;|| | Apy|° [Api |
2aAvE S APi;
HAPUH \/4a (I1Apis |l = dmin)

where the left-hand side is the Lie derivative of the CBF h;; and Ap;; = p; — p;,
Av;; = v; —vj, and Aa;; = a; — a; are the vectors representing the relative position,
the relative velocity, and the relative acceleration of agents ¢ and j, respectively. We
further note that the binary constraint can be reformulated as [Pi; Qi; | [a}] < b;j,
and hence can be split into two unary constraints P;ju; < b;;/2 and Q;;u; < b;;/2,
following the convention in Eq. (I3). The set of safe acceleratlons for an agent ¢, de-
noted by K;(s;) C R2, is defined as the intersection of the half-planes defined by
the Lie-derivative-based constraints, where each neighboring agent contributes a single
constraint:

2y

> —yhi;

Ki(si) = {a; € R* | Pjju; < b;;/2, Vj € N;} (22)

A Distributed Simplex Architecture for Multi-Agent Systems 11

With the CBFs for collision-free flocking defined in and the admissible con-
trol space defined in (22), the BC, FSC, and RSC follow from (13)), (I6), and (17)),
respectively. We use Taylor approximation of order one to compute FSC and RSC.

4.2 Advanced Controller

We use the Reynolds flocking model [20] as the AC. In the Reynolds model, the accel-
erations a; for each agent is a weighted sum of three acceleration terms based on simple
rules of interaction with neighboring agents: separation (move away from your close-
by neighbors), cohesion (move towards the centroid of your neighbors), and alignment
(match your velocity with the average velocity of your neighbors). The acceleration for
agent ¢ is a; = wsaj + weai + walagl, where wg, w., Wy € RT are scalar weights and
ai,a$,a? € R? are the acceleration terms corresponding to separation, cohesion, and
alignment, respectively. We note that the Reynolds model does not guarantee collision
avoidance. Nevertheless, when the flock stabilizes, the average distance to the closest
neighbors is determined by the weights of the interaction terms.

4.3 Experimental Results

The number of agents in the MAS is k = 15. The other parameters used in the ex-
periments are r = 4, a = 5,V = 2.5, dypin, = 2, and n = 0.1s. The length of the
simulations is 50 seconds. The initial positions and the initial velocities are uniformly
sampled from [—10, 10]? and [—1, 1]2, respectively, and we ensure that the initial state
is recoverable. The weights of the Reynolds model terms are chosen experimentally to
ensure that no pair of agents are in a state of collision in the steady state. They are set
tows = 3, w. = 1.5, and wy; = 0.5. .

To demonstrate the effectiveness of DSA in preventing inter-agent collisions, we
generated 100 simulation runs using two different control strategies, starting from the
same set of random initial configurations. In the first set of 100 simulations, Reynolds
model is used to control all agents for the duration of the simulations. In the second
set of 100 simulations, Reynolds model is wrapped with a verified safe BC and DM
designed using DSA.

We define the minimum pairwise distance (MPD), as the minimum Euclidean dis-
tance between any pairs of agents in the flock, i.e., Jman l1pi—p; - Fig.|2)shows the spread

of MPD at each time step, by plotting its mean, minimum, and maximum values, cal-
culated over 100 simulation runs.

As evident from Fig. b), the minimum MPD is greater than d,,;, for the entire
duration of the simulation runs, indicating that DSA is able to prevent inter-agents colli-
sions for the 100 simulations. In contrast, as shown in Fig. a), Reynolds model results
in safety violations during the first 42 seconds (Only the last 8 seconds are collision-
free in all 100 simulations) and the mean MPD crosses the safety threshold at around 16
seconds. Moreover, operating under DSA, the distribution of MPD is relatively uniform
over the duration of the simulations. We further note that the average time the agents
spend in BC mode is only 3.44 percent of the total duration of the simulation, indicating

12 U. Mehmood et al.

——mean MPD ——min MPD ——max MPD - - d
3

25 x]
N

MY N S e e e e e

min

Distance
|
I
|
Distance
[6;] n
I',

-

o
o

o
o

0 10 20 30 40 50 10 20 30 40 50
Time Time

(a) Reynolds Model (b) Reynolds Model with DSA

o

Fig. 2: The minimum pairwise distance (MPD) for a flock of size 15, calculated over
100 simulation runs, with and without DSA.

that DSA is largely non-invasive. Videos of flocking under both control strategies are
available online[]

The simulation results clearly demonstrate the effectiveness of DSA in guaranteeing
inter-agent collision avoidance. We also ran simulations where all agents are solely
under the control of the BC. As the BC is strictly focused on safety, we observed that
the flock fragments as agents safely move out of the sensing ranges of other agents.

The flocking case study clearly illustrate the guiding principles and benefits of DSA.
In particular, it shows that: (a) the AC is not always safe, but (b) the combination of the
AC and BC in DSA is safe, and (c) DSA outperforms the BC.

S Way-point Case Study

This section describes the problem setup and experimental results for the way-point
(WP) control case study. The agent model is the same as the one used for the flocking
case study, given in Eq. (I8). The experimental setup is shown in Fig. 3] where the
agents, initially positioned along the top of the figure, are to navigate through a series
of WPs while maintaining a safe distance from one another. The WPs are represented
by the black squares. The CBFs, BC and DM are same as those defined for the flocking
problem; see Section [4]

The AC is a rule-based controller where each agent accelerates towards its next
WP (ignoring the other agents) until the final WP is reached. Agents are assigned one
WP from each row such that they are on a collision course if they follow the AC’s
commands.

A Distributed Simplex Architecture for Multi-Agent Systems 13

1 fv—r‘—closest neighbor distance — — d,_..

Distance

(a) Trajectories of agents passing through (b) Distance to closest neighbor for all
WPs. Red/blue segments indicate AC/BC agents.
mode.

Fig. 3: Experimental results for way-point case study.

5.1 Experimental Results

The number of agents used in the experiment is eight and the the number of WPs an
agent is required to visit is four (one in each row). Initially, the agents are at rest with
their positions represented by the red dots in Fig. [3{a). The final positions are shown
as green dots. The duration of the simulation is 60 seconds. The other parameters used
in the experiments are 7 = 1.0, a = 0.8, v = 0.2, d;s, = 0.15, and 7 = 0.05s. The
trajectories of the agents are given in Fig. [B[a), where the segments in blue indicate
when the BC is in control. Fig. [B(b) plots the smallest inter-agent distances, indicating
that the agents maintain a safe distance from one another. A video of the simulation is
available onlineE|

6 Microgrid Case Study

With an increasing prevalence of distributed energy resources (DERs) such as wind
and solar power, electrification using microgrids (MGs) has witnessed unprecedented
growth. Unlike traditional power systems, MG DERs do not have rotating components
such as turbines. The lack of rotating components can lead to low inertia, making MGs
susceptible to oscillations resulting from transient disturbances [21]]. Ensuring the safe
operation of an MG is thus a challenging problem. In this case study, we demonstrate
the effectiveness of DSA in maintaining MG voltage levels within safe limits.

The MG we consider is a network of k droop-controlled inverters, indexed by
M ={1,..., k}. The dynamics of each inverter is modeled as [21} 22} 23] 24]:

0, = w; (23a)

3https://youtu.be/E_ufadRnfvo, https://youtu.be/
PZz6nUASfDS8
*https://youtu.be/AcC8iUIOTIU

https://youtu.be/E_ufaJRnfvo
https://youtu.be/PZz6nUA5fD8
https://youtu.be/PZz6nUA5fD8
https://youtu.be/AcC8iUI0TjU

14 U. Mehmood et al.

[=)

TiWi = wy — w; + A (PP — B) (23b)

0 = v — v + A (QF — Q) (23¢c)
where 60;, w;, and v; are respectively the phase angle, frequency, and voltage of inverter
i, i € M. The state vector for the MG is denoted by s = [T wT vT]T € R3*, where 0,
w, and v are respectively vectors representing the voltage phase angle, frequency, and
voltage at each node of the MG. A pair of inverters are considered neighbors if they
are connected by a transmission line. Also, \¥ and A are droop coefficients of “active
power vs frequency” and “reactive power vs voltage” droop controllers, respectively.
7; € RT is the time constant used for the low-pass filters that are processing the active
and reactive power measurements. Finally, w? and v? are the nominal frequency and
voltage values.

P; and Q; are the active and reactive powers injected by inverter ¢ into the system:

Pl‘ = V; Z Uj(Gi,j COS Hi,j + Bi,j sin@i,j)
JEN;

Qi =vi Y_ v;(Gi;sinb; ; — B; jcosb; ;)
JEN;

SO

(24)

where 6; ; = 0; — 0;, and N; C M is the set of neighbors. G; ;, B; ; are respectively
conductance and susceptance values of the transmission line connecting inverters ¢ and
J.

Pret and Q3¢ are the active power and reactive power setpoints. The inverters have
the ability to change their respective power setpoints according to the MG’s operating
conditions. This is modeled as:

Pret = P, Qi = Q)+ @s)

where P? and QY are the setpoints for the nominal operating condition, and «? and u?
are control inputs.

6.1 Synthesis of Control Barrier Function

The safety property for the MG network is a set of unary constraints restricting the
voltages at each node to remain within safe limits. The recoverable set R; C R3 for
inverter i is defined as the super-level set of a CBF h; : R® — R. We follow the SOS-
optimization technique given in [24] to synthesize the CBFs. Since the power flow
equations (23] are nonlinear, we apply a third-order Taylor series expansion to approx-
imate the dynamics in polynomial form. We then follow the three-step process given
in [24] to obtain the CBF for each MG node. We then calculate the admissible control
space according to Eq. (T4), and the BC, FSC, and RSC follow from Eqs. (T3)), (I6), and
(T7), respectively. We have experimented with various orders of Taylor approximations
for the computation of FSC and RSC.

6.2 Advanced Controller

The AC sets the active/reactive power setpoints to their nominal values. Thus, the AC
does not limit voltage and frequency magnitudes but is only concerned with stabilizing
frequency and voltage magnitudes to their nominal values.

A Distributed Simplex Architecture for Multi-Agent Systems 15

‘ ‘ ‘ ‘ r——|—— without DSA —— with DSA — — limits

Fig. 4: Voltage graph at node 4 of the MG network.

6.3 Experimental Results

We consider a 6-bus MG [24]. Disconnecting the MG from the main utility, we replace
bus 0 with a droop-controlled inverter (Eq. (23)), with inverters also placed on buses I,
4 and 5. Bus 0 is the reference bus for the phase angle. Nominal values of voltage and
frequency, as well as the active/reactive power set-points, were obtained by solving the
steady-state power-flow equations given in Eq. (24); these were then used to shift the
equilibrium point to the origin. Droop coefficients A and \? were set to 2.43 rad/s/p.u.
and 0.20 p.u./p.u., 7; was set to 0.5s, and the control period 7 was set to 0.01s. Loads
are modeled as constant power loads, and a Kron-reduced network [25] with only the
inverter nodes was used for analysis. The safe set is defined in terms of the shifted
(around the O p.u.) nodal voltage magnitudes as follows: v; > —0.4p.u. A v; < 0.2p.u.

The duration of the simulation is two seconds. Our results show that with DSA,
the voltage at each node remains within safe limits; without DSA, safety limits are
exceeded. Fig. [] gives the voltage plot at node 4. When the MG is operating under
the control of DSA and the voltage approaches the upper limit, a switch from AC to
BC occurs. Subsequently, the BC reduces the voltage inducing a reverse switch. The
voltage profiles at the other nodes are similar.

7 Related Work

The original Simplex architecture [, 26] was developed for systems comprising a sin-
gle controller and a single (non-distributed) plant. With DSA, we extend the scope of
Simplex to MASs under distributed control. RTA [27} 28] is a runtime assurance tech-
nique that can be applied to component-based systems. In this case, however, each RTA
wrapper (i.e., each Simplex-like instance) independently ensures a local safety property
of a component. For example, in [27], RTA instances for an inner-loop controller and
a guidance system are uncoordinated and operate independently. In contrast, in DSA,
each agent takes the states of neighboring agents into account when making control
decisions, in order to ensure that pairwise safety constraints are satisfied.

A runtime verification framework for dynamically adaptive multi-agent systems
(DAMS-RV) is proposed in [29]. DAMS-RYV is activated every time the system adapts
to a change in the system itself or its environment. This method relies on a monitoring
phase to observe and identify changes that occur in agent collaboration so that verifica-
tion can be carried out on the system operating in new contexts. In contrast, DSA does

16 U. Mehmood et al.

not require such intermediary supervision. In [30], a dynamic policy model that can be
used to express constraints on agent behavior is presented. These constraints limit agent
autonomy to lie within well-defined boundaries. Constraint specifications are kept sim-
ple by allowing the policy designer to decompose a specification into components and
define the overall policy as a composition of these smaller units. In contrast, DSA uses
CBFs to compute the requisite safety regions.

In [10, 14} 15, 31], CBF-based methodologies have been used for runtime safety
assurance of MASs. For example, in [10, [15]], a formal framework for collision avoid-
ance in multi-robot systems is presented. A CBF-based wrapper around an advanced
controller guarantees forward invariance of a safe set. The wrapper solves an optimiza-
tion problem involving the Lie derivative of the CBF to compute minimal changes to
the AC’s output needed to ensure safety. In contrast, in DSA, no attempt is made to
minimally perturb the AC’s output. Instead we rely on CBF-based switching logic in
the DM to forward switch to the BC if the AC’s output is not recoverable.

In [32], a shield-based technique for runtime verification of multi-agent systems is
presented. In this approach, which does not require global information, every agent has
a shield consisting of two components: a pathfinder that corrects the behavior of the
agent, and an ordering mechanism that dynamically modifies the priority of the agent.
An upper bound is derived on the maximum deviation for any agent from its original
behavior. In contrast, DSA relies on forward and reverse switching between an agent’s
advanced and baseline controllers to safely allow completion of mission goals.

8 Conclusion

We have presented the Distributed Simplex Architecture, a runtime assurance technique
for the safety of multi-agent systems. DSA is distributed in the sense that it involves
one local instance of traditional Simplex per agent such that the conjunction of their re-
spective safety properties yields the desired safety property for the entire MAS. More-
over, an agent’s switching logic depends only on its own state and that of neighboring
agents. We demonstrated the effectiveness of DSA by successfully applying it to flock-
ing, way-point visiting, and microgrid control. As future work, we plan to apply DSA
to non-homogenous MASs and implement it on a physical platform.

In some situations, the BC’s optimization problem might become infeasible. For
example, for the flocking case study, infeasibility of the BC’s optimization problem is
possible if the agents are crowded in a small region. One possible solution for infeasibil-
ity is to design aggressive control barrier functions that guarantee feasibility at the cost
of performance. For the flocking case study, one such solution is a CBF that enforces
the braking manoeuvre [10].

Bibliography

[1] M. Nasir, Z. Jin, H. A. Khan, N. A. Zaffar, J. C. Vasquez, and J. M. Guerrero,
“A decentralized control architecture applied to DC nanogrid clusters for rural
electrification in developing regions,” IEEE Transactions on Power Electronics,
vol. 34, no. 2, pp. 1773-1785, 2019.

[2] Z. Boussaada, O. Curea, H. Camblong, N. Bellaaj Mrabet, and A. Hacala, “Multi-
agent systems for the dependability and safety of microgrids,” International Jour-
nal on Interactive Design and Manufacturing, 2016.

[3] A. Tahir, J. Boling, M.-H. Haghbayan, H. T. Toivonen, and J. Plosila, “Swarms of
unmanned aerial vehicles — a survey,” Journal of Industrial Information Integra-
tion, vol. 16, p. 100106, 2019.

[4] R. Tynan, G. M. P. O’Hare, D. Marsh, and D. O’Kane, “Multi-agent system ar-
chitectures for wireless sensor networks,” in Computational Science — ICCS 2005.
Springer, 2005, pp. 687-694.

[5] D. Seto and L. Sha, “A case study on analytical analysis of the inverted pendu-
lum real-time control system,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep. CMU/SEI-99-TR-023, 1999.

[6] L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18, no. 4,
pp. 20-28, 2001.

[7] D. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, and S. D. Stoller, “Neural
simplex architecture,” in Proceedings of NASA Formal Methods Symposium (NFM
2020), 2020.

[8] T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames, “Towards
a framework for realizable safety critical control through active set invariance,”
in 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (IC-
CPS), 2018, pp. 98-106.

[9] M. Egerstedt, J. N. Pauli, G. Notomista, and S. Hutchinson, “Robot ecology:
Constraint-based control design for long duration autonomy,” Annual Reviews in
Control, vol. 46, pp. 1 — 7, 2018.

[10] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for heteroge-

neous multi-robot systems,” in 2016 American Control Conference (ACC). 1EEE,

2016, pp. 5213-5218.

[11] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using bar-

rier certificates,” in Hybrid Systems: Computation and Control, 7th International

Workshop, ser. Lecture Notes in Computer Science, R. Alur and G. J. Pappas, Eds.,

vol. 2993. Springer, 2004, pp. 477-492.

[12] S. Prajna, “Barrier certificates for nonlinear model validation,” Autom., vol. 42,

no. 1, pp. 117-126, 2006.

[13] P. Wieland and F. Allgower, “Constructive safety using control barrier functions,”

IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462 — 467, 2007, 7th IFAC Sym-

posium on Nonlinear Control Systems.

18 U. Mehmood et al.

[14] A.D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada,
“Control barrier functions: Theory and applications,” in 18th European Control
Conference, ECC 2019, Naples, Italy. 1EEE, 2019, pp. 3420-3431.

[15] U. Borrmann, L. Wang, A. D. Ames, and M. Egerstedt, “Control barrier certifi-
cates for safe swarm behavior,” in ADHS, ser. IFAC-PapersOnLine, M. Egerstedt
and Y. Wardi, Eds., vol. 48, no. 27. Elsevier, 2015, pp. 68-73.

[16] F. Blanchini and S. Miani, Set-Theoretic Methods in Control, 1st ed. Birkhduser
Basel, 2007.

[17] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747 —
1767, 1999.

[18] L. Wang, D. Han, and M. Egerstedt, “Permissive barrier certificates for safe sta-
bilization using sum-of-squares,” in 2018 Annual American Control Conference,
ACC 2018. 1EEE, 2018, pp. 585-590.

[19] U. Mehmood, N. Paoletti, D. Phan, R. Grosu, S. Lin, S. D. Stoller, A. Tiwari,
J. Yang, and S. A. Smolka, “Declarative vs rule-based control for flocking dy-
namics,” in Proceedings of 33rd Annual ACM Symposium on Applied Computing,
2018.

[20] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”
SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 25-34, Aug. 1987.

[21] N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of au-
tonomous operation of an inverter-based microgrid,” IEEE Transactions on Power
Electronics, vol. 22, no. 2, pp. 613-625, 2007.

[22] J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions for stability
of droop-controlled inverter-based microgrids,” Automatica, vol. 50, no. 10, pp.
2457 — 2469, 2014.

[23] E. A. A. Coelho, P. C. Cortizo, and P. F. D. Garcia, “Small-signal stability for
parallel-connected inverters in stand-alone AC supply systems,” IEEE Transac-
tions on Industry Applications, vol. 38, no. 2, pp. 533-542, 2002.

[24] S. Kundu, S. Geng, S. P. Nandanoori, I. A. Hiskens, and K. Kalsi, “Distributed bar-
rier certificates for safe operation of inverter-based microgrids,” in 2019 American
Control Conference (ACC), 2019, pp. 1042-1047.

[25] P. Kundur, N. Balu, and M. Lauby, Power System Stability and Control, ser. EPRI
power system engineering series. McGraw-Hill Education, 1994.

[26] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The Simplex architecture for safe
online control system upgrades,” in Proceedings of the 1998 American Control
Conference, vol. 6, 1998, pp. 3504-3508.

[27] M. Aiello, J. Berryman, J. Grohs, and J. Schierman, Run-Time Assurance for Ad-
vanced Flight-Critical Control Systems, 2010.

[28] J. Schierman, D. Ward, B. Dutoi, A. Aiello, J. Berryman, M. DeVore, W. Storm,
and J. Wadley, Run-Time Verification and Validation for Safety-Critical Flight
Control Systems, 2012.

[29] Y. J. Lim, G. Hong, D. Shin, E. Jee, and D.-H. Bae, “A runtime verification frame-
work for dynamically adaptive multi-agent systems,” in 2016 International Con-
ference on Big Data and Smart Computing (BigComp), 2016, pp. 509-512.

[30] H. Alotaibi and H. Zedan, “Runtime verification of safety properties in multi-
agents systems,” in 2010 10th International Conference on Intelligent Systems
Design and Applications, 2010, pp. 356-362.

A Distributed Simplex Architecture for Multi-Agent Systems 19

[31] A.D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based
quadratic programs for safety critical systems,” IEEE Transactions on Automatic
Control, vol. 62, no. 8, pp. 3861-3876, 2017.

[32] D. Raju, S. Bharadwaj, and U. Topcu, “Online synthesis for runtime enforcement
of safety in multi-agent systems,” preprint ArXiv:1910.10380, 2019.

	A Distributed Simplex Architecture for Multi-Agent Systems

