1	
2	Dichotomous role of jasmonic acid in modulating sorghum defense against aphids
3	
4	Sajjan Grover ¹ , Heena Puri ¹ , Zhanguo Xin ² , Scott E. Sattler ³ , and Joe Louis ^{1,4,*}
5	
6	¹ Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583
7	² Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S.
8	Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415
9	³ Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural
10	Research Service, Lincoln, NE 68583
11	⁴ Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583
12	
13	*Corresponding Author
14	
15	ORCID IDs: 0000-0003-4391-0584 (S.G.); 0000-0002-0696-8974 (H.P.); 0000-0003-1471-
16	7785 (Z.X.); 0000-0002-6814-4073 (S.E.S); 0000-0001-7137-8797 (J.L.).
17	
18	
19	
20	
21	
22	
23	

A	BST	$\Gamma \mathbf{R} A$	\C T
Γ	נטע		\mathbf{L}

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

The precursors and derivatives of jasmonic acid (JA) contribute to plant protective immunity to insect attack. However, the role of JA in sorghum (Sorghum bicolor) defense against sugarcane aphid (SCA; *Melanaphis sacchari*), which is considered a major threat to sorghum production, remains elusive. Sorghum SC265, previously identified as a SCA resistant genotype among the sorghum nested association mapping founder lines, transiently increased JA at early stages of aphid feeding and deterred aphid settling. Monitoring of aphid feeding behavior using electropenetrography, a technique to unveil feeding process of piercing-sucking insects, revealed that SC265 plants restricted SCA feeding from the phloem sap. However, exogenous application of JA attenuated the resistant phenotype and promoted improved aphid feeding and colonization on SC265 plants. This was further confirmed with sorghum JA-deficient plants, in which JA deficiency promoted aphid settling, however, it also reduced aphid feeding from the phloem sap and curtailed SCA population. Exogenous application of JA caused enhanced feeding and aphid proliferation on JA-deficient plants, suggesting that JA promotes aphid growth and development. SCA feeding on JA-deficient plants altered the sugar metabolism and induced the levels of fructose and trehalose compared to wild-type plants. Furthermore, aphid artificial diet containing fructose and trehalose curtailed aphid growth and reproduction. Our findings underscore a previously unknown dichotomous role of JA, which may have opposing effects by deterring aphid settling during early stage and enhancing aphid's proliferative capacity during later-stages of aphid colonization on sorghum plants.

44

45

Keywords: Aphids, fructose, jasmonic acid, plant defense, sorghum, trehalose

46

INTRODUCTION

Jasmonates are lipid-derived signaling molecules that are involved in modulating plant responses to numerous environmental stresses, including attack by insect pests (Howe and Jander, 2008; Wasternack and Strnad, 2018; Ghorbel et al., 2021). Remarkably, different feeding guilds of insect pests activate distinct plant defense pathways. For example, it is well documented that jasmonic acid (JA) provides enhanced resistance to chewing herbivores (Howe and Jander, 2008; Wang et al., 2019), however, its role in providing defense against piercing-sucking insects needs further characterization. Although salicylic acid (SA) primarily impacts plant defense against piercing-sucking insects (Züst and Agrawal, 2016; Nalam et al., 2019; Zogli et al., 2020), it has been reported that in addition to SA, JA also plays a key role in modulating defense against piercing-sucking insect pests (Zhu-Salzman et al., 2004; Gao et al., 2007; Kuśnierczyk et al., 2011; Wasternack and Strnad, 2018). Moreover, antagonistic interactions between SA and JA fine-tune plant defense responses against various biotic stresses (Pieterse et al., 2012; Thaler et al., 2012; Solano and Gimenez-Ibanez, 2013).

Aphids are important group of piercing-sucking insect pests that cause substantial loss in plant productivity (Nalam et al., 2019). Aphids utilize their needle-like structures present in their mouthparts, known as stylets, to penetrate the plant tissues and to feed unceasingly from the phloem sieve elements, the aphid's primary source of nutrients (Louis et al., 2012; Louis and Shah, 2013; Nalam et al., 2019). While feeding, aphids produce two types of saliva: the 'stylet sheath', a gel tube that forms around the stylet, and 'watery saliva' that aids in ingestion of the phloem sap from the plant as it is released in the plant tissue (Miles, 1999; Will and Vilcinskas, 2015). Both watery and gel saliva of aphids contain proteins, enzymes, and metabolites that

potentially interfere with plant defense pathways and/or resistance mechanisms, which in turn benefit the insect and facilitate sustained feeding from the sieve elements (Hogenhout and Bos, 2011; Elzinga and Jander, 2013; Kaloshian and Walling, 2016; van Bel and Will, 2016). For example, effectors present in phloem-feeding insects have been shown to utilize the crosstalk between SA and JA pathways to facilitate their feeding and colonization of host plants (Zarate et al., 2007; Xu et al., 2019). Most aphids, in addition to causing feeding damage, also vector economically important viral diseases (Kennedy et al., 1962; Matthews, 2012), which accentuates yield decline in host plants.

Sorghum (*Sorghum bicolor*), one of the most important monocot crops cultivated worldwide, is known for its versatility as a food, forage, and bioenergy crop. Sugarcane aphid (SCA; *Melanaphis sacchari*) is considered a major threat to sorghum production because it severely damages the plant by sucking sap from leaves, thereby reducing its photosynthetic ability. In addition, SCA vectors plant viruses that result in considerable yield loss (White et al., 2001). Deployment of resistant sorghum plants against SCA is considered as a powerful strategy for sustainable pest management (Limaje et al., 2018; Paudyal et al., 2019). Plants have evolved to utilize a multitude of defense mechanisms to reduce aphid infestation, which include antixenotic factors that deter aphid settling on host plants, and antibiotic factors that adversely impact aphid reproduction, survival, or growth and development (Smith, 2005; Nalam et al., 2019).

Aphid feeding alters the carbohydrate metabolism and signaling in host plants (Dinant et al., 2010; Zhou et al., 2015; Nalam et al., 2019). For example, green peach aphid feeding on

Arabidopsis foliage modulated the expression of genes associated with carbohydrate partitioning and sugar signaling in order to maintain the sucrose concentration in the phloem (Moran and Thompson, 2001; Pegadaraju et al., 2005; Singh et al., 2011). JA also acts as a key regulator of sugar accumulation in insect-infested tissues (Machado et al., 2015). JA depletion in *Nicotiana attenuata* leaves resulted in elevated invertase activity, which converts sucrose into glucose and fructose (Tang et al., 1999; Jin et al., 2009; Bhaskar et al., 2010). For aphids, sucrose acts as a major phloem feeding stimulant, and it also contributes to the high osmolarity of the phloem sap (Douglas et al., 2006). However, how JA-dependent sugar metabolism/signaling influence plant defense against aphids are scantly known.

Previously, exogenous application of methyl jasmonate (MeJA) was shown to deter greenbug aphid (*Schizaphis graminum*) settlement on sorghum plants compared to the untreated control plants, which suggested the JA pathway played a significant role in sorghum defenses against aphids (Zhu-Salzman et al., 2004). We therefore investigated the contribution of JA in the interaction of sorghum with the SCA. Here, we demonstrate that SCA feeding transiently increased JA levels at early stages of aphid feeding in sorghum SC265 genotype, which was previously reported to support fewer number of aphids among the sorghum nested association mapping (NAM) founder lines (Grover et al., 2020a). Concomitantly, aphids preferred to settle on plants that are deficient in JA, which suggests JA is an essential component in aphid deterrence. However, at later-stages, JA promoted aphid feeding and proliferation on sorghum plants. This is reflected by significantly reduced phloem sap consumption by aphids and diminished aphid proliferation on JA-deficient plants, which is independent of JA's antagonistic effect on SA pathway. In addition, our results demonstrate that aphid feeding elevated the levels

of fructose and trehalose in JA-deficient plants compared to the wild-type (WT) plants and the direct effect of these compounds potentially contribute to defense against SCA. Thus, we uncover a novel dichotomous role of JA, where JA contributes to initial aphid deterrence, while at later-stages JA promotes aphid feeding and colonization on sorghum plants likely by favoring the desired sugar metabolism to aphids. Taken together, our results highlight the complexity of JA in modulating sorghum defenses against aphids.

RESULTS

Sorghum SC265 plants provide increased resistance to SCA

We have previously shown that, compared to the RTx430 plant, the sorghum genotype SC265 supported fewer number of aphids among the sorghum NAM founder lines (Grover et al., 2020a). Our no-choice bioassay further confirmed that aphid numbers (adult + nymphs) were significantly lower on SC265 plants than the RTx430 plants after 7 days of SCA infestation (Fig. 1A). To determine whether antixenotic factors, which deter aphid settling on host plants, are also involved in SC265's resistance to SCA, host choice by the aphid was studied by introducing 20 aphids at the center of each pot equidistant from RTx430 and SC265 plants. The number of adult aphids that were settled on SC265 plants were significantly less compared to RTx430 plants at 6 and 24 h post aphid release (Fig. 1B). Collectively, our data suggest that SC265 plants provide enhanced resistance to SCA when compared to RTx430 plants.

SC265 plants limit SCA feeding from sieve elements

140

141

142

143

144

145

146

147

148

149

150

151

152

153

The Electrical Penetration Graph (EPG) technique is a robust tool to monitor the feeding behavior of aphids on host plants (Tjallingii, 1985, 2006; Nalam et al., 2018). Four different waveforms have been delineated from EPG studies: pathway phase, xylem phase, sieve element (phloem) phase, and non-probing phase. In the pathway phase, aphids are involved in various activities prior to sap ingestion, for instance, intra- and inter-cellular probing. The xylem and phloem phases correspond to the ingestion of water and phloem sap, respectively, whereas the non-probing phase refers to no-stylet movement in plant tissues (Tjallingii, 1985, 2006; Nalam et al., 2018). Representative EPG waveforms of SCA feeding for 8 h on different sorghum plants are shown in Supplemental Fig. S1. EPG comparison of SCA feeding behavior on SCA-resistant (SC265) and susceptible (RTx430) plants indicate that the SCA spent significantly less time in the sieve element phase (SEP) and more time in the pathway phase of SC265 plants compared to RTx430 plants (Fig. 1C). There were no significant differences observed for time spent by SCA in xylem and non-probing phases and to reach the first SEP between the RTx430 and SC265 plants (Fig. 1C). These results indicate that SC265 plants can limit aphid feeding from the sieve elements.

154

155

156

157

158

159

160

161

SC265 plants exhibit higher basal and SCA feeding-induced levels of SA

Phytohormones play a key role in modulating plant resistance to aphids (Louis and Shah, 2013; Nalam et al., 2019; Zogli et al., 2020). Higher levels of SA have been associated with enhanced resistance to aphids (Mohase and van der Westhuizen, 2002; Coppola et al., 2013; Kloth et al., 2016; Cui et al., 2019). SC265 plants had 10-fold higher basal levels of SA compared to RTx430 plants (Fig. 2A). No significant difference in SA levels were observed at 1 hour post infestation (hpi) between RTx430 and SC265 plants. SCA feeding on SC265 plants significantly enhanced

SA levels at 24 hpi, whereas no significant increase in SA levels was observed on RTx430 plants (Fig. 2A). In addition, SCA feeding-induced SA levels were significantly higher in SC265 plants at 7 days post infestation (dpi) compared to RTx430 plants (Fig. 2B). Taken together, these data suggest that the SC265 plants display higher basal and SCA feeding-induced levels of SA. SCA feeding triggers transient increase in JA levels in SC265 plants Although 12-oxo-phytodienoic acid (OPDA), an intermediate in the JA biosynthesis pathway, is known to provide monocot defense against aphids (Varsani et al., 2019; Grover et al., 2020b), both genotypes tested displayed no significant difference in the levels of OPDA before or after SCA infestation at the time points analyzed (Supplemental Fig. S2A and S2B). Basal levels of JA were comparable in RTx430 and SC265 plants, however, SCA feeding significantly induced the JA levels at 1 and 24 hpi in SC265 plants compared to RTx430 plants (Fig. 2C). Like JA, JAisoleucine (JA-Ile), the biologically active form of JA, albeit transiently, was significantly higher in SC265 plants infested with SCA at 1 hpi (Fig. S2C). Similarly, although not significant, RTx430 plants showed slight increase in JA-Ile at 1 hpi of SCA, and reverted to basal levels at 24 hpi (Fig. S2C). We did not observe any differences in the JA and JA-Ile levels between the RTx430 and SC265 plants after 7 days of SCA feeding (Fig. 2D and Supplemental Fig. S2D). Based on these results, we suggest that SCA feeding activates transient increase in JA levels in SC265 plants at early time points compared to RTx430 plants. Exogenous JA application promotes SCA growth and feeding on SC265 plants SCA feeding transiently increased the JA levels at early time points (Fig. 2C). Because JA modulates sorghum defense against a different phloem-feeding aphid, greenbug (Schizaphis

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

graminum) (Zhu-Salzman et al., 2004), we tested whether JA-Ile application limited SCA proliferation on SC265 plants. Quite to the contrary, compared with the control plants, pretreatment with JA-Ile promoted aphid growth and feeding on SC265 plants compared to JA-Ile untreated control plants (Fig. 3). Aphid no-choice bioassays showed comparable numbers of SCA on RTx430 plants pretreated with JA-IIe and the mock-treated control plants at 1, 3, and 5 dpi. However, RTx430 plants displayed significantly higher numbers of SCA on plants pretreated with JA-Ile compared to control plants at 7 dpi (Fig. 3A). Similarly, SC265 plants exhibited significantly higher number of aphids at 5 and 7 dpi on JA-Ile-pretreated SC265 plants compared to control plants (Fig. 3B). Using EPG technique, we also monitored the feeding behavior of SCA on sorghum plants pretreated with JA-Ile 24 h prior to SCA feeding. Although there was no significant difference in the duration of time spent by SCA in the SEP on RTx430 plants that were pretreated with JA-Ile and control plants, the duration of SEP was significantly enhanced on JA-Ile-pretreated SC265 plants compared to control plants (Fig. 3C), which indicated JA-Ile promoted SCA feeding from sieve elements of SC265 plants. We also observed a diminution in the duration of the pathway phase, during which the aphids were sampling the cells prior to sustained ingestion, on the JA-Ile pretreated SC265 plants compared to control plants (Supplemental Table S1). JA-Ile pretreatment did not impact other feeding behavior patterns of SCA, such as duration of xylem phase, non-probing phase, time to first probe and time to first SEP on both RTx430 and SC265 plants with or without JA-Ile treatment (Supplemental Table S1). Taken together, these results confirmed that JA promoted SCA growth and feeding on sorghum plants.

206

207

Sorghum plants impaired in JA synthesis provides enhanced resistance to SCA

To determine whether JA can promote SCA susceptibility and to provide genetic evidence of JA-dependent susceptibility to SCA, we used sorghum *multiseeded* (*msd*) mutant, *msd3* in BTx623 background. *Msd3* encodes for ω-3 fatty acid desaturase 7 (FAD7) (Dampanaboina et al., 2019; Gladman et al., 2019). Basal JA levels are significantly reduced in *msd3* plants, which indicate that Msd3 contributes to the JA synthesis in sorghum (Block et al., 2020). Furthermore, it was shown that Msd3 likely plays an important role in the synthesis of herbivore-induced JA (Block et al., 2020). Aphid no-choice bioassays showed that SCA counts were significantly lower on the *msd3* plants compared to WT plants (Fig. 4A). We further quantified the levels of JA before and after SCA infestation on WT and *msd3* plants after 7 dpi. Phytohormone analysis showed that there was a significant decrease in the JA level in *msd3* plants compared to WT plants, irrespective of the presence or absence of SCA (Fig. 4B). Thus, our results clearly demonstrate that the sorghum plants deficient in JA provided enhanced resistance to SCA.

SCA resistance in JA-deficient plants is independent of SA

Previous studies have suggested that loss of function of certain FADs promote resistance to aphids (Avila et al., 2012; Li et al., 2021). In tomato and Arabidopsis, loss of function of *FAD7*, which encodes the major plastidial 18:2 desaturase, contributed to increased aphid resistance in a salicylate dependent manner (Avila et al., 2012). Sorghum *Msd3* is a homolog of *FAD7* (Dampanaboina et al., 2019). To determine whether the resistance in sorghum *msd3* is dependent on the SA pathway, we analyzed SA levels with and without SCA infestation on WT and *msd3* plants after 7 dpi. Our results suggest that the basal levels of SA were similar in both WT and *msd3* plants (Fig. 4C). In addition, SA levels were comparable in both WT and *msd3* plants after SCA infestation (Fig. 4C). Although antagonistic interactions between SA and JA have been

reported (Pieterse et al., 2009; Thaler et al., 2012; Gimenez-Ibanez and Solano, 2013), our results indicate that the resistance in sorghum *msd3* plants is uncoupled with JA's antagonistic effect on SA signaling.

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

231

232

233

JA deters SCA settling on sorghum plants at early time points

To determine whether JA has a role in aphid settling on sorghum plants, SCAs were given the choice of WT and msd3 plants to identify if there is a preference. Our results show that the number of adult aphids that were settled on msd3 plants were significantly higher compared to WT plants at 6 and 24 h after aphid release (Fig. 5A). However, when the msd3 plants were pretreated with JA-Ile for 24 h, then aphids settled equally on WT and msd3 plants (Fig. 5B). In addition, aphids preferred to settle on msd3 control plants compared to msd3 plants pretreated with JA-Ile (Fig. 5C). To further confirm the role of JA in aphid settling, SC265 plants, which exhibited elevated levels of JA at early time points after SCA attack (Fig. 2C), were pretreated with nordihydroguaiaretic acid (NDGA) that blocks JA synthesis (Louis et al., 2015), and SCA settling was monitored. Our results demonstrate that JA inhibitor treatment on SC265 plants significantly attenuated aphid deterrence effect and aphids settled equally on RTx430 control plants and SC265 plants pretreated with NDGA at 6 and 24 h post aphid release (Supplemental Fig. S3A). This was further supported in choice assays between SC265 control plants and SC265 plants that were pretreated with NDGA, in which aphids preferred to settle on SC265 plants that were pretreated with NDGA (Supplemental Fig. S3A). Collectively, these data confirm JA's involvement in deterring aphid settlement on sorghum plants.

252

253

251

Exogenous JA application attenuates SCA resistance in msd3 plants

To confirm whether the *msd3* resistance to SCA is dependent on reduced JA levels, we pretreated WT and *msd3* plants with JA-Ile for 24 h prior to SCA infestation. Aphid no-choice bioassays showed that the SCA counts were significantly higher on *msd3* plants that were pretreated with JA-Ile compared to *msd3* control plants, whereas SCA numbers were comparable on WT control plants and JA-Ile pretreated WT plants (Fig. 6A). This result was further supported in EPG analyses, in which the duration of time spent by SCA in the SEP was considerably longer on JA-Ile-pretreated *msd3* plants compared to *msd3* control plants, whereas SCA spent comparable duration of time in the SEP on WT control and JA-Ile-pretreated plants (Fig. 6B). We did not observe significant differences in any other SCA feeding behavior patterns on WT and *msd3* plants with and without JA-Ile treatment (Supplemental Table S2). Thus, our results suggest that JA promotes susceptibility to SCA and facilitates SCA feeding from sieve elements.

SCA feeding alters the free sugars metabolism in msd3 plants

Previous studies have suggested that jasmonates alter the carbohydrate metabolism that determines the insect performance on host plants (Machado et al., 2015, 2017). To determine whether the JA-mediated susceptibility occurs through changes in sugar concentrations, we analyzed the free sugars in WT and *msd3* plants with and without SCA infestation. We found significant increases in fructose and trehalose levels in *msd3* plants compared to WT plants after SCA infestation for 7 days (Fig. 7A and 7B). Although SCA feeding increased glucose levels in both WT and *msd3* plants, no significant differences were observed in the glucose levels in WT and *msd3* plants before and after SCA infestation (Fig. 7C). The WT plants had significantly higher basal levels of sucrose compared to *msd3* plants, however, sucrose levels were increased

upon aphid infestation in both genotypes (Fig. 7D). Raffinose levels declined in WT plants after SCA infestation, but was not altered in the *msd3* plants before or after SCA infestation (Fig. 7E). Xylose and galactose levels were undetectable and unaltered, respectively, after SCA feeding on WT and *msd3* plants for 7 dpi (Supplemental Fig. S4A and S4B). These results suggest that the JA-deficient plants altered sugar metabolism after SCA infestation.

Fructose and trehalose have direct negative impact on SCA reproduction

To determine whether elevated sugar levels in *msd3* plants have direct impact on SCA growth and reproduction, we supplemented SCA artificial diet with two different concentrations of fructose and trehalose, and monitored SCA growth and reproduction. Our feeding trial bioassays showed that both fructose and trehalose have direct negative impact on SCA growth and reproduction after three days (Fig. 8A and 8B). Fructose and trehalose incorporation into aphid diet at both low and high concentrations (50 µM and 200 µM), resulted in a decreased aphid growth and fecundity compared with SCA reared on diet alone. Thus, our results suggest that the elevated levels of fructose and trehalose in JA-deficient plants after SCA infestation may have a direct negative impact on SCA growth and reproduction.

DISCUSSION

Previously, it was shown that JA has a significant role in deterring aphid settling on sorghum plants (Zhu-Salzman et al., 2004). Instead, the results presented here demonstrate that JA, in fact, has a dichotomous role in modulating sorghum defense against SCA. On the one hand, JA deters the aphids on settling, while the aphids initially attempt to establish a feeding site on sorghum

plants. On the other hand, once the aphids were able to overcome the early "deterrence" defense, presumably by injecting aphids' salivary effectors into the host tissues during feeding, JA likely acts as a susceptibility factor promoting SCA proliferation on sorghum plants. SC265 plants displayed enhanced JA levels during the initial SCA feeding (Fig. 2C). This result was paralleled by an increased aphid deterrence on SC265 plants at 6 and 24 h (Fig. 1B). The possibility of SAdependent SC265 resistance to SCA added further complexity to understand the role of JA in sorghum defenses to SCA. Therefore, we used sorghum msd3 plants that are having deficient levels of JA to provide genetic evidence of JA-dependent sorghum defense responses. Aphids preferred to settle on JA-deficient plants (Fig. 5), which confirmed that JA deters aphid settling on sorghum. Comparable and reduced levels of JA in the SCA-resistant SC265 and msd3 plants before and after SCA infestation 7 dpi, respectively (Fig. 2D and Fig. 4B), and the ability of exogenous application of JA to promote SCA growth and facilitate sieve element feeding (Fig. 3 and Fig. 6), together confirm the important role of JA in promoting aphid proliferation and feeding on sorghum plants. The higher levels of fructose and trehalose in JA-deficient plants upon SCA infestation suggest the possibility that they interfere with aphid performance, thereby reducing the aphid population.

316

317

318

319

320

321

322

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Although there are no prior reports on dichotomous role of JA in modulating aphid performance on host plants, few studies have identified that some oxylipins, including JA, have shown to promote susceptibility to various pathogens and aphids (Louis et al., 2010; Makandar et al., 2010; Nalam et al., 2012; Avila et al., 2012; Gorman et al., 2020; Li et al., 2021). Moreover, antagonistic interactions between oxylipins/JA and SA likely influence the outcome of plant-pathogen/pest interactions (Pieterse et al., 2009; Thaler et al., 2012; Solano and Gimenez-Ibanez,

2013). For example, it was shown that elevated levels of SA due to loss of FAD7 activity in tomato and Arabidopsis resulted in enhanced resistance to aphids (Avila et al., 2012). However, loss of function of *Msd3*, a homolog of *FAD7*, -mediated resistance to SCA in sorghum was independent of the SA pathway. SA accumulation was comparable between the WT and *msd3* plants before and after SCA infestation (Fig. 4C), which suggests JA does not influence SA accumulation in response to SCA feeding on sorghum plants. SC265 plants also have elevated levels of SA after 7 days of SCA infestation (Fig. 2B). On the basis of our results, SA is highly likely to contribute to SC265's resistance to SCA, which does not exclude the possibility of other hormones/metabolites synergistically interacting with SA in modifying sorghum defenses.

In Arabidopsis, *LIPOXYGENASE 5 (LOX5)*, which encodes a 9-lipoxygenase, was required for green peach aphid (*Myzus persicae*) colonization and facilitated aphid feeding from the sieve elements and water consumption from xylem tissues (Nalam et al., 2012). The aphids' inability to tap into the xylem of the *lox5* mutants correlated with reduced water content in the aphid body, and apparently negatively impacted aphid performance. Intermittent ingestion of xylem contents is critical for aphids, which allows them to avoid dehydration while feeding on a sugar-rich phloem sap (Powell and Hardie, 2002; Douglas et al., 2006). However, although SCA spent reduced time in the SEP of SC265 and *msd3* plants, no discernible differences were observed in the duration of xylem phases between SC265 and *msd3* plants compared to their respective controls (Fig. 3C and Fig. 6B; Supplemental Tables S1 and S2), which suggests the resistant phenotype of both SC265 and *msd3* plants are not associated with the inability of aphids to tap into the xylem tissues and/or reduced water content in aphids.

Oxylipins have been identified in the phloem sap (Madey et al., 2002; Harmel et al.,
2007; Benning et al., 2012). In fact, phloem sap-derived oxylipins were detected in green peach
aphids (Harmel et al., 2007), suggesting that oxylipin is highly likely to be consumed by aphids.
Oxylipin consumption by aphids may impact physiology of the insect. However, we have
previously shown that OPDA does not have a direct impact on aphid growth and fecundity
(Varsani et al., 2019). Rather, OPDA modifies maize resistance to corn leaf aphids
(Rhopalosiphum maidis), independent of the JA pathway, through ethylene signaling and
interaction with the Maize insect resistance1-Cysteine Protease (Mir1-CP) defensive protein
(Varsani et al., 2019). However, we did not observe any temporal changes in OPDA levels
before or after SCA infestation (Supplemental Fig. S1A and S1B). Furthermore, loss of function
mutation in the Arabidopsis SUPPRESSOR OF SALICYLIC ACID INSENSITIVITY2 (SSI2)
gene, which encodes a desaturase involved in lipid metabolism, resulted in enhanced resistance
to green peach aphids, but did not deter aphid settling and feeding from sieve elements (Louis et
al., 2010). Like Arabidopsis ssi2 plants, sorghum msd3 plants also have lower basal levels of
oleic acid (18:1) compared to WT plants (Block et al., 2020; Li et al., 2021). However, the fact
that oleic acid and stearic acid (18:0), the precursor of oleic acid, does not have a direct impact
on aphid feeding and settling (Louis et al., 2010), it is highly unlikely that depletion of oleic acid
levels in msd3 plants contribute to SCA resistance. Loss of function of SSI2 in Arabidopsis also
resulted in elevated levels of nitic oxide (NO) (Mandal et al., 2012), which is a well-known
defense regulator involved in plant biotic stress (Wilson et al., 2008; del Río, 2015). In fact, NO
is involved in providing plant resistance to aphids (Moloi et al., 2014; Woźniak et al., 2017).
Because multiple defense mechanisms are being utilized by plants to limit aphid colonization

(Nalam et al., 2019), further work is required to understand how precisely NO and JA are related in modulating sorghum resistance to SCA.

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

368

369

Sugars are required for primary metabolism in plants, however, sugars can also act as metabolic signals to further augment the plant defense responses (Rolland et al., 2006; Bolouri Moghaddam and Van den Ende, 2012; Formela-Luboińska et al., 2020). Several reports have shown the plant's ability to alter sugar metabolism in response to insect attack (Singh et al., 2011; Machado et al., 2015, 2017). For instance, jasmonate-dependent sugar depletion rendered Nicotiana attenuata plants more susceptible to Manduca sexta caterpillar (Machado et al., 2015, 2017). Similarly, sucrose was shown to induce defense response against pathogen attack (Morkunas et al., 2005; Tauzin and Giardina, 2014) and trehalose has been proposed as a signaling molecule (Singh et al., 2011; Govind et al., 2016). Furthermore, trehalose has been shown to provide direct toxicity against green peach aphids (Singh et al., 2011). Besides providing direct effects, trehalose was also shown to enhance the expression of PHYTOALEXIN DEFICIENT4 (PAD4) gene, an important modulator of resistance to aphids, in Arabidopsis that curtails insect infestation (Singh et al., 2011; Louis and Shah, 2015). The higher trehalose and glucose levels in pea aphid's (Acyrthosiphon pisum) body has been shown to affect the feeding behavior of aphid, resulting in lesser phloem feeding on fava beans (Wang et al., 2021). Furthermore, elevated fructose content in tomato has been associated with heightened defense against necrotrophic fungus, Botrytis cinerea (Lecompte et al., 2017). Our results showed that JA-deficient plants induced higher levels of fructose and trehalose content upon SCA infestation. It is highly likely that JA-dependent altered sugar levels in sorghum affect the SCA performance directly through altered aphid feeding behavior and growth, and possibly indirectly through

triggering the plant defenses as signaling molecules, which ultimately lead to a reduced aphid population.

Insect secretions contain phytohormones (Tooker and De Moraes, 2006; Dafoe et al., 2013; Schwartzberg and Tumlinson, 2014; Acevedo et al., 2019). JA has been identified in the saliva of fall armyworm (*Spodoptera frugiperda*) and is involved in regulating plant defense responses (Acevedo et al., 2019). Furthermore, the amount of JA in the insect saliva was highly influenced by the host plant that supported the insect. Although not much is known about the salivary components of SCA, it is possible that JA could be present in the aphid saliva.

Alternatively, during the initial brief sampling of cells and/or phloem sap ingestion, aphids may uptake JA or JA-derived factor(s) from host plants and sequester these factors for reintroduction into the host during sieve element feeding. Toxins produced by pathogens, for example, coronatine (COR) produced by plant pathogenic strains of *Pseudomonas syringae* that acts as a molecular mimic of JA–Ile, hijacks plant's defense machinery to promote pathogen virulence (Bender et al., 1999; Zhao et al., 2003; Katsir et al., 2008; Jiang et al., 2013). Whether SCA salivary effectors manipulate host JA signaling to ensure successful colonization, in a manner similar to COR phytotoxin or through other mechanism(s), remains unknown.

Our findings demonstrate an unanticipated and evidently dichotomous role of JA in modulating sorghum defense against SCA. At early stages, JA contribute to feeding deterrence to aphids. However, at later-stages, JA alters the sugar metabolism, which further enhance the aphid growth and reproduction (Fig. 9). Efforts to improve sorghum resistance to aphids focusing on JA-regulated defenses should consider the complexity of JA exerting an initial

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

"deterrent" effect on aphids and subsequently promoting aphid colonization. Uncovering the underlying sorghum defense mechanisms against aphids could significantly accelerate the development of sorghum plants through modern breeding techniques and/or through transgenic approaches. MATERIALS AND METHODS Plants and growth conditions The sorghum RTx430 and SC265 lines, which are among the NAM founder lines (Bouchet et al., 2017), used in this study were obtained from USDA-GRIN global germplasm (Grover et al., 2019, 2020a). The BTx623 and msd3 mutants have been described previously (Xin et al., 2008; Jiao et al., 2016). For all experiments, two-week-old sorghum plants at the three-leaf stage were used (Vanderlip and Reeves, 1972). All plants were grown in Cone-Tainers (Ray Leach SC10; Stuewe & Sons, Inc., Tangent, OR) that were filled with soil mixed with vermiculite and perlite (PRO-MIX BX BIOFUNGICIDE + MYCORRHIZAE, Premier Tech Horticulture Ltd., Canada) at the University of Nebraska-Lincoln (UNL) greenhouse. The greenhouse conditions were set at 25 °C, 16-h-light/8-h-dark photoperiod, and 50–60% relative humidity. Plants were watered regularly and fertigated once per week. **Insect colony** A SCA colony was propagated as described previously (Tetreault et al., 2019) on SCA susceptible BCK60 sorghum genotype in a growth chamber with 16-h-light/8-h-dark photoperiod, 140 μE m⁻² s⁻¹ light quality, 25 °C, and 50–60% relative humidity. Plants for aphid

propagation were grown in the greenhouse until it reached the 7-leaf stage. Adult aphids were used for all the experiments.

Aphid bioassays

Two-week-old sorghum plants were used for both no-choice and choice bioassays. For no-choice assay, each plant was infested with five adult apterous aphids and covered with tubular clear plastic cages to avoid aphid escape. The cages were ventilated with organdy fabric on the sides and top of cage for proper aeration. All plants were randomly arranged and infested with aphids. After 7 days of infestation, the cages were removed and aphids including both nymphs and adults were counted. For choice assays, plants already grown in cone-tainers were placed in each pot (10 inches diameter by 9 inches height) while maintaining equal distance from each other (~5.0 cm) and supported with soil. Twenty adult aphids of similar age and condition were introduced at the center of pot on a filter paper placed on soil. The settled adult aphids on each plant were counted after 6 and 24 hours of aphid release.

Chemical treatment on plants

For all chemical treatments, two-week-old plants were dipped in a JA-Ile (Cayman Chemical Company, Ann Arbor, MI) solution containing a surfactant (CapSil). Plants were treated with 50 µM JA-Ile in 0.1% CapSil and the control plants were dipped in 0.1% CapSil. JA-Ile treated plants and control plants were maintained in different greenhouse chambers to avoid the spread of JA volatiles. To block the JA biosynthesis pathway, plants were sprayed with 1 mM nordihydroguaiaretic acid (NDGA) dissolved in 0.1% (v/v) methanol (MeOH) diluted in water (Louis et al., 2015). Plants that were sprayed with 0.1% (v/v) methanol (MeOH) in water were

used as the controls. After 24 hours of treatment, plants were used for choice or no-choice aphid bioassays.

Monitoring aphid feeding behavior

The EPG technique (Walker et al., 2000; Nalam et al., 2019) was used to assess the SCA feeding behavior on sorghum plants as previously described (Tetreault et al., 2019; Grover et al., 2019). Eight channels were used of EPG recordings simultaneously over an 8 h period of SCA feeding, and at least 7 replicates of individual aphids (one aphid per plant) were obtained for each sorghum plant. The waveform recordings obtained were analyzed using the EPG analysis software *Stylet*⁺ (EPG Systems, Wageningen, The Netherlands).

Phytohormone quantification

Two-week-old sorghum plants were infested with 10 adult apterous SCA and aphids were removed from plants at different time points with a soft paint brush. Control plants were uninfested with aphids. Leaf tissues were collected and fresh weight were recorded (~50 mg), and flash frozen in liquid nitrogen. These leaf tissue samples were ground using a 2010 Geno/Grinder (SPEX SamplePrep) for 40 s at 1,400 strokes min⁻¹ in the presence of liquid nitrogen. Further, liquid chromatography-mass spectrometry (LC-MS) assay and quantification of OPDA, JA, JA-Ile, and SA were performed at the Proteomics and Metabolomics Facility at the Center for Biotechnology/University of Nebraska-Lincoln using deuterium-labeled internal standards as previously described (Chapman et al., 2018; Varsani et al., 2019; Grover et al., 2020a).

GC-MS Single Ion Monitoring (SIM) analysis of sugars

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

Two-week-old sorghum plants were infested with 10 adult apterous SCA and SCA were removed from plants 7 dpi and leaf tissues were harvested. Control plants were uninfested with aphids. Leaves were weighed (50-100 mg) and immediately flash-frozen in liquid nitrogen. An aliquot of samples was extracted using cold methanol:acetonitrile (50:50, v/v) and the tissue samples were disrupted and homogenized by adding two stainless steel beads (SSB 32) using the TissueLyser II (Qiagen) at 10 Hz for 15 mins. After centrifugation at 16,000 g, the supernatants were collected, and the extraction of the pellet was repeated. The supernatants were pooled and vacuum dried down using a speed-vac. The extracted sample was further used for the GC-MS analysis of sugars. The samples were resuspended in 20 mg/mL methoxyamine hydrochloride reagent prepared in pure pyridine and incubated for 2 h at 37°C. Samples are then derivatized using MSTFA + 1% TMCS (ThermoFisher Scientific) incubated for 30 min at 37°C followed by a centrifugation for 10 min at 16,000 g. Sugars were separated on a HP-5MS 30 m, 0.25 mm, 0.25 µm capillary column (Agilent Technologies), at constant flow 1.5 ml min⁻¹ of helium as a carrier gas. The temperature of the column was initially set to 80 °C and increased at a rate of 15°C min⁻¹ to 175 °C, followed by an increase at 5 °C min⁻¹ to 220°C, and a final ramping to 320 °C at 25 °C min⁻¹. A SIM scan method using selected ions was used to analyze the sugars (xylose, fructose, glucose, galactose, sucrose, trehalose and raffinose). The generated data was analyzed with Agilent Mass Hunter Quantitative Analysis. For quantification, an external standard curve was prepared using a series of standard samples containing different concentrations of sugars and fixed concentration of pinitol (Thermo Scientific Chemicals) as the internal standard (Lopez-Guerrero et al., 2022).

Artificial diet feeding trial bioassays

Aphid feeding trial bioassays were carried out in a growth chamber with 16-h-light/8-h-dark photoperiod, 140 μE m⁻² s⁻¹ light quality, 25 °C, and 50–60% relative humidity. An artificial aphid diet for SCA that contains 20% sucrose solution (Sigma-Aldrich) (Toledo-Hernández et al., 2018) was used for the SCA feeding trial bioassays. Aphid feeding chambers and experimental set up was prepared as described previously (Louis et al., 2010). Over each aphid feeding chamber, 700 μL of aphid diet was sandwiched between two stretched parafilm layers with or without supplementation of test sugars, fructose and trehalose (Acros Organics). Five adult apterous SCA were added to each feeding chamber and total number of aphids (both adults and nymphs) were counted in each feeding chamber for three days.

Statistical analyses

The aphid no-choice and artificial diet bioassays data were analyzed using mixed model and replications were considered as random effects (PROC GLIMMIX, SAS 9.3, SAS Institute). Pairwise comparisons were computed using Tukey's adjustment with an experiment-wise error rate of $\alpha = 0.05$. For choice assays, proportions were taken for total aphids settled on each plant based on the total aphids that made choice in each replication. The aphid proportion data were analyzed following square root transformation to correct for heterogeneous variances. We used generalized linear models (GLM) with a likelihood ratio and Chi-square test to assess the treatment effects on aphid settling behavior. For EPG data, non-parametric Kruskal–Wallis test was used to compare the duration of different feeding parameters/phases between different sorghum plants using PROC NPAR1WAY procedure, considering the non-normally distributed data. Data related to phytohormones and sugars were analyzed using one-way ANOVA. For

529	phytohormones and sugars, means were separated using Fisher protected least significant	
530	difference (LSD) procedure when appropriate ($P < 0.05$).	
531		
532		
533	ACKNOWLEDGMENTS	
534	We would like to acknowledge John Toy, Juan Cardona, Sanket Shinde and several	
535	undergraduate students in Louis laboratory for help with greenhouse assistance and feeding trial	
536	bioassays. We thank the Proteomics & Metabolomics Facility (RRID:SCR_021314), Nebraska	
537	Center for Biotechnology at the University of Nebraska-Lincoln for the mass spectrometry	
538	analysis. The facility and instrumentation are supported by the Nebraska Research Initiative.	
539	This work was partially supported by USDA-ARS project 3042-21220-033-00-D (SES). Work in	
540	the Louis laboratory was supported by funds from USDA-ARS (58-3042-6-070) and US	
541	National Science Foundation CAREER grant IOS-434 1845588.	
542		
543	AUTHOR CONTRIBUTIONS	
544	S.G. and J.L. conceived and designed the research; S.G. and H.P. performed the research; Z.X.	
545	contributed sorghum jasmonic acid deficient plants; S.E.S. contributed reagents, methods	
546	development and provided guidance on experiments; S.G. and J.L. wrote the paper. All authors	
547	reviewed and edited the manuscript.	
548		
549		
550		
551		

552 SUPPLEMENTAL DATA The following materials are available in the online version of this article. 553 554 555 **Supplemental Figure S1.** Representative Electrical Penetration Graph (EPG) waveform patterns over an 8 h period of SCA feeding on RTx430 and SC265 sorghum plants. 556 Supplemental Figure S2. Time course of changes in 12-oxo-phytodienoic acid (OPDA) and 557 558 jasmonic acid-iso leucine (JA-Ile) levels before and after sugarcane aphid (SCA) infestation on 559 RTx430 and SC265 plants. Supplemental Figure S3. Choice assay comparison of aphid preference for RTx430 vs SC265 560 561 plants pretreated with NDGA, and SC265 control mock-treated plants vs SC265 plants pretreated with NDGA. 562 563 Supplemental Figure S4. Levels of xylose and galactose after sugarcane aphid (SCA) feeding on BTx623 and msd3 plants for 7 dpi. 564 Supplemental Table S1. Sugarcane aphid (SCA) feeding activities on the sorghum RTx430 and 565 566 SC265 plants with and without JA-Ile treatment. Supplemental Table S2. Sugarcane aphid (SCA) feeding activities on the sorghum BTx623 and 567 *msd3* plants with and without JA-Ile treatment. 568 569 570 571 572 573 574

575	REFERENCES
576	Acevedo FE, Smith P, Peiffer M, Helms A, Tooker J, Felton GW (2019) Phytohormones in fall
577	armyworm saliva modulate defense responses in plants. J Chem Ecol 45: 598–609
578	Avila CA, Arévalo-Soliz LM, Jia L, Navarre DA, Chen Z, Howe GA, Meng Q-W, Smith JE,
579	Goggin FL (2012) Loss of function of FATTY ACID DESATURASE7 in tomato enhances basal
580	aphid resistance in a salicylate-dependent manner. Plant Physiol 158: 2028–2041
581	Bender CL, Alarcón-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: Mode of
582	action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol
583	Rev 63: 266–292
584	Benning UF, Tamot B, Guelette BS, Hoffmann-Benning S (2012) New aspects of phloem-
585	mediated long-distance lipid signaling in plants. Front Plant Sci. 3: 53
586	Bhaskar PB, Wu L, Busse JS, Whitty BR, Hamernik AJ, Jansky SH, Buell CR, Bethke PC, Jiang
587	J (2010) Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato.
588	Plant Physiol 154: 939–948
589	Block AK, Xin Z, Christensen SA (2020) The 13-lipoxygenase $MSD2$ and the ω -3 fatty acid
590	desaturase MSD3 impact Spodoptera frugiperda resistance in sorghum. Planta 252: 62
591	Bolouri Moghaddam MR, Van den Ende W (2012) Sugars and plant innate immunity. J Exp Bot
592	63: 3989–3998

593 Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP (2017) 594 Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206: 573–585. 595 Chapman KM, Marchi-Werle L, Hunt TE, Heng-Moss TM, Louis J (2018) Abscisic and 596 597 jasmonic acids contribute to soybean tolerance to the soybean aphid (Aphis glycines Matsumura). 598 Sci Rep 8: 1–12 599 Coppola V, Coppola M, Rocco M, Digilio MC, D'Ambrosio C, Renzone G, Martinelli R, 600 Scaloni A, Pennacchio F, Rao R, et al (2013) Transcriptomic and proteomic analysis of a 601 compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant 602 response. BMC Genomics 14: 515 Cui N, Lu H, Wang T, Zhang W, Kang L, Cui F (2019) Armet, an aphid effector protein, induces 603 604 pathogen resistance in plants by promoting the accumulation of salicylic acid. Philos Trans R Soc B Biol Sci 374: 20180314 605 Dafoe NJ, Thomas JD, Shirk PD, Legaspi ME, Vaughan MM, Huffaker A, Teal PE, Schmelz EA 606 (2013) European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in 607 maize. PLOS ONE 8: e73394 608 Dampanaboina L, Jiao Y, Chen J, Gladman N, Chopra R, Burow G, Hayes C, Christensen SA, 609 Burke J, Ware D, et al (2019) Sorghum MSD3 encodes an ω-3 fatty acid desaturase that 610 increases grain number by reducing jasmonic acid levels. Int J Mol Sci 20: 5359 611 612 del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66: 2827–2837

613 Dinant S, Bonnemain J-L, Girousse C, Kehr J (2010) Phloem sap intricacy and interplay with 614 aphid feeding. C R Biol 333: 504-515 615 Douglas AE, Price DRG, Minto LB, Jones E, Pescod KV, François CLMJ, Pritchard J, Boonham N (2006) Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea 616 617 aphid, Acyrthosiphon pisum. J Exp Biol 209: 1395–1403 618 Elzinga DA, Jander G (2013) The role of protein effectors in plant–aphid interactions. Curr Opin 619 Plant Biol 16: 451–456 620 Formela-Luboińska M, Chadzinikolau T, Drzewiecka K, Jeleń H, Bocianowski J, Kęsy J, 621 Labudda M, Jeandet P, Morkunas I (2020) The role of sugars in the regulation of the level of endogenous signaling molecules during defense response of yellow lupine to Fusarium 622 oxysporum. Int J Mol Sci 21: 4133 623 Gao L-L, Anderson JP, Klingler JP, Nair RM, Edwards OR, Singh KB (2007) Involvement of 624 625 the octadecanoid pathway in bluegreen aphid resistance in *Medicago truncatula*. Mol Plant-Microbe Interactions 20: 82–93 626 627 Ghorbel M, Brini F, Sharma A, Landi M (2021) Role of jasmonic acid in plants: the molecular point of view. Plant Cell Rep. 40: 1471-1494 628 629 Gladman N, Jiao Y, Lee YK, Zhang L, Chopra R, Regulski M, Burow G, Hayes C, Christensen SA, Dampanaboina L, et al (2019) Fertility of pedicellate spikelets in sorghum is controlled by a 630 jasmonic acid regulatory module. Int J Mol Sci 20: 4951 631

632 Gorman Z, Christensen SA, Yan Y, He Y, Borrego E, Kolomiets MV (2020) Green leaf volatiles 633 and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize. Mol Plant Pathol 21: 702–715 634 Govind SR, Jogaiah S, Abdelrahman M, Shetty HS, Tran L-SP (2016) Exogenous Trehalose 635 treatment enhances the activities of defense-related enzymes and triggers resistance against 636 downy mildew disease of pearl millet. Front Plant Sci 7: 1593 637 Grover S, Agpawa E, Sarath G, Sattler SE, Louis J (2020a) Interplay of phytohormones facilitate 638 639 sorghum tolerance to aphids. Plant Mol Biol. 1-12 DOI: 10.1007/s11103-020-01083-y Grover S, Varsani S, Kolomiets MV, Louis J (2020b) Maize defense elicitor, 12-oxo-640 phytodienoic acid, prolongs aphid salivation. Commun Integr Biol 13: 63-66 641 Grover S, Wojahn B, Varsani S, Sattler SE, Louis J (2019) Resistance to greenbugs in the 642 sorghum nested association mapping population. Arthropod-Plant Interact 13: 261–269 643 Harmel N, Delaplace P, Blée E, Jardin PD, Fauconnier M-L (2007) Myzus persicae Sulzer aphid 644 contains oxylipins that originate from phloem sap. J Plant Interact 2: 31–40 645 Hogenhout SA, Bos JI (2011) Effector proteins that modulate plant-insect interactions. Curr 646 Opin Plant Biol 14: 422–428 647 Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59: 41–66 648 Jiang S, Yao J, Ma K-W, Zhou H, Song J, He SY, Ma W (2013) Bacterial effector activates 649 650 jasmonate signaling by directly targeting JAZ transcriptional repressors. PLOS Pathog 9: e1003715 651

652 Jiao Y, Burke J, Chopra R, Burow G, Chen J, Wang B, Hayes C, Emendack Y, Ware D, Xin Z 653 (2016) A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant 654 Cell 28: 1551–1562 Jin Y, Ni D-A, Ruan Y-L (2009) Posttranslational elevation of cell wall invertase activity by 655 656 silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21: 2072-2089 657 Kaloshian I, Walling LL (2016) Hemipteran and dipteran pests: Effectors and plant host immune 658 659 regulators. J Integr Plant Biol 58: 350-361 660 Katsir L, Chung HS, Koo AJ, Howe GA (2008) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11: 428–435 661 Kennedy JS, Day MF, Eastop VF (1962) A conspectus of aphids as vectors of plant viruses. 662 Conspec. Aphids Vectors Plant Viruses 663 Kloth KJ, Wiegers GL, Busscher-Lange J, van Haarst JC, Kruijer W, Bouwmeester HJ, Dicke 664 M, Jongsma MA (2016) AtWRKY22 promotes susceptibility to aphids and modulates salicylic 665 acid and jasmonic acid signalling. J Exp Bot 67: 3383–3396 666 Kuśnierczyk A, Tran DH, Winge P, Jørstad TS, Reese JC, Troczyńska J, Bones AM (2011) 667 668 Testing the importance of jasmonate signalling in induction of plant defences upon cabbage

aphid (Brevicoryne brassicae) attack. BMC Genomics 12: 423

670 Lecompte F. Nicot PC, Ripoll J. Abro MA, Raimbault AK, Lopez-Lauri F. Bertin N (2017) 671 Reduced susceptibility of tomato stem to the necrotrophic fungus *Botrytis cinerea* is associated with a specific adjustment of fructose content in the host sugar pool. Ann Bot 119: 931–943 672 Li J, Galla AL, Avila CA, Flattmann K, Vaughn KL, Goggin F (2021) Fatty Acid Desaturases in 673 674 the chloroplast and endoplasmic reticulum promote susceptibility to the Green Peach Aphid, Myzus persicae, in Arabidopsis thaliana. Mol Plant-Microbe Interactions. 34: 691-702 675 Limaje A, Hayes C, Armstrong JS, Hoback W, Zarrabi A, Paudyal S, Burke J (2018) Antibiosis 676 677 and tolerance discovered in USDA-ARS sorghums resistant to the sugarcane aphid (Hemiptera: 678 Aphididae). J Entomol Sci 53: 230-241 Lopez-Guerrero MG, Wang P, Phares F, Schachtman DP, Alvarez S, and van Dijk K (2022) A 679 glass bead semi-hydroponic system for intact maize root exudate analysis and phenotyping. Plant 680 681 Methods 18: 1-21 682 Louis J. Basu S. Varsani S. Castano-Duque L. Jiang V. Williams WP. Felton GW. Luthe DS (2015) Ethylene contributes to maize insect resistance I-mediated maize defense against the 683 phloem sap-sucking corn leaf aphid. Plant Physiol 169: 313–324 684 Louis J, Leung Q, Pegadaraju V, Reese J, Shah J (2010) PAD4-dependent antibiosis contributes 685 to the ssi2-conferred hyper-resistance to the green peach aphid. Mol Plant-Microbe Interactions 686 23: 618–627 687 Louis J. Shah J (2013) Arabidopsis thaliana—Myzus persicae interaction: shaping the 688 689 understanding of plant defense against phloem-feeding aphids. Front Plant Sci. 4: 213

- Louis J, Shah J (2015) Plant defence against aphids: the PAD4 signalling nexus. J Exp Bot. 66:
- 691 449–454
- 692 Louis J, Singh V, Shah J (2012) Arabidopsis thaliana—Aphid Interaction. Arab Book Am Soc
- 693 Plant Biol. 10
- Machado RAR, Arce CCM, Ferrieri AP, Baldwin IT, Erb M (2015) Jasmonate-dependent
- depletion of soluble sugars compromises plant resistance to *Manduca sexta*. New Phytol 207:
- 696 91–105
- Machado RAR, Baldwin IT, Erb M (2017) Herbivory-induced jasmonates constrain plant sugar
- 698 accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary
- metabolite production. New Phytol 215: 803–812
- Madey E, Nowack LM, Thompson JE (2002) Isolation and characterization of lipid in phloem
- 701 sap of canola. Planta 214: 625–634
- Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J (2010) Involvement of
- salicylate and jasmonate signaling pathways in Arabidopsis interaction with *Fusarium*
- 704 graminearum. Mol Plant-Microbe Interactions® 23: 861–870
- Mandal MK, Chandra-Shekara AC, Jeong R-D, Yu K, Zhu S, Chanda B, Navarre D, Kachroo A,
- 706 Kachroo P (2012) Oleic acid–dependent modulation of NITRIC OXIDE ASSOCIATED1 protein
- levels regulates nitric oxide–mediated defense signaling in Arabidopsis. Plant Cell 24: 1654–
- 708 1674
- 709 Matthews RC (2012) Plant virology. Elsevier

- 710 Miles PW (1999) Aphid saliva. Biol Rev 74: 41–85
- 711 Mohase L, van der Westhuizen AJ (2002) Salicylic acid is involved in resistance responses in the
- Russian wheat aphid-wheat interaction. J Plant Physiol 159: 585–590
- Moloi MJ, Westhuizen AJ van der, Jankielsohn A (2014) Nitric oxide is an upstream signal
- involved in the multisignalling network during the Russian wheat aphid resistance response and
- its application enhances resistance. Cereal Res Commun 43: 29–40
- Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation
- 717 to plant defense pathways. Plant Physiol 125: 1074–1085
- Morkunas I, Marczak Ł, Stachowiak J, Stobiecki M (2005) Sucrose-induced lupine defense
- against Fusarium oxysporum: Sucrose-stimulated accumulation of isoflavonoids as a defense
- response of lupine to *Fusarium oxysporum*. Plant Physiol Biochem 43: 363–373
- Nalam V, Louis J, Patel M, Shah J (2018) Arabidopsis-Green Peach Aphid Interaction: Rearing
- the insect, no-choice and fecundity assays, and electrical penetration graph technique to study
- 723 insect feeding behavior. BIO-Protoc. 8: e2950
- Nalam V, Louis J, Shah J (2019) Plant defense against aphids, the pest extraordinaire. Plant Sci
- 725 279: 96–107
- Nalam VJ, Keeretaweep J, Sarowar S, Shah J (2012) Root-derived oxylipins promote green
- peach aphid performance on Arabidopsis foliage. Plant Cell 24: 1643–1653

- Paudyal S, Armstrong JS, Giles KL, Payton ME, Opit GP, Limaje A (2019) Categories of
- resistance to sugarcane aphid (Hemiptera: Aphididae) among sorghum genotypes. J Econ
- 730 Entomol 112: 1932–1940
- Pegadaraju V, Knepper C, Reese J, Shah J (2005) Premature leaf senescence modulated by the
- 732 Arabidopsis *PHYTOALEXIN DEFICIENT4* gene is associated with defense against the phloem-
- feeding green peach aphid. Plant Physiol 139: 1927–1934
- Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-
- molecule hormones in plant immunity. Nat Chem Biol 5: 308–316
- Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal
- modulation of plant immunity. Annu Rev Cell Dev Biol 28: 489–521
- Powell G, Hardie J (2002) Xylem ingestion by winged aphids. *In JK Nielsen*, C Kjær, LM
- Schoonhoven, eds, Proc. 11th Int. Symp. Insect-Plant Relatsh. Springer Netherlands, Dordrecht,
- 740 pp 103–108
- Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved
- and novel mechanisms. Annu Rev Plant Biol 57: 675–709
- Schwartzberg EG, Tumlinson JH (2014) Aphid honeydew alters plant defence responses. Funct
- 744 Ecol 28: 386–394
- Singh V, Louis J, Ayre BG, Reese JC, Shah J (2011) TREHALOSE PHOSPHATE
- 746 SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against
- 747 the phloem-feeding insect *Myzus persicae*. Plant J 67: 94–104

- Smith CM (2005) Plant resistance to arthropods: Molecular and conventional approaches.
- 749 Springer Netherlands
- Solano R, Gimenez-Ibanez S (2013) Nuclear jasmonate and salicylate signaling and crosstalk in
- defense against pathogens. Front Plant Sci. 4: 72
- 752 Tang G-Q, Lüscher M, Sturm A (1999) Antisense repression of vacuolar and cell wall invertase
- in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11: 177–
- 754 189
- 755 Tauzin AS, Giardina T (2014) Sucrose and invertases, a part of the plant defense response to the
- 756 biotic stresses. Front Plant Sci 5: 293
- 757 Tetreault HM, Grover S, Scully ED, Gries T, Palmer NA, Sarath G, Louis J, Sattler SE (2019)
- 758 Global responses of resistant and susceptible sorghum (Sorghum bicolor) to sugarcane aphid
- 759 (Melanaphis sacchari). Front Plant Sci 10: 145
- 760 Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal
- 761 crosstalk. Trends Plant Sci 17: 260–270
- 762 Tjallingii WF (1985) Electrical nature of recorded signals during stylet penetration by aphids.
- 763 Entomol Exp Appl 38: 177–186
- Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound
- 765 responses. J Exp Bot 57: 739–745

- Toledo-Hernández E, Hernández-Velázquez VM, Peña-Chora G (2018) An artificial diet for the
- sugarcane aphid (*Melanaphis sacchari* Zehntner) (Hemiptera: Aphididae) with potential uses for
- in vitro toxicological studies. Fla Entomol 101: 395–398
- Tooker JF, De Moraes CM (2006) Jasmonate, salicylate, and benzoate in insect eggs. J Chem
- 770 Ecol 33: 331
- van Bel AJE, Will T (2016) Functional evaluation of proteins in watery and gel saliva of aphids.
- 772 Front Plant Sci. 7: 1840
- Vanderlip RL, Reeves HE (1972) Growth stages of sorghum [Sorghum bicolor, (L.) Moench.].
- 774 Agron J 64: 13–16
- Varsani S, Grover S, Zhou S, Koch KG, Huang P-C, Kolomiets MV, Williams WP, Heng-Moss
- T, Sarath G, Luthe DS, et al (2019) 12-Oxo-phytodienoic acid acts as a regulator of maize
- defense against corn leaf aphid. Plant Physiol 179: 1402-1415
- Walker GP, Backus EA, America ES of (2000) Principles and applications of electronic
- monitoring and other techniques in the study of Homopteran feeding behavior. Entomological
- 780 Society of America
- Wang G, Zhou J-J, Li Y, Gou Y, Quandahor P, Liu C (2021) Trehalose and glucose levels
- regulate feeding behavior of the phloem-feeding insect, the pea aphid Acyrthosiphon pisum
- 783 Harris. Sci Rep 11: 15864
- Wang J, Wu D, Wang Y, Xie D (2019) Jasmonate action in plant defense against insects. J Exp
- 785 Bot 70: 3391–3400

- Wasternack C, Strnad M (2018) Jasmonates: News on occurrence, biosynthesis, metabolism and
- action of an ancient group of signaling compounds. Int J Mol Sci. 19: 2539
- 788 White WH, Reagan TE, Hall DG (2001) Melanaphis sacchari (Homoptera: Aphididae), A
- sugarcane pest new to Louisiana. Fla Entomol 84: 435–436
- 790 Will T, Vilcinskas A (2015) The structural sheath protein of aphids is required for phloem
- 791 feeding. Insect Biochem Mol Biol 57: 34–40
- Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant
- 793 Cell Environ 31: 622–631
- Woźniak A, Formela M, Bilman P, Grześkiewicz K, Bednarski W, Marczak Ł, Narożna D,
- Dancewicz K, Mai VC, Borowiak-Sobkowiak B, et al (2017) The dynamics of the defense
- strategy of pea induced by exogenous nitric oxide in response to aphid infestation. Int J Mol Sci
- 797 18: 329
- 798 Xin Z, Li Wang M, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying
- 799 genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically
- induced sorghum mutant population. BMC Plant Biol 8: 103
- 801 Xu H-X, Qian L-X, Wang X-W, Shao R-X, Hong Y, Liu S-S, Wang X-W (2019) A salivary
- effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc
- 803 Natl Acad Sci 116: 490–495
- Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses
- and suppresses effectual jasmonic acid defenses. Plant Physiol 143: 866–875

806	Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of
807	Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the
808	jasmonate signaling pathway. Plant J 36: 485–499
809	Zhou S, Lou Y-R, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response
810	to insect herbivory. Plant Physiol 169: 1488–1498
811	Zhu-Salzman K, Salzman RA, Ahn J-E, Koiwa H (2004) Transcriptional regulation of sorghum
812	defense determinants against a phloem-feeding aphid. Plant Physiol 134: 420–431
813	Zogli P, Pingault L, Grover S, Louis J (2020) Ento(o)mics: the intersection of 'omic' approaches
814	to decipher plant defense against sap-sucking insect pests. Curr Opin Plant Biol 56: 153–161
815	Züst T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nat Plants
816	2: 1–9
817	
818	
819	
820	
821	
822	
823	
824	
825	

FIGURE LEGENDS

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

826

Figure 1. Sorghum SC265 plants provide enhanced resistance to sugarcane aphids (SCA). (A) Total number of SCA adults and nymphs recovered 7 days post infestation of two-week-old sorghum RTx430 and SC265 plants with 5 adult apterous aphids/plant (n = 14-15). Error bars represent mean \pm SE. Different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). (B) Choice assay comparison of aphid preference for RTx430 vs SC265 plants by releasing 20 adult SCA at the center of a pot containing one plant of each indicated sorghum line. Proportion of adult SCA that had settled on RTx430 and SC265 plants were monitored after 6 and 24 h post aphid release (n = 10). An asterisk (*) indicate values that are significantly different from each other (P < 0.05; χ^2 test). Aphid no-choice and choice bioassays were conducted three times with similar results. (C) Electrical Penetration Graph (EPG) monitoring of mean time spent by SCA for various feeding behavior activities over an 8 h feeding by SCA on RTx430 and SC265 sorghum plants (PP, pathway phase; XP, xylem phase; SEP, the total duration of sieve element phase; NPP, non-probing phase; f-SEP, the time to reach first SEP) on RTx430 and SC265 sorghum plants. Each value is the mean \pm SE of 15–16 replications. An asterisk (*) represents significant difference (P < 0.05; Kruskal-Wallis test) in the time spent by SCA for the indicated activity on the RTx430 and SC265 sorghum plants. Figure 2. Sugarcane aphid (SCA) feeding on sorghum plants alters salicylic acid (SA) and jasmonic acid (JA) levels. Time course of changes in SA (A and B) and JA (C and D) levels before (0 h or –SCA) and after (1 h, 24 h, and 7 dpi) sugarcane aphid (SCA) infestation on RTx430 and SC265 plants. (n = 3-5). FW, fresh weight; dpi, days post infestation. Different

letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). Error bars represent mean \pm SE.

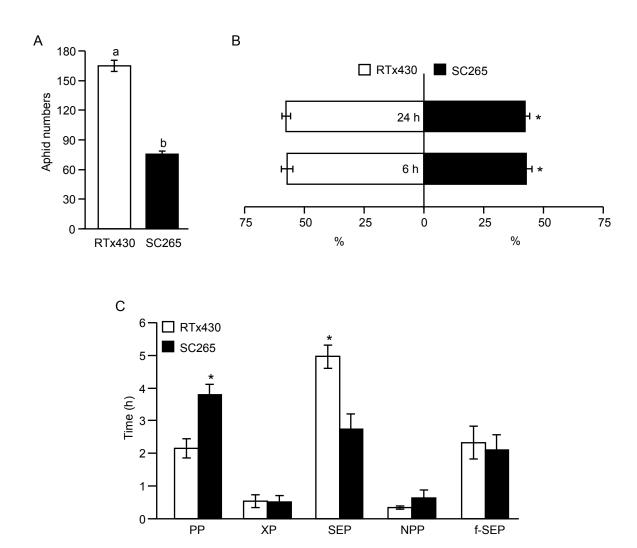
Figure 3. Jasmonic acid-isoleucine (JA-Ile) pretreatment promotes aphid growth and feeding from phloem sieve elements. Total number of sugarcane aphid (SCA) adults and nymphs recovered 1, 3, 5, and 7 days after infestation of RTx430 (A) and SC265 (B) sorghum plants that were pretreated with JA-Ile (50 μM JA-Ile in 0.1% CapSil) or mock-treated with 0.1% CapSil (solvent control) for 24 h. Plants were infested with five adult apterous aphids per plant after 24 h of chemical/solvent treatment. Error bars represent mean \pm SE (n = 15–19). Asterisks above the bars indicate values that are significantly different from each other (P < 0.05; Tukey's test), while "ns" indicates no significant differences between treatments. These experiments were conducted twice with similar results. dpi, days post infestation. (C) Mean time spent by SCA in the sieve element phase (SEP) of RTx430 and SC265 plants with and without JA-Ile pretreatment for 24 h. Each value is the mean \pm SE of 9–10 replications. An asterisk (*) represents significant difference (P < 0.05; Kruskal-Wallis test).

Figure 4. Jasmonic acid (JA)-deficient sorghum plants provide heightened resistance to sugarcane aphids (SCA). (A) Total number of SCA adults and nymphs recovered 7 days post infestation (dpi) of two-week-old sorghum wild-type (WT) and msd3 plants with 5 adult apterous aphids/plant (n = 13-14). This experiment was conducted twice with similar results. Levels of (B) jasmonic acid (JA) and (C) salicylic acid (SA) before (–SCA) and after SCA infestation for 7 days on WT and msd3 plants. (n = 3-5). FW, fresh weight; dpi, days post infestation. For A-C,

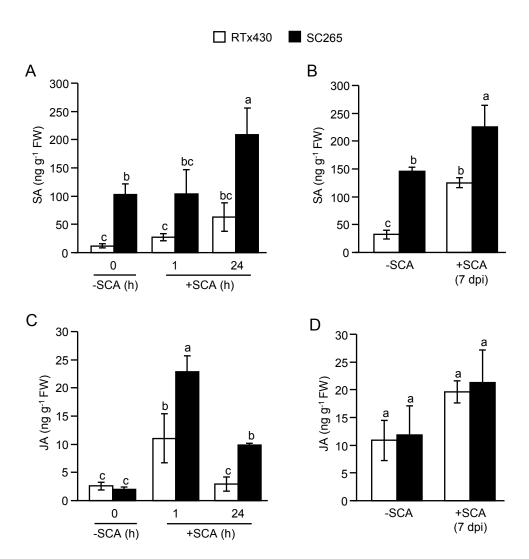
different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). Error bars represent mean \pm SE.

Figure 5. Jasmonic acid (JA) is required for sugarcane aphid (SCA) deterrence on sorghum plants. Choice assay comparison of aphid preference for (A) wild-type (WT) vs msd3 plants, (B) WT vs msd3 plants pretreated with JA-Ile, and (C) msd3 control mock-treated plants vs msd3 plants pretreated with JA-Ile. Twenty adult SCA were released at the center of a pot containing one plant of each indicated sorghum line. Proportion of adult SCA that had settled on each plant combination were monitored after 6 and 24 h post aphid release (n = 9-14). An asterisk (*) indicate values that are significantly different from each other (P < 0.05; χ^2 test), while "ns" indicates no significant differences between sorghum plants on aphid settling. Aphid choice bioassays were conducted twice with similar results.

Figure 6. Exogenous jasmonic acid-isoleucine (JA-Ile) application attenuates msd3 resistance to sugarcane aphids (SCA). (A) Total number of SCA adults and nymphs recovered 7 days post infestation (dpi) of two-week-old sorghum wild-type (WT) and msd3 plants that were pretreated with JA-Ile (50 μ M JA-Ile in 0.1% CapSil) or mock-treated with 0.1% CapSil (solvent control) for 24 h. Plants were infested with five adult apterous aphids per plant after 24 h of chemical/solvent treatment. Error bars represent mean \pm SE (n = 15-19). Different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). This experiment was conducted twice with similar results. (B) Mean time spent by SCA in the sieve element phase (SEP) of WT and msd3 plants with and without JA-Ile pretreatment for 24 h. Each


893 value is the mean \pm SE of 7–9 replications. An asterisk (*) represents significant difference (P <894 0.05; Kruskal-Wallis test). 895 896 Figure 7. Sugarcane aphid (SCA) feeding alters the free sugars metabolism in jasmonic acid 897 (JA)-deficient plants. Free sugar concentrations of (A) fructose, (B) trehalose, (C) glucose, (D) sucrose, and (E) raffinose in BTx623 (WT) and msd3 plants before (-SCA) and after SCA 898 899 infestation (7 dpi). Aphid uninfested plants were used as controls (n = 3-4). FW, fresh weight; dpi, days post infestation. Different letters indicate significant differences between sorghum 900 901 plants (P < 0.05; Tukey's test). Error bars represent mean \pm SE. 902 **Figure 8.** Fructose and trehalose have direct negative impact on sugarcane aphid (SCA) 903 904 reproduction. Comparison of SCA numbers on artificial diet supplemented with two different 905 concentrations of (A) fructose and (B) trehalose are shown. For feeding trial bioassays, five adult apterous SCA were introduced into each feeding chamber and allowed to feed on the diet. The 906 907 total numbers of aphids (adults and nymphs) in each chamber were counted after three days (n =10–15). This experiment was conducted twice with similar results. Different letters indicate 908 significant differences between treatments on each day (P < 0.05; Tukey's test). Error bars 909 910 represent mean \pm SE. 911 912 Figure 9. Model depicting the dichotomous role of jasmonic acid (JA) in modulating sorghum 913 defense against aphids. At early stages of aphid feeding, JA deters the aphid settling on the plants. However, at later-stages, JA alters the sugar metabolism that increases the aphid 914

Grover et al.


- 915 reproduction on sorghum plants. Black lines ending in arrows show positive effects and black
- 916 lines ending with perpendicular bar indicate oppressive effects.

917

Figure 1 Grover et al.

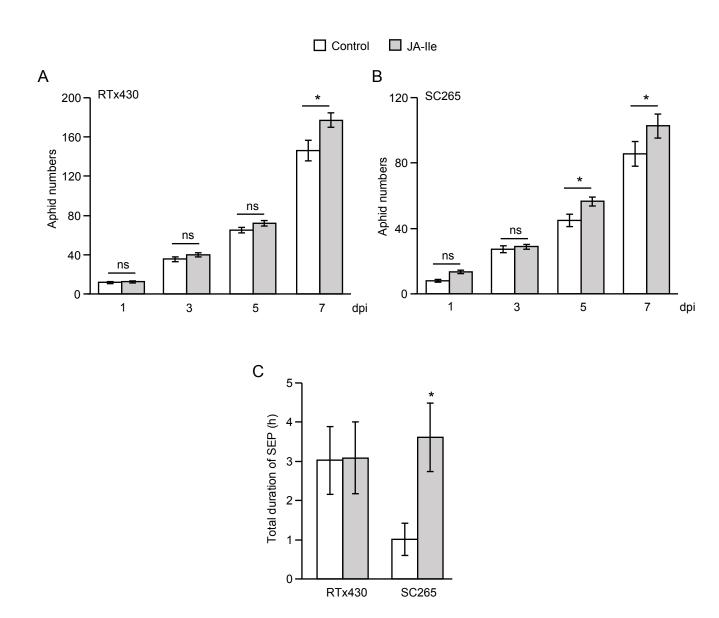
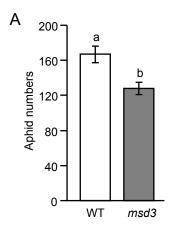


Figure 1. Sorghum SC265 plants provide enhanced resistance to sugarcane aphids (SCA). (A) Total number of SCA adults and nymphs recovered 7 days post infestation of two-week-old sorghum RTx430 and SC265 plants with 5 adult apterous aphids/plant (n = 14–15). Error bars represent mean ± SE. Different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). (B) Choice assay comparison of aphid preference for RTx430 vs SC265 plants by releasing 20 adult SCA at the center of a pot containing one plant of each indicated sorghum line. Proportion of adult SCA that had settled on RTx430 and SC265 plants were monitored after 6 and 24 h post aphid release (n = 10). An asterisk (*) indicate values that are significantly different from each other (P < 0.05; χ^2 test). Aphid no-choice and choice bioassays were conducted three times with similar results. (C) Electrical Penetration Graph (EPG) monitoring of mean time spent by SCA for various feeding behavior activities over an 8 h feeding by SCA on RTx430 and SC265 sorghum plants (PP, pathway phase; XP, xylem phase; SEP, the total duration of sieve element phase; NPP, non-probing phase; f-SEP, the time to reach first SEP) on RTx430 and SC265 sorghum plants. Each value is the mean ± SE of 15–16 replications. An asterisk (*) represents significant difference (P < 0.05; Kruskal-Wallis test) in the time spent by SCA for the indicated activity on the RTx430 and SC265 sorghum plants.



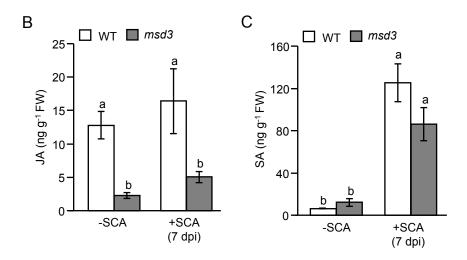
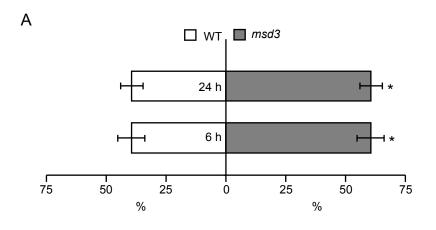
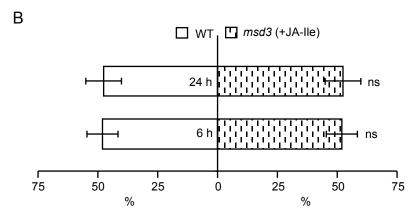

Figure 2. Sugarcane aphid (SCA) feeding on sorghum plants alters salicylic acid (SA) and jasmonic acid (JA) levels. Time course of changes in SA (A and B) and JA (C and D) levels before (0 h or –SCA) and after (1 h, 24 h, and 7 dpi) sugarcane aphid (SCA) infestation on RTx430 and SC265 plants. (n = 3-5). FW, fresh weight; dpi, days post infestation. Different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). Error bars represent mean \pm SE.

Figure 3 Grover et al.


Figure 3. Jasmonic acid-isoleucine (JA-Ile) pretreatment promotes aphid growth and feeding from phloem sieve elements. Total number of SCA adults and nymphs recovered 1, 3, 5, and 7 days after infestation of RTx430 (A) and SC265 (B) sorghum plants that were pretreated with JA-Ile (50 μ M JA-Ile in 0.1% CapSil) or mock-treated with 0.1% CapSil (solvent control) for 24 h. Plants were infested with five adult apterous aphids per plant after 24 h of chemical/solvent treatment. Error bars represent mean \pm SE (n = 15–19). Asterisks above the bars indicate values that are significantly different from each other (P < 0.05; Tukey's test), while "ns" indicates no significant differences between treatments. These experiments were conducted twice with similar results. dpi, days post infestation. (C) Mean time spent by SCA in the sieve element phase (SEP) of RTx430 and SC265 plants with and without JA-Ile pretreatment for 24 h. Each value is the mean \pm SE of 9–10 replications. An asterisk (*) represents significant difference (P < 0.05; Kruskal-Wallis test).



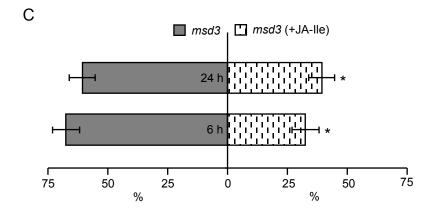
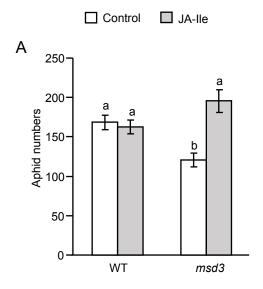
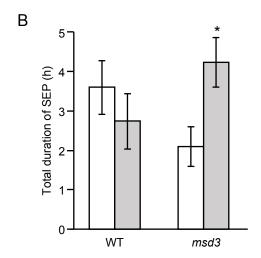
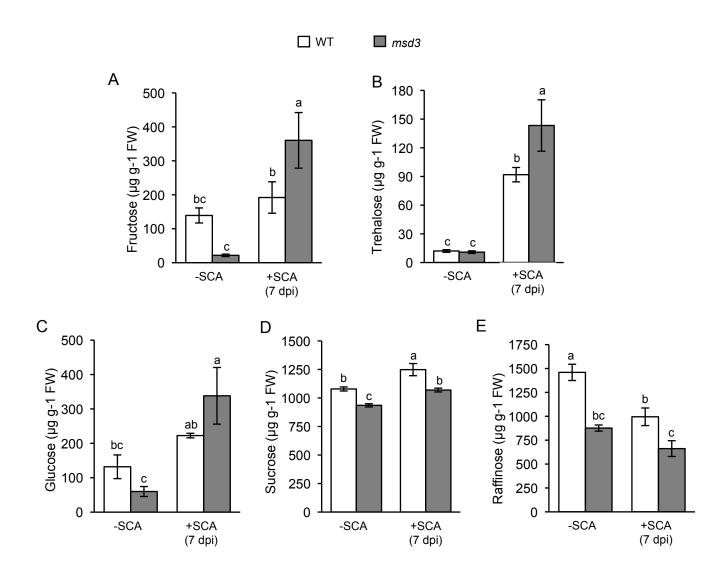


Figure 4. Jasmonic acid (JA)-deficient sorghum plants provide heightened resistance to sugarcane aphids (SCA). (A) Total number of SCA adults and nymphs recovered 7 days post infestation (dpi) of two-week-old sorghum wild-type (WT) and msd3 plants with 5 adult apterous aphids/plant (n = 13-14). This experiment was conducted twice with similar results. Levels of jasmonic acid (JA) (B) and salicylic acid (SA) (C) before (–SCA) and after SCA infestation for 7 days on WT and msd3 plants. (n = 3-5). FW, fresh weight; dpi, days post infestation. For A-C, different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). Error bars represent mean \pm SE.


Figure 5 Grover et al.




Figure 5. Jasmonic acid (JA) is required for sugarcane aphid (SCA) deterrence on sorghum plants. Choice assay comparison of aphid preference for (A) wild-type (WT) vs msd3 plants, (B) WT vs msd3 plants pretreated with JA-Ile, and (C) msd3 control mock-treated plants vs msd3 plants pretreated with JA-Ile. Twenty adult SCA were released at the center of a pot containing one plant of each indicated sorghum line. Proportion of adult SCA that had settled on each plant combination were monitored after 6 and 24 h post aphid release (n = 9-14). An asterisk (*) indicate values that are significantly different from each other (P < 0.05; χ^2 test), while "ns" indicates no significant differences between sorghum plants on aphid settling. Aphid choice bioassays were conducted twice with similar results.

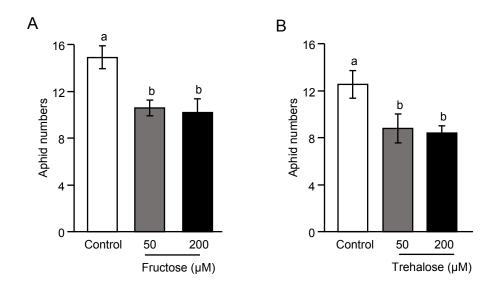


Figure 6. Exogenous jasmonic acid-isoleucine (JA-Ile) application attenuates msd3 resistance to sugarcane aphids (SCA). (A) Total number of SCA adults and nymphs recovered 7 days post infestation (dpi) of two-week-old sorghum wild-type (WT) and msd3 plants that were pretreated with JA-Ile (50 μ M JA-Ile in 0.1% CapSil) or mock-treated with 0.1% CapSil (solvent control) for 24 h. Plants were infested with five adult apterous aphids per plant after 24 h of chemical/solvent treatment. Error bars represent mean \pm SE (n = 15-19). Different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). This experiment was conducted twice with similar results. (B) Mean time spent by SCA in the sieve element phase (SEP) of WT and msd3 plants with and without JA-Ile pretreatment for 24 h. Each value is the mean \pm SE of 7–9 replications. An asterisk (*) represents significant difference (P < 0.05; Kruskal-Wallis test).

Figure 7 Grover et al.

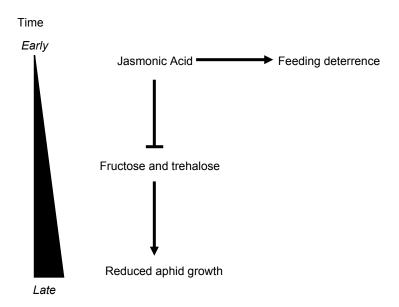


Figure 7. Sugarcane aphid (SCA) feeding alters the free sugars metabolism in jasmonic acid (JA)-deficient plants. Free sugar concentrations of (A) fructose, (B) trehalose, (C) glucose, (D) sucrose, and (E) raffinose in BTx623 (WT) and msd3 plants before (–SCA) and after SCA infestation (7 dpi). Aphid uninfested plants were used as controls (n = 3–4). FW, fresh weight; dpi, days post infestation. Different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). Error bars represent mean \pm SE.

Figure 8. Fructose and trehalose have direct negative impact on sugarcane aphid (SCA) reproduction. Comparison of SCA numbers on artificial diet supplemented with two different concentrations of (A) fructose and (B) trehalose are shown. For feeding trial bioassays, five adult apterous SCA were introduced into each feeding chamber and allowed to feed on the diet. The total numbers of aphids (adults and nymphs) in each chamber were counted after three days (n = 10-15). This experiment was conducted twice with similar results. Different letters indicate significant differences between treatments on each day (P < 0.05; Tukey's test). Error bars represent mean \pm SE.

Figure 9 Grover et al.

Figure 9. Model depicting the dichotomous role of jasmonic acid (JA) in modulating sorghum defense against aphids. At early stages of aphid feeding, JA deters the aphid settling on the plants. However, at later-stages, JA alters the sugar metabolism that increases the aphid reproduction on sorghum plants. Black lines ending in arrows show positive effects and black lines ending with perpendicular bar indicate oppressive effects.

Grover et al.

SUPPLEMENTAL MATERIALS

Dichotomous role of jasmonic acid in modulating sorghum defense against aphids

Sajjan Grover¹, Heena Puri¹, Zhanguo Xin², Scott E. Sattler³, and Joe Louis^{1,4,*}

¹Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583

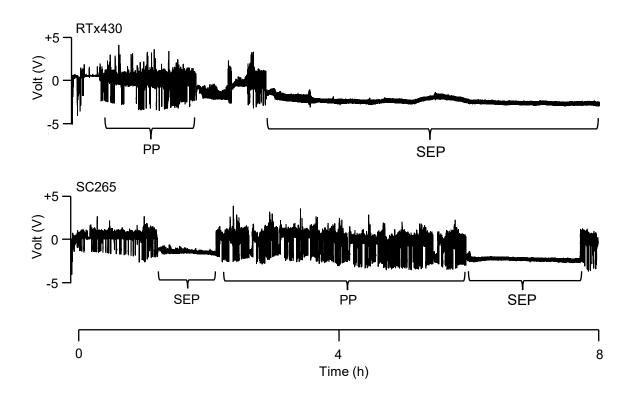
²Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S.

Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415

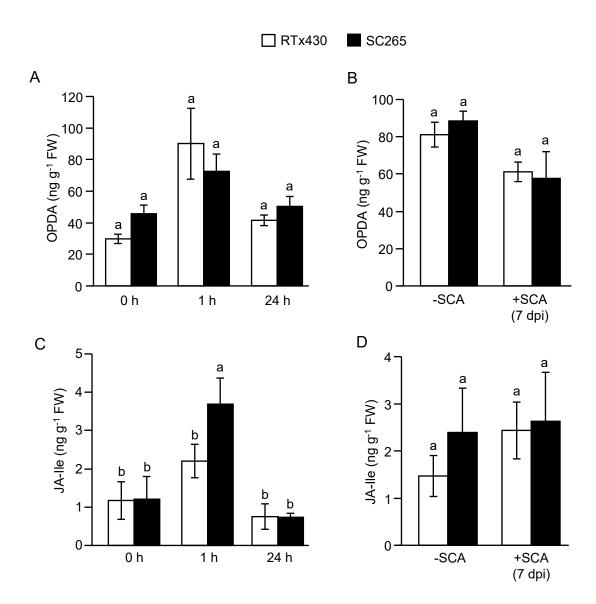
³Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural

Research Service, Lincoln, NE 68583

⁴Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583

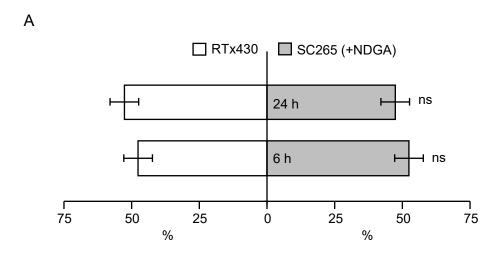

*Author for Correspondence: Joe Louis

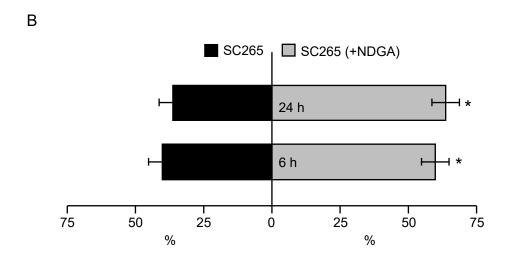
E-mail: joelouis@unl.edu; Phone: +1 (402) 472-8098


Supplemental Materials include:

Figures S1 - S4

Tables S1 and S2




Supplemental Figure S1. Representative Electrical Penetration Graph (EPG) waveform patterns over an 8 h period of SCA feeding on RTx430 and SC265 sorghum plants (PP, pathway phase; XP, xylem phase; SEP, the total duration of sieve element phase) on RTx430 and SC265 sorghum plants.

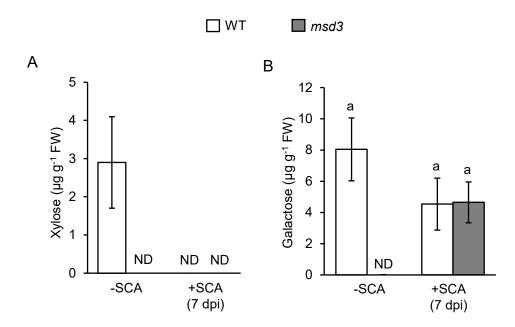

Supplemental Figure S2. Time course of changes in 12-oxo-phytodienoic acid (OPDA) (A and B) and jasmonic acid-iso leucine (JA-Ile) (C and D) levels before (0 h or –SCA) and after (1 h, 24 h, and 7 dpi) sugarcane aphid (SCA) infestation on RTx430 and SC265 plants. (n = 3-5). FW, fresh weight; dpi, days post infestation. Different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). Error bars represent mean \pm SE.

Figure S3 Grover et al.

Supplemental Figure S3. Choice assay comparison of aphid preference for (A) RTx430 vs SC265 plants pretreated with NDGA, and (B) SC265 control mock-treated plants vs SC265 plants pretreated with NDGA. Twenty adult SCA were released at the center of a pot containing one plant of each indicated sorghum line. Proportion of adult SCA that had settled on each plant combination were monitored after 6 and 24 h post aphid release (n = 13-14). An asterisk (*) indicate values that are significantly different from each other (P < 0.05; χ^2 test), while "ns" indicates no significant differences between sorghum plants on aphid settling. Aphid choice bioassays were conducted twice with similar results.

Supplemental Figure S4. Levels of xylose (A) and galactose (B) after sugarcane aphid (SCA) feeding on BTx623 (WT) and msd3 plants before (–SCA) and after SCA infestation (7 dpi). Aphid uninfested plants were used as controls (n = 3-4). FW, fresh weight; dpi, days post infestation; ND, not detected. Different letters indicate significant differences between sorghum plants (P < 0.05; Tukey's test). Error bars represent mean \pm SE.

Grover et al.

Table S1Sugarcane aphid (SCA) feeding activities on the sorghum RTx430 and SC265 plants with and without JA-Ile treatment.

SCA feeding activity	RTx430		SC265	
SCA feeding activity	Control	JA-Ile	Control	JA-Ile
Total duration of pathway phase (PP)	2.83 ± 0.73	4.5 ± 0.43	4.6 ± 0.62	$2.53 \pm 0.52*$
Total duration of xylem phase (XP)	2.64 ± 1.75	0.5 ± 0.38	1.08 ± 0.45	0.78 ± 0.51
Total duration of non-probing phase (NPP)	1.1 ± 0.49	0.61 ± 0.21	1.26 ± 0.64	1.04 ± 0.48
Time to first probe	0.9 ± 0.58	0.12 ± 0.08	0.76 ± 0.72	0.5 ± 0.38
Time to first sieve element phase (f-SEP)	1.98 ± 0.59	2.98 ± 0.72	2.43 ± 0.75	2.05 ± 0.59

Values represent mean time (h) \pm SE spent by SCA on various activities in each 8 h of recording (n = 9-10). An asterisk represents a significant difference between control and JA-Ile treatment across each genotype (P < 0.05, Kruskal-Wallis test) in the time spent by SCA for the indicated activity on the RTx430 and SC265 plants.

Table S2Sugarcane aphid (SCA) feeding activities on the sorghum BTx623 and *msd3* plants with and without JA-Ile treatment.

SCA feeding activity	BTx623		msd3	
SCA feeding activity	Control	JA-Ile	Control	JA-Ile
Total duration of pathway phase (PP)	3.50 ± 0.67	3.45 ± 0.63	3.41 ± 0.57	2.87 ± 0.66
Total duration of xylem phase (XP)	0.48 ± 0.27	0.39 ± 0.28	0.7 ± 0.35	0.13 ± 0.07
Total duration of non-probing phase (NPP)	0.72 ± 0.55	1.47 ± 0.99	0.84 ± 0.31	0.31 ± 0.1
Time to first probe	0.68 ± 0.67	0.25 ± 0.17	0.19 ± 0.19	0.14 ± 0.09
Time to first sieve element phase (f-SEP)	1.31 ± 0.51	2.64 ± 0.96	3.31 ± 0.62	2.55 ± 0.61

Values represent mean time (h) \pm SE spent by SCA on various activities in each 8 h of recording (n = 7-9). Statistically significant differences were not observed for any of the parameters between control and JA-Ile treatment across each genotype (P < 0.05, Kruskal-Wallis test) on the BTx623 and msd3 plants.