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Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor)
that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from
recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the
production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were
published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is
available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum
genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex
technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially
expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the
suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins,
respectively. The plant defense responses based on proteome data were validated using electrical penetration
graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent
significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested
sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying
mechanisms that contribute to sorghum resistance to SCA.

1. Introduction can cause crop yield losses between $62 and $432 per hectare as re-

ported in 2015 (Bowling et al., 2016). SCA is a piercing-sucking type

Despite being an environmentally hardy crop, sorghum (Sorghum
bicolor) has been found very vulnerable to sugarcane aphids (SCA;
Melanaphis sacchari) (Armstrong et al., 2015; Bowling et al., 2016). Since
2013 SCA has acquired the status of “a key pest” by causing significant
sorghum economic yield losses and expanded its range to include most
of the sorghum growing areas of the United States (Bowling et al., 2016;
Brewer et al., 2017; Medina et al., 2017). As such, sorghum production
in the United States is currently facing a serious threat from SCA, which

insect that penetrates its stylets into plant tissues and ingests the phloem
sap (Singh et al., 2004). While feeding on plants, aphids secrete saliva
into the plants and some aphids are also known to have toxins in their
saliva that kills the plant tissues (Ma et al., 1990; Stone et al., 2000).
Although the composition of SCA saliva is unknown, rapid withdrawal
of plant photosynthetic assimilates during SCA feeding may result in
death of sorghum plants (Armstrong et al., 2015). During sorghum
anthesis, SCA infestation may result in complete loss of seed formation
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or poor seed quality (Bowling et al., 2016; Brewer et al., 2017). Besides
direct feeding damage, SCA deposits honeydew, a digestive waste
product of aphids, over the leaf surface that promotes the growth of
sooty mold and reduces the photosynthetic efficiency of plants (Singh
et al., 2004). SCA honeydew stickiness on sorghum leaves also makes
mechanical harvesting difficult.

Chemical insecticides have maintained the “status quo™ of available
SCA management strategies so far but rapid development of biotypes in
other aphids on sorghum, fast growth of SCA and their rapid dispersal
rate in the United States as seen in previous years call for an alternative
pest management strategy (Haar et al., 2019; Calvin et al., 2021). The
inherent ability of plants to activate defenses in response to insect attack
provides us with a tool to manage insect-pest populations in an
eco-friendly manner. Deployment of resistant sorghum genotypes
against SCA has always been considered as a powerful strategy for
sustainable management (Limaje et al., 2018; Paudyal et al., 2019).
Although, the dominant source of SCA resistance, RMES1 locus on the
short arm of chromosome 6, has been identified and characterized, still
the underlying mechanism of SCA resistance is largely unknown (Wang
et al.,, 2013). Among host plant resistance categories, antibiosis and
antixenosis contributes to the reduction in aphid population on plants.
Antibiosis affects the insect biology adversely using chemical charac-
teristics of the plant, whereas antixenosis manipulates the insect
behavior and does not let insects feed well on plants using the physical
and/or chemical characteristics of the plant (Smith and Resistance,
2005). Plants can synthesize a variety of secondary metabolites, which
affect insect growth negatively or can act as insect-deterrent compounds
(Wink, 2018).

Plants have evolved to utilize R genes to recognize herbivore-
associated molecular patterns (HAMPs) (Uemura and Arimura, 2019),
thereby turning on the plant defenses against aphids (Mithofer and
Boland, 2008). Plant cell wall is the first contact between plants and
insects, consequently, insect feeding alters the cell wall metabo-
lism/configuration (Kirsch et al., 2020; Reymond, 2021). Insect feeding
can activate cell wall receptors responsible for activating plant immu-
nity (Abdul Malik et al., 2020; Gust and Niirnberger, 2020). Also, the
insect attack can trigger the oxidative burst, and the growing body of
evidence suggests that oxidative burst can modulate the plant immunity
(Xu et al., 2021). Upon recognition of aphid attack, there are dynamic
changes occurring in plants from activation of signaling pathways,
which further contributes to the downstream defenses (Erb et al., 2012).
The plant hormones jasmonic acid (JA), salicylic acid (SA), abscisic acid
(ABA) and cytokinins (CKs) contribute to the signaling associated de-
fense activation against aphids (Schafer et al., 2015; Florencio-Ortiz
et al., 2020; Johnson et al., 2020; Yates-Stewart et al., 2020). Several
studies have reported SA accumulation in response to aphid attack and
enhanced the levels of pathogenesis-related genes (Florencio-Ortiz et al.,
2020; Johnson et al., 2020; Hogenhout and Bos, 2011; Palmer et al.,
2017; Koch et al., 2020; Wang et al., 2020). JA is known to provide
defense against chewing herbivores (Schmiesing et al., 2016; Lu et al.,
2018; Nouri-Ganbalani et al., 2018; Qi et al., 2018; Ma et al., 2020;
Hunter et al., 2020), but its role in providing defenses to
piercing-sucking type insects has not been much documented. SCA
feeding triggered the expression of SA receptor transcripts in sorghum
resistant hybrid (Kiani and Szczepaniec, 2018). ABA has been shown to
promote aphid colonization and attenuate plant defenses, which bene-
fits aphids (Hillwig et al., 2016; Chapman et al., 2018). CKs are known to
be a major regulator of plant growth, which trades off with plant defense
(Giron et al., 2013).

Upon insect attack, the activation of signal transduction pathways
further brings concomitant changes in the secondary metabolism of
plants (Zogli et al., 2020a; Igrar et al., 2021; Jogawat et al., 2021).
Benzoxazinoids, phenolic compounds, flavonoids, protease inhibitors
have been widely studied secondary metabolites involved in the com-
plex plant defense responses to insects. The capacity of these secondary
metabolites to affect insect physiology directly draws attention towards
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understanding the defense mechanisms in different plant-insect systems.
For example- DIMBOA-Glc (2,4-dihydroxy-7-methoxy-1,4-benzox-
azin-3-one glucoside) has been reported as a key defense metabolite in
maize (Israni et al., 2020; Zhang et al., 2021). Flavonoids have been
shown to affect insect growth in maize and sorghum (Byrne et al., 1997;
Sharma et al., 2012; Dowd et al., 2018; Kariyat et al., 2019). More often,
secondary metabolites have been suggested as a biomarker to identify
the resistant genotypes in breeding programs (McPherson et al., 2014;
Lanubile et al., 2017; Maia et al., 2020; Yele et al., 2021). Phenolic
metabolites can provide direct toxicity to insects and reduce their sur-
vival (Florencio-Ortiz et al., 2020; Delvas et al., 2011; Gesteiro et al.,
2021). Defense proteins are mainly proteinases that target the insect gut,
which can cause insect mortality. In maize inbred line Mp708, a 33-kD
Cys protease (Maize insect resistancel-Cys Protease [Mirl-CP]) accu-
mulates rapidly at the site of insect infestation and disrupts the peri-
trophic matrix of caterpillars (Fescemyer et al., 2013). Mir1-CP has also
been found to affect the corn leaf aphid fecundity, though the underlying
mechanism is unknown (Louis et al., 2015).

Nested association mapping (NAM) population has been recently
developed in sorghum to dissect the complex traits (Bouchet et al.,
2017). This panel provides great opportunities to exploit natural vari-
ation for resistance against sorghum insect pests. Previously, we iden-
tified SC265 and Segaolane as resistant and susceptible genotypes,
respectively to greenbugs, Schizaphis graminum (Grover et al., 2019).
Recently, we found that SC265 also provides enhanced resistance to SCA
and significantly diminished aphid feeding from the phloem sap (Grover
et al.,, 2020; Grover et al., 2022). In our recent review (Zogli et al.,
2020a), we emphasized the importance of “omic” approaches to capture
the dynamic changes occurring in plants upon insect attack. Proteomics
based assessment of insect-plant interactions (Coppola et al., 2013;
Duceppe et al., 2012; Guan et al., 2015; Muneer et al., 2018; Truong
et al., 2015; Ferry et al., 2011) have been reported. Besides using
2-dimensional gel electrophoresis (2DGE) and mass spectrometry (MS)
for protein profiling, recent innovations like tandem mass tag (TMT) of
proteins followed by MS/MS, has been used to study plant-insect in-
teractions (Wu et al., 2019; Zhang et al., 2019). These techniques pro-
vide great opportunities to dissect the complex plant-insect molecular
networks (Zogli et al., 2020a). To investigate the plant defense responses
in sorghum SC265 against SCA, TMT-plex proteomics technique was
utilized to profile the proteome of the sorghum genotype at early and
late-time points. The Electrical Penetration Graph (EPG) technique is a
robust tool that could be utilized to understand the effects of plant
resistance on aphid feeding (Zogli et al., 2020a; Grover et al., 2019;
Tjallingii, 1985; Tetreault et al., 2019; Varsani et al., 2019) and thus, the
proteome dataset was further validated using the EPG technique to
understand the overall defense status of sorghum to SCA. The proteome
profiling of SC265 after SCA infestation at days 1 and 7 revealed the
suppression of plant defense-related proteins and upregulation of plant
defense and signaling-related proteins, respectively. Furthermore, EPG
data analyses revealed that SCA spent a significantly longer time in
phloem phase of SC265 plants infested with SCA for 1 day and lesser
time in phloem phase of SC265 plants infested with SCA for 7 days,
compared to their respective control plants.

2. Materials and methods
2.1. Plants and insects

Sorghum NAM founder line, SC265, was obtained from USDA-GRIN
global germplasm, USA. The seeds for this line were further propagated
at the University of Nebraska-Lincoln greenhouse. For experiments, the
seeds were grown Cone-Tainers (Ray Leach SC10; Stuewe & Sons, Inc.,
Tangent, OR) which were filled with soil mixed with vermiculite and
perlite (PRO-MIX BX BIOFUNGICIDE + MYCORRHIZAE, Premier Tech
Horticulture Ltd., Canada) in the greenhouse. The greenhouse condi-
tions were set to be 16-h-light/8-h-dark photoperiod, 25 °C, and 50-60%
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relative humidity. For all the experiments, two-week-old plants (3-leaf
stage (Vanderlip and Reeves, 1972)) were used. Plants were watered
regularly and fertigated once in a week.

Sugarcane aphid colony was founded from a single wingless aphid
collected from sorghum fields at the Louisiana State Agricultural Center
Dean Lee Research Station, Alexandria, LA, in July 2014. A single par-
thenogenic female from the above colony was reared on susceptible
sorghum genotype, BCK60 in the growth chamber (Thermo Scientific).
The growth chamber conditions were 16:8 h light: dark cycle and tem-
peratures were maintained at 25°C. BCK60 plants were grown in
greenhouse till panicle initiation growth stage (Vanderlip and Reeves,
1972) and replaced with degenerated plants in growth chamber.

2.2. SCA growth assay and infestation setup

Two-week-old sorghum plants were infested with 5 adult apterous
aphids. Plants were covered with tubular clear plastic cages to avoid
aphid escape. The cages were ventilated with organdy fabric on the sides
and top of cage for proper aeration. The cages were removed and aphids
including both nymphs and adults, were counted to see the effect of
sorghum SC265 genotype on aphid reproduction on each day for next 7
days.

For proteome profiling, the first fully leaf of SC265 plants from the
top were infested with 10 adult aphids and clip caged. The leaf samples
were collected from the clip-caged area after 1 and 7 days of infestation
after carefully removing the aphids. For controls, plants were also clip
caged with no aphids. For collection of samples after 7 days, clip cages
were removed from the plants and covered with clear plastic cages to
avoid aphid crowding in one area of the plant. We collected three bio-
logical replicates per treatment and each biological replicate (~150 mg)
consisted of leaf samples from three plants after carefully removing the
aphids from the plants using fine paint brush. The samples were
immediately flash frozen in the liquid nitrogen and stored at — 80 °C
until further use.

2.3. Protein extraction, digestion and TMT10plex labeling

Proteins from sorghum leaves were extracted according to (Zogli
et al., 2020b) then redissolved in 8 M Urea, 0.1 M tris HCl, pH 7.6
containing 5mM DTT and 1x complete, EDTA-free Protease Inhibitor
Cocktail (Roche, Mannheim, Germany). Protein amounts were quanti-
fied using the CB-X™ protein assay (G-Biosciences, St Louis, MO) and
160 pg of each sample was reduced at 37 °C for 2 h and then alkylated
with 15 mM iodoacetamide (30 min at RT in darkness), then quenched
with an equimolar amount of DTT. Samples were diluted to 4 M urea and
digested with 3.2 ug Lys-C (1:50 enzyme: substrate (E:S)) at 25 °C for
8 h. The urea was then diluted to 1 M and trypsin digestion carried out
for 16 h at a 1:50 ratio E:S. A further aliquot of trypsin (1:100 E:S) was
added and digestion carried out for a further 4 h. Digests were acidified
with 20% TFA to pH 3, then desalted using 50 mg Sep-Pak® C18
reverse-phase SPE columns (Waters Corp, Milford, MA). Eluted samples
were dried down and redissolved in 100 mM TEAB. An additional
sample mix of all 12 samples was made to act as a pooled channel
(labeled with 126) between the two TMT sets. Seven samples for each set
were labeled using TMT-10-plex reagent (ThermoFisher Scientific). For
each sample, 70 ug of desalted peptides was labeled with 400 pg of TMT
10-plex reagent. The samples were combined into two 7-plex (126,
127N, 127 C, 128N, 128 C, 129 N, 129 C) experiments, acidified to 1%
formic acid and desalted using 50 mg Sep-Pak® C18 reverse-phase SPE
columns (Waters Corp, Milford, MA). 200pg of each set was
sub-fractionated offline into 96 fractions using high pH reverse phase
C18 chromatography (ACQUITY UPLC® BEH™ (18, 1.7um,
2.1 x100 mm, Waters Corp) at pH 10.0 and then recombined to give a
total of 12 fractions (Yang et al., 2012).
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2.4. LC-MS/MS analysis

Each fraction was analyzed by LC-MS/MS on an RSLCnano system
(ThermoFisher Scientific) coupled to a Q-Exactive HF mass spectrometer
(ThermoFisher Scientific). The samples were first injected onto a trap
column (Acclaim PepMap™ 100, 75 um x 2 cm, ThermoFisher Scienti-
fic) for 3.0 min at a flow rate of 5 uL./min, 1.5% acetonitrile, 0.2% formic
acid before switching in line with the main column. Separation was
performed on a C18 nano column (Acquity UPLC® M-class, Peptide
CSH™ 130A, 1.7 um, 75 um x 250 mm, Waters Corp) at 260 nL/min
with a linear gradient from 5% to 35% over 96 min. The LC aqueous
mobile phase contained 0.1% (v/v) formic acid in water and the organic
mobile phase contained 0.1% (v/v) formic acid in 80% (v/v) acetoni-
trile. Mass spectra for the eluted peptides were acquired on a Q Exactive
HF mass spectrometer in data-dependent mode using a mass range of m/
z 375-1500, resolution 120,000, AGC target 3 x 106, maximum injec-
tion time 60 ms for the MS1 peptide measurements. Data-dependent
MS2 spectra were acquired by HCD as a Top20 experiment with a
normalized collision energy (NCE) set at 33%, AGC target set to 1 x 10°,
45,000 resolution, intensity threshold 1 x 10° and a maximum injection
time of 86 ms. Dynamic exclusion was set at 45s and the isolation
window set to 1.2m/z to reduce co-isolation.

2.5. Electrical penetration graph

To determine whether SC265 early and late defenses affects SCA
feeding behavior, we preinfested the SC265 plants for 1 day and 7 days
and further used for EPG recordings. Two-week-old plants were infested
with 10 apterous adult aphids using a clip-cage as previously described
(Grover et al., 2020; Varsani et al., 2019). The control plants were also
clip-caged without aphids to avoid any variation. After day 1, aphids
were carefully removed from plants with a fine paint brush and the
plants were used for the EPG recording. For 7-day treatment plants,
clip-cages were removed after two days of infestation and then caged
with tubular clear plastic ventilated with organdy fabric on the top and
sides. Similarly, as for day 1, aphids were carefully removed from the
plants with a fine paint brush after 7 days of infestation, and plants were
used for the EPG recordings.

The adult apterous aphids used for EPG recordings were starved for
one hour prior to the start of the experiment. The aphid wiring and
experimental procedure were followed as described in (Nalam et al.,
2018). After wiring, one single aphid was placed in the third fully
developed leaf in the middle of the adaxial lamina in each of the potted
SC265 genotype plants for each treatment. Subsequently, a stiff copper
wire was introduced into the pot close to the potted plant. Feeding
behavior and EPG recording was measured by a Giga-8 EPG model (EPG
Systems, Wageningen, The Netherlands) with a 10° Q resistance
amplifier that was connected to each of the plant electrode and an
adjustable plant voltage were used for measuring feeding behavior of
SCA on SC265 genotype. Both insects and plants were contained in a
Faraday cage to avoid external electrical noise. Recordings were per-
formed in eight plants (eight channels) at the same time and during 8 h
under constant light at 22-24 °C and 40-45% RH. In total, we analyzed
14-15 replicates for each treatment. EPG acquisition software (Stylet™,
EPG Systems, Wageningen, The Netherlands) was used to record
waveforms of SCA feeding on sorghum plants. Seven categorized EPG
parameters were considered in this analysis: pathway phase, xylem
phase, sieve elements phase, non-probing phase, time to first probe, time
to first sieve element phase and number of potential drops.

2.6. Statistical analyses

The SCA growth assay data were analyzed using mixed model ana-
lyses and replications were considered as random effects (PROC GLIM-
MIX, SAS 9.3, SAS Institute). One-way analysis of variance (ANOVA)
was used to compare the number of aphids at different time points. For
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EPG data, non-parametric Kruskal-Wallis test was used to compare the
duration of different feeding parameters/phases among different treat-
ments using PROC NPAR1IWAY procedure, considering the non-
normally distributed data.

For proteomics study, data were analyzed in Proteome Discoverer
2.4 software (ThermoFisher Scientific) connected to Mascot 2.6.1
database search engine (Perkins et al., 1999) (Matrix Science), which
searched the common contaminants database cRAP (116 entries, www.
theGPM.org) and the SbicolorRT 2.1 database (https://phytozome-next.
jgi.doe.gov/info/SbicolorRTx430_v2_1). Methionine oxidation, protein
N-terminal acetylation, asparagine/glutamine deamidation, cysteine
carbamidomethylation were set as variable modifications, whilst
TMT10plex (K) and TMT10plex (N-term) were specified as fixed modi-
fications. A maximum of two trypsin missed cleavages were permitted
and the precursor and fragment mass tolerances were set to 10 ppm and
0.06 Da, respectively. Peptides were validated by Percolator with a 0.01
posterior error probability (PEP) threshold. The data were searched
using a decoy database to set the false discovery (FDR) rate to 1% (high
confidence). The protein quantification was processed using the Re-
porter Ion Quantifier node in Proteome Discoverer with the co-isolation
threshold set to 50% and the average S/N to 10. The peptides were
quantified using the peak intensity of the reporter ion in the MS2
spectrum. The peak abundance was normalized for differences in sample
loading using total peptide amount where the peptide group abundances
are summed for each sample and the maximum sum across all runs is
determined. The pooled sample was used to normalize each TMT
experiment based on the same sample. The protein ratios, expressed as
logz fold change, are calculated as the median of all possible pairwise
peptide ratios calculated between replicates for each sample. To
compensate for missing values in some of the replicates, the low abun-
dance resampling imputation mode was selected. The significance of
differential expression is tested using a t-test, which provides P-values
for all the calculated ratios. The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium via the PRIDE
(Perez-Riverol et al., 2019) partner repository with the dataset identifier
PXD029691. For functional annotation, enrichment analysis was per-
formed using AgriGO gene ontology analysis tools (Du et al., 2010) to
identify the enriched GO terms.

3. Results
3.1. SCA growth rate is higher at early time points of infestation

The level of plant defenses is correlated with the insect growth and
survival on the plants. Based on the aphid count of each day, we
measured the aphid rate of increase per day on SC265 genotype for next
7 days. Our results showed that the highest rate of increase for SCA was
found on first two days of aphid infestation and later it decreases
(Fig. 1). These results suggested induced plant defenses from SC265 may
interfere with the reproductive capacity of SCA.

3.2. Identification and enrichment analysis of differentially expressed
proteins

Proteomics analysis was used to identify the proteins potentially
involved in SC265 defenses against SCA at early and late time points.
Proteome profiling of SC265 at day 1 and day 7 after aphid infestation
identified and quantified a total of 4211 sorghum proteins. Out of these
4211 proteins, 158 proteins were identified as differentially expressed
proteins (DEPs) on both days using a log, fold change Infected/Control
(logoFC (Infested/Control)) and an adjusted P-value < 0.05 cutoff
criteria. A principal component analysis of 158 proteins was performed
where PC1 accounted for 48.76% of the variance, separating the day 1
and day 7 DEPs and PC2 accounted for 21.52% of the variance, which
could not separate the control and SCA infested samples on day 1, but
partially separated the treatments on day 7 (Fig. 2a). A total of 41 and 59
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Fig. 1. Sugarcane aphid (SCA) rate of increase was higher on first two days
after infestation. Total number of aphids (adults and nymphs pooled together)
per SC265 plant counted for 7 days after infestation of two-week-old sorghum
plants with 5 adult apterous aphids per plant (n = 11). All the infested plants
were contained in cages. Different letters indicate significant difference be-
tween aphid rate of increase on different days (P < 0.05). Error bars repre-
sent + SEM.

proteins were found upregulated and downregulated, respectively on
day 1 (Fig. 2b). On day 7, a total of 59 and 13 proteins were found
upregulated and downregulated, respectively. There were 13 proteins
common in with the downregulated proteins on day 1 and the proteins
upregulated on day 7. Enrichment analysis revealed that most of the
upregulated proteins on day 1 are related to peptide biosynthetic pro-
cess, amide biosynthetic process, cellular amide metabolic process,
organonitrogen compound biosynthetic process, organonitrogen com-
pound metabolic process (Table 1). Enrichment analysis of down-
regulated proteins on day 1 revealed that most of the proteins have
functions related to stress response, carbohydrate metabolic process,
hydrolase activity and catalytic activity. However, upregulated proteins
on day 7 have functions related to stress response, single-organism
metabolic process and lipid metabolic process. These results suggested
that SCA feeding remodels the sorghum proteome differently at early
and late time points.

3.3. SCA feeding suppressed plant defense, signal transduction, oxidative
stress related and secondary metabolism proteins at early time point

The pathogenesis-related ~ proteins SbiRTX430.01G421600,
SbiRTX430.01G421000, SbiRTX430.02G024000 and SbiRTX430.
06G210100 were suppressed by SCA feeding at 1 day (Fig. 3a). Also, SCA
feeding suppressed few defense-related proteins, SbiRTX430.06G008000,
SbiRTX430.05G196500, SbiRTX430.
05G231300, SbiRTX430.04G270100, which are a cysteine proteinase,
serine carboxypeptidase-like 27, PATATIN-like protein 4, eukaryotic
aspartyl protease, respectively (Fig. 3a).

Dehydrins are believed to protect cellular components from dehy-
dration stress (Hundertmark et al., 2011). One dehydrin protein,
SbiRTX430.09G120700, was also found to be downregulated.
Cysteine-rich repeat secretory proteins are known to be involved in
signaling in response to stress conditions (Shingaki-Wells et al., 2011;
Raineri et al., 2015). We found downregulation of protein,
SbiRTX430.01G439500, homolog of Cysteine-rich repeat secretory
proteins after day 1. Other signaling related proteins,
SbiRTX430.07G095400 (cysteine-rich receptor-like protein kinase),
SbiRTX430.06G006100 (Zinc finger C3HC4-type RING family protein),
SbiRTX430.05G084000 (zinc-binding dehydrogenase family protein)
were also suppressed by SCA feeding (Fig. 3b). Other downregulated
proteins,  SbiRTX430.02G356300 and  SbiRTX430.01G149200,
belonging to the osmotin family that are secretory in nature and
responsive to abiotic/biotic stress, therefore, is considered a PR protein
(Abdin et al., 2011). SbiRTX430.06G105900, homolog of Arabidopsis
AT2G14095, is involved in cell death program (Olvera-Carrillo et al.,
2015). SbiRTX430.02G143200, homolog of dynamin-like protein,
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Fig. 2. (a) Principal component analysis (PCA)
of all the 158 proteins expressed differentially
on at least one day. Sugarcane aphid (SCA)

A uninfested plants and SCA infested samples
were represented as different colors and
different days as different shapes. (b) Venn di-
0.3 agram of upregulated and downregulated
A A differentially expressed proteins detected in
°® Treatment aphid infested relative to control (aphid unin-
f\; ® & ® Control fested) in SC265 plants after day 1 and day 7 of
& ® sca SCA infestation. Numbers within regions in
2 0.01 ® venn diagram indicate common and unique
Q ® proteins within each sector.
3} | Day
P~ A ® 1
0.3 4 A
-0.6 1 A
-0'.4 -OI.Z 0:0 OTZ 0?4
PC1 (48.76%)
(b)
Downregulated DEP Upregulated DEP
(D1) D7)
Upregulated DEP Downregulated DEP
(D1) (D7)

associated with programmed cell death was also suppressed by aphid
infestation (Tang et al., 2006). SbiRTX430.03G443500, homolog of
Secl4p-like phosphatidylinositol transfer family protein, was also
downregulated. Secl4 is crucial for coordinating the lipid signaling
interface with innate plant immunity responses (Huang et al., 1861).
GDSL-like lipases are known to play role in plant immune responses to
pathogens (Lai et al., 2017). SbiRTX430.08G083200, a GDSL-like
Lipase, was found to be down regulated during aphid infestation. The
early suppression of immune response-related proteins may suggest that
SCA secretes suppressors of plant immune responsive proteins during
the early stages of aphid feeding.

3.4. SCA feeding decreased the cell wall and amino acid protein
abundance at one day of aphid infestation

SCA feeding also suppressed the proteins related to amino acid
metabolism, SbiRTX430.01G120500 (glutamine synthase) and
SbiRTX430.01G268300 (alanine aminotransferase 2) (Fig. 3b). Tyrosine
transaminase protein SbiRTX430.02G041500 was also found to be
downregulated. Besides affecting amino acid metabolism, glutamate
also triggers calcium based long-distance defense signals via the phloem
(Toyota et al., 2018). SCA feeding also suppressed cell-wall related
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proteins such as SbiRTX430.10G050500, proline-rich cell wall
protein-like (Fig. 4a). Chitinases, SbiRTX430.02G056100,
SbiRTX430.02G056000, SbiRTX430.05G087200, were also down-

regulated. Beta-1,3-glucanase proteins, SbiRTX430.08G157900,
SbiRTX430.03G455000, SbiRTX430.03G454500, SbiRTX430.
02G332500 were also  suppresssd by SCA  feeding.

SbiRTX430.06G226500, homolog of Arabidopsis PICC, was found to be
downregulated, which is crucial for callose deposition (Wang et al.,
2019). Peroxidases, SbiRTX430.10G172600 and SbiRTX
430.02G239000 were also downregulated. SbiRTX
430.01G217500, its homolog in rice belongs to pectin lyase family,
confers cold tolerance to plants (Xiao et al, 2018).
SbiRTX430.08G202700 homolog of AT5G40010, is known to act as
plastidial transporter of precursors for lignin synthesis (Vahabi et al.,
2015). The protein, SbiRTX430.10G182700, plant L-ascorbate oxidase
was also found to be downregulated after 1 day of infestation. Another
protein related to oxidative stress, NADPH: quinone oxidoreductase,
SbiRTX430.03G462400, was also downregulated (Fig. 4a). SCA feeding
suppressed  three proteins in the flavonoid pathway,
SbiRTX430.03G450700 and SbiRTX430.01G331800, and
SbiRTX430.03G112200, which were a leucoanthocyanidin dioxygenase,
flavonol synthase/flavanone 3-hydroxylase and isoflavone reductase,
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Table 1

Plant Science 320 (2022) 111289

Enrichment analysis of significantly enriched PFAM domains, KEGG metabolic pathways, and molecular function GO terms among differentially expressed proteins
(DEPs). P-value and false discovery rates (FDR) are also listed in the table. Significant GO terms are reported here.

GO terms Description Number of GO terms in input list ~ Number of GO terms in reference genome  P-value FDR
Enrichment analysis of upregulated DEPs at day 1

G0:0043043  peptide biosynthetic process 15 428 1.5E-17 4.4E-16
G0:0043604  amide biosynthetic process 15 428 1.5E-17 4.4E-16
GO:0043603  cellular amide metabolic process 15 442 2.3E-17 4.4E-16
GO0:0006518  peptide metabolic process 15 438 2E-17 4.4E-16
GO:0006412  translation 15 424 1.3E-17 4.4E-16
GO0:1901566  organonitrogen compound biosynthetic process 16 634 1.2E-16 1.8E-15
GO0:1901564  organonitrogen compound metabolic process 16 825 6.7E-15 9.1E-14
G0:0044271  cellular nitrogen compound biosynthetic process 16 1694 3.7E-10 4.4E-09
G0:0034645  cellular macromolecule biosynthetic process 15 1721 5.9E-09 5.8E-08
GO:0009059  macromolecule biosynthetic process 15 1723 6E-09 5.8E-08
GO0:0010467  gene expression 15 1752 7.6E-09 6.6E-08
G0:0044249  cellular biosynthetic process 16 2124 1E-08 8.2E-08
GO:1901576  organic substance biosynthetic process 16 2173 1.4E-08 1.1E-07
G0:0034641  cellular nitrogen compound metabolic process 16 2276 2.8E-08 1.8E-07
G0:0009058  biosynthetic process 16 2276 2.8E-08 1.8E-07
G0:0006807  nitrogen compound metabolic process 16 2439 7.7E-08 4.6E-07
GO:0044267  cellular protein metabolic process 15 2145 1.2E-07 6.7E-07
G0:0019538  protein metabolic process 15 2595 1.5E-06 7.9E-06
GO0:0044260  cellular macromolecule metabolic process 15 3759 0.00016 0.00081
G0:0009987  cellular process 18 5485 0.00023 0.0011
G0:0044237  cellular metabolic process 16 4625 0.00046 0.0021
G0:0043170  macromolecule metabolic process 15 4242 0.00067 0.0029
GO:0071704  organic substance metabolic process 17 5560 0.0012 0.0049
GO:0044238  primary metabolic process 16 5300 0.0024 0.0095
G0:0003735  structural constituent of ribosome 14 297 4.9E-18 2.7E-17
GO0:0005198  structural molecule activity 14 316 1.1E-17 3.1E-17
GO:0005840  ribosome 14 295 4.5E-18 2E-16
G0:1990904  ribonucleoprotein complex 14 347 4E-17 6.1E-16
G0:0030529 intracellular ribonucleoprotein complex 14 347 4E-17 6.1E-16
GO:0043232 intracellular non-membrane-bounded organelle 14 538 1.5E-14 1.3E-13
G0:0043228  non-membrane-bounded organelle 14 538 1.5E-14 1.3E-13
G0:0044444  cytoplasmic part 14 666 2.6E-13 1.9E-12
GO0:0005737 cytoplasm 14 795 2.7E-12 1.8E-11
GO:0032991  macromolecular complex 14 989 4.9E-11 2.8E-10
G0:0005623  cell 16 1999 4.2E-09 1.9E-08
GO:0044464  cell part 16 1999 4.2E-09 1.9E-08
GO:0043226  organelle 14 1423 5.7E-09 2.2E-08
G0:0043229  intracellular organelle 14 1421 5.6E-09 2.2E-08
GO:0005622  intracellular 15 1895 2.2E-08 7.8E-08
GO0:0044424  intracellular part 14 1815 1.3E-07 4.1E-07
Enrichment analysis of downregulated DEPs at day 1

GO:0006950  response to stress 7 483 0.00014 0.0057
G0:0005975  carbohydrate metabolic process 7 607 0.00055 0.011
GO0:0050896  response to stimulus 8 872 0.00094 0.013
G0:0016798  hydrolase activity, acting on glycosyl bonds 8 396 0.000004  0.00033
G0:0004553  hydrolase activity, hydrolyzing O-glycosyl compounds 7 363 0.000024  0.00096
GO0:0016787  hydrolase activity 13 2042 0.00062 0.017
G0:0003824  catalytic activity 26 6982 0.0019 0.038
Enrichment analysis of upregulated DEPs at day 7

GO:0006950 response to stress 8 483 0.000017 0.00043
GO:0044710  single-organism metabolic process 14 2199 0.00035 0.0044
GO0:0050896  response to stimulus 8 872 0.00094 0.008
GO0:0006629  lipid metabolic process 5 424 0.0034 0.021

respectively (Fig. 4b).

3.5. SCA feeding induced proteins are mostly related to photosynthesis
and plant growth at one day of aphid infestation

We found very few proteins related to plant defense and signaling after
day 1 of SCA infestation. The proteins related to photosynthesis,
SbiRTX430.06G271700, SbiRTX430.07G096800 (electron transport
chain), SbiRTX430.03G140800 (chlorophyll biosynthesis),
SbiRTX430.04G335800  (photosynthetic  efficiency), = SbiRTX430.
01G030000 (number of chloroplast and leaf pigment) were found to be
upregulated (Fig. 5a). On the other hand, chlorophyll hydrolyzing en-
zymes, SbiRTX430.08G141900 and SbiRTX430.03G024700 were also
found to be upregulated. SbiRTX430.02G180800, homolog of RPL36aA in
Arabidopsis, is important for leaf development (Casanova-Saez et al.,

2014). SbiRTX430.07G019600, homolog of Arabidopsis RPS13A (Ito
et al., 2000), is involved in vascular network development. SCA feeding
upregulates the SbiRTX430.02G286200, acyl career protein 2 involved in
fatty acid biosynthesis. Homolog of SbiRTX430.09G010900 in Arabidopsis
is chloroplastic protein involved in thylakoid FtsH complex (Lopes et al.,
2018). SbiRTX430.10G116600, homolog of Arabidopsis CURT1a is
involved in the chloroplast thylakoid membrane transport, was also found
to be upregulated. SCA feeding also induced the thioredoxin family pro-
tein, SbiRTX430.10G054300. SbiRTX430.04G135400 is a homolog of
plasma-membrane associated cation-binding protein 1 (PCaP1) in Arabi-
dopsis. PCaP1 binds through calmodulin in calcium dependent manner, so
it could be involved in regulating intracellular signaling (Huang et al.,
2017). SbiRTX430.06G174800 is a member of the pentatricopeptide
repeat (PPR) protein family, which known to play role under stress con-
ditions (Chen et al., 2018). SbiRTX430.03G452700 is a RNA binding
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Fig. 3. Heatmap analysis of differentially expressed (a) pathogenesis related proteins, protease inhibitors and oxylipins, and (b) stress-signaling related proteins in
SC265 plants after day 1 (D1) and day 7 (D7) of sugarcane aphid (SCA) infestation. Color key represents the Z-score standardized values. Asterisks in the cells
represent significant differences compared to the respective control based on the adjusted P-value < 0.05.

protein, and also a positive regulator of SA immunity (Qi et al., 2010). The
few proteins related to defense, SbiRTX430.05G196100 (oxylipin
biosynthesis) and SbiRTX430.09G06620, homolog of Arabidopsis breast
basic conserved 1, involved in MAPK signaling, were found upregulated.

3.6. SC265 exhibits upregulation of pathogenesis-related proteins,
oxylipins, and protease inhibitors after 7 days of aphid feeding

Consistent with the phytohormonal data (Grover et al., 2022), pro-
teomics profiling also exhibited enhanced accumulation of SA-marker
proteins such as pathogenesis-related proteins after SCA feeding
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Fig. 4. Heatmap of differentially expressed proteins related to (a) cell wall metabolism and oxidative stress and (b) secondary metabolism related proteins in SC265
plants after day 1 (D1) and day 7 (D7) of sugarcane aphid (SCA) infestation. Color key represents the Z-score standardized values. Asterisks in the cells represent
significant differences compared to the respective control based on the adjusted P-value < 0.05.

(Fig. 3a). SA is known to promote the resistance to aphids and patho-
gens, which also elevates the expression level of PR genes (Flor-
encio-Ortiz et al., 2020; Johnson et al., 2020; Shah, 2003). Sorghum
protein  SbiRTX430.10G021800, a homolog of Arabidopsis
pathogenesis-related protein, was found to be upregulated in SC265
after 7 days of infestation. Four other proteins, SbiRTX430.01G421000,
SbiRTX430.01G421300,  SbiRTX430.01G421200, and  SbiRTX
430.01G421500 found to be upregulated are the homologs of
pathogenesis-related proteins in rice. SA has also been found to be
upregulated in SC265 after 7 days of SCA infestation (Grover et al.,

2022). The upregulation of these proteins is in alignment with upregu-
lated SA levels upon SCA infestation.

Oxylipins are defense signaling molecules in plants (Eckardt, 2008).
The biosynthesis of oxylipins involves the formation of fatty acid hy-
droperoxides by lipoxygenases (Mosblech et al., 2009). SCA feeding led
to the upregulation of SbiRTX430.01G129400 and
SbiRTX430.03G416000, which are homologs of Atlox1 (lipoxygenase 1)
(Fig. 3a). Upon insect attack, plants activate phospholipases, which
release fatty acids from plasma membranes including linolenic acid, the
precursor of JA and other oxylipins (Shah, 2014; Ruan et al., 2019). SCA
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Fig. 5. Heatmap of differentially expressed proteins (a) photosynthesis and plant growth related, and (b) abscisic acid related proteins in SC265 plants after day 1
(D1) and day 7 (D7) of sugarcane aphid (SCA) infestation. Color key represents the Z-score standardized values. Asterisks in the cells represent significant differences

compared to the respective control based on the adjusted P-value < 0.05.

feeding triggered the expression of two more phospholipases,
SbiRTX430.09G015400 (Chen et al., 2011) and SbiRTX430.03G465700
that are known to be involved JA synthesis (Shah, 2014; Ellinger et al.,
2010). SbiRTX430.10G197000, SPX1 gene, may also be involved in
phospholipase activity. The proteins encoded by the gene,
SbiRTX430.05G196400 (homolog of Arabidopsis PLA II A) that is not
known to produce JA (Yang et al., 2007) was also upregulated.
Protease inhibitors (PPIs) are the small proteins that are part of plant
defense responses to insects (Solomon et al., 1999; Hartl et al., 2011).
PPIs are well known to inhibit insect growth by interfering with diges-
tive physiology of chewing type insects through preventing digestion of
dietary proteins (Johnson et al., 1989; Vila et al., 2005), whereas PIs
might inhibit the secreted proteases present in aphid saliva/gut during
feeding (Furch et al., 2015; Losvik et al., 2018). After 7 days post
infestation (dpi), SC265 showed significant upregulation of five pro-
teases/protease inhibitors such as cystatin B (SbiRTX430.03G354400),
cysteine proteinases superfamily protein (SbiRTX430.06G008000),
PATATIN-like  protein 4  (SbiRTX430.05G231300),  serine
carboxypeptidase-like 27 (SbiRTX430.05G196500), serine protease in-
hibitor, potato inhibitor I-type family protein (SbiRTX430.09G009700)
(Fig. 3a). Therefore, the upregulation of PPIs 7 dpi may be a defense
mechanism used by the resistant sorghum genotype to deal with

prolonged feeding by aphids.

3.7. SCA feeding upregulated stress signaling-related proteins and cell
wall metabolism after 7 days of aphid infestation

Calcium sensor proteins such as calmodul2clin play an important
role in SA accumulation (Wang et al., 2011; Zhang et al., 2014). On day
7 of SCA infestation, we found upregulation of SbiRTX430.05G022600,
homolog of Arabidopsis calmodulin 5 (AtCAMS5), which enhances the
activity of calmodulin binding partners (Fig. 3b) (Lv et al., 2019). The
second most upregulated protein on day 7, SbiRTX430.02G093500 has
been annotated as Mannose-binding lectin superfamily protein (Fig. 3b),
which has been known to activate SA pathway and downstream defenses
in pepper (Hwang and Hwang, 2011). We found three upregulated
proteins,  SbiRTX430.06G006000, SbiRTX430.06G006100, and
SbiRTX430.06G010500, belonging to Zinc finger (C3HC4-type FRING
finger) family proteins. SbiRTX430.01G216200 was also induced upon
SCA infestation, annotated as plant basic secretory protein (BSP) family
protein, known to travel from roots to shoots and vice-versa through
phloem (Thieme et al., 2015). Several proteins have been reported to be
activated or translocated in the presence of Ca?" including cytosolic
phospholipase A2 (cPLA2), phospholipase C (PLC), calmodulin etc. de
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Silva et al., (2011). Two upregulated proteins found in this study,
SbiRTX430.02G141000 and SbiRTX430.02G313300, belong to
Calcium-dependent lipid-binding (CaLB domain) family, which might be
important for signal transduction. Another upregulated protein,
SbiRTX430.01G385100 belongs to o-N-acetylglucosaminidase family,
involved in the hydrolysis of UDP-N-acetylglucosamine, important for
intracellular signaling in plants (Ronceret et al., 2008). Sugar residues in
proteoglycan complexes such as glucosamine and N-acetyl-glucosamine
carry important signaling and regulatory functions, present in cell walls
(Ronceret et al., 2008). We observed an upregulation of protein,
SbiRTX430.01G385100, o-N-acetyl-glucosaminidase, reported to be
involved in the catabolism of these sugar residues (Ronceret et al.,
2008).

SCA feeding modulates few proteins related to cell wall metabolism.
SCA feeding upregulates acyl transferase: SbiRTX430.06G021400,
glucan endo-1,3-f-glucosidase: SbiRTX430.01G469400 and
SbiRTX430.03G454800 (Fig. 4a). SbiRTX430.09G268800, homolog has
been annotated as Outer Mitochondrial membrane protein of 66 kDa in
Arabidopsis. Overexpression of AtOM66 led to increased SA content,
accelerated cell death rates and plants more tolerant to the biotrophic
pathogen, but more susceptible to the necrotrophic fungus (Zhang et al.,
2014).

3.8. SCA feeding for 7 days upregulated proteins involved in oxidative
metabolism, secondary metabolism and abscisic acid related proteins

Few proteins from phenylpropanoid pathway were upregulated after
SCA infestation (Fig. 4b). SbiRTX430.06G157300, phenyl ammonia
lyase, and two proteins, SbiRTX430.07G078300 and
SbiRTX430.06G015900, (pathway homologs of cinnamyl alcohol de-
hydrogenase 9, AtCAD9 gene), belonging to the phenylpropanoid group
of proteins, were also found to be upregulated. These enzymes catalyze
different hydroxylation and desaturation steps in plants for example
flavanone 3p-hydroxylase (F3H) in the biosynthesis of flavonoids, cat-
echins and anthocyanidins (Damme et al., 2008). In rice, this sorghum
protein is a homolog of flavanol synthase.  Another
SbiRTX430.02G220800 protein, which encodes for a flavonoid 3’-hy-
droxylase in Arabidopsis was found to be upregulated (Han et al., 2010).
Farnesyl diphosphate synthase 1, SbiRTX430.03G291400, was found to
be upregulated and is involved in synthesis of plant terpenoids. Another
protein, SbiRTX430.01G331800 was found to be induced after SCA
feeding, which represents 2-oxoglutarate (20G) and Fe (II)-dependent
oxygenase superfamily protein in Arabidopsis (AtDMR6).

Thioredoxins (Trxs) are known to be involved in plant tolerance of
oxidative stress. Trxs protect the plants from oxidative damage by
detoxification of lipid hydroperoxides and repair of oxidized proteins
through reductases (Santos and Rey, 2006). Thioredoxins,
SbiRTX430.01G425300 and SbiRTX430.06G032800 were found to be
upregulated (Fig. 4a), implicating the redox regulation in SCA response
to aphid feeding. Plant L-ascorbate oxidase (SbiRTX430.10G182700)
was also found to be upregulated in response to SCA infestation.

The protein SbiRTX430.07G182400, an ortholog of Arabidopsis
F1F0-ATPase inhibitor protein, is known to be involved in plant growth
and response to abscisic acid (Chen et al., 2020), was upregulated
(Fig. 5b). Also, SbiRTX430.06G083600, which is suggested to be
involved in abscisic acid signaling was also found to upregulated.
Another upregulated protein, AtCLO4 (Atlg70670), homolog of
SbiRTX430.10G111800, is a stress-responsive and caleosin-like protein
that is capable of binding to Ca?*, which also act as a negative regulator
of ABA (Kim et al., 2011). Other ABA dependent proteins such as DPP6
N-terminal domain-like transmembrane protein, SbiRTX
430.06G010600, were also found to be upregulated.
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3.9. SCA feeding suppressed proteins related to photosynthesis, growth
and development, and detoxification after 7 days of infestation

Glutathione-S-Transferases (GSTs) are antioxidant enzymes that
remove xenobiotic compounds and toxic metabolites (Gullner et al.,
2018). The GST proteins, SbiRTX430.01G543000 and
SbiRTX430.01G327200, were found to be downregulated in SC265 after
7 days of SCA infestation (Fig. 6). SbiRTX430.03G465000, an inner
envelope proteins of chloroplast that might be associated with
light-harvesting systems of the thylakoid membranes or release of stress
related factors (Kwon et al., 2013; Richardson et al., 2017; Mamaeva
et al., 2020) was also downregulated.

SCA feeding-suppressed protein, SbiRTX430.04G316400, a homolog
of AT3G50790 belonging to hydrolases family, is late embryogenesis
abundant (LEA) protein, which is also found to be involved in trichome
initiation (Morohashi and Grotewold, 2009). SCA feeding also impacts
the protein related to sugar metabolism. SbiRTX430.10G152700 en-
codes for glucan, water dikinase 1 and phosphoglucan, water dikinase,
which are chloroplastic enzymes that degrades the leaf starch (Pirone
et al,, 2017). SbiRTX430.10G199200 belongs to AAA-type ATPase
family proteins, which are responsible for diverse cellular activities of
cell physiology (Zhang et al., 2014) and this is annotated as nuclear pore
forming protein in Arabidopsis (Janskd et al., 2014).
SbiRTX430.03G302700 protein function is mainly related to signaling
and it functions to initiate signaling and provide tolerance against
abiotic stress in Arabidopsis (Guo et al., 2002). Another downregulated
protein, SbiRTX430.06G264500 is purine biosynthesis protein involved
in synthesis of precursors of cytokinins and secondary metabolites
(Berthomé et al., 2008). SbiRTX430.01G549700 is a glycerol kinase
protein important for glycolysis.

3.10. SCA spent more time feeding on SC265 plants that were preinfested
with SCA for one day

To determine whether the correlation exists between accumulation
of defense-associated proteins and SCA feeding behavior, we monitored
the feeding behavior of aphids on SC265 healthy and SCA-infested
plants for 1 and 7 days using the EPG technique (Supplemental
Fig. S1). We found significant differences in the total sieve element
phase (SEP) after 1-day of infestation compared with the non-infested
plants. SCA spent more time feeding on the phloem sap from SCA
infested plants for 1 day compared to control plants (Fig. 7a). Likewise,
SCA spent less time in non-probing activity in 1-day infested plants
compared to healthy plants. We did not find any significant differences
in the mean time spent by SCA in pathway, xylem phase, time to first
probe and time to first SEP (Fig. 7a & b). On the contrary, SCA spent less
mean time in SEP phase of SCA infested plants for 7 days compared to
the uninfested plants. Additionally, SCA spent significantly longer time
in the pathway phase and non-probing phase in the plants infested 7-
days prior the EGP recording (Fig. 7c). However, SCA reached the
sieve elements almost two times slower in SCA 7 days infested plants
compared to controls (Fig. 7d). However, there were no significant
differences found in the time spent by SCA in the xylem phase and time
to first probe.

4. Discussion

The present study provides a global analysis and overview of sor-
ghum proteome in response to SCA infestation. We utilized sorghum
resistant line, SC265, to understand the changes in sorghum physio-
logical mechanisms at the cellular level. Overall, we identified the DEPs
related to protease inhibitors, phospholipases, pathogenesis related
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Fig. 6. Heatmap of downregulated proteins in SC265 plants after 7 days of sugarcane aphid (SCA) infestation. Color key represents the Z-score standardized values.
Asterisks in the cells represent significant differences compared to the respective control based on the adjusted P-value < 0.05.
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proteins, signal transduction, calcium binding, zinc finger family pro-
teins, cell-wall metabolism, oxidative stress, and secondary metabolism.
Most of the defense signaling related proteins were suppressed at dayl
and induced at day 7. To validate the defense proteome trend, we uti-
lized the EPG technique using control and SCA-infested plants for one
day and seven days. Reduced phloem feeding in aphids has been often
associated with enhanced resistance to aphids in plants (Grover et al.,
2019; Tetreault et al., 2019; Varsani et al., 2019; Diaz-Montano et al.,

Time to first probe

Fig. 7. Mean time spent by sugarcane aphids
(SCA) for various feeding behavior activities
(total duration of pathway phase, xylem phase,
phloem phase, and non-probing phase) on
SC265 plants after (a) 1 day and (c) 7 day of
a SCA preinfestation. Mean time spent by SCA for
the first probe and to reach the first sieve
element phase on SC265 plants after (b) 1 day
and (d) 7 day of SCA pre-infestation. SCA
uninfested plants were used as the control
plants. Each value represents mean =+ SE

a (n = 13-15). Different letters above the bars

a represent significant differences from each
other (P < 0.05; Kruskal-Wallis test) in the time
spent by SCA for the indicated activity on
SC265 plants.

Time to first sieve
element phase

a

Time to first probe Time to first sieve

element phase

2007; Koch et al., 2015; Grover et al., 2020). We have previously shown
that greenbugs feeding and reproduction were lower in SC265 (Grover
et al., 2019). EPG data strongly indicates the suppression of plant de-
fenses at day 1 by enhanced SCA feeding in phloem phase of SCA pre-
infested plants, whereas plant defenses were upregulated on day 7 since
SCA spent lesser time in phloem phase of the SCA-infested plants for 7
days compared to control plants.

Proteomics analyses of SC265 showed the downregulation of several
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defense and signaling related proteins on day 1. Furthermore, SCA
feeding triggers JA levels at 1 hpi and 1 dpi, but JA-Ile only at 1 hpi
(Grover et al., 2022). The simultaneous occurrence of induction of JA-Ile
levels and suppression of defense and signaling related proteins in-
dicates the possibility of SCAs trying to suppress the plant defenses by
inducing JA-Ile levels. Previously, it was shown that the sorghum
resistant hybrid DKS 37-07 revealed higher expression of non-expressor
of pathogenesis-related gene 1 (NPR1) as well as gene encoding jasm-
onate ZIM-domain (JAZ) family, which act as JA repressors (Kiani and
Szczepaniec, 2018). Similarly, transcriptome analyses of sorghum sus-
ceptible line BCK60 showed the higher expression of genes involved in
JA synthesis and lower expression of pathogenesis-related genes as
compared to resistant line, RTx2783 (Tetreault et al., 2019). Our pro-
teomics  analyses  demonstrated the  downregulation of
pathogenesis-related proteins, protease inhibitors (PATATIN-like pro-
tein 4, serine carboxypeptidase-like 27, cysteine proteinases superfamily
protein), oxidative stress-protection (plant L-ascorbate oxidase, thio-
redoxin superfamily protein, NADPH:quinone oxidoreductase, peroxi-
dases) at 1 dpi. Moreover, SCA feeding also suppressed secondary
metabolism (flavonoid proteins) and several signaling related proteins.
In pepper, the proteomics analysis showed the suppression of defense
related proteins in response to aphids (Florencio-Ortiz et al., 2021). The
extensive crosstalk between the plant hormone signaling pathways not
only fine tunes the plant transcriptional network, but also manipulates
the resistance to herbivores (Johnson et al., 2020; Ma et al., 2020; Ruan
et al., 2019). It is also widely established that plant hormones such as
jasmonates can antagonize the SA based defense responses (Caarls et al.,
2015). These data clearly indicate that SCAs may trick the plants by
activating JA pathway, to suppress early plant defense responses.

Higher constitutive and induced SA levels in SC265 could be
responsible for providing defense against SCA (Grover et al., 2022).
Increased SA levels have been associated with enhanced resistance
against piercing-sucking type insects, which cause minimal injury while
feeding on plants (Moran and Thompson, 2001; Mohase and van der
Westhuizen, 2002; Li et al., 2006). One of the upregulated proteins at 1
dpi, RNA-binding protein-defense related 1, known to be a positive
regulator of SA immunity, has been shown to provide resistance to the
pathogen Pseudomonas syringae (Qi et al., 2010). At day 7, proteomics
analysis also showed the elevated expression of pathogenesis-related
(PR) proteins, which is in line with previously reported elevated SA
levels. Some oxylipin related proteins, such as phospholipases and lip-
oxygenases, were upregulated at 7 dpi, which are involved in providing
defenses whether or not they are involved in JA-mediated defenses. It is
more likely that upregulated oxylipin synthesis related proteins might
provide defense against SCA independent of the JA pathway because no
changes in JA/JA-Ile were observed for the time period. Lipoxygenases
have been divided into 9-and 13-LOX categories based on their ability to
incorporate oxygen at either C-9 or C-13 positions of fatty acid (Lia-
vonchanka and Feussner, 2006). Atlox1, 9-position specific locus which
does not lead to JA biosynthesis but known to report cell death responses
against microbial pathogens, was also found upregulated at 7 dpi
(Hwang and Hwang, 2011). Homolog of Arabidopsis PLA II A, which
was found upregulated at 7 dpi is not known to produce JA, but it
promotes cell death and differentially affecting resistance to different
pathogens (Camera et al., 2009). Intracellular phospholipase plays an
important role in oxylipin biosynthesis. SPX 1 protein was upregulated
at 7 dpi found to be induced by the overexpression of MYB transcription
factors that also binds with the cis elements of phospholipases gene
promoter in Arabidopsis (Nguyen et al., 2016).

Plant inter- and intracellular signaling is crucial for activating plant
defenses. For example, secondary messengers, Ca>* and reactive oxygen
species are known to fine-tune cellular signaling networks and activate
plant immunity to stress (Marcec et al., 2019). Zinc finger proteins also
play an important role in plant-pathogen interaction (Noman et al.,
2019). In this report, evidence suggests that SCA feeding triggered
several signaling proteins such as calmodulin, mannose binding lectin,
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calcium-dependent lipid binding and Zinc C3HC4-type RING finger
family proteins, which are known to be involved in plant defenses.
Moreover, plant L-ascorbate oxidase, which is involved in ROS meta-
bolism and plant defenses, was upregulated (Felton and Summers, 1993;
Pignocchi et al., 2003). Ascorbic acid is an antioxidant which detoxifies
the reactive oxygen species produced due to biotic/abiotic stress.
Ascorbate oxidase catalyzes the oxidation of ascorbic acid and converts
it into dehydroascorbate (Horemans et al., 2000). Oxidation of ascorbic
acid has been shown to induce defenses against root-knot nematodes by
activating JA and ethylene pathways and primed the plants with gen-
eration of hydrogen peroxide upon nematode infection (Singh et al.,
2020). C3HC4-type RING zinc finger genes are responsive to ascorbic
acid in Arabidopsis (Gao et al., 2011).

SCA feeding leads to upregulation of cell wall metabolism and stress
signaling-related proteins at day 7. Callose is an important defense
mechanism in plants for aphids and pathogens (Luna et al., 2011).
Callose deposition can occlude the sieve-elements of plants and reduce
the phloem sap access to aphids (Varsani et al., 2019). Aphid-induced
upregulation of callose-degrading f-1,3-glucanase genes can coun-
teract the callose defense mechanism (Kim et al., 2020). The Arabidopsis
homolog of SbiRTX430.03G454800 (B-1,3-glucanase) was found to be
upregulated at 7dpi, and is known to recognize nematode effector and
induce plant defenses (Hamamouch et al., 2012). SCA feeding upregu-
lated the glucan endo-1,3—p-glucosidase proteins on day 7, which could
be one of the aphid’s abilities to weaken the SC265 defenses or plant’s
trick to induce defenses. Another glucan endo-1,3-f-glucosidase,
SbiRTX430.01G469400 has been referred to as SA-induced cell wall
degradation enzyme in Arabidopsis (Coppola et al., 2018).
SbiRTX430.06G021400, annotated as HXXXD-type acyl-transferase
family protein, has been reported to be involved in cell wall metabolism
(Rautengarten et al., 2012) and differentiation of water-conducting
tracheary elements (Pyo et al., 2007). Moreover, PPIs are an important
component of plant evolutionarily customized defenses that can directly
affect the insect digestion system (Clemente et al., 2019; Singh et al.,
2020). Several PI proteins were found to be upregulated after 7 dpi of
SCA and it is plausible that oxylipins/SA might be involved in regulating
these proteins.

ABA is known to be mainly involved in abiotic stresses and has also
been associated with aphid herbivory (Hillwig et al., 2016; Studham and
Maclntosh, 2012; Danquah et al., 2014). Proteomics data showed the
upregulation of several ABA dependent and signaling proteins including
the negative regulators of ABA in SC265 at 7 dpi, which could explain
our finding of unaltered ABA hormone levels in SC265. In Arabidopsis,
green peach aphid (Myzus persicae) feeding triggers ABA responses that
suppress effective plant defenses (Hillwig et al., 2016). In soybean, ABA
responses has also been found induced in susceptible genotype after
soybean aphid infestation (Studham and MacIntosh, 2012). Similarly,
we have also observed higher ABA basal levels in SCA-susceptible line,
SC1345 (Grover et al., 2020). Some reports documented the importance
of ABA in activating the MYC arm of JA pathway and enhance the JA
based defenses (Vos et al., 2013; Long et al., 2019). However, this is
highly unlikely in the case of SCA-sorghum interactions because no
changes in JA levels were observed at 7 dpi (Grover et al., 2022).

Besides early signaling, SCA feeding also altered secondary meta-
bolism. Plant terpenoids have been known to play a role in plant-insect
interactions (Bhatia et al., 2015). Farnesyl diphosphate (FDP), a com-
mon substrate for the biosynthesis of an array of terpenoids, is synthe-
sized by the cytosolic mevalonic acid (MVA) pathway (Lombard and
Moreira, 2011). Overexpression of FPS1 in Arabidopsis led to premature
senescence in plants, but it is not evident that if elevated FDP also
altered the terpenoid profiles and how it affects aphid performance. In
our study, we have also observed the upregulation of protein,
SbiRTX430.03G291400 that encodes for FPS1 in Arabidopsis. Suppres-
sion of FPS genes triggers the genes related to JA pathway (Manzano
et al., 2016). Lignin biosynthetic pathway gene, cinnamyl alcohol de-
hydrogenase, AtCAD9, has been found induced in response to SCA
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infestation, which is expressed in vascular tissues (Kim et al., 2020).
Flavonoid pathway also seems to be induced upon SCA infestation.
Flavonoids can also deter insect growth, behavior and development
(War et al., 2012). SCA feeding also suppressed the protein which
degrade starch upon 7 days of infestation. It has been reported that green
peach aphid infestation of Arabidopsis led to increase in starch content
of plants, which explains the blockage of sugar export to the plant sinks
(Singh et al., 2011) and it can retard plant growth (Stettler et al., 2009).
Downregulation of AAA-type ATPase protein at 7 dpi also suggests an
aphid-induced reduced growth of plants.

In our study, the molecular shift of plant defense suppression at early
time points to defense activation at late time points is very intriguing
and crucial to understand in the future. Similar kind of trend has not
been reported before. Most of the studies conducted has been mainly
focused on single factors such as plant defense machinery or insect
elicitors. Though there are several papers published on insect effectors
showing their capability to suppress plant defenses (Furch et al., 2015;
Will et al., 2007; Bruessow et al., 2010; van Bel and Will, 2016), but the
duration of insect effectors efficacy has not been really studied at mul-
tiple time points. The insect cues consist of several ingredients with
different functions and how those ingredients interact with plant mo-
lecular machinery derive the outcome of plant-insect interactions.

5. Conclusion

In this study, we provide an overview of sorghum proteome
reprogramming in response to SCA attack. Overall, this research shows
that the resistance mechanism in SC265 results from the sequential in-
duction of defense pathways such as constitutive and induced levels of
SA, phospholipases, calcium signaling and zinc finger related proteins,
flavonoids, several proteinases, and protease inhibitors. In addition, SCA
feeding triggered the suppression of several defense related proteins at 1
dpi. This indicates the possibility of aphids using JA as a part of counter
defenses to plants. This aphid counterattack was only observed at early
time points after SCA infestation, suggesting that sorghum plants possess
the ability to adjust their defense response over time and regain control.
This scenario has not been reported before to the best of our knowledge
and needs to be explored. This study laid the foundation to understand
underlying molecular defense mechanisms to SCA and would also
contribute knowledge towards development of novel pest management
strategies by further validating the function of proteins identified in this
study.
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