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Abstract

We consider the T4 cubic nonlinear Schrédinger equation (NLS), which is energy-critical. We study the uncondi-
tional uniqueness of solutions to the NLS via the cubic Gross—Pitaevskii hierarchy, an uncommon method for NLS
analysis which is being explored [24, 35] and does not require the existence of a solution in Strichartz-type spaces.
We prove U-V multilinear estimates to replace the previously used Sobolev multilinear estimates. To incorporate
the weaker estimates, we work out new combinatorics from scratch and compute, for the first time, the time inte-
gration limits, in the recombined Duhamel-Born expansion. The new combinatorics and the U-V estimates then
seamlessly conclude the H ! unconditional uniqueness for the NLS under the infinite-hierarchy framework. This
work establishes a unified scheme to prove H'! uniqueness for the R3/R*/T3 /T4 energy-critical Gross—Pitaevskii
hierarchies and thus the corresponding NLS.
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2 X. Chen and J. Holmer

1. Introduction
The cubic nonlinear Schrodinger equation (NLS) in four dimensions
idu=—Au+|u®uin R x A, (1.1
u(0,x) = uo,

where A = R* or T4, is called energy-critical, because it is invariant under the H' scaling

1 r x
u(t,x) — uy(t,x) = /lu (/12, /l)
if A = R*. The large-datum global well-posedness of the defocusing case of equation (1.1) was first
proved for A = R* in [56], after the breakthrough on the defocusing R? quintic problem [3, 28, 33].
The argument was standardised in [42], in which the radial focusing R? quintic problem was addressed.
After that, the global well-posedness of the energy-critical defocusing T> quintic problem was creatively
settled in [36, 40], by partially invoking the R? result [28, 42]. Such a problem for equation (1.1)
when A = T* was then subsequently proved in [37, 43, 61]. The goal of this paper is to establish H'
unconditional uniqueness for equation (1.1) on T*.

Theorem 1.1. There is at most one C H1 ol CEO T]H solution’ to equation (1.1) on T*.2

Unconditional uniqueness is a fundamental concept raised by Kato [41].> These problems, even in
the H'-critical setting, are often overlooked, as solving them in R” after proving the well-posedness is
relatively simple.# For the NLS on T", such problems are delicate, as estimates on T", especially the
T" Strichartz estimates, are weaker than their R” counterparts. For example, for the R" case, one can
easily use the existence of a better solution in Strichartz spaces to yield unconditional uniqueness. But
such a technique does not work well in the T” case. In fact, Theorem 1.1 for the T> quintic case at H'
regularity was not known until recently [24].

To prove Theorem 1.1, we will use the cubic Gross—Pitaevskii (GP) hierarchy on T*, which is
uncommon in the analysis of the NLS and is being explored [24, 35]. Let E,lc denote the space of trace

class operators on L? (T*¥). The cubic GP hierarchy on T*is a sequence {yX) (1)} € &x>1C ([0, 7], E}C)
which satisfies the infinitely coupled hierarchy of equations

k k
0% = 3" [~y ® | £ 50 Y Trir [8 () = v0a1) v **0) (1.2)
= =

where by > 0 is some coupling constant and + denotes defocusing/focusing. Given any solution u of
equation (1.1), we generate a solution to equation (1.2) by letting

y® = |u (u|®F, (1.3)

in operator form, or

:»

y(k) txk,xk = u(t,x;)i (t,x}),

J=1
in kernel form, if we write X; = (x1,...,xx) € T**.

A C?O T H distributional solution is automatically a C[O 7] H N Cll0 T ! solution. We wrote the latter here because it

is a more direct space for equation (1.1).

2See also Theorem A.l for another format, closer to well-posedness theory, of Theorem 1.1; its proof shows that every
C?O 7] H)]C solution is also in X ! without using any previous well-posedness results.

3)According to C. Miao, Kato wrote a letter to him, accompanying a book, mentioning these unconditional-uniqueness problems
at critical settings one month before passing away.

4See, for example, [28, Section 16].
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The hierarchy (1.2) arises in the derivation of the NLS as an N — oo limit of quantum N-body
dynamics. It was first derived in the work of Erdds, Schlein and Yau [29, 30, 31] for the R3 defocusing
cubic case around 2005.5 They proved delicately that there is a unique solution to the R cubic GP
hierarchy in an H'-type space (unconditional uniqueness) in [29], with a sophisticated Feynman-graph
analysis. This first series of groundbreaking papers motivated a large amount of work.

In 2007, Klainerman and Machedon [47], inspired by [29, 46], proved the uniqueness of solutions
regarding the R? cubic GP hierarchy in a Strichartz-type space (conditional uniqueness). They proved a
collapsing-type estimate, which implies a multilinear estimate when applied to factorised solutions like
equation (1.3), to estimate the inhomogeneous term and provided a different combinatorial argument,
now called the Klainerman—Machedon (KM) board game, to combine the inhomogeneous terms, effec-
tively reducing their numbers. At that time, it was unknown how to prove that the limits coming from the
N-body dynamics are in Strichartz-type spaces, even though the solutions to equation (1.2) generated
by the R? cubic NLS naturally lie in both the H'-type space and the Strichartz-type space. Nonethe-
less, [47] has made the analysis of equation (1.2) approachable to partial-differential-equation analysts,
and the KM board game has been used in every work involving the hierarchy (1.2).¢ After Kirkpatrick,
Schlein and Staffilani [44] derived equation (1.2) in 2008 and found that the Klainerman—-Machedon
Strichartz-type bound can be obtained via a simple trace theorem for the defocusing case in R? and T2,
many works [8, 14, 16, 18, 20, 22, 23, 60, 58] then followed such a scheme for the uniqueness of GP
hierarchies. However, the question of how to check the Klainerman—Machedon Strichartz-type bound
in the 3D cubic case remained fully open at that time.

T. Chen and Pavlovi¢ laid the foundation for the 3D quintic defocusing energy-critical case by
studying the 1D and 2D defocusing quintic cases in [8], in which they proved that the 2D quintic case,
a case usually considered equivalent to the 3D cubic case, does satisfy the Klainerman—Machedon
Strichartz-type bound — although proving it for the 3D cubic case was still open.

T. Chen and Pavlovi¢ also initiated the study of the well-posedness theory of equation (1.2) with
general initial datum as an independent subject away from the quantum N-body dynamics in [7, 9, 10]
(see also [12, 13, 55, 53, 54, 58, 59]). On the one hand, generalising the problem could help to attack
the Klainerman—Machedon Strichartz-type bound problem. On the other hand, it leads one to consider
whether the hierarchy (1.2), the general equation, could hold more in store than its special solution,
the NLS (equation (1.1)).” Then in 2011, T. Chen and Pavlovi¢ proved that the 3D cubic Klainerman—
Machedon Strichartz-type bound does hold for the defocusing 8 < 1/4 case [11]. The result was quickly
improved to 8 < 2/7 by X. Chen [17] and to the almost-optimal case, 8 < 1, by X. Chen and Holmer
[19, 21], by lifting the X; ; space techniques from NLS theory into the field.

Around the same time, Gressman, Sohinger and Staffilani [32] studied the uniqueness of equation
(1.2) in the T3 setting and found that the sharp collapsing estimate on T> needs & more derivatives
than the R? case, in which one derivative is needed. Herr and Sohinger later generalised this fact to all
dimensions [34] — that is, collapsing estimates on T" always need & more derivatives than the R” case
proved in [16].8

In 2013, T. Chen, Hainzl, Pavlovi¢ and Seiringer introduced the quantum de Finetti theorem, from
[51], to the derivation of the time-dependent power-type NLS and provided, in [6], a simplified proof
of the R3 unconditional uniqueness theorem regarding equation (1.2) from [29]. The application of the
quantum de Finetti theorem allows one to replace the collapsing estimates by the multilinear estimates.
The scheme in [6], which consists of the KM board game, the quantum de Finetti theorem and the
multilinear estimates, is robust. Sohinger used this scheme in [57] to address the aforementioned e-loss
problem for the defocusing T cubic case. Hong, Taliaferro and Xie used this scheme in [38] to obtain
unconditional uniqueness theorems for equation (1.2) in R”, n = 1,2, 3, with regularities matching the
NLS analysis, and in [39] for H I small-solution uniqueness in the R3 quintic case (see also [22, 27]).

5See also [1] for the 1D defocusing cubic case around the same time.

6Analysis of the Boltzmann hierarchy can also use the KM board game; see, for example, [5].

7Private communication with T. Chen and Pavlovié.

8Except in the 1D case, as shown in [20], this & loss also happens in R!.
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4 X. Chen and J. Holmer

Analysis of GP hierarchy did not yield new NLS results with regularity lower than that of NLS
analysis until [35, 24].1° In [35], using the scheme in [6], Herr and Sohinger generalised the usual
Sobolev multilinear estimates to Besov spaces and obtained new unconditional-uniqueness results
regarding equation (1.2) and hence the NLS (equation (1.1)) on T". The result has pushed the regularity
requirement for the uniqueness of equation (1.1) lower than the number coming from NLS analysis.
Moreover, it covers the whole subcritical region for n > 4, which includes Theorem 1.1 with H I+e
regularity.

In [24], by discovering the new hierarchical uniform frequency localisation (HUFL) property for
the GP hierarchy — which reduces to a new statement even for the NLS — X.C. and Holmer estab-
lished a new H'-type uniqueness theorem for the T quintic energy-critical GP hierarchy.!! The new
uniqueness theorem, though neither conditional nor unconditional for the GP hierarchy, implies the H'
unconditional-uniqueness result for the T> quintic energy-critical NLS. It is then natural to consider the
T* cubic energy-critical case in this paper. However, the key Sobolev multilinear estimates in [24] are
very difficult to prove, or may not be true, for the T* cubic case here, and it turns out, surprisingly, that
T* is unique or special compared to R3 /R*/T3.

1.1. Outline of the proof of Theorem 1.1

We will prove Theorem 1.1 as a corollary of Theorem 3.1, a GP-hierarchy uniqueness theorem stated

in Section 3. As Theorem 3.1 requires the HUFL condition, we prove that any C}j) . Hy N Cp 7 H'

solution to equation (1.1) on T* satisfies uniform-in-time frequency localisation with Lemma 3.3 —
that is, solutions to equation (1.2) generated from equation (1.1) via equation (1.3) satisfy the HUFL
condition. Thus we will have established Theorem 1.1 once we have proved Theorem 3.1.

As Theorem 3.1 is an energy-critical case, due to the known similarities between the R® quintic and
R* cubic cases, one would guess that the proof of the T quintic case goes through for the T cubic
case as well. It does not. As mentioned before, the key Sobolev multilinear estimates in [24] are very
difficult to prove, or may not be true here (interested readers can see Appendix A for a discussion). In
this H'-critical setting, the next replacement in line would be the weaker U-V multilinear estimates.
The U-V trilinear estimates do hold on T#. This is where we start.

In Section 2, we first give a short introduction to the U -V space, referring the standard literature
[36, 40, 43, 50], then prove the U-V version of the T* trilinear estimates (Lemmas 2.1 and 2.2). The proof
of the U-V trilinear estimates is less technical and simpler than the proof of the Sobolev multilinear
estimates in [24], as they are indeed weaker.'? (As we will conclude the same unconditonal uniquness
with these much weaker estimates, we can infer that our method here is indeed much stronger now.)
But these U-V trilinear estimates still highly rely on the scale-invariant Stichartz estimates and the
12-decoupling theorem in [4, 43].

Though the U-V trilinear estimates hold in T4, there is no method available to use them to prove
uniqueness for GP hierarchies. This is why estimates in the hierarchy framework have always been about
LY HS. Even in [19, 21], in which the X, techniques were used, they were used only once in the very
end of the iteration, instead of every step of the iteration to yield smallness. Conceptually speaking,
while it is easy to bound the L;°H3 norm by the U-V norms, one has to pay half a derivative in time to
come back. On the one hand, we are proving an unconditional-uniqueness theorem; we have to come
back to the Sobolev spaces in the end of the proof. On the other hand, we are proving a critical result; we
do not have an extra half derivative in time to spare. To fix this problem, we adjust how the multilinear
estimates apply to the Duhamel-Born expansion of y¥) after the application of the KM board game,
so that the U- V trilinear estimates land only on a ‘Duhamel-like’ integral.

9Here we mention [35] before [24], even though [24] was posted on arXiv a month before [35], because we were not aware of
the unconditional-uniqueness outcome of [24] until [35].

10See also [45] for recent developments using NLS analysis.

11See [17] for another type of quintic problems.

12The stronger Sobolev multilinear estimates hold, easily, for R* (see Appendix A).
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The main problem now surfaces. The time-integration domain D,,, of the aforementioned ‘Duhamel-
like’ integrals, coming from the KM board game, is a union of a very large number of high-dimensional
simplexes under the action of a proper subset of the permutation group Sy specific to every integrand.
To at least have a chance to use space-time norms like X, and U-V — which are very sensitive to
the irregularity of the time domain, as they involve taking time derivatives [50, p. 68] — one would
have to know what D, is. It turns out that D, coming from the original KM board game is not fully
compatible with the U- V trilinear estimates. To this end, we establish an extended KM board game
which is compatible in Section 4.

In Section 4.1, as a warm-up, we first develop — via a detailed tree!* diagram representation — a more
elaborated proof of the original KM board game, which yields, for the first time, an algorithm to directly
compute D,, and domains like it. Graphically speaking, under our tree representation the original KM
board game combines all the trees with the same skeletons into an ‘upper-echelon’ class which can be
represented by an upper-echelon tree.'* The time integration domain D, for each upper-echelon class
can be directly read off from the upper-echelon tree representing the class.

We then introduce, in Sections 4.2—4.5, the wild moves, which allow us to uncover more integrals
in the Duhamel-Born expansion with the same integrands after permutation and combine them into
‘reference’ classes. Graphically speaking, it allows the combination of trees sharing the same reference
enumeration but with different structures. However, the wild moves are not compatible with the upper-
echelon classes coming from the original KM board game. We have to restart from the very beginning
at the level of the 2% k! summands.

Before applying the wild moves, in Sections 4.2 and 4.3 we turn the 2%k! summands in the initial
Duhamel-Born expansion into their tamed forms, which would be invariant under the wild moves, via
reworked signed Klainerman-Machedon acceptable moves. We then sort the tamed forms into tamed
classes via the wild moves in Section 4.4. Finally, in Section 4.5 we use the algorithm developed in
Section 4.1 to calculate the time integration domain for each tamed class. In fact, we prove that given a
tamed class, there is a reference form representing the tamed class, and the time integration domain for
the whole tamed class can be directly read out from the reference form.

Using this extended KM board game coming from scratch, we found that the time integration domain
specific for each integrand can always be ‘miraculously’ written as one single iterated integral in the
integration order ready to apply the quantum de Finetti theorem, despite the fact that it was previously
thought unrepresentable or even disconnected, and was expanded into [0, T K inall previous work since
there were no other options to use it. Moreover, once these integration limits are put together with the
integrand, each distinct tamed class becomes an exact fit to apply the U-V trilinear estimates proved
in Section 2. This combinatorial analysis, which is compatible with space-time norms and the method
to explicitly compute the time integration domain in the general recombined Duhamel-Born expansion
(which includes more than the GP hierarchies), is the main technical achievement of this paper.

With everything ready by the extended KM board game in Section 4, the quantum de Finetti theorem
from [6], the U-V space techniques from [50], the trilinear estimates proved using the scale-invariant
Stichartz estimates and / 2-decoupling theorem in [4, 43] and the HUFL properties from [24], all work
together seamlessly in Section 5 to establish Theorem 3.1 and provide a unified proof of large-solution
uniqueness for the R?/T> quintic and the R*/T* cubic energy-critical GP hierarchies, and hence the
corresponding NLS. The discovery of such an unexpected close and effective collaboration of these
previously independent deep theorems is the main novelty of this paper.

We remark that putting together Theorem 3.1 and the compactness and convergence argument of
[24] completes a derivation of equation (1.1) from quantum many-body dynamics. We choose not to do
so here, as it is not the main point of this paper. We now expect to be able to bring the full strength of

B3This is the third type of tree used in the analysis of GP hierarchies. The first two are the Feymann graphs in [29] and the
binary trees in [6]. They are coded differently and serve different purposes.

4]t is possible to write Section 4 without trees (or matrices), but we would lose this graphical explanation. Due to the coupling,
recursive and iterative features of the hierarchies, algorithm terminologies happen to be helpful.
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6 X. Chen and J. Holmer

dispersive estimate technology to bear on various type of hierarchies of equations and related problems,
and this is our first example of it. (An immediate next step has been taken [26].)

2. Trilinear estimates in the U-V spaces

As mentioned in the introduction, our proof of Theorem 1.1 requires the U-V space, whereas the
R3/R*/T3 cases do not. Here V7 is the space of functions of bounded p-variation of Wiener, and
the atomic U? space, introduced by Koch and Tataru [48, 49], is a close relative of V”. Referring to the
now-standard text [50] for the definition of U? and V/, we define

(ST

N 2
lullxs oy = | - €% e ute) @)
£e74 ¢
and
1
- 2 ’
lllysqoir =| D, @ et @)

£ez?

as in [36, 37, 40, 43]. X* and Y* are endpoint replacements for the Fourier restriction spaces X 5.0 when
b= % and —%. In particular, we have the usual properties

lullLems < llullxs, .1
e fllys = Nle™ Fllxs < N fllers, 2.2)
t . T .
/ e mIA (s, )ds < sup / /f(t,x)v(t,x)dtdx Ya € [0,T),
a Xs([0,1))  vey=s([0.):[lvlly-s=1 Jo JT¢

(2.3)

which were proved in [50, p. 46] and in [36, Propositions 2.8-2.11]. With these definitions of X* and
Y*, we have the following trilinear estimates:

Lemma 2.1. On T%, we have the high frequency estimate

// wy (£, X)ua (1, X)us (1, x)g (1, x)dxdt < |l [ly-lluzlly flusly 1 1glly 24
x,t

and the low frequency estimate
3
‘// I/l](t,x) (PSM()MZ) (t,x)u3(t,x)g(t,x)dxdt S T7M05 ||M1 ”Y‘l ”PSMOMZHYI ||l't3||Yl ”g”Yl (25)
x,t

forall T < 1 and all frequencies My > 1, or

t
/ N (uunus) ds
a

3
< ity (T%Mg 1P rtiallys + [Postyially ) sy 2.6)
X-1([0,T))

and

t
/ "IN (uuaus) ds < llurlly-illuzllylluslly: 27
a X-1([0,T))
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Moreover, ifu; = elth fj for some j, then the Y* norm of u; in formula (2.6) or (2.7) can be replaced by
the H® norm of f;.

Similarly, we have X I estimates:

Lemma 2.2. On T%, we have the high frequency estimate

// wy (2, X)uz (8, )u3 (1, x)8 (1, x)dxdt s ||us [y fluzlly [z lly 118 lly- (2.8
X,t

and the low frequency estimate
1 3
// w1 (£,) (P<pgyuz) (1, )uz (8,x) g (1, x)dxdt < T7Mg i llyr ||[P<nsoal]y 1 llusllyrllglly-1. (2.9)
x,t

In other words,

t
/ "I (uyupus) ds
a

3
S lully (T;MOS |P<psotiz|lys + ||P>asoezly | lluslly:  (2.10)
X1([0,T))

and

t
/ N (wunus) ds
a

< llullyrlluzlly lluslly: 2.11)

x!([0.T))

Moreover, if u; = e”Afj for some j, then the Y° norm of u; in formula (2.10) or (2.11) can be replaced
by the H® norm of f;j.

We prove only Lemma 2.1. On the one hand, Lemma 2.2 follows from the proof of Lemma 2.1, with
little modification. On the other hand, formula (2.8) has already been proved as [37, Proposition 2.12]
and [43, (4.4)], and the non-scale-invariant estimate (2.9) is easy. Hence we omit the proof of Lemma
2.2. The following tools will be used to prove Lemma 2.1.

Lemma 2.3. (Strichartz estimate on T* [4, 43]). For p > 3,
_s
IP<prully, < M7 |lullyo. (2.12)

Corollary 2.4. (Strichartz estimates on T# with noncentred frequency localisation). Let M be a dyadic
value and let Q be a (possibly) noncentred M-cube in Fourier space,

Q={fo+n:Inl<M}.

Let Py be the corresponding Littlewood—Paley projection. Then by Galilean invariance, we have

IPoull,» < M*7% IPoullyy p>3. (2.13)

6
The net effect of this observation is that we pay a factor of only M 2% when applying formula (2.12).

Proof. Such a fact is well known and widely used. Readers interested in a version of the proof can see
[24, Corollary 5.18]. O

2.1. Proof of Lemma 2.1

We first present the proof of the sharp estimate (2.4), then that of formula (2.5).
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8 X. Chen and J. Holmer

2.1.1. Proof of formula (2.4)
Let/ denote the integral in formula (2.4). Decompose the four factors into Littlewood—Paley pieces so that

I= Z Iny v, M5, M
M, M M3, M

where

Iney My, M5, M =// Ui, M, U2, M, U3, M8 M dxdlt,
Xx,t

with u M; = PM U and gy = Py g. As My, M3 and M are symmetric, it suffices to take care of the
M| ~ My > M3 > M case. Decompose the M| and M, dyadic spaces into M3-size cubes; then

A

Iia § § ”PQMI,M] PQCM2,M2M3,M3gMHLr1
WX
M ,M>,M3,.M Q
Mi~M>>M3>M

Z Z ||PQM1 Ml“ 10 ||PQCM2 M2|| 10 ||ug M;” 10 ||gM||L10 .

M, My,M3.M  Q
Mi~Ms > My>M

A

Using formulas (2.12) and (2.13),

A

2 1
D 2 M Poumlyo lbessllyo M [P oo aellyo M ligas lyo

M M ,M3.M  Q
M\~My>M3>M

3
<DL MM llgllyo sl ; 1Pour.anllyo [P z.amlyo -

M, Ma, M5, M
M\~My>Mz>M

Applying Cauchy—Schwarz to sum in Q, we have

EN

< Z M;M§ ||L¢1,M1 ||Y0 ||u2,M2”Yo ”M3,M3||yo llgallyo

My ,M>,M3,M

M\~My>Mz>M

1 -3,,2

s 25 MMy uianfly uzanllys Y5 MM (sl llgally:
M, ,M; M5, M

M\~M, M1~M2>M3>M

We are done, by Schur’s test.

2.1.2. Proof of formula (2.5)

We reuse the setup from the proof of formula (2.4). However, due to the symmetry assumption M; >
M, > M5 on the frequencies in the proof of formula (2.4), we cannot simply assume that P <y, lands
on u,. The worst-gain (least-gain) case here would be that u; is still put in Y~! and Py, is applied
to u3. Thus we will prove estimate (2.5) subject to the extra localisation that P<ys, be applied on u3.
By symmetry in M, and M, it suffices to take care of two cases: A, M| ~ My > M3 > M, and B,

3 3

My ~ M, > M > M;. We will get a T%M(; in case A and a T%MO7 in case B. Since formula (2.5) is
nowhere near optimal, and we just need it to hold with some powers of T and M, there is no need to
match these powers or pursue the best power in these cases.
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Case A: My ~ My > M3 > M.
Decompose the M and M, dyadic spaces into M3-size cubes:

Ingy vy 5,0 < Z ”PQMI,M] Po,uz m, (P<maotts, i) gM||Lt1
Q WX

< Z ”PQ"“’MlgM“Lth ”PQC”lMZHL;{X ||PSM0”3,M3HL;{X ’
Q

where
302 32
”PSMo“?),Ms”L;{X < T%MO5 M35 ||PSM0“3,M3”L;°L§ S T£M05 M35 “PSMO’”,Ms”YO'

Using formulas (2.12) and (2.13),

3 1 2
IM],Mz,M3,M < T%MOS Z (M“PQMI,M1||Y0 ”gM“YO) M32 ||PQCu2,M2||Y0 MSS ||PSM0u3,M3“YO .
0

Note that we actually used a bilinear estimate for the first factor, but did not record or use the bilinear
gain factor. Using Cauchy—Schwarz to sum in Q, we have

3 9
IM[,Mz,Mg,M < T‘%MOS ||u],M] ||Y[) ||gM ||Y1 HUZ,MZHYo M3]0 ||PSM()M3,M3||Y0 .

Thus, summing in M nonoptimally gives

3 9
B ST Nty S ol ey M5 102 0 [P vy

M, ,M,, M3
Mi~M>>M3
9
3 M log M.
S T%MO5 lglly: Z ””1,M1“y0 ””2,M2HY0 3T3 ”PSM0”3,M3||Y1 :
M, M, M3 3
Mi~Mp>M3

Again, summing in M3 nonoptimally and swapping a derivative between u; and u, give

3
Lias T%MOS llglly ||PsMo“3||Y1 Z ””LM1”Y-1 ””2”"’2“Y1
My, M,
M~M;
3
< T%M05 et |ly-1 |2y ||P5M0M3“)/1 liglly: -

Case B: My ~ My > M > Mj.
Sum up M3 first. We then consider

Ing, vy = [/ ur m iz, vy (P<m P<ptyus) gmdxdt.
x,t

Decompose the M| and M, dyadic spaces into M-size cubes:

Ing vy m < Z ”PQM1,M, Po, us my, (P<p P<prgt3) gMHL[lx

”PSMPsMo’/B“le “gM”L,% ,

x X

0
= Z [Pour HL% ”PQCMZ,Mz“L%
Q t,x t,
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10 X. Chen and J. Holmer

where
P vt Pz, < T 1P <p P<rtos| o 7
< T%MO% HpsMPSM()u?’HL;”H}
< TIM] ||P<rt Perrgns]) -

Applying formulas (2.12) and (2.13),

3
Iy My M S T%MO7 |P<ms P<nsousl|y ZM% |Pour,anlyo M7 |1Poc 2.3 |yo M7 llgarllyo
(]

Applying Cauchy—Schwarz to sum in Q, we have

3
Ivyvom S T%M& ||P3MP5M0M3||Y1 M7 ||”1,M1||Yo ||M2,M2||Yo llgarllyr .

Thus, swapping a derivative between u; and u, gives

3
Lip < T%MO7 1P <agou3]|y 1 Z M7 e a, ||y -1 ezt [y o Nlgaa Ny -

My, M>,M
Mi~M>>M

Burning that %—derivative to sum in M and then applying Cauchy—Schwarz in M;, we have

1 3
Lp sT™M, ”PSMOM3||Y1 et lly -1 lluzllys lIgllyr

as needed.

3. Uniqueness for GP hierarchy (1.2) and the proof of Theorem 1.1 — Setup

Theorem 3.1. Let T" = {7(")} € ®»1C ([O, To], ﬁ}() be a solution to equation (1.2) in [0, Ty], in the
sense that

(a) T is admissible in the sense of Definition 3.4 and
(b) T satisfies the kinetic energy condition that 3Cy > 0 such that

k k

sup Tr l_[<ij> vy (1) 1_[<fo> SC&".

te[0,Tp] j=1 j=1

Then there is a threshold n(Cy) > 0 such that the solution is unique in [0, Ty], provided

k k
sup Tr I—[ Pl (Vy, y R (1) I—[ Pl (Vi) < K,
te[0,7p] j=1 j=1

for some frequency M. Our proof shows that 1(Co) can be (100CCq)~%, with C being a universal
constant depending on the U-V estimate constants and the Sobolev constants. The frequency threshold
M is allowed to depend on y¥) (the particular solution under consideration) but must apply uniformly
on [0, Tp].
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Here, we have intentionally stated Theorem 3.1 before writing out the definition of admissibility
(Definition 3.4) to bring up readers’ attention. For the purpose of only proving Theorem 1.1, in fact,
Definition 3.4 and its companion, the quantum de Finetti theorem (Theorem 3.5), are not necessary.
One could just apply the proof of Theorem 3.1 to the special case

k

W= [ e o =] Ju o) ()

j=1 j=1

:»

U txj ity (t X% ) 3.1

where u1 and u; are two solutions to equation (1.1) and y; is the signed measure 6,, —d,, on L? (T4), to
get that the difference is zero for all k and to obtain a uniqueness theorem which is solely about solutions
to equation (1.1). This is sufficient to conclude Theorem 1.1. Readers unfamiliar with Theorem 3.5
could first skip Definition 3.4 and Theorem 3.5, put equation (3.1) in the place of equation (3.6), get to
know how the GP hierarchy is involved and then come back to Definition 3.4 and Theorem 3.5. Once
one understands the role of the GP hierarchy in the proof, it is easy to see that due to Theorem 3.5,
the more general theorem (Theorem 3.1) costs nothing more, and the origin of the current scheme of
proving NLS uniqueness using GP hierarchies is indeed Theorem 3.5, as mentioned in the introduction.
Theorem 3.1 also implies the following corollary:

Corollary 3.2. Given an intial datum ug € H' (T4), there is at most one C ([O To] . H, wmk) solution
u to equation (1.1) on T* satisfying the following two properties:
(1) There is a Cy > 0 such that

sup [u(®)|lm < Co.
t€[0,7p]

(2) There is some frequency M such that

sup [[VPopu(r)ll2 <7, (3.2)
t€[0,Tp]

for the threshold n(Cy) > 0 concluded in Theorem 3.1.

The known C ([O To) . H, Weak) blowup solutions do not satisfy formula (3.2), so Corollary 3.2 is

an unclassified uniqueness theorem. It seems to be stronger than the unconditional uniqueness theorem

(Theorem 1.1), as it concludes uniqueness in a larger class of solutions. We wonder if there could be a

more detailed classification regarding the term ‘unconditional uniqueness’ at the critical regularity.
Theorem 1.1 follows from Theorem 3.1 and the following lemma:

Lemma3.3. uisa C H1 N C[l0 Tl ~1 solution of equation (1.1) if and only if it is a C[0 ' H)IC wedk
Cloz Hy)

10.751 7 weak solutlon and satisfies umform in-time frequency localisation — that is, for each >0
there exists M (&) such that

N

VP2M( Ull; o » < €. (3.3)
Pl 1

Proof. This proof is postponed to Section 3.1. We remark that formula (3.3) implies formula (3.2),
but the converse is not true. That is, Corollary 3.2 implies Theorem 1.1, the unconditional uniqueness
theorem, but the type of uniqueness concluded in Corollary 3.2 and Theorem 3.1 is unclassified.’> O

15The proof of Lemma 3.3 uses only compactness and is much simpler than that of [24, Theorem A.2].
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12 X. Chen and J. Holmer

Before starting the proof of Theorem 3.1, we note that although it seems that Theorem 3.1 concludes
Theorem 1.1 only up to a time-dependent e!¢(*) phase, (r) is actually O (see [35, p. 12] and [26, Lemma
A.1]). Thus, we are left to prove Theorem 3.1.

We set up some notations first. We rewrite equation (1.2) in Duhamel form:

Ik
YO 1) =P yy! =i / U (1 = 11a) BE (5D (110) ) din, (3.4)
0

k it AX.*AXI_
where U®) (1) = T] ¢ ( ! f) and

k
U+ (7(k+1)) = ZB]',k+l (7(k+1))
j=1

- k+1
(B;,k+1 - Bj,k+1) (7( * ))

DM 1M

Triee16 () = xx1) Y5 =y 6 (x) = xe) -

~.
I
-

Here, products are interpreted as the compositions of operators. For example, in kernels,
(Trk+15(x1 —xk+1))’(k+1)) (Xk, X)) = / S = X1y EY (Xe, X 13 X, X1 ) doXpa -

We will prove thatif I'; = {y](k)} and I, = {72(’0} are two solutions to equation (3.4), subject to the

(k) (k)
2

same initial datum and Theorem 3.1(a) and (b), then " = {y(k) =y, - } is identically zero. Note

that because equation (3.4) is linear, I is a solution to equation (3.4). We will start using a representation
of I' given by the quantum de Finetti theorem (Theorem 3.5). To this end, we define admissibility:

Definition 3.4. ([6]). A nonnegative trace class symmetric operators sequence I' = {y®} «
®r>1C ([O, T], £,1<), is called admissible if for all k, one has

Try(k) =1, y(k) = Trk+1y(k+1).

Here, a trace class operator is called symmetry if, written in kernel form,

0 (xesxg) =7 (x5
y® (X1, XXy, X)) = y () (x(r(l), ) ..,xg(k);x;(l),...,x;(k)) ,

for all o € S, the permutation group of k elements.

Theorem 3.5. (quantum de Finetti theorem [6, 51]). Under assumption (a), there exists a probability
measure d,(¢) supported on the unit sphere of L* (T4) such that

y® (1) = / 169 (612 dus ().

By Theorem 3.5, there exist du;,, and du,; representing the two solutions I'; and I';. The same
Chebyshev argument as in [6, Lemma 4.5] turns the assumptions in Theorem 3.1 into the property that

Downloaded from https://www.cambridge.org/core. IP address: 67.247.237.183, on 13 Jan 2022 at 15:21:25, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.16



Forum of Mathematics, Pi 13

du ; is supported in the set

s={oes(L2(T%)) : 1Pop M oll2 < ef 0 {s e 5 (L2 () Ml < Cof . B5)

That is, letting the signed measure du; = du1,; — duo ¢, we have
YO = (1 = 12) 0 = [ 16) 01 i (0 (3.6)

and du,, is supported in the set S defined in equation (3.5).

So our task of establishing Theorem 3.1 is now transformed into proving that the solution is zero if the
solution takes the form of equation (3.6) and is subject to zero initial datum. It suffices to prove y(!) = 0,
as the proof is the same for the general k case. The proof involves coupling equation (3.4) multiple
times. To this end, we plug in zero initial datum, set the Fi in equation (3.4) to 1 so that we do not need
track its power (because it acts as a 1 in the estimates for our purpose) and rewrite equation (3.4) as

173
y® (1) =/ U™ (1 — tg1) BEHD (7(k+l)(fk+1)) dtpr. 3.7
0

Define
SV (D) (11, 5,) = U (11 = )BOUD (13 = 3B - U (1 = 1) BED 0 (1),

witht, ., = (f2,13,..., 1k, 1x41). We can then write

1 hore B ks K+l
,)/( )(tl) :‘L ‘/O ‘/0‘ J( +1) (7( + )) (t1’£k+l)d£k+l’

after iterating equation (3.7) k times. To estimate y(!), we first use the KM board game® to reduce the
number of summands inside y(", which is k!2 at the moment, by combining them.

Lemma 3.6. (Klainerman—Machedon board game [47]). One can express

hopn ) (k)
/ / / ] (f )(t1,£k+1)d£k+l
o Jo 0

as a sum of at most 4~ terms of the form

k+1
/ ‘Ilflm+ ) (f(k+l)) (t1’£k+1) d£k+1’

m

or in other words,

/ / / (k+1> (k+1))(t1 tiat) Aty = Z/ (kﬂ) (kH))(tlean)deﬂ' (3.8)

Here, D,, is a subset of [0,1,]1%, depending on pi,; {itm} are a set of maps from {2,...,k + 1} to
{1, ..., k} satisfying um(2) = 1 and p,, (1) <1 for all l, and

(k+1) (DY (11, 1,,) =UD (1 = 12)B1 U (12 - 13) By, 3) 3

UM (1 = tr41) By, (k1) k41 (f( H)) (t1).

16As mentioned before, we actually need an extended KM board game, which we devise in §4.
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14 X. Chen and J. Holmer

Using Lemma 3.6, to estimate y!) it suffices to deal with a summand in the right-hand side of
equation (3.8),

(k+1) k+1
[) ‘I,Um (7( * )) (t1’£k+l) d£k+l’

at the expense of a 4%. Since Bj k41 = B, — B, ;. T (y®+D) s but another sum. Thus, by

paying an extra 2% we can just estimate a typical term

K+
/D Jl(4m+5f)éﬂ (7(k+l)) (11 t44y) Aty (3.9)

where

K+l sen(2 3
J;(lers;n (f(k+1)) (t1’£k+1) — U - tz)legn( )y (1 t3)B,Sil((3;,3 ... (3.10)

k+1
UM (1 =ty )BLgnEkL; k+1 (f(kH)) (tk+1),

with sgn meaning the signature array (sgn(2),...,sgn(k + 1)) and ng"(k”) standing for BY | or
B [RE depending on the sign of the (k + 1)-th signature element. The estlmate of expression (% 9) is
glven by the following proposition:

Proposition 3.7.

(SN[}
x~

_ -1 3
H(VX1> 1 <in> /D Jl(ifc:iz);n (7(k+1)) (110 thear) Ay <2TC; (CCST%M(f +CCie

o2
Lrl Lxl xl

Proof. See Section 5. O

Once Proposition 3.7 is proved, Theorem 3.1 then follows. In fact,

H<V§11 <Vx;>_l)’(l)(l1)

Lt°°L2 ,
XX
3 (k+1) (k+l)
<44(Vy) / bt (11 244y) Aty
Dy, L;;’LZ
.Xl X
-1
k (k+1) (k+l)
<8 <Vx1 / S, sgn (t1’£k+1) iy,
Dy, L;;’L2 ,

2k
3
<2TC? (CC3T7Ms +CCge ) :

Select € small enough (the threshold 7 is also determined here) so that CCge < % and then select T

3
small enough so that CCST%MO5 < 4—11. We then have

_ k
”<Vxl>l <in> 17(1)(t1) < (%) — 0as k — oo,

coy2
L’le xi

We can then bootstrap to fill the whole interval [0, Tp], as M applies uniformly on [0, Tp].
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Before moving into the proof of Proposition 3.7, we remark that the extra 27" does not imply that the
estimate is critical or subcritical; this T actually appears only once. Such a T is due to the GP-hierarchy
method instead of scaling, because the dt;; time integral is not used for any Strichartz-type estimates.
This one factor of T appears in the other energy-critical T quintic case [24] as well.

3.1. Proof of Lemma 3.3 and uniform-in-time frequency localisation for the NLS

We provide a direct proof using the equation, even though one could look for a more abstract proof. By
substituting the equation, we compute

O IIVP<Mu||

’Im/ PcpyVu-PoyyV (|u|2u) dx

< 2(|P<pr Vul| s

PauV (julu)
e

where if the symbol associated to P< s is y(&/M), then the symbol associated to P< s is §(£/M), with
X (&) = &x(€). By the LP — LP boundedness of the Littlewood—Paley projections (see, for example,
[35, Appendix]),

LA4/3

= 202 [Pensi] . [P

1437

3 IVP<mull7

< M2 |ull?,
By Sobolev embedding,

2010114
S M7 |lullz:-

0, IV Pyl

Hence there exists 6’ > 0 — depending on M, ||ul| Ly 4 H! and & — such that for any 79 € [0, T], it holds
that for any ¢ € (tg — &', t0+6") N [0,T],

VP oy ()12, = 19P<pruteo) 2,

< &&’. 3.11)

On the other hand, since u € C?O T]H}(, for each 1 there exists 6’ > 0 such that for any ¢t € (tg— 6", 1o+
6”) N [0,71],

[I9u(I2, = 1902, | < F5& (3.12)

Note that 6" depends on u itself (or the ‘modulus of continuity’ of u), unlike 6’, which depends only

onM, ||u||Loo ! and &. Now let § = min(d’, 6”'). Then by formulas (3.11) and (3.12), we have that for

anyte(to—6 to+06)N[0,T],

VP2, = VP (i) 2, ] < 4.

1
S 78

For each t € [0, T], there exists M; such that
||VP>Mtu(t)||L§ < %e.
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16 X. Chen and J. Holmer

By the foregoing, there exists 6, > 0 such that on (¢ — &;,7 + §;), we have

HVP>M[M||LF:75D¢+5,)L)2( <e&.
Here, 6; > 0 depends on u and M,. The collection of intervals (¢ — &;, + &;) as ¢ ranges over [0, T7] is
an open cover of [0, T]. Let

([1 —(5;1,t1+(5t1),...,(l‘1 _6tj,tj+6tj)
be an open cover of [0, T]. Letting
M =max (M,,,...,M,,),

we have established formula (3.3).

Now conversely suppose that u € C?O i ! N Clyr1H: L . and satisfies formula (3.3). Then

[0, 7] x,weal
we claim that u € C([)O,T JH Inc [IO’T]H;I. Let zp € [0, T] be arbitrary. If u is not strongly continuous at
19, then there exist € > 0 and a sequence 7 — o such that |[u(7x) — u(fo)|ly;1 > 2€. Then for each &,

there exists ¢; € H;! with gkl < 1 and

x,weak

[(u(ty) —u(to), pi)| > 2e. (3.13)

Get M as in formula (3.3). Then

[u(t) —u(to), P>p i) < €. (3.14)

On the other hand, by the Rellich—Kondrachov compactness theorem, there exists a subsequence such
that P<ps¢px — ¢ in H;'. This combined with the assumption that  is weakly continuous implies that

(u(ty) —u(ty), P<prdr) — O. (3.15)

But formulas (3.14) and (3.15) contradict formula (3.13). The proof that d;u is strongly continuous is
similarly straightforward.

4. An extended KM board game

This section is divided into two main parts. First, in Section 4.1, we provide as a warm-up a more
elaborated proof of the original KM board game (Lemma 3.6), which yields the previously unknown
time integration limits in equation (3.8). We then prove, in Sections 4.2—4.5, an extension of Lemma
3.6 which further combines the summands inside J**1 (£**D) (#,1, ) to enable the application of
U-V space techniques.

4.1. A more elaborated proof of Lemma 3.6

Let us first give a brief review of the original KM board game, which since its invention has been used
in every paper involving the analysis of Gross—Pitaevskii hierarchies. Recall the notation of ¢ in Lemma
3.6: {u} is aset of maps from {2, ..., k+1}to{l,..., k} satisfying u(2) = 1 and u(/) < [ for all /, and

J,(zkﬂ) (f“””) (t1, 1) = UV (11 = 12)B1 U (12 = 13) B3y 5+ -

UM (1 = tra1) Bu(rst) ast (f(k+l)(tk+1)) .
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Example 1. An example of ¢ when k =5 is

j|2 3 4 6
ull 13 1

5
2
If u satisfies p(j) < pu(j+ 1) for2 < j < k in addition to u(j) < j forall 2 < j < k + 1, then it is
in upper-echelon form'” in the terminology of [47].
Let u be a collapsing map as already defined and o~ a permutation of {2, ..., k + 1}. A Klainerman—

Machedon acceptable move, which we denote KM(j, j + 1), is allowed when u(j) # u(j + 1) and
u(j+1) < j,and is the following action: (u’,o”) = KM(j, j + 1)(u, 0):

W=, j+)ouo(j,j+1),
c'=(,j+1)oo.

A key observation of Klainerman and Machedon [47] is that if (u’, ') = KM(J, j+1)(u, o) and f*+D
is a symmetric density, then

J,(llfﬂ) (f(k+l)) (tl’a_/—l (£k+1)) _ Jl(1k+1) (f(k+l)) (tl’o_—l (£k+l))’ (4.1)

where for ¢, | = (t2,...,tks1) We define

-1
o (ter) = (tO"](Z)""’to"](k+l)) .

Associated to each u and o, we define the Duhamel integrals

I (ﬂ,O',f(kH)) (1) = / Jl(1k+1) (f(k+l)) (t]’£k+1) dt, . 4.2)

N2ty 2) 2 2o (k+1)

It follows from equation (4.1) that

It (#,’U,’f(ml)) -7 (Iu,o_,f(kﬂ)).

Itis clear that we can combine Klainerman—Machedon acceptable moves as follows: If p is a permutation
of {2,...,k+ 1} such that it is possible to write it as a composition of transpositions

p=Ti0---01,,

for which each operator KM (7;) on the right side of

KM(p) € KM(11) o - - 0 KM(1)

is an acceptable action, then KM(p), defined by this composition, is acceptable as well. In this case,
(u',0") = KM(p)(u, o) and

W =pouop™
oc'=poo,

7This word makes more sense when one uses the matrix/board-game representation of J, ;Sk”) ( f (k”)) in [47].
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18 X. Chen and J. Holmer

and equations (4.1) and (4.2) hold. If u and u’ are such that there exists p for which (u’,0’) =
KM(p)(u, o), then we say that u” and p are KM-relatable. This is an equivalence relation that partitions
the set of collapsing maps into equivalence classes.

In short, one can describe the KM board game in [47] which combines the k! many terms in
JUD (04D as follows:

Algorithm 1. ([47]).

\ 1o i pkH1) (p(k+1)Y k 5

1. Convert each of the k! many . s in J (f ) into one of the < 4% many upper-echelon forms
Hour Via acceptable moves, defined in the board-game argument, and at the same time produce an
array o which changes the time integration domain from the simplex

12>t >21t3 >+ > Tgyl

into the simplex
2t 2to@3) " 2 to(k+l)-

Hence, there are < 4% classes on the right-hand side of equation (3.8).

2. For each upper-echelon form p,,, take a union of the time integration domains of its u;,s after the
acceptable moves and use it as the time integration domain for the whole class. Thus, the integration
domain D,, on the right-hand side of equation (3.8) depends on u,,, and we have successfully
combined k! summands into < 4% summands.

The key take away in Algorithm 1 is that, although it is very much not obvious, quite a few of the
summands in J*+D (f (k“)) actually have the same integrand if one switches the variable labellings
in a clever way. Algorithm | leaves only one ambiguity — the time integration domain D,, — which is
obviously very complicated for large k, as it is a union of a very large number of simplexes in high
dimension under the action of a proper subset of the permutation group Sy depending on the integrand.
So far, for the analysis of GP hierarchies on R4 / T4, d < 3, knowing D, C [0, l]k has been enough, as
the related Lt1 H* estimates are true. T* appears to be the first domain on which one has to know what
D, is so that one can at least have a chance to use space-time norms like X 5, and U-V, as the related
L} H* estimates are difficult to prove and may not even be true.

It turns out that D,, is in fact simple, as we will see. We now present a more elaborated proof
of Lemma 3.6, in which D,, is computed in a clear way. Given a u, and hence a summand inside
JU+D (f (k”)), we construct a binary tree with the following algorithm:

Algorithm 2.

1. Set counter j = 2.
2. Given j, find the next pair of indices a and b so that a > j, b > j,

u(a) = u(j), u(b) =j,

and moreover a and b are the minimal indices for which the equalities hold. It is possible that there
is no such a or no such b.

3. At the node j, put a as the left child and b as the right child (if there is no a, then the j node will be
missing a left child, and if there is no b, then the j node will be missing a right child).

4. If j = k + 1, then stop; otherwise set j = j + 1 and go to step 2.

7This simple example is in fact one of the two largest k = 5 upper-echelon classes in which there are eight u’s equivalent to
the upper-echelon form.
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Example 2.
Let us work with the following example'®
1 .
J \ 2 3 4 5 6
\ Houw |1 1 1 2 3
2
We start with j = 2, and note that toy(2) = 1 so need to find minimal a > 2,
/ \ b > 2 such that u(a) = 1 and u(b) = 2. In this case, itisa =3 and b = 5, so
3 5 we put those as left and right children of 2, respectively, in the tree (shown at
left)
1

\ ) Now we move to j = 3. Since oy (3) = 1, we find minimal a and b so that
a>3,b>3,u(a) =1and u(b) =3. We find that a = 4 and b = 6, so we put
/ \ these as the left and right children of 3, respectively, in the tree shown at left.
3 5  Since all indices appear in the tree, it is complete.
4 6

Definition 4.1. A binary tree is called an admissible tree if every child node’s label is strictly larger than
its parent node’s label.’® For an admissible tree, we call the graph of the tree without any labels in its
nodes the skeleton of the tree.

\ For example, the skeleton of the tree in Example 2 is shown at left.
O By the hierarchy structure, Algorithm 2, which produces a tree from a u,
/ \ produces only admissible trees. As we have made a distinction between left
Q Q and right children in the algorithm, the procedure is reversible — given an
/ \ admissible binary tree, we can uniquely reconstruct the u that generated it.

o O

Algorithm 3.

1. For every right child, u maps the child value to the parent value (that is, if fis a right child of d, then
u(f) =d). Start by filling these into the u table.
2. Fill in the table using the fact that for every left child, u maps the child value to u (the parent value).

Example 3. Suppose we are given the following tree:

This is certainly a natural requirement coming from the hierarchy.
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1 Using the fact that for every right child, ¢ maps the child value to the parent

\ value, we fill in the following values in the u table:
2
/ \ J ‘2 345 6 7 8 9
/ \ Now we use the left-child rule and note that since 3 is a left child of 2 and
4 \ 6 \ 1(2) =1, we must have u(3) = 1, and so on, to recover the following table:
7 8 J ‘2 3456 7 89
/ ull T 1 2 3 4 6 6

9.

One can show that in the tree representation of y, an acceptable move defined in [47] is the operation
which switches the labels of two nodes with consecutive labels on an admissible tree, provided that the
outcome is still an admissible tree, by writing out the related trees on [47, pp. 180—-182]. For example,
interchanging the labelling of 5 and 6 in the tree in Example 2 is an acceptable move. That is, acceptable
moves in [47] preserve the tree structures but permute the labelling under the admissibility requirement.
Two collapsing maps u and p” are KM-relatable if and only if the trees corresponding to ¢ and u’ have
the same skeleton.

Given k, we would like to have the number of different binary tree structures of k nodes. This number
is exactly defined as the Catalan number and is controlled by 4%. Hence, we have just provided a proof
of the original KM board game, neglecting the trees showing the effects of acceptable moves on a tree.

But now let us get to the main ‘elaborate’ part, namely, how to compute D,, for a given upper-
echelon class. To this end, we need to define what is an upper-echelon form. Though the requirement
u(j) < pu(j+1)for2 < j < kis good enough, we give an algorithm which produces the upper-echelon
tree given the tree structure, as the tree representation of an upper-echelon form is in fact labelled in
sequential order (see, for example, the tree in Example 2).

Algorithm 4.

1. Given a tree structure with k nodes, label the top node with 2 and set a counter j = 2.

2. If j = k + 1, then stop; otherwise, continue.

3. Ifthe node labelled j has a left child, then label that left child node with j + 1, set a counter j = j+1
and go to step 2. If not, continue. >’

4. In the already-labelled nodes which have an empty right child, search for the node with the smallest
label. If such a node can be found, label that node’s empty right child as j + 1, set a counter j = j+1
and go to step 2. If none of the labelled nodes has an empty right child, then stop.

Definition 4.2. We say p is in upper-echelon form if u(j) < u(j+1) for2 < j < korifits corresponding
tree given by Algorithm 2 agrees with the tree with the same skeleton given by Algorithm 4.

We define a map Tp which maps an upper-echelon tree to a time integration domain (a set of
inequality relations) by

Tp(a) = {t; > tx : j, k are labels on nodes of a such that the k node is a child of the j node}, (4.3)

where « is an upper-echelon tree. We then have the integration domain as follows:

20The difference between the definitions of left and right children in Algorithm 2 makes all the enumeration algorithms in this
paper address left branches first. See also Section 4.3 for the enumeration of the tamed form.
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Proposition 4.3. Given a p,,, in upper-echelon form, we have
(k+1) k+1 (k+1) k+1
Z / T (f( +))(“ Liwt) Aty = / P (f( +))(t1’£k+1)d£k+l‘
fmfty ¢ N 20202 2k Tp (m)

Here, u ~ u,, means that u is equivalent to u,, under acceptable moves (the trees representing u and
Um have the same structure) and Tp (un,) is the domain defined in equation (4.3).

Proof. We prove by an example, as the notation is already heavy. For the general case, one merely
needs to rewrite X; and X, to be defined in this proof. The key is the admissible condition or the simple
requirement that the child must carry a larger label than the parent.

Recall the upper-echelon tree in Example 2 and denote it with . Here are all the admissible trees
equivalent to a:

NN NN
SN N NN
VANVANRVANRVAN
NN NN
VA NVANEVANEVAN
VANV ANRWANRYAN

Let o denote some composition of acceptable moves. We then notice the equivalence of the two sets

S={o:0c'(1) <o '2) <o 'B) <ol 4),07'(2) <a7'(5),07'(3) < 7' (6)},

%, = {0 : o takes input tree to @ where the input tree is admissible},

both generated by the requirement that the child must carry a larger label than the parent. That is, both
21 and X; classify the whole upper-echelon class represented by «.
Hence,

U {t1 2te@) 2ty 2 to—(ﬁ)} ={t1 2t =2t3214,t) 2t5,13 >t} = Tp(a),
oex;

and we are done. ]
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4.2. Signed KM acceptable moves

While Proposition 4.3 shows that summing over an entire KM upper-echelon class yields a time
integration domain with clean structure, it is not sufficient for our purposes. We prove an extended KM
board game in Sections 4.2—4.5. Recall the key observation of the KM board game: Many summands
in J(+D (f (k“)) actually have the same integrand if one switches the variable labellings, and thus one
can take the acceptable moves to combine them. In fact, one can combine them even more after the
acceptable moves to get a larger integration domain D,,.?' Instead of aiming to reduce the number of
summands in J*+D (£ (*+1)) even more, our goal this time is to enlarge the integration domain when
estimating J l(,ksgn) (f (k”)) (t1,1;,,), so that U-V techniques can actually apply. Depending on the sign
combination in J ) (£**V) (11,1, ,), one could run into the problem of needing to estimate the x
part and the x” part using the same time integral. This problem is another obstacle stopping U-V space
techniques from being used in the analysis of G P hierarchies, separate from the other obstacle that D,
was previously unknown.

From here on out, we denote the already unioned or combined integrals in one echelon class as a
upper-echelon class integral, and we use Proposition 4.3 for its integration limits. We also put a + or —
sign at the corresponding node of a tree, as we are dealing with J*) (£%*D) (t1,1,,,), in which there

M,Sgn
are B* and B~ at each coupling. We start with the following example:

Example 4. Let us consider the two upper-echelon trees:

1 1 N\
\2_ /2+
/N 3-

3+ 4+ \

4+

They have the upper-echelon class integrals
I = / U (1= 12)B1 U (12 = 1) B ;U (13 = 1) B o (£9) (11,1,) diy,
Dl ? ? ’
I = / U (11 = 12) B ,UP (1 — 13)B] ;U (15 - t4)B3 , (f(4)) (t1,1,) dt,,
D,

where D = {t) < t1,t3 < tr,t4 < tr} and Dy = {tp < 11,13 < 1,14 < t3} following from our
discussions in Section 4.1.

I, and I, actually have the same integrand if one does a t, <> t3 swap in I, despite the fact that the
trees corresponding to /1 and I, have different skeletons. In fact, shortening ei("' ~tj)8 as U;,j, we have

I = ./Dl Ui (|U3,4¢i2 U3,4¢) (x)Ui 2 (U2,4¢U2,4¢U2,4 (|¢|2 ¢)) (xi) d£4

= /DI Ui (|U2,4¢|2 U2,4¢) (x1)U13 (U3,4¢U3,4¢U3,4 (|¢|2 ¢)) (x}) dt,

),

21We do not know whether one could combine even more than what we are going to do in Sections 4.2—4.5.

U (t) - 1) B} ,UP (1 — 13) By ;U (13 — 14) BY, (f(4)) (t1,1,) dt,,

’
1
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where D = {t3 < t1,1) < t3,14 < t3} and we have put in £ = (|¢) (¢])®* for simplicity.>> Hence,
L+ = / U (1) - 1) B} ,UP (1 — 13) B ;U (12 - 13)BY, (f<4)) (t1,1,) dt, (4.4)
b . . .

151 151 1
= / / / u (s - tz)BJf,zU(z)(l‘z - f3)BI,3U(3)(f2 -13)B3, (f(4)) (t1,1,) dty,
14=0 J =0 J t3=ty

where D = D1 U Dy = {t3 < 11,12 < 11,14 < t3}.

Example 4 is an easy example of what we will call the wild moves, and shows that one could indeed
further combine the summands in J&*1 (£ (k*1)) after the original KM board game has been performed.
We will explain why our U-V techniques apply to I; + I, but not I; and I, individually in Section 5.1.
Despite the fact that Example 4 uses the already-combined upper-echelon integrals, our extended KM
board game actually starts from scratch — that is, it starts from y" () instead of already-combined
upper-echelon integrals — as not all upper-echelon integrals act so nicely under the wild moves. However,
it is still a multistep process. We will first switch the terms in ¢! (#;) into their tamed form via signed
KM acceptable moves in Sections 4.2 and 4.3, and then categorise the tamed forms into tamed classes
via the wild moves in Sections 4.4 and 4.5.

We now explain the program as follows: As before, start by expanding y(! (¢1) to coupling level &,
which generates a sum expansion of k! terms. But now for each of these k! terms, expand the collapsing
operators B/(l’()j)’ . into + and — components, which introduces 2k terms. Thus, in all, we have 2% k! terms,
each of which has sign-dependent collapsing operators

Y = 31 (id,sgn,y 440, *5)
,8gn
where id is the identity permutation on {2, ...,k + 1},
k+l
I(p, o, sgn) =/ J;(l,s;n) (V(kH)) (f1tyyy) dtyy,
12ty (2) 2 2o (k+1)

and Jlik:gn) is defined as in equation (3.10). Equation (4.5) is a sum over all admissible u — that is,
collapsing maps that satisfy p(j) < j — of which there are k!. It is also a sum over all sgn maps, of
which there are 2.

We define a signed version of the KM acceptable moves, still denoted KM(/, j + 1), which is defined

provided u(j) # u(j +1) and u(j + 1) < j. It is defined as the following action on a triple (u, o, sgn):
(W', 0 sgn’) = KM(j, j + 1) (u, o, sgn),
where

W=, j+Douo(j,j+1),
oc'=(,j+1) oo,
sen’ = sgno(j,j +1).

Graphically, this means that nodes j and j + 1 belong to different left branches and correspond to
switching nodes j and j + 1, leaving the signs in place on the tree — in other words, the node previously
labelled j is relabelled j + 1, and the node previously labelled j + 1 is relabelled j, but the signs are left
in place.

220ne could put a general symmetric f () here and get the same result.
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A slight modification of the arguments in [47] shows that, analogous to equation (4.1), if
(1,0, sgn’) = KM(j, j + 1)(u, o, sgn) and f**D is a symmetric density, then

Tt (£ (1100 (egan)) = 24850 (£40) (11207 1)) (4.6)
It follows from equation (4.6) that
1(w', o sgn’, f9) = 1 (1,0, sgn, f40) @.7)

As in the sign-independent case (or more accurately, the combined-sign case), we can combine KM
acceptable moves as follows: If p is a permutation of {2, ..., k + 1} such that it is possible to write p as
a composition of transpositions

p =T, 00T
for which each operator KM (7;) on the right side of
KM(p) € KM(11) o - - o KM(1,)

is an acceptable action, then KM(p), defined by this composition, is acceptable as well. In this case,
(u’,0’,sgn’) = KM(p)(u, o, sgn), and

p=popop™,
oc'=poo,
sgn’ =sgnop !

Of course, equations (4.6) and (4.7) hold as well. If (u, sgn) and (u’, sgn”) are such that there exists p
for which (u’, o/, sgn”) = KM(p) (u, o, sgn), then we say that (u’, sgn’) and (u, sgn) are KM-relatable.
This is an equivalence relation that partitions the set of collapsing map/sign map pairs into equivalence
classes. In the graphical representation, two such pairs are KM-relatable if and only if they have the
same signed skeleton tree.

Whereas we could use the signed KM acceptable moves to convert an arbitrary admissible y to an
upper-echelon p’, this will no longer suit our purpose. Instead, our program will be to convert each pair
(u, sgn) to a tamed form, which we define in the next section. The reason for our preference of tamed
form over upper-echelon form is that it is invariant under wild moves, to be introduced in Section 4.4.

4.3. Tamed form

In this section, we define what it means for a pair (u, sgn) and its corresponding tree representation
to be famed, in Definition 4.4. Then through an example, we present an algorithm for producing the
tamed enumeration of a signed skeleton. The general algorithm is then stated in Algorithm 5. Notice
that it produces a different enumeration from Algorithm 4. Compared with Algorithm 4, the tamed-form
enumeration deals not just with left branches first, it also deals with + first.?* In Section 4.3.1, we exhibit
how to reduce a signed tree with the same skeleton but different enumeration into the tamed form using
signed KM acceptable moves.

We will now give a nongraphical set of conditions on g and sgn that determine whether or not
(u, sgn) is tamed. First, we define the concept of a tier. We say that j > 2 is of tier ¢ if

pa()=1 but p?'(j) > 1,
where u9 = p o - -- o u, the composition taken ¢ times. We write #(j) for the tier value of j.

23By symmetry, one could deal with — first here to get a very similar tamed form. But left and right branches are not symmetric,
as they are defined differently.
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Definition 4.4. A pair (u, sgn) is tamed if it meets the following four requirements:

1. If t(€) < t(r), then € < r.

2. Ift(6) = t(r), p?(£) = p2(r), sgn(u(€)) = sgn(u(r)) and u(€) < u(r), then £ < r.
3. If t(6) = t(r), p?(£) = 2 (r), sgn(u(€)) = + and sgn(u(r)) = —, then £ < r.

4. It t(€) = t(r), u>(£) # u*(r) and u(€) < u(r), then £ < r.

Note that the statement u*(£) = u?(r) means graphically that the parents of £ and r belong to the
same left branch. Conditions (2), (3) and (4) specify the ordering for £ and r belonging to the same tier,
and the rule depends upon whether or not the parents of £ and r belong to the same left branch. If they
do, rule (3) says that a positive parent dominates over a negative parent, but rule (2) says that if the
parents are of the same sign, then the ordering follows the parental ordering. Finally, if the parents do
not belong to the same left branch, rule (4) says that the ordering follows the parental ordering regardless
of the signs of the parents.

Example 5. The (u, sgn) pair with tier properties indicated in the following chart is tamed:

j |2 345 6 7 8 9 10 11 12 13 14

g 11155 22 7 7 9 9 8
sen(j)|I- - + + - + - + - + + - +
tj)y |t 111 2 2 2 2 3 3 3 3 3

All four conditions in Definition 4.4 can be checked from the chart. This is in fact the (u, sgn) pair that
appears in the example that follows.

In the following example, we illustrate an algorithm for determining the unique tamed enumeration
of a signed skeleton tree. After the example is completed, we give the general form of the algorithm.

For the example, we start with the following skeleton, with only the signs indicated. (Recall that KM
acceptable moves will leave the signs in place in the tree and change just the numbering of the nodes.)
Start by considering all nodes mapping to 1 (the universal ancestor) — this is the left branch attached to
1 that is four nodes long in the order — — ++, and we enumerate it in order as 2, 3,4, 5.

\
Q_
/ N\
o- O
/ /N
o O O
/ AN
O+ O
AN /
O O
/
O
AN
O_
/
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Then we add this entire left branch to the queue, putting the
+ nodes before the — nodes. We also pop 4+ and 5+ from the 3)
(left of the) queue, since we have already dealt with them. The .

queue now reads

Queue: 2—,3—,7+,6 —.

Now we come to the next node in the queue (reading from the
left), which is 2—. The node 2 does have a right child. We label

We then put this full left branch in the (empty) queue, listing
the + nodes first and then the — nodes:

Queue: 4+,5+,2—,3 —.

Then we start working along the queue from left to right. Since
4+ has no right child, we skip it and move to 5+. Since 5+ does
have a right child, we label it with the next available number
(6) and completely enumerate the entire left branch that starts
with this 6 node (that means, in this case, labelling 6— and 7+
as shown on the next graph).

the left branch that starts with 8, which means labelling 8— @

and 9+ as shown.
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From the queue, we pop 2 and add the 8—, 9+ left branch — all / / \
+ nodes first and then all — nodes: @_,. @_,. O_,_
Queue: 3—, 7+, 6—, 9+, 8 — . / \
+ +
Since 3— does not have a right child, we pop it and proceed to @ O
7+, which does have a right child, which is labelled with 10, \ /
and the left branch starting at 10 is enumerated as 10—, 11+, @_ O_
as shown.

@"' @"' + The queue is updated:

/ \ Queue: 6—,9+,8—, 11+,10 —.
® @
\ / By now the procedure is probably clear, so we will jump to the

fully enumerated tree.
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Here is the general algorithm. Recall that a queue is a data structure where elements are added on
the right and removed (dequeued) on the left.

Algorithm 5. Start with a queue that at first contains only 1, and start with a next available label j = 2.

1. Dequeue the leftmost entry € of the queue. (If the queue is empty, stop.) On the tree, pass to the right
child of £, and enumerate its left branch starting with the next available label j,j+1,...,j+q.If
there is no right child of €, return to the beginning of step 1.

2. Take the left branch enumerated in step 1 and first list all + nodes in the order j,. .., j+ q and add
them to the right side of the queue. Then list all — nodes in the order j,...,j + q and add them to
the right side of the queue

3. Set the next available label to be j + q + 1, and return to step 1.

4.3.1. Reducing to tamed forms via the signed KM board game

We will now explain how to execute a sequence of signed KM acceptable moves that will bring the
example tree from the previous section, with some other enumeration, into the tamed form. This tree
corresponds to the following u and sgn functions:

j\234567891011121314
sen(j)|[- — + — + + 4+ - - + + - 4+
uhy|r 112 2 1.6 7 6 7 5 11 11
@ We are going to start with the enumeration at left, which is
\ not tamed, and explain how to execute KM acceptable moves
@— in order to convert this tree into tamed form. Of course, this
/ \ is quite similar to what Klainerman and Machedon described,

with just a modification to prioritise plusses over minuses.
We will keep a queue that right now includes only the node 1:

/ / \ Queue: 1.

/ \ Following the queue, we move all nodes (all j) for which

u(j) = 1 all the way to left using KM moves. Since u(7) =1,

@+ + although u(5) = 2 and u(6) = 2, we apply the KM moves
\ / KM(6,7) and then KM(5, 6).

The KM(6, 7) move is

/ = (6,7) 0 po(6,7),
@+ sgn — sgno(6,7).

\ The KM(5, 6) move is

(13)- i (5.6) 0 10 (5.6)

/ sgn - sgno(5,6),
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and together these result in the following:

J ‘2 345 6 7 8 9 10 11 12 13 14
sen(j)[- - + + — + + — - + + - +
uH1 111 2275 7 5 6 11 11

These two moves have been implemented in the revised graph
at left.

Inspecting the u chart, we see that all output 1s have been
moved to the left, and the complete list of j for which u(j) =1
is 2—,3—, 4+, 5+. We add these numbers to our queue, but first
add all plusses and then all minuses:

Queue: +, 4,5, 2, 3.

Since we have completed 1 on the queue, we next move to 4,
but there are no j for which u(j) = 4, so we proceed to 5. As
we can see from the u table or from the tree, 1(9) = 5 and
u(11) =5, so we execute KM moves to bring these all the way
to the left (but to the right of the 1s):

The next step is therefore to implement moves KM(8,9), KM(7, 8) and KM(6, 7), which brings the

u table to the following:

J \2 345 6 7 8 9 10 11 12 13 14
sen(j)|I- - + + - — + + - + + - 4+
uyjr 1115 2 28 8 5 7 11 11

This is followed by the moves KM(11, 10), KM(10,9), KM(9, 8) and KM(8, 7), which bring the u

table to the following:

j ]2 3 45 6 7 8 9 10 11 12 13 14
sgn(j)|- - + + - + - + + - 4+ - +
uyjr 1115522 9 9 8 7 17
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@

\ At this point, the tree takes the form as pictured to the left.
All 5s have been moved to their proper position in the u table.

@_ The complete list of j for which u(j) = 51is 6—, 7—, so we add
/ \ these numbers to the queue, adding the plusses first and then

the minuses:

/ / \ Queue: 45,2, 3,7, 6.
@+ @+ @+ Since we have addressed 5 in the queue, we move to the next
/ \ item, which is 2. This means we have to move all j for which
u(j) = 2 all the way to the left (just to the right of 5). Exam-
@+ + ining the u table, we see that these j are already in place, at
\ / positions 8—, 9+. So no KM moves are needed, and we add to
@ @ the queue:
/ Queue: 4:5:2,3,7,6,9, 8.
@"‘ Next on the queue is 3, but there are no j for which u(j) = 3,
\ so we proceed to 7 on the queue. From the u table or the tree,
we see there are two j for which u(j) = 7, namely 13 and 14.
®_ We therefore execute KM moves to bring these to the left in
/ the u table, just to the right of 2.

Specifically, we do KM (12, 13), KM(11, 12) and KM(10, 11), which brings us to the following u

table:
J \2 345 6 7 8 9 10 11 12 13 14
sen(j)|I- - + + - + - + - + - + +
upjr 11155 22 7 9 9 8 7

j |2 3 45 6 7 8 9 10 11 12 13 14
sen(j)|[- - + + — + - + - + + - 4+
pGyjr 1115522 7 7 9 9 8

Now that the seven outputs are in place, we take the set of j for which u(j) = 7, which is 10—, 11+,
and put them in the queue with plusses first, followed by minuses:

Queue: 5452357, 6,9, 8, 11, 10.

There are no j for which u(j) = 6, so we proceed in the queue to 9. However, the two 9s are already in
place, and the next item in the queue is 8; the one 8 is already in place. So this completes the example.
We now describe the preceding algorithm in general.
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Algorithm 6. Given (u,sgn), start with a queue Q that initially contains 1 and a marker j, which is
initially set to j = 2. Repeat the following steps:

1. Dequeue the leftmost entry € of the queue. If the queue is empty, then stop. Clear the temporary
ordered list L.

2. If u(j) = ¢, add j to the right of L, then increment the marker j by 1 (so now j is the old j + 1). If (the
new marker) j is out of range, jump to step 4. If u(j) # ¢, then proceed to step 3; otherwise, repeat
step 2.

3. Find the smallest r > j + 1 such that u(r) = € (if there is no such r, jump to step 4). Execute signed
KM moves KM(r — 1,r), followed by KM(r —2,r = 1), ..., until KM(j +1, j). Now u(j) = €. Return
to step 2.

4. Take all elements of the temporary ordered list L, read all + entries in order (from left to right) and
add them to the (right end of the) queue Q; then read all — entries in order (from left to right) and
add them to the (right end of the) queue Q. Return to step 1.

We have the following adaptation of Proposition 4.3, revised to include sign maps and to reference
tamed forms in place of upper-echelon forms.

Proposition 4.5. Within a signed KM-relatable equivalence class of collapsing map/sign map pairs
(u, sgn), there is a unique tamed (., sgn,). Moreover,

Z I (,u,id, sgn,y<k+1)) - / Jiu. sen, (7(k+l)) (f1,£k+1) dty ., 4.8)
(p15g0)~ (1., 5gn..) Tp (p.)

where Tp (u.) is defined in equation (4.3).

To proceed with our program, we divide the expansion (4.5) into sums over signed KM-relatable
equivalence classes, and apply equation (4.8) for the sum over each equivalence class. Thus we obtain

YY) = Z Ju.sen, (7(k+l)) (11 thpy) Aty (4.9)
(ps,5gn,) tamed Tp (p.)

The next step will be to round up the tamed pairs (., sgn,) via wild moves, as defined and discussed
in the next section. This will produce a further reduction of equation (4.9).

4.4. Wild moves

Definition 4.6. A wild move W (p) is defined as follows: Suppose (u, sgn) is a collapsing operator/sign
map pair in tamed form, and {¢, ..., r} is a full left branch — that is,

e B w0 =pl+1) = = ),

but u(€ — 1) # z (or is undefined) and u(r + 1) # z (or is undefined).
Let p be a permutation of {£, £+ 1, ..., r} that satisfies the following condition: If £ < g < s < r and
sgn(q) = sgn(s), then g appears before s in the list (p‘1 ),....,p7" (r)) —or equivalently, p(g) < p(s).
Then the wild move W(p) is defined as an action on a triple (u, o, sgn), where

(W', 0, sgn’) = W(p)(u, o, sgn),
provided
p=pop=pouop,
0', = p o0,
sgn’ = sgnop~ L.
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We note that W is an action

W(p1)W(p2) = W(p1 0 p2).

It is fairly straightforward to show the following, using the definition of a tamed form. It is important
to note that the analogous statement for upper-echelon forms does not hold, which is the reason for
introducing the tamed class.

Proposition 4.7. Suppose (u,sgn) is a collapsing operator/sign map pair in tamed form, and W(p) is
a wild move. Letting (u’, sgn’) be the output,

(', 0, sgn’) = W(p)(u, o, sgn),
then (u’, sgn’) is also tamed.

Thus wild moves preserve the tamed class, and we can say that two tamed forms (u,sgn) and
(u’, sgn’) are wildly relatable if there exists p as in Definition 4.6 such that

(0,0, sgn’) = W(p)(u, o, sgn).

This is an equivalence relation, and in the sum (4.9) we can partition the class of tamed pairs (u, sgn)
into equivalence classes of wildly relatable forms (we pursue this in the next section).
The main result of this section is the following:

Proposition 4.8. Suppose that p is as in Definition 4.6 and

(0,0’ sgn’) = W(p)(u, o, sgn).

Then for any symmetric density %1,

J'u’,sgn’ (f(k+l)) (1‘1,0"_1 (£k+1)) = J#,sgn (f(k+l)) (f],O'_l (£k+1)) .

Consequently, the Duhamel integrals are preserved, after adjusting for the time
permutations

/ Jyr sgw (7(k+1)) (1151 ) Aty = / Jusgn (7(k+1)) (f1, 1) Aty
o’ [Tp (1) ] o[Tp (p)]

where o[Tp ()] is defined by modifying equation (4.3) so that node labels are pushed forward
byo:

o[Tp(w)] = {tg(j) > to(k) - J, k are labels on nodes of a such
that the k node is a child of the j node} .

Proof. A permutation p of the type described in Definition 4.6 can be written as a composition of
permutations

pP=T10"0T,

with the property that each 7 = (i,i + 1) for some i € {¢,...,{+r} and sgn(i) # sgn(i + 1). Thus it
suffices to prove

yt-h (_ti)B/_l(i),iU(i)(ti - ti+1)B;(i+1),i+1U(i+1) (tis1)

= U(i_l)(—fm)B;(i),iU(i) (tis1 = ti)B;_t(i+1),i+1U(i+l)(ti)
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when the two sides act on a symmetric density. Recall that z = u(i) = u(i + 1). Without loss, we might
as well take z = 1 and i = 2 so that this becomes

U (=12)B] ;U (1 = 3)BT ;U (13) = UV (=13) B} ,UP (13 — 1) B ;U (12). (4.10)
To prove equation (4.10), on the left side we proceed as follows: First we plug in
U (-n) = UL, Uy
U (1, - 13) = U UL, UYL, UY U302, U2, U2
U (13) = U3ULUSULUS U,

where the subscript indicates the time variable and the superscript indicates the spatial variable.

Then we note that for the two collapsing operators on the left side of equation (4.10), the following
hold:

o Bj, acts only on the 2, 2" and 1’ coordinates, so we can move all U ! operators in the middle to the
left.

o BT 5 acts only on the 3, 3” and 1 coordinates, so we can move all U%, U% and U" operators in the
middle to the right.

This results in
left side of equation (4.10) = U',U) B} , B} ;USUN, U3 U, US U2, (4.11)
Similarly, on the right side of equation (4.10), plug in
U (-13) = ULUy
U (13 - 1) = UL, UYU) U302, U, U2
U (1) = UNUY,U2U%, U3 U7,

Then we note that for the two collapsing operators on the right side of equation (4.10), the following are
true:

o BJf , acts only on the 2, 2’ and 1 coordinates, so we can move all U r operators in the middle to the left.

o Bj ; acts only on the 3, 3’ and 1’ coordinates, so we can move all U2, U 2 and U operators in the
middle to the right.

This results in
right side of equation (4.10) = U',U} B} , B ;U UL, USUZ,US U, (4.12)

Since equations (4.11) and (4.12) are equal when applied to a symmetric density, this proves equation
(4.10). In particular, one just needs that to permute

(x2, x5, x3,x3) © (x3,x5,x2,X5) .

Example 6. The pair (11, sgn) is defined as follows:

2 3 4 5 6 7
w1 1 1 2 4 4
sgn; [+ + — - + -
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There are five nontrivial wild moves for j =2,...,6,
(ﬂja gy, Sgl‘lj) =W (pj) (:ul’ida Sgnl)’

as indicated in the following table:

2 3 4| 6 7 2 3 4|6 17
pr | 23 416 7 pt [ 23 4]67
p2 | 2 436 7| pt | 243|617
03 342 |6 7| p3' | 423 6 7
pa | 2 3 4 | 7T 6| pit | 23 4] 76
ps | 2 4 3 | 7 6| ps' | 243|176
06 342 |7 6| pt | 423]76

Notice that each ,oj’.1 preserves the order of 2, 3, as in Definition 4.6 — meaning that 2 appears before
3 in the list (p]‘.l(2),pjf1(3),p]71(4)); equivalently, p(2) < p(3). Thus the action of p~! on {2, 3,4} is
completely determined by where 4 appears in the list (p;l (2), p]‘.1 (3), p]‘.1 (4)).

The corresponding trees and explicit mappings (,uj, sgn j) are indicated in the following. We notice

that all (u 7,80 j) are tamed (in accordance with Proposition 4.7) and that wild moves, unlike KM

moves, do change the tree skeleton, but this change is restricted to shuffling nodes along a left branch,
subject to the restrictions (indicated in Definition 4.6) that the ordering of the plus nodes and minus
nodes remain intact.

Tree for (u1,sgn;) Tree for (w2, sgn,) Tree for (u3, sgny)

‘2 3 4 5 6 17 ‘2 3 4 5 6 7 ‘ 2 3 4 5 6 17

ur (111 2 4 4 (1 1.1 2 3 3 us (11 1 3 2 2
sgny [+ + - — + - sgn, [+ — 4+ — + - sgn;|— + 4+ — + -

1\2+ 1
N\ \
/ N\ \

N I\ S
/ VAN
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Tree for (u4,sgny) Tree for (us, sgns) Tree for (ue, sgng)

‘2 34 5 6 7 ‘2 3 4 5 6 7 ‘ 2 3 4 5 6 7

g (11 1 2 4 4 us (11 1 2 3 3 ue (1 1 1 3 2 2

sgny |+ + - - — + sgns |+ — + - - + sgng|— + + - - +
1

\2+
SN \

2+ 1
4

- 4+ 6— 3+

/ /N

7+ 7+ 4+ 5

/ \
\ /\ N
/ -/

4.5. Reference forms and tamed integration domains

Definition 4.9. A tamed pair (/, sgn) will be called a reference pair provided that in every left branch,
all the + nodes come before all the — nodes.

Definition 4.10. Given a reference pair (£, sgn), we will call a permutation p of {2, ..., k+1} allowable
if it meets the conditions in Definition 4.6 — that is, it leaves all left branches invariant and moreover,
for each left branch (¢, ...,r), all + nodes appear in their original order and all — nodes appear in their
original order within the list (0=!(¢), ..., p71(r)).

For example, the tree (ug, sgn;) in Example 6 is a reference pair. If (¢, .. .,r) is a full left branch of
i, then the definition of a reference pair means that there is some intermediate position m such that the
sgn map looks like the following:

j‘f o m—=1 m m+1 - r
sgn|+ + + - - - -

However, we note that it is possible that they are all plusses (m = r + 1) or all minuses (m = ¢).
With this notation, we can say that p is allowable if p({) < -+ < p(m — 1) and p(m) < --- < p(r) —
or equivalently, if in the list

(P (@ p™' ).

the values (¢, ..., m — 1) appear in that order and the values (m, . .., r) appear in that order.

Proposition 4.11. An equivalence class of wildly relatable tamed pairs

Q = {(u,sgn)}
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contains a unique reference pair ({1, sgn). By the definition of being wildly relatable, for every (u, sgn) €
O there is a unique permutation p of {2, ...,k + 1} such that

(u,sgn) = W(p) (d,sgn),

and this p is allowable. The collection P of all p arising in this way from Q is exactly the set of all
allowable p with respect to the reference pair ({1, sgn).

Now, recall equation (4.9):
yW(ty) = Z / Ju,sen (V(km) (11 thyy) Aty
(u,sgn) tamed Tp ()
In this sum, group together equivalence classes Q of wildly relatable (u, sgn):
y (1) = Z Z / Ju,sgn (7(k+1)) (115 2psy) - (4.13)
classes Q (u,0)€Q Tp (1)

Each class Q can be represented by a unique reference (f, sgn), and as in Proposition 4.11, for each
(u, sgn) € Q, there is an allowable p € P (with respect to (4, sgn)) such that

(u,sgn) = W(p) (f1,s8n) .

Since W is an action, we can write
(A 5g) =W (") (1, sgm).

Into the action W (p‘l), let us input the identity time permutation and define o as the output time
permutation:

(fA,0,88n) =W (p’l) (u,id, sgn),

where, in accordance with Definition 4.6, o = p“. Since p is allowable, this implies that for each left
brach (¢, ..., r) with m as already defined, o' (£) < --- <o~ '(m —1)and o~ (m) < --- < 71 (r).
In other words, (¢,...,m—1) and (m,...,r) appear in order inside the list of values (o (¢), ..., o (r)).
By Proposition 4.8,

/ Jpsgn (7(k+1)) (11 1pyy) Aty = / Jf.sgn (7(k+1)) (11 254y) Aty
Tp (1) o[Tp ()]

Now as we sum this over all (u, sgn) € Q, we are summing over all p € P and hence over all o = p~!
meeting the condition already mentioned. Hence the integration domains on the right side union to a
set that we will denote

A ay def ~
Tr (f2,58n) = ] o (T (),
peEP

which can be described as follows: For each left branch (¢, . .., r), with
z=p() == pu(r)
and m the division index between plus and minus nodes, T (4, sgn) is described by the inequalities

tmoy < <tp<t, and t; <+ <ty <t (4.14)
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Plugging into equation (4.13), we obtain the following:

Proposition 4.12. The Duhamel expansion to coupling order k can be grouped into at most 8 terms:

Y=Y / Tusen (Y50 ) (11, 101) i (4.15)
Tr (f1,58n)

reference (fi,sgn)

where each integration domain Tg ({1, sgn) is as defined in formula (4.14).

A quick example of formulas (4.14) and (4.15) is Example 4, in which the reference tree is the one
corresponding to /5. Reading from that tree, formula (4.14) becomes the set D and the combined integral
is equation (4.4).

Returning to Example 6, (ui,sgn,) is the reference pair. To combine the Duhamel integrals, we
convert all five other tamed forms (,u j»8gn j) to (u1, sgn,) via wild moves. The resulting combined time

integration set will be read oft from the (u1, sgn,) tree as
13 <t <tp, ty <1, ts < 1y, te < 14, 7 < 14.

Proposition 4.12 and the integration domain (4.14) are compatible with the U-V space techniques
we proved in Section 2. This fact may not be so clear at the moment, as they are written with much
shorthand. We will prove this fact in Section 5.2.

5. Uniqueness for the GP hierarchy (1.2) — Actual estimates

The main goal of this section is to prove Proposition 3.7 on estimating J ,(llf:i;n Of course, by J ,(f:ién

we mean the reference form now. We first present an example in Section 5.1 to convey the basic ideas
of the proof. Then in Section 5.2 we demonstrate why we need the extended KM board game and prove
that Proposition 4.12 and the integration domain (4.14) are compatible with the U-V space techniques.
Once that is settled, the main idea idea in Section 5.1 will work for the general case. Thus we estimate
the general case in Section 5.3.

The time integration limits in Section 4.5 will be put to use with Lemmas 2.1 and 2.2. With the trivial
estimate ||u||lys < ||u||xs, Lemmas 2.1 and 2.2 read as

t
/ e TN (uiuaus) (o, 1)) dt
a

3
< Cllur - (T%Mg 1P nsia + ||P>M0u2||xl) sl

x-!
5.1
! —i(f—t" ’ ’ 1 3
/ e N (uyupuz) (o, 1) dt < Clluillx (T7Mo5 “PSMOMZHXI +”P>M0”2||x1) lluslixt,
a Xl
(5.2)
t
[ et s) (s )ar| < Clunle ezl s e (5:3)
a X!
t
/ e TN (uyuqus) (o, 8)dr || < Cllun iy luallx lluslixr- G4
a X!

Ifu; = el f i for some j and some f; independent of ¢ and ¢’, we can replace the X* norm of u; in
formulas (5.1)—(5.4) with the H® norm of f;. We do not use < in these equations because we are going
to use them repeatedly, and the constants are going to accumulate.
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5.1. An example of how to estimate

We estimate the integral in Example 4:

/ / / UWD (1) = 12) B} U (1 = 13) By ;U (13 — 14) BY 4y
14=! 0 12—0 13=14

where the integration limits have already been computed in Section 4.2. Its reference tree is exactly the
tree corresponding to I, in Example 4.
Plugging in equation (3.6), we find that the integrand is in fact

[_ dt4/d#t4 (¢)/ dtz/t3 . Uiz \Uz 19 U24¢) (x1)

x U3 (U3 49U3 40Uz 4 (|¢| ¢)) (x7) dr3.

We denote the cubic term |¢|* ¢ generated in the innermost coupling with Cg), where the subscript R
stands for ‘rough’, as it has no propagator inside to smooth things out. That is,

1 n 151
2 _— )
I =/ dt4/ duy, (¢)/ dtz/ Ui (|U2,4¢| U2,4¢) (x1)U13 (U3,4¢U3,4¢U3,4C;g4)) (x7) drs.
14=0 =0 13=t4

For expression (3.9) with a general k, we will use C;Qk“) to denote this innermost cubic term. Notice

that C;ekﬂ) is always independent of time and is hence qualified to be an f; in estimates (5.1)—(5.4).
In the second coupling, if we denote

D = U, (Tad Tt (51
we have

1 141
/ Uiz (U3,4¢U3,4¢U3,4C§e4>) (x}) dr3 = / UIDE;,)Rd”'
13=14

13=14

In general, let us use DU which is Df;) here, to denote the cubic term together with the U(—f41)
during the /th coupling where [ < k. We add a ¢ subscript if the cubic term generated at the /th coupling
has contracted a U¢. We add an R subscript if the cubic term generated at the /th coupling has contracted
the rough cubic term C;Qk“) ora D;{H) for some j. The coupling process makes sure that every time
integral corresponds to one and only one cubic term, and thus the notation of D is well defined. We
suppress all #x,1-dependence, which is the 74-dependence here, in all the D markings, as we will not
explore any smoothing given by the dt;,| integral. Finally, notice that D*!) always carries the 77,
variable and will make a Duhamel term whenever it is hit by a U (t j), where j # [+ 1.
Then, using the same marking strategy at the first coupling, we reach

I= /t4—0 dl4/ duy, () (/ UID( ) (xl)dlz) (/t;4 UID(S) (x i)dl3)-

We can now start estimating. Taking the norm inside,
LyL?

' (V)™ <Vx;>_1 1 .

T pn o
S‘/O‘ /dl4d|ﬂt4| (9) H((Vx]> 1 /_0 U1DE;) (x1) dlz) (<Vx;> /_ UIDE;,)R (xi) d[3)
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the L;’I"L%C ,» norm ‘factors’ in the sense that

H(Vm)] (V)
<[/

The term Df;) carries no R subscript, so we can bump it to H' and then use the embedding (2.1), which
gives

-1
1

LXL?

1 x,x!

1
/ U1D(¢2) (xl)dlz
=0

|
/ UIDS:,)R (xi)dt3
13

=t4

dtad |pe,| () .

oo py—1 -1
L H; LyH)

LeL?

1 x,x!
T
</
0

Applying formula (5.2) to the first coupling and replacing all ||U@||xs by ||¢|| g5, we have

e (o)

<[]

Using formula (5.1) with the second coupling and replacing all ||U¢||xs by ||@]| s, we have

(V) <in>_1 I

1
3 ’
/ UlDfp’)R (xl) dt;
3=14

t

1
/ U]Df;) (x1) dtp
[5]

dtsd |us,| (¢) -
=0 Xl

xX-1

o2
Lt1 nyx,

3|
/ UlDf;,)R (xi)dt3
3=14

5

1
lgll7,, (T4M§ 1P <ol + ||P>M0¢||H1) dtsd |uy,| (9) .
x-1

L;TL)Zr.x'
T .3 g
<ct [7 [ 1o (103 W w1l ) ], sl o
T 3 2
= [ [t (0485 1 sl #1700l ) W ol s ] 0.

Using the 4D Sobolev

161 ¢]l,,-1 < Cllgl3,: (5.5)

on the rough coupling, we get to

2
-1 -1 T 1 3

[y (v o] <o [ [ alud @ 1616 (a1 Wl +1osntl

L:Lx,x'
Plugging in the support property of the measure (see equation (3.5)) yields

-1 - 36 [l as3 T

(V) <Vx;> Iy e (Tngco+s) / dt4/d|u,4|(¢) (5.6)
LOL 0
1 Tx,x!

2
3
<t (T;MOS Co+ s) 2T,

and we are done.
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5.2. The extended KM board game is compatible

In Section 5.1, the U-V estimates worked perfectly with the integration limits obtained via the extended
KM board game from Section 4. One certainly wonders whether the extended KM board game is
necessary, and whether it is compatible with the estimates in the general case.

In the beginning of Section 4.2, we briefly mentioned the problem one would face without the
extended KM board game. We can now explain by a concrete example. For comparison, rewrite /1 in
Example 4 with the notation

n 1 t
L = / / / M (t — l‘z)BizU(Z) (tr — t3)B41',3U(3) (3 — t4)B§,47<4)d£4
14=0 J tr=t4 J13=0

1 1 2) 1%) (3
:/ dt4/dut4 (¢) (UID; (x1) [/ UiDY (x;)dt3Ddt2.
14=0 =ty 13=0

One sees that the dr3 integral is encapsulated inside the dt, integral, or the x and x’ parts do not factor,
even with the carefully worked-out time integration limits in the original KM board game. Hence, one
cannot apply U-V estimates. To be very precise for readers who are curious about this, since there are
only two integrals that got entangled, /; could in fact be estimated using [50, (4.25), p. 60], based on
the idea of integration by parts. However, if one allows the coupling level to be large, it is not difficult
to find, at any stage of a long coupling, multiple encapsulations which have more than three factors
entangled together and cannot be estimated by the ideas of integration by parts. We are not presenting
such a construction, as the formula would be unnecessarily long and does not give new ideas. Finally,
we remark that such an entanglement problem, generated by the time-integral reliance of the U-V space
techniques, does not show up in the couplings with only B* or only B, and does not have to emerge in
the R?/R*/T? cases in which U-V spaces are not necessary.

We now prove how the extended KM board game is compatible with the U-V techniques. Given a
reference tree, we will create a Duhamel tree (we write ‘D-tree’ for short) to supplement the reference
tree. The D-tree supplements the given reference tree in the sense that the D-tree completely shows the
arrangement of the cubic terms D) defined in Section 5.1, and one could also read off the integration
limits from it as in the given reference tree. The whole point of the D-tree is to get these two pieces
of information in the same picture, as the proof of compatibility then follows trivially. Of course, from
now on, we assume that equation 3.6) has already been plugged in and we are doing the dfr; integral,
which is from O to ¢;, last.

Algorithm 7. In the D-tree, we will write each node prefaced by a D. Each node D) will have a left
child, middle child and right child:

DWW

AN
o O O

The labelling of Is, r+ and r — for the left, middle and right children, respectively, is a shorthand
mnemonic for the procedure for determining the children of DY) by inspecting the reference tree. Apply
the following steps for j = 1 (with no left child), then repeat the steps for all DY) that appear as
children; continue to repeat the steps until all vertices without children are F:

1. To determine the left child of D'V, locate node j in the reference tree and apply the ‘left same’ rule.
If node j in the reference tree is +, and j+ has a left child €+ (of the same sign +), then place DV as
the left child in the D-tree. If the j node in the reference tree is —, and j— has a left child {— (of the
same sign —), then place D" as the left child in the D-tree. If node j in the reference tree does not
have a left child of the same sign, then place F as the left child of DY) in the D-tree.
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2. To determine the middle and right children of DY), locate node j in the reference tree. Examine the
right child of j (if it exists), and consider its full left branch

pit,....;Pat 01—, ..., 3 —.

It is possible here that a = 0 (no + nodes on this left branch), and it is also possible that B = 0 (no
— nodes on this left branch). In the D-tree, as the middle child of DY) place DPV), and as the right
child of DY) place D" If either or both is missing (@ = 0 or B = 0, respectively), place F instead.
A quick and simple example is the D-tree for the integral in Section 5.1:

D® D®
F F F F F

Here is a longer example:

Example 7. Consider the following reference tree:

\
3+/

2+
5+
4— 6—
8+ - 9+
Its supplemental D-tree is as follows:
pW
D® \\ D
/ T+ \ / f+\
D® D® D© F D® F
F F F F F F

F F F D<7>F
F F

Every bottom node of the form D) (as opposed to F) has implicitly three F children, except for
the D**D node, which is special (in our case here, it is Dg). In this case, the D-tree was generated as

F
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follows. Take D(Z), for example, in the reference tree.

o To determine the left child of D in the D-tree, we look at the reference tree and follow the ‘left
same’ rule. The left child of 2+ is 3+, so we place D) as the left child of D® in the D-tree. (If it
were 3— instead, we would place F in the D-tree, since the signs are different.)

o To determine the middle child of D® in the D-tree, we look at the reference tree and follow the
‘right +’ rule. That is, we take the right child and consider its left branch: 5+, 6—, 7—. We note the
first + node, which is 5+, and assign DO as the middle child of D? . If there were no + node in the
left branch, we would have assigned F.

o To determine the right child of D@ in the D-tree, we look at the reference tree and follow the
‘right —’ rule. That is, we take the right child and consider its left branch: 5+, 6—, 7—. We note the
first — node, which is 6—, and assign D© a5 the right child of D5. If there were no — node in the left
branch, we would have assigned F.

Proof of compatibility. With the D-tree, we can now read formula (4.14) better. This is because the
rule for assigning upper limits of time integration is actually the same rule for constructing children in
the D-tree. By the construction of the D-tree, we can write the form of each DWW, j # k+1, and the
integration limit for ¢;. If D) has children L, M, R (for left, middle and right) and has parent DO in
the D-tree, then (ignoring the role of complex conjugates)

DY) (1)) =U (-t)) [(U;L) (U;M) (U;R)] ,

and the integration of ¢; is exactly from O to #;. One can directly see from the picture in Example 7
that all Duhamel terms inside a D7) must have the same integration limit, and they factor. Therefore,
there is no entanglement in each stage of the coupling process. An induction then shows that there is
no entanglement for any coupling of finite length or stages. Or in other words, the extended KM board
game is compatible with the U-V techniques. O

For completeness, we finish Example 7 with the integration limits:

Example 8. Continuing Example 7, we have
D =U(-t) |U,D® -U,D® - U,DO | . 5.7

The three terms inside this expression are

D = U(=13)[UsF (o) - UsF(to) - UsF(19)],
D®) = U(~t5)[UsF (t9) - UsF (to) - UsF (t0)],
DO = U(=tg) [UaD“) -UsD" 'UsF(tg)] :

where F(t;) = U(—t;)¢. On the other hand, we have
DW= U(-1y) [U4F(t9) . UD®. U4F(t9)] . (5.8)

Now, read the time integration limits from the reference tree or the D -tree; #, and 74 have upper limit
t1, while 3, t5 and 7 all have upper limit #,, and so on. Start by writing ft::O on the outside. Notice that
this makes the inner #¢ integral start at #9 in order to retain the condition #9 < t¢ from formula (4.14)
and the tree reading. Take all 7; integrals for j = 2 or for which D) is a descendant of D®) . This is

4} 4] 5] 4] t6
TSV 5
=0 J13=0 J15=0 Jt5=t9 J17=0
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Then collect all ¢; integrals for j = 4 or for which D) is a descendant of D™ . This is

1 14
/ / . (5.10)
14=0 J 1g=0

Notice that expressions (5.9) and (5.10) split, by Fubini, since none of the limits of integration in
expression (5.9) appear in expression (5.10), and vice versa. So we can write this piece of y(!) as

n n 1 1%) 1) I n 14
YO = [ [/ [ UID@(rz,xl)H/ / U10<4>(t4,x1)]. (5.11)
19=0 17=0 J13=0 Jt5=0 Jts=t9 J ;=0 14=0 J 1g=0

Write out D@ as in equation (5.7) and D® as in equation (5.8). Notice that we can distribute the
integrals ft 3’10 fl ;2:0 zf:o onto the D@, D) and D(® terms, respectively:

1 %) 15 153 t6
/ / / / / UD® (t5,x1)
=0 J13=0 Jt5=0 J tg=t9 J ;=0
151 1%) %) %) g
=/ Ui [(/ UzD(S)(fs)) : (/ UzD(S)(ts)) : (/ / UzD(6)(t6))] :
=0 t3=0 t5=0 te=ty Jt7=0

We have kept the 77 integral together with #5 because D7) is a child of D® in the D-tree. We can see
that all the Duhamel structures are fully compatible with the U-V techniques. The rest is similar, and
we omit further details.

5.3. Estimates for general k

As the compatiblity between the extended KM board game and the U-V techniques has been proved in
Section 5.2, we can now apply the U-V techniques from Section 5.1 to the general case. We see from
Section 5.1 that estimates (5.1) and (5.2) provide gains whenever the /th coupling contracts a U¢. For
large k, at least %k of the couplings carry such a property and thus allow gains.

Definition 5.1. For [ < k, we say that the /th coupling is an unclogged coupling if the corresponding
cubic term C#V or DU*Y has contracted at least one U ¢ factor. If the Ith coupling is not unclogged,
we call it a congested coupling.

Lemma 5.2. For large k, there are at least %k unclogged couplings in k couplings when one plugs
equation (3.6) into expression (3.9).

Proof. Assume there are j congested couplings; then there are (k — 1 — j) unclogged couplings. Before
the (k — 1)th coupling, there are 2k — 1 copies of U¢ available. After the first coupling, all of these
2k — 1 copies of U¢ except one must be inside some Duhamel term. Since the j congested couplings do
not consume any U¢, to consume all 2k — 2 copies of U¢ we have to have

2%k -2<3(k—-1-j), (5.12)

because a unclogged coupling can consume at most three copies of U¢. This inequality certainly holds
only if j < % Hence, there are at least % unclogged couplings. O

We can now present the algorithm which proves the general case:

Step 0 Plug equation (3.6) into expression (3.9). Mark Cl(,ekﬂ) andall DD fori=1,..., k-1 per the
general rule given in the example and Section 5.1. We obtain
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(k+1) k+1
H( / / bt <gn y & )) (1 L4yy) gy,
I Ix Lf;’L)zcyx,

/ dtk+l/d|l’ltk+l|(¢)H f(1>(;1 xl)) (< > lg(l) (tl’x;))

which ‘factors’ into

< [Cann [ alud @) O
< [Cawa [ b @[] ),

for some £ and g(M. Of course, only one of f(!) and g(!) can carry the cubic rough term
C;ek“), as there is only one, so bump the other one into X'. Go to step 1.

Step 1 Set a counter / = 1 and go to step 2.

Step2 If D™D isa Dg;;), apply estimate (5.1), put the factor carrying C;ek”) — which will be a U Cg”l)

(j+1)
R

ending estimate includes ||U C;ekﬂ)

b}

or2
L,l LX’X,

(va) & )

o2
L L LIOOLZ,
1 x

oraD for some j —in X~! and replace the X' norm of U¢ by the H' norm of ¢; if the

|X71 , replace it by ”Cgﬁl) |H71. Then go to step 6. If DU+ is

not a D(M), go to step 3.
Step 3 If D(l“) isa Df; ), apply estimate (5.2) and replace the X' norm of U¢ by the H' norm of ¢.
Then go to step 6. If DU*1 is not a Dibm), 20 to step 4.
Step4 If D™D isa Dgﬂ), apply estimate (5.3), put the factor carrying Cg”]) —which will be a UCEQkH)
G+ for some j —in X~! and replace the X' norm of U¢ by the H' norm of ¢; if the

R
ending estimate includes ||UC§ek+l) |X_1 , replace it by ”Cgﬁl) |H_1. Then go to step 6. If DU+ is

oraD

not a D(M), go to step 5.

Step 5 If DU is a DD apply estimate (5.4) and replace the X! norm of U¢ by the H'! norm of ¢.
Then go to step 6.

Step 6 Set the counter [ =1 + 1. If [ < k, go to step 2; otherwise go to step 7.

Step 7 Replace all the leftover ||U¢||x1 by ||¢||g1. There is actually at most one leftover ||U¢||x1,
which is exactly f!) or g(!) from the beginning and only happens when the sign J (k+ggn under
consideration is all + or all —. As it is not inside any Duhamel, it is not taken care of by steps
1-6. Go to step 8.

Step 8 We are now at the kth coupling, and have applied formulas (5.1) and (5.2) at least %k times; thus
we are looking at

K+l K+l
H( / / J/(‘m+5;n (kr )) (1) dty
n Ji

<ck-! / dige / || (@) 16155 1(T4M5 HPSMO¢HH1+HP>MO¢IIH1) 1612 ]l -

cor2
Lr] Lx,x,

wh\)

Applying the 4D Sobolev (5.5) to the rough factor yields

k

W

< ¢ / dtrs / d |t | () 10113572 (T7M 1P <aty ]| 1 +||P>Mo¢||H1)
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Putting in the support property (3.5) gives

T kake2 (10 3 ik
< / dtis / d|py,| (9) C*C] (T7M05C0+8)
0

k+2

2k
3 3
< 2TCkC3 (T5M05 Co + g)

2k
3
<2TC} (CC“T M5 +CCle ) ,

as claimed.

Thus, we have proved Proposition 3.7 and hence Theorem 3.1. As mentioned before, the main
theorem (Theorem 1.1) then follows from Theorem 3.1 and Lemma 3.3, which checks Theorem 3.1(c)
for solutions of equation (1.2) generated by equation (1.1) via equation (1.3).

Appendix A. Some further remarks

After reading the main part of the paper, it should now be clear that the proof of Theorem 1.1 goes
through if the T* energy-critical problem is replaced by the corresponding problems on R3, R* or
T3. (The method in this paper also provides a unified proof for the unconditional uniquness of the
H' -supercritical NLS [26].) One could use the analysis in Theorem 3.1 but slightly different logic to
conclude another form of Theorem 1.1, stated as Theorem A.1. It is certainly equivalent to Theorem
1.1, but its format is more closely related to well-posedness results.

Theorem A.1. Every C. . H\ solution to equation (1.1) is also in X".

[0,7]

Proof. We give only a sketch, as this route is only slightly different in the logic and is in fact messy in
estimates, because it needs to run the main argument twice, one part of which is in a weaker space.

1. Plug the chosen C ]H I solution u directly (not taking a difference) into equation (3.4) and iterate.

2. Group the terms in the Duhamel-Born expansion into free and interaction parts likein [17, 19,21, 25].

3. Apply the analysis of Theorem 3.1 to deduce that the interaction part is zero in L°°H; .- That is,
|u) (u| equals the free part.

4. Apply the analysis of Theorem 3.1 again, but in X', to conclude that the free part (and hence u) is
in X'

]

On the other hand, we remark that the T* case is a bit ‘special’ in the aspect of multilinear estimates.
The stronger L! HS versions of formulas (2.7) and (2.11) can be proved easily on R3 [39] and R?, and
with a highly technical and careful argument on T? [24]. In fact, here is a short proof for the R* case.

Lemma A.2. On R?,

e fie™ foe™ Fll s g < 1fi izt 1L flls ol (A1)

e fre"™® '™ fill g pr S WA 1f2 i 1l (A2)

In particular, these formulas imply formulas (2.7) and (2.11). That is, formulas (1) and (2) are indeed
stronger than formulas (2.7) and (2.11).
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Proof. We prove only formula (1), as formula (2) follows similarly. Given g € L°H !, we have

<[Vt e fills |11 (e pe s 5

‘/ eitAfl €itAf2€itAf3gd[dX

3
L2

t.x

where

% < ”(lvl ei[AfQ) eiZAf3g|

t,x

191 (2 e pig ) p #0919 e e 4
L L/ L

X

< H|V| eitAfZHL,{x ||eitAf3||Lt3L)1(z ||g||L;>°L;t
+ HeimfantzL)l(z HE”AJ%”LE‘L}(Z ”Vg”erL;zc

S llalBlla 118l e g

We see that formulas (1) and (2) are indeed elementary to prove if one has the Lf’x estimate,

which is known to fail on T# [2]. Scale-invariant T L}-Strichartz estimates with derivatives are also
absent in the literature. That is, proving formulas (1) and (2) on T* would be very difficult, and
they may not even be true. In fact, if both formulas (1) and (2) hold on T*, we can deduce that
||e”AP5Mf||L3L3 < M3 |1P<ps fll 2, which is a T* scale-invariant estimate carrying the L} exponent

and may not be true. Hence, we see that the T* case is indeed ‘special’ in the aspect of multilinear
estimates, and we are forced to use the weaker U-V space estimates to be on the safe side.
On the other hand, we remark that as estimates (1) and (2) were proved using Holder, Strichartz and so

i < SNl prp and the inclusion || fllyp < 11l

for p > 2, formulas (2.7) and (2.11) are reduced on R* from formulas (1) and (2) by applying the atomic
structure of UP on the nuts and bolts. We omit the details but remark that one would get a U estimate
instead if one applied the atomic structure directly on the L} estimate. That is, one could have multiple
versions of multilinear estimates yielding existence. For the moment, let us consider the T° quintic
problem as an example, since R3/R* are simpler and T* may not allow the ambiguity to be mentioned.
Instead of using the T3 versions of formulas (2.7) and (2.11), one could use the T> versions of formulas
(1) and (2), which do not need U-V techniques, or the U' versions of their implications to show local
existence for the T quintic problem in three similar but different subspaces of H'. The only way to
know if these three versions yield the same solution is an unconditional-uniqueness theorem.

Finally, separate from answering the original mathematical problem that there could be multiple solu-
tions coming from different spaces in which equation (1.1) is well posed, the unconditional-uniqueness
problems on T" have practical applications. An example is the control problem for the Lugiato—Lefever
system, first formulated in [52], which could be considered as an NLS with forcing:

on with > 2 time exponents, using Hfot e =M £(5)ds

idpuy = —Augp +up|” " uyp + finRXT", (A3)
ur(0,x) = uop.

The problem is to find f and ug such that uy € X, for some space X in which equation (3) is well posed,
minimises some given functional Z(u). For some experimental and engineering purposes, the spatial
domain has to be T". The space X in which one looks for the minimiser largely determines the difficulty.
IfX = Li or H }C, there are techniques readily available to hunt for minimisers. However, how to search
for minimisers when X is a proper subspace of H., like H2 or H. N LY L? — a common space for well-
posedness — remains open. Such a dilemma can be resolved if one has unconditional-uniqueness results
like Theorem 1.1.
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