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1. Introduction

The cubic nonlinear Schrödinger equation (NLS) in four dimensions

𝑖𝜕𝑡𝑢 = −Δ𝑢 ± |𝑢 |2 𝑢 in R × Λ, (1.1)

𝑢(0, 𝑥) = 𝑢0,

where Λ = R4 or T4, is called energy-critical, because it is invariant under the �𝐻1 scaling

𝑢(𝑡, 𝑥) ↦→ 𝑢𝜆(𝑡, 𝑥) =
1

𝜆
𝑢
( 𝑡
𝜆2

,
𝑥

𝜆

)

if Λ = R4. The large-datum global well-posedness of the defocusing case of equation (1.1) was first

proved for Λ = R4 in [56], after the breakthrough on the defocusing R3 quintic problem [3, 28, 33].

The argument was standardised in [42], in which the radial focusing R3 quintic problem was addressed.

After that, the global well-posedness of the energy-critical defocusing T3 quintic problem was creatively

settled in [36, 40], by partially invoking the R3 result [28, 42]. Such a problem for equation (1.1)

when Λ = T4 was then subsequently proved in [37, 43, 61]. The goal of this paper is to establish 𝐻1

unconditional uniqueness for equation (1.1) on T4.

Theorem 1.1. There is at most one 𝐶0
[0,𝑇 ]

𝐻1
𝑥 ∩

�𝐶1
[0,𝑇 ]

𝐻−1
𝑥 solution1 to equation (1.1) on T4.2

Unconditional uniqueness is a fundamental concept raised by Kato [41].3 These problems, even in

the 𝐻1-critical setting, are often overlooked, as solving them in R𝑛 after proving the well-posedness is

relatively simple.4 For the NLS on T𝑛, such problems are delicate, as estimates on T𝑛, especially the

T
𝑛 Strichartz estimates, are weaker than their R𝑛 counterparts. For example, for the R𝑛 case, one can

easily use the existence of a better solution in Strichartz spaces to yield unconditional uniqueness. But

such a technique does not work well in the T𝑛 case. In fact, Theorem 1.1 for the T3 quintic case at 𝐻1

regularity was not known until recently [24].

To prove Theorem 1.1, we will use the cubic Gross–Pitaevskii (GP) hierarchy on T4, which is

uncommon in the analysis of the NLS and is being explored [24, 35]. Let L1
𝑘 denote the space of trace

class operators on 𝐿2
(
T

4𝑘
)
. The cubic GP hierarchy onT4 is a sequence

{
𝛾 (𝑘) (𝑡)

}
∈ ⊕𝑘≥1𝐶

(
[0, 𝑇] ,L1

𝑘

)
which satisfies the infinitely coupled hierarchy of equations

𝑖𝜕𝑡𝛾
(𝑘)

=

𝑘∑
𝑗=1

[
−Δ 𝑥 𝑗 , 𝛾

(𝑘)
]
± 𝑏0

𝑘∑
𝑗=1

Tr𝑘+1

[
𝛿
(
𝑥 𝑗 − 𝑥𝑘+1

)
, 𝛾 (𝑘+1)

]
, (1.2)

where 𝑏0 > 0 is some coupling constant and ± denotes defocusing/focusing. Given any solution u of

equation (1.1), we generate a solution to equation (1.2) by letting

𝛾 (𝑘)
= |𝑢〉 〈𝑢 |⊗𝑘 , (1.3)

in operator form, or

𝛾 (𝑘)
(
𝑡, x𝑘 , x

′
𝑘

)
=

𝑘∏
𝑗=1

𝑢
(
𝑡, 𝑥 𝑗
)
𝑢̄
(
𝑡, 𝑥 ′𝑗

)
,

in kernel form, if we write x𝑘 = (𝑥1, . . . , 𝑥𝑘 ) ∈ T
4𝑘 .

1A 𝐶0
[0,𝑇 ]

𝐻 1
𝑥 distributional solution is automatically a 𝐶0

[0,𝑇 ]
𝐻 1

𝑥 ∩ �𝐶1
[0,𝑇 ]

𝐻−1
𝑥 solution. We wrote the latter here because it

is a more direct space for equation (1.1).
2See also Theorem A.1 for another format, closer to well-posedness theory, of Theorem 1.1; its proof shows that every

𝐶0
[0,𝑇 ]

𝐻 1
𝑥 solution is also in 𝑋1 without using any previous well-posedness results.

3According to C. Miao, Kato wrote a letter to him, accompanying a book, mentioning these unconditional-uniqueness problems
at critical settings one month before passing away.

4See, for example, [28, Section 16].
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The hierarchy (1.2) arises in the derivation of the NLS as an 𝑁 → ∞ limit of quantum N-body

dynamics. It was first derived in the work of Erdös, Schlein and Yau [29, 30, 31] for the R3 defocusing

cubic case around 2005.5 They proved delicately that there is a unique solution to the R3 cubic GP

hierarchy in an 𝐻1-type space (unconditional uniqueness) in [29], with a sophisticated Feynman-graph

analysis. This first series of groundbreaking papers motivated a large amount of work.

In 2007, Klainerman and Machedon [47], inspired by [29, 46], proved the uniqueness of solutions

regarding the R3 cubic GP hierarchy in a Strichartz-type space (conditional uniqueness). They proved a

collapsing-type estimate, which implies a multilinear estimate when applied to factorised solutions like

equation (1.3), to estimate the inhomogeneous term and provided a different combinatorial argument,

now called the Klainerman–Machedon (KM) board game, to combine the inhomogeneous terms, effec-

tively reducing their numbers. At that time, it was unknown how to prove that the limits coming from the

N-body dynamics are in Strichartz-type spaces, even though the solutions to equation (1.2) generated

by the R3 cubic NLS naturally lie in both the 𝐻1-type space and the Strichartz-type space. Nonethe-

less, [47] has made the analysis of equation (1.2) approachable to partial-differential-equation analysts,

and the KM board game has been used in every work involving the hierarchy (1.2).6 After Kirkpatrick,

Schlein and Staffilani [44] derived equation (1.2) in 2008 and found that the Klainerman–Machedon

Strichartz-type bound can be obtained via a simple trace theorem for the defocusing case in R2 and T2,

many works [8, 14, 16, 18, 20, 22, 23, 60, 58] then followed such a scheme for the uniqueness of GP

hierarchies. However, the question of how to check the Klainerman–Machedon Strichartz-type bound

in the 3D cubic case remained fully open at that time.

T. Chen and Pavlović laid the foundation for the 3D quintic defocusing energy-critical case by

studying the 1D and 2D defocusing quintic cases in [8], in which they proved that the 2D quintic case,

a case usually considered equivalent to the 3D cubic case, does satisfy the Klainerman–Machedon

Strichartz-type bound – although proving it for the 3D cubic case was still open.

T. Chen and Pavlović also initiated the study of the well-posedness theory of equation (1.2) with

general initial datum as an independent subject away from the quantum N-body dynamics in [7, 9, 10]

(see also [12, 13, 55, 53, 54, 58, 59]). On the one hand, generalising the problem could help to attack

the Klainerman–Machedon Strichartz-type bound problem. On the other hand, it leads one to consider

whether the hierarchy (1.2), the general equation, could hold more in store than its special solution,

the NLS (equation (1.1)).7 Then in 2011, T. Chen and Pavlović proved that the 3D cubic Klainerman–

Machedon Strichartz-type bound does hold for the defocusing 𝛽 < 1/4 case [11]. The result was quickly

improved to 𝛽 ≤ 2/7 by X. Chen [17] and to the almost-optimal case, 𝛽 < 1, by X. Chen and Holmer

[19, 21], by lifting the 𝑋1,𝑏 space techniques from NLS theory into the field.

Around the same time, Gressman, Sohinger and Staffilani [32] studied the uniqueness of equation

(1.2) in the T3 setting and found that the sharp collapsing estimate on T3 needs 𝜀 more derivatives

than the R3 case, in which one derivative is needed. Herr and Sohinger later generalised this fact to all

dimensions [34] – that is, collapsing estimates on T𝑛 always need 𝜀 more derivatives than the R𝑛 case

proved in [16].8

In 2013, T. Chen, Hainzl, Pavlović and Seiringer introduced the quantum de Finetti theorem, from

[51], to the derivation of the time-dependent power-type NLS and provided, in [6], a simplified proof

of the R3 unconditional uniqueness theorem regarding equation (1.2) from [29]. The application of the

quantum de Finetti theorem allows one to replace the collapsing estimates by the multilinear estimates.

The scheme in [6], which consists of the KM board game, the quantum de Finetti theorem and the

multilinear estimates, is robust. Sohinger used this scheme in [57] to address the aforementioned 𝜀-loss

problem for the defocusing T3 cubic case. Hong, Taliaferro and Xie used this scheme in [38] to obtain

unconditional uniqueness theorems for equation (1.2) in R𝑛, 𝑛 = 1, 2, 3, with regularities matching the

NLS analysis, and in [39] for 𝐻1 small-solution uniqueness in the R3 quintic case (see also [22, 27]).

5See also [1] for the 1D defocusing cubic case around the same time.
6Analysis of the Boltzmann hierarchy can also use the KM board game; see, for example, [5].
7Private communication with T. Chen and Pavlović.

8Except in the 1D case, as shown in [20], this 𝜀 loss also happens in R1.
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Analysis of GP hierarchy did not yield new NLS results with regularity lower than that of NLS

analysis until [35, 24].9,10 In [35], using the scheme in [6], Herr and Sohinger generalised the usual

Sobolev multilinear estimates to Besov spaces and obtained new unconditional-uniqueness results

regarding equation (1.2) and hence the NLS (equation (1.1)) on T𝑛. The result has pushed the regularity

requirement for the uniqueness of equation (1.1) lower than the number coming from NLS analysis.

Moreover, it covers the whole subcritical region for 𝑛 ≥ 4, which includes Theorem 1.1 with 𝐻1+𝜀

regularity.

In [24], by discovering the new hierarchical uniform frequency localisation (HUFL) property for

the GP hierarchy – which reduces to a new statement even for the NLS – X.C. and Holmer estab-

lished a new 𝐻1-type uniqueness theorem for the T3 quintic energy-critical GP hierarchy.11 The new

uniqueness theorem, though neither conditional nor unconditional for the GP hierarchy, implies the 𝐻1

unconditional-uniqueness result for the T3 quintic energy-critical NLS. It is then natural to consider the

T
4 cubic energy-critical case in this paper. However, the key Sobolev multilinear estimates in [24] are

very difficult to prove, or may not be true, for the T4 cubic case here, and it turns out, surprisingly, that

T
4 is unique or special compared to R3/R4/T3.

1.1. Outline of the proof of Theorem 1.1

We will prove Theorem 1.1 as a corollary of Theorem 3.1, a GP-hierarchy uniqueness theorem stated

in Section 3. As Theorem 3.1 requires the HUFL condition, we prove that any 𝐶0
[0,𝑇 ]

𝐻1
𝑥 ∩

�𝐶1
[0,𝑇 ]

𝐻−1
𝑥

solution to equation (1.1) on T4 satisfies uniform-in-time frequency localisation with Lemma 3.3 –

that is, solutions to equation (1.2) generated from equation (1.1) via equation (1.3) satisfy the HUFL

condition. Thus we will have established Theorem 1.1 once we have proved Theorem 3.1.

As Theorem 3.1 is an energy-critical case, due to the known similarities between the R3 quintic and

R
4 cubic cases, one would guess that the proof of the T3 quintic case goes through for the T4 cubic

case as well. It does not. As mentioned before, the key Sobolev multilinear estimates in [24] are very

difficult to prove, or may not be true here (interested readers can see Appendix A for a discussion). In

this 𝐻1-critical setting, the next replacement in line would be the weaker U-V multilinear estimates.

The U-V trilinear estimates do hold on T4. This is where we start.

In Section 2, we first give a short introduction to the U -V space, referring the standard literature

[36, 40, 43, 50], then prove the U-V version of theT4 trilinear estimates (Lemmas 2.1 and 2.2). The proof

of the U-V trilinear estimates is less technical and simpler than the proof of the Sobolev multilinear

estimates in [24], as they are indeed weaker.12 (As we will conclude the same unconditonal uniquness

with these much weaker estimates, we can infer that our method here is indeed much stronger now.)

But these U-V trilinear estimates still highly rely on the scale-invariant Stichartz estimates and the

𝑙2-decoupling theorem in [4, 43].

Though the U-V trilinear estimates hold in T4, there is no method available to use them to prove

uniqueness for GP hierarchies. This is why estimates in the hierarchy framework have always been about

𝐿
𝑝
𝑡 𝐻

𝑠
𝑥 . Even in [19, 21], in which the 𝑋𝑠,𝑏 techniques were used, they were used only once in the very

end of the iteration, instead of every step of the iteration to yield smallness. Conceptually speaking,

while it is easy to bound the 𝐿∞
𝑡 𝐻

𝑠
𝑥 norm by the U-V norms, one has to pay half a derivative in time to

come back. On the one hand, we are proving an unconditional-uniqueness theorem; we have to come

back to the Sobolev spaces in the end of the proof. On the other hand, we are proving a critical result; we

do not have an extra half derivative in time to spare. To fix this problem, we adjust how the multilinear

estimates apply to the Duhamel–Born expansion of 𝛾 (𝑘) after the application of the KM board game,

so that the U- V trilinear estimates land only on a ‘Duhamel-like’ integral.

9Here we mention [35] before [24], even though [24] was posted on arXiv a month before [35], because we were not aware of
the unconditional-uniqueness outcome of [24] until [35].

10See also [45] for recent developments using NLS analysis.
11See [17] for another type of quintic problems.

12The stronger Sobolev multilinear estimates hold, easily, for R4 (see Appendix A).
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The main problem now surfaces. The time-integration domain 𝐷𝑚 of the aforementioned ‘Duhamel-

like’ integrals, coming from the KM board game, is a union of a very large number of high-dimensional

simplexes under the action of a proper subset of the permutation group 𝑆𝑘 specific to every integrand.

To at least have a chance to use space-time norms like 𝑋𝑠,𝑏 and U-V – which are very sensitive to

the irregularity of the time domain, as they involve taking time derivatives [50, p. 68] – one would

have to know what 𝐷𝑚 is. It turns out that 𝐷𝑚 coming from the original KM board game is not fully

compatible with the U- V trilinear estimates. To this end, we establish an extended KM board game

which is compatible in Section 4.

In Section 4.1, as a warm-up, we first develop – via a detailed tree13 diagram representation – a more

elaborated proof of the original KM board game, which yields, for the first time, an algorithm to directly

compute 𝐷𝑚 and domains like it. Graphically speaking, under our tree representation the original KM

board game combines all the trees with the same skeletons into an ‘upper-echelon’ class which can be

represented by an upper-echelon tree.14 The time integration domain 𝐷𝑚 for each upper-echelon class

can be directly read off from the upper-echelon tree representing the class.

We then introduce, in Sections 4.2–4.5, the wild moves, which allow us to uncover more integrals

in the Duhamel–Born expansion with the same integrands after permutation and combine them into

‘reference’ classes. Graphically speaking, it allows the combination of trees sharing the same reference

enumeration but with different structures. However, the wild moves are not compatible with the upper-

echelon classes coming from the original KM board game. We have to restart from the very beginning

at the level of the 2𝑘 𝑘! summands.

Before applying the wild moves, in Sections 4.2 and 4.3 we turn the 2𝑘 𝑘! summands in the initial

Duhamel–Born expansion into their tamed forms, which would be invariant under the wild moves, via

reworked signed Klainerman-Machedon acceptable moves. We then sort the tamed forms into tamed

classes via the wild moves in Section 4.4. Finally, in Section 4.5 we use the algorithm developed in

Section 4.1 to calculate the time integration domain for each tamed class. In fact, we prove that given a

tamed class, there is a reference form representing the tamed class, and the time integration domain for

the whole tamed class can be directly read out from the reference form.

Using this extended KM board game coming from scratch, we found that the time integration domain

specific for each integrand can always be ‘miraculously’ written as one single iterated integral in the

integration order ready to apply the quantum de Finetti theorem, despite the fact that it was previously

thought unrepresentable or even disconnected, and was expanded into [0, 𝑇]𝑘 in all previous work since

there were no other options to use it. Moreover, once these integration limits are put together with the

integrand, each distinct tamed class becomes an exact fit to apply the U-V trilinear estimates proved

in Section 2. This combinatorial analysis, which is compatible with space-time norms and the method

to explicitly compute the time integration domain in the general recombined Duhamel–Born expansion

(which includes more than the GP hierarchies), is the main technical achievement of this paper.

With everything ready by the extended KM board game in Section 4, the quantum de Finetti theorem

from [6], the U-V space techniques from [50], the trilinear estimates proved using the scale-invariant

Stichartz estimates and 𝑙2-decoupling theorem in [4, 43] and the HUFL properties from [24], all work

together seamlessly in Section 5 to establish Theorem 3.1 and provide a unified proof of large-solution

uniqueness for the R3/T3 quintic and the R4/T4 cubic energy-critical GP hierarchies, and hence the

corresponding NLS. The discovery of such an unexpected close and effective collaboration of these

previously independent deep theorems is the main novelty of this paper.

We remark that putting together Theorem 3.1 and the compactness and convergence argument of

[24] completes a derivation of equation (1.1) from quantum many-body dynamics. We choose not to do

so here, as it is not the main point of this paper. We now expect to be able to bring the full strength of

13This is the third type of tree used in the analysis of GP hierarchies. The first two are the Feymann graphs in [29] and the
binary trees in [6]. They are coded differently and serve different purposes.

14It is possible to write Section 4 without trees (or matrices), but we would lose this graphical explanation. Due to the coupling,
recursive and iterative features of the hierarchies, algorithm terminologies happen to be helpful.
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dispersive estimate technology to bear on various type of hierarchies of equations and related problems,

and this is our first example of it. (An immediate next step has been taken [26].)

2. Trilinear estimates in the U-V spaces

As mentioned in the introduction, our proof of Theorem 1.1 requires the U-V space, whereas the

R
3/R4/T3 cases do not. Here 𝑉 𝑝 is the space of functions of bounded p-variation of Wiener, and

the atomic 𝑈 𝑝 space, introduced by Koch and Tataru [48, 49], is a close relative of 𝑉 𝑝 . Referring to the

now-standard text [50] for the definition of 𝑈
𝑝
𝑡 and 𝑉

𝑝
𝑡 , we define

‖𝑢‖𝑋𝑠 ( [0,𝑇 )) =
�
�
∑
𝜉 ∈Z4

〈𝜉〉2𝑠
��� �𝑒−𝑖𝑡Δ𝑢(𝑡, ·) (𝜉)���2

𝑈2
𝑡

���
1
2

and

‖𝑢‖𝑌 𝑠 ( [0,𝑇 )) =
�
�
∑
𝜉 ∈Z4

〈𝜉〉2𝑠
��� �𝑒−𝑖𝑡Δ𝑢(𝑡, ·) (𝜉)���2

𝑉 2
𝑡

���
1
2

as in [36, 37, 40, 43]. 𝑋𝑠 and 𝑌 𝑠 are endpoint replacements for the Fourier restriction spaces 𝑋𝑠,𝑏 when

𝑏 =
1
2

and − 1
2
. In particular, we have the usual properties

‖𝑢‖𝐿∞𝑡 𝐻
𝑠
𝑥
� ‖𝑢‖𝑋𝑠 , (2.1)

��𝑒𝑖𝑡Δ 𝑓
��
𝑌 𝑠 �
��𝑒𝑖𝑡Δ 𝑓

��
𝑋𝑠 � ‖ 𝑓 ‖𝐻 𝑠 , (2.2)

����
∫ 𝑡

𝑎

𝑒𝑖 (𝑡−𝑠)Δ 𝑓 (𝑠, ·)𝑑𝑠

����
𝑋𝑠 ( [0,𝑇 ))

≤ sup
𝑣 ∈𝑌 −𝑠 ( [0,𝑇 )):‖𝑣 ‖𝑌−𝑠=1

∫ 𝑇

0

∫
T4

𝑓 (𝑡, 𝑥)𝑣(𝑡, 𝑥)𝑑𝑡𝑑𝑥 ∀𝑎 ∈ [0, 𝑇) ,

(2.3)

which were proved in [50, p. 46] and in [36, Propositions 2.8–2.11]. With these definitions of 𝑋𝑠 and

𝑌 𝑠 , we have the following trilinear estimates:

Lemma 2.1. On T4, we have the high frequency estimate∬
𝑥,𝑡

𝑢1(𝑡, 𝑥)𝑢2 (𝑡, 𝑥)𝑢3(𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥𝑑𝑡 � ‖𝑢1‖𝑌 −1 ‖𝑢2‖𝑌 1 ‖𝑢3‖𝑌 1 ‖𝑔‖𝑌 1 (2.4)

and the low frequency estimate∬
𝑥,𝑡

𝑢1 (𝑡, 𝑥)
(
𝑃≤𝑀0

𝑢2

)
(𝑡, 𝑥)𝑢3(𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥𝑑𝑡 � 𝑇

1
7 𝑀

3
5

0
‖𝑢1‖𝑌 −1

��𝑃≤𝑀0
𝑢2

��
𝑌 1 ‖𝑢3‖𝑌 1 ‖𝑔‖𝑌 1 (2.5)

for all 𝑇 ≤ 1 and all frequencies 𝑀0 ≥ 1, or����
∫ 𝑡

𝑎

𝑒𝑖 (𝑡−𝑠)Δ (𝑢1𝑢2𝑢3) 𝑑𝑠

����
𝑋−1 ( [0,𝑇 ))

� ‖𝑢1‖𝑌 −1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝑢2

��
𝑌 1 +
��𝑃>𝑀0

𝑢2

��
𝑌 1

)
‖𝑢3‖𝑌 1 (2.6)

and ����
∫ 𝑡

𝑎

𝑒𝑖 (𝑡−𝑠)Δ (𝑢1𝑢2𝑢3) 𝑑𝑠

����
𝑋−1 ( [0,𝑇 ))

� ‖𝑢1‖𝑌 −1 ‖𝑢2‖𝑌 1 ‖𝑢3‖𝑌 1 . (2.7)
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Moreover, if 𝑢 𝑗 = 𝑒𝑖𝑡Δ 𝑓 𝑗 for some j, then the 𝑌 𝑠 norm of 𝑢 𝑗 in formula (2.6) or (2.7) can be replaced by

the 𝐻𝑠 norm of 𝑓 𝑗 .

Similarly, we have 𝑋1 estimates:

Lemma 2.2. On T4, we have the high frequency estimate∬
𝑥,𝑡

𝑢1(𝑡, 𝑥)𝑢2 (𝑡, 𝑥)𝑢3(𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥𝑑𝑡 � ‖𝑢1‖𝑌 1 ‖𝑢2‖𝑌 1 ‖𝑢3‖𝑌 1 ‖𝑔‖𝑌 −1 (2.8)

and the low frequency estimate∬
𝑥,𝑡

𝑢1(𝑡, 𝑥)
(
𝑃≤𝑀0

𝑢2

)
(𝑡, 𝑥)𝑢3(𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥𝑑𝑡 � 𝑇

1
7 𝑀

3
5

0
‖𝑢1‖𝑌 1

��𝑃≤𝑀0
𝑢2

��
𝑌 1 ‖𝑢3‖𝑌 1 ‖𝑔‖𝑌 −1 . (2.9)

In other words,����
∫ 𝑡

𝑎

𝑒𝑖 (𝑡−𝑠)Δ (𝑢1𝑢2𝑢3) 𝑑𝑠

����
𝑋1 ( [0,𝑇 ))

� ‖𝑢1‖𝑌 1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝑢2

��
𝑌 1 +
��𝑃>𝑀0

𝑢2

��
𝑌 1

)
‖𝑢3‖𝑌 1 (2.10)

and ����
∫ 𝑡

𝑎

𝑒𝑖 (𝑡−𝑠)Δ (𝑢1𝑢2𝑢3) 𝑑𝑠

����
𝑋1 ( [0,𝑇 ))

� ‖𝑢1‖𝑌 1 ‖𝑢2‖𝑌 1 ‖𝑢3‖𝑌 1 . (2.11)

Moreover, if 𝑢 𝑗 = 𝑒𝑖𝑡Δ 𝑓 𝑗 for some j, then the 𝑌 𝑠 norm of 𝑢 𝑗 in formula (2.10) or (2.11) can be replaced

by the 𝐻𝑠 norm of 𝑓 𝑗 .

We prove only Lemma 2.1. On the one hand, Lemma 2.2 follows from the proof of Lemma 2.1, with

little modification. On the other hand, formula (2.8) has already been proved as [37, Proposition 2.12]

and [43, (4.4)], and the non-scale-invariant estimate (2.9) is easy. Hence we omit the proof of Lemma

2.2. The following tools will be used to prove Lemma 2.1.

Lemma 2.3. (Strichartz estimate on T4 [4, 43]). For 𝑝 > 3,

‖𝑃≤𝑀𝑢‖𝐿𝑝
𝑡,𝑥
� 𝑀

2− 6
𝑝 ‖𝑢‖𝑌 0 . (2.12)

Corollary 2.4. (Strichartz estimates on T4 with noncentred frequency localisation). Let M be a dyadic

value and let Q be a (possibly) noncentred M-cube in Fourier space,

𝑄 = {𝜉0 + 𝜂 : |𝜂 | ≤ 𝑀} .

Let 𝑃𝑄 be the corresponding Littlewood–Paley projection. Then by Galilean invariance, we have

��𝑃𝑄𝑢��𝐿𝑝
𝑡,𝑥
� 𝑀

2− 6
𝑝

��𝑃𝑄𝑢��𝑌 0 𝑝 > 3. (2.13)

The net effect of this observation is that we pay a factor of only 𝑀
2− 6

𝑝 when applying formula (2.12).

Proof. Such a fact is well known and widely used. Readers interested in a version of the proof can see

[24, Corollary 5.18]. �

2.1. Proof of Lemma 2.1

We first present the proof of the sharp estimate (2.4), then that of formula (2.5).
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8 X. Chen and J. Holmer

2.1.1. Proof of formula (2.4)

Let I denote the integral in formula (2.4). Decompose the four factors into Littlewood–Paley pieces so that

𝐼 =
∑

𝑀1 ,𝑀2 ,𝑀3 ,𝑀

𝐼𝑀1 ,𝑀2 ,𝑀3 ,𝑀 ,

where

𝐼𝑀1 ,𝑀2 ,𝑀3 ,𝑀 =

∬
𝑥,𝑡

𝑢1,𝑀1
𝑢2,𝑀2

𝑢3,𝑀3
𝑔𝑀 𝑑𝑥𝑑𝑡,

with 𝑢 𝑗 ,𝑀 𝑗
= 𝑃𝑀 𝑗

𝑢 𝑗 and 𝑔𝑀 = 𝑃𝑀𝑔. As 𝑀2, 𝑀3 and M are symmetric, it suffices to take care of the

𝑀1 ∼ 𝑀2 ≥ 𝑀3 ≥ 𝑀 case. Decompose the 𝑀1 and 𝑀2 dyadic spaces into 𝑀3-size cubes; then

𝐼1𝐴 �
∑

𝑀1 ,𝑀2 ,𝑀3 ,𝑀
𝑀1∼𝑀2≥𝑀3≥𝑀

∑
𝑄

��𝑃𝑄𝑢1,𝑀1
𝑃𝑄𝑐

𝑢2,𝑀2
𝑢3,𝑀3

𝑔𝑀
��
𝐿1
𝑡,𝑥

�

∑
𝑀1 ,𝑀2 ,𝑀3 ,𝑀
𝑀1∼𝑀2≥𝑀3≥𝑀

∑
𝑄

��𝑃𝑄𝑢1,𝑀1

��
𝐿

10
3

𝑡,𝑥

��𝑃𝑄𝑐
𝑢2,𝑀2

��
𝐿

10
3

𝑡,𝑥

��𝑢3,𝑀3

��
𝐿

10
3

𝑡,𝑥

‖𝑔𝑀 ‖𝐿10
𝑡,𝑥

.

Using formulas (2.12) and (2.13),

�

∑
𝑀1 ,𝑀2 ,𝑀3 ,𝑀
𝑀1∼𝑀2≥𝑀3≥𝑀

∑
𝑄

𝑀
2
5

3

��𝑃𝑄𝑢1,𝑀1

��
𝑌 0

��𝑢3,𝑀3

��
𝑌 0 𝑀

1
5

3

��𝑃𝑄𝑐
𝑢2,𝑀2

��
𝑌 0 𝑀

7
5 ‖𝑔𝑀 ‖𝑌 0

�

∑
𝑀1 ,𝑀2 ,𝑀3 ,𝑀
𝑀1∼𝑀2≥𝑀3≥𝑀

𝑀
3
5

3
𝑀

7
5 ‖𝑔𝑀 ‖𝑌 0

��𝑢3,𝑀3

��
𝑌 0

∑
𝑄

��𝑃𝑄𝑢1,𝑀1

��
𝑌 0

��𝑃𝑄𝑐
𝑢2,𝑀2

��
𝑌 0 .

Applying Cauchy–Schwarz to sum in Q, we have

�

∑
𝑀1 ,𝑀2 ,𝑀3 ,𝑀
𝑀1∼𝑀2≥𝑀3≥𝑀

𝑀
3
5

3
𝑀

7
5

��𝑢1,𝑀1

��
𝑌 0

��𝑢2,𝑀2

��
𝑌 0

��𝑢3,𝑀3

��
𝑌 0 ‖𝑔𝑀 ‖𝑌 0

�

∑
𝑀1 ,𝑀2
𝑀1∼𝑀2

𝑀2𝑀
−1
1

��𝑢1,𝑀1

��
𝑌 −1

��𝑢2,𝑀2

��
𝑌 1

∑
𝑀3 ,𝑀

𝑀1∼𝑀2≥𝑀3≥𝑀

𝑀
− 2

5

3
𝑀

2
5

��𝑢3,𝑀3

��
𝑌 1 ‖𝑔𝑀 ‖𝑌 1 .

We are done, by Schur’s test.

2.1.2. Proof of formula (2.5)

We reuse the setup from the proof of formula (2.4). However, due to the symmetry assumption 𝑀1 ≥

𝑀2 ≥ 𝑀3 on the frequencies in the proof of formula (2.4), we cannot simply assume that 𝑃≤𝑀0
lands

on 𝑢2. The worst-gain (least-gain) case here would be that 𝑢1 is still put in 𝑌−1 and 𝑃≤𝑀0
is applied

to 𝑢3. Thus we will prove estimate (2.5) subject to the extra localisation that 𝑃≤𝑀0
be applied on 𝑢3.

By symmetry in 𝑀2 and M, it suffices to take care of two cases: A, 𝑀1 ∼ 𝑀2 ≥ 𝑀3 ≥ 𝑀 , and B,

𝑀1 ∼ 𝑀2 ≥ 𝑀 ≥ 𝑀3. We will get a 𝑇
1
4 𝑀

3
5

0
in case A and a 𝑇

1
7 𝑀

3
7

0
in case B. Since formula (2.5) is

nowhere near optimal, and we just need it to hold with some powers of T and 𝑀0, there is no need to

match these powers or pursue the best power in these cases.
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Case A: 𝑴1 ∼ 𝑴2 ≥ 𝑴3 ≥ 𝑴.

Decompose the 𝑀1 and 𝑀2 dyadic spaces into 𝑀3-size cubes:

𝐼𝑀1 ,𝑀2 ,𝑀3 ,𝑀 ≤
∑
𝑄

��𝑃𝑄𝑢1,𝑀1
𝑃𝑄𝑐

𝑢2,𝑀2

(
𝑃≤𝑀0

𝑢3,𝑀3

)
𝑔𝑀
��
𝐿1
𝑡,𝑥

≤
∑
𝑄

��𝑃𝑄𝑢1,𝑀1
𝑔𝑀
��
𝐿2
𝑡,𝑥

��𝑃𝑄𝐶
𝑢2,𝑀2

��
𝐿4
𝑡,𝑥

��𝑃≤𝑀0
𝑢3,𝑀3

��
𝐿4
𝑡,𝑥

,

where

��𝑃≤𝑀0
𝑢3,𝑀3

��
𝐿4
𝑡,𝑥

≤ 𝑇
1
4 𝑀

3
5

0
𝑀

2
5

3

��𝑃≤𝑀0
𝑢3,𝑀3

��
𝐿∞𝑡 𝐿

2
𝑥
� 𝑇

1
4 𝑀

3
5

0
𝑀

2
5

3

��𝑃≤𝑀0
𝑢3,𝑀3

��
𝑌 0 .

Using formulas (2.12) and (2.13),

𝐼𝑀1 ,𝑀2 ,𝑀3 ,𝑀 � 𝑇
1
4 𝑀

3
5

0

∑
𝑄

(
𝑀
��𝑃𝑄𝑢1,𝑀1

��
𝑌 0 ‖𝑔𝑀 ‖𝑌 0

)
𝑀

1
2

3

��𝑃𝑄𝐶
𝑢2,𝑀2

��
𝑌 0 𝑀

2
5

3

��𝑃≤𝑀0
𝑢3,𝑀3

��
𝑌 0 .

Note that we actually used a bilinear estimate for the first factor, but did not record or use the bilinear

gain factor. Using Cauchy–Schwarz to sum in Q, we have

𝐼𝑀1 ,𝑀2 ,𝑀3 ,𝑀 � 𝑇
1
4 𝑀

3
5

0

��𝑢1,𝑀1

��
𝑌 0 ‖𝑔𝑀 ‖𝑌 1

��𝑢2,𝑀2

��
𝑌 0 𝑀

9
10

3

��𝑃≤𝑀0
𝑢3,𝑀3

��
𝑌 0 .

Thus, summing in M nonoptimally gives

𝐼1𝐴 � 𝑇
1
4 𝑀

3
5

0
‖𝑔‖𝑌 1

∑
𝑀1 ,𝑀2 ,𝑀3
𝑀1∼𝑀2≥𝑀3

��𝑢1,𝑀1

��
𝑌 0

��𝑢2,𝑀2

��
𝑌 0 𝑀

9
10

3
log 𝑀3

��𝑃≤𝑀0
𝑢3,𝑀3

��
𝑌 0

� 𝑇
1
4 𝑀

3
5

0
‖𝑔‖𝑌 1

∑
𝑀1 ,𝑀2 ,𝑀3
𝑀1∼𝑀2≥𝑀3

��𝑢1,𝑀1

��
𝑌 0

��𝑢2,𝑀2

��
𝑌 0

𝑀
9
10

3
log 𝑀3

𝑀3

��𝑃≤𝑀0
𝑢3,𝑀3

��
𝑌 1 .

Again, summing in 𝑀3 nonoptimally and swapping a derivative between 𝑢1 and 𝑢2 give

𝐼1𝐴 � 𝑇
1
4 𝑀

3
5

0
‖𝑔‖𝑌 1

��𝑃≤𝑀0
𝑢3

��
𝑌 1

∑
𝑀1 ,𝑀2
𝑀1∼𝑀2

��𝑢1,𝑀1

��
𝑌 −1

��𝑢2,𝑀2

��
𝑌 1

� 𝑇
1
4 𝑀

3
5

0
‖𝑢1‖𝑌 −1 ‖𝑢2‖𝑌 1

��𝑃≤𝑀0
𝑢3

��
𝑌 1 ‖𝑔‖𝑌 1 .

Case B: 𝑴1 ∼ 𝑴2 ≥ 𝑴 ≥ 𝑴3.

Sum up 𝑀3 first. We then consider

𝐼𝑀1 ,𝑀2 ,𝑀 =

∬
𝑥,𝑡

𝑢1,𝑀1
𝑢2,𝑀2

(
𝑃≤𝑀𝑃≤𝑀0

𝑢3

)
𝑔𝑀 𝑑𝑥𝑑𝑡.

Decompose the 𝑀1 and 𝑀2 dyadic spaces into M-size cubes:

𝐼𝑀1 ,𝑀2 ,𝑀 ≤
∑
𝑄

��𝑃𝑄𝑢1,𝑀1
𝑃𝑄𝑐

𝑢2,𝑀2

(
𝑃≤𝑀𝑃≤𝑀0

𝑢3

)
𝑔𝑀
��
𝐿1
𝑡,𝑥

≤
∑
𝑄

��𝑃𝑄𝑢1,𝑀1

��
𝐿

7
2
𝑡,𝑥

��𝑃𝑄𝐶
𝑢2,𝑀2

��
𝐿

7
2
𝑡,𝑥

��𝑃≤𝑀𝑃≤𝑀0
𝑢3

��
𝐿7
𝑡,𝑥

‖𝑔𝑀 ‖
𝐿

7
2
𝑡,𝑥

,
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10 X. Chen and J. Holmer

where

��𝑃≤𝑀𝑃≤𝑀0
𝑢3

��
𝐿7
𝑡,𝑥

≤ 𝑇
1
7

��𝑃≤𝑀𝑃≤𝑀0
𝑢3

��
𝐿∞𝑡 𝐿

7
𝑥

� 𝑇
1
7 𝑀

3
7

0

��𝑃≤𝑀𝑃≤𝑀0
𝑢3

��
𝐿∞𝑡 𝐻

1
𝑥

� 𝑇
1
7 𝑀

3
7

0

��𝑃≤𝑀𝑃≤𝑀0
𝑢3

��
𝑌 1 .

Applying formulas (2.12) and (2.13),

𝐼𝑀1 ,𝑀2 ,𝑀 � 𝑇
1
7 𝑀

3
7

0

��𝑃≤𝑀𝑃≤𝑀0
𝑢3

��
𝑌 1

∑
𝑄

𝑀
2
7

��𝑃𝑄𝑢1,𝑀1

��
𝑌 0 𝑀

2
7

��𝑃𝑄𝐶
𝑢2,𝑀2

��
𝑌 0 𝑀

2
7 ‖𝑔𝑀 ‖𝑌 0 .

Applying Cauchy–Schwarz to sum in Q, we have

𝐼𝑀1 ,𝑀2 ,𝑀 � 𝑇
1
7 𝑀

3
7

0

��𝑃≤𝑀𝑃≤𝑀0
𝑢3

��
𝑌 1 𝑀

− 1
7

��𝑢1,𝑀1

��
𝑌 0

��𝑢2,𝑀2

��
𝑌 0 ‖𝑔𝑀 ‖𝑌 1 .

Thus, swapping a derivative between 𝑢1 and 𝑢2 gives

𝐼1𝐵 � 𝑇
1
7 𝑀

3
7

0

��𝑃≤𝑀0
𝑢3

��
𝑌 1

∑
𝑀1 ,𝑀2 ,𝑀
𝑀1∼𝑀2≥𝑀

𝑀− 1
7

��𝑢1,𝑀1

��
𝑌 −1

��𝑢2,𝑀2

��
𝑌 1 ‖𝑔𝑀 ‖𝑌 1 .

Burning that 1
7
-derivative to sum in M and then applying Cauchy–Schwarz in 𝑀1, we have

𝐼1𝐵 � 𝑇
1
7 𝑀

3
7

0

��𝑃≤𝑀0
𝑢3

��
𝑌 1 ‖𝑢1‖𝑌 −1 ‖𝑢2‖𝑌 1 ‖𝑔‖𝑌 1 ,

as needed.

3. Uniqueness for GP hierarchy (1.2) and the proof of Theorem 1.1 – Setup

Theorem 3.1. Let Γ =
{
𝛾 (𝑘)
}
∈ ⊕𝑘≥1𝐶

(
[0, 𝑇0] ,L

1
𝑘

)
be a solution to equation (1.2) in [0, 𝑇0], in the

sense that

(a) Γ is admissible in the sense of Definition 3.4 and

(b) Γ satisfies the kinetic energy condition that ∃𝐶0 > 0 such that

sup
𝑡 ∈[0,𝑇0 ]

Tr
�
�
𝑘∏
𝑗=1

〈
∇𝑥 𝑗
〉���

𝛾 (𝑘) (𝑡)
�
�
𝑘∏
𝑗=1

〈
∇𝑥 𝑗
〉���

≤ 𝐶2𝑘
0 .

Then there is a threshold 𝜂(𝐶0) > 0 such that the solution is unique in [0, 𝑇0], provided

sup
𝑡 ∈[0,𝑇0 ]

Tr
�
�
𝑘∏
𝑗=1

𝑃
𝑗

>𝑀

〈
∇𝑥 𝑗
〉���

𝛾 (𝑘) (𝑡)
�
�
𝑘∏
𝑗=1

𝑃
𝑗

>𝑀

〈
∇𝑥 𝑗
〉���

≤ 𝜂2𝑘 ,

for some frequency M. Our proof shows that 𝜂(𝐶0) can be (100𝐶𝐶0)
−2, with C being a universal

constant depending on the U-V estimate constants and the Sobolev constants. The frequency threshold

M is allowed to depend on 𝛾 (𝑘) (the particular solution under consideration) but must apply uniformly

on [0, 𝑇0].
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Here, we have intentionally stated Theorem 3.1 before writing out the definition of admissibility

(Definition 3.4) to bring up readers’ attention. For the purpose of only proving Theorem 1.1, in fact,

Definition 3.4 and its companion, the quantum de Finetti theorem (Theorem 3.5), are not necessary.

One could just apply the proof of Theorem 3.1 to the special case

𝛾 (𝑘) (𝑡) ≡

∫
𝐿2 (T4)

|𝜙〉 〈𝜙|⊗𝑘 𝑑𝜇𝑡 (𝜙) ≡

𝑘∏
𝑗=1

𝑢1

(
𝑡, 𝑥 𝑗
)
𝑢̄1

(
𝑡, 𝑥 ′𝑗

)
−

𝑘∏
𝑗=1

𝑢2

(
𝑡, 𝑥 𝑗
)
𝑢̄2

(
𝑡, 𝑥 ′𝑗

)
, (3.1)

where 𝑢1 and 𝑢2 are two solutions to equation (1.1) and 𝜇𝑡 is the signed measure 𝛿𝑢1
− 𝛿𝑢2

on 𝐿2
(
T

4
)
, to

get that the difference is zero for all k and to obtain a uniqueness theorem which is solely about solutions

to equation (1.1). This is sufficient to conclude Theorem 1.1. Readers unfamiliar with Theorem 3.5

could first skip Definition 3.4 and Theorem 3.5, put equation (3.1) in the place of equation (3.6), get to

know how the GP hierarchy is involved and then come back to Definition 3.4 and Theorem 3.5. Once

one understands the role of the GP hierarchy in the proof, it is easy to see that due to Theorem 3.5,

the more general theorem (Theorem 3.1) costs nothing more, and the origin of the current scheme of

proving NLS uniqueness using GP hierarchies is indeed Theorem 3.5, as mentioned in the introduction.

Theorem 3.1 also implies the following corollary:

Corollary 3.2. Given an intial datum 𝑢0 ∈ 𝐻1
(
T

4
)
, there is at most one 𝐶

(
[0, 𝑇0] , 𝐻

1
𝑥,weak

)
solution

u to equation (1.1) on T4 satisfying the following two properties:

(1) There is a 𝐶0 > 0 such that

sup
𝑡 ∈[0,𝑇0 ]

‖𝑢(𝑡)‖𝐻 1 ≤ 𝐶0.

(2) There is some frequency M such that

sup
𝑡 ∈[0,𝑇0 ]

‖∇𝑃≥𝑀𝑢(𝑡)‖𝐿2
𝑥
≤ 𝜂, (3.2)

for the threshold 𝜂(𝐶0) > 0 concluded in Theorem 3.1.

The known 𝐶
(
[0, 𝑇0] , 𝐻

1
𝑥,weak

)
blowup solutions do not satisfy formula (3.2), so Corollary 3.2 is

an unclassified uniqueness theorem. It seems to be stronger than the unconditional uniqueness theorem

(Theorem 1.1), as it concludes uniqueness in a larger class of solutions. We wonder if there could be a

more detailed classification regarding the term ‘unconditional uniqueness’ at the critical regularity.

Theorem 1.1 follows from Theorem 3.1 and the following lemma:

Lemma 3.3. u is a 𝐶0
[0,𝑇0 ]

𝐻1
𝑥∩

�𝐶1
[0,𝑇0 ]

𝐻−1
𝑥 solution of equation (1.1) if and only if it is a 𝐶0

[0,𝑇0 ]
𝐻1
𝑥,weak

∩

�𝐶1
[0,𝑇0 ]

𝐻−1
𝑥,weak

solution and satisfies uniform-in-time frequency localisation – that is, for each 𝜀 > 0

there exists 𝑀 (𝜀) such that ��∇𝑃≥𝑀 (𝜀)𝑢
��
𝐿∞
[0,𝑇0 ]

𝐿2
𝑥
≤ 𝜀. (3.3)

Proof. This proof is postponed to Section 3.1. We remark that formula (3.3) implies formula (3.2),

but the converse is not true. That is, Corollary 3.2 implies Theorem 1.1, the unconditional uniqueness

theorem, but the type of uniqueness concluded in Corollary 3.2 and Theorem 3.1 is unclassified.15 �

15The proof of Lemma 3.3 uses only compactness and is much simpler than that of [24, Theorem A.2].
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Before starting the proof of Theorem 3.1, we note that although it seems that Theorem 3.1 concludes

Theorem 1.1 only up to a time-dependent 𝑒𝑖 𝜃 (𝑡) phase, 𝜃 (𝑡) is actually 0 (see [35, p. 12] and [26, Lemma

A.1]). Thus, we are left to prove Theorem 3.1.

We set up some notations first. We rewrite equation (1.2) in Duhamel form:

𝛾 (𝑘) (𝑡𝑘 ) = 𝑈 (𝑘) (𝑡𝑘 )𝛾
(𝑘)

0
∓ 𝑖

∫ 𝑡𝑘

0

𝑈 (𝑘) (𝑡𝑘 − 𝑡𝑘+1)𝐵
(𝑘+1)
(
𝛾 (𝑘+1) (𝑡𝑘+1)

)
𝑑𝑡𝑘+1, (3.4)

where 𝑈 (𝑘) (𝑡) =
𝑘∏
𝑗=1

𝑒
𝑖𝑡

(
Δ𝑥 𝑗

−Δ𝑥′
𝑗

)
and

𝐵 (𝑘+1)
(
𝛾 (𝑘+1)
)
≡

𝑘∑
𝑗=1

𝐵 𝑗 ,𝑘+1

(
𝛾 (𝑘+1)
)

≡

𝑘∑
𝑗=1

(
𝐵+
𝑗 ,𝑘+1 − 𝐵−

𝑗 ,𝑘+1

) (
𝛾 (𝑘+1)
)

≡

𝑘∑
𝑗=1

Tr𝑘+1𝛿
(
𝑥 𝑗 − 𝑥𝑘+1

)
𝛾 (𝑘+1) − 𝛾 (𝑘+1)𝛿

(
𝑥 𝑗 − 𝑥𝑘+1

)
.

Here, products are interpreted as the compositions of operators. For example, in kernels,

(
Tr𝑘+1𝛿(𝑥1 − 𝑥𝑘+1)𝛾

(𝑘+1)
) (

x𝑘 , x
′
𝑘

)
=

∫
𝛿(𝑥1 − 𝑥𝑘+1)𝛾

(𝑘+1)
(
x𝑘 , 𝑥𝑘+1; x′

𝑘 , 𝑥𝑘+1

)
𝑑𝑥𝑘+1.

We will prove that if Γ1 =

{
𝛾
(𝑘)

1

}
and Γ2 =

{
𝛾
(𝑘)

2

}
are two solutions to equation (3.4), subject to the

same initial datum and Theorem 3.1(a) and (b), then Γ =

{
𝛾 (𝑘) = 𝛾

(𝑘)

1
− 𝛾

(𝑘)

2

}
is identically zero. Note

that because equation (3.4) is linear, Γ is a solution to equation (3.4). We will start using a representation

of Γ given by the quantum de Finetti theorem (Theorem 3.5). To this end, we define admissibility:

Definition 3.4. ([6]). A nonnegative trace class symmetric operators sequence Γ =
{
𝛾 (𝑘)
}

∈

⊕𝑘≥1𝐶
(
[0, 𝑇] ,L1

𝑘

)
, is called admissible if for all k, one has

Tr𝛾 (𝑘)
= 1, 𝛾 (𝑘)

= Tr𝑘+1𝛾
(𝑘+1) .

Here, a trace class operator is called symmetry if, written in kernel form,

𝛾 (𝑘)
(
x𝑘 ; x′

𝑘

)
= 𝛾 (𝑘)

(
x′
𝑘
; x𝑘

)
𝛾 (𝑘)
(
𝑥1, . . . 𝑥𝑘 ; 𝑥

′
1, . . . , 𝑥

′
𝑘

)
= 𝛾 (𝑘)

(
𝑥𝜎 (1) , . . . , 𝑥𝜎 (𝑘) ; 𝑥

′
𝜎 (1) , . . . , 𝑥

′
𝜎 (𝑘)

)
,

for all 𝜎 ∈ 𝑆𝑘 , the permutation group of k elements.

Theorem 3.5. (quantum de Finetti theorem [6, 51]). Under assumption (a), there exists a probability

measure 𝑑𝜇𝑡 (𝜙) supported on the unit sphere of 𝐿2
(
T

4
)

such that

𝛾 (𝑘) (𝑡) =

∫
|𝜙〉 〈𝜙|⊗𝑘 𝑑𝜇𝑡 (𝜙).

By Theorem 3.5, there exist 𝑑𝜇1,𝑡 and 𝑑𝜇2,𝑡 representing the two solutions Γ1 and Γ2. The same

Chebyshev argument as in [6, Lemma 4.5] turns the assumptions in Theorem 3.1 into the property that
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𝑑𝜇 𝑗 ,𝑡 is supported in the set

𝑆 =

{
𝜙 ∈ S
(
𝐿2
(
T

4
))

: ‖𝑃>𝑀 〈∇〉 𝜙‖𝐿2 ≤ 𝜀
}
∩
{
𝜙 ∈ S
(
𝐿2
(
T

4
))

: ‖𝜙‖𝐻 1 ≤ 𝐶0

}
. (3.5)

That is, letting the signed measure 𝑑𝜇𝑡 = 𝑑𝜇1,𝑡 − 𝑑𝜇2,𝑡 , we have

𝛾 (𝑘) (𝑡𝑘 ) =
(
𝛾
(𝑘)

1
− 𝛾

(𝑘)

2

)
(𝑡𝑘 ) =

∫
|𝜙〉 〈𝜙|⊗𝑘 𝑑𝜇𝑡𝑘 (𝜙) (3.6)

and 𝑑𝜇𝑡𝑘 is supported in the set S defined in equation (3.5).

So our task of establishing Theorem 3.1 is now transformed into proving that the solution is zero if the

solution takes the form of equation (3.6) and is subject to zero initial datum. It suffices to prove 𝛾 (1) = 0,

as the proof is the same for the general k case. The proof involves coupling equation (3.4) multiple

times. To this end, we plug in zero initial datum, set the ∓𝑖 in equation (3.4) to 1 so that we do not need

track its power (because it acts as a 1 in the estimates for our purpose) and rewrite equation (3.4) as

𝛾 (𝑘) (𝑡𝑘 ) =

∫ 𝑡𝑘

0

𝑈 (𝑘) (𝑡𝑘 − 𝑡𝑘+1)𝐵
(𝑘+1)
(
𝛾 (𝑘+1) (𝑡𝑘+1)

)
𝑑𝑡𝑘+1. (3.7)

Define

𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
= 𝑈 (1) (𝑡1 − 𝑡2)𝐵

(2)𝑈 (2) (𝑡2 − 𝑡3)𝐵
(3) · · ·𝑈 (𝑘) (𝑡𝑘 − 𝑡𝑘+1)𝐵

(𝑘+1) 𝑓 (𝑘+1) (𝑡𝑘+1),

with 𝑡
𝑘+1 = (𝑡2, 𝑡3, . . . , 𝑡𝑘 , 𝑡𝑘+1). We can then write

𝛾 (1) (𝑡1) =

∫ 𝑡1

0

∫ 𝑡2

0

· · ·

∫ 𝑡𝑘

0

𝐽 (𝑘+1)
(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1,

after iterating equation (3.7) k times. To estimate 𝛾 (1) , we first use the KM board game16 to reduce the

number of summands inside 𝛾 (1) , which is 𝑘!2𝑘 at the moment, by combining them.

Lemma 3.6. (Klainerman–Machedon board game [47]). One can express∫ 𝑡1

0

∫ 𝑡2

0

· · ·

∫ 𝑡𝑘+1

0

𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1

as a sum of at most 4𝑘 terms of the form∫
𝐷𝑚

𝐽
(𝑘+1)
𝜇𝑚

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1,

or in other words,∫ 𝑡1

0

∫ 𝑡2

0

· · ·

∫ 𝑡𝑘+1

0

𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1 =

∑
𝑚

∫
𝐷𝑚

𝐽
(𝑘+1)
𝜇𝑚

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1. (3.8)

Here, 𝐷𝑚 is a subset of [0, 𝑡1]
𝑘 , depending on 𝜇𝑚; {𝜇𝑚} are a set of maps from {2, . . . , 𝑘 + 1} to

{1, . . . , 𝑘} satisfying 𝜇𝑚(2) = 1 and 𝜇𝑚(𝑙) < 𝑙 for all 𝑙, and

𝐽
(𝑘+1)
𝜇𝑚 ( 𝑓 (𝑘+1) ) (𝑡1, 𝑡𝑘+1) = 𝑈 (1) (𝑡1 − 𝑡2)𝐵1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵𝜇𝑚 (3) ,3 · · ·

· · ·𝑈 (𝑘) (𝑡𝑘 − 𝑡𝑘+1)𝐵𝜇𝑚 (𝑘+1) ,𝑘+1

(
𝑓 (𝑘+1)
)
(𝑡1).

16As mentioned before, we actually need an extended KM board game, which we devise in §4.
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Using Lemma 3.6, to estimate 𝛾 (1) it suffices to deal with a summand in the right-hand side of

equation (3.8), ∫
𝐷𝑚

𝐽
(𝑘+1)
𝜇𝑚

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1,

at the expense of a 4𝑘 . Since 𝐵 𝑗 ,𝑘+1 = 𝐵+
𝑗 ,𝑘+1

− 𝐵−
𝑗 ,𝑘+1

, 𝐽
(𝑘+1)
𝜇𝑚

(
𝛾 (𝑘+1)
)

is but another sum. Thus, by

paying an extra 2𝑘 , we can just estimate a typical term∫
𝐷𝑚

𝐽
(𝑘+1)
𝜇𝑚 ,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1, (3.9)

where

𝐽
(𝑘+1)
𝜇𝑚 ,sgn

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
= 𝑈 (1) (𝑡1 − 𝑡2)𝐵

sgn(2)

1,2
𝑈 (2) (𝑡2 − 𝑡3)𝐵

sgn(3)

𝜇𝑚 (3) ,3
· · · (3.10)

· · ·𝑈 (𝑘) (𝑡𝑘 − 𝑡𝑘+1)𝐵
sgn(𝑘+1)

𝜇𝑚 (𝑘+1) ,𝑘+1

(
𝑓 (𝑘+1)
)
(𝑡𝑘+1),

with sgn meaning the signature array (sgn(2), . . . , sgn(𝑘 + 1)) and 𝐵
sgn(𝑘+1)

𝑗 ,𝑘+1
standing for 𝐵+

𝑗 ,𝑘+1
or

𝐵−
𝑗 ,𝑘+1

, depending on the sign of the (𝑘 + 1)-th signature element. The estimate of expression (3.9) is

given by the following proposition:

Proposition 3.7.

����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1
∫
𝐷𝑚

𝐽
(𝑘+1)
𝜇𝑚 ,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1

����
𝐿∞𝑡1
𝐿2
𝑥1 ,𝑥

′
1

≤ 2𝑇𝐶2
0

(
𝐶𝐶3

0𝑇
1
7 𝑀

3
5

0
+ 𝐶𝐶2

0𝜀

) 2
3
𝑘

.

Proof. See Section 5. �

Once Proposition 3.7 is proved, Theorem 3.1 then follows. In fact,����〈∇−1
𝑥1

〉 〈
∇𝑥′

1

〉−1

𝛾 (1) (𝑡1)

����
𝐿∞𝑡1
𝐿2
𝑥1 ,𝑥

′
1

≤ 4𝑘
����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1
∫
𝐷𝑚

𝐽
(𝑘+1)
𝜇𝑚

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1

����
𝐿∞𝑡1
𝐿2
𝑥1 ,𝑥

′
1

≤ 8𝑘
����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1
∫
𝐷𝑚

𝐽
(𝑘+1)
𝜇𝑚 ,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1

����
𝐿∞𝑡1
𝐿2
𝑥1 ,𝑥

′
1

≤ 2𝑇𝐶2
0

(
𝐶𝐶3

0𝑇
1
7 𝑀

3
5

0
+ 𝐶𝐶2

0𝜀

) 2
3
𝑘

.

Select 𝜀 small enough (the threshold 𝜂 is also determined here) so that 𝐶𝐶2
0
𝜀 < 1

4
and then select T

small enough so that 𝐶𝐶3
0
𝑇

1
7 𝑀

3
5

0
< 1

4
. We then have

����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1

𝛾 (1) (𝑡1)

����
𝐿∞𝑡1
𝐿2
𝑥1 ,𝑥

′
1

≤

(
1

2

) 𝑘
→ 0 as 𝑘 → ∞.

We can then bootstrap to fill the whole interval [0, 𝑇0], as M applies uniformly on [0, 𝑇0] .
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Before moving into the proof of Proposition 3.7, we remark that the extra 2𝑇 does not imply that the

estimate is critical or subcritical; this T actually appears only once. Such a T is due to the GP-hierarchy

method instead of scaling, because the 𝑑𝑡𝑘+1 time integral is not used for any Strichartz-type estimates.

This one factor of T appears in the other energy-critical T3 quintic case [24] as well.

3.1. Proof of Lemma 3.3 and uniform-in-time frequency localisation for the NLS

We provide a direct proof using the equation, even though one could look for a more abstract proof. By

substituting the equation, we compute

���𝜕𝑡 ‖∇𝑃≤𝑀𝑢‖2

𝐿2
𝑥

��� = 2

����Im
∫

𝑃≤𝑀∇𝑢 · 𝑃≤𝑀∇
(
|𝑢 |2𝑢
)
𝑑𝑥

����
≤ 2 ‖𝑃≤𝑀∇𝑢‖𝐿4

���𝑃≤𝑀∇
(
|𝑢 |2𝑢
)���
𝐿4/3

= 2𝑀2
��𝑃̃≤𝑀𝑢

��
𝐿4

���𝑃̃≤𝑀

(
|𝑢 |2𝑢
)���
𝐿4/3

,

where if the symbol associated to 𝑃≤𝑀 is 𝜒(𝜉/𝑀), then the symbol associated to 𝑃̃≤𝑀 is 𝜒̃(𝜉/𝑀), with

𝜒̃(𝜉) = 𝜉𝜒(𝜉). By the 𝐿 𝑝 → 𝐿 𝑝 boundedness of the Littlewood–Paley projections (see, for example,

[35, Appendix]),

���𝜕𝑡 ‖∇𝑃≤𝑀𝑢‖2

𝐿2
𝑥

��� � 𝑀2‖𝑢‖4
𝐿4 .

By Sobolev embedding,

���𝜕𝑡 ‖∇𝑃≤𝑀𝑢‖2

𝐿2
𝑥

��� � 𝑀2‖𝑢‖4
𝐻 1 .

Hence there exists 𝛿′ > 0 – depending on M, ‖𝑢‖𝐿∞
[0,𝑇 ]

𝐻 1 and 𝜀 – such that for any 𝑡0 ∈ [0, 𝑇], it holds

that for any 𝑡 ∈ (𝑡0 − 𝛿′, 𝑡0 + 𝛿′) ∩ [0, 𝑇],

���‖∇𝑃≤𝑀𝑢(𝑡)‖2

𝐿2
𝑥
− ‖∇𝑃≤𝑀𝑢(𝑡0)‖

2

𝐿2
𝑥

��� ≤ 1
16
𝜀2. (3.11)

On the other hand, since 𝑢 ∈ 𝐶0
[0,𝑇 ]

𝐻1
𝑥 , for each 𝑡0 there exists 𝛿′′ > 0 such that for any 𝑡 ∈ (𝑡0 − 𝛿′′, 𝑡0 +

𝛿′′) ∩ [0, 𝑇],

���‖∇𝑢(𝑡)‖2

𝐿2
𝑥
− ‖∇𝑢(𝑡0)‖

2

𝐿2
𝑥

��� ≤ 1
16
𝜀2. (3.12)

Note that 𝛿′′ depends on u itself (or the ‘modulus of continuity’ of u), unlike 𝛿′, which depends only

on M, ‖𝑢‖𝐿∞
[0,𝑇 ]

𝐻 1 and 𝜀. Now let 𝛿 = min(𝛿′, 𝛿′′). Then by formulas (3.11) and (3.12), we have that for

any 𝑡 ∈ (𝑡0 − 𝛿, 𝑡0 + 𝛿) ∩ [0, 𝑇],

���‖∇𝑃>𝑀𝑢(𝑡)‖2

𝐿2
𝑥
− ‖∇𝑃>𝑀𝑢(𝑡0)‖

2

𝐿2
𝑥

��� ≤ 1
4
𝜀2.

For each 𝑡 ∈ [0, 𝑇], there exists 𝑀𝑡 such that

��∇𝑃>𝑀𝑡
𝑢(𝑡)
��
𝐿2
𝑥
≤ 1

2
𝜀.
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16 X. Chen and J. Holmer

By the foregoing, there exists 𝛿𝑡 > 0 such that on (𝑡 − 𝛿𝑡 , 𝑡 + 𝛿𝑡 ), we have��∇𝑃>𝑀𝑡
𝑢
��
𝐿∞
(𝑡−𝛿𝑡 ,𝑡+𝛿𝑡 )

𝐿2
𝑥
≤ 𝜀.

Here, 𝛿𝑡 > 0 depends on u and 𝑀𝑡 . The collection of intervals (𝑡 − 𝛿𝑡 , 𝑡 + 𝛿𝑡 ) as t ranges over [0, 𝑇] is

an open cover of [0, 𝑇]. Let

(
𝑡1 − 𝛿𝑡1 , 𝑡1 + 𝛿𝑡1

)
, . . . ,
(
𝑡𝐽 − 𝛿𝑡𝐽 , 𝑡𝐽 + 𝛿𝑡𝐽

)
be an open cover of [0, 𝑇]. Letting

𝑀 = max
(
𝑀𝑡1 , . . . , 𝑀𝑡𝐽

)
,

we have established formula (3.3).

Now conversely suppose that 𝑢 ∈ 𝐶0
[0,𝑇 ]

𝐻1
𝑥,weak

∩ 𝐶1
[0,𝑇 ]

𝐻−1
𝑥,weak

and satisfies formula (3.3). Then

we claim that 𝑢 ∈ 𝐶0
[0,𝑇 ]

𝐻1
𝑥 ∩ 𝐶1

[0,𝑇 ]
𝐻−1
𝑥 . Let 𝑡0 ∈ [0, 𝑇] be arbitrary. If u is not strongly continuous at

𝑡0, then there exist 𝜖 > 0 and a sequence 𝑡𝑘 → 𝑡0 such that ‖𝑢(𝑡𝑘 ) − 𝑢(𝑡0)‖𝐻 1
𝑥
> 2𝜖 . Then for each k,

there exists 𝜙𝑘 ∈ 𝐻−1
𝑥 with ‖𝜙𝑘 ‖𝐻−1

𝑥
≤ 1 and

|〈𝑢(𝑡𝑘 ) − 𝑢(𝑡0), 𝜙𝑘〉| > 2𝜖 . (3.13)

Get M as in formula (3.3). Then

|〈𝑢(𝑡𝑘 ) − 𝑢(𝑡0), 𝑃>𝑀𝜙𝑘〉| ≤ 𝜖 . (3.14)

On the other hand, by the Rellich–Kondrachov compactness theorem, there exists a subsequence such

that 𝑃≤𝑀𝜙𝑘 → 𝜙 in 𝐻−1
𝑥 . This combined with the assumption that u is weakly continuous implies that

〈𝑢(𝑡𝑘 ) − 𝑢(𝑡0), 𝑃≤𝑀𝜙𝑘〉 → 0. (3.15)

But formulas (3.14) and (3.15) contradict formula (3.13). The proof that 𝜕𝑡𝑢 is strongly continuous is

similarly straightforward.

4. An extended KM board game

This section is divided into two main parts. First, in Section 4.1, we provide as a warm-up a more

elaborated proof of the original KM board game (Lemma 3.6), which yields the previously unknown

time integration limits in equation (3.8). We then prove, in Sections 4.2–4.5, an extension of Lemma

3.6 which further combines the summands inside 𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
to enable the application of

U-V space techniques.

4.1. A more elaborated proof of Lemma 3.6

Let us first give a brief review of the original KM board game, which since its invention has been used

in every paper involving the analysis of Gross–Pitaevskii hierarchies. Recall the notation of 𝜇 in Lemma

3.6: {𝜇} is a set of maps from {2, . . . , 𝑘 +1} to {1, . . . , 𝑘} satisfying 𝜇(2) = 1 and 𝜇(𝑙) < 𝑙 for all 𝑙, and

𝐽
(𝑘+1)
𝜇

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
= 𝑈 (1) (𝑡1 − 𝑡2)𝐵1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵𝜇 (3) ,3 · · ·

· · ·𝑈 (𝑘) (𝑡𝑘 − 𝑡𝑘+1)𝐵𝜇 (𝑘+1) ,𝑘+1

(
𝑓 (𝑘+1) (𝑡𝑘+1)

)
.
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Example 1. An example of 𝜇 when 𝑘 = 5 is

𝑗 2 3 4 5 6

𝜇 1 1 3 2 1
.

If 𝜇 satisfies 𝜇( 𝑗) ≤ 𝜇( 𝑗 + 1) for 2 ≤ 𝑗 ≤ 𝑘 in addition to 𝜇( 𝑗) < 𝑗 for all 2 ≤ 𝑗 ≤ 𝑘 + 1, then it is

in upper-echelon form17 in the terminology of [47].

Let 𝜇 be a collapsing map as already defined and 𝜎 a permutation of {2, . . . , 𝑘 + 1}. A Klainerman–

Machedon acceptable move, which we denote KM( 𝑗 , 𝑗 + 1), is allowed when 𝜇( 𝑗) ≠ 𝜇( 𝑗 + 1) and

𝜇( 𝑗 + 1) < 𝑗 , and is the following action: (𝜇′, 𝜎′) = KM( 𝑗 , 𝑗 + 1) (𝜇, 𝜎):

𝜇′
= ( 𝑗 , 𝑗 + 1) ◦ 𝜇 ◦ ( 𝑗 , 𝑗 + 1),

𝜎′
= ( 𝑗 , 𝑗 + 1) ◦ 𝜎.

A key observation of Klainerman and Machedon [47] is that if (𝜇′, 𝜎′) = KM( 𝑗 , 𝑗 +1) (𝜇, 𝜎) and 𝑓 (𝑘+1)

is a symmetric density, then

𝐽
(𝑘+1)
𝜇′

(
𝑓 (𝑘+1)
) (

𝑡1, 𝜎
′−1
(
𝑡
𝑘+1

) )
= 𝐽

(𝑘+1)
𝜇

(
𝑓 (𝑘+1)
) (

𝑡1, 𝜎
−1
(
𝑡
𝑘+1

) )
, (4.1)

where for 𝑡
𝑘+1 = (𝑡2, . . . , 𝑡𝑘+1) we define

𝜎−1
(
𝑡
𝑘+1

)
=

(
𝑡𝜎−1 (2) , . . . , 𝑡𝜎−1 (𝑘+1)

)
.

Associated to each 𝜇 and 𝜎, we define the Duhamel integrals

𝐼
(
𝜇, 𝜎, 𝑓 (𝑘+1)

)
(𝑡1) =

∫
𝑡1≥𝑡𝜎 (2) ≥···≥𝑡𝜎 (𝑘+1)

𝐽
(𝑘+1)
𝜇

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1. (4.2)

It follows from equation (4.1) that

𝐼
(
𝜇′, 𝜎′, 𝑓 (𝑘+1)

)
= 𝐼
(
𝜇, 𝜎, 𝑓 (𝑘+1)

)
.

It is clear that we can combine Klainerman–Machedon acceptable moves as follows: If 𝜌 is a permutation

of {2, . . . , 𝑘 + 1} such that it is possible to write it as a composition of transpositions

𝜌 = 𝜏1 ◦ · · · ◦ 𝜏𝑟 ,

for which each operator KM
(
𝜏𝑗
)

on the right side of

KM(𝜌)
def
= KM(𝜏1) ◦ · · · ◦ KM(𝜏𝑟 )

is an acceptable action, then KM(𝜌), defined by this composition, is acceptable as well. In this case,

(𝜇′, 𝜎′) = KM(𝜌) (𝜇, 𝜎) and

𝜇′
= 𝜌 ◦ 𝜇 ◦ 𝜌−1,

𝜎′
= 𝜌 ◦ 𝜎,

17This word makes more sense when one uses the matrix/board-game representation of 𝐽
(𝑘+1)
𝜇

(
𝑓 (𝑘+1)

)
in [47].
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18 X. Chen and J. Holmer

and equations (4.1) and (4.2) hold. If 𝜇 and 𝜇′ are such that there exists 𝜌 for which (𝜇′, 𝜎′) =

KM(𝜌) (𝜇, 𝜎), then we say that 𝜇′ and 𝜇 are KM-relatable. This is an equivalence relation that partitions

the set of collapsing maps into equivalence classes.

In short, one can describe the KM board game in [47] which combines the 𝑘! many terms in

𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
)

as follows:

Algorithm 1. ([47]).

1. Convert each of the 𝑘! many 𝜇′
in

s in 𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
)

into one of the ≤ 4𝑘 many upper-echelon forms

𝜇out via acceptable moves, defined in the board-game argument, and at the same time produce an

array 𝜎 which changes the time integration domain from the simplex

𝑡1 ≥ 𝑡2 ≥ 𝑡3 ≥ · · · ≥ 𝑡𝑘+1

into the simplex

𝑡1 ≥ 𝑡𝜎 (2) ≥ 𝑡𝜎 (3) · · · ≥ 𝑡𝜎 (𝑘+1) .

Hence, there are ≤ 4𝑘 classes on the right-hand side of equation (3.8).

2. For each upper-echelon form 𝜇out, take a union of the time integration domains of its 𝜇ins after the

acceptable moves and use it as the time integration domain for the whole class. Thus, the integration

domain 𝐷𝑚 on the right-hand side of equation (3.8) depends on 𝜇𝑚, and we have successfully

combined 𝑘! summands into ≤ 4𝑘 summands.

The key take away in Algorithm 1 is that, although it is very much not obvious, quite a few of the

summands in 𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
)

actually have the same integrand if one switches the variable labellings

in a clever way. Algorithm 1 leaves only one ambiguity – the time integration domain 𝐷𝑚 – which is

obviously very complicated for large 𝑘, as it is a union of a very large number of simplexes in high

dimension under the action of a proper subset of the permutation group 𝑆𝑘 depending on the integrand.

So far, for the analysis of GP hierarchies on R𝑑/T𝑑 , 𝑑 ≤ 3, knowing 𝐷𝑚 ⊂ [0, 1]𝑘 has been enough, as

the related 𝐿1
𝑡𝐻

𝑠 estimates are true. T4 appears to be the first domain on which one has to know what

𝐷𝑚 is so that one can at least have a chance to use space-time norms like 𝑋𝑠,𝑏 and U-V, as the related

𝐿1
𝑡𝐻

𝑠 estimates are difficult to prove and may not even be true.

It turns out that 𝐷𝑚 is in fact simple, as we will see. We now present a more elaborated proof

of Lemma 3.6, in which 𝐷𝑚 is computed in a clear way. Given a 𝜇, and hence a summand inside

𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
)
, we construct a binary tree with the following algorithm:

Algorithm 2.

1. Set counter 𝑗 = 2.

2. Given j, find the next pair of indices a and b so that 𝑎 > 𝑗 , 𝑏 > 𝑗 ,

𝜇(𝑎) = 𝜇( 𝑗), 𝜇(𝑏) = 𝑗 ,

and moreover a and b are the minimal indices for which the equalities hold. It is possible that there

is no such a or no such b.

3. At the node j, put a as the left child and b as the right child (if there is no a, then the j node will be

missing a left child, and if there is no b, then the j node will be missing a right child).

4. If 𝑗 = 𝑘 + 1, then stop; otherwise set 𝑗 = 𝑗 + 1 and go to step 2.

17This simple example is in fact one of the two largest 𝑘 = 5 upper-echelon classes in which there are eight 𝜇′s equivalent to
the upper-echelon form.
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Example 2.

1

2

3 5

Let us work with the following example18

𝑗 2 3 4 5 6

𝜇out 1 1 1 2 3

We start with 𝑗 = 2, and note that 𝜇out (2) = 1 so need to find minimal 𝑎 > 2,

𝑏 > 2 such that 𝜇(𝑎) = 1 and 𝜇(𝑏) = 2. In this case, it is 𝑎 = 3 and 𝑏 = 5, so

we put those as left and right children of 2, respectively, in the tree (shown at

left)

1

2

3

4 6

5

Now we move to 𝑗 = 3. Since 𝜇out(3) = 1, we find minimal 𝑎 and 𝑏 so that

𝑎 > 3, 𝑏 > 3, 𝜇(𝑎) = 1 and 𝜇(𝑏) = 3. We find that 𝑎 = 4 and 𝑏 = 6, so we put

these as the left and right children of 3, respectively, in the tree shown at left.

Since all indices appear in the tree, it is complete.

Definition 4.1. A binary tree is called an admissible tree if every child node’s label is strictly larger than

its parent node’s label.19 For an admissible tree, we call the graph of the tree without any labels in its

nodes the skeleton of the tree.

1

For example, the skeleton of the tree in Example 2 is shown at left.

By the hierarchy structure, Algorithm 2, which produces a tree from a 𝜇,

produces only admissible trees. As we have made a distinction between left

and right children in the algorithm, the procedure is reversible – given an

admissible binary tree, we can uniquely reconstruct the 𝜇 that generated it.

Algorithm 3.

1. For every right child, 𝜇 maps the child value to the parent value (that is, if f is a right child of d, then

𝜇( 𝑓 ) = 𝑑). Start by filling these into the 𝜇 table.

2. Fill in the table using the fact that for every left child, 𝜇 maps the child value to 𝜇 (the parent value).

Example 3. Suppose we are given the following tree:

19This is certainly a natural requirement coming from the hierarchy.
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1

2

3

4

7

6

8

9.

5

Using the fact that for every right child, 𝜇 maps the child value to the parent

value, we fill in the following values in the 𝜇 table:

𝑗 2 3 4 5 6 7 8 9

𝜇 1 2 3 4 6

Now we use the left-child rule and note that since 3 is a left child of 2 and

𝜇(2) = 1, we must have 𝜇(3) = 1, and so on, to recover the following table:

𝑗 2 3 4 5 6 7 8 9

𝜇 1 1 1 2 3 4 6 6

One can show that in the tree representation of 𝜇, an acceptable move defined in [47] is the operation

which switches the labels of two nodes with consecutive labels on an admissible tree, provided that the

outcome is still an admissible tree, by writing out the related trees on [47, pp. 180–182]. For example,

interchanging the labelling of 5 and 6 in the tree in Example 2 is an acceptable move. That is, acceptable

moves in [47] preserve the tree structures but permute the labelling under the admissibility requirement.

Two collapsing maps 𝜇 and 𝜇′ are KM-relatable if and only if the trees corresponding to 𝜇 and 𝜇′ have

the same skeleton.

Given k, we would like to have the number of different binary tree structures of k nodes. This number

is exactly defined as the Catalan number and is controlled by 4𝑘 . Hence, we have just provided a proof

of the original KM board game, neglecting the trees showing the effects of acceptable moves on a tree.

But now let us get to the main ‘elaborate’ part, namely, how to compute 𝐷𝑚 for a given upper-

echelon class. To this end, we need to define what is an upper-echelon form. Though the requirement

𝜇( 𝑗) ≤ 𝜇( 𝑗 + 1) for 2 ≤ 𝑗 ≤ 𝑘 is good enough, we give an algorithm which produces the upper-echelon

tree given the tree structure, as the tree representation of an upper-echelon form is in fact labelled in

sequential order (see, for example, the tree in Example 2).

Algorithm 4.

1. Given a tree structure with k nodes, label the top node with 2 and set a counter 𝑗 = 2.

2. If 𝑗 = 𝑘 + 1, then stop; otherwise, continue.

3. If the node labelled j has a left child, then label that left child node with 𝑗 + 1, set a counter 𝑗 = 𝑗 + 1

and go to step 2. If not, continue.20

4. In the already-labelled nodes which have an empty right child, search for the node with the smallest

label. If such a node can be found, label that node’s empty right child as 𝑗 + 1, set a counter 𝑗 = 𝑗 + 1

and go to step 2. If none of the labelled nodes has an empty right child, then stop.

Definition 4.2. We say 𝜇 is in upper-echelon form if 𝜇( 𝑗) ≤ 𝜇( 𝑗+1) for 2 ≤ 𝑗 ≤ 𝑘 or if its corresponding

tree given by Algorithm 2 agrees with the tree with the same skeleton given by Algorithm 4.

We define a map 𝑇𝐷 which maps an upper-echelon tree to a time integration domain (a set of

inequality relations) by

𝑇𝐷 (𝛼) =
{
𝑡 𝑗 ≥ 𝑡𝑘 : 𝑗 , 𝑘 are labels on nodes of 𝛼 such that the 𝑘 node is a child of the 𝑗 node

}
, (4.3)

where 𝛼 is an upper-echelon tree. We then have the integration domain as follows:

20The difference between the definitions of left and right children in Algorithm 2 makes all the enumeration algorithms in this
paper address left branches first. See also Section 4.3 for the enumeration of the tamed form.
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Proposition 4.3. Given a 𝜇𝑚 in upper-echelon form, we have

∑
𝜇∼𝜇𝑚

∫
𝑡1≥𝑡2≥𝑡3≥···≥𝑡𝑘+1

𝐽
(𝑘+1)
𝜇

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1 =

∫
𝑇𝐷 (𝜇𝑚)

𝐽
(𝑘+1)
𝜇𝑚

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1.

Here, 𝜇 ∼ 𝜇𝑚 means that 𝜇 is equivalent to 𝜇𝑚 under acceptable moves (the trees representing 𝜇 and

𝜇𝑚 have the same structure) and 𝑇𝐷 (𝜇𝑚) is the domain defined in equation (4.3).

Proof. We prove by an example, as the notation is already heavy. For the general case, one merely

needs to rewrite Σ1 and Σ2, to be defined in this proof. The key is the admissible condition or the simple

requirement that the child must carry a larger label than the parent.

Recall the upper-echelon tree in Example 2 and denote it with 𝛼. Here are all the admissible trees

equivalent to 𝛼:

1

2

3

4 6

5

1

2

3

5 6

4

1

2

4

5 6

3

1

2

3

6 5

4

1

2

4

6 5

3

1

2

3

6 4

5

1

2

3

5 4

6

1

2

3

4 5

6

We first read by definition that

𝑇𝐷 (𝛼) = {𝑡1 ≥ 𝑡2, 𝑡2 ≥ 𝑡3, 𝑡3 ≥ 𝑡4, 𝑡3 ≥ 𝑡6, 𝑡2 ≥ 𝑡5}.

Let 𝜎 denote some composition of acceptable moves. We then notice the equivalence of the two sets

Σ1 =
{
𝜎 : 𝜎−1(1) < 𝜎−1(2) < 𝜎−1(3) < 𝜎−1 (4), 𝜎−1(2) < 𝜎−1 (5), 𝜎−1(3) < 𝜎−1 (6)

}
,

Σ2 = {𝜎 : 𝜎 takes input tree to 𝛼 where the input tree is admissible} ,

both generated by the requirement that the child must carry a larger label than the parent. That is, both

Σ1 and Σ2 classify the whole upper-echelon class represented by 𝛼.

Hence,⋃
𝜎∈Σ1

{
𝑡1 ≥ 𝑡𝜎 (2) ≥ 𝑡𝜎 (3) · · · ≥ 𝑡𝜎 (6)

}
= {𝑡1 ≥ 𝑡2 ≥ 𝑡3 ≥ 𝑡4, 𝑡2 ≥ 𝑡5, 𝑡3 ≥ 𝑡6} = 𝑇𝐷 (𝛼),

and we are done. �
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4.2. Signed KM acceptable moves

While Proposition 4.3 shows that summing over an entire KM upper-echelon class yields a time

integration domain with clean structure, it is not sufficient for our purposes. We prove an extended KM

board game in Sections 4.2–4.5. Recall the key observation of the KM board game: Many summands

in 𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
)

actually have the same integrand if one switches the variable labellings, and thus one

can take the acceptable moves to combine them. In fact, one can combine them even more after the

acceptable moves to get a larger integration domain 𝐷𝑚.21 Instead of aiming to reduce the number of

summands in 𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
)

even more, our goal this time is to enlarge the integration domain when

estimating 𝐽
(𝑘+1)
𝜇,sgn

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
, so that U-V techniques can actually apply. Depending on the sign

combination in 𝐽
(𝑘+1)
𝜇𝑚 ,sgn

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
, one could run into the problem of needing to estimate the x

part and the 𝑥 ′ part using the same time integral. This problem is another obstacle stopping U-V space

techniques from being used in the analysis of 𝐺𝑃 hierarchies, separate from the other obstacle that 𝐷𝑚
was previously unknown.

From here on out, we denote the already unioned or combined integrals in one echelon class as a

upper-echelon class integral, and we use Proposition 4.3 for its integration limits. We also put a + or −

sign at the corresponding node of a tree, as we are dealing with 𝐽
(𝑘+1)
𝜇,sgn

(
𝑓 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
, in which there

are 𝐵+ and 𝐵− at each coupling. We start with the following example:

Example 4. Let us consider the two upper-echelon trees:

1

2−

3+ 4+

1

2+

3−

4+

They have the upper-echelon class integrals

𝐼1 =

∫
𝐷1

𝑈 (1) (𝑡1 − 𝑡2)𝐵
−
1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵
+
1,3𝑈

(3) (𝑡3 − 𝑡4)𝐵
+
2,4

(
𝑓 (4)
) (

𝑡1, 𝑡4
)
𝑑𝑡4,

𝐼2 =

∫
𝐷2

𝑈 (1) (𝑡1 − 𝑡2)𝐵
+
1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵
−
1,3𝑈

(3) (𝑡3 − 𝑡4)𝐵
+
3,4

(
𝑓 (4)
) (

𝑡1, 𝑡4
)
𝑑𝑡4,

where 𝐷1 = {𝑡2 ≤ 𝑡1, 𝑡3 ≤ 𝑡2, 𝑡4 ≤ 𝑡2} and 𝐷2 = {𝑡2 ≤ 𝑡1, 𝑡3 ≤ 𝑡2, 𝑡4 ≤ 𝑡3} following from our

discussions in Section 4.1.

𝐼1 and 𝐼2 actually have the same integrand if one does a 𝑡2 ↔ 𝑡3 swap in 𝐼1, despite the fact that the

trees corresponding to 𝐼1 and 𝐼2 have different skeletons. In fact, shortening 𝑒𝑖(𝑡𝑖−𝑡 𝑗)� as 𝑈𝑖, 𝑗 , we have

𝐼1 =

∫
𝐷1

𝑈1,3

(��𝑈3,4𝜙
��2 𝑈3,4𝜙

)
(𝑥1)𝑈1,2

(
𝑈2,4𝜙𝑈2,4𝜙𝑈2,4

(
|𝜙|2 𝜙
)) (

𝑥 ′1
)
𝑑𝑡4

=

∫
𝐷′

1

𝑈1,2

(��𝑈2,4𝜙
��2 𝑈2,4𝜙

)
(𝑥1)𝑈1,3

(
𝑈3,4𝜙𝑈3,4𝜙𝑈3,4

(
|𝜙|2 𝜙
)) (

𝑥 ′1
)
𝑑𝑡4

=

∫
𝐷′

1

𝑈 (1) (𝑡1 − 𝑡2)𝐵
+
1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵
−
1,3𝑈

(3) (𝑡3 − 𝑡4)𝐵
+
3,4

(
𝑓 (4)
) (

𝑡1, 𝑡4
)
𝑑𝑡4,

21We do not know whether one could combine even more than what we are going to do in Sections 4.2–4.5.
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where 𝐷 ′
1
= {𝑡3 ≤ 𝑡1, 𝑡2 ≤ 𝑡3, 𝑡4 ≤ 𝑡3} and we have put in 𝑓 (4) = (|𝜙〉 〈𝜙|)⊗4 for simplicity.22 Hence,

𝐼1 + 𝐼2 =

∫
𝐷

𝑈 (1) (𝑡1 − 𝑡2)𝐵
+
1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵
−
1,3𝑈

(3) (𝑡2 − 𝑡3)𝐵
+
3,4

(
𝑓 (4)
) (

𝑡1, 𝑡4
)
𝑑𝑡4 (4.4)

=

∫ 𝑡1

𝑡4=0

∫ 𝑡1

𝑡2=0

∫ 𝑡1

𝑡3=𝑡4

𝑈 (1) (𝑡1 − 𝑡2)𝐵
+
1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵
−
1,3𝑈

(3) (𝑡2 − 𝑡3)𝐵
+
3,4

(
𝑓 (4)
) (

𝑡1, 𝑡4
)
𝑑𝑡4,

where 𝐷 = 𝐷 ′
1
∪ 𝐷2 = {𝑡3 ≤ 𝑡1, 𝑡2 ≤ 𝑡1, 𝑡4 ≤ 𝑡3}.

Example 4 is an easy example of what we will call the wild moves, and shows that one could indeed

further combine the summands in 𝐽 (𝑘+1)
(
𝑓 (𝑘+1)
)

after the original KM board game has been performed.

We will explain why our U-V techniques apply to 𝐼1 + 𝐼2 but not 𝐼1 and 𝐼2 individually in Section 5.1.

Despite the fact that Example 4 uses the already-combined upper-echelon integrals, our extended KM

board game actually starts from scratch – that is, it starts from 𝛾 (1) (𝑡1) instead of already-combined

upper-echelon integrals – as not all upper-echelon integrals act so nicely under the wild moves. However,

it is still a multistep process. We will first switch the terms in 𝛾 (1) (𝑡1) into their tamed form via signed

KM acceptable moves in Sections 4.2 and 4.3, and then categorise the tamed forms into tamed classes

via the wild moves in Sections 4.4 and 4.5.

We now explain the program as follows: As before, start by expanding 𝛾 (1) (𝑡1) to coupling level k,

which generates a sum expansion of 𝑘! terms. But now for each of these 𝑘! terms, expand the collapsing

operators 𝐵
( 𝑗)

𝜇 ( 𝑗) , 𝑗
into + and − components, which introduces 2𝑘 terms. Thus, in all, we have 2𝑘 𝑘! terms,

each of which has sign-dependent collapsing operators

𝛾 (1)
=

∑
𝜇,sgn

𝐼
(
𝜇, id, sgn, 𝛾 (𝑘+1)

)
, (4.5)

where id is the identity permutation on {2, . . . , 𝑘 + 1},

𝐼 (𝜇, 𝜎, sgn) =

∫
𝑡1≥𝑡𝜎 (2) ≥···≥𝑡𝜎 (𝑘+1)

𝐽
(𝑘+1)
𝜇,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1

and 𝐽
(𝑘+1)
𝜇,sgn is defined as in equation (3.10). Equation (4.5) is a sum over all admissible 𝜇 – that is,

collapsing maps that satisfy 𝜇( 𝑗) < 𝑗 – of which there are 𝑘!. It is also a sum over all sgn maps, of

which there are 2𝑘 .

We define a signed version of the KM acceptable moves, still denoted KM( 𝑗 , 𝑗 +1), which is defined

provided 𝜇( 𝑗) ≠ 𝜇( 𝑗 + 1) and 𝜇( 𝑗 + 1) < 𝑗 . It is defined as the following action on a triple (𝜇, 𝜎, sgn):

(𝜇′, 𝜎′, sgn′) = KM( 𝑗 , 𝑗 + 1) (𝜇, 𝜎, sgn),

where

𝜇′
= ( 𝑗 , 𝑗 + 1) ◦ 𝜇 ◦ ( 𝑗 , 𝑗 + 1),

𝜎′
= ( 𝑗 , 𝑗 + 1) ◦ 𝜎,

sgn′
= sgn ◦( 𝑗 , 𝑗 + 1).

Graphically, this means that nodes j and 𝑗 + 1 belong to different left branches and correspond to

switching nodes j and 𝑗 + 1, leaving the signs in place on the tree – in other words, the node previously

labelled 𝑗 is relabelled 𝑗 + 1, and the node previously labelled 𝑗 + 1 is relabelled 𝑗 , but the signs are left

in place.

22One could put a general symmetric 𝑓 (4) here and get the same result.
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A slight modification of the arguments in [47] shows that, analogous to equation (4.1), if

(𝜇′, 𝜎′, sgn′) = KM( 𝑗 , 𝑗 + 1) (𝜇, 𝜎, sgn) and 𝑓 (𝑘+1) is a symmetric density, then

𝐽
(𝑘+1)
𝜇′,sgn′

(
𝑓 (𝑘+1)
) (

𝑡1, 𝜎
′−1 (

𝑡
𝑘+1

) )
= 𝐽

(𝑘+1)
𝜇,sgn

(
𝑓 (𝑘+1)
) (

𝑡1, 𝜎
−1
(
𝑡
𝑘+1

) )
. (4.6)

It follows from equation (4.6) that

𝐼
(
𝜇′, 𝜎′, sgn′, 𝑓 (𝑘+1)

)
= 𝐼
(
𝜇, 𝜎, sgn, 𝑓 (𝑘+1)

)
. (4.7)

As in the sign-independent case (or more accurately, the combined-sign case), we can combine KM

acceptable moves as follows: If 𝜌 is a permutation of {2, . . . , 𝑘 + 1} such that it is possible to write 𝜌 as

a composition of transpositions

𝜌 = 𝜏1 ◦ · · · ◦ 𝜏𝑟

for which each operator KM
(
𝜏𝑗
)

on the right side of

KM(𝜌)
def
= KM(𝜏1) ◦ · · · ◦ KM(𝜏𝑟 )

is an acceptable action, then KM(𝜌), defined by this composition, is acceptable as well. In this case,

(𝜇′, 𝜎′, sgn′) = KM(𝜌) (𝜇, 𝜎, sgn), and

𝜇′
= 𝜌 ◦ 𝜇 ◦ 𝜌−1,

𝜎′
= 𝜌 ◦ 𝜎,

sgn′
= sgn ◦𝜌−1.

Of course, equations (4.6) and (4.7) hold as well. If (𝜇, sgn) and (𝜇′, sgn′) are such that there exists 𝜌

for which (𝜇′, 𝜎′, sgn′) = KM(𝜌) (𝜇, 𝜎, sgn), then we say that (𝜇′, sgn′) and (𝜇, sgn) are KM-relatable.

This is an equivalence relation that partitions the set of collapsing map/sign map pairs into equivalence

classes. In the graphical representation, two such pairs are KM-relatable if and only if they have the

same signed skeleton tree.

Whereas we could use the signed KM acceptable moves to convert an arbitrary admissible 𝜇 to an

upper-echelon 𝜇′, this will no longer suit our purpose. Instead, our program will be to convert each pair

(𝜇, sgn) to a tamed form, which we define in the next section. The reason for our preference of tamed

form over upper-echelon form is that it is invariant under wild moves, to be introduced in Section 4.4.

4.3. Tamed form

In this section, we define what it means for a pair (𝜇, sgn) and its corresponding tree representation

to be tamed, in Definition 4.4. Then through an example, we present an algorithm for producing the

tamed enumeration of a signed skeleton. The general algorithm is then stated in Algorithm 5. Notice

that it produces a different enumeration from Algorithm 4. Compared with Algorithm 4, the tamed-form

enumeration deals not just with left branches first, it also deals with + first.23 In Section 4.3.1, we exhibit

how to reduce a signed tree with the same skeleton but different enumeration into the tamed form using

signed KM acceptable moves.

We will now give a nongraphical set of conditions on 𝜇 and sgn that determine whether or not

(𝜇, sgn) is tamed. First, we define the concept of a tier. We say that 𝑗 ≥ 2 is of tier q if

𝜇𝑞 ( 𝑗) = 1 but 𝜇𝑞−1 ( 𝑗) > 1,

where 𝜇𝑞 = 𝜇 ◦ · · · ◦ 𝜇, the composition taken q times. We write 𝑡 ( 𝑗) for the tier value of j.

23By symmetry, one could deal with − first here to get a very similar tamed form. But left and right branches are not symmetric,
as they are defined differently.
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Definition 4.4. A pair (𝜇, sgn) is tamed if it meets the following four requirements:

1. If 𝑡 (ℓ) < 𝑡 (𝑟), then ℓ < 𝑟 .

2. If 𝑡 (ℓ) = 𝑡 (𝑟), 𝜇2(ℓ) = 𝜇2 (𝑟), sgn(𝜇(ℓ)) = sgn(𝜇(𝑟)) and 𝜇(ℓ) < 𝜇(𝑟), then ℓ < 𝑟 .

3. If 𝑡 (ℓ) = 𝑡 (𝑟), 𝜇2(ℓ) = 𝜇2 (𝑟), sgn(𝜇(ℓ)) = + and sgn(𝜇(𝑟)) = −, then ℓ < 𝑟 .

4. If 𝑡 (ℓ) = 𝑡 (𝑟), 𝜇2(ℓ) ≠ 𝜇2 (𝑟) and 𝜇(ℓ) < 𝜇(𝑟), then ℓ < 𝑟 .

Note that the statement 𝜇2(ℓ) = 𝜇2 (𝑟) means graphically that the parents of ℓ and r belong to the

same left branch. Conditions (2), (3) and (4) specify the ordering for ℓ and r belonging to the same tier,

and the rule depends upon whether or not the parents of ℓ and r belong to the same left branch. If they

do, rule (3) says that a positive parent dominates over a negative parent, but rule (2) says that if the

parents are of the same sign, then the ordering follows the parental ordering. Finally, if the parents do

not belong to the same left branch, rule (4) says that the ordering follows the parental ordering regardless

of the signs of the parents.

Example 5. The (𝜇, sgn) pair with tier properties indicated in the following chart is tamed:

𝑗 2 3 4 5 6 7 8 9 10 11 12 13 14

𝜇( 𝑗) 1 1 1 1 5 5 2 2 7 7 9 9 8

sgn( 𝑗) − − + + − + − + − + + − +

𝑡 ( 𝑗) 1 1 1 1 2 2 2 2 3 3 3 3 3

All four conditions in Definition 4.4 can be checked from the chart. This is in fact the (𝜇, sgn) pair that

appears in the example that follows.

In the following example, we illustrate an algorithm for determining the unique tamed enumeration

of a signed skeleton tree. After the example is completed, we give the general form of the algorithm.

For the example, we start with the following skeleton, with only the signs indicated. (Recall that KM

acceptable moves will leave the signs in place in the tree and change just the numbering of the nodes.)

Start by considering all nodes mapping to 1 (the universal ancestor) – this is the left branch attached to

1 that is four nodes long in the order − − ++, and we enumerate it in order as 2, 3, 4, 5.

1

−

−

+

+

−

+

−

+

−

+

+

−

+
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1

2 −

3 −

4 +

5 +

−

+

−

+

−

+

+

−

+

We then put this full left branch in the (empty) queue, listing

the + nodes first and then the − nodes:

Queue: 4+, 5+, 2−, 3 − .

Then we start working along the queue from left to right. Since

4+ has no right child, we skip it and move to 5+. Since 5+ does

have a right child, we label it with the next available number

(6) and completely enumerate the entire left branch that starts

with this 6 node (that means, in this case, labelling 6− and 7+

as shown on the next graph).

Then we add this entire left branch to the queue, putting the

+ nodes before the − nodes. We also pop 4+ and 5+ from the

(left of the) queue, since we have already dealt with them. The

queue now reads

Queue: 2−, 3−, 7+, 6 − .

Now we come to the next node in the queue (reading from the

left), which is 2−. The node 2 does have a right child. We label

it as 8 (the next available number) and completely enumerate

the left branch that starts with 8, which means labelling 8−

and 9+ as shown.

1

2 −

3 −

4 +

5 +

6 −

7 +

−

+

−

+

+

−

+
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From the queue, we pop 2 and add the 8−, 9+ left branch – all

+ nodes first and then all − nodes:

Queue: 3−, 7+, 6−, 9+, 8 − .

Since 3− does not have a right child, we pop it and proceed to

7+, which does have a right child, which is labelled with 10,

and the left branch starting at 10 is enumerated as 10−, 11+,

as shown.

1

2 −

3 −

4 +

5 +

6 −

7 +

−

+

8 −

9 +

+

−

+

1

2 −

3 −

4 +

5 +

6 −

7 +

10 −

11 +

8 −

9 +

12 +

13 −

14 + The queue is updated:

Queue: 6−, 9+, 8−, 11+, 10 − .

By now the procedure is probably clear, so we will jump to the

fully enumerated tree.
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Here is the general algorithm. Recall that a queue is a data structure where elements are added on

the right and removed (dequeued) on the left.

Algorithm 5. Start with a queue that at first contains only 1, and start with a next available label 𝑗 = 2.

1. Dequeue the leftmost entry ℓ of the queue. (If the queue is empty, stop.) On the tree, pass to the right

child of ℓ, and enumerate its left branch starting with the next available label 𝑗 , 𝑗 + 1, . . . , 𝑗 + 𝑞. If

there is no right child of ℓ, return to the beginning of step 1.

2. Take the left branch enumerated in step 1 and first list all + nodes in the order 𝑗 , . . . , 𝑗 + 𝑞 and add

them to the right side of the queue. Then list all − nodes in the order 𝑗 , . . . , 𝑗 + 𝑞 and add them to

the right side of the queue

3. Set the next available label to be 𝑗 + 𝑞 + 1, and return to step 1.

4.3.1. Reducing to tamed forms via the signed KM board game

We will now explain how to execute a sequence of signed KM acceptable moves that will bring the

example tree from the previous section, with some other enumeration, into the tamed form. This tree

corresponds to the following 𝜇 and sgn functions:

𝑗 2 3 4 5 6 7 8 9 10 11 12 13 14

sgn( 𝑗) − − + − + + + − − + + − +

𝜇( 𝑗) 1 1 1 2 2 1 6 7 6 7 5 11 11

1

2 −

3 −

4 +

7 +

9 −

11 +

13 −

14 +

5 −

6 +

8 +

10 −

12 +

We are going to start with the enumeration at left, which is

not tamed, and explain how to execute KM acceptable moves

in order to convert this tree into tamed form. Of course, this

is quite similar to what Klainerman and Machedon described,

with just a modification to prioritise plusses over minuses.

We will keep a queue that right now includes only the node 1:

Queue: 1.

Following the queue, we move all nodes (all 𝑗) for which

𝜇( 𝑗) = 1 all the way to left using KM moves. Since 𝜇(7) = 1,

although 𝜇(5) = 2 and 𝜇(6) = 2, we apply the KM moves

KM(6, 7) and then KM(5, 6).

The KM(6, 7) move is

𝜇 ↦→ (6, 7) ◦ 𝜇 ◦ (6, 7),

sgn ↦→ sgn ◦(6, 7).

The KM(5, 6) move is

𝜇 ↦→ (5, 6) ◦ 𝜇 ◦ (5, 6),

sgn ↦→ sgn ◦(5, 6),
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and together these result in the following:

𝑗 2 3 4 5 6 7 8 9 10 11 12 13 14

sgn( 𝑗) − − + + − + + − − + + − +

𝜇( 𝑗) 1 1 1 1 2 2 7 5 7 5 6 11 11

1

2 −

3 −

4 +

5 +

9 −

11 +

13 −

14 +

6 −

7 +

8 +

10 −

12 +

These two moves have been implemented in the revised graph

at left.

Inspecting the 𝜇 chart, we see that all output 1s have been

moved to the left, and the complete list of 𝑗 for which 𝜇( 𝑗) = 1

is 2−, 3−, 4+, 5+. We add these numbers to our queue, but first

add all plusses and then all minuses:

Queue: 1, 4, 5, 2, 3.

Since we have completed 1 on the queue, we next move to 4,

but there are no 𝑗 for which 𝜇( 𝑗) = 4, so we proceed to 5. As

we can see from the 𝜇 table or from the tree, 𝜇(9) = 5 and

𝜇(11) = 5, so we execute KM moves to bring these all the way

to the left (but to the right of the 1s):

The next step is therefore to implement moves KM(8, 9), KM(7, 8) and KM(6, 7), which brings the

𝜇 table to the following:

𝑗 2 3 4 5 6 7 8 9 10 11 12 13 14

sgn( 𝑗) − − + + − − + + − + + − +

𝜇( 𝑗) 1 1 1 1 5 2 2 8 8 5 7 11 11

This is followed by the moves KM(11, 10), KM(10, 9), KM(9, 8) and KM(8, 7), which bring the 𝜇

table to the following:

𝑗 2 3 4 5 6 7 8 9 10 11 12 13 14

sgn( 𝑗) − − + + − + − + + − + − +

𝜇( 𝑗) 1 1 1 1 5 5 2 2 9 9 8 7 7
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1

2 −

3 −

4 +

5 +

6 −

7 +

13 −

14 +

8 −

9 +

10 +

11 −

12 +

At this point, the tree takes the form as pictured to the left.

All 5s have been moved to their proper position in the 𝜇 table.

The complete list of 𝑗 for which 𝜇( 𝑗) = 5 is 6−, 7−, so we add

these numbers to the queue, adding the plusses first and then

the minuses:

Queue: 1, 4, 5, 2, 3, 7, 6.

Since we have addressed 5 in the queue, we move to the next

item, which is 2. This means we have to move all 𝑗 for which

𝜇( 𝑗) = 2 all the way to the left (just to the right of 5). Exam-

ining the 𝜇 table, we see that these 𝑗 are already in place, at

positions 8−, 9+. So no KM moves are needed, and we add to

the queue:

Queue: 1, 4, 5, 2, 3, 7, 6, 9, 8.

Next on the queue is 3, but there are no 𝑗 for which 𝜇( 𝑗) = 3,

so we proceed to 7 on the queue. From the 𝜇 table or the tree,

we see there are two 𝑗 for which 𝜇( 𝑗) = 7, namely 13 and 14.

We therefore execute KM moves to bring these to the left in

the 𝜇 table, just to the right of 2.

Specifically, we do KM(12, 13), KM(11, 12) and KM(10, 11), which brings us to the following 𝜇

table:

𝑗 2 3 4 5 6 7 8 9 10 11 12 13 14

sgn( 𝑗) − − + + − + − + − + − + +

𝜇( 𝑗) 1 1 1 1 5 5 2 2 7 9 9 8 7

After that, we do KM(13, 14), KM(12, 13) and KM(11, 12), which brings us to the following 𝜇 table:

𝑗 2 3 4 5 6 7 8 9 10 11 12 13 14

sgn( 𝑗) − − + + − + − + − + + − +

𝜇( 𝑗) 1 1 1 1 5 5 2 2 7 7 9 9 8

Now that the seven outputs are in place, we take the set of j for which 𝜇( 𝑗) = 7, which is 10−, 11+,

and put them in the queue with plusses first, followed by minuses:

Queue: 1, 4, 5, 2, 3, 7, 6, 9, 8, 11, 10.

There are no j for which 𝜇( 𝑗) = 6, so we proceed in the queue to 9. However, the two 9s are already in

place, and the next item in the queue is 8; the one 8 is already in place. So this completes the example.

We now describe the preceding algorithm in general.
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Algorithm 6. Given (𝜇, sgn), start with a queue Q that initially contains 1 and a marker j, which is

initially set to 𝑗 = 2. Repeat the following steps:

1. Dequeue the leftmost entry ℓ of the queue. If the queue is empty, then stop. Clear the temporary

ordered list L.

2. If 𝜇( 𝑗) = ℓ, add j to the right of L, then increment the marker j by 1 (so now j is the old 𝑗 + 1). If (the

new marker) j is out of range, jump to step 4. If 𝜇( 𝑗) ≠ ℓ, then proceed to step 3; otherwise, repeat

step 2.

3. Find the smallest 𝑟 ≥ 𝑗 + 1 such that 𝜇(𝑟) = ℓ (if there is no such r, jump to step 4). Execute signed

KM moves KM(𝑟 −1, 𝑟), followed by KM(𝑟 −2, 𝑟 −1), . . . , until KM( 𝑗 +1, 𝑗). Now 𝜇( 𝑗) = ℓ. Return

to step 2.

4. Take all elements of the temporary ordered list L, read all + entries in order (from left to right) and

add them to the (right end of the) queue Q; then read all − entries in order (from left to right) and

add them to the (right end of the) queue Q. Return to step 1.

We have the following adaptation of Proposition 4.3, revised to include sign maps and to reference

tamed forms in place of upper-echelon forms.

Proposition 4.5. Within a signed KM-relatable equivalence class of collapsing map/sign map pairs

(𝜇, sgn), there is a unique tamed (𝜇∗, sgn∗). Moreover,

∑
(𝜇,sgn)∼(𝜇∗ ,sgn∗)

𝐼
(
𝜇, id, sgn, 𝛾 (𝑘+1)

)
=

∫
𝑇𝐷 (𝜇∗)

𝐽𝜇∗ ,sgn∗

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1, (4.8)

where 𝑇𝐷 (𝜇∗) is defined in equation (4.3).

To proceed with our program, we divide the expansion (4.5) into sums over signed KM-relatable

equivalence classes, and apply equation (4.8) for the sum over each equivalence class. Thus we obtain

𝛾 (1) (𝑡1) =
∑

(𝜇∗ ,sgn∗) tamed

∫
𝑇𝐷 (𝜇∗)

𝐽𝜇∗ ,sgn∗

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1. (4.9)

The next step will be to round up the tamed pairs (𝜇∗, sgn∗) via wild moves, as defined and discussed

in the next section. This will produce a further reduction of equation (4.9).

4.4. Wild moves

Definition 4.6. A wild move W(𝜌) is defined as follows: Suppose (𝜇, sgn) is a collapsing operator/sign

map pair in tamed form, and {ℓ, . . . , 𝑟} is a full left branch – that is,

𝑧
def
= 𝜇(ℓ) = 𝜇(ℓ + 1) = · · · = 𝜇(𝑟),

but 𝜇(ℓ − 1) ≠ 𝑧 (or is undefined) and 𝜇(𝑟 + 1) ≠ 𝑧 (or is undefined).

Let 𝜌 be a permutation of {ℓ, ℓ +1, . . . , 𝑟} that satisfies the following condition: If ℓ ≤ 𝑞 < 𝑠 ≤ 𝑟 and

sgn(𝑞) = sgn(𝑠), then q appears before s in the list
(
𝜌−1(ℓ), . . . , 𝜌−1(𝑟)

)
– or equivalently, 𝜌(𝑞) < 𝜌(𝑠).

Then the wild move W(𝜌) is defined as an action on a triple (𝜇, 𝜎, sgn), where

(𝜇′, 𝜎′, sgn′) = 𝑊 (𝜌) (𝜇, 𝜎, sgn),

provided

𝜇′
= 𝜌 ◦ 𝜇 = 𝜌 ◦ 𝜇 ◦ 𝜌−1,

𝜎′
= 𝜌 ◦ 𝜎,

sgn′
= sgn ◦𝜌−1.
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We note that W is an action

𝑊 (𝜌1)𝑊 (𝜌2) = 𝑊 (𝜌1 ◦ 𝜌2).

It is fairly straightforward to show the following, using the definition of a tamed form. It is important

to note that the analogous statement for upper-echelon forms does not hold, which is the reason for

introducing the tamed class.

Proposition 4.7. Suppose (𝜇, sgn) is a collapsing operator/sign map pair in tamed form, and 𝑊 (𝜌) is

a wild move. Letting (𝜇′, sgn′) be the output,

(𝜇′, 𝜎′, sgn′) = 𝑊 (𝜌) (𝜇, 𝜎, sgn),

then (𝜇′, sgn′) is also tamed.

Thus wild moves preserve the tamed class, and we can say that two tamed forms (𝜇, sgn) and

(𝜇′, sgn′) are wildly relatable if there exists 𝜌 as in Definition 4.6 such that

(𝜇′, 𝜎′, sgn′) = 𝑊 (𝜌) (𝜇, 𝜎, sgn).

This is an equivalence relation, and in the sum (4.9) we can partition the class of tamed pairs (𝜇, sgn)

into equivalence classes of wildly relatable forms (we pursue this in the next section).

The main result of this section is the following:

Proposition 4.8. Suppose that 𝜌 is as in Definition 4.6 and

(𝜇′, 𝜎′, sgn′) = 𝑊 (𝜌) (𝜇, 𝜎, sgn).

Then for any symmetric density 𝑓 (𝑘+1) ,

𝐽𝜇′,sgn′

(
𝑓 (𝑘+1)
) (

𝑡1, 𝜎
′−1 (

𝑡
𝑘+1

) )
= 𝐽𝜇,sgn

(
𝑓 (𝑘+1)
) (

𝑡1, 𝜎
−1
(
𝑡
𝑘+1

) )
.

Consequently, the Duhamel integrals are preserved, after adjusting for the time

permutations∫
𝜎′ [𝑇𝐷 (𝜇′) ]

𝐽𝜇′,sgn′

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1 =

∫
𝜎 [𝑇𝐷 (𝜇) ]

𝐽𝜇,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1,

where 𝜎[𝑇𝐷 (𝜇)] is defined by modifying equation (4.3) so that node labels are pushed forward

by 𝜎:

𝜎[𝑇𝐷 (𝜇)] =
{
𝑡𝜎 ( 𝑗) ≥ 𝑡𝜎 (𝑘) : 𝑗 , 𝑘 are labels on nodes of 𝛼 such

that the 𝑘 node is a child of the 𝑗 node
}
.

Proof. A permutation 𝜌 of the type described in Definition 4.6 can be written as a composition of

permutations

𝜌 = 𝜏1 ◦ · · · ◦ 𝜏𝑠 ,

with the property that each 𝜏 = (𝑖, 𝑖 + 1) for some 𝑖 ∈ {ℓ, . . . , ℓ + 𝑟} and sgn(𝑖) ≠ sgn(𝑖 + 1). Thus it

suffices to prove

𝑈 (𝑖−1) (−𝑡𝑖)𝐵
−
𝜇 (𝑖) ,𝑖𝑈

(𝑖) (𝑡𝑖 − 𝑡𝑖+1)𝐵
+
𝜇 (𝑖+1) ,𝑖+1𝑈

(𝑖+1) (𝑡𝑖+1)

= 𝑈 (𝑖−1) (−𝑡𝑖+1)𝐵
+
𝜇 (𝑖) ,𝑖𝑈

(𝑖) (𝑡𝑖+1 − 𝑡𝑖)𝐵
−
𝜇 (𝑖+1) ,𝑖+1𝑈

(𝑖+1) (𝑡𝑖)
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when the two sides act on a symmetric density. Recall that 𝑧 = 𝜇(𝑖) = 𝜇(𝑖 + 1). Without loss, we might

as well take 𝑧 = 1 and 𝑖 = 2 so that this becomes

𝑈 (1) (−𝑡2)𝐵
−
1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵
+
1,3𝑈

(3) (𝑡3) = 𝑈 (1) (−𝑡3)𝐵
+
1,2𝑈

(2) (𝑡3 − 𝑡2)𝐵
−
1,3𝑈

(3) (𝑡2). (4.10)

To prove equation (4.10), on the left side we proceed as follows: First we plug in

𝑈 (1) (−𝑡2) = 𝑈1
−2𝑈

1′

2

𝑈 (2) (𝑡2 − 𝑡3) = 𝑈1
2𝑈

1
−3𝑈

1′

−2𝑈
1′

3 𝑈2
2𝑈

2
−3𝑈

2′

−2𝑈
2′

3

𝑈 (3) (𝑡3) = 𝑈1
3𝑈

1′

−3𝑈
2
3𝑈

2′

−3𝑈
3
3𝑈

3′

−3,

where the subscript indicates the time variable and the superscript indicates the spatial variable.

Then we note that for the two collapsing operators on the left side of equation (4.10), the following

hold:

◦ 𝐵−
1,2

acts only on the 2, 2′ and 1′ coordinates, so we can move all 𝑈1 operators in the middle to the

left.

◦ 𝐵+
1,3

acts only on the 3, 3′ and 1 coordinates, so we can move all 𝑈2, 𝑈2′ and 𝑈1′ operators in the

middle to the right.

This results in

left side of equation (4.10) = 𝑈1
−3𝑈

1′

2 𝐵−
1,2𝐵

+
1,3𝑈

1
3𝑈

1′

−2𝑈
2
2𝑈

2′

−2𝑈
3
3𝑈

3
−3. (4.11)

Similarly, on the right side of equation (4.10), plug in

𝑈 (1) (−𝑡3) = 𝑈1
−3𝑈

1′

3

𝑈 (2) (𝑡3 − 𝑡2) = 𝑈1
3𝑈

1
−2𝑈

1′

−3𝑈
1′

2 𝑈2
3𝑈

2
−2𝑈

2′

−3𝑈
2′

2

𝑈 (3) (𝑡2) = 𝑈1
2𝑈

1′

−2𝑈
2
2𝑈

2′

−2𝑈
3
2𝑈

3′

−2.

Then we note that for the two collapsing operators on the right side of equation (4.10), the following are

true:

◦ 𝐵+
1,2

acts only on the 2, 2′ and 1 coordinates, so we can move all𝑈1′ operators in the middle to the left.

◦ 𝐵−
1,3

acts only on the 3, 3′ and 1′ coordinates, so we can move all 𝑈2, 𝑈2′ and 𝑈1 operators in the

middle to the right.

This results in

right side of equation (4.10) = 𝑈1
−3𝑈

1′

2 𝐵+
1,2𝐵

−
1,3𝑈

1
3𝑈

1′

−2𝑈
2
3𝑈

2′

−3𝑈
3
2𝑈

3′

−2. (4.12)

Since equations (4.11) and (4.12) are equal when applied to a symmetric density, this proves equation

(4.10). In particular, one just needs that to permute

(
𝑥2, 𝑥

′
2, 𝑥3, 𝑥

′
3

)
↔
(
𝑥3, 𝑥

′
3, 𝑥2, 𝑥

′
2

)
.

�

Example 6. The pair (𝜇1, sgn1) is defined as follows:

2 3 4 5 6 7

𝜇1 1 1 1 2 4 4

sgn1 + + − − + −
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There are five nontrivial wild moves for 𝑗 = 2, . . . , 6,

(
𝜇 𝑗 , 𝜎𝑗 , sgn 𝑗

)
= 𝑊
(
𝜌 𝑗
)
(𝜇1, id, sgn1),

as indicated in the following table:

2 3 4 6 7 2 3 4 6 7

𝜌1 2 3 4 6 7 𝜌−1
1

2 3 4 6 7

𝜌2 2 4 3 6 7 𝜌−1
2

2 4 3 6 7

𝜌3 3 4 2 6 7 𝜌−1
3

4 2 3 6 7

𝜌4 2 3 4 7 6 𝜌−1
4

2 3 4 7 6

𝜌5 2 4 3 7 6 𝜌−1
5

2 4 3 7 6

𝜌6 3 4 2 7 6 𝜌−1
6

4 2 3 7 6

Notice that each 𝜌−1
𝑗 preserves the order of 2, 3, as in Definition 4.6 – meaning that 2 appears before

3 in the list
(
𝜌−1
𝑗 (2), 𝜌−1

𝑗 (3), 𝜌−1
𝑗 (4)
)
; equivalently, 𝜌(2) < 𝜌(3). Thus the action of 𝜌−1 on {2, 3, 4} is

completely determined by where 4 appears in the list
(
𝜌−1
𝑗 (2), 𝜌−1

𝑗 (3), 𝜌−1
𝑗 (4)
)
.

The corresponding trees and explicit mappings
(
𝜇 𝑗 , sgn 𝑗

)
are indicated in the following. We notice

that all
(
𝜇 𝑗 , sgn 𝑗

)
are tamed (in accordance with Proposition 4.7) and that wild moves, unlike KM

moves, do change the tree skeleton, but this change is restricted to shuffling nodes along a left branch,

subject to the restrictions (indicated in Definition 4.6) that the ordering of the plus nodes and minus

nodes remain intact.

Tree for (𝜇1, sgn1)

2 3 4 5 6 7

𝜇1 1 1 1 2 4 4

sgn1 + + − − + −

Tree for (𝜇2, sgn2)

2 3 4 5 6 7

𝜇2 1 1 1 2 3 3

sgn2 + − + − + −

Tree for (𝜇3, sgn3)

2 3 4 5 6 7

𝜇3 1 1 1 3 2 2

sgn3 − + + − + −

1

2+

3+

4−

6+

7−

5−

1

2+

3−

4+ 6+

7−

5−

1

2−

3+

4+ 5−

6+

7−
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Tree for (𝜇4, sgn4)

2 3 4 5 6 7

𝜇4 1 1 1 2 4 4

sgn4 + + − − − +

Tree for (𝜇5, sgn5)

2 3 4 5 6 7

𝜇5 1 1 1 2 3 3

sgn5 + − + − − +

Tree for (𝜇6, sgn6)

2 3 4 5 6 7

𝜇6 1 1 1 3 2 2

sgn6 − + + − − +

1

2+

3+

4−

6−

7+

5−

1

2+

3−

4+ 6−

7+

5−

1

2−

3+

4+ 5−

6−

7+

4.5. Reference forms and tamed integration domains

Definition 4.9. A tamed pair ( 𝜇̂, ˆsgn) will be called a reference pair provided that in every left branch,

all the + nodes come before all the − nodes.

Definition 4.10. Given a reference pair ( 𝜇̂, ˆsgn), we will call a permutation 𝜌 of {2, . . . , 𝑘+1} allowable

if it meets the conditions in Definition 4.6 – that is, it leaves all left branches invariant and moreover,

for each left branch (ℓ, . . . , 𝑟), all + nodes appear in their original order and all − nodes appear in their

original order within the list
(
𝜌−1(ℓ), . . . , 𝜌−1(𝑟)

)
.

For example, the tree (𝜇1, sgn1) in Example 6 is a reference pair. If (ℓ, . . . , 𝑟) is a full left branch of

𝜇̂, then the definition of a reference pair means that there is some intermediate position m such that the

sgn map looks like the following:

𝑗 ℓ · · · 𝑚 − 1 𝑚 𝑚 + 1 · · · 𝑟

sgn + + + − − − −

However, we note that it is possible that they are all plusses (𝑚 = 𝑟 + 1) or all minuses (𝑚 = ℓ).

With this notation, we can say that 𝜌 is allowable if 𝜌(ℓ) < · · · < 𝜌(𝑚 − 1) and 𝜌(𝑚) < · · · < 𝜌(𝑟) –

or equivalently, if in the list

(
𝜌−1(ℓ), . . . , 𝜌−1(𝑟)

)
,

the values (ℓ, . . . , 𝑚 − 1) appear in that order and the values (𝑚, . . . , 𝑟) appear in that order.

Proposition 4.11. An equivalence class of wildly relatable tamed pairs

𝑄 = {(𝜇, sgn)}
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contains a unique reference pair ( 𝜇̂, ˆsgn). By the definition of being wildly relatable, for every (𝜇, sgn) ∈

𝑄 there is a unique permutation 𝜌 of {2, . . . , 𝑘 + 1} such that

(𝜇, sgn) = 𝑊 (𝜌) ( 𝜇̂, ˆsgn) ,

and this 𝜌 is allowable. The collection P of all 𝜌 arising in this way from Q is exactly the set of all

allowable 𝜌 with respect to the reference pair ( 𝜇̂, ˆsgn).

Now, recall equation (4.9):

𝛾 (1) (𝑡1) =
∑

(𝜇,sgn) tamed

∫
𝑇𝐷 (𝜇)

𝐽𝜇,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1.

In this sum, group together equivalence classes Q of wildly relatable (𝜇, sgn):

𝛾 (1) (𝑡1) =
∑

classes 𝑄

∑
(𝜇,𝜎) ∈𝑄

∫
𝑇𝐷 (𝜇)

𝐽𝜇,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1. (4.13)

Each class Q can be represented by a unique reference ( 𝜇̂, ˆsgn), and as in Proposition 4.11, for each

(𝜇, sgn) ∈ 𝑄, there is an allowable 𝜌 ∈ 𝑃 (with respect to ( 𝜇̂, ˆsgn)) such that

(𝜇, sgn) = 𝑊 (𝜌) ( 𝜇̂, ˆsgn) .

Since W is an action, we can write

( 𝜇̂, ˆsgn) = 𝑊
(
𝜌−1
)
(𝜇, sgn).

Into the action 𝑊
(
𝜌−1
)
, let us input the identity time permutation and define 𝜎 as the output time

permutation:

( 𝜇̂, 𝜎, ˆsgn) = 𝑊
(
𝜌−1
)
(𝜇, id, sgn),

where, in accordance with Definition 4.6, 𝜎 = 𝜌−1. Since 𝜌 is allowable, this implies that for each left

brach (ℓ, . . . , 𝑟) with m as already defined, 𝜎−1(ℓ) < · · · < 𝜎−1(𝑚 − 1) and 𝜎−1(𝑚) < · · · < 𝜎−1(𝑟).

In other words, (ℓ, . . . , 𝑚 − 1) and (𝑚, . . . , 𝑟) appear in order inside the list of values (𝜎(ℓ), . . . , 𝜎(𝑟)).

By Proposition 4.8,∫
𝑇𝐷 (𝜇)

𝐽𝜇,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1 =

∫
𝜎 [𝑇𝐷 ( 𝜇̂) ]

𝐽𝜇̂, ˆsgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1.

Now as we sum this over all (𝜇, sgn) ∈ 𝑄, we are summing over all 𝜌 ∈ 𝑃 and hence over all 𝜎 = 𝜌−1

meeting the condition already mentioned. Hence the integration domains on the right side union to a

set that we will denote

𝑇𝑅 ( 𝜇̂, ˆsgn)
def
=

⋃
𝜌∈𝑃

𝜎 (𝑇𝐷 ( 𝜇̂)) ,

which can be described as follows: For each left branch (ℓ, . . . , 𝑟), with

𝑧 = 𝜇(ℓ) = · · · = 𝜇(𝑟)

and m the division index between plus and minus nodes, 𝑇𝑅 ( 𝜇̂, ˆsgn) is described by the inequalities

𝑡𝑚−1 ≤ · · · ≤ 𝑡ℓ ≤ 𝑡𝑧 and 𝑡𝑟 ≤ · · · ≤ 𝑡𝑚 ≤ 𝑡𝑧 . (4.14)
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Plugging into equation (4.13), we obtain the following:

Proposition 4.12. The Duhamel expansion to coupling order k can be grouped into at most 8𝑘 terms:

𝛾 (1) (𝑡1) =
∑

reference ( 𝜇̂, ˆsgn)

∫
𝑇𝑅 ( 𝜇̂, ˆsgn)

𝐽𝜇,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1, (4.15)

where each integration domain 𝑇𝑅 ( 𝜇̂, ˆsgn) is as defined in formula (4.14).

A quick example of formulas (4.14) and (4.15) is Example 4, in which the reference tree is the one

corresponding to 𝐼2. Reading from that tree, formula (4.14) becomes the set D and the combined integral

is equation (4.4).

Returning to Example 6, (𝜇1, sgn1) is the reference pair. To combine the Duhamel integrals, we

convert all five other tamed forms
(
𝜇 𝑗 , sgn 𝑗

)
to (𝜇1, sgn1) via wild moves. The resulting combined time

integration set will be read off from the (𝜇1, sgn1) tree as

𝑡3 ≤ 𝑡2 ≤ 𝑡1, 𝑡4 ≤ 𝑡1, 𝑡5 ≤ 𝑡2, 𝑡6 ≤ 𝑡4, 𝑡7 ≤ 𝑡4.

Proposition 4.12 and the integration domain (4.14) are compatible with the U-V space techniques

we proved in Section 2. This fact may not be so clear at the moment, as they are written with much

shorthand. We will prove this fact in Section 5.2.

5. Uniqueness for the GP hierarchy (1.2) – Actual estimates

The main goal of this section is to prove Proposition 3.7 on estimating 𝐽
(𝑘+1)
𝜇𝑚 ,sgn. Of course, by 𝐽

(𝑘+1)
𝜇𝑚 ,sgn

we mean the reference form now. We first present an example in Section 5.1 to convey the basic ideas

of the proof. Then in Section 5.2 we demonstrate why we need the extended KM board game and prove

that Proposition 4.12 and the integration domain (4.14) are compatible with the U-V space techniques.

Once that is settled, the main idea idea in Section 5.1 will work for the general case. Thus we estimate

the general case in Section 5.3.

The time integration limits in Section 4.5 will be put to use with Lemmas 2.1 and 2.2. With the trivial

estimate ‖𝑢‖𝑌 𝑠 � ‖𝑢‖𝑋𝑠 , Lemmas 2.1 and 2.2 read as����
∫ 𝑡

𝑎

𝑒−𝑖 (𝑡−𝑡
′)Δ (𝑢1𝑢2𝑢3) (•, 𝑡

′)𝑑𝑡 ′
����
𝑋−1

≤ 𝐶‖𝑢1‖𝑋−1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝑢2

��
𝑋1 +
��𝑃>𝑀0

𝑢2

��
𝑋1

)
‖𝑢3‖𝑋1 ,

(5.1)����
∫ 𝑡

𝑎

𝑒−𝑖 (𝑡−𝑡
′)Δ (𝑢1𝑢2𝑢3) (•, 𝑡

′)𝑑𝑡 ′
����
𝑋1

≤ 𝐶‖𝑢1‖𝑋1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝑢2

��
𝑋1 +
��𝑃>𝑀0

𝑢2

��
𝑋1

)
‖𝑢3‖𝑋1 ,

(5.2)����
∫ 𝑡

𝑎

𝑒−𝑖 (𝑡−𝑡
′)Δ (𝑢1𝑢2𝑢3) (•, 𝑡

′)𝑑𝑡 ′
����
𝑋−1

≤ 𝐶‖𝑢1‖𝑋−1 ‖𝑢2‖𝑋1 ‖𝑢3‖𝑋1 , (5.3)

����
∫ 𝑡

𝑎

𝑒−𝑖 (𝑡−𝑡
′)Δ (𝑢1𝑢2𝑢3) (•, 𝑡

′)𝑑𝑡 ′
����
𝑋1

≤ 𝐶‖𝑢1‖𝑋1 ‖𝑢2‖𝑋1 ‖𝑢3‖𝑋1 . (5.4)

If 𝑢 𝑗 = 𝑒𝑖𝑡
′Δ 𝑓 𝑗 for some j and some 𝑓 𝑗 independent of t and 𝑡 ′, we can replace the 𝑋𝑠 norm of 𝑢 𝑗 in

formulas (5.1)–(5.4) with the 𝐻𝑠 norm of 𝑓 𝑗 . We do not use � in these equations because we are going

to use them repeatedly, and the constants are going to accumulate.
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5.1. An example of how to estimate

We estimate the integral in Example 4:

𝐼 =

∫ 𝑡1

𝑡4=0

∫ 𝑡1

𝑡2=0

∫ 𝑡1

𝑡3=𝑡4

𝑈 (1) (𝑡1 − 𝑡2)𝐵
+
1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵
−
1,3𝑈

(3) (𝑡3 − 𝑡4)𝐵
+
3,4𝛾

(4)𝑑𝑡4,

where the integration limits have already been computed in Section 4.2. Its reference tree is exactly the

tree corresponding to 𝐼2 in Example 4.

Plugging in equation (3.6), we find that the integrand is in fact

𝐼 =

∫ 𝑡1

𝑡4=0

𝑑𝑡4

∫
𝑑𝜇𝑡4 (𝜙)

∫ 𝑡1

𝑡2=0

𝑑𝑡2

∫ 𝑡1

𝑡3=𝑡4

𝑈1,2

(��𝑈2,4𝜙
��2 𝑈2,4𝜙

)
(𝑥1)

×𝑈1,3

(
𝑈3,4𝜙𝑈3,4𝜙𝑈3,4

(
|𝜙|2 𝜙
)) (

𝑥 ′1
)
𝑑𝑡3.

We denote the cubic term |𝜙|2 𝜙 generated in the innermost coupling with C
(4)

𝑅
, where the subscript R

stands for ‘rough’, as it has no propagator inside to smooth things out. That is,

𝐼 =

∫ 𝑡1

𝑡4=0

𝑑𝑡4

∫
𝑑𝜇𝑡4 (𝜙)

∫ 𝑡1

𝑡2=0

𝑑𝑡2

∫ 𝑡1

𝑡3=𝑡4

𝑈1,2

(��𝑈2,4𝜙
��2 𝑈2,4𝜙

)
(𝑥1)𝑈1,3

(
𝑈3,4𝜙𝑈3,4𝜙𝑈3,4C

(4)

𝑅

) (
𝑥 ′1
)
𝑑𝑡3.

For expression (3.9) with a general k, we will use C
(𝑘+1)

𝑅
to denote this innermost cubic term. Notice

that C
(𝑘+1)

𝑅
is always independent of time and is hence qualified to be an 𝑓 𝑗 in estimates (5.1)–(5.4).

In the second coupling, if we denote

𝐷
(3)

𝜙,𝑅
= 𝑈−𝑡3

(
𝑈3,4𝜙𝑈3,4𝜙𝑈3,4C

(4)

𝑅

) (
𝑥 ′1
)
,

we have ∫ 𝑡1

𝑡3=𝑡4

𝑈1,3

(
𝑈3,4𝜙𝑈3,4𝜙𝑈3,4C

(4)

𝑅

) (
𝑥 ′1
)
𝑑𝑡3 =

∫ 𝑡1

𝑡3=𝑡4

𝑈1𝐷
(3)

𝜙,𝑅
𝑑𝑡3.

In general, let us use 𝐷 (𝑙+1) , which is 𝐷
(3)

𝜙,𝑅
here, to denote the cubic term together with the 𝑈 (−𝑡𝑙+1)

during the lth coupling where 𝑙 < 𝑘 . We add a 𝜙 subscript if the cubic term generated at the lth coupling

has contracted a𝑈𝜙. We add an R subscript if the cubic term generated at the lth coupling has contracted

the rough cubic term C
(𝑘+1)

𝑅
or a 𝐷

( 𝑗+1)

𝑅
for some j. The coupling process makes sure that every time

integral corresponds to one and only one cubic term, and thus the notation of D is well defined. We

suppress all 𝑡𝑘+1-dependence, which is the 𝑡4-dependence here, in all the D markings, as we will not

explore any smoothing given by the 𝑑𝑡𝑘+1 integral. Finally, notice that 𝐷 (𝑙+1) always carries the 𝑡𝑙+1

variable and will make a Duhamel term whenever it is hit by a 𝑈
(
𝑡 𝑗
)
, where 𝑗 ≠ 𝑙 + 1.

Then, using the same marking strategy at the first coupling, we reach

𝐼 =

∫ 𝑡1

𝑡4=0

𝑑𝑡4

∫
𝑑𝜇𝑡4 (𝜙)

(∫ 𝑡1

𝑡2=0

𝑈1𝐷
(2)
𝜙

(𝑥1) 𝑑𝑡2

) (∫ 𝑡1

𝑡3=𝑡4

𝑈1𝐷
(3)

𝜙,𝑅

(
𝑥 ′1
)
𝑑𝑡3

)
.

We can now start estimating. Taking the norm inside,����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1

𝐼

����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

≤

∫ 𝑇

0

∫
𝑑𝑡4𝑑
��𝜇𝑡4 �� (𝜙)

����
(〈
∇𝑥1

〉−1
∫ 𝑡1

𝑡2=0

𝑈1𝐷
(2)
𝜙

(𝑥1) 𝑑𝑡2

) (〈
∇𝑥′

1

〉−1
∫ 𝑡1

𝑡3=𝑡4

𝑈1𝐷
(3)

𝜙,𝑅

(
𝑥 ′1
)
𝑑𝑡3

)����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

,
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the 𝐿∞
𝑡1
𝐿2
𝑥,𝑥′ norm ‘factors’ in the sense that����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1

𝐼

����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

≤

∫ 𝑇

0

∫ ����
∫ 𝑡1

𝑡2=0

𝑈1𝐷
(2)
𝜙

(𝑥1) 𝑑𝑡2

����
𝐿∞𝑡1
𝐻−1

𝑥

����
∫ 𝑡1

𝑡3=𝑡4

𝑈1𝐷
(3)

𝜙,𝑅

(
𝑥 ′1
)
𝑑𝑡3

����
𝐿∞𝑡1
𝐻−1

𝑥′

𝑑𝑡4𝑑
��𝜇𝑡4 �� (𝜙) .

The term 𝐷
(2)
𝜙

carries no R subscript, so we can bump it to 𝐻1 and then use the embedding (2.1), which

gives����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1

𝐼

����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

≤

∫ 𝑇

0

∫ ����
∫ 𝑡1

𝑡3=𝑡4

𝑈1𝐷
(3)

𝜙,𝑅

(
𝑥 ′1
)
𝑑𝑡3

����
𝑋−1

����
∫ 𝑡1

𝑡2=0

𝑈1𝐷
(2)
𝜙

(𝑥1) 𝑑𝑡2

����
𝑋1

𝑑𝑡4𝑑
��𝜇𝑡4 �� (𝜙) .

Applying formula (5.2) to the first coupling and replacing all ‖𝑈𝜙‖𝑋𝑠 by ‖𝜙‖𝐻 𝑠 , we have����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1

𝐼

����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

≤𝐶

∫ 𝑇

0

∫ ����
∫ 𝑡1

𝑡3=𝑡4

𝑈1𝐷
(3)

𝜙,𝑅

(
𝑥 ′1
)
𝑑𝑡3

����
𝑋−1

‖𝜙‖2
𝐻 1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝜙
��
𝐻 1 +
��𝑃>𝑀0

𝜙
��
𝐻 1

)1
𝑑𝑡4𝑑
��𝜇𝑡4 �� (𝜙) .

Using formula (5.1) with the second coupling and replacing all ‖𝑈𝜙‖𝑋𝑠 by ‖𝜙‖𝐻 𝑠 , we have����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1

𝐼

����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

≤ 𝐶2

∫ 𝑇

0

∫
‖𝜙‖3

𝐻 1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝜙
��
𝐻 1 +
��𝑃>𝑀0

𝜙
��
𝐻 1

)2 ���C(4)

𝑅

���
𝐻−1

𝑑𝑡4𝑑
��𝜇𝑡4 �� (𝜙)

= 𝐶2

∫ 𝑇

0

∫
‖𝜙‖3

𝐻 1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝜙
��
𝐻 1 +
��𝑃>𝑀0

𝜙
��
𝐻 1

)2 ��|𝜙|2 𝜙
��
𝐻−1 𝑑𝑡4𝑑

��𝜇𝑡4 �� (𝜙) .
Using the 4D Sobolev ��|𝜙|2 𝜙

��
𝐻−1 ≤ 𝐶 ‖𝜙‖3

𝐻 1 (5.5)

on the rough coupling, we get to

����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1

𝐼

����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

≤ 𝐶3

∫ 𝑇

0

𝑑𝑡4

∫
𝑑
��𝜇𝑡4 �� (𝜙) ‖𝜙‖6

𝐻 1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝜙
��
𝐻 1 +
��𝑃>𝑀0

𝜙
��
𝐻 1

)2
.

Plugging in the support property of the measure (see equation (3.5)) yields

����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1

𝐼

����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

≤ 𝐶3𝐶6
0

(
𝑇

1
7 𝑀

3
5

0
𝐶0 + 𝜀

)2 ∫ 𝑇

0

𝑑𝑡4

∫
𝑑
��𝜇𝑡4 �� (𝜙) (5.6)

≤ 𝐶3𝐶6
0

(
𝑇

1
7 𝑀

3
5

0
𝐶0 + 𝜀

)2
2𝑇,

and we are done.
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5.2. The extended KM board game is compatible

In Section 5.1, the U-V estimates worked perfectly with the integration limits obtained via the extended

KM board game from Section 4. One certainly wonders whether the extended KM board game is

necessary, and whether it is compatible with the estimates in the general case.

In the beginning of Section 4.2, we briefly mentioned the problem one would face without the

extended KM board game. We can now explain by a concrete example. For comparison, rewrite 𝐼1 in

Example 4 with the notation

𝐼1 =

∫ 𝑡1

𝑡4=0

∫ 𝑡1

𝑡2=𝑡4

∫ 𝑡2

𝑡3=0

𝑈 (1) (𝑡1 − 𝑡2)𝐵
−
1,2𝑈

(2) (𝑡2 − 𝑡3)𝐵
+
1,3𝑈

(3) (𝑡3 − 𝑡4)𝐵
−
3,4𝛾

(4)𝑑𝑡4

=

∫ 𝑡1

𝑡4=0

𝑑𝑡4

∫
𝑑𝜇𝑡4 (𝜙)

∫ 𝑡1

𝑡2=𝑡4

(
𝑈1𝐷

(2)
𝜙

(𝑥1)

[∫ 𝑡2

𝑡3=0

𝑈1𝐷
(3)

𝜙,𝑅

(
𝑥 ′1
)
𝑑𝑡3

] )
𝑑𝑡2.

One sees that the 𝑑𝑡3 integral is encapsulated inside the 𝑑𝑡2 integral, or the x and 𝑥 ′ parts do not factor,

even with the carefully worked-out time integration limits in the original KM board game. Hence, one

cannot apply U-V estimates. To be very precise for readers who are curious about this, since there are

only two integrals that got entangled, 𝐼1 could in fact be estimated using [50, (4.25), p. 60], based on

the idea of integration by parts. However, if one allows the coupling level to be large, it is not difficult

to find, at any stage of a long coupling, multiple encapsulations which have more than three factors

entangled together and cannot be estimated by the ideas of integration by parts. We are not presenting

such a construction, as the formula would be unnecessarily long and does not give new ideas. Finally,

we remark that such an entanglement problem, generated by the time-integral reliance of the U-V space

techniques, does not show up in the couplings with only 𝐵+ or only 𝐵−, and does not have to emerge in

the R3/R4/T3 cases in which U-V spaces are not necessary.

We now prove how the extended KM board game is compatible with the U-V techniques. Given a

reference tree, we will create a Duhamel tree (we write ‘D-tree’ for short) to supplement the reference

tree. The D-tree supplements the given reference tree in the sense that the D-tree completely shows the

arrangement of the cubic terms 𝐷 ( 𝑗) , defined in Section 5.1, and one could also read off the integration

limits from it as in the given reference tree. The whole point of the D-tree is to get these two pieces

of information in the same picture, as the proof of compatibility then follows trivially. Of course, from

now on, we assume that equation 3.6) has already been plugged in and we are doing the 𝑑𝑡𝑘+1 integral,

which is from 0 to 𝑡1, last.

Algorithm 7. In the D-tree, we will write each node prefaced by a D. Each node 𝐷 ( 𝑗) will have a left

child, middle child and right child:

𝐷 ( 𝑗)

ls r+ r−

The labelling of ls, r+ and r − for the left, middle and right children, respectively, is a shorthand

mnemonic for the procedure for determining the children of 𝐷 ( 𝑗) by inspecting the reference tree. Apply

the following steps for 𝑗 = 1 (with no left child), then repeat the steps for all 𝐷 ( 𝑗) that appear as

children; continue to repeat the steps until all vertices without children are F:

1. To determine the left child of 𝐷 ( 𝑗) , locate node j in the reference tree and apply the ‘left same’ rule.

If node j in the reference tree is +, and 𝑗+ has a left child ℓ+ (of the same sign +), then place 𝐷 (𝑙) as

the left child in the D-tree. If the j node in the reference tree is −, and 𝑗− has a left child ℓ− (of the

same sign −), then place 𝐷 (𝑙) as the left child in the D-tree. If node j in the reference tree does not

have a left child of the same sign, then place F as the left child of 𝐷 ( 𝑗) in the D-tree.
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2. To determine the middle and right children of 𝐷 ( 𝑗) , locate node j in the reference tree. Examine the

right child of j (if it exists), and consider its full left branch

𝑝1+, . . . , 𝑝𝛼+, 𝑛1−, . . . , 𝑛𝛽 − .

It is possible here that 𝛼 = 0 (no + nodes on this left branch), and it is also possible that 𝛽 = 0 (no

− nodes on this left branch). In the D-tree, as the middle child of 𝐷 ( 𝑗) place 𝐷 (𝑝1) , and as the right

child of 𝐷 ( 𝑗) place 𝐷 (𝑛1) . If either or both is missing ( 𝛼 = 0 or 𝛽 = 0, respectively), place F instead.

A quick and simple example is the D-tree for the integral in Section 5.1:

𝐷 (1)

𝐷 (2)

𝐹

ls

𝐹

r+

𝐹

r−

r+

𝐷 (3)

𝐹

ls

C
(4)

r+

𝐹

r−

r−

Here is a longer example:

Example 7. Consider the following reference tree:

1

2+

3+

4−

8+

5+

6−

7− 9+

Its supplemental D-tree is as follows:

𝐷 (1)

𝐷 (2)

𝐷 (3)

𝐹 𝐹 𝐹

ls

𝐷 (5)

𝐹 𝐹 𝐹

r+

𝐷 (6)

𝐷 (7)

𝐹 𝐹 𝐹

ls

C
(9)

r+

𝐹

r−

r−

r+

𝐷 (4)

𝐹

ls

𝐷 (8)

𝐹 𝐹 𝐹

r+

𝐹

r−

r−

Every bottom node of the form 𝐷 ( 𝑗) (as opposed to F) has implicitly three F children, except for

the 𝐷 (𝑘+1) node, which is special (in our case here, it is 𝐷9). In this case, the D-tree was generated as
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follows. Take 𝐷 (2) , for example, in the reference tree.

◦ To determine the left child of 𝐷 (2) in the D-tree, we look at the reference tree and follow the ‘left

same’ rule. The left child of 2+ is 3+, so we place 𝐷 (3) as the left child of 𝐷 (2) in the D-tree. (If it

were 3− instead, we would place F in the D-tree, since the signs are different.)

◦ To determine the middle child of 𝐷 (2) in the D-tree, we look at the reference tree and follow the

‘right +’ rule. That is, we take the right child and consider its left branch: 5+, 6−, 7−. We note the

first + node, which is 5+, and assign 𝐷 (5) as the middle child of 𝐷 (2) . If there were no + node in the

left branch, we would have assigned F.

◦ To determine the right child of 𝐷 (2) in the D-tree, we look at the reference tree and follow the

‘right −’ rule. That is, we take the right child and consider its left branch: 5+, 6−, 7−. We note the

first − node, which is 6−, and assign 𝐷 (6) as the right child of 𝐷2. If there were no − node in the left

branch, we would have assigned F.

Proof of compatibility. With the D-tree, we can now read formula (4.14) better. This is because the

rule for assigning upper limits of time integration is actually the same rule for constructing children in

the D-tree. By the construction of the D-tree, we can write the form of each 𝐷 ( 𝑗) , 𝑗 ≠ 𝑘 + 1, and the

integration limit for 𝑡 𝑗 . If 𝐷 ( 𝑗) has children 𝐿, 𝑀, 𝑅 (for left, middle and right) and has parent 𝐷 (𝑙) in

the 𝐷-tree, then (ignoring the role of complex conjugates)

𝐷 ( 𝑗)
(
𝑡 𝑗
)
= 𝑈
(
−𝑡 𝑗
) [ (

𝑈 𝑗𝐿
) (

𝑈 𝑗𝑀
) (

𝑈 𝑗𝑅
) ]

,

and the integration of 𝑡 𝑗 is exactly from 0 to 𝑡𝑙 . One can directly see from the picture in Example 7

that all Duhamel terms inside a 𝐷 ( 𝑗) must have the same integration limit, and they factor. Therefore,

there is no entanglement in each stage of the coupling process. An induction then shows that there is

no entanglement for any coupling of finite length or stages. Or in other words, the extended KM board

game is compatible with the U-V techniques. �

For completeness, we finish Example 7 with the integration limits:

Example 8. Continuing Example 7, we have

𝐷 (2)
= 𝑈 (−𝑡2)

[
𝑈2𝐷

(3) ·𝑈2𝐷
(5) ·𝑈2𝐷

(6)
]
. (5.7)

The three terms inside this expression are

𝐷 (3)
= 𝑈 (−𝑡3) [𝑈3𝐹 (𝑡9) ·𝑈3𝐹 (𝑡9) ·𝑈3𝐹 (𝑡9)],

𝐷 (5)
= 𝑈 (−𝑡5) [𝑈5𝐹 (𝑡9) ·𝑈5𝐹 (𝑡9) ·𝑈5𝐹 (𝑡9)],

𝐷 (6)
= 𝑈 (−𝑡6)

[
𝑈6𝐷

(7) ·𝑈6𝐷
(9) ·𝑈6𝐹 (𝑡9)

]
,

where 𝐹 (𝑡𝑖) = 𝑈 (−𝑡𝑖)𝜙. On the other hand, we have

𝐷 (4)
= 𝑈 (−𝑡4)

[
𝑈4𝐹 (𝑡9) ·𝑈4𝐷

(8) ·𝑈4𝐹 (𝑡9)
]
. (5.8)

Now, read the time integration limits from the reference tree or the D -tree; 𝑡2 and 𝑡4 have upper limit

𝑡1, while 𝑡3, 𝑡5 and 𝑡6 all have upper limit 𝑡2, and so on. Start by writing
∫ 𝑡1
𝑡9=0

on the outside. Notice that

this makes the inner 𝑡6 integral start at 𝑡9 in order to retain the condition 𝑡9 ≤ 𝑡6 from formula (4.14)

and the tree reading. Take all 𝑡 𝑗 integrals for 𝑗 = 2 or for which 𝐷 ( 𝑗) is a descendant of 𝐷 (2) . This is

∫ 𝑡1

𝑡2=0

∫ 𝑡2

𝑡3=0

∫ 𝑡2

𝑡5=0

∫ 𝑡2

𝑡6=𝑡9

∫ 𝑡6

𝑡7=0

. (5.9)
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Then collect all 𝑡 𝑗 integrals for 𝑗 = 4 or for which 𝐷 ( 𝑗) is a descendant of 𝐷 (4) . This is

∫ 𝑡1

𝑡4=0

∫ 𝑡4

𝑡8=0

. (5.10)

Notice that expressions (5.9) and (5.10) split, by Fubini, since none of the limits of integration in

expression (5.9) appear in expression (5.10), and vice versa. So we can write this piece of 𝛾 (1) as

𝛾 (1) (𝑡1) =

∫ 𝑡1

𝑡9=0

[∫ 𝑡1

𝑡2=0

∫ 𝑡2

𝑡3=0

∫ 𝑡2

𝑡5=0

∫ 𝑡2

𝑡6=𝑡9

∫ 𝑡6

𝑡7=0

𝑈1𝐷
(2) (𝑡2, 𝑥1)

] [∫ 𝑡1

𝑡4=0

∫ 𝑡4

𝑡8=0

𝑈1𝐷
(4)
(
𝑡4, 𝑥

′
1

) ]
. (5.11)

Write out 𝐷 (2) as in equation (5.7) and 𝐷 (4) as in equation (5.8). Notice that we can distribute the

integrals
∫ 𝑡2
𝑡3=0

∫ 𝑡2
𝑡5=0

∫ 𝑡2
𝑡6=0

onto the 𝐷 (3) , 𝐷 (5) and 𝐷 (6) terms, respectively:

∫ 𝑡1

𝑡2=0

∫ 𝑡2

𝑡3=0

∫ 𝑡2

𝑡5=0

∫ 𝑡2

𝑡6=𝑡9

∫ 𝑡6

𝑡7=0

𝑈1𝐷
(2) (𝑡2, 𝑥1)

=

∫ 𝑡1

𝑡2=0

𝑈1,2

[(∫ 𝑡2

𝑡3=0

𝑈2𝐷
(3) (𝑡3)

)
·

(∫ 𝑡2

𝑡5=0

𝑈2𝐷
(5) (𝑡5)

)
·

(∫ 𝑡2

𝑡6=𝑡9

∫ 𝑡6

𝑡7=0

𝑈2𝐷
(6) (𝑡6)

)]
.

We have kept the 𝑡7 integral together with 𝑡6 because 𝐷 (7) is a child of 𝐷 (6) in the D-tree. We can see

that all the Duhamel structures are fully compatible with the U-V techniques. The rest is similar, and

we omit further details.

5.3. Estimates for general k

As the compatiblity between the extended KM board game and the U-V techniques has been proved in

Section 5.2, we can now apply the U-V techniques from Section 5.1 to the general case. We see from

Section 5.1 that estimates (5.1) and (5.2) provide gains whenever the lth coupling contracts a 𝑈𝜙. For

large k, at least 2
3
𝑘 of the couplings carry such a property and thus allow gains.

Definition 5.1. For 𝑙 < 𝑘 , we say that the lth coupling is an unclogged coupling if the corresponding

cubic term C
(𝑙+1) or 𝐷 (𝑙+1) has contracted at least one 𝑈𝜙 factor. If the lth coupling is not unclogged,

we call it a congested coupling.

Lemma 5.2. For large k, there are at least 2
3
𝑘 unclogged couplings in k couplings when one plugs

equation (3.6) into expression (3.9).

Proof. Assume there are j congested couplings; then there are (𝑘 − 1− 𝑗) unclogged couplings. Before

the (𝑘 − 1)th coupling, there are 2𝑘 − 1 copies of 𝑈𝜙 available. After the first coupling, all of these

2𝑘 − 1 copies of 𝑈𝜙 except one must be inside some Duhamel term. Since the j congested couplings do

not consume any 𝑈𝜙, to consume all 2𝑘 − 2 copies of 𝑈𝜙 we have to have

2𝑘 − 2 ≤ 3(𝑘 − 1 − 𝑗), (5.12)

because a unclogged coupling can consume at most three copies of 𝑈𝜙. This inequality certainly holds

only if 𝑗 < 𝑘
3
. Hence, there are at least 2𝑘

3
unclogged couplings. �

We can now present the algorithm which proves the general case:

Step 0 Plug equation (3.6) into expression (3.9). Mark C
(𝑘+1)

𝑅
and all 𝐷 (𝑙+1) for 𝑙 = 1, . . . , 𝑘 − 1 per the

general rule given in the example and Section 5.1. We obtain

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.16
Downloaded from https://www.cambridge.org/core. IP address: 67.247.237.183, on 13 Jan 2022 at 15:21:25, subject to the Cambridge Core terms of use, available at



44 X. Chen and J. Holmer

����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1
∫
𝐼2

· · ·

∫
𝐼𝑘

𝐽
(𝑘+1)
𝜇𝑚 ,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1

����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

≤

∫ 𝑇

0

𝑑𝑡𝑘+1

∫
𝑑
��𝜇𝑡𝑘+1

�� (𝜙)
����
(〈
∇𝑥1

〉−1
𝑓 (1) (𝑡1, 𝑥1)

) (〈
∇𝑥′

1

〉−1

𝑔 (1)
(
𝑡1, 𝑥

′
1

) )����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

,

which ‘factors’ into

≤

∫ 𝑇

0

𝑑𝑡𝑘+1

∫
𝑑
��𝜇𝑡𝑘+1

�� (𝜙) ���〈∇𝑥1

〉−1
𝑓 (1) (𝑡1, 𝑥1)

���
𝐿∞𝑡1
𝐿2
𝑥

����
〈
∇𝑥′

1

〉−1

𝑔 (1)
(
𝑡1, 𝑥

′
1

)����
𝐿∞𝑡1
𝐿2
𝑥′

≤

∫ 𝑇

0

𝑑𝑡𝑘+1

∫
𝑑
��𝜇𝑡𝑘+1

�� (𝜙) ��� 𝑓 (1)���
𝑋−1

���𝑔 (1)
���
𝑋−1

for some 𝑓 (1) and 𝑔 (1) . Of course, only one of 𝑓 (1) and 𝑔 (1) can carry the cubic rough term

C
(𝑘+1)

𝑅
, as there is only one, so bump the other one into 𝑋1. Go to step 1.

Step 1 Set a counter 𝑙 = 1 and go to step 2.

Step 2 If 𝐷 (𝑙+1) is a 𝐷
(𝑙+1)

𝜙,𝑅
, apply estimate (5.1), put the factor carrying C

(𝑘+1)

𝑅
– which will be a𝑈C

(𝑘+1)

𝑅

or a 𝐷
( 𝑗+1)

𝑅
for some j – in 𝑋−1 and replace the 𝑋1 norm of 𝑈𝜙 by the 𝐻1 norm of 𝜙; if the

ending estimate includes

���𝑈C
(𝑘+1)

𝑅

���
𝑋−1

, replace it by

���C(𝑘+1)

𝑅

���
𝐻−1

. Then go to step 6. If 𝐷 (𝑙+1) is

not a 𝐷
(𝑙+1)

𝜙,𝑅
, go to step 3.

Step 3 If 𝐷 (𝑙+1) is a 𝐷
(𝑙+1)
𝜙

, apply estimate (5.2) and replace the 𝑋1 norm of 𝑈𝜙 by the 𝐻1 norm of 𝜙.

Then go to step 6. If 𝐷 (𝑙+1) is not a 𝐷
(𝑙+1)
𝜙

, go to step 4.

Step 4 If 𝐷 (𝑙+1) is a 𝐷
(𝑙+1)

𝑅
, apply estimate (5.3), put the factor carrying C

(𝑘+1)

𝑅
– which will be a𝑈C

(𝑘+1)

𝑅

or a 𝐷
( 𝑗+1)

𝑅
for some j – in 𝑋−1 and replace the 𝑋1 norm of 𝑈𝜙 by the 𝐻1 norm of 𝜙; if the

ending estimate includes

���𝑈C
(𝑘+1)

𝑅

���
𝑋−1

, replace it by

���C(𝑘+1)

𝑅

���
𝐻−1

. Then go to step 6. If 𝐷 (𝑙+1) is

not a 𝐷
(𝑙+1)

𝑅
, go to step 5.

Step 5 If 𝐷 (𝑙+1) is a 𝐷 (𝑙+1) , apply estimate (5.4) and replace the 𝑋1 norm of 𝑈𝜙 by the 𝐻1 norm of 𝜙.

Then go to step 6.

Step 6 Set the counter 𝑙 = 𝑙 + 1. If 𝑙 < 𝑘 , go to step 2; otherwise go to step 7.

Step 7 Replace all the leftover ‖𝑈𝜙‖𝑋1 by ‖𝜙‖𝐻 1 . There is actually at most one leftover ‖𝑈𝜙‖𝑋1 ,

which is exactly 𝑓 (1) or 𝑔 (1) from the beginning and only happens when the sign 𝐽
(𝑘+1)
𝜇𝑚 ,sgn under

consideration is all + or all −. As it is not inside any Duhamel, it is not taken care of by steps

1–6. Go to step 8.

Step 8 We are now at the kth coupling, and have applied formulas (5.1) and (5.2) at least 2
3
𝑘 times; thus

we are looking at

����〈∇𝑥1

〉−1
〈
∇𝑥′

1

〉−1
∫
𝐼2

· · ·

∫
𝐼𝑘

𝐽
(𝑘+1)
𝜇𝑚 ,sgn

(
𝛾 (𝑘+1)
) (

𝑡1, 𝑡𝑘+1

)
𝑑𝑡
𝑘+1

����
𝐿∞𝑡1
𝐿2
𝑥,𝑥′

≤𝐶𝑘−1

∫ 𝑇

0

𝑑𝑡𝑘+1

∫
𝑑
��𝜇𝑡𝑘+1

�� (𝜙) ‖𝜙‖ 4
3
𝑘−1

𝐻 1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝜙
��
𝐻 1 +
��𝑃>𝑀0

𝜙
��
𝐻 1

) 2
3
𝑘 ��|𝜙|2 𝜙

��
𝐻−1 .

Applying the 4D Sobolev (5.5) to the rough factor yields

≤ 𝐶𝑘
∫ 𝑇

0

𝑑𝑡𝑘+1

∫
𝑑
��𝜇𝑡𝑘+1

�� (𝜙) ‖𝜙‖ 4
3
𝑘+2

𝐻 1

(
𝑇

1
7 𝑀

3
5

0

��𝑃≤𝑀0
𝜙
��
𝐻 1 +
��𝑃>𝑀0

𝜙
��
𝐻 1

) 2
3
𝑘

.
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Putting in the support property (3.5) gives

≤

∫ 𝑇

0

𝑑𝑡𝑘+1

∫
𝑑
��𝜇𝑡𝑘+1

�� (𝜙)𝐶𝑘𝐶 4
3
𝑘+2

0

(
𝑇

1
7 𝑀

3
5

0
𝐶0 + 𝜀

) 2
3
𝑘

≤ 2𝑇𝐶𝑘𝐶
4
3
𝑘+2

0

(
𝑇

1
7 𝑀

3
5

0
𝐶0 + 𝜀

) 2
3
𝑘

≤ 2𝑇𝐶2
0

(
𝐶𝐶3

0𝑇
1
7 𝑀

3
5

0
+ 𝐶𝐶2

0𝜀

) 2
3
𝑘

,

as claimed.

Thus, we have proved Proposition 3.7 and hence Theorem 3.1. As mentioned before, the main

theorem (Theorem 1.1) then follows from Theorem 3.1 and Lemma 3.3, which checks Theorem 3.1(c)

for solutions of equation (1.2) generated by equation (1.1) via equation (1.3).

Appendix A. Some further remarks

After reading the main part of the paper, it should now be clear that the proof of Theorem 1.1 goes

through if the T4 energy-critical problem is replaced by the corresponding problems on R3, R4 or

T
3. (The method in this paper also provides a unified proof for the unconditional uniquness of the

𝐻1 -supercritical NLS [26].) One could use the analysis in Theorem 3.1 but slightly different logic to

conclude another form of Theorem 1.1, stated as Theorem A.1. It is certainly equivalent to Theorem

1.1, but its format is more closely related to well-posedness results.

Theorem A.1. Every 𝐶0
[0,𝑇 ]

𝐻1
𝑥 solution to equation (1.1) is also in 𝑋1.

Proof. We give only a sketch, as this route is only slightly different in the logic and is in fact messy in

estimates, because it needs to run the main argument twice, one part of which is in a weaker space.

1. Plug the chosen 𝐶0
[0,𝑇 ]

𝐻1
𝑥 solution u directly (not taking a difference) into equation (3.4) and iterate.

2. Group the terms in the Duhamel–Born expansion into free and interaction parts like in [17, 19, 21, 25].

3. Apply the analysis of Theorem 3.1 to deduce that the interaction part is zero in 𝐿∞
𝑡 𝐻

−1
𝑥,𝑥′ . That is,

|𝑢〉 〈𝑢 | equals the free part.

4. Apply the analysis of Theorem 3.1 again, but in 𝑋1, to conclude that the free part (and hence u) is

in 𝑋1.

�

On the other hand, we remark that the T4 case is a bit ‘special’ in the aspect of multilinear estimates.

The stronger 𝐿1
𝑡𝐻

𝑠
𝑥 versions of formulas (2.7) and (2.11) can be proved easily on R3 [39] and R4, and

with a highly technical and careful argument on T3 [24]. In fact, here is a short proof for the R4 case.

Lemma A.2. On R4,

��𝑒𝑖𝑡Δ 𝑓1𝑒
𝑖𝑡Δ 𝑓2𝑒

𝑖𝑡Δ 𝑓3
��
𝐿1
𝑇
𝐻−1 � ‖ 𝑓1‖𝐻−1 ‖ 𝑓2‖𝐻 1 ‖ 𝑓3‖𝐻 1 (A.1)

��𝑒𝑖𝑡Δ 𝑓1𝑒
𝑖𝑡Δ 𝑓2𝑒

𝑖𝑡Δ 𝑓3
��
𝐿1
𝑇
𝐻 1 � ‖ 𝑓1‖𝐻 1 ‖ 𝑓2‖𝐻 1 ‖ 𝑓3‖𝐻 1 . (A.2)

In particular, these formulas imply formulas (2.7) and (2.11). That is, formulas (1) and (2) are indeed

stronger than formulas (2.7) and (2.11).
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Proof. We prove only formula (1), as formula (2) follows similarly. Given 𝑔 ∈ 𝐿∞
𝑡 𝐻

−1
𝑥 , we have

����
∫

𝑒𝑖𝑡Δ 𝑓1𝑒
𝑖𝑡Δ 𝑓2𝑒

𝑖𝑡Δ 𝑓3𝑔𝑑𝑡𝑑𝑥

���� ≤ ��|∇|−1 𝑒𝑖𝑡Δ 𝑓1
��
𝐿3
𝑡,𝑥

���|∇| (𝑒𝑖𝑡Δ 𝑓2𝑒
𝑖𝑡Δ 𝑓3𝑔

)���
𝐿

3
2
𝑡,𝑥

,

where ���|∇| (𝑒𝑖𝑡Δ 𝑓2𝑒
𝑖𝑡Δ 𝑓3𝑔

)���
𝐿

3
2
𝑡,𝑥

�

���(|∇| 𝑒𝑖𝑡Δ 𝑓2

)
𝑒𝑖𝑡Δ 𝑓3𝑔

���
𝐿

3
2
𝑡,𝑥

+
��( |∇| 𝑔) 𝑒𝑖𝑡Δ 𝑓2𝑒

𝑖𝑡Δ 𝑓3
��
𝐿

3
2
𝑡,𝑥

�
��|∇| 𝑒𝑖𝑡Δ 𝑓2

��
𝐿3
𝑡,𝑥

��𝑒𝑖𝑡Δ 𝑓3
��
𝐿3
𝑡 𝐿

12
𝑥
‖𝑔‖𝐿∞𝑡 𝐿

4
𝑥

+
��𝑒𝑖𝑡Δ 𝑓2

��
𝐿3
𝑡 𝐿

12
𝑥

��𝑒𝑖𝑡Δ 𝑓3
��
𝐿3
𝑡 𝐿

12
𝑥
‖∇𝑔‖𝐿∞𝑡 𝐿

2
𝑥

� ‖ 𝑓2‖𝐻 1 ‖ 𝑓3‖𝐻 1 ‖𝑔‖𝐿∞𝑡 𝐻
1
𝑥
.

�

We see that formulas (1) and (2) are indeed elementary to prove if one has the 𝐿3
𝑡 ,𝑥 estimate,

which is known to fail on T4 [2]. Scale-invariant T4 𝐿3
𝑡 -Strichartz estimates with derivatives are also

absent in the literature. That is, proving formulas (1) and (2) on T4 would be very difficult, and

they may not even be true. In fact, if both formulas (1) and (2) hold on T4, we can deduce that��𝑒𝑖𝑡Δ𝑃≤𝑀 𝑓
��
𝐿3
𝑡 𝐿

6
𝑥
� 𝑀

2
3 ‖𝑃≤𝑀 𝑓 ‖𝐿2 , which is a T4 scale-invariant estimate carrying the 𝐿3

𝑡 exponent

and may not be true. Hence, we see that the T4 case is indeed ‘special’ in the aspect of multilinear

estimates, and we are forced to use the weaker U-V space estimates to be on the safe side.

On the other hand, we remark that as estimates (1) and (2) were proved using Hölder, Strichartz and so

on with ≥ 2 time exponents, using

���∫ 𝑡
0
𝑒𝑖 (𝑡−𝑠)Δ 𝑓 (𝑠)𝑑𝑠

���
𝑋1

≤ ‖ 𝑓 ‖𝐿1
𝑡 𝐻

1
𝑥

and the inclusion ‖ 𝑓 ‖𝑈 𝑝 � ‖ 𝑓 ‖𝑈2

for 𝑝 ≥ 2, formulas (2.7) and (2.11) are reduced on R4 from formulas (1) and (2) by applying the atomic

structure of 𝑈 𝑝 on the nuts and bolts. We omit the details but remark that one would get a 𝑈1 estimate

instead if one applied the atomic structure directly on the 𝐿1
𝑡 estimate. That is, one could have multiple

versions of multilinear estimates yielding existence. For the moment, let us consider the T3 quintic

problem as an example, since R3/R4 are simpler and T4 may not allow the ambiguity to be mentioned.

Instead of using the T3 versions of formulas (2.7) and (2.11), one could use the T3 versions of formulas

(1) and (2), which do not need U-V techniques, or the 𝑈1 versions of their implications to show local

existence for the T3 quintic problem in three similar but different subspaces of 𝐻1. The only way to

know if these three versions yield the same solution is an unconditional-uniqueness theorem.

Finally, separate from answering the original mathematical problem that there could be multiple solu-

tions coming from different spaces in which equation (1.1) is well posed, the unconditional-uniqueness

problems on T𝑛 have practical applications. An example is the control problem for the Lugiato–Lefever

system, first formulated in [52], which could be considered as an NLS with forcing:

𝑖𝜕𝑡𝑢 𝑓 = −Δ𝑢 𝑓 ±
��𝑢 𝑓 ��𝑝−1

𝑢 𝑓 + 𝑓 in R × T𝑛, (A.3)

𝑢 𝑓 (0, 𝑥) = 𝑢0.

The problem is to find f and 𝑢0 such that 𝑢 𝑓 ∈ 𝑋 , for some space X in which equation (3) is well posed,

minimises some given functional 𝑍 (𝑢). For some experimental and engineering purposes, the spatial

domain has to be T𝑛. The space X in which one looks for the minimiser largely determines the difficulty.

If 𝑋 = 𝐿2
𝑥 or 𝐻1

𝑥 , there are techniques readily available to hunt for minimisers. However, how to search

for minimisers when X is a proper subspace of 𝐻1
𝑥 , like 𝐻2

𝑥 or 𝐻1
𝑥 ∩ 𝐿

𝑝
𝑡 𝐿

𝑞
𝑥 – a common space for well-

posedness – remains open. Such a dilemma can be resolved if one has unconditional-uniqueness results

like Theorem 1.1.
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