Electronic properties and quasi-zero-energy states of graphene quantum dots
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In this work, a research has been carried out into the electronic properties of nanostructured
graphene. We focus our attention on trapped states of the proposed systems such as spherical and
toroidal graphene quantum dots. Using a continuum model, by solving the Dirac—Weyl equation, and
applying periodic boundary conditions of two types, i.e. either with zigzag-edges only, or with both
armchair- and zigzag-edges, we obtain analytical results for energy levels yielding self-similar energy
bands located subsequently one after another on the energy scale. Only for toroidal quantum dots
(owing to the lack of curvature) the distribution of electron density is similar to Bohr atomic orbitals.
However, although the quasi-zero-energy band exists for both spherical and toroidal quantum dots,
no electron density is present on this band for the toroidal quantum dot. This causes the formation
of a pseudogap between the hole and electron bands, because of the absence of the electron density
at the quantum dot center, like in the case of an ordinary atom. Conversely, the confinement of the
charge-carrier density is observed for both geometries of graphene quantum dots.

I. INTRODUCTION

Nanodimensional monolayer graphene patches are
promising as a basis for the development of quantum
devices. Graphene physics is the physics of massless
charge carriers. The nanometre-sized quasi-circular
graphene monolayer samples, called graphene quantum
dots (GQDs), can be chemically synthesized. Chemically
synthesized nanoscale GQDs have the form of a
quasicircle with a radius in the interval from 3 nm
to 10 nm [1]. By scattering on the physical edges of
contacting graphene patches, charge carriers drastically
impair their mobility. Moreover, the fact that the
Schrédinger equation with a confining parabolic potential
satisfactorily describes at least the low-lying states of the
synthesized dots means that the distortion of electron-
hole physics is possible up to the loss of bipolarity of the
material (see e.g., [2, 3] and references therein).

The problem of contacts in graphene electronics can
be solved by designing the so-called electrically confined
graphene quantum dots without physical termination.
The electrically confined GQD is a part of the graphene
monolayer, separated by a potential barrier from the
rest of the monolayer. The electrostatic geometric
confinement in a graphene monolayer allows to finely
tune the charge localization and scattering in graphene-
based devices. To form an electrically confined GQD, the
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graphene monolayer deposited on the support is n(p)
doped. The local action of an electric field (screening)
directed opposite to the electric field of n(p) doping
changes locally the type of doping from n(p) to p(n). The
resulting n-p or p-n junction is an electrically confined
GQD. The n(p) doping of a bulk monolayer can be
achieved by applying an electric voltage Vpg to the
support.

The design of nanoelectronic devices based on
graphene n-p (p-n) junctions requires the knowledge
of model-independent realistic confining electrostatic
potentials. Model confining potentials for GQDs
have been currently offered. However, their shape is
determined by the specificity of fabrication method.
There are three techniques. First, an electric field of
the graphene-doping electrode (backgate) contacting
with the support can be locally screened by forming
an additional thin (needle-like) metal structure on the
surface of the tip of the scanning tunneling microscope
(STM) [4, 5]. Such quantum dots are called tip-induced
ones. Second, under the local action of an electric voltage
pulse Vg on the STM tip, the nanometersized graphene
region is doped with charge carriers of the opposite
sign with respect to bulk graphene [6]. A mechanism
for creating a local p(n)-doped region by the second
method is the ionization of defects in the hexagonal
boron-nitride (h-BN) layer of support by the electric-field
pulse, the released (migrated) charges screen the electric
field acting from the side of the support, that is equivalent
to local p(n)-doping. In this case, the support plays a role
of a backgate, the local p(n)-doping is equivalent to a
fabrication of local embedded gate. Third, the shielding



embedded gate can be effectively formed as a part of
metal support, which remains defect-free during epitaxial
growth of graphene on its surface [7]. The advantage of
the field doping used in the first two methods is the
absence of a Fermi level shift under the action of the
chemical potential.

The confining potential of the tip-induced GQD
is subjected to strong influence of electric fields due
to peculiarities of the field spatial configuration,
schematically presented in fig. la. Since the screened
region is bound to the STM double-tip and,
correspondingly, the tip-induced GQD functionally
is bound to the tip, while a structure of such junctions
was not observed in the images. The atomic-like
nature of these graphene p-n junctions is revealed in
the experimental dependence of a derivative of the
tunneling current dI/dV on voltages Vrg and Vpg. The
dependence is similar to local density of states (LDOS)
for a tight-binding Hamiltonian of graphene charge
carriers moving in a potential of the Thomas—Fermi
atom model [5]. According to this estimate, the quantum
dot is an artificial atom with a huge number of electrons,
as the effective electric charge of Coulomb potential or
the Coulomb coupling 8 = (Z/eq)ac/vp, which confines
charge carriers in the tip-induced junction, takes on
values typical for a supercritical regime of ultra-heavy
atoms. Here Z is a local unscreened charge, c is the
speed of light, vp is the Fermi velocity and eg is the
effective dielectric constant of bulk graphene, e ~ 5
[8]. The atomic-like distribution of the electron (hole)
density in such quantum dots is fitted by a continuous
Thomas—Fermi-like approximation for a potential U(r)
confining electrons (holes): U(r) = sgn(n)hvpy/mw|n(r)|.
Here n(r) is a charge density (for holes in p-n junctions
or for electrons in n-p junctions). The confining model
potential based on the Thomas—Fermi model is two-step
potential [5], and ab-initio full tight-binding calculations
with a Poisson’s equation predict a stair-case form for
the confining potentials (see fig. 1b) [4, 9, 10].

Since the backgate and the created embedded gate
exist independently of the STM-tip, the atom-like
structure of GQDs fabricated by the 2nd and 3rd
methods can be imaged by a STM probing of their
LDOS using voltages that practically do not change
the initial configuration of the gate electric fields shown
schematically in fig. 1c. The imaging allows to construct
the confining electrostatic potential directly from the
experimental values of the touchings Eg),i =1,2,...
between Dirac graphene valence and conduction bands.
For example, a radial step potential is constructed on the
basis of two values of Ep inside and outside the small-
radius quantum dot (see fig. 1d). A parabolic potential
as an infinite set of single-step radial potentials is used
to describe large GQDs (see fig. 1e). When constructing
a model confining potential for the third fabricating
method, it is also necessary to anticipate an offset of the
chemical potential p for GQD after doping of graphene
with metal atoms.

A feature of the scattering Dirac fermions with mass
m is the existence of delocalized modes among scattered
ones under the condition V' > 2m imposed on the
potential barrier V' [11]. The delocalized modes are called
transmission resonances, and the tunneling process is
called Klein’s one (see also [12] and references therein).
The fermions pass freely through the potential barrier at
normal incidence on the boundary of the barrier V' or
phases that are multiples of m + 2wn;n = 0,1,... [13].
For the massless graphene fermions, the transmission
resonances will always be present among the scattered
modes. Assuming that the effects of Klein tunneling
will always distort the electrostatic confinement of
massless charge carriers, the variety of solutions to the
problem of pseudo-Dirac fermions in electrostatically
confined graphene p-n(n-p) junctions can be narrowed
down to the subvariety of levels localized near the
Fermi level (quasi-zero-energy levels or whispering gallery
modes). Due to the orbital motion of charge carriers
a production of electron—hole pairs does not happen.
Unfortunately, for the massless fermions a condition
selecting eigenstates which are localized at the edge
of the radial step barrier and behave like to Dirac 0-
function, gives a single level or has unphysical solutions
at all, depending on the GQD parameters [14, 15].
In [7], the set of states with one real eigenvalue
is speculatively expanded by adding solutions with
complex eigenvalues, manipulating (juggling) with them
to achieve an apparent similarity between calculated
LDOS and dI/dV. The nonrelativistic tight-binding
Hamiltonians, which fundamentally do not possess Klein
scattered modes, narrow the possible types of edge spatial
configurations at which there is a zero-energy level in the
quasi-circular GQD [16]. It turns out that the spectra
of zigrag-edged quasi-circular GQDs (zigzag edges at the
boundary prevail) and zigzag-edged hexagonal graphene
quantum dots host only one zero-energy level, and the
tight-binding graphene quantum dot model of arbitrary
shape does not predict the modes localized at the
boundary of the cavity [17-20]. A simplified continuous
pseudo-Dirac Hamiltonian with a radial step potential
hosts a zero eigenvalue at the zigzag-boundary condition.
But among eigenvalues of the Hamiltonian there are no
zero- or quasizero-energies at the so-called infinite-mass
boundary condition meaning that the region outside the
dot is forbidden or the type of all edges is an armchair
one and, correspondingly, the boundary is non-metallic
[18, 21, 22]. Another mechanism for the emergence
of the zero-energy level is associated with exciton
instability in graphene [23|. It can be assumed that
electron—hole pairs become Keldysh-type exciton states,
energetically favorable in a low-dimensional system with
the dielectric constant e (in the case, one dimension).
The screened electron—hole interactions added to the
continuous pseudo-Dirac fermion model with a radial
step potential at the infinite-mass boundary condition
result in a zero energy level [24]. Unfortunately, even
when using the low dielectric constant e = 2.5 (while
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FIG. 1: A sketch of electrical fields creating circular graphene n-p and p-n junctions and the model potentials confining charge
carriers in the junctions. (a) The n-p junction is induced by a STM double tip, which consists of a large-radius tip and a
small-radius tip attached to the latter at the lowest point. Emerging at application of voltages Vra and Vpg to the STM
tip (top gate) and support (back gate) an electric field Edop dopes the bulk graphene with a positive charge. By polarizing
the metallic thin tip one creates an electric field E_”SC, which screens the graphene region located under the tip from the
action of Egqop, that locally results in changing p-doping to n-doping. The level of n- doping also depends on the electric
field Ew = AW/e produced by the difference between work functions W, and W of graphene and metal probe tip; (b)
Cos-shape potential reconstructed on experimental data [4]; (¢) The p-n junction is induced by a pulse of STM-tip voltage.
The electromagnetic quanta - polarize the h-BN region directly underneath the tip. The electric field E.. in this h-BN region
functioning as a negatively charged local embedded gate positively dopes the graphene region underneath the tip. E. screens
the p-doped graphene region from an action of the electric field Eq40p, which dopes bulk graphene with a negative charge; (d)
Schematic of confining-potential measurements over two Dirac band touchings E%' and E%** inside and outside electrostatically
confined graphene p-n junction respectively. The Dirac-touching offset produces a radial step potential V(r). The chemical
potential p is marked by a dashed line; (e¢) Model scattering potentials for the graphene quantum dot of radius Tdot: @ long-
wave approximation Vi g, o —er, (¢:)© (Ai — R) ©(a — r) of pseudopotential (I1.20) (red curves), Ry = |R — ]; a parabolic
potential (—kr?) with a large repulsive potential outside the graphene quantum dot (black curves); a cylindrical barrier potential
V = +VoO(rgot — R) >0, Vo > 0 (blue curves). The +, — signs indicate the charge polarities in the tip and in graphene with
support.

experiments give e¢ = 5), the exciton binding energy
is very small at least 2 times less (about 50 meV),
than the probing voltage (electrostatic potential) 0.1-
1 eV. Therefore, the exciton polarization cannot be the
mechanism responsible for the existence of zero-energy
states.

Thus, the problem of existing zero-energy level for a
graphene junctions with arbitrary edged configurations
is still unsolved. Moreover, the stability of the
experimentally observed quasi-zero-energy levels can be
not only and not that much related to the peculiarities
of the Klein tunneling process. There are experimental
indications that long-lived scattered resonances can be
at deep enough levels of confining stair-case potentials

[5]. Also large p-n (n-p) junctions fabricated by the
2nd technique are characterized by a huge number of
quasi-stationary levels far from the GQD edge. This
could be an indication that the GQD can exist for
quite a long time in states other than quasi-zero-energy
modes. The confinement of massless fermions in the
multi-step potential can be considered simplistically as
a confinement of pseudoDirac fermion in a parabolic
potential. Unfortunately, since the quasi-zero-energy
levels at the edge of such a GQD are spurious ones,
the assignment of the levels in the parabolic confining
potential to the long-lived Klein resonances cannot be
considered as correctly justified [8].

Generally speaking, since GQDs are many-body



artificial atoms, their models must have a lot of quasi-
zero energy modes. The phase condition for the existence
of transmission resonances has nothing common with
their spatial configuration and can expand the search
for the solutions to the region of Klein transmission
modes delocalized in a limited GQD region. In addition,
the experimental LDOS of electrostatically confined
junctions is polarized [6]. Until now, no models of such
exotic states have been proposed. The amazing fact that
the modern GQD models cannot have quasi-zero-energy
levels, except for the actual zero-energy level, should
be interpreted as a huge problem, without a solution
to which there can be no talk of physics of graphene
quantum dots.

So, the search for selection criteria of GQD with
quasi-zero-energy levels and transmission resonances,
delocalized in a limited spatial area, is a difficult
and unsolved problem. The lack of models, in
which a quasizero-energy band emerges, prevents the
development of methods to tune up the graphene
junction in a way that its modes do not turn out
to be short-living resonances, and Klein transmission
resonances are delocalized in a limited area of space.
Therefore, a realization of devices based on the tailored
charge confinement in a graphene monolayer is still
challenging.

In this paper we simulate electrostatically confined
graphene quantum dots, using a quasirelativistic tight-
binding Hamiltonian of massless fermions in monolayer
graphene. We present a discrete model of graphene
quantum dot and its continuous limit to describe
realistic electrostatically confined graphene quantum
dots. To do this, we use a high-energy k- P massless-
fermions Hamiltonian. A band structure obtained from
the Hamiltonian holds the Dirac touching and six
Weyl nodes—antinodes pairs as minibands near valley
K(K') of graphene Brillouin zone. Then we look for a
pseudopotential barrier given by a set of well potentials
for distinct carbon atoms of the graphene quantum dot.
We discover two topologically different scenarios of the
confinement in a quantum dot.

II. MODEL OF ELECTRICALLY-CONFINED
GRAPHENE QUANTUM DOT AND THEORY

A graphene monolayer quantum dot consisting of
carbon atoms is shown schematically in fig. 2a. Let a
model quantum dot be considered as a “large atom”. Its
core i-th electrons, by definition, are p.-electrons of j-th
C atoms, j # i. The k-th p,-electron of k-th C atom plays
the role of an external valence electron. Let the k-th C
atom be placed at the lattice site with a radius-vector Ry.
The radius vector 7 will be calculated on respect to the
nearest lattice site and is a radius vector of the electron
in the atom. The radius vector X}, of the valence electron

of k-th atom is given by the expression

X, = Ry + 7. (IL1)

A model graphene quantum dot has been constructed
in the following way. The graphene primitive cell has
basic vectors b1 = a(3/2,v3/2), by = a(3/2,—v/3/2)
and two atoms (A and B) in the cell. Here a is the length
of sp?-hybridized C-C bond. We construct a rhombic
region consisting of (2n1 + 1) (2ng + 1) primitive cells of
graphene for n; = 25, n, = 25, that is shown in fig. 2b.

A. “Folding zone” approximation

The energy levels of a graphene quantum dot can be
approximately found by the “folding-zone” method in the
same way as for single walled carbon nanotubes (CNTs).
Electronic states of CNTs are restricted to wave vectors
that fulfill the quantization condition [25]:

— —

ki -C=2mm, m=-N/2+1,...,N/2 (11.2)
where k| is a wavevector in the direction perpendicular
to the CNT axis; C is a chiral vector of CNT, N is the
number of graphene hexagonal unit cells within a CNT
unit cell, m is an index of one-dimensional (1D) band.
The condition (I1.2) is the so called “Born—von-Karman”
condition. .

Contrary to the CNT case, the wavevector k =
(kg,ky) of a charge carrier in the dot is quantized
in two directions. Moreover, the quantum dots can be
constructed with topologies: sphere S? and torus S* x S!
in the following way. The dot topologically equivalent to
sphere is formed by rhombuses inscribed into rectangular
supercells. Such a geometrical structure can be obtained
by a shift on half-period of rectangular lattice. The sphere
topology is obtained by identifying all vertices of the
rhombus and gluing adjusting its sides. In the case of
rectangular unit cell a quantum dot can be produced, for
example, by 4 or 8 supercells. The quantum dots of this
type are presented in figs. 2f,g. All edges of 8-supercell dot
are in armchair configurations. The edges of 4-supercell
dot are both in armchair and zigzag configurations. Since
the symmetry group for the superlattice with rectangular
unit cell is non-symmorphic one, there are no punctured
points.

Since t}_{e basis vectors of the rectangular un_i't are Cy =
(2n1 + 1)b1 + (2712 + 1)b2 and 62 = (277,1 + 1)b1 - (277/2 +
1)52, quantization conditions for the S? type graphene
quantum dot read

((2n1 + 1)by + (2ng + 1)bo) - k = 2rmy,
m1 = —Naot/2+1,..., Naot/2;

((2n1 + 1)by — (2ng + 1)bo) - k = 27ma,
mo = *Ndot/Q —+ 1, P ;Ndot/Q-

(I1.3)



Supercell

(b)

FIG. 2: Scheme of a graphene quantum dot: the i-th atom C is located at the i-th site with radius vector R'i, and 7 is a
radius vector of the p.-electron relative to the i-th lattice site, O is a reference point (a). The graphene quantum-dot supercell
used to calculate a quantum dot with torus topology includes 51 x 51 primitive cells (100 Ax150 A) (b). Splitting of Dirac
cone into replicas for graphene in the Dirac-Hartree-Fock quasirelativistic approximation, ¢* approximation for the exchange
interactions. Two W1, Wz of the six pairs of Weyl nodes—antinodes: two sources and two sinks and the Dirac valley K (K') are
indicated (c). In (d) and (e) we describe model quantum dots produced by 3 and 6 rhombic unit supercells, respectively. Edges
of these quantum dots are zigzag ones. In (f) and (g) we depict model quantum dots produced by 4 and 8 rectangular unit
supercells, respectively. The quantum dot in figure (f) holds zigzag- as well as armchair edges. Edges of quantum dot in figure
(g) are in armchair configuration. Radius of the yellow color circumference in figures (d—g) can be interpreted as a radius of
quasi-circular quantum dot. Rectangular unit cells are labeled through dotted lines.

Here Nyot = (2n1 + 1)(2n2 + 1) is the total number of
graphene hexagonal unit cells within the supercell. For
the model quantum dot shown in fig. 2b the number of
levels (Ngo¢ + 1)? is approximately equal to 6.7 x 10°.

In the case of the rhombic unit cell a quantum dot can
be generated by, for example, 3 or 6 supercells with one
common vertex. Since the vertex is the punctured point
of the circle, the topology of these dots is a toroidal one.
The quantum dots of this type have zigzag edges only
and are presented in figs. 2d,e. The torus is obtained by
identifying of the opposite sides of the rhombic supercell
(at first by gluing with twisting into a cylinder, then by
gluing the latter into torus).

The basis vectors of the rhombic supercell are C_"l =
(2n; + 1)51, 52 = (2ne + 1)52. Therefore quantized
wavevectors for the toroidal-type dot are determined as

*Ndot/2 + 17 .. '7Ndot/2;

_Ndot/2+ 17~--7Ndot/2-
(IL.4)

(2711 + 1)51 . E = 27rm1, mi

(2n2 + 1)b2 . E = 2Tmeo, My

The pair of numbers (mj,ms) entering the formulae
(I1.3,I1.4) is a multi-index of superlattice band. Inverse-

superlattice wavevectors G n1G1 + noGo lie inside

the single-layer graphene Brillouin zone. Here él,ég
are basic vectors of the inverse-superlattice; ni,no are
integers. The superlattice Brillouin zone is very small,
and, accordingly, quasiparticle momenta py, (nlél +
7’7/262) - ps = 2nL, which are due to translational
symmetry of the problem, are small also. Here L is
integer. Therefore, we can neglect ps assuming that the
bands are degenerated over ps (a dependence on wave
number p; is absent). These zero-dimensional (0D) bands
is what we name energy levels of our quantum dot
model. The first advantage of the proposed “momentum”
boundary conditions (I1.3, 11.4) is in a small number
of variants (only two). The nodes of the wave function
on the boundary signify that the source of the wave
and, correspondingly, an outward current, are absent.
The second advantage is that the radius of quantum dot
with a given topology determines uniquely a supercell
combination forming the dot, and, accordingly, the zigzag
and armchair edge configuration of its boundary.

So, we assume that the STM experiment probes the
many-electron structure formed under the action of
electric field in a region consisting of several supercells.
Valence electrons of the structure move in an electric
field of core electrons. The latter will be described



within a pseudopotential method. The pseudopotential
corrections are considerably larger than contribution of
momenta pl.

Further, using a folding-zone approach we will
calculate pseudopotential-bending 0D-bands of single-
layer graphene in a superlattice potential. In addition,
the topology of toroidal or spherical types is a sign of the
charge density distribution on circular orbits. The above
makes it possible to assign simulated quantum dots to a
quasi-circular type. The latter will also be confirmed by
the simulation results. .

~ We use a monolayer graphene model k - p~Hamiltonian
Hp, in order to determine the energy levels €(¢m, m.,)
of the graphene quantum dot in the folding-zone
approximation. Meanwhile, one has to work with the
whole Brillouin zone rather than the first one. Let a
wavevector K., m,, satisfying either the quantization
conditions (IL.3) or (IL.4), be associated with the
reduced wavevector Gpm, m, as the difference between

—

Em, m, and the nearest Dirac point (valley) K(K')

of Brillouin zone. The Hamiltonian H p is obtained
within the quasirelativistic Dirac-Hartree—Fock self-
consistent field approach (see [26, 27]). It is a high-
energy k - p-Hamiltonian in a ¢* approximation for
the quasirelativistic quantum exchange that the latter
is series expanded in the vicinity of the Dirac point
K(K') on the absolute value of the difference ¢ =

‘ﬁ - K ’ of the quasiparticle momentum 7 and K (I? o)

up to the terms of O(g*) inclusively. The deviations of
eigenvalues of Hp from the low-energy massless pseudo-
Dirac fermion model are of the order of |¢|*. Contrary
to non-relativistic graphene model energy levels of the
quasirelativistic graphene model are Kramer’s doublets.
The Kramer’s doublet represents itself two levels on
which electrons are placed with the opposite signs of spin
and in the absence of quantum exchange the levels are
degenerated. The relativistic quantum exchange removes
degeneration on spin outside the Dirac valley, violating
the particle-hole symmetry so that the degeneration of
Dirac point is removed outside Dirac valley and six
minibands emerge near the Dirac point. Due to the
removal of the degeneracy of the Kramer’s doublets,
each miniband represents a Weyl node-antinode pair.
Fig. 2c demonstrates the band structure of the graphene
model characterized by the Dirac touching in the point
K(K') and six Weyl node-antinode pairs. Let us note
that, as opposed to our quasirelativistic high-energy
graphene model, for the low-energy k- p-Hamiltonian
of massless pseudo-Dirac fermion a pair of Weyl node
and antinode appears after removing of Dirac point
degeneration over the pseudospin in three-dimensional
topological insulator, so that a Fermi arc along axis Z is
observed (see, for example, [28]).

The “folding zone” approximations of quantum-dot
wave functions resemble (look similar) to harmonic
(sinusoidal) discrete solutions (standing waves) of a
quantum mechanical problem on a particle in one-

dimensional rectangular well with an infinitely high walls.
The wave functions are the bispinors ¢¥7 = (¢4,1h)) =
exXp{—iGm, my - (F+ R)} (ug,uy) of charge carriers with
the energies €(¢pm, m, ). Here “1” and “|” designate spinor
components with spin “up” and “down” respectively.
“T” is the transposition, uq) are periodic functions:
Up(y) (F—i— §k> = Uy (F—i— ék + 65), as is a supercell
vector.

We sort the energy levels €(g¢m,,m,), in the energy
increase order, by introducing an index ¢ for the energies
and wavevectors and introduce a formal index Ry
according to the above presented wave function form.
Therefore in what follows, we will denote the energies by
€r, (¢;). We emphasize that the energy does not depend
upon Ry.

Thus, the following set of eigenenergies +eg, (¢;) and

eigenstates 1/)50) ($qi,f"+ ﬁk) = e:FZ‘ii'(FJFE’C)u(F—i- ﬁk),

u = (uT,ui)T for the graphene quantum dot in the
folding-zone approximation is

{zem (@), vl (73, 7+ F) | U

1,k=1,...,Naot

9

where upper sign “+” is related to electrons and lower
sign to “—” corresponds to holes.

In the following section we construct a pseudopotential
in which charge carriers of graphene quantum dot move.

B. Continuous graphene quantum dot model with
pseudo-potential

In a graphene monolayer all p.-electrons form pairwise
molecular m-orbitals. m-electrons located at inside and
outside of edges of monolayer patch turn out to be
unpaired among 7-electrons, composing an artificial atom
of the type of graphene quantum dot. These electrons
occupy orbitals of the graphene quantum dot singly and
are valence electrons of the artificial atom.

If not all electrons of many-electron system (in our case
this is the artificial atom) are coupled, a Hamiltonian of
the system includes non-paired-electron potentials that
polarize an atomic core (an exchange hole exists). The
simplest one-body method of approximate account of
the atom polarization in the electric field of the valence
electron is based on the Phillips-Kleinman cancellation
theorem which states that all electrons, besides on an
external orbital, are coupled and the valence electron
moves in a pseudo-potential which is added to the atomic
core potential [29].

Therefore, one has to add a pseudopotential operator
to the high-energy k - p-Hamiltonian Hp [30, 31]. Let
|¥) be a vector of bispinor state in a Hilbert space H

with co-ordinates <X1, 153 XNyoss ONyor |\IJ>, written

in ordinary space representation through the radius-
vectors of charge carriers in the monolayer:



Naot

N1y =1 Ongs0ngy

Here o; is a spin of i-th electron. In this Dirac bracket
representation of wave functions for the Fock space

[32] the coordinates (wave functions) <Xim70im Uy =

(1 (K)o 1 (5 = vin(X

[thm) in (I1.6) are obtained by an action of projectors

X,) of m-th particle states

i X'i, O'i‘, satisfying to the resolution of identity:

= Zaifd)zi > <Xi,ai )

)?i, oi| are a vector of the Hilbert space H and a vector

o
2]

Here ‘Xi,ai> and

T~ M~

Q

onjugated to it.
The one-body Hamiltonian operator for an electron
moving in the quantum dot pseudopotential reads

Naot

Hp |¢m) = ngp [¢m) (IL7)

where the second term in the right hand side of eq. (IL.7)
Mot & P determined
through a hole energy operator é and a projection
operator

is the pseudopotential operator

Py = [ dRed%i o) (onl ) (0 Joo) il (L)
coefficient matrixes (@} Py lz5) of which
have  the  following form  (x}| P;|z}) =

_'/ ad !
%T(Xl/c) (_'z/) %i()glf)z/} (X/) C en IS a m-
it (Xp) 5 (X7) 50 (X)), (X5)

th elgenvalue of Hp.

We use a representation where the operator é' is a
matrix, which elements {ex., } = {€r,—r,(¢c;)} belong to
the set (I1.5). Here, on the definition of valence electron,
€ke; = 0 at k = ¢;. In this representation the equation
(IL.7) is an equation of motion for the valence k-th
electron with a radius-vector X, =T+ ﬁk:

]Vdotf1
HD¢k(F+Rk)+ Z ekCiPCiwCi(F—’_Rk)
it (11.9)
= Enu(F+ Ry), k=1,...,Nyo.
Here P, = fd)?nwk Xo)i(Xn), enetbe, (Xi) =

gTwCi (Xk): €re e ( Xk dem (2| ef |Te:) (T, | Ve,)-
Since a quantum dot consists of sufficiently many
atoms, one can construct its continuous model in a

hydrodynamic limit ‘Rk+1 —ﬁk‘ =a—=0,r—0 A

Z /anl. dX, Xn17onl,...;)znm,anm><Xn17on1;...;Xnm,anm U).

(1L.6)

radius-vector B of a point in the continuous graphene
quantum dot model takes the values of radius-vectors of
lattice sites

R=Ry,R,,...,Ry,,. (I1.10)

A derivative -2 for the continuous graphene quantum
dot model is determined in the following way:

W) {w(ﬁkm - wﬁk)}
ﬁk+1 - ﬁék

_ {m(fz‘wa) —m(R‘k)}

where \Il(ﬁ) is a graphene-quantum-dot wave function
defined by the following expression:

LG (ﬁ) € {wk(f'—i- Ek)}

Using the definition (II.11) one can determine a
convolution & - %‘I’m( 1) between the derivative of “up

Naot

OR _
N, (L1

b
k=1, a—0

Naot
(IL.12)

k=1,r=a

(“down”)-spinor component W4,y and 2D-vector of Pauli
matrixes & = (04, 0,) for a v-th electron as

L, 0 - 0
: ?‘I’mu)(R) => ig —Yur()
i=1
2 — Ndot
~Y {%m)(Rk + (i, @)€;) — Yur(y) (Ri) }
i=1 . (€i,a) k=1, a—0
(IL.13)

where €;, ¢ = 1, 2 are orthonormal vectors along the
coordinate axes X, Y (-, ) is a scalar product, R; = 2;€,.
Then, taking into account that Fj is obtained by the
action of the operator ih% on Yy (7 + Rk) Erp (7 +
Ry) = ih 2y (F + Ry) the system of equations (I1.9) in
the hydrodynamic limit can be rewritten as

{ﬁDwk(F-F Ri)+ Y exePetpe(7+ Fy)
c#k

N (I1.14)

= By (7 + ék)}

k=1,r—a

Using the definitions (II.10 — I1.12) and the definition of
the projection operator one gets an equation of motion



for the valence v-th electron in a pseudopotential Vggp:

Naot—1

>

i=1,c;#v

Hp |¥,) + o) e (R) (L

0 = E|W,).
(I1.15)

VGQD = Zjvzdf:c_ﬁlév |\Il('7> 6(11: (R) <\I/CL' ‘7 a
matrix €, (R) is determined by the
€;(R) € {xer,—r, (‘101:)}1@:1,...,1\1,,0,, entering the
expression (IL.5). A scalar product (¥.|¥,) =
S [ (U, | R o <R”,a’ W,) dR’ of the wave-functions
|¥.,) and |¥,) of core and valence electrons of graphene
quantum dot and, consequently the operator Vggop are

constructed on a basic set of functions entering the
expression (IL.5):

Here

expression

Naot
T 0 . B
<\IJCL| \Ilv> = Z w(O) (:FQCU Rk) wgzk) (:qu7 Rk)
k=1
(I1.16)
and
<‘Ilcn VGQD(E) |‘Ilcm>
Naot—1
= Z (We, [Pe,) €c, (R) (Yo, | Pe,,)
i=1,c;#v

Naot—1 Ngot

= > Y v, (3. ) ol (F4.. )

i=1,c;#v k,l=1
+ L =
X €ry—r, (qe; )V VR, (?chRz)
0 . =
xwg%l) (ZFqua Rl) .
(I1.17)
To reveal distinctive features from known potentials, let
us find an approximation of the pseudo-potential (I1.17)
schematically in d-vicinity of the Dirac point, § < 1:

de,s e, qe; — 0. To do it, we substitute (II.5) into
(I1.17), assuming ¢, — ¢c,, at r = a:

Naot—1 Naot

lgr;L :N:Z Z Z|u| (7 + Ry)

o,0’ i=1,¢c;#v k,l=1

R, (¢)O(r —a), i # k.
(IL.18)

V., 5.(7) =

|2, (7 + By)eEi(@en—ae)-(Rr—Fo) ¢

Here R, = Ry, — ﬁl, O(r — a) is a Heaviside ©-function.
Changing summation on 4, k, [, by integration in the
expression (II1.18) and using the periodicity property of
states uq(y) we find the pseudopotential in a long-wave
approximation:

Vo () = £ Dl )l (e, ) [ i T
xO(r — a)dedqc = +(2m) Z [u) (7)|u|? (F)er, (¢:)

x@(r - a)@(qcn - in)? i 7é k.
(11.19)

The expression (IL19) at ¢., = 2r/R — 0, B = Ry + 7
trends to a pseudopotential in the Dirac point:

Vi g, (7) = £(27)%€R, (¢:)© (\i — R) O(a — 1)

x Z Jul 3 ()]ulZ (1),

(I1.20)

where \; = Qq—’: This stair-case-like (cos-shape) potential
(I1.20) resembles the experimental one shown in fig. 1b.
The Hamiltonian with the approximate pseudopotential
of stair-case type (I1.20) has a set of quasi-zero energy
levels. This feature of the artificial atom is similar
to a very high principal quantum number for ultra-
heavy atoms. The values of radial step V| for all these
resonances are close, that explains the experimental
data in [7] without invoking speculative assumptions, for
example, about the shift of Dirac touchings in the process
of STM probing.

Now we solve the following eigenproblem
X (Wl Ao |2, (Ve | o)

+§j (e, | Vaon(B) |¥e,) (V| o) =

| Hp(R
E(V,, | R, a> .
(IL.21)

III. RESULTS AND DISCUSSION
A. Emergence of quasi zero-energy band

To fit a derivative dI/dV of STM-current I with
respect to bias V it is necessary to calculate LDOS.
LDOS reads

o(FB) = Y [wi(B)|

where the summation is performed over all eigenstates of
the system. The presence of d-functions reflects the fact
of infinitely small spectral line width of an eigenstate.
For a finite spectral line width, we have to assign some
decay rate 7; to a given eigenstate and use J-function
approximation resulting in Lorentzian spectral line form

E —¢), (II1.1)

412

U, ‘%(R)

Z|E_Ez Z%‘z_Zi:(E_ei)z"'%‘Q.
(111.2)

In practice, 7; are considered as given parameters in a
way not to overlap spectrum lines of interest. In our
numeric simulation we have chosen v = 10~3 for upper
eigenstates and v = 1075 for lower part of eigenstates.
The simulation is time consuming for LDOS. It has been
performed at a 32 core cluster with MPI parallelization,
the simulation time for a single LDOS point is about
10 min.
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FIG. 3: Energy spectra for graphene quantum dots with topology S' x S* (a, b) and 52 (c, d) on low- (a, ¢) and high-energy
scales (b, d). In each figure the left and right spectra correspond to the calculations in the folding-zone and pseudopotential-
approximation approximations respectively. All spectra are normalized to the largest value of the right spectrum.
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FIG. 4: The pseudopotential confinement of S' x S*-dot states. Squares |\Il\2 of the absolute values of wave functions are
presented. The states are localized on resonant (upper row) and non-resonant (middle row) trajectories of torus or are delocalized
due to Klein transitions (bottom row) for different energies E. For the levels E = 0.0014769, 0.00102502 eV we represent both
sightseeing “from up” and “from down”.



LDOS determined by the formula (III.2) depends on
three variables: two space variables and the energy.
At least, in modern STM experiments all directions of
charge-current vector for the dot contribute into the
tunnel current. Therefore, it is necessary to perform
contour-averaging procedure. We perform averaging over
some contour in 7-space accounting of points equivalent
from the viewpoint of lattice symmetry. For the toroidal
graphene quantum dot we choose for averaging contours
Cr around a center of 2D-toric-like region from three
rhombuses closed sequentially on each other accounting
of graphene lattice symmetry. For the spherical graphene
quantum dot, we choose for averaging circles C's with
increasing radii around a point in the center of rhombus
side accounting of graphene lattice symmetry. The
contours C and Cg are topologically equivalent to closed
contours on torus and sphere.

We study LDOS on two energy scales. For the torus
and sphere topologies, we choose the low- and high-
energy ranges 0.24 + 0.92 eV and 0.68 + 2.94 eV and,
respectively, 0.24 =+ 1.22 eV and 2.98 + 3.26 eV. The
scales were obtained in the following way. For the low-
energy range, we get the solutions of the conditions
of quantization (IL.3), (IL.4) for my, mo € [—25,25],
which corresponds to the choice of 40 lowest energy levels
from 2601. For the high-energy interval, we determine
the solutions of the conditions of quantization (II.3),
(I1.4) for my, me € [—12,12], which corresponds
to the choice of 40 lowest energy levels from 625.

—

Comparing the structures of the levels Ep(k;) and
E(O)(Ei), i = 1,...,40 for the pseudo-Dirac graphene
quantum dot model and our graphene quantum dot
model with Weyl nodes—antinodes, respectively, in
the folding-zone approximation we conclude that the
Weyl nodes—antinodes decrease the degree pg of level
degeneration. The effects of topology and symmetry
manifest themselves in different maximum values of py
for the sphere and torus topologies in the folding-zone
approximation. The maximum values max(p,) are equal
to 4 and 12 for the pseudo-Dirac spherical and toroidal
quantum dot models, respectively. In the case of Weyl
nodes—antinode pairs max(py) takes values of 4 and
6 for the spherical and toroidal quantum dot models,
respectively. The pseudopotential completely removes
the degeneration of levels E(O)(Ei), i = 1,...,40 and

the resulting spectrum EZ.(l), i = 1,...,40 consists of
two bands. The lower energy band formed by levels
located near the zero energy E = 0 is a quasi-zero-

energy band, as one can see in fig. 3. The spectra
for both toroidal and spherical quantum dots in the
pseudopotential approximation possess a very narrow
quasi-zero-energy band.

B. Toroidal quantum dot

Fig. 4 demonstrates squares |¥;]> = 23:1 R\

of the absolute values of i-th spinor wave functions.
“Hills” in fig. 4 represent electron states. A bottom
view of 3D plot is shown in inset, upper row, fig. 4.
“Wells” in the inset represent hole states. At definite
energies corresponding to resonant trajectories on torus,
the orbitals are similar to those for Bohr atoms when
the length of the closed orbit is an integer number
of wavelengths. Due to the zero-curvature of torus the
motion of charge carrier on such orbits is stable. There
also exist other energy levels (fig. 4, bottom row). On
them the phases of wave functions are multiples of
m £ 2mn, n = 0,1,.... The latter feature makes their
similar to transmission resonances of the Klein tunneling
process. Charge carriers delocalized due to the Klein
tunneling can be considered in analogy with atomic states
as valence ones. The localized states are similar to the
core electrons of atom.

According to fig. 5, the main feature of the structure of
energy levels for the toroidal quantum dot is the presence
of self-similar energy bands located subsequently one
after another on the energy scale. The atom-like structure
(LDOS) for some bands marked by dashed lines in fig. 5
is realized only for toroidal graphene quantum dots,
from the geometric viewpoint, due to the absence of
the curvature of a torus. These levels are occupied by
electrons (holes) with wave functions of the type of Bohr
atom orbital (fig. 4 (upper row)). The electron (hole)
density can be localized also in the case of non-resonant
torus trajectories due to a constructive interference (see
fig. 4(middle row)).

For the toroidal graphene quantum dot, the charge-
carrier density is absent on the quasi-zero-energy band
due to a destructive interference of the states. The latter
fact leads to the formation of a pseudogap between the
hole and electron bands, providing the absence of the
electron density at the center of the quantum dot, like in
the case of an ordinary atom.

C. Spherical-type quantum dot

The probability density of states for the quantum
dot with sphere topology is shown in fig. 6. According
to a form of the wave functions, the charge carriers
are localized due to a constructive interference in the
case of non-resonant sphere configurations (fig. 6a) or
are the transmission resonances delocalized in a limited
region at the state phases multiple to 7 (fig. 6b—e).
The resonances of the S2-dot reside in the quasi-circle
like region located either inside one rhombic cell, or
in two conjugate rhombuses. Therefore, the spherical-
type dot can be classified as a quasi-circular quantum
dot, electrostatically confined in one or two supercells
bordering on each other. The action of centrifugal forces
stipulated by the sphere curvature destroys Bohr atom
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FIG. 5: LDOS of a toroidal quantum dot in bending bands. (to the left) LDOS for the states possessing high energies in the
folding-zone approximation, (to the right) LDOS for the states possessing low energies in the folding-zone approximation. The

self-similar bands are marked by dashed lines.

orbitals, formed on resonant trajectories (with an integer
number of wave periods on the trajectory). However,
such features of atomic structure as localized “core”
charge carriers and delocalized valence states remain.
The “transmission resonances” play a role of the valence
states.

Fig. 7 demonstrates that the structure of energy
levels for the spherical-type graphene quantum dot hosts
self-similar energy bands placed subsequently one after
another on the energy scale and the levels can hold a
multi-resonance structure. This feature resembles that of
the toroidal quantum dot. The electron (hole) density
with such a structure is confined by staircase-like (cos-
shape) potential as one can see in figs. 7b,c. Opposite
to the case of toroidal quantum dot, the charge-carrier
density in spherical quantum dot resides also on the quasi
zero-energy band (see fig. 7a). The localized non-resonant
electron (hole) configurations shown in middle row, fig. 4
and fig. 6a are observed for both spherical and toroidal
graphene quantum dots.

D. Comparison with experimental data

We now compare the measured experimentally and
theoretically predicted distributions of the charge density
in electrically confined graphene quantum dots.

In [7], graphene p-n junctions with an atom-like
structure have been epitaxially grown up to a size of
8 nm along radius R on a copper support. Figs. 8a, ¢
demonstrate different theoretical predictions for LDOS
of the small-radius p-n junction whose spectroscopic map
of the radially averaged derivative dI/dV of a STM-
current I with respect to the bias V' is shown in fig. 8b.
Their features are brought together in Table 1. The
value of the first level has been chosen as an origin for
the energy. We take the graphene dielectric constant

e = 2.0. Our estimation of the graphene dielectric
constant is consistent with the experimental one equal
to 2.2 for graphene carrier concentration n ~ 10° cm=2
[33]. We observe the following differences between the
spectroscopic map, LDOS for our toroidal graphene
junction model, and LDOS estimated on the assumption
that the confining p-n-junction potential is a radial step
one. Our levels prediction is extremely precise. Their
structure and arrangement are also in perfect agreement
with the experimental ones. The second level of our
model is unscreened. Higher laying states are screened.
The fitting based on the low-energy pseudoDirac model
Hamiltonian with a radial step potential gives not only
values which are very different from the experimental
ones, but also an incorrect resonance structure because
the 3rd level of the junction is doubled. As one can
see, a serious drawback of the theoretical approach [7]
is also the absolute inability to describe correctly the
form of resonances: the theoretically predicted resonances
are localized in energy (very narrow) and are spread in
space. But the energy levels of experimental quantum
dot are strongly widened in energy and localized in space.
The states of toroidal graphene junction under the action
of the pseudopotential are strongly spatially localized
similarly to atomic electron shells and are broadened in
energy E (see fig. 8) as in the experiment. It is easy to see
that the experimental confining potential is a parabolic
type only. Our numerical results indicate also that a
parabolic potential approximates the confining potential.

We conclude that the strength of the electric field
created by electrons of the lowest 1st level is not
sufficient for the production of electron-hole pairs. But,
the electrical field strength of the electrons of the
lowest two 1st and 2nd levels is strong enough to
produce the electron-hole pairs. Therefore, a screened
confining pseudopotential acts on electrons of the 3rd and
subsequent levels.



(a) (b)
E=2.95946 eV
E=0.0010124 eV /,f‘x\
VAN
/ /\\\
S )

-V
/0
N/ X, A

YA 50 |/100

(d)

E=18.0848 eV

E=0.141999 eV

FIG. 6: The pseudopotential confinement of S%-dot states with different energies E. Squares |\I/|2 of the absolute values of
wave functions are presented. The states are localized on non-resonant trajectories of sphere (a) or are delocalized due to Klein

transitions (b—e).

(a) (b) 7 (c)
0.001109 A, MING_: [ow (oS
0.001127 & 7 4% - 0.15L B
0.00114 7 0.507 S
1.5:10° , W 0.005 7 & 5251 —-— 1.65] W
0.000021% :— 0.012] * 6.24] - 220! R
0.000093 0.099 % & S T —
< 00001633 ¢ 07107 M g 741] S S Joo]
3 0.000203] T o116 ™ 1 0.19] M 5 L - ‘
3 0.000285 1 # 031 L™ 11.817 = € 6.35] IENE— 0.150{ M
2 0.000312] 0,841... ~ W ee¥ — s .
S5 0.000504T 1257 W 12_731‘ - o7 S o 03091 M
0.000635 ] 4 - 5 3 0.500] B!
0.000741 T, e— 2-15I — 120 5w o
00010127 w— 51T . - T SRS
\ 0.836- p
0.001021 3-54T- 1 13.01 N :
0 10 20 30 0 10 20 30 0 1020 30 0 10 20 30 0 10 20 30

Radial distance (A)

Radial distance (A) Radial distance (A)

FIG. 7: LDOS of a spherical quantum dot in bending bands. (a) LDOS for the states possessing low energies in the folding-
zone approximation; (b) LDOS for the states possessing high energies in the folding-zone approximation; (c) a band in the
overlapping energy range. Self-similar bands are marked by dashed lines and bold angles.

In [6], large graphene quantum dot with a radius
150 nm were fabricated by the local embedding of a
gate in a graphene/h-BN heterostructure on SiOs. Let
us compare a theoretical LDOS for the continuous model
of quantum dot with torus topology (fig. 9a) and a second

derivative fTﬂ of a STM-current I measured as a function
of the bias V' and the radial distance from the center of
the circular graphene p—n junction deposited on BN/SiOq
(fig. 9b). Our numerical calculation of LDOS predicts the
levels with a multiresonance structure. These levels are
completely analogous to multiresonance structures of the
corresponding experimental levels. An attempt has been
made to explain these experimental data using a model
of massless pseudo-Dirac fermions in parabolic potential
in [6]. It turns out that some theoretical levels predicted
by this low-energy pseudo-Dirac theory of large graphene
p-n junction are experimentally unobservable. Besides,
some levels experimentally observable are absent in the
theory. For example, the pseudo-Dirac model of a circular
graphene quantum dot does not predict the highest

experimental energy level of about 80-85 mV (this level
is absent). Moreover, all levels with the same numbers
of resonances predicted by this pseudo-Dirac fermion
model Hamiltonian are arranged in pairs. However, the
doubling is not confirmed experimentally (see figs. 9a,b).
The main drawback of the pseudo-Dirac model is as
follows: at a bias from 0 and lower, the number of levels
in the experimental is twice less than that predicted
theoretically.

Finally, let us consider the low-energy region from
—50 to —100 mV (corresponding theoretically calculated
levels are placed at —50 meV and lower). Contrary
to LDOS in the pseudo-Dirac model, the experimental
LDOS and the theoretical LDOS confined by the
pseudopotential are redistributed to the border of
graphene quantum dot. Respectively, their hole density
is polarized.

Let us compare the experimental data on tip-
induced electrically confined graphene quantum dots in a
graphene monolayer covering a 30-nm-thick BN flake on



Table I: Assignment of theoretically predicted quantum-dot resonances to experimental data. The resonances are arranged in
ascending order of distance from the center of the quantum dot and are measured from the deepest level.

Resonance energies, eV
Level A number of
number  |resonances Experiment Our theory  |Theory in [7, 34]
1st one 0 0 0
2nd one 0.108 0.109* 0.064
3rd two 0.213 0.194 0.13, 0.175
4th one 0.46 0.51 0.29
5th one 0.42 0.48 0.415
* — unscreened level
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FIG. 8: Spectrum of atom-like small graphene quantum dot.
The background correction (chemical potential) p has been
subtracted from the raw data leading to a shift in the energy
so that the energy of lowest resonance in the potential well
is zero one. (a) — calculated results presented in [7] using
the radial step potential. (b) — the dependence of derivative
dI/dV of a STM-current I with respect to the bias V as a
spectroscopic map of graphene quantum dot deposited on
a copper support [7]; (¢) — our results calculated with the
graphene dielectric constant ¢ = 2 except of two lowest
levels with € = 1, the unscreened band of the continuous
toroidal model graphene quantum dot under the action of
a pseudopotential is placed in the range 13.35 = 14.35 €V.

graphite with our numerical calculations of quantum dot
with sphere topology. The sphere has a nonzero curvature
leading to a staircase-like (cos-shape) pseudopotential in
fig. 7c. This result is in complete agreement with the
experimental fitting shown in fig. 1b. The pushing out of
electrons by the “centrifugal force” onto the quasi-zero-
energy band is revealed as the nonzero electron density
on its levels.

By compensating the action of a pseudopotential,
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FIG. 9: Energy levels of spatially distributed states of a large
graphene quantum dot. (a) Theoretically simulated LDOS
in the bands of states confined by a pseudopotential for
the continuous model of quantum dot with torus topology.
(b) Second derivative ;l% of a STM-current I measured
as a function of the bias V and the radial distance from
the center of a circular graphene p—n junction deposited
on BN/SiO2. Lines with arrows indicate the theoretical
bands, coinciding with experimental ones. Some resonances
are encircled by yellow oval to improve perception. A fitting
parabolic potential is indicated by a dashed line.

for example, by the Lorentz force, one can achieve
a weak bending of the bands by a pseudopotential
with the grouping of nondegenerate levels as in the
folding-zone approximation. According to our theory of
graphene p-n (n-p) junctions with sphere topology, the
multiplicity of energy-level degeneration in the folding-
zone approximation is pg = 2,4, like in the experiment
[4]. Moreover, the multiresonance distribution of LDOS
over the energy levels for the graphene quantum dot
with sphere topology in fig. 7 leads to the experimentally
observed independence of charging peak sequence on
the distance between the cantilever STM tip and the



quantum-dot center. The above discussion allows us to
classify this electrostatically confined quantum dot on
the BN /graphite support as a spherical one.

Thus, the theoretical predictions of the continuous
model of quantum dot in monolayer graphene with one
Dirac point and 6 pairs of Weyl nodes—antinodes under
the action of a pseudopotential not only explain, but
show the excellent quantitative agreement with various
experiments.

IV. CONCLUSION

In this work, we have utilized the rhombic and
rectangular graphene supercells to describe the
confinement of electrons/holes. Discrete and continuous
atom-like models of graphene electrically confined
quantum dot with the topology of torus and sphere
have been proposed. The charge carriers are confined
through polarization effects also. The electron/hole
states localized and delocalized in the pseudopotential
are calculated in a continuous approximation. The
polarization of graphene quantum dot due to the
pseudopotential “pushes out” the energy levels, by
removing their degeneration.

The resonances of toroidal graphene quantum dot
are partitioned into three types of resonances: strong
and weak localized “core electrons” and wave packages
for delocalized “valence electrons”. We assume that
the strong localization may be a consequence of

commensurate frequencies of the Hamiltonian system on
the torus. The strong localized states of the toroidal
quantum dot are formed as in a Bohr atom. For
the toroidal quantum dot, the electron (hole) density
is absent on the quasi-zero-energy band due to the
zero curvature of torus. This leads to the formation
of a pseudogap between the hole and electron bands,
which ensures the absence of the charge density at the
center of the quantum dot, like at the center of Bohr
atom. Accordingly, the toroidal-type quantum dot is an
artificial atom with Bohr orbits.

Unlike the toroidal quantum dot, the spherical
graphene quantum dot hosts multiresonances, whose
charge density is present at its quasi-zero-energy band.
Accordingly, three spherical dots of the hexagonal
quantum dot play the role of the nucleus of the artificial
atom.

To summarize, the quasirelativistic model graphene
n-p (p-n) junctions with the supercell pseudopotential
which electrically confines electrons (holes) have been
proposed. This potential can bend energy levels in the
parabolic way. For graphene quantum dots with the
sphere topology, the parabolic potential is additionally
modulated in stair-case (cos-shape) wise. This approach
explains the main features of a local distribution of charge
carrier density for the quantum dots observed in various
STM-experiments. The advantage of the approach we
develop is the ability not only to correctly predict
the arrangement of levels, but also to describe the
phenomenon of polarization in graphene quantum dots.
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