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ABSTRACT

There is a complex inclination structure present in the transneptunian object (TNO) orbital distribu-
tion in the main classical belt region (between orbital semimajor axes of 39 and 48 au). The long-term
gravitational effects of the giant planets make TNO orbits precess, but non-resonant objects maintain
a nearly constant ‘free’ inclination (Ifree) with respect to a local forced precession pole. Because of

the likely cosmogonic importance of the distribution of this quantity, we tabulate free inclinations for
all main-belt TNOs, each individually computed using barycentric orbital elements with respect to
each object’s local forcing pole. We show that the simplest method, based on the Laplace-Lagrange
secular theory, is unable to give correct forcing poles for objects near the ν18 secular resonance, re-

sulting in poorly conserved Ifree values in much of the main belt. We thus instead implemented an
averaged Hamiltonian to obtain the expected nodal precession for each TNO, yielding significantly
more accurate free inclinations for non-resonant objects. For the vast majority (96%) of classical belt

TNOs, these Ifree values are conserved to < 1◦ over 4 Gyr numerical simulations, demonstrating the
advantage of using this well-conserved quantity in studies of the TNO population and its primordial
inclination profile; our computed distributions only reinforce the idea of a very co-planar surviving

‘cold’ primordial population, overlain by a large I-width implanted ‘hot’ population.

Keywords: Trans-Neptunian objects (1705) — Kuiper belt (893)— Celestial mechanics (211)

1. INTRODUCTION

The outer region of our Solar System beyond Neptune
(transneptunian space) hosts a large swarm of icy bodies
that are planetesimals left over after the planet forma-
tion era. They contain valuable information about the
Solar System’s distant past. Over the past two decades,
there is growing consensus that current transneptunian
objects (TNOs) may have accreted from different re-
gions in the protoplanetary disk: the cold population
likely formed locally around a ≈ 44 au and hasn’t expe-
rienced significant subsequent dynamical excitation or
collisional evolution, whereas the hot population likely
formed closer to the Sun (a < 30 au) and was implanted
at the current locations during the late stages of planet

formation. These two populations are mixed in the main
Kuiper Belt (42 . a . 47 au) radially and vertically,
with the inclination being a rough proxy to separate
them (see Gladman & Volk 2021 for a detailed review).

Brown (2001) first fit the inclination distribution of all

classical TNOs (i.e. main belt TNOs not in mean mo-
tion resonances with Neptune) using a functional form
of sin I multiplied by a sum of two Gaussians consist-
ing of a cold component (of width ∼ 2.2◦) and a hot
component (∼ 17◦). Levison & Stern (2001) noticed the
observed cold population lacks large objects, which was
later further confirmed by several independent Kuiper
belt surveys showing the cold population has a signifi-
cantly steeper absolute magnitude (H) distribution than
the hot population (Bernstein et al. 2004; Elliot et al.

2005; Fraser et al. 2010; Petit et al. 2011; Kavelaars et al.
2021). The perihelion distance distribution of the cold
population is more confined than those of the hot (Petit
et al. 2011). The cold classicals are also known to have
a higher abundance of binary TNOs (see, e.g. Noll et al.
2020), especially those with comparable sizes. Further-
more, a statistically significant correlation between the
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color and inclination of the classical objects has been
observed, with low-inclination objects more likely to be
red and high-inclination objects likely to be more neutral
in color (Doressoundiram et al. 2002; Trujillo & Brown
2002; Doressoundiram et al. 2008; Peixinho et al. 2008).
High-precision colors from optical and near-infrared ob-
servations have demonstrated that the cold classicals
have different surface properties than the hot members
(Pike et al. 2017; Schwamb et al. 2019; Müller et al. 2020;
Fernández-Valenzuela et al. 2021). All of these proper-
ties are consistent with the two populations having dis-
tinct formation histories. As a result, the orbital distri-
butions, especially the inclination distributions, of the
two populations shed light upon their dynamical past
and deserve detailed investigation with the most recent
sample.

A common practice in TNO research is to split the
classical TNOs into hot and cold populations with a
simple inclination cut to facilitate, for example, phys-

ical property studies of the two populations or compar-
isons between observationally derived population esti-
mates and those from dynamical models.

For example, Bernstein et al. (2004), Petit et al. (2011)

and Fraser et al. (2014) all used a cut of I < 5◦ in eclip-
tic inclination to identify a dominantly cold population,
while Peixinho et al. (2008) used 12◦. The ecliptic I,

however, varies over time as an artifact of the reference
frame choice: a TNO’s orbit precesses around its local
forcing pole with a fixed Ifree and a constant frequency,

the result of which, in ecliptic space, is a non-constant
precession (sometimes not even a precession but a con-
fined oscillation in the longitude of ascending node Ω)
with a varying I (see section 7.4 of Murray & Dermott

1999 or figure 1 of Gladman & Volk 2021). This natu-
rally makes Ifree, a conserved quantity regardless of the
choice of reference frame, preferable to the ecliptic incli-

nation, which is the commonly tabulated quantity.
We note that because the real classical belt TNO dis-

tribution is a sum of two overlapping components that
each have different inclination widths, there will always
be some level of contamination when using a simple cut
(see fig.2 of Dawson & Murray-Clay (2012), for exam-
ple). Cutting in Ifree rather than ecliptic I, however,
dramatically improves how well the two components are
isolated.

Van Laerhoven et al. (2019) showed that when using

a free inclination cut of 4◦, the cold classical TNOs are
best fit with a narrower width of ' 1.75◦, strongly limit-
ing its past perturbation. Gladman & Volk (2021) also
found this cut results in a cleaner separation in TNO
colors (their figure 6). Because of this superiority, the

4◦ cut in free inclination is also adopted in Kavelaars
et al. (2021).

With today’s large TNO sample, including survey
data from the Canada-France Ecliptic Plane Survey
(CFEPS, Jones et al. 2006), the Deep Ecliptic Survey
(Adams et al. 2014), the Outer Solar System Origins
Survey (OSSOS, Bannister et al. 2018), and the Dark
Energy Survey (Bernardinelli et al. 2022), it is thus nec-
essary to compute Ifree for each main belt TNO. To do
this, the local forcing planes or the forcing poles, relative
to which Ifree is measured, must be correctly calculated.
Brown & Pan (2004) first realized the apparent mean
plane of the TNOs differs significantly from the solar
system’s invariable plane (the plane defined by the av-
erage angular momentum of the larger planets). In con-
trast, Elliot et al. (2005) found the mean plane of the
classical TNOs is more consistent with the invariable

plane than with the local Laplacian plane (the latter
being the plane perpendicular to the local forcing pole
discussed below). In a subsequent study, Chiang & Choi

(2008) investigated the theoretically predicted locations
of forcing poles, pointing out that the classical belt plane
is significantly warped by the ν18 secular resonance near
a = 40.5 au; i.e., the local forcing plane in the main

belt changes significantly with semimajor axis. They
also confirmed the conservation of TNO free inclination
with respect to their calculated time-variable poles for

4 Gyr, but only for objects away from the singularity
associated with the secular resonance.

Given that the calculation of the forcing poles (and

thus the free inclinations) is somewhat complicated near
secular resonances and that a non-negligible portion of
the classical belt is affected by this, a better approach to
calculating free inclinations is warranted. In the present

work, we implement a new method based on doubly av-
eraging the Hamiltonian to obtain the expected nodal
precession rates and the correct forcing pole for each

TNO. The free inclinations generated by this new al-
gorithm represent a significant improvement over those
given by the often-used linear secular theory, especially
for objects within a few au of the ν18 secular resonance
singularity (see Section 2.2). We thus tabulated the cor-
rect Ifree of each main-belt TNO along with its barycen-
tric orbital elements in Table 1.

2. COMPUTATION OF FREE INCLINATIONS

Because of the cosmogonic significance of the cold and
hot populations, both for the dynamical structure of
the transneptunian region and the interpretation of sur-
face properties inferred from photometry and spectra,
we chose to compute and publish TNO free inclinations.

Because as a population the cold objects exist only in
the main belt between the 3/2 and 2/1 mean motion
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resonances with Neptune, our interpretation is that this
component split is only sensible in this semimajor axis
range (objects that might have low inclinations at other
semimajor axes are best interpreted as the low-I tail
of the implanted hot component’s inclination distribu-
tion); we thus confine ourselves to the main belt ob-
jects in this work. In Section 2.1, we describe how we
selected the observed TNOs to include in our analysis.
Section 2.2 describes our approach to calculating free in-
clinations (with more details given in Appendix A), and
Section 2.3 demonstrates that the newly calculated free
inclinations are a better-conserved quantity than those
calculated using linear theory.

2.1. Dynamical Classification of TNOs

We began by downloading the most recent sample of
main belt TNOs from the JPL Small-Body Database1.
We constrained the heliocentric semimajor axis a to the

range of (39.4, 47.7) au and the 1-sigma uncertainty in a
to δa < 0.1 au. We also added two additional TNOs to
the sample: 486958 Arrokoth (2014 MU69), the target
TNO visited by the New Horizons spacecraft on Jan. 1,

2019 (Stern et al. 2019) whose orbit-fit accuracy is not
accurately reflected in JPL’s database, and 2005 JY185,
an OSSOS object whose a uncertainty given by JPL is

slightly above the 0.1 au but our own estimate is δa '
0.05 au (Bannister et al. 2018). This resulted in 2018
objects being selected.

The JPL Small-Body Database provides orbital ele-

ments in the heliocentric IAU76/J2000 ecliptic refer-
ence frame. However, for the study of TNO dynam-
ics, barycentric orbital elements are preferable to he-

liocentric ones. TNOs are relatively far away from the
Sun, and the small wobbling of the Sun’s position under
planetary perturbations (mainly from the giant planets)

leads to variation of TNO heliocentric orbital elements
on timescales of each giant planet’s orbital period (Glad-
man & Volk 2021). The barycenter of the Solar System,
on the other hand, is far more stable in the eyes of TNOs.
As a result, orbital elements in this paper and the ap-
pended table are all barycentric elements.

These TNOs are distributed across the whole main
classical belt, starting from the 3/2 neptunian mean-
motion resonance (a = 39.4 au) and ending at the 2/1
resonance (47.7 au). Several low-order resonances are
also embedded in the main belt, the most important of

which are the 5/3 (42.3 au), the 7/4 (43.7 au), and the
9/5 (44.6 au). We classified the 2018 TNOs in our sam-
ple according to their current dynamical state (Gladman

1 https://ssd.jpl.nasa.gov/sbdb query.cgi, retrieved on October
5th, 2021.

et al. 2008), separating the classical TNOs from the res-
onant objects and the scattering objects (note that by
definition detached objects have a > 47.7 au, therefore
they cannot be in this sample).

To do this, we integrated the best-fit orbit for each
TNO forward 10 Myr in time under the influence of
the Sun and the four giant planets. We used the mer-
curius algorithm within the rebound orbital integra-
tion software package (Rein & Liu 2012); this algorithm
uses rebound’s whfast symplectic integrator (Rein &
Tamayo 2015) for the majority of time steps and the
adaptive-stepsize ias15 integrator (Rein & Spiegel 2015)
to resolve close encounters between test particles and
planets. We used a base time step of 0.25 years and an
output interval of 1,000 years for these integrations.

After the integration, the TNO classification was car-
ried out manually: each particle’s a, eccentricity (e), and
critical angle for the closest resonance (ϕ) are plotted.
A human operator then decided to tag it as scattering (a

alters more than 1 au), resonant (ϕ ceases to circulate
at any moment in the 10 Myr integration), or classical
(for a non-scattering and non-resonant particle). Al-
though recent papers have described TNO classification

using automatic pipelines (Khain et al. 2020) or machine
learning algorithms (Smullen & Volk 2020), we decided
to do the job manually as the sample was not too large

and this remains the most accurate method. Our crite-
rion for resonant objects is quite loose; this is motivated
by the fact that even a brief interaction with a mean-

motion resonance can significantly alter Ifree (see Sec-
tion 2.3). For the resonant identification, we searched
through resonances i : j with i = 1 . . . 20 and j = 1 . . . 20
in the a range of (39.4, 47.7) au, which includes 23 dis-

tinct resonances with the 20:11 being the highest-order
one.

Among the sample of 2018 objects we integrated

and classified, 66% (1332/2018) are classical, 31%
(622/2018) are resonant, and only 3% (64/2018) are
scattering. These percentages have biases and should
not be interpreted as the intrinsic or cosmogonic dy-
namical distribution in this semimajor axis range2. Note
that our TNO classification is conducted with the pur-
pose of better presenting our results in the next section;
it should not be treated as the ‘definitive’ classification

2 In particular, many of the scattering objects in this semimajor
axis range have perihelia well inside of Neptune and were only de-
tected with their faint absolute magnitudes because of their small
current heliocentric distances; they are thus over-represented in
our sample compared to the classical and resonant objects with
brighter absolute magnitudes.

https://ssd.jpl.nasa.gov/sbdb_query.cgi
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for these objects because we are not considering orbital
uncertainties by integrating clone orbits.

2.2. Free Inclination with the Correct Precession Rate

In Laplace-Lagrange secular theory, the barycentric
inclination vector (also called the orbit pole) of a TNO
(typically measured from the ecliptic plane) constantly
rotates around its local forcing pole under the perturba-
tions of planets. When perturbed by a single planet, an
object’s forcing pole is constant and simply perpendic-
ular to the planet’s orbital plane. However, when per-
turbed by multiple planets, the local forcing pole con-
stantly changes with time. The time-dependent location
of the forcing pole is predicted by the Laplace-Lagrange
secular theory (Appendix A), which gives the rectan-
gular components of the forcing pole (q = I cos Ω, p =
I sin Ω) at any given semimajor axis induced by the or-

bits of all giant planets. Chiang & Choi (2008) showed
that in the main classical belt, the forcing poles at var-
ious semimajor axes form a line in (q, p) space, rotating
around the location of the solar system’s invariable pole

with a 1.9 Myr period. As the semimajor axis goes to
infinity (although in practice needs only a > 45 au), the
forcing pole approaches the invariable plane pole and is

therefore fixed.
A TNO’s current osculating orbital inclination is a

sum of this locally forced inclination and its free incli-
nation (also sometimes called the ‘proper’ inclination).

By calculating and then subtracting the forced pole from
an object’s ecliptic inclination, the resultant free incli-
nation vector components are obtained. The magnitude

of the free inclination vector is Ifree, and the phase
provides the free ascending node Ωfree. In Fig. 1 we il-
lustrate the geometric relationship between the ecliptic

(orange) inclination, the forced pole (red), and the free
(blue) inclination in the rectangular (q, p) space. We
also recommend the non-expert reader to Gladman &
Volk (2021)’s figure 1 and their supplemental video for
more details.

In theory, the free inclination of a non-resonant, non-
scattering object is constant over time. The conserva-

tion of Ifree at 38.6 au and at 43 au for 4 Gyr has been
verified by numerical integrations (Chiang & Choi 2008).
However, we find that near the ν18 secular resonance at
a = 40.5 au, the Ifree of TNOs calculated by the linear
theory are not conserved even over our much shorter 10
Myr integrations. Fig. 2 shows the barycentric ecliptic
a and I evolutions (blue curves) of 2014 QU510 as well
as its Ifree calculated by the linear theory (red dotted
curve). To compute the linear secular Ifree evolution of
this object over our simulation, we recalculate the eigen-
modes of the Solar System at each time output, based

on the constantly-evolving orbits of the 4 giant plan-
ets (using the method described in Murray & Dermott
1999) and use those to determine 2014 QU510’s forced
plane and thus free inclination. As shown in Fig. 2, the
linear theory Ifree of this object is not conserved at all;
its amplitude even exceeds the variation of its osculating
ecliptic inclination.

The varying Ifree computed from linear theory near
a = 40.5 au demonstrates that the forcing pole is not
correctly predicted near the secular resonance. The rea-
son for this failure is that in the linear theory, the ex-
pected precession rate (B in Appendix A) of a TNO is
only a function of its semimajor axis. The real nodal pre-
cession rate, however, also depends on the object’s ec-
centricity and inclination. Ignoring high-order terms in
e and I produces an inaccurate precession rate, resulting
in the incorrect determination of its forcing pole. This

effect is particularly strong near a secular resonance, due
to the fact that the term B − fj (where fj is an eigen-
frequency) exists in the denominator of the forcing pole

expression (Eq. A3).
To get the correct Ifree, especially near the ν18, we

adopt a semi-analytical method to recalculate the cor-

rect precession rate at every time step. It’s based
on numerically averaging the TNO’s Hamiltonian over
two ‘fast angles’ (called the ‘double average’ method
hereafter; see Morbidelli 2002 for references). Simply

put, the double average method (developed in the Ap-
pendix A.2) calculates the precession rate as a function
of a, e, I, and ω, instead of just a as in the linear the-

ory. As a result, the method produces a rate closer to
the TNO’s true precession rate, and thus a more accu-
rate forcing pole and a better conserved free inclination.
Taking the object from Fig. 2 as an example: the lin-

ear theory predicts a nodal rate of −0.63′′/yr, which is
very close to the f8 = −0.68′′/yr inclination eigenfre-
quency of the solar system (Brouwer & van Woerkom

1950). In contrast, the real precession rate according
to numerical integration is only −0.206′′/yr, which is
much closer to what the double average method predicts
(a rate varying between −0.19′′/yr to −0.21′′/yr as the
orbit evolves). The ∼ 40◦ inclination makes the TNO
precess slower than a planar orbit of the same a, pulling
itself away from the ν18 secular resonance despite being
near a = 40.5 au. Obviously, the double average method
provides a more accurate precession rate, resulting in a
much better conserved Ifree for the TNO (red solid line
in Fig. 2). The details of the method are described in
Appendix. A.2.

2.3. Results
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Figure 1. Left panel: Polar and rectangular coordinate depiction of the ecliptic (orange), the forced (red), and the resultant
free (blue) inclination vectors of a TNO in the main classical belt. For this object, the forcing center (red cross) rotates around
the solar system’s invariable pole (black cross) with a '2 Myr period, the path of which is the black dashed circle. The
free inclination (blue) vector rotates around the time-varying forcing center at a constant nodal precession rate B, keeping its
magnitude Ifree unchanged. The composition of these two movements gives rise to a more complicated inclination evolution in
the ecliptic reference frame (orange vector with arrow denoting its approximate sense of motion). Right panel: The difference
between a 4◦ cut in ecliptic inclination (orange circle centered at origin) and a 4◦ cut in free inclination (blue circle centered
at the forcing pole). Three TNOs with almost identical forcing centers are marked in blue crosses, with light blue being colds
object (Ifree < 4◦) and dark blue being the hot object (Ifree > 4◦). If one use ecliptic inclinations to split the populations,
472231 (2014 FU71) would be misclassified as cold while 2015 GH59 (see Fig. 4) would be misclassified as hot. TNOs in the
overlapping area will maintain Ifree < 4◦ and are correctly classified currently but some with Ifree > 2◦, such as 2014 UY228,
will cycle to ecliptic I > 4◦ on Myr time scales.

We applied both the linear theory and the double
average method to the calculation of Ifree for each of
the non-scattering TNOs in our sample. Fig. 3’s up-

per panel shows the double-averaging Ifree as a func-
tion of a. To illustrate the conservation of Ifree over 10
Myr timescales, the bottom panel shows the variation,

Ifree range ≡ max(Ifree) − min(Ifree), over the integra-
tion for both methods. The Ifree range values show that,
as expected, near the ν18 resonance at 40.5 au, the lin-
ear theory fails to produce a well-conserved Ifree (red
crosses in Fig. 3), whereas even near the secular reso-
nance our method (blue dots) provides free inclinations
that are as well conserved as for the rest of main-belt

classicals. The vast majority of classicals have Ifree con-
served to better than 1◦, although this is not the case
for resonant objects (orange dots) and a handful of near-
resonant objects. Because the averaging method doesn’t
take into account the Hamiltonian’s resonant terms, it
cannot predict the correct nodal precession rate for ob-
jects affected by the mean motion commensurabilities.
As a result, TNOs near and in the 3/2 and the 5/3 res-
onances have a significantly large Ifree range (bottom

panel of Fig. 3). The 7/4 resonance, however, hosts
TNOs with both large and small Ifree ranges; the lat-
ter group are all objects with relatively small eccentric-

ities (e < 0.15) and the vast majority have Ifree < 10◦.
Higher-order resonances in the main belt seem to have
no clear effect on the object’s Ifree range, presumably
due to their relatively weak strength.

Fig. 3’s lower panel aligns with our expectations: clas-
sical TNOs not affected by resonant dynamics generally
have very small Ifree variations, while resonant TNOs

(especially those in strong, low-order resonances) have
significantly large Ifree ranges. In other words, in Fig. 3’s
upper panel, only for the classical objects (blue dots) can
Ifree be trusted to be cosmogonically relevant.

If we limit our scope only to the classical TNOs in
the Ifree − a distribution, there are a few things worth
pointing out:

(1) Almost every classical TNO between the 3/2 and
the 5/3 neptunian resonances has Ifree larger than 10◦,
due to the presence of ν8 and ν18 secular resonances in
the low-I region. The ν8 resonance will excite eccentric-
ities for lower-I orbits to Neptune crossing, resulting in
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Figure 2. Blue curves: barycentric a (top panel) and
ecliptic I (bottom panel) evolution of 2014 QU510 over 10
Myr. The orange dashed line in the upper panel marks the
semimajor axis of the ν18 secular resonance for circular and
planar orbits. Red curves: Ifree calculated by the linear
theory (dotted curve) and the semi-analytical double aver-
age method (solid curve). The ranges of the blue curve, the
dotted curve, and the solid line are 3.2◦, 14.4◦, and 0.06◦, re-
spectively.; the double average method yields a much better-
conserved value of Ifree.

TNO removal. We computed the positions of these res-
onances (gray and black dashed curves) by iteratively

converging (for a given e) to the resonant secular fre-
quency (g8 or f8) by varying Ifree; the e = 0.1 curve
is very similar to those shown in Knežević et al. (1991)
and Morbidelli (2002).

(2) The 8/5 resonance might be viewed as surpris-
ingly devoid of TNOs, leaving a semimajor axis gap in
the hot population at a = 41.2 au. We integrated five of

the 8/5 resonant objects to 4 Gyr; none of them survive
for the age of the Solar System, with a median dynam-
ical lifetime of only 700 Myr. None of the real objects
are thus deeply embedded and stabilized by the mean-
motion resonance for the age of the Solar System. Given
that the nearby third-order 7/4 resonance does not de-
plete on this same time scale (even at large Ifree), this

contrast seems puzzling. It is plausible that the prox-
imity to the two secular resonances is contributing to
this instability, but may instead imply something about
capture into this resonance out of the abundant ancient
scattering population.

(3) There is a few-degree wide sparsely populated
region in the free inclination distribution (sitting just
above Ifree = 4◦) in the semimajor axis range between
the 5/3 and the 7/4 resonances in the main belt. This
‘gap’ is nearly devoid of TNOs and exists only in the

Ifree space; it would be completely hidden if one were to

plot the distribution using ecliptic I. This explains why
Van Laerhoven et al. (2019) found isolating Ifree < 4◦ is
an excellent way to reduce contamination between hot
and cold, minimizing interlopers when measuring the
width of the cold population’s inclination distribution.
We expand upon this in the Discussion section.

To show how the resonant dynamics affects Ifree, we
plot (Fig. 4) the orbital evolution of an object (119956 =
2002 PA149) trapped in the 7/4 resonance with moderate
e ' 0.17 and a nearby cold classical TNO (2015 GH59).
Despite maintaining a relatively low ecliptic inclination,
the resonant object’s calculated free inclination is ex-
tremely variable (right panel of Fig. 4) because the as-
sumptions underlying the linear secular or the double av-
erage Ifree calculation are not valid for resonant objects;
this highlights why we needed to classify our TNO sam-
ple prior to determining free inclinations. In contrast,
the classical TNO in the left panel of Fig. 4 demon-
strates why Ifree is superior to the ecliptic inclination
in separating objects into cold versus hot populations:

2015 GH59 is an object with a 5.3◦ ecliptic inclination
currently, which would place it in the hot population
according to most ecliptic inclination cuts. In addition,

the 10-Myr average of its ecliptic inclination is 4.4◦, still
above a typical 4◦ cut. However, our calculation shows
its free inclination is only 3.69◦ with a range of 0.25◦,

which keeps it always below a 4◦ cut and thus always a
cold object.

We demonstrated above the conservation of Ifree for
classical objects over 10 Myr timescales. But what one

truly cares about is whether Ifree is stable for the age
of the Solar System. In other words, will the current
Ifree of classical TNOs reflect their Ifree ∼4 billion years

ago, at end of the giant planet formation and migra-
tion/transport to their present-day orbits? To answer
this, we extended the numerical integrations of the ob-

served objects for 4 Gyr and plotted the surviving par-
ticles’ ∆Ifree (the absolute difference between each ob-
ject’s current Ifree and that at 4 Gyr) in Fig. 5. The vast
majority of classical TNOs, no matter what their current
inclinations are, have ∆Ifree < 1◦. The very few outliers
are mainly distributed around major mean-motion reso-
nances, indicating some occasional interactions with the
resonances during the 4 Gyr evolution in which the sec-
ular conservation is lost. Fig. 5 thus shows that the Ifree
distribution we compute today for the classical TNOs
can be taken to be representative of the primordial dis-

tribution.
Last but not least, we also explored the idea of

whether the (easily calculated) mean ecliptic inclina-
tion from numerical integrations can serve as a good
proxy for Ifree. We find that for classical TNOs whose
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denoting classical TNOs with Ifree < 4◦ and Ifree > 4◦, respectively. The dashed curves in the lower left portion of the plot give
the center of the ν8 (black) and ν18 (gray) secular resonances, with curves on the left being e = 0 and those on the right being
e = 0.1 (see text). Bottom panel: The range in calculated Ifree values (log scale) over our 10 Myr integrations as a function of
a. For objects with a ' 39.7–42.5 au, the proximity of the ν18 secular resonance results in the TNO’s expected precession rate
being dramatically incorrect, resulting in widely-varying values of Ifree when calculated using the linear theory (red crosses).
When the nodal precession rate for non-resonant TNOs is corrected (using the double average method), well-preserved free
inclinations are obtained for the classical TNOs (blue dots); resonant TNOs (orange dots) can have highly-variable values for
their calculated Ifree even with the double average method because the resonant dynamics are not accounted for.

Ifree > 4◦, the mean ecliptic inclination over 10 Myr is a
good approximation to Ifree, with the median absolute
difference being only 0.2◦. However, in the cold popula-
tion (Ifree < 4◦), the median absolute difference is 0.6◦,
which renders the mean ecliptic inclination a low-quality
estimate of the free inclination for this population (see

the example discussed above from Fig. 4). Moreover,
we point out if one intended to study the main belt’s in-

clination distribution through the mean ecliptic inclina-
tion, this averaging would result in all objects with Ifree
smaller than the local forced inclination being assigned
a mean ecliptic inclination of roughly the forced value of
about 2◦; the distribution of very low Ifree objects would
be completely erased. These same arguments apply if
one tried to use the invariable plane as the reference
(rather than the ecliptic); the cold population’s median
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Figure 5. ∆Ifree measured across a 4 Gyr integration as a
function of barycentric a for main-belt classical TNOs. The
blue and red dots represent Ifree < 4◦ and Ifree > 4◦, respec-
tively. The majority of TNOs in both categories have values
of Ifree that are conserved to within 1◦ even over 4 Gyr.

absolute inclination difference is still 0.5◦. It is thus su-
perior to use Ifree computed by the double average to
studying the main belt’s inclination distribution.

3. DISCUSSION

As a summary, the free inclination distribution we
have computed for the main belt (Fig. 3) illustrates sev-

eral points:

1. The innermost boundary of the cold population at
a ' 42 au is being set by the existence of the secular
resonances. The absence of low-I TNOs here does not

imply that the cold belt did not exist here before the
giant planets finished formation and migration. How
and when these secular resonances reached their current

location is a subject of much speculation (egs., Batygin
et al. 2011, Dawson & Murray-Clay 2012, Gladman et al.
2012, Nesvorný 2018, Baguet et al. 2019, and references

therein)
2. The double averaging method removes the apparent

forced-inclination singularities that occur in the linear
secular theory. If one wished to study the secular effects
of additional planets on the ancient or current structure
of the Solar System (egs, Volk & Malhotra 2017; Batygin
et al. 2019), this method is to be preferred to estimate

the inclination perturbations produced by the planet.
3. The preservation of the Ifree calculated via this

method over 4 Gyr allows us to study the ancient incli-
nation structure of the belt (that is, the structure exist-
ing at the end of the the planet formation epoch). This
reinforces the idea that there was a cold (Ifree < 4◦)
population present at that time which (at least in the
a < 44.5 au region of the main belt) is well separated
from the presumably implanted hot population.

4. The main-belt TNO population clearly has multiple

superposed components (see Brown 2001, and citations
to it) and, because there is evidence that these com-
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Figure 6. A fractional histogram of free inclinations (blue
bars) and ecliptic inclinations (red outlines) for 1450 main-
belt classical TNOs beyond the 5/3 resonance (a > 42.3 au).
Only a few such objects (not shown) have > 40◦ inclina-
tions. Note that because most TNO surveys have been con-
ducted at relatively low latitudes, there is an observational
bias against the large-inclination TNOs; thus the high-I tail
in this histogram should not be taken to represent the true
hot TNO inclination distribution. However, the dramatic
spike at low inclinations (which is due to the cold popula-
tion) is still clear in the observed population, and even more
obvious in the Ifree histogram (which is shifted towards zero
due to the true secular dynamics of the belt). A 4-degree
cut is shown by the vertical line; few TNOs in the 0-4◦ range
would be hot-population interlopers.

ponents have different physical properties due to differ-
ent formation locations, there needs to be some way to

easily separate observed TNOs for spectrophotometric
studies. Due to the narrow width of the cold compo-
nent, TNOs with large ecliptic inclinations (larger than
10◦, say) will almost all be from the hot component with

very few interlopers. At small inclinations, the majority
of the TNOs will be from the cold population, with the
interloper fraction depending on the component I dis-
tributions and relative populations. The often-used 5◦

cut in ecliptic inclination to separate the cold and hot
components was proposed by Bernstein et al. (2004),
although no justification for that particular value was

given.
Here we have demonstrated the superiority of using

a cut in Ifree to isolate the hot and cold populations.
Van Laerhoven et al. (2019) found that the cold popula-
tion is tightly confined (in Ifree) around the local forcing
pole; this is especially true in the inner part of the main
belt, where they found the cold population has an incli-
nation width of just ' 1.8◦. Fig. 6 shows histograms of
ecliptic and free inclination for the non-resonant main
belt TNOs in this work. The low-I peak in the free
inclination histogram is sharper than in the ecliptic his-

togram, and there is a noticeable drop-off in the ob-
served population at Ifree = 4◦ (roughly twice the cold
population’s inclination width). We note that observa-
tional biases are not accounted for in Fig. 6, though they
were accounted for in Van Laerhoven et al. (2019)’s anal-
ysis of the cold population’s inclination width. Based on
that inclination width and our analysis here, we suggest
that Ifree < 4◦ is a reasonable choice when using a sim-
ple cut to separate the hot and cold populations in the
main TNO belt.

4. DATA RELEASE

The purpose of this work is to provide tabulated
barycentric orbit elements and Ifree for the currently
observed main classical belt TNOs as a resource for
studies comparing the hot and cold populations. We
do this in Table 1. We identify each TNO in our sam-
ple by their primary MPC designation, but we also in-

clude OSSOS++ and DES designations for objects that
appear in either survey so that one could more easily
use the survey simulators of those surveys for quantita-

tive debiasing. The absolute magnitude H in Table 1 is
taken from the JPL Small body database; we note that
these H values use approximate color transformations
and should not be used with the survey simulators men-

tioned above as they are not linked to a specific filter.
In addition, to help the reader quickly estimate the

correct Ifree for future TNOs, we provide Table 2,

in which the forcing pole components (q, p) are pre-
computed in a (a, e, I, ω) 4-dimensional grid. We also
provide a Python script to read the file and find the

closest data point for any given orbit, which the reader
can then use to estimate the Ifree that would be given by
the double average method. However, it’s important to
note that this simplified approach of evaluating Ifree can

only be trusted if the TNO: (1) is a non-resonant and
non-scattering object within the given orbital ranges,
(2) stays away from the ν18 secular resonance (in other
words, the forcing pole is relatively small), and (3) has a
current inclination computed at the current epoch. We
have tested the file and confirmed that for TNOs that
meet these three requirements, this script yields Ifree to

a precision of ∼ 0.1◦ compared to that computed by
double average.

With accurate values of Ifree and the knowledge of
a cleaner separation between hot and cold population
with a 4◦ boundary in this variable, one can use our
tabulated Ifree values to reduce the occurrence of cross-
contamination between the two groups in photometric
and spectroscopic studies of those populations whose
goal is to constrain primordial TNO surface properties.
Lastly, we provide a rapid method allowing anyone to
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Table 1. Barycentric elements and Ifree for main-belt TNOs

Column names Units Descriptions

a (a) au Semimajor axis of the nominal orbit

e (e) Eccentricity

I (inc) deg Inclination

Ω (Omega) deg Longitude of ascending node

ω (omega) deg Argument of perihelion

M (M) deg Mean anomaly

d (dist) au Distance from the barycenter

H (H) mag Absolute magnitude

RESO Dynamics flag: -1 for scattering, 0 for non-resonant/classical, > 0 for the
exactly resonant ratio (e.g. ‘74’ stands for the 7/4 mean-motion resonance
with Neptune)

Ifree (Ifree) deg Free inclination, computed via double averaging

Ifree range (IfreeRange) deg Free inclination range over 10-Myr integration time

qforced (qForced) deg q component of the forcing pole. qforced = Iforced cos (Ωforced)

pforced (pForced) deg p component of the forcing pole. pforced = Iforced sin (Ωforced)

OSSOS OSSOS++ internal designation (‘x’ for non-OSSOS++ objects)

DES DES internal designation (‘x’ for non-DES objects)

ID ID downloaded from JPL Small-Body Database: For a numbered TNO, ID
gives its designated number; For an unnumbered TNO, ID gives its compact
provisional designation

Name Full name (designation in bracket)

Note. The first six orbital elements and the distance are barycentric and in the IAU76/J2000 ecliptic reference frame, referring
to epoch JD 2459400.5. Both Ifree and Ifree range are independent of the choice of reference frame. The absolute magnitude H,
id and full name are directly retrieved from JPL on October 5th, 2021; these values could change as the MPC receives additional
observations. This table is available as a downloadable, machine readable file a.

a Download this table on https://yukunhuang.com. The data
file will also be available on the journal website when published.

Table 2. q, p components of the forcing pole for various
orbital elements

Axis names Range Grid sizes Dimensions

a (39.4, 47.7) au 0.1 au 84

e (0, 0.25) 0.01 26

I (0, 40) deg 2 deg 21

ω (0, 90) deg 10 deg 10

Total Size 458,640

Note. In the double average method, the forcing pole vector
is a function of (a, e, I, ω). For each data point on grid,
we gives the q, p components of the forcing pole in degrees,
which can be used to estimate the Ifree of nearby orbits. ω is
only in the range of (0, 90) deg due to its two-fold reflection
symmetries in both the orbital plane and the central axis.

easily estimate the correct Ifree for future TNO discov-
eries in the main Kuiper Belt.
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APPENDIX

A. FREE INCLINATION ALGORITHM

A.1. Laplace-Lagrange Secular Theory

The motions of the planets in the Solar System is a non-integrable N-Body problem. With suitable assumptions,
it is possible to express the long-term variations of the orbits of the solar system bodies in an analytical form. A
widely used solution is derived by Brouwer & van Woerkom (1950), where 10 frequencies for the e −$ solution and
8 frequencies for the I − Ω solution are given. We denote them the eigenfrequencies g1 – g10 and f1 – f8 of the solar
system. Here, we recap the secular perturbation theory for test particles and give the explicit equations for calculating
their Ifree (see section 7 of Murray & Dermott 1999).

The orbital variations of TNOs are strongly influenced by perturbations from the planets. To study this, we start
by transforming the orbital elements to the coordinates:

q = I cos Ω, p = I sin Ω, (A1)

where I is the osculating orbital inclination and Ω is the osculating longitude of ascending node in some chosen
reference frame. With the computed eigenfrequencies and eigenmodes of the planetary motions, it is possible to write

down the solutions for small body inclinations in the new (q, p) coordinates:

q = Ifree cos (Bt+ γ) + qforced(t), p = Ifree sin (Bt+ γ) + pforced(t), (A2)

where Ifree is the free inclination, and qforced and pforced are components of the forcing poles imposed by planetary

perturbations. In the present work, only the four giant planets are taken into account, so the resulting forced terms
are given by

qforced(t) = −
8∑
j=5

µj
B − fj

cos(fjt+ γj), pforced(t) = −
8∑
j=5

µj
B − fj

sin(fjt+ γj), (A3)

where j denotes the index of the inclination eigenfrequencies/eigenvectors (fj and Iji below) of the Solar System,
and B denotes the expected precession rate of the small body’s node. In Laplace-Lagrange secular theory, B is the
summation of precession rates contributed by each planet (Bj), which depend on both the planetary and the small

body’s semimajor axes (aj and a). Note that the term B−fj appears in the denominators of both equations; when the
expected precession rate B approaches any Solar System eigenfrequency fj (or gj for the eccentricity frequency), the
forced vector would diverge, which corresponds to the secular resonance. The inclination secular resonance sends the
TNO into a large-I oscillation, while the eccentricity one will destabilize the object by boosting its orbital eccentricity

to planet-crossing values.
For TNOs in the main belt (where αj = aj/a < 1 always holds), B, Bj , and µj are given by:

Bj =
1

4

mj

m�
nαjb

(1)
3/2(αj),

B = −
8∑
j=5

Bj ,

µj =
8∑
j=5

BjIji,

(A4)

where m� is the solar mass, mj is the mass of the j-th planet, and n is the mean motion of the small body. b
(1)
3/2(αj)

is the Laplace coefficient.
The Laplace-Lagrange secular theory predicts a nodal precession rate for each TNO, under the assumption that

both the planets and the TNOs have near circular and planar orbits. As a result, the forced inclination Iforced and the
longitude of ascending node Ωforced are both functions of the semimajor axis only.
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A.2. Free Inclination with Double Average

As shown in the main text, the linear theory gives erroneous free inclinations for TNOs near the ν18 secular resonance,
and poorly-conserved free inclinations for moderately-inclined (I ∼ 20◦) objects in the main classical belt. We
therefore provide a more accurate way to calculate the expected precession rate B of a small body. This calculation
is performed every output time step of the numerical integration, resulting a better-measured forcing pole and thus a
better-conserved Ifree.

Our method is based on numerically averaging the leading Hamiltonian over the two most quickly varying angles
(hereafter called the ‘double average method’), which avoids any truncation in powers of the small body’s eccentricity
and inclination(Williams 1969). This approach has been commonly used in Solar System studies (Henrard 1990;
Morbidelli & Henrard 1991; Froeschle & Morbidelli 1994; Michel & Froeschlé 1997), in order to compute the locations
of secular resonances over a large range of e and I. We summarize the major steps to obtain the correct precession
rates (B and Bj) using the double average method (see Michel & Froeschlé 1997 and chapter 8 of Morbidelli 2002 for
more complete details).

One first introduces the canonical Delaunay variables:

L =
√
a l = M

G =
√
a (1− e2) g = ω

H =
√
a (1− e2) cos I h = Ω,

(A5)

where the semimajor axis a, the eccentricity e, the inclination I, the argument of perihelion ω, the longitude of the
ascending node Ω, and the mean anomaly M are the usual Keplerian orbital elements.

Assuming all the planets to be on co-planar circular orbits, the Hamiltonian of a TNO perturbed by the j-th planet
can be written as

H = − 1

2L2︸ ︷︷ ︸
Hkep

+mjPj (L,G,H,Lj ; l, g, h, lj)︸ ︷︷ ︸
H(j)

sec

, (A6)

where Hkep is the integrable Keplerian motion of the TNO around the Sun and H(j)
sec accounts for the planetary

perturbation by the j-th planet, in which Pj is the normalized term that only depends on orbital elements. Assuming

the TNO is not trapped inside a mean-motion resonance, then the secular Hamiltonian H(j)
sec can be averaged over the

two unrelated fast angles, l and lj (a ‘double average’), which yields

H(j)

sec = −mjPj (G,H; g, h) , (A7)

To write the averaged Hamiltonian in explicit form:

H(j)

sec = − G
(2π)2

∫ 2π

0

∫ 2π

0

(
1

‖∆j‖
− r · sj
‖sj‖3

)
dl dlj , (A8)

in which the vectors r and sj denote the heliocentric positions of the small body and of the j-th planet, respectively,
and ∆j = r − sj . Under the approximation that eccentricities and inclinations of the planets are zero, one of the
integrals can be analytically computed using the complete elliptic function of the first kind K:∫ 2π

0

(
1

‖∆j‖
− r · sj
‖sj‖3

)
dlj =

∫ 2π

0

1

‖∆j‖
dlj =

4√
r2 + a2j

√
1− µ

2
K(µ), (A9)

where

µ =
4aj
√
x2 + y2

r2 + a2j + 2aj
√
x2 + y2

, (A10)

and x and y are the coordinates of r’s projection on the plane of the planetary orbit, with r = ‖r‖. It is worth noting
that Eq. A9 has the physical interpretation of the potential from a homogeneous ring (averaging the Hamiltonian
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over a planet’s mean anomaly lj is equivalent to spreading out the planetary mass on a circular ring of radius aj).
Combining Eq. A8 through A10, we have

H(j)

sec = − G
π2
mj

∫ 2π

0

√
1− µ/2
r2 + a2j

K(µ)dl,

Hsec =
8∑
j=5

H(j)

sec,

(A11)

where Hsec is the Hamiltonian accounts for the total planetary perturbations. The expected nodal precession rate
contributed by each planet Bj and the total precession rate B can thus be obtained through numerical differentiation

Bj = ḣ(j) =
∂H(j)

sec

∂H
,

B = −
8∑
j=5

Bj ,

(A12)

and the resulted Bj and B are not only functions of a and aj , but also functions of e, I, and ω. Replacing the nodal
precession rates from Eq. A2 to A4, we get the correct forcing pole and thus the correct free inclination for each TNO.
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