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Cancer is an umbrella term that includes a range of disorders, from those that are fast-
growing and lethal to indolent lesions with low or delayed potential for progression to
death. The treatment options, as well as treatment success, are highly dependent on the
correct subtyping of individual patients. With the advancement of high-throughput
platforms, we have the opportunity to differentiate among cancer subtypes from a
holistic perspective that takes into consideration phenomena at different molecular
levels (MRNA, methylation, etc.). This demands powerful integrative methods to
leverage large multi-omics datasets for a better subtyping. Here we introduce
Subtyping Multi-omics using a Randomized Transformation (SMRT), a new method for
multi-omics integration and cancer subtyping. SMRT offers the following advantages over
existing approaches: (i) the scalable analysis pipeline allows researchers to integrate multi-
omics data and analyze hundreds of thousands of samples in minutes, (i) the ability to
integrate data types with different numbers of patients, (i) the ability to analyze un-
matched data of different types, and (iv) the ability to offer users a convenient data analysis
pipeline through a web application. We also improve the efficiency of our ensemble-
based, perturbation clustering to support analysis on machines with memory constraints.
In an extensive analysis, we compare SMRT with eight state-of-the-art subtyping methods
using 37 TCGA and two METABRIC datasets comprising a total of aimost 12,000 patient
samples from 28 different types of cancer. We also performed a number of simulation
studies. We demonstrate that SMRT outperforms other methods in identifying subtypes
with significantly different survival profiles. In addition, SMRT is extremely fast, being able
to analyze hundreds of thousands of samples in minutes. The web application is available
at http://SMRT.tinnguyen-lab.com. The R package will be deposited to CRAN as part of
our PINSPlus software suite.
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1 INTRODUCTION

Since cancer is a heterogeneous disease, the correct identification
of cancer subtypes is essential for accurate prognosis and
improved treatment. With the advancement of high-throughput
platforms, subtyping methods have shifted toward multi-omics
integration in order to differentiate between subtypes from a
holistic perspective that takes into consideration phenomena at
different molecular levels (mRNA, methylation, etc.). Vast
amounts of molecular data have accumulated in public
repositories, including The Cancer Genome Atlas datasets
(TCGA) (1), Genomic Data Commons Data Portal (GDC) (2),
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) (3), and UK Biobank (4). This demands powerful
yet fast analysis methods to leverage large multi-omics datasets for
a more accurate subtype discovery.

Current approaches for multi-omics integration and cancer
subtyping can be categorized into four categories based on their
integration strategy. The first strategy is to concatenate different
types of data into a single matrix and then partition the patients
using the concatenated data. For example, users can normalize
and concatenate multiple data types (e.g., mRNA, methylation,
miRNA, etc.) into one single matrix and then apply well-known
methods developed for single-omics analysis, such as
ConsensusClusterPlus (5), to determine the subtypes. Such
approaches are simple and computationally efficient. However,
they do not account for data heterogeneity, e.g., different data
types might have different scales, dimensions and might require
different normalization procedures.

The second strategy is to model the multi-omics data as a
mixture of statistical models. Methods in this category include
LRACluster (6), rMKL-LPP (7), iClusterPlus (8), iClusterBayes
(9), OTRIMLE (10), SBC (11), BCC (12), MID (13), JIVE (14),
MCIA (15), moCluster (16), and sMBPLS (17). These methods
typically maximize a joint likelihood function to determine the
model parameters and the subtypes. Though statistically sound,
these methods need to estimate a large number of parameters
that often lead to overfitting and high computational complexity.
Therefore, an added step of gene filtering or data transformation
is often applied before the statistical analysis.

The third strategy is to project all data types into a joint latent
space. A common technique used for this strategy is non-
negative matrix factorization. Methods in this category include
MvNME (18), MultiNMF (19), IntNMF (20), iNMF (21),
jointNMF (22). Another method is MCCA (23) that performs
correlation analysis and then concatenates the correlation
matrices into one single matrix. After projecting the data onto
a joint space, cluster analysis is performed to determine the final
subtypes. Similar to the second strategy, methods in this category
often have excessive computational complexity and cannot be
applied on the whole genome-scale. Therefore, gene filtering is a
necessary step in the data processing.

The fourth strategy is also called similarity-based strategy.
Methods in this category include SNF (24), PSDF (25), PFA (26),
IS-Kmeans (27), NEMO (28), PINS (29, 30), SCFA (31), and
CIMLR (32). These methods first compute a pair-wise

connectivity matrix for each data type, that represents the
similarity/connectivity between patients. The connectivity
matrices are then fused onto a single similarity matrix that can
be used for the final clustering. Although powerful, the similarity
matrix requires a quadratic memory space. This is problematic
when the number of samples increases. As we will demonstrate
in our analysis, these methods cannot analyze data with tens of
thousands of samples.

Here we introduce Subtyping Multi-omics using a
Randomized Transformation (SMRT), a new method for
cancer subtyping and big data analysis. This method offers
important advantages over existing software: (i) it allows
researchers to analyze hundreds of thousands of samples in
minutes, (ii) it can integrate data types with different numbers
of patients, (iii) the ability to integrate and analyze un-matched
data of different types, and (iv) the web application offers a
convenient data analysis pipeline. We also improve the efficiency
of our ensemble-based, perturbation clustering to support
analysis on machines with memory constraints. Our extensive
analysis on 37 TCGA and two METABRIC datasets shows that
SMRT is more accurate than state-of-the-art subtyping methods
in identifying subtypes with significantly different survival
profiles. In addition, our simulations with big data show that
SMRT is fast and many-fold more scalable than existing
methods. Specifically, SMRT is able to analyze hundreds of
thousands of samples in minutes.

2 MATERIALS AND METHODS

2.1 The SMRT Pipeline

The overall workflow of SMRT is presented in Figure 1. This
workflow offers two different analysis pipelines for big data and
data with a moderate size. In the first case, given a multi-omics
dataset with a moderate size (e.g., less than 2,000 samples),
SMRT performs subtyping as follows. It first projects each data
type onto a lower-dimensional space using randomized singular
value decomposition (RSVD) and then performs a perturbation
clustering (PINS) (29, 30) to determine the subtypes within each
data level. It also builds a pair-wise connectivity matrix for each
data type that represents the connectivity between patients red
(See Supplementary Section 5 for the differences between SMRT
and PINS). Next, the method combines the connectivity matrices
into a single similarity matrix and then determines the final
subtypes using an ensemble of multiple similarity-based
methods. In the second case, when the data has more than
2,000 samples, SMRT splits the data into two different sets of
patients: a sampled set and a propagated set. It then performs the
subtyping on the sampled set and then assigns the patients from
the propagated set to the identified subtypes. Note that the
number 2,000 is chosen to balance between the accuracy and
time complexity of the method. This moderate number of
samples allows SMRT to perform a fast and accurate analysis
in limited memory (see Supplementary Section 3). Our
simulation studies show that the results do not change when
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we vary this number. However, users are free to change this
parameter when using the R package. Below is the description of
each of these analysis modules.

2.2 Dimension Reduction Using
Randomized Singular Value
Decomposition

The goal of this step is to project the multi-omics data into a
lower-dimensional space using randomized singular value
decomposition (RSVD). For data with hundreds of thousands
of dimensions (e.g., Illumina 450k), this step substantially
reduces the required computational power while maintaining
the clustering accuracy. Let us denote X € R™" as the input
matrix, where 7 is the number of samples/patients, and m is the
number of genes/features. Briefly, the RSVD method starts by
generating a random projection matrix P € R™ from a
standard normal distribution where r < m. It then projects
X € R™" to the column space of P to get a matrix Z such that Z =
XP. Due to the random projection, Z and X will have
approximately the same dominant columns (features). Now,
we can obtain the orthogonalized matrix Q of Z by using QR
decomposition, where Q has the same size as Z of n x r. In the
next step, the method projects X into a smaller space to get a
matrix Y € R™ such that Y = QAT *X and then computes
singular value decomposition (SVD) of Y as Y = UXV* using the
traditional SVD method (33). U and V matrices only keep at
most r eigenvectors so the size of U is r x r and the size of V*is
m x r. Finally, the low rank rotated data of the original matrix X
can be computed using: X' = XV*.

In practice, RSVD is faster and requires less memory than the
traditional SVD. To further speed up our approach, we
implement a parallel version of RSVD that can efficiently
utilize multiple cores available in modern processors. Note that
when the input data is large (e.g., more than 2,000 samples), we
do not perform RSVD on the whole input. Instead, we split the
data into two sets of patients: a sampled set and a propagated set.
We first perform RSVD on the sampled set, and then project the
original data matrix (both sampled and propagated set) to the
subspace of the sampled set by multiplying it with the rotation
matrix obtained from the RSVD for the sampled set. This
implementation allows us to perform SVD in at most a few
seconds, even for datasets with hundreds of thousands of
samples and features.

The output of this module is multiple matrices — one per data
type. In each matrix, the rows represent patients while the
columns represent the principal components (PCA). These
matrices will serve as input of the next module: perturbation
clustering that will be described in the next section. This will
compute the perturbed connectivity matrices and determine

the subtypes.

2.3 Subtype Discovery Using One

Data Type

Given a single data type, SMRT utilizes our previously developed
perturbation clustering (PINS) (29, 30) to partition the data.

Briefly, we perturb the data (by adding Gaussian noise) and
repeatedly partition the patients (using k-means by default). For
each partitioning, we build a pair-wise connectivity matrix of 0’s
and I’s in which 1 means that the two patients belong to the same
cluster, and 0 otherwise. By perturbing and clustering the data
multiple times, we obtain multiple connectivity matrices that
represent how stable the connectivity between patient pairs.
Finally, we choose the partitioning that is the most stable to
data perturbation. This algorithm automatically determines the
number of clusters and patient subgroups.

When the number of samples is large, the perturbation
clustering becomes slow and memory-inefficient. The
perturbation clustering algorithm relies on the pair-wise
connectivity of size n x n for clustering (n is the number of
patients). The time and space complexity (running time and
memory usage) of this method increase quadratically when the
number of samples increases. Therefore, when the number of
samples is large (by default setting, when n > 2,000), we perform
a sub-sampling process over the original data to obtain a subset
of 2,000 patients/samples. Next, we transform the data into a
lower-dimensional space, and use the perturbation clustering to
partition these patients. After this step, each of the 2,000 patients
has a subtype. Let us refer to this selected set of 2,000 patients as
the sampled set. The next step is to determine the subtypes for the
rest of the patients, called the propagated set. For this purpose, we
use the fast k-nearest neighbor searching algorithms (FKNN)
algorithm (34, 35) to assign each patient from the propagated set
to one of the subtypes in the sampled set. Briefly, the FKNN
method calculates the distance between the new patient to the k
nearest patients in the sampled set. Next, the FKNN method
classifies the new patient using vote counting (i.e., it chooses the
subtype with the most patients among the k neighbors). By
default, k is determined using the Elbow method on the sampled
set using 5-fold cross-validation. The sampled set is divided
randomly into 5 equally smaller sets. In each round, the
combination of 4 sets is used as the training set, and the other
is used as the validation set for the KNN algorithm with k ranges
from 5 to a maximum of 50. The k that yields the lowest average
classification error rate will be used as the optimal k. However,
users are also free to modify the value of this parameter.
Supplementary Section 6 provides more details on the
performance of using the Elbow method versus using a fixed
number of k.

One note of caution is that the number of dimensions of the
data can be high, thus slowing the process of distance calculation
and neighbor finding. Therefore, instead of calculating the
distance between patients in the original space, we calculate
the distance between patients in the principal component (PC)
space of the sampled set. As described above, we project the
original data matrix (both sampled and propagated set) to the
subspace of the sampled set by multiplying it with the projection
matrix obtained from the RSVD for the sampled set. After this
transformation, the pair-wise distance between patients will be
calculated in the new space with a much lower number
of dimensions.
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FIGURE 1 | The overall workflow of SMRT. (A) Analysis pipeline for data with moderate size. First, SMRT projects each data type to a lower-dimensional space
using randomized singular value decomposition (RSVD). Next, it performs a perturbation clustering to determine the subtypes, and to build a pair-wise patient
connectivity for each data type. Finally, it merges the connectivity matrices onto a single similarity matrix and then determines the final subtypes using a cluster
ensemble. The output is the clustering results for each data type, as well as the results after the multi-omics data integration. (B) Analysis pipeline for big data. SMRT
first splits the data into two different sets: a sampled and a propagated set. The method first determines the subtypes using the sampled set and then assigns the
patients from the propagated set to subtypes identified using the sampled set. The sampled data is partitioned using the pipeline described assignments for samples
in the propagated set are determined by averaging the probabilities from all k-NN models. (C) An example of the subtypes discovered by the SMRT web service for
the KIRC dataset. The left panel shows a preview of the uploaded data. The middle panel shows the visualization of the discoveredSMRT web service for the KIRC
dataset. The left panel shows a preview of the uploaded data. The middle panel shows the visualization of the discovered subtypes and export functions. The right

panel shows patient connectivity matrices for each data type.

2.4 Subtype Discovery Using

Multi-Omics Data

When the number of samples is small (by default, when # < 2,000),
we utilize an ensemble strategy to partition the patients. The
method first clusters each data type (using the algorithm described
in Section 2.3) and constructs the perturbed connectivity matrices.
It then merges the connectivity matrices of all data types to a single
similarity matrix that represents the similarity between patients
across all data types by averaging the connectivity values for each
pair of samples. Next, to cluster the similarity matrix, it uses
several similarity-based algorithms, including hierarchical
clustering, partitioning around medoids (36), and dynamic tree

cut (37) and then chooses the partitioning that agrees the most
with the partitioning of individual data types. This ensemble
strategy ensures that the identified subtypes are consistent across
all data types and are robust against the choice of
clustering algorithms.

When the number of samples is large (by default, when n >
2,000), we perform a sub-sampling and classifying procedure
that is similar to the algorithm described in the Section 2.3. The
difference here is that multiple data types are involved. First, we
randomly select 2,000 samples/patients and then apply the multi-
omics algorithm described above to partition the selected
samples. We refer to this selected set of 2,000 patients as the
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sampled set and the remaining patients as the propagated set. The
next task is to determine the subtypes of patients in the
propagated set. Given a patient in the propagated set, we
perform the FKNN procedure for each data type to obtain the
probability that it belongs to each subtype using the labels
obtained from the nearest neighbors. The final probabilities are
calculated by averaging the probabilities across all data types.
Finally, we classify the patient to the subtype that has the highest
probability. This strategy is also applied when integrating multi-
omics data whose each data type has different number of
samples. Here the sampled set will be the set of patients (by
default, maximum 2,000 patients) that have data in all data types,
and the remaining patients will be in the propagated set.

2.5 The SMRT Web Interface

The web application is publicly available at http://SMRT.
tinnguyen-lab.com. The website is built using the R Shiny
framework (38). Shiny is an R package that allows developers
to directly build an interactive web interface using the R
programming language. We use the web interface to forward
data and requests from users to the new SMRT method to
perform data integration and clustering. Because of the
efficiency of the SMRT method, the website is able to return
the results in minutes even for datasets with hundreds of
thousands of samples.

Analysis using the web application is simple and
straightforward. Users can either upload expression data in .csv
files or a single .rds file using the upload function on the left
panel. Each data type is presented as a matrix in which rows
represent samples and columns represent genes/features. SMRT
can automatically determine the number of subtypes. It does not
require any extra configuration or parameters to perform the
analysis. See Supplementary Section 4 and Figures S6, S7 for a
more detailed description of the web application.

3 RESULTS

To assess the performance of SMRT, we perform an extensive
analysis using 39 cancer datasets and simulated data. First, we
demonstrate that SMRT is able to identify cancer subtypes with
significantly different survival profiles. Second, we provide an in-
depth analysis for a Glioma dataset. Finally, we illustrate the
scalability of SMRT by analyzing simulated datasets with
hundreds of thousands of samples. We also provide a
comparative analysis between subtypes discovered by SMRT and
those of PAM50 classifier on three Breast cancer datasets (TCGA-
BRCA, METABRIC_Discovery, and METABRIC_Validation) in
Supplementary Section 7.

3.1 Experimental Studies Using 39

Cancer Datasets

In this article, we analyze 37 TCGA and 2 METABRIC datasets.
For TCGA datasets, we downloaded the matched mRNA, DNA
methylation, and miRNA expression data from the TCGA data
portal. For the METABRIC datasets, we were able to obtain

matched mRNA and copy number variation data from the
European Genome-Phenome Archive. We also downloaded
clinical data and survival information of each patient, which
will be used to assess the performance of the subtyping methods.
Supplementary Tables 1, 2 provide more details of the datasets.

We compare SMRT with eight state-of-the-art subtyping
algorithms: SNF (24), CIMLR (32), NEMO (28), moCluster
(16), iClusterBayes (9), LRACluster (6), MCCA (23), and
IntNMF (20). The following packages were used in our
comparison: SNFtool v2.3.0 on CRAN for SNF, CIMLR v1.0.0
at https://github.com/danro9685/CIMLR for CIMLR, NEMO
v0.1.0 at https://github.com/Shamir-Lab/NEMO for NEMO,
mogsa v1.16.0 on Bioconductor for moCluster, iClusterPlus on
Bioconductor v1.18.0 for iClusterBayes, LRACluster v1.18.0 at
http://bioinfo.au.tsinghua.edu.cn/member/jgu/lracluster/ for
LRACluster, PMA v1.2.1 on CRAN for MCCA, and IntNMF
on CRAN v1.2.0 for IntNMF. When the number of dimensions
exceeded 2,000, we used only the top 2,000 variables with the
largest variance for iClusterBayes, IntNMF, and MCCA, because
these methods cannot analyze the data on the whole-genome
scale. For all methods, we used default parameters and let all
methods automatically determine the optimal number of
clusters. For MCCA, which is not a clustering method itself,
we follow the implementation at https://github.com/Shamir-
Lab/Multi-Omics-Cancer-Benchmark for cluster analysis.

Using each method, we partition the patients in each dataset,
and then assess the survival difference of the discovered patient
groups using Cox regression (39). Overall survival data is used for
TCGA datasets and Disease-free survival data is used for
METABRIC datasets. Table 1 shows the Cox p-values obtained
from each dataset and method (See Supplementary Section 9,
Figures S10-S17 for the Kaplan-Meier survival curves for each
dataset). There are seven datasets in which no method is able to
identify subtypes with significant Cox p-values. For the remaining
32 datasets, SMRT has significant p-values in 28 datasets, whereas
NEMO has significant p-values in 19 datasets and all other
methods have significant p-values in 15 datasets or less. SMRT
has the most significant p-values in 12 datasets out of those 28
datasets, while SNF, CIMLR, NEMO, moCluster, iClusterBayes,
LRACluster, MCCA, and IntNMF have the most significant p-
values in 0, 3, 8, 4, 2, 0, 1, and 2 datasets, respectively.

Figure 2 shows the distributions of the Cox p-values in the
-logl0 scale. Overall, the median -logl0 p-values of SMRT is
close to 2 (i.e, median p-value of 0.01) whereas the median
-log10 p-value of the second-best method (NEMO) is close to 1
(i.e., median p-value of 0.1). A Wilcoxon test also confirms that
the p-values of SMRT are significantly smaller than the p-values
obtained from other methods (p = 0.0002 using the one-tailed
Wilcoxon test).

The running time of each method is shown in Table 2. The
top 39 row shows the running time of each method in each
dataset while the last row shows the average running time. On
average, SMRT, SNF, NEMO, and MCCA are fast and able to
finish each analysis in less than a minute. The remaining
methods are slower, especially iClusterBayes and IntNMF,
although their analysis is limited to only 2,000 most varied genes.
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TABLE 1 | Cox p-values of subtypes discovered by SNF, CIMLR, NEMO, moCluster, iClusterBayes (iCB), LRACIuster (LRA), MCCA, IntNMF, and SMRT for 37 TCGA
datasets and two METABRIC breast cancer datasets (M_Discovery and M_Validation).

Dataset SNF CIMLR NEMO moCluster iCB LRA MCCA IntNMF SMRT
1. ACC 4.34e-05 3.966-01 2.076-04 2SN, 26603 2.466-03 1.24e-08 6.11e-03 :

2. BLCA 1.09e-01 3.096-01 6.74e-02 3.13e-01 4.956-01 7.426-02 %3.43@02 W
3. BRCA 1.19e-01 4.950-03 2.93e-02 2.58e-01 3.07e-02 3.90e-01 2.53e-01 g

4. CESC 5.10e-01 1.90e-01 3.33e-01 1.816-01 1.696-01 2.90e-01 6.69¢-01 8.89¢-01

5. CHOL 5.726-01 3.356-01 3.02¢-01 5.17e-01 6.51e-01 6.93e-01 4.50e-01 9.63e-01

6. COAD 1.286-01 2.52¢-01 6.76e-01 3.78e-01 6.47¢-01 5.05¢-01 6.20e-01 5.35¢-01

7. COADREAD 6.60e-01 1.356-01 8.11e-01 4.726-02 2.556-01 7.47¢-01 7.87e-01 4.76e-01

8. DLBC 7.55e-01 7.44e-01 3.53¢-01 9.82¢-01 7.42¢-01 8.94¢-01 8.15e-01 7.28¢-01 4.746-01
9. ESCA 3.92¢-01 3.91e-01 3.92¢-01 5.01e-01 3.75e-01 1.716-01 2.25e-01 4.90e-01 W
10. GBM 2.086-02 8.11e-02 5.12e-01 1.246-01 5.37e-01 3.69¢-01 7.04e-01

11. GBMLGG 4.75e-14 6.36e-10 6.46¢-16 8.66e-12 8.04e-14 3.83¢-07 1.256-10 7.48e-17
12. HNSC 3.666-01 6.19e-01 1.426-01 3.27e-01 9.88¢-01 1.556-01 4.566-02
13. KICH 7.016-01 4.636-01 8.14e-14 4.036-01 2.10e-01 8.08e-01 6.61e-01 2.77e-02
14. KIPAN 2.11e-07 9.846-05 4.816-08 2.166-08 4.216-08 3.82¢-03 4.366-04 W
15. KIRC 6.916-01 9.79-01 . 1.76e-01 6.706-01 1.76e-01 1.326-01 7.29e-01

16. KIRP 5.336-03 1.856-02 1.006+00 4.60e-02 5.97¢-03 2.49¢-02 1.936-01 1.156-09
17. LAML 1.736-03 1.246-02 7.00e-01 9.386-01 1.19-01 1.756-02 7.786-02 8.726-04
18.LGG 1.60e-14 7.14e-15 3.52¢-01 6.08¢-03 1.016-01 1.166-09 4.04e-02 4.26e-15
19. LIHC 3.34e-01 1.286-01 8.256-01 2.576-01 2.93e-01 5.04e-01 8.80e-01 7.04e-01
20. LUAD 5.016-01 3.786-01 5.92e-01 2.55e-02 1.49¢-01 2.08e-01 8.21e-03 W
21, LUSC 8.71e-02 3.916-02 1.326-01 7.04e-01 . 9.05e-01 2.88¢-01 6.75e-01

22. MESO 4.246-04 1.726-02 7.946-04 7.290-02 %2.77&01 5.58e-04 3.85e-04 7.34e-04
23. OV 4.45¢-01 5.88¢-01 6.95¢-01 9.73¢-01 4.35¢-01 6.47¢-01 7.78e-01 9.60e-01 W
24, PAAD 7.366-04 2.03e-03 1.446-03 2.966-03 4.196-03 4.866-04 3.18e-01 3.456-02

25. PCPG 3.32¢-01 4.57¢-01 2.57¢-01 3.11e-01 3.39¢-01 1.416-01 6.63¢-01 7.67¢-01 8.66e-01
26. PRAD 4.756-01 6.95¢-01 6.61e-01 9.56e-01 3.78e-01 4.97¢-01 7.07e-01 3.90e-01 .
27. READ 7.626-01 3.356-01 6.276-01 1.006+00 5.68¢-01 2.72e-01 3.53e-01 3.41e-01 ﬁ
28. SARC 4.376-02 . 7.23e-02 3.376-02 3.07¢-01 6.36e-01 9.54e-02 2.83¢-01

29. SKCM 4.786-01 %6.379—04 4.308-03 4.676-03 3.92¢-02 1.90e-01 1.486-03 .
30. STAD 4.07e-02 5.11e-01 1.02e-01 4.83e-01 %3.08&01 3.16e-01 5.55e-01

31. STES 1.576-01 3.416-02 1.186-01 4.976-01 5.92¢-01 6.356-02 8.45e-02 1.51e-02
32. TGCT 8.38e-01 %&sse-m 5.89e-01 2.96e-01 3.74e-01 5.65e-01 5.41e-01 5.31e-01
33. THCA 6.20e-01 3.87¢-02 . 7.42¢-01 5.51e-01 3.87¢-01 1.756-02 8.82¢-02
34. THYM 9.696-02 1.156-01 7.116-02 %7.0&3»02 5.96e-01 5.47e-02 - 1.33e-02
35. UCEC 1.81e-02 1.70e-01 1.64e-01 6.886-01 1.65e-01 8.616-01 1.58e-02 %4.83&03
36. UCS 8.596-01 3.59¢-01 7.16e-01 1.686-01 8.76e-01 8.34e-01 5.85¢-01 %4.26&01
37. UWM 1.67e-04 g 1.67e-04 5.50e-01 9.19e-02 4.926-03 2.06e-04 6.436-03
38. M_Discovery 2.266-05 . 2.87¢-01 9.16e-01 4.326-06 4.59¢-10 2.01e-07 3.256-10
39. M_Validation 1.046-02 4.686-06 1.57e-01 1.976-01 1.28e-01 7.46e-04 9.16e-04 2.666-05
#Significant 15 15 19 9 11 8 12 14 28

Cells highlighted in yellow have significant Cox p-values at the threshold of 5%. Cells highlighted in green have the most significant Cox p-value in their respective rows. No methods were
able to yield subtypes with significantly different survival in 7 data sets (shown with red fonts). SMRT yields subtypes with significantly different survival profiles in 28 out of the 39 datasets.
In 12 such datasets, SMRT also p-values more significant than any of those provided by the other eight methods.

To reveal the contribution of each data type, we used SMRT to
partition the patients using each of the data types independently.
Next, we calculated the Cox p-values obtained from each data type
and compared them with those obtained from subtyping the
multi-omics data. Figure 3 shows the distribution of -logl0 p-
values of subtypes by each data type for 37 TCGA datasets. The p-
values obtained from multi-omics data are substantially more
significant than those obtained from individual data types. The
median p-value obtained from multi-omics data is close to 0.01
(-log10 values are close to 2) while the median p-values of each
data type are even higher than 0.1 (-logl0 values are close to 1).
This demonstrates that SMRT is able to exploit the
complementary information available in each data type to
determine subtypes with significant survival differences.
Supplementary Section 10 and Table S15 provide more details
on the contribution of individual data types in each dataset.

Next, we investigated the association between discovered
subtypes and clinical variables. We performed our analysis on
gender, age, cancer stage, and tumor grade, which are available
for at least 15 datasets. We perform the following analyses:
(1) Fisher’s exact test to assess the significance of the
association between gender (male and female) and the
discovered subtypes; (2) ANOVA to assess the age difference
between discovered subtypes; and finally (3) calculate the
agreement between the discovered subtypes and known cancer
stages and tumor grades using Normalized Mutual Information
(NMI). The distributions of -logl0 of p-values for gender and
age are shown in Supplementary Figure S8 (see Supplementary
Tables 11-12 for the exact p-values). With the exception of
NEMO and iClusterBayes, the clustering methods do not
generally yield differences in gender or age in their clustering.
For gender, iClusterBayes has significant p-values in 17 out of 31
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FIGURE 2 | Distributions of Cox p-values (in —log10 scale, higher is better) of the subtypes discovered from 37 TCGA and 2 METABRIC datasets. The red dashed
line shows the 5% significance level. Note that all existing methods do not reach this level of significance on average (median). Overall, the Cox p-values obtained
from SMRT are substantially more significant than those of other methods (o = 0.0002 using the one-tailed Wilcoxon test).

TABLE 2 | Running time (in minutes) of SNF, CIMLR, NEMO, moCluster, iClusterBayes (iCB), LRACIluster (LRA), MCCA, IntNMF, and SMRT for 37 TCGA and two
METABRIC datasets.

Dataset Size SNF CIMLR NEMO moCluster iCB LRA MCCA IntNMF SMRT
1. ACC 79 0.40 1.14 0.05 0.97 9.09 5.58 0.50 6.64 0.25
2. BLCA 404 073 3.71 0.28 7.85 2957 34.92 0.83 21.94 1.30
3. BRCA 622 1.61 9.44 0.75 24.09 56.39 102.13 1.61 40.07 1.53
4. CESC 304 1.01 3.23 0.28 8.78 30.49 50.41 1.20 20.66 0.90
5. CHOL 36 0.33 0.60 0.02 0.38 5.23 2.02 0.53 4.77 0.10
6. COAD 220 0.93 1.84 0.20 5.28 23.77 30.81 1.07 16.44 0.67
7. COADREAD 204 0.98 4.41 0.30 9.14 29.81 40.10 117 21.07 0.96
8. DLBC 47 0.37 0.61 0.03 0.52 6.25 2,66 0.44 4.90 0.16
9. ESCA 183 0.75 2.44 0.14 4.45 16.91 2754 0.84 12.93 1.20
10. GBM 273 0.05 2.15 0.02 0.46 20.30 1.02 0.19 15.03 0.91
11. GBMLGG 510 0.89 5.33 0.40 11.61 44.30 41.47 0.97 31.08 1.43
12. HNSC 208 0.84 2.04 0.18 5.41 16.32 32.02 1.06 13.51 0.77
13. KICH 65 0.37 1.13 0.03 0.70 5.93 3.47 0.47 4.93 0.33
14. KIPAN 654 1.14 13.77 0.49 14.90 41.54 63.67 1.16 31.39 351
15. KIRC 124 0.04 1.14 0.01 0.15 8.53 0.65 0.09 7.76 0.16
16. KIRP 271 0.61 3.93 0.15 3.96 16.85 18.91 0.70 15.96 0.94
17. LAML 164 0.04 1.57 0.01 0.20 10.84 0.68 0.10 8.13 0.13
18.LGG 510 1.29 7.60 0.60 13.95 33.18 83.92 1.37 28.77 1.76
19. LIHC 366 0.80 3.81 0.28 6.54 23.33 34.19 0.94 20.12 0.84
20. LUAD 428 0.81 4.42 0.28 7.95 34.64 39.17 1.02 29.77 1.26
21.LUSC 110 0.04 1.15 0.00 0.11 7.83 0.46 0.09 6.40 0.12
22. MESO 86 0.42 0.85 0.03 0.88 7.67 5.40 0.60 6.98 0.26
23. OV 286 0.36 2.37 0.10 3.14 19.37 16.24 0.53 16.99 0.72
24. PAAD 178 0.46 1.96 0.08 2.23 11.72 12.25 0.67 8.86 0.98
25. PCPG 179 0.55 2.35 0.12 2,52 15.98 14.51 0.64 11.79 0.52
26. PRAD 493 1.51 6.13 0.54 12.52 33.67 79.05 1.29 32.18 1.75
27. READ 74 0.39 0.86 0.03 0.64 6.32 4.24 0.59 5.88 0.22
28. SARC 257 0.54 3.07 0.14 3.29 18.00 17.82 0.63 12.64 1.40
29. SKCM 439 0.83 6.51 0.34 7.71 27.58 35.17 0.78 23.61 1.76
30. STAD 362 0.87 5.07 0.33 5.77 24.99 34.14 0.89 18.61 1.07
31. STES 545 1.55 8.79 053 14.11 37.81 88.00 1.22 28.85 1.85
32, TGCT 134 0.85 1.79 0.10 2,01 10.61 18.49 0.93 7.01 0.41
33. THCA 499 1.06 5.90 0.46 8.85 33.01 53.59 0.92 25.35 1.66
34. THYM 119 0.49 0.97 0.07 1.18 8.78 9.76 0.52 7.16 0.28
35. UCEC 234 1.04 2,57 0.19 4.60 19.61 34.42 1.08 14.78 0.88
36.UCS 56 0.47 0.64 0.04 0.49 6.18 3.92 0.62 458 0.19
37. UWM 80 0.41 0.73 0.04 0.61 7.91 5.07 0.60 6.25 0.24
38. M_Discovery 907 0.38 17.96 0.21 7.10 60.24 16.17 0.38 49.62 242
39. M_Validation 983 0.37 10.14 0.19 6.85 58.11 17.95 0.40 50.87 228
Mean 305 0.68 3.96 0.21 5.43 2253 27.75 0.76 17.80 0.98
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FIGURE 3 | Distribution of -log10 Cox p-values for each data type of the 37 TCGA datasets. The horizontal red line indicates the significant threshold of p-value =
0.05. The p-values of subtypes discovered using multi-omics integration are substantially more significant than those obtained from individual data types (mRNA,
methylation, miRNA).

datasets. For age, NEMO and iClusterBayes have significant p-  low agreement between the known stages/grades and the
values in 17 and 15 out of 29 datasets, respectively. This result ~ discovered subtypes using any of the subtyping methods. In
demonstrates that there are meaningful and survival-related  conclusion, the discovered subtypes from SMRT and other
molecular signatures inside the data to be discovered, and the  subtyping methods have little agreement with clinical variables
methods do not simply separate patients based on some visible  like gender, age, cancer stage, and tumor grade.

clinical variables such as gender or age. Supplementary Figure

$9 and Supplementary Tables 13, 14 show the NMI values that 3.2 Case Study of the GBMLGG Dataset
represent the agreement between the discovered subtypes and  Here we perform an in-depth analysis for the GBMLGG
known cancer stages and tumor grades. For the cancer stage, the ~ (Glioma). Figure 4A shows the Kaplan-Meier survival analysis
median NMI values of SMRT and NEMO are comparable and  of the discovered subtypes. For this dataset, SMRT discovers
are higher than the rest. For tumor grade, SMRT has the highest ~ three subtypes in which one subtype (group 2) has a very low
median NMI. However, for both cancer stage and tumor grade, = survival rate where at year 3, the survival probability of patients
the NMI values of all methods are low, meaning that there is a  this group is only at 26% while that number for the patients in
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FIGURE 4 | (A) Kaplan-Meier survival analysis of the GBMLGG dataset. The horizontal axis represents the time (days) while the vertical axis represents the estimated
survival probability. (B) Number of patients in each group for each mutated gene in GBMLGG dataset. The horizontal axis shows the count for other subtypes with high
survival rates, and the vertical axis represents the count in the subtype with low survival rates.
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the other two subtypes (groups 1 and 3) is 84%. We also perform
a variant analysis for the dataset in order to find mutations that
highly occur in the short-term-survival patient group (group 2)
but not in the long-term-survival patient group (groups 1 and 3)
and vice versa. Figure 4B shows the mutations of each group in
which each point is a gene, and its coordinates represent the
number of patients that have that mutation in the corresponding
group. In principle, we want to investigate the mutated genes in
the top left or bottom right of the figure. In this figure, we can
easily identify four marker genes that associate with GBMLGG
disease: IDH1, TP53, PTEN, and EGFR. Among those, IDH
mutant (bottom-right) is known as a factor driving Low Grade
Glioma (LGG) and has been used in the WHO classification
system (40) to classify IDH-mutant and IDH-wildtype, which
has worse prognoses. On the other hand, EGFR is not a common
mutation in LGG but in GBM (Glioblastoma) (41) which has a
very low survival rate (42). The amplification of EGFR can cause
the mutation of PTEN gene (43) which is a tumor suppressor
gene (44). Interestingly, no patient in the long-term-survival
group has PTEN mutation. The occurrence of EGFR mutated
genes may be another cause that leads to a low survival rate of
patients in the short-term-survival group.

We further conduct pathway analysis using the discovered
subtypes on the Consensus Pathway Analysis platform (45) using
the FGSEA method (46) and KEGG pathway database.
Supplementary Figure S4 shows the pathways that are
significant with a significance threshold of 0.5%. In this
connected network, each node is a pathway and there is an
edge between two pathways if they have common genes. As
shown in the figure, the Glioma pathway is significantly

1500 4

—_
o
o
o
L

500 1

Running time (minutes)

impacted. Other pathways that have common components
with the Glioma pathway, including MAPK signaling pathway,
ErbB signaling pathway, Calcium signaling pathway, and
Pathway in cancer, are also significantly impacted. This
confirms that the subtypes discovered by SMRT have
significant differences in the activity of Glioma- and cancer-
related pathways. Supplementary Section 2 and Figures S1-S4
provide a more detailed analysis of this dataset.

3.3 Scalability of the Subtyping Methods

In order to assess the scalability of the nine subtyping methods,
we generate a number of simulated datasets with a fixed number
of genes/features of 5,000 and varying numbers of samples (from
1,000 to 100,000). In each dataset generated, there are three
classes of samples — each with a different set of up-regulated
genes. The true class information was used a posteriori to assess
the accuracy of each clustering method. The memory of our
server is limited to 376 GB.

Figure 5 shows the running time of the methods with varying
numbers of samples. The time complexity of SNF, CIMLR,
NEMO, and moCluster increases exponentially with respect to
sample size. These methods are not able to analyze datasets with
more than 30,000 samples (out of memory, produce errors, or
take more than 24 hours to analyze a single dataset). MCCA and
LRACluster are able to analyze datasets with 50,000 samples but
fail to analyze larger datasets. Only SMRT is able to analyze all
large datasets, including those with 100,000 samples. SMRT is
much faster than other methods and can analyze datasets with
100,000 samples in three minutes. See Supplemental Section 3,
Figure S5, and Tables 4, 5 for details on simulation and results.

Method -+ 4. NEMO

12 5 10 20
Number of samples (thousands)

—#— 1. SMRT -+~ 2. SNF

7. LRACluster -#— 8. MCCA

-+ 3.CIMLR
5. moCluster —#— 6. iClusterBayes

5= 9. IntNMF

FIGURE 5 | Running time of the nine subtyping methods with respect to varying numbers of samples and features. SMRT is the only method that can analyze all
datasets. Even for large datasets with 100,000 samples, SMRT needs only a couple of minutes to finish the analysis.
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4 CONCLUSION

In this article, we introduced SMRT, a fast yet accurate method
for data integration and subtype discovery. In an extensive
analysis using 39 cancer datasets, we showed that SMRT
outperformed other state-of-the-art methods in discovering
novel subtypes with significantly different survival profiles. We
also demonstrated that the method could accurately partition
hundreds of thousands of samples in minutes with low memory
requirements. At the same time, the provided web application
will be extremely useful for life scientists who lack computational
background or resources. Although the software was developed
for the purpose of cancer subtyping, researchers in other fields
can use the web application and R package for unsupervised
learning and data integration.
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