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Uveal melanoma (UM) is a comparatively rare cancer but requires serious consideration
since patients with developing metastatic UM survive only for about 6–12 months.
Fortunately, increasingly large multi-omics databases allow us to further understand
cancer initiation and development. Moreover, previous studies have observed that
associations between copy number aberrations (CNA) or methylation (MET) versus
messenger RNA (mRNA) expression have affected these processes. From that, we
decide to explore the effect of these associations on a case study of UM. Also, the
current subtypes of UM display its weak association with biological phenotypes and its
lack of therapy suggestions. Therefore, the re-identification of molecular subtypes is a
pressing need. In this study, we recruit three omics profiles, including CNA, MET, and
mRNA, in a UM cohort from The Cancer Genome Atlas (TCGA). Firstly, we identify two
sets of genes, CNAexp and METexp, whose CNA and MET significantly correlated with
their corresponding mRNA, respectively. Then, single and integrative analyses of the three
data types are performed using the PINSPlus tool. As a result, we discover two novel
integrative subgroups, IntSub1 and IntSub2, which could be a useful alternative
classification for UM patients in the future. To further explore molecular events behind
each subgroup, we identify their subgroup-specific genes computationally. Accordingly,
the highest expressed genes among IntSub1-specific genes are mostly enriched with
immune-related processes. On the other hand, IntSub2-specific genes are highly
associated with cellular cation homeostasis, which responds effectively to
chemotherapy using ion channel inhibitor drugs. In addition, we detect that the two
integrative subgroups show different age-related risks and survival rates. These
discoveries can influence the frequency of metastatic surveillance and support medical
practitioners to choose an appropriate treatment regime.
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1 INTRODUCTION

Uveal melanoma (UM) is a comparatively rare cancer formed
from melanocytes within the uveal tract of the eye involving
either in the iris, ciliary body, or mostly choroid (1) and
responsible for about five cases per million per year (2).
Although current first-line treatment approaches receive good
results for this malignancy, specifically, UM patients can live
longer, but we want to improve early diagnosis more with the
hope of raising overall patient survival as smaller tumors are
treated, resulting in achieving local disease control and vision
preservation with the possibility to prevent metastases (3).
However, it has still remained challenging. Indeed, UM patients
with the metastatic disease only lived for approximately 6–12
months (4). This emphasizes a pressing need of improving the
diagnosis, prevention, and treatment of UM patients.

Besides, several recent large-scale and multi-omics databases
have enabled us to see associations between the genetic or
epigenetic alterations versus the tumorigenesis and progression
of UM. For example, the importance of different types of RNA
such as mRNA, microRNA (miRNA), and long non-coding RNA
(lnCRNA) was investigated in UM (5, 6). Based on an in silico
and experimental biology, lnCRNA LINC00518 was identified to
be a oncogene in UM and could be used in RNA-based
therapeutic approaches as a promising target (6). Additionally,
UM has frequently had copy number aberrations (CNA) gain
regions of chromosomes 6p and 8q as well as loss regions of
chromosomes 1p, 3, 6q, 8p, and 16q (7, 8). Particularly, BAP1
mutations related to chromosome 3 monosomy and SF3B1 and
SRSF2 alterations related to chromosome 3 disomy contributed
to high risk of metastasis. Meanwhile, mutations on EIF1AX
related to chromosome 3 disomy were associated with low
metastatic risk (9). In addition, Yang et al. (4) have made a
comprehensive review of the role of DNA methylation in the
development and metastasis of UM. They highlighted that
several tumor suppressor genes comprising RASSF1A and
p16INK4a have been altered by DNA methylation (MET) and
contributed to controlling cell migration and invasion in UM.
Moreover, p16INK4a expression was reported in all UM liver
metastatic cases and may have potential in discriminating UM
and cutaneous melanoma (10). Besides, the autophagy has been
hypothesized to have a role in inhibiting tumor growth when
investigating this process-related protein, Beclin-1. The high
level of immunohistochemistry in Beclin-1 was found to be a
positive prognosis of UM patients (11).

Moreover, multiple prior studies have been conducted to
stratify UM patients using various kinds of -omic data. Among
them, the most popular work proposed by Robertson et al. (5)
has conducted a multiplatform analysis of 80 UM patients using
only one single data type of omics data, including mRNA
expression, miRNA, long non-coding RNA, MET, and CNA,
and successfully identified four different subtypes: two associated
with poor-prognosis monosomy 3 (M3) and the others with
better-prognosis disomy 3 (D3). However, we claim that not a
single data alone but instead integrated omics data are powerful
enough to explain the interplay of molecules and the biological
phenotypes of cancer holistically (12–14). This motivates us to

do this study in order to discover novel subgroups of UM
patients that adopt an integrative approach.

In this study, we aimed to analyze three omics profiles,
namely, CNA, MET, and mRNA, in a UM cohort from The
Cancer Genome Atlas (TCGA). To this purpose, we identified
the significant correlation between CNA and MET versus their
own corresponding expression levels (Figure 1). It was of
importance to note that the omics experiments were conducted
with thousands of simultaneous hypothesis tests (15). Therefore,
the adjusted P-value using the Benjamini–Hochberg procedure
(16) as a measure of significant tests controlling the number of
false discoveries was necessarily considered in this work. Then,
single and joint analyses of the three data types were performed
using the tool PINSPlus (17, 18). As a result, we discovered two
novel integrative subgroups, IntSub1 and IntSub2, which could
be potentially a future classification system for UM patients.
These discoveries could influence the frequency of metastatic
surveillance and support medical practitioners to choose an
appropriate treatment regime.

2 MATERIALS AND METHODS

2.1 Materials
The three datasets, namely, CNA, MET, and mRNA expression,
were collected from the TCGA project (TCGA, Firehose Legacy)
(5) and downloaded from the cBioPortal website (19, 20). The
UM cohort is described in Table 1.

2.2 Data Preprocessing
There were two preprocessing steps applied to the three profiles
(i.e., mRNA, CNA, and MET) from the data. We first checked if
the 80 patients from each of the three profiles and clinical data
were matched. Then, we detected genes whose missing values
were more than 50% using the k-nearest neighbor algorithm (21)
from the CancerSubtypes package (version 1.14.0) (22).

2.3 Identification and Examination of the
Relationship of CNAexp and
METexp Genes
Here, we kept only genes shared between CNA andmRNA, as well
as between MET and mRNA. To identify and examine the
relationship of CNAexp and METexp genes, we used the R tool
geneCor (14). Roughly, the tool first computed the correlation
coefficients (r) between MET and mRNA, as well as between CNA
and mRNA based on Spearman’s rank method, and then, the
conversion of significant r (i.e., adjusted P-value ≤ 0.05;
Benjamini–Hochberg (16); two-sided) into Z values by Fisher’s
Z-transformation following the equation: Z = 0.5 ln[(1 + r)/(1 − r]).
Secondly, the overall distributions of calculating Z values were
pictured automatically. Thirdly, geneCor computed the skewness
of the Z-score distributions using the D’Agostino test. The overall
skewness illustrated whether CNA or MET was correlated
positively or negatively with their own corresponding mRNA.
Parallelly, geneCor also issued two sets of genes, CNAexp and
METexp, whose CNA and MET significantly correlated with their
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corresponding mRNA expression levels, respectively. Further
analysis was performed using FSbyCOX in the package
CancerSubtypes (version 1.14.0) (22) to only retain a small
number of genes associated significantly with a prognostic value
(P-value ≤ 0.0005; log-rank test; two-tailed) in the two gene sets
(i.e., CNAexp and METexp).

2.4 Single and Integrated Subtyping
The related study proposed by Robertson et al. (5) found the four
different molecular groups based on highly expressed genes, CNA
and MET, separately. We hypothesized that an integrative
clustering analysis, comprising the three profiles above, would
be a more powerful approach. Moreover, our clustering tool,
PINSPlus (version 2.0.5) (17, 18), demonstrated its great ability
in cancer subtyping, in general, using multi-omics data. Especially,
it classified breast cancer patients into two subgroups that
have possessed biologically and clinically meaningful properties
(14). We, therefore, continued applying this tool to seeking

the optimal group number of UV patients. In this study, we
kept all the parameters of PINSPlus as default (i.e., clustering
method was k-means); except for the number of candidate
groups, k was set to a range from 2 to 10. The area under the
receiver operating characteristic (AUC) value allowed us to choose
the optimal k.

2.5 Subgroup-Specific Gene Determination
and Enrichment Analysis
To observe the biological differences between identified UM
subgroups, we sought to discover the subtype-specific genes
using the package GeneCluster (version 0.1.0) (14). Given the
lists of genes (i.e., METexp and CNAexp), this tool computed the
mean expression level of each gene in each identified patient
subgroup across all samples. Then, the gene whose mean
expression value was the highest will be allotted to a cluster if
the P-value ≤0.05 (one-way ANOVA test; two-sided). Finally, the
gene will be recognized officially as belonging to that subtype if

TABLE 1 | Description of a cohort of UM patients used in the study.

Omics
data

Platform Description

mRNA mRNA sequencing A continuous matrix whose columns (the number of samples) are 80 samples and rows (the number of genes) are 20,440 genes
CNA Affymetrix SNP6

Whole-exome
sequencing

A discrete matrix whose columns (the number of samples) are 80 samples and rows (the number of genes) are 24,776 genes. There are
four copy-number levels indicated for each gene, namely, −2, −1, 1, and 2. Two levels presented with minus value (i.e., −2, −1) show the
loss level of copy-number compared with the two positive values (i.e., 1, 2) expressing the additional copies degree. For the 0 level, the
gene is located in the diploid chromosomal region.

MET Illumina Infinium
HumanMethylation
450 platform

A continuous matrix whose columns (the number of samples) are 80 samples and rows (the number of genes) are 15,477 genes

Clinical
data

Samples: 80
Overall survival (OS) status was defined as vital status (dead or alive), whereas OS time was identified as the time to UM death or last
follow-up (unit: day). The follow-up time OS was truncated to 2,600 days.

FIGURE 1 | Analysis pipeline. Firstly, we inputted CNA and MET datasets with their corresponding mRNA data to the function geneCor to identify a list of CNAexp
and METexp genes, respectively. Then, PINPlus was used to extract different patient subgroups for individual CNAexp and METexp datasets and integration of
CNAexp + METexp + mRNA data through single and integrated analyses, respectively. Finally, we discovered subtype-specific genes within each identified
integrated subgroup, IntSub1 and IntSub2, using the R package GeneCluster. UM, uveal melanoma.
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the adjusted P-value ≤0.05 (Benjamini–Hochberg procedure
(16); two-tailed).

Subsequently, in order to investigate further the biological themes
from the gained subgroup-specific genes, we implemented the
enrichment analysis using the DAVID tool (version 6.8) (23, 24).
Also, the output was concentrated into functional-related gene
groups or different meaningful terms that were convenient to
translate into the clinic. The significance levels of these terms were
assessedbased onP-value (Fisher’s exact test). In otherwords, a list of
genes with a smaller P-value was more overrepresented and had a
stronger association to the subtype phenotypes.

3 RESULTS

3.1 Identification and Examination of the
Relationship of CNAexp and METexp Genes
Our tool geneCor provided us with the two sets comprising 4,139
CNAexp genes and 8,157 METexp genes (see Supplementary
Table S1). As pictured in Figure 2A, the CNAexp genes were
significantly skewed to the right (skewness = 1.3511,P-value < 2.2×
10−16; D’Agostino test; two-sided) consistent with the results
reported in (25), while the METexp genes were significantly
skewed to the left (skewness = −0.3419, P-value < 2.2 × 10−16;
D’Agostino test; two-sided) consistent with the results reported in
(26). This indicated that there was a consistently converse relation
of mRNA with CNA andMET genes. As mentioned, we truncated
genes per the gene set above (i.e., CNAexp andMETexp) based on
the association with the OS of patients. Particularly, due to an
overwhelmingnumberof genes in each set, weonlypreserved genes
per set if P-value <0.0005. Finally, 179 CNAexp genes and 859
METexp genes were obtained. It was a weak intersection (50 genes)
between CNAexp and METexp, indicating that the CNAexp and

METexp were two poorly non-disjoint events (Figure 2B).
Figure 2C shows the frequency of the CNAexp or METexp genes
against the total count of genes in each chromosome arm. Of
particular interest,CNAexponlydistributed in two chromosomes3
and 8, especially almost in chromosome 8, implying not only a poor
prognosisbut also a considerably reduced survival (27–30).Also,we
could observe that theMETexp genes displayed a regional genomic
preference for MET, particularly on chromosome 3, involving in
high metastatic risk (26).

3.2 Single and Integrated Subtyping
Asdescribed in theMaterials andMethods section,we implemented
the single clustering analyses for CNAexp andMETexp, separately.
For METexp, the k of two with the AUC of 1.0000 was optimal
(Figure 3A). Similarly, for CNAexp, the same k andAUCwere also
optimal again (Figure 3A). Notably, the number of patients
assigned to either of the two CNAexp subgroups significantly
overlapped with that of the two METexp subgroups (P-value =
3.6714 × 10−15; c2 test; two-sided; Figure 3B). The heatmap shows
the expression patterns of CNAexp subgroups and METexp
subgroups from integrated analysis by PINSPlus (Supplementary
Figure S1). Moreover, the association between our integrated
subgroups, IntSub1 and IntSub2, versus patient subtypes in (5)
using mRNA data is also shown in Supplementary Figure S2.
Interestingly, IntSub1 was divided almost into subgroups 1 to 3,
whereasmost patients in IntSub2 belonged previously to subtype 4.
We then employed the survival analysis for the acquired subgroups
of CNAexp and METexp. The two CNAexp subgroups were
revealed to be statistically meaningful to the OS (P-value =
1.7844 × 10−5; two-sided; Figure 3C). Also, with the Cox
P-value = 1.1006 × 10−6, the two METexp subgroups were
significantly correlated with the OS (Figure 3C). These results
told us that the data single clustering strategy seemed to be effective

A B

C

FIGURE 2 | Characteristics of CNAexp and METexp in UM. (A) Two Z-score distributions showed two associations of MET or CNA with their respective mRNA.
(B) Intersection between 859 METexp genes and 179 CNAexp genes. (C) Side-by-side bar chart showed the frequency of the CNAexp or METexp genes against
the total count of genes in each chromosome arm. CNA, DNA copy number aberrations; MET, epigenetic DNA methylation.
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in this case.However, the given single analysesmight only show the
results that reflected the solitary aberration in UM pathology.

Next, the integrative clustering analysis was leveraged for a
combination of CNAexp, METexp, and mRNA gene sets in a
similar manner with the single clustering analysis above.
Interestingly, PINSPlus classified UM patients into two
integrative subgroups called IntSub1 (n = 60) and IntSub2 (n =
20) (Figure 3D). Specially, they were consistent significantly
with the single subgroups of the CNAexp dataset (P-value =
1.0266 × 10−5; c2 test; two-sided; Figure 3E) and the METexp
dataset (P-value = 9.3057 × 10−7; c2 test; Figure 3E). On top of
that, we then investigated the survival analysis which revealed
that the two integrated subgroups possessed statistically different
factors for the survival of UM patients (P-value = 4.0228 × 10−5;
log-rank test; Figure 3F). Also, in Figure 3F, the patients in
IntSub2 were significantly worse than those in IntSub1 (hazard
ratio of 6.1204 and 95% confidence interval between 2.5970 and
14.4200; IntSub1 was reference; log-rank test). Also, we reviewed
the statistical descriptions for UM patients, containing age,
gender, tumor stages, and metastasis status, between the
IntSub1 and IntSub2 provided in Supplementary Table S2.
These results bolstered our confidence in the effectiveness of
our previous strategy (14) in discovering the novel UM patient
subgroups under the perspective of integration.

3.3 Molecular Characteristics of Integrated
Subgroups
3.3.1 Determination of Subgroup-Specific Genes
As mentioned earlier, the GeneCluster tool was leveraged to
exploit subtype-specific gene lists. Accordingly, we extracted

three subgroup-specific gene lists for the two integrative
subgroups using three kinds of profiles: mRNA, CNAexp, and
METexp. Specifically, these lists were established on average
mRNA expression levels (IntSub1: 347 genes and IntSub2: 431
genes; Supplementary Table S3), average CNA aberrations
(IntSub1: 108 genes and IntSub2: 71 genes; Supplementary
Table S4), and average MET aberrations (IntSub1: 492 and
IntSub2: 345 genes; Supplementary Table S5). Notably, we
checked the intersection of the subgroup-specific genes from
mRNA with UM immune single-cell gene signature from
Durante et al. (31) and revealed that 46 overlapped genes
(13.26%) in IntSub1 belonged to B-cell cluster, CD4 T
follicular helper cluster, M2 macrophage cluster, Mitotic CD8
T-cell cluster, etc. (Supplementary Table S6). Meanwhile, 107
overlapped genes (24.82%) in IntSub2 were associated with
immune cells such as B cells, CD4 T follicular helper, CD8,
gamma delta T cells, and mitotic CD8 T cells (Supplementary
Table S6). This indicated that the UM pathology had a strong
connection to the abnormally expressed genes related to immune
cells. Interestingly, we found that that the highest expressed gene
based on copy number aberrations, SLCO5A1, was identified to
associate with poor outcome (32), which could be a prospective
interpretation for the worse prognosis of IntSub2 patients
compared with those in IntSub1. Notably, SLCO5A1 was
considered as a prognosis gene correlated with the immune
infiltrates. The immune cell infiltration level was noted to be a
crucial factor in predicting the UM prognosis (33).
Supplementally, we sought out that BAP1 was associated with
abnormal DNA methylation within IntSub2 samples rather than
other subtypes. It was reported that about 22% of familial UM

A B

D

E
F

C

FIGURE 3 | Identification of UM molecular subgroups using individual CNAexp and METexp genes for single clustering and mRNA + CNAexp + METexp for joint
clustering. (A, D) AUC values obtained for each value of k. The optimal k has the highest AUC value, in which (A—left, A–right, and D) the results are of CNAexp
alone, METexp alone, and integration of mRNA + CNAexp + METexp, respectively. (B) Overlap test between subgroups of CNAexp and METexp. (E) Overlap test
between integrative subgroups versus CNAexp subgroups (left) and versus METexp subgroups (right). (C, F) Kaplan–Meier survival curves for the CNAexp
subgroups (C—left), METexp subgroups (C—right), and (F) integrated subgroups.
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cases found the muted BAP1. BAP1 mutations raised not only a
large tumor diameter percentage but also the metastasis risk in
UM patients. This indicated that BAP1 testing is a reasonable
recommendation for hereditary melanoma (34). Additionally,
PTP4A3, the most overexpressed gene ranked by mean
expression value among specific genes of IntSub2, was defined
as a marker of poor prognosis involved in cell migration and
metastatic progression (35). Furthermore, metastasis is a
confident signal of the poor outcome, resulting in death in
most UM cases (36).

3.3.2 Enrichment Analysis Using the DAVID Tool
We next performed the enrichment analysis as described above
with the given subgroup-specific genes. Remarkably, the top
biological processes for IntSub1-specific CNAexp genes included
endonuclease activity and interleukin-17 receptor activity and
transcription factor binding (Supplementary Table S7 and
Supplementary Figure S3); IntSub1-specific METexp genes
were associated with the positive regulation of cell migration,
immune effector process, and positive regulation of hydrolase
activity (Supplementary Table S8 and Supplementary Figure
S4). Conversely, the IntSub2 was characterized most in cellular
cation homeostasis embracing, especially, the regulation of pH
and the regulation of calcium ion in the CNAexp profile
(Supplementary Table S7 and Supplementary Figure S5).
Also, the IntSub2 was distinguished by common abnormalities
of METexp genes related to the regulation of gene expression and
cellular macromolecule biosynthetic process (Supplementary
Table S8 and Supplementary Figure S6).

In this study, we also compared the subgroup-specific genes
from the two lists: mRNA (Supplementary Table S3) andCNAexp
(SupplementaryTable S4)with the FoundationOneCDx (updated
on June 15, 2020) that included 321 genes relating closely to cancer
andparticipating in the process of tumorigenesis. Consequently, we
revealed 22 subgroup-specific mRNA expression genes (bold red
gene names in Supplementary Table S3) and eight subgroup-
specific CNAexp genes (bold red gene names in Supplementary
Table S4) included in the database above. Collectively, our results
reinforced the clinical association between the obtained subgroup-
specific genes and melanoma formation.

3.3.3. Prognostic Factor Identification
We then sought to conduct the age at diagnosis and survival time
analyses in order to define the prognosis factor of two UM
subtypes. The results are shown in Table 2. It is worth
mentioning that 60-year-old or older patients were highly risky
to have UM. In addition, there was a distinct difference in the
average survival day between IntSub1 and IntSub2 patients:
885.2667 and 617.0000 days, respectively. This indicated that

the OS of UM patients could be foreknown dependent partly on
which subgroup a patient is assigned to, to some extent. Besides,
the patients in the IntSub1 were characterized by the average age
of 60.3333 as well as the average OS of 885.2667 days, whereas
those numbers in the IntSub2 were 65.6000 years old and
617.0000 days. Obviously, although the average age of the
patients in the IntSub1 was only 5 years younger than that of
their counterparts in IntSub2, they could live about 9 months
longer than the patients in IntSub2. These results should be
understood that age-related risks and survival rates might be
separate in these integrative subgroups. For a better
understanding, we took into account the risk of the two age
groups in each subgroup comprising the mid-adults (21–65
years) and the older adults (>65 years) from the 80 UM
patients (22–86 years old) in the clinical data. The reason we
chose the threshold of 65 years old was because Figure 4A
illustrates a bimodal age distribution, implying that we had two
groups naturally.

The two age groups, the non-old group and the old group, in
each subgroup were interrogated by the survival analyses.
Observing the results reported in Figure 4B, we revealed a
significant survival difference between the two age groups in
the IntSub2, whereas no statistical significance in patient
outcome between the two age groups was seen in the IntSub1,
indicating that age factor could be a risk factor to predict the
survival time.

4 DISCUSSION AND CONCLUSION

Recently, genomic profiling at multiple levels (e.g., genomics,
epigenomics, transcriptomics) has been boomed (37). The
abundant omics type of data has been easily accessed from
public databases like TCGA facilitating a better understanding
of molecular events behind cancer progression. Additionally,
based on the associations between the three types of omics data
(mRNA, MET, and CNA), we successfully classified breast
cancer into two patient subsets which improved the weak
manifestations of the intrinsic subtypes, especially in
association with the biological phenotype in a prior work.
With these concerns in mind, we have decided to apply this
successful framework to a rare cancer like UM.

Here, we defined the two lists of CNAexp and METexp based
on the correlations of CNA and MET with their mRNA at first.
The resulting lists are leveraged to stratify not only individually
but also integratively the 80 UM patients using the PINSPlus
tool. We revealed the two molecular subgroups (IntSub1 and
IntSub2) along with their subtype-specific genes that help to
uncover significantly different clinical characteristics as well as

TABLE 2 | Average diagnosis ages and survival time of the UM patients in the two integrated subgroups.

IntSub1 IntSub2

Average age (years) 60.3333 65.6000
Average survival time (days) 885.2667 617.0000

Nguyen et al. Patient Subgroups in Uveal Melanoma

Frontiers in Oncology | www.frontiersin.org October 2021 | Volume 11 | Article 7315486

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


patient outcomes. Importantly, there existed several poorly
prognostic genes (SLCO5A1, BAP1, and PTP4A3) which could
lead to shorter OS of IntSub2 patients. We next recruited the
DAVID tool to perform the enrichment analysis in each
integrated clustering. Notably, the IntSub1 showed the
overexpression of genes enriched significantly in the immune
system process (Supplementary Table S4). Besides, the IntSub2
displayed CNAexp genes known to be key factors in cellular
cation homeostasis and regulation of calcium. These findings are
likely to help oncologists and physicists find out distinct
treatment strategies for the two subgroups.

The finding of these subgroups could be a suggestion in clinical
application for UM treatment. For example, in the IntSub1, the IL-
17 (IL17RE, IL17RD, and IL17RC) played vital roles in immune
responses which stimulated the tumor growth and repressed the
antitumor activity (38). Fabre et al. (39) affirmed in their study that
the IL-17/IL-17R axis could be a novel immunotherapeutic target
relevant to the antitumor purpose. Besides, the dense appearance of
mutated genes is enriched in the cellular cation homeostasis group
(i.e., K+, Ca2+, Na+, and H+). Cell proliferation and apoptosis were
regulated by various cation channels. For instance, K+ channels
participated in the stimulation of the cell end, thus declining the cell
number.Therefore, the changeablepotassiumchannels contributed
to the malignant expression of cancer (40). In the cellular cation
homeostasis gene group, SGK3 played an activation role of
potassium channels (41). Moreover, several prior studies showed
the promising therapy of K+ channel blocking in cancer treatment.
This enhanced the consideration of using drugs inhibiting the
potassium channels as chemotherapy for UM patients. As an
example, astemizole was repositioned in its use by blocking the
EAG1 channel which was one of themajor potassium channels and
brought remarkable efficacy for cancer cell growth (42).
Alternatively, the small molecule which was able to block, inhibit,
or regulate the calcium ion transport was reported to be a potential
anticancer drug, such as brilliant blue G, oxidized ATP for
melanoma cases (43). Taken together, targeted therapies may be
efficient for the IntSub1 subgroup, while the combination of the
cation channel blocker and chemotherapeutic drugs has the
potential for IntSub2 patients.

In addition, we saw that the baselines of both IntSub1 and
IntSub2 subgroups varied depending potentially on several clinical

features being vital factors for prognosis. Thus, the survival
comparison between the two subgroups was further interrogated
by utilizing a multivariate Cox regression model in terms of age
groups, tumor stages, gender, and histology cell type comparisons.
The analysis results are shown in Supplementary Table S8. As a
consequence, old age groups, tumor stage IV, andhistology cell type
comparison between spindle cell and predominant mixed spindle
cellwere consideredas significantly independentprognostic factors.

Furthermore, some powerful predictive genes (exceptBAP1) for
prognosis used in clinical routine in UM are not identified by our
strategy. This can be regarded as a potential restriction of our work
when deliberately leveraging the power of integration of multi-
omics data. The following are several factors giving rise to the poor
performance of our strategy. The first factor can be the “curse of
dimensionality” being a typical problem when using multimodal
data. Another factor can be possibly due to the different nature
of data types. Most of the statistical tools only work well on
continuous data, whereas the minority of them do well on
discrete data. In this study, we have combined the two types.

In conclusion, multi-omics data integration contributes to
dealing with the bottleneck in getting insights into complex
multi-mechanism diseases like cancer in general and UM in
particular. We determined the two clinically and molecularly
distinct integrative subgroups, IntSub1 and IntSub2, which not
only can be a potential alternative classification system in the
future but also give more effective suggestions for UM treatment.
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