
DynPTA: Combining Static and Dynamic Analysis
for Practical Selective Data Protection

Tapti Palit
Stony Brook University

tpalit@cs.stonybrook.edu

Jarin Firose Moon
Stony Brook University

jfmoon@cs.stonybrook.edu

Fabian Monrose
UNC Chapel Hill
fabian@cs.unc.edu

Michalis Polychronakis
Stony Brook University

mikepo@cs.stonybrook.edu

Abstract—As control flow hijacking attacks become more
challenging due to the deployment of various exploit mitigation
technologies, the leakage of sensitive process data through the
exploitation of memory disclosure vulnerabilities is becoming an
increasingly important threat. To make matters worse, recently
introduced transient execution attacks provide a new avenue
for leaking confidential process data. As a response, various
approaches for selectively protecting subsets of critical in-memory
data have been proposed, which though either require a signifi-
cant code refactoring effort, or do not scale for large applications.

In this paper we present DynPTA, a selective data protection
approach that combines static analysis with scoped dynamic data
flow tracking (DFT) to keep a subset of manually annotated
sensitive data always encrypted in memory. DynPTA ameliorates
the inherent overapproximation of pointer analysis—a significant
challenge that has prevented previous approaches from support-
ing large applications—by relying on lightweight label lookups to
determine if potentially sensitive data is actually sensitive. Labeled
objects are tracked only within the subset of value flows that may
carry potentially sensitive data, requiring only a fraction of the
program’s code to be instrumented for DFT. We experimentally
evaluated DynPTA with real-world applications and demonstrate
that it can prevent memory disclosure (Heartbleed) and transient
execution (Spectre) attacks from leaking the protected data, while
incurring a modest runtime overhead of up to 19.2% when
protecting the private TLS key of Nginx with OpenSSL.

I. INTRODUCTION

As defenses against control flow hijacking attacks become
more widely deployed, attackers have started turning their
attention into data-only attacks [1] for the exploitation of
memory corruption or disclosure vulnerabilities. Under certain
conditions, the corruption of non-control data can lead to
arbitrary code execution, e.g., by re-enabling the execution
of untrusted plugins [2, 3, 4]. As technologies such as Flash
and ActiveX are being phased out, mere data leakage is still
possible and can pose a significant threat, e.g., the exfiltration
of secret server keys [5] or private user information [6]. As if
the abundance of memory disclosure bugs was not enough, the
threat of data leakage attacks has recently been exacerbated by
a flurry of transient execution attacks [7], which can leak secrets
through residual microarchitectural side effects. Examples of
the severe outcomes of these attacks include accessing security-
critical files, such as /etc/shadow [8, 9], and leaking
memory from Chrome’s renderer process [10].

Various defenses can be used against data leakage attacks,
involving different performance, usability, and completeness
tradeoffs. Holistic approaches against memory corruption

bugs, such as memory safety [11, 12, 13, 14, 15], and data
flow integrity [16], can mitigate data leakage attacks by
eradicating their main exploitation primitive, i.e., arbitrary
memory read access. In practice, however, their deployment has
been limited due to their prohibitively high runtime overhead
and incompatibility with C/C++ intricacies that are widely
used in real-world applications [17]. At the same time, they
inherently cannot protect against transient execution attacks,
many of which focus on precisely bypassing such software-
enforced bounds checking and similar policies [18, 19].

Instead of protecting all data, an alternative approach is to
selectively protect only the subset of data that is really critical
for a given program. This can be achieved in several ways,
including privilege separation [20, 21], secure execution envi-
ronments [22, 23], sandboxing [24, 25, 26, 27], and fine-grained
memory isolation [27, 28, 29, 30]. Although these approaches
differ across various aspects, their common characteristic is
that they all require a significant code refactoring effort, which
is particularly challenging for large applications.

Seeking to increase the practical applicability of selective
data protection, some recent approaches have opted for requir-
ing the programmer to just annotate security-critical memory
objects in the source code as “sensitive,” and then automatically
harden the program to keep this data protected [31, 32,
33]. This is achieved by a compiler pass that identifies and
instruments the memory load and store instructions that operate
on sensitive objects. DataShield [31] inserts fine-grained bounds
checks for pointers to sensitive data, and lightweight coarse-
grained bounds checks for other pointers. Glamdring [32]
inserts transitions to and from an Intel SGX [34] enclave that
holds the sensitive data. Selective in-memory encryption [33]
inserts cryptographic transformations to keep the in-memory
representation of sensitive data always encrypted.

A key component of these approaches is the automated iden-
tification of all instructions that may access sensitive memory
locations. Due to the widespread use of pointers in C/C++,
pointer (or points-to) analysis must be used to resolve which
pointers can point to sensitive memory locations. There has
been extensive research in the area of points-to analysis, with
various algorithms falling at different points in the spectrum of
precision vs. speed. Andersen’s algorithm [35] offers increased
precision, but with a computational complexity of O(n3) that
makes it inapplicable to large programs. Indicatively, based on
our experience with SVF’s [36] Andersen’s implementation, it

takes about 11 hours to complete for Nginx with OpenSSL,
while for the Chromium browser, our machine (with 32 GB
of RAM) ran out of memory after running for four days. On
the other hand, Steensgaard’s algorithm [37] has an almost
linear time complexity of O(n), making it scalable for large
programs, but comes with a much higher level of imprecision.

The issues of scalability and precision in points-to analysis
are well-known (we refer to Hind et al. [38, 39] for a more
detailed discussion). For selective data protection defenses, the
more imprecise the points-to analysis, the higher the number of
memory operations identified as potentially sensitive—due to
the overapproximation in computing the points-to graph, more
memory locations than those that will actually hold sensitive
data must be protected. This in turn requires more memory
instructions to be instrumented, which leads to higher overhead.
This challenge limits the applicability of prior works [31, 32,
33] to only moderately complex programs, such as MbedTLS
(a TLS library tailored for embedded systems). To the best of
our knowledge, no prior work on selective data protection is
applicable to larger code bases, such as OpenSSL, which has
actually suffered from in-the-wild data leakage attacks [5].

The competing requirements of high precision (to reduce
instrumentation and its overhead) and reasonable computational
complexity (to scale the analysis for large programs) motivated
us to rethink our approach towards pointer analysis. Starting
with the goal of making selective data protection practical
for large applications, in this paper we present DynPTA, a
defense against data leakage attacks that combines static
analysis with dynamic data flow tracking (DFT) to keep a
subset of manually annotated sensitive data always encrypted
in memory. To protect sensitive data from leakage, we opted
for in-memory encryption [33] because i) it makes the overall
approach applicable on a wide range of systems (in contrast to
relying on more specialized hardware features [30, 32]), and
ii) it protects against transient execution attacks, as any leaked
data will still be encrypted (in contrast to memory safety [31]).

DynPTA uses the linear-time Steensgaard’s points-to analysis
to support large programs, but ameliorates the overapproxima-
tion of the computed points-to graph by relying on lightweight
label lookups to determine if potentially sensitive data is
actually sensitive. We introduce a scoped form of dynamic
DFT to track labeled objects that is applied only on the
potentially sensitive value flows that were identified during
static analysis—requiring only a fraction of the program’s code
to be instrumented for DFT. For a given sensitive pointer
dereference, DynPTA selectively encrypts or decrypts the
accessed data depending on the presence or absence of the
sensitive label. To reduce the imprecision of the points-to
analysis even further, we also introduce a summarization-based
context-sensitive analysis of heap allocations that results in
improved runtime performance.

We implemented a prototype of DynPTA on top of LLVM,
and successfully applied it on eight popular applications,
including Nginx with OpenSSL, Apache Httpd, and OpenVPN—
applications with an order of magnitude more lines of code com-
pared to programs such as MbedTLS that were used in previous

works [31, 33]. DynPTA incurs a modest runtime overhead of
up to 19.2% when protecting the private TLS key of Nginx
with OpenSSL, while for MbedTLS the overhead is just 4.1%
(in contrast to a reported 13% for in-memory encryption [33]
and 35% for DataShield [31]). We also evaluated DynPTA with
real-world memory disclosure (Heartbleed [5]) and transient
execution (Spectre-PHT [40] and Spectre-BTB [41]) attacks,
and demonstrate that the protected data always remains safe.

In summary, we make the following main contributions:
• We propose a hybrid approach that combines static

analysis with scoped dynamic data flow tracking to
improve the scalability and accuracy of points-to analysis.

• We propose a summarization-based context-sensitive heap
modeling approach that reduces the overapproximation of
points-to analysis for heap allocations.

• We implemented the above approaches in DynPTA, a
compiler-level selective data protection defense that keeps
programmer-annotated data always encrypted in memory.

• We experimentally evaluated DynPTA with real-world
applications and demonstrate that it can protect against
memory disclosure and transient execution attacks while
incurring a modest runtime overhead.

Our implementation of DynPTA is publicly available as an
open-source project at https://github.com/taptipalit/dynpta.

II. BACKGROUND AND MOTIVATION

A. Pointer Analysis

Static pointer analysis computes the potential targets of
pointers in a program. Pointer analysis is sound, but as a
static analysis technique, it lacks access to critical runtime
information, and therefore suffers from overapproximation, i.e.,
the resulting “points-to” set of a pointer may include objects
that the pointer will never point to at runtime.

Pointer analysis assumes that a pointer may only point
within the valid bounds of the target object. Memory disclosure
vulnerabilities can still dereference a pointer to access memory
beyond these bounds and leak other objects. Pointer analysis
can correctly identify and model other classes of pointer
transformations that are considered undefined by the ANSI C
standard, such as casting an integer value to a pointer. These
undefined transformations, however, result in major loss of
precision in the resulting points-to graph.

1) Set Inclusion vs. Set Unification: Andersen’s [35]
inclusion-based and Steensgaard’s [37] unification-based algo-
rithms are the two most common pointer analysis approaches.
Both begin by iterating over every instruction and collecting
constraints related to the flows of pointers. These constraints
are of the types Addr-of, Copy, Deref, and Assign. For C
programs, these correspond to statements of the form p := &q,
p := q, p := ∗q, and ∗p := q, respectively. Each algorithm
solves these constraints using a set of resolution rules.

Andersen’s analysis begins by constructing points-to sets
for each pointer. When a new possible target q is found for
a pointer p, then q is included in the points-to set of p. This
inclusion, however, requires the recomputation of the pointer

https://github.com/taptipalit/dynpta

relationships for all Deref constraints that involve p, resulting in
a cubic complexity of O(n3). This makes Andersen’s algorithm
inapplicable to large and complex applications.

Steensgaard’s analysis maintains both pointer sets and points-
to sets. Every pointer is a member of a unique set, and a points-
to relationship is represented as a one-to-one mapping between
a pointer and a points-to set, i.e., all pointers in a pointer set
may point to all objects in a points-to set. When a new target
q is found for a pointer p, p’s points-to set is unified with
the set that contains q. This allows the algorithm to run in
almost linear time, making it applicable to large applications.
However, the unification of pointer sets leads to a significant
loss of precision, which makes the analysis results less useful.

We discuss the constraints and resolution rules in more detail
and also illustrate the results of running both Andersen’s and
Steensgaard’s analysis on a C code snippet in Appendix A.

2) Memory Object Modeling: Although constraint resolution
is an important consideration, the way constraints are modeled
also affects the analysis precision and speed. Context sensitivity
is a constraint modeling approach that considers the calling
context when analyzing the target of a function call. When
a function is invoked from multiple call sites, each site is
analyzed independently, reducing imprecision. This is critical
for functions that allocate or reassign objects referenced by their
arguments, or functions that return pointers. The prevalent use
of wrapper functions around memory allocation routines makes
context sensitivity a particularly important issue. Performing
context-insensitive analysis for memory wrappers would cause
all pointers to heap memory to point to the same object.
We address this issue by introducing a summarization-based
context-sensitive heap modeling approach (Section IV-B).

B. In-memory Data Encryption

Starting with the programmer’s sensitive data annotations, the
results of value flow analysis and pointer analysis provide us the
set of all memory load and store instructions that may access
sensitive memory locations. How these memory locations will
be protected against data leakage attacks is an orthogonal
design decision with various possible options. Relying on
typical software-based memory safety checks [31] requires the
insertion of just a few instructions per memory access, but does
not offer any protection against transient execution attacks [7,
19]. Relying on hardware-enforced memory isolation [30, 32,
42] can potentially reduce the cost of memory protection, but
the coarse-grained nature of these isolation mechanisms make
them challenging to use for individual memory objects, while
they may not be available on legacy systems.

An alternative is to keep sensitive data always encrypted
in memory, and decrypt it only when being loaded into CPU
registers [33]. Leaking secrets from registers requires arbitrary
code execution, which falls outside our threat model. The main
benefits of this approach include protection against transient
execution attacks, and wide applicability on existing and legacy
systems. The main drawback is the exceedingly high runtime
overhead of cryptographic transformations, even with hardware
acceleration through the AES-NI extensions.

For DynPTA, we opted to protect sensitive data using
in-memory encryption due to its attractive benefits. As the
key advantage of our approach is that it ameliorates the
overapproximation of the points-to analysis using runtime
information, we can afford the cost of cryptographic operations,
as they will be applied sparingly.

III. THREAT MODEL

We consider memory disclosure or data leakage vulnerabili-
ties that allow an attacker to read arbitrary user-space memory.
Data modification (e.g., swapping an encrypted value with
another leaked encrypted value) or corruption attacks are out
of the scope of this work. We assume that either due to the
nature of the vulnerability (e.g., Heartbleed), or due to defenses
and mitigations against arbitrary code execution, the attacker
has to resort to a data leakage attack. Given that attackers cannot
execute arbitrary machine code, any sensitive information or
secrets stored in the processor’s registers remain safe. Note that
attackers may still run arbitrary script code (e.g., in-browser
JavaScript) to access any part of the process’s address space
through a memory disclosure vulnerability [6].

Our focus is on user-space applications, and the exploitation
of kernel vulnerabilities is out of scope, as we assume that the
attacker cannot corrupt any kernel code or data.

Transient execution attacks can be classified as Spectre-
type [18] or Meltdown-type [43], depending on whether the
program can access the compromised data architecturally [7].
Spectre-type attacks bypass software-defined security policies,
such as bounds checking. Meltdown-type attacks bypass
architectural isolation barriers, and allow access to sensitive
data using instructions that cause hardware faults. We consider
both user-space Spectre-type and Meltdown-type attacks in our
threat model, but their kernel variants are out of scope.

Potential implicit leakage of sensitive data that takes part in
computation that observably affects control flow (e.g., through
execution timing side channels) is outside our threat model.

IV. DESIGN

The main goal of DynPTA is to protect sensitive memory-
resident process data from leakage. Due to the presence
of pointers in C/C++, pointer analysis is required to re-
solve sensitive memory accesses. DynPTA ameliorates the
imprecision of existing (scalable) pointer analysis algorithms
by coupling static pointer analysis with dynamic data flow
tracking (DFT). In particular, DynPTA uses a scoped form of
dynamic DFT that maintains labels for only potentially sensitive
memory objects. For a given sensitive pointer dereference,
DynPTA selectively encrypts or decrypts the accessed data
depending on the presence or absence of the sensitive label.
Although scoped DFT does not improve the precision of pointer
analysis per se, it ensures that only sensitive data undergoes
expensive cryptographic transformations. The sensitive data
to be protected is identified by the developer, who annotates
the respective variables or pointer initialization locations in
the source code—no further manual code modifications are
required, and the rest of the process is fully automated.

mem3

mem4

decrypt mem1

mem2decrypt

decrypt

encrypt

decrypt

encrypt

reg1

reg2

ptr1

mem3

mem4

mem1

mem2

decrypt

encrypt

reg1

reg2

mem3

mem4

mem1

mem2

ptr2

reg1

reg2

reg1 = decr(*ptr1);
*ptr2 = encr(reg2);

reg1 = *ptr1;
*ptr2 = reg2;

reg1 = isSensitive(ptr1) ? decr(*ptr1) : *ptr1;
*ptr2 = isSensitive(ptr2) ? encr(reg2) : reg2;

(a) Points-to Analysis (b) Encryption without Data Flow Tracking (c) Encryption with Data Flow Tracking

Actual Sensitive Data

Fig. 1: In this example, mem4 has been marked as sensitive, and it can be accessed through ptr1 and ptr2, along with other
memory locations (a). Relying on points-to analysis alone necessitates treating all target locations as sensitive, resulting in
excessive cryptographic transformations (b). Before dereferencing a pointer, DynPTA relies on scoped dynamic data flow
tracking to first check if the object is truly sensitive, and only then performs the required encryption or decryption operation (c).

Without the use of data flow tracking, the inherent overap-
proximation of pointer analysis would result in an excessive
number of cryptographic operations for data that is not actually
sensitive. Figure 1 illustrates how the use of scoped DFT
dramatically reduces the required instrumentation, by protecting
only the data that is actually sensitive. Consider the sample
code snippet in Figure 1(a). In this example, we assume
the programmer has specified that location mem4 contains
sensitive data. The two memory load and store instructions
are performed via pointers, and the pointer analysis algorithm
resolves pts(ptr1) := {mem1,mem2,mem3,mem4}, and
pts(ptr2) := {mem3,mem4}. These results may contain
overapproximation, i.e., the memory locations that will be
accessed through the two pointers may be fewer than the
locations the points-to analysis denotes as potential targets.

As shown in Figure 1(b), relying solely on static analysis,
we would conclude that ptr2 may point to sensitive memory
mem4, and therefore the value being stored must be encrypted
first. As ptr2 may also be used to store values to mem3, the
content of mem3 will end up being encrypted as well. Similarly,
the pointer analysis informs us that ptr1 may be used to read
not only from mem3 and mem4, but also from two more
memory locations. Since any read access through ptr1 will
first decrypt the fetched data, all memory objects that ptr1
may point to (mem1, mem2, mem3, mem4) must be kept
encrypted in memory to maintain the correct execution of the
program—otherwise any non-encrypted data accessed through
the pointer would be mangled by the decryption operation.

Instead of unconditionally encrypting (or decrypting) all
memory objects written (or read) through a pointer associated
with sensitive data, DynPTA uses scoped dynamic DFT to
maintain labels for sensitive objects. At runtime, DynPTA
selectively applies cryptographic transformations depending on
the presence or absence of the sensitive label for a given pointer
dereference. As shown in Figure 1(c), before reading through
ptr1 or writing through ptr2, DynPTA first dynamically checks

Sensitive Object
Identification

Steensgaard Pointer Analysis with
Context-sensitive Heap Modeling

Value Flow
Analysis

Dynamic
Flow

Tracking

AES
Transforms

Lowering to
Machine Code

Hardened
Bitcode

1 2 3

45

Annotated
Bitcode

Executable

Fig. 2: DynPTA’s main analysis and transformation phases.

whether the pointed object is truly sensitive, and if so, then
applies the necessary decryption or encryption operation.

Figure 2 presents an overview of DynPTA’s design, and
illustrates how the different phases of our approach analyze
and transform a target program. Based on the programmer’s
annotations, we first identify the initial set of sensitive memory
objects ¬. The whole code is then analyzed using Steensgaard’s
algorithm in conjunction with our context-sensitive heap mod-
eling (Section IV-B) to identify the set of memory instructions
that may access sensitive data ­. Memory instructions are
then further analyzed to pinpoint those that may result in the
flow of sensitive values from the initial (annotated as) sensitive
objects to other variables ®. Finally, the memory instructions
identified in the previous step are instrumented with code that
i) determines at runtime whether the read (or written) data is
sensitive or not based on its DFT information ¯, and ii) in case
it is sensitive, decrypts (or encrypts) the data before moving it
to CPU registers (or writing it back to memory) °.

A. Sensitive Object Identification

As shown in the example of Listing 1, DynPTA provides a
mark_sensitive() function that programmers can use to
mark individual objects that need to be protected. The function
treats the object whose address is provided to it as sensitive.
These objects can be simple variables or data referred to by
pointers. Note that when a programmer marks a pointer as

sensitive, their intent is to guarantee the confidentiality of what
the pointer points to, and not of the pointer itself.

For pointers, mark_sensitive() must be applied at
every initialization (or reinitialization) point of the pointer,
where the pointer points to a new object. In the example of
Listing 1, the priv_key pointer is annotated as sensitive
after it is initialized in Line 3, and again after it is reini-
tialized in Line 12. For variables, the programmer must use
mark_sensitive() only once after the variable is defined.

1 int main (void) {
2 char* priv_key = malloc(8);
3 mark_sensitive(priv_key);
4 ...
5 char* ptr = priv_key;
6 ...
7 pub_key[i] = *(ptr+i)ˆ0xA;
8 ...
9 priv_key = malloc(8);

10 mark_sensitive(priv_key);
11 }

Listing 1: Simplified code with a pointer annotated as sensitive.

Once the initial annotations are provided by the program-
mer, no other manual intervention is required. DynPTA then
processes the annotations to identify all sensitive objects and
applies a “sensitive” label to them that is propagated by DFT at
runtime. Identifying sensitive variables is straightforward based
on the accompanying annotation. In case a pointer is marked
as sensitive, we have to treat the objects that this pointer points
to as sensitive, and any memory instructions operating on these
objects must be protected. DynPTA uses Steensgaard’s pointer
analysis with a novel context-sensitive heap modeling approach
to find these memory instructions.

B. Summarization-based Context-sensitive Heap Modeling

As discussed in Section II-A2, context sensitivity is an
important aspect of modeling the memory of a program for
pointer analysis. Most pointer analysis implementations model
every call to known Libc memory allocation routines uniquely.
For example, in the assignment p = malloc(...), the
object allocated by malloc flows to the pointer p. In the
presence of memory allocation wrapper functions, however,
this modeling results in a completely context-insensitive heap.
Although the object returned by the Libc function within the
wrapper flows to a single pointer, that pointer itself flows to
all the call sites that invoke the memory allocation wrapper.

Figure 3(a) shows how existing pointer analysis algorithms
model a simplified code snippet from OpenSSL, in which
the CRYPTO_malloc wrapper is used to allocate memory
for the session (sess) and certificate (cert) objects. The
context insensitivity due to the use of the wrapper causes
overapproximation, and both sess and cert point to the same
heap object. In practice, the overapproximation is much worse,
as all memory allocations in the library are performed via calls
to CRYPTO_malloc, and thus all pointers to heap objects
would end up pointing to the same object. For our purposes,
even if just one of these pointers is marked as sensitive, then
all heap objects would become sensitive. To deal with these

SSL_SESSION_NEW {
...
sess = CRYPTO_malloc(…)
...

}

CRYPTO_malloc {
...
ret = malloc(…);
return ret;

}

ssl_cert_new {
...
cert = CRYPTO_malloc(…)
...

}

sess certobject

sess certobject object

(a) Context-insensitive Heap Modeling

(b) Context-sensitive Heap Modeling

Fig. 3: Context-insensitive (a) vs. context-sensitive (b) modeling
of OpenSSL’s heap. Without context sensitivity, pointer analysis
assumes that sess and cert point to the same object (a).
Using summarization for CRYPTO_malloc, overapproxima-
tion is reduced by creating two distinct heap objects at its two
call sites, allowing pointer analysis to distinguish that sess
and cert point to different objects (b).

challenges, we have developed a summarization-based context-
sensitive heap modeling approach tailored to the extensive use
of memory-related wrappers in popular applications.

1) Memory Allocation Wrapper Identification: The first step
in modeling a context-sensitive heap is to identify the memory
allocation wrappers used by a given application. A wrapper
typically allocates heap memory via a standard Libc memory
allocation function, such as malloc, performs some additional
sanitization and checks, and returns the pointer to the allocated
memory. This pointer, however, may not be the same one
returned by the Libc function—that pointer may have been
copied to other pointers, one of which in turn may be returned.
Similarly, in case of pool-based allocators, the memory is
allocated in pools and the wrapper returns a pointer into a chunk
within this pool. To track such potential pointer manipulation,
we perform a lightweight intraprocedural pointer analysis only
on the candidate function under consideration, and identify if
the returned pointer always points to the heap memory allocated
via known memory allocation functions provided by Libc.

Another challenge is that memory allocation wrappers may
be nested. For example, in OpenSSL, CRYPTO_malloc
internally invokes Libc’s malloc, but there are other wrappers
around CRYPTO_malloc, such as CRYPTO_remalloc and
CRYPTO_realloc, which also need to be identified. There-
fore, we begin our analysis with the known Libc memory
allocation wrappers from the previous step, but also repeat
the process of identifying memory wrappers iteratively, a
configurable number of times (currently set to five), with each
iteration including the wrappers found in the previous iterations
as known memory allocation wrappers.

2) Memory Allocation Wrapper Summarization: The typical
way of modeling a context-sensitive memory model for pointer
analysis is to reanalyze each function at each call site. In our
case, to ensure context-sensitive heap modeling, we would
have to reanalyze each memory allocation wrapper at each of
their call sites. This comes at a cost of increased analysis time,
especially when dealing with nested wrappers.

An alternative, faster approach is to use summarization [44,
45]. Summarization-based approaches analyze each function
exactly once to derive the points-to relationships between the
arguments and the return values of the function. The result
of this analysis is called the summary of the function. When
performing pointer analysis on the entire program, at each call
site of a given function, its pregenerated summary is readily
used, instead of analyzing the function again.

We employ summarization by first analyzing each memory
allocation wrapper intraprocedurally, and deriving the points-to
relationships between its arguments and return values. We store
these results in a summary that includes the information that
the memory allocation wrapper should allocate a new object on
the heap and return a reference to it. As shown in the example
of Figure 3(b), our analysis summarizes CRYPTO_malloc,
and then at each of its call sites, instead of analyzing the
wrapper again, its pregenerated summary is used. When the
pointer analysis algorithm analyzes these call sites, it creates
two different heap objects for the two invocations, and stores
separate references to them in the sess and cert pointers.

C. Pointer and Value Flow Analysis

Once we have modeled the heap allocations in a context-
sensitive manner, we analyze all pointers and memory objects
in the program using Steensgaard’s unification-based pointer
analysis algorithm [37]. Every instruction in the program is
first analyzed and constraints corresponding to that instruction
are collected. Once all constraints are collected, they are solved
according to the Steensgaard’s algorithm’s constraint resolution
rules specified in Appendix B, providing us the final points-to
sets for each pointer in the program.

Resolving all pointer references is not enough to achieve
complete data protection, as sensitive data may propagate to
other variables and objects, which we call sensitive sink sites. To
prevent potential information leakage through these variables,
DynPTA performs static value flow analysis to identify all
sensitive sink sites.

Sensitive values might flow through both direct and indirect
(via pointers) memory instructions, and thus DynPTA tracks
both direct and indirect value flows. Value flows are represented
as directed dependency chains originating at a memory load
operation and terminating at a memory store operation. A
sensitive value flow originates at a load operation from
a sensitive memory location, and results in marking the
destination memory operand of the final memory store as
sensitive. All such directed dependency chains are linked
recursively, until no new chain is found.

To track indirect value flows, we use the results of Steens-
gaard’s analysis, and consequently, the value flow analysis
provides a superset of all value flows that may result in the flow
of sensitive values. Because the sources of these indirect value
flows may include memory loads via pointers, and similarly the
destinations of these value flows may include memory stores
via pointers, this superset has imprecision associated with both
the sources and the destinations of the value flows. These
source and destination pointers may point to both sensitive

and non-sensitive memory objects. Consequently, if all objects
discovered through DynPTA’s static analysis were marked as
sensitive, we would be unnecessarily protecting a severely
overapproximated set of objects.

The actual sources and targets of the identified (potentially
sensitive) indirect memory accesses are available at runtime—at
which point it can be determined if they are indeed sensitive or
not. Below, we describe how DynPTA uses runtime information
in the form of labels maintained by scoped dynamic data flow
tracking to mitigate the overapproximation of the static analysis.

D. Scoped Dynamic Data Flow Tracking

The result of Steensgaard’s algorithm is the superset of all
possible memory accesses that may read from or write to sensi-
tive memory locations. Due to the inherent overapproximation
of points-to analysis, this set may include indirect memory
operations that actually do not access any sensitive object, as
well as indirect memory operations through partially sensitive
pointers, which access sensitive data only during some of their
invocations. Similarly, value flow analysis captures all value
flows that may involve sensitive data. At runtime, however,
only a subset of them will actually involve sensitive data.

To deal with these two cases of overapproximation, we
use scoped byte-level dynamic data flow tracking, which
relies on a shadow memory to associate labels to the tracked
memory locations. Labels are initialized for every object
that is marked as sensitive. Then, dynamic DFT is applied
only within the scope of the identified potentially sensitive
value flows, and thus only a fraction of the whole program’s
code has to be instrumented with DFT propagation logic.
The (propagated) sensitivity labels are then used to perform
lightweight lookups when dereferencing partially sensitive
pointers, to decide whether the accessed object must undergo
cryptographic transformations.

1) Dynamic DFT on Potentially Sensitive Value Flows:
Every load–store dependency chain identified as potentially
sensitive by the value flow analysis (Section IV-C) consists of
at least two instructions—a memory load and a memory store.
If a dependency chain involves an indirect memory access (via
a pointer), then DynPTA instruments all instructions in the
chain with DFT logic to propagate label information. As we
show in Section VI-B, only a fraction of all value flows (1–9%)
end up being instrumented with DFT propagation logic. At the
terminating memory store operation, DynPTA determines at
runtime whether the value being stored is sensitive (that is, if
it was loaded from a sensitive memory location) or not.

If the initial load instruction reads from a sensitive memory
location, DynPTA performs two actions: i) it applies the
sensitive label to the destination operand of the store instruction,
and ii) it encrypts the value being stored so that the in-memory
representation of the value is protected against data-leakage
attacks. Similarly, if the memory store operation performs an
indirect memory access and writes to a memory location via
a pointer, the sensitive label is applied only to the memory
object that the pointer points to at runtime. Because we include
all targets of sensitive value flows identified statically when

priv_key_e_bn

pub_key_e_bn

priv_key_mod_bn

pub_key_mod_bn

to

BIGNUM* BN_copy (BIGNUM* to, BIGNUM* from) {
...
to[0] = from[0];
to[1] = from[1];
...

}

from

Potentially sensitive value flow

Actually sensitive value flow

Fig. 4: Example of potentially sensitive (dashed arrows) and
actually sensitive (solid arrows) value flows. Sensitivity labels
are maintained using dynamic DFT to distinguish between the
two. DynPTA uses these labels to decide whether the object
written through the to pointer must first be encrypted or not.

void fun (void) {
char *pkey;
pkey = malloc(8);
mark_sensitive(pkey);
...
char *ptr = pkey;
*ptr = ‘A’;
...
ptr = malloc(8);
*ptr = ‘B’;
...

}

‘B’

pkey

ptr

SENSITIVEencr(‘A’)

Process Memory Shadow Memory

Fig. 5: In this example, ptr is a partially sensitive pointer that
can point to both sensitive and non-sensitive data. By keeping
sensitivity labels in a shadow memory, DynPTA can selectively
apply the required cryptographic transformations only when
the pointer dereference involves sensitive data.

deciding to apply the predicated transformation described in
Section IV-D2, once the sensitive label is applied to a memory
location, all memory instructions operating on that memory
location are automatically instrumented with AES operations.

Because our system relies on runtime DFT label information,
if the same load–store chain (which includes indirect memory
accesses) is invoked multiple times with sensitive and non-
sensitive values, the sensitive labels will be propagated only
to the intended targets of the sensitive value flows. Figure 4
illustrates this case using a simplified code snippet from the
OpenSSL library. The function BN_copy is invoked for the
processing of both the private and the public SSL key. The
from and to pointer arguments can point to parameters of
both the public and the private key, but only the latter needs
to be protected. Based on the label of a given object, DynPTA
decides whether the object must be encrypted or not before
writing it in memory through the to pointer.

Sensitive labels are retained for the lifetime of the object.
Sensitive heap objects have their labels cleared when the object
is freed via the free Libc function. Similarly, sensitive labels
associated with local variables (allocated on the stack) are
cleared when the function returns.

2) Runtime Handling of Potentially Sensitive Pointers:
To overcome the overapproximation of points-to analysis and
avoid costly cryptographic operations for non-sensitive data,
we instrument the dereferences of partially sensitive pointers

to perform a shadow memory lookup, and decide at runtime
whether to apply the cryptographic transformation or not, as
shown in Figure 5. Absence of a label indicates that the
accessed memory location is not sensitive, in which case the
expensive cryptographic operations are elided, and the original
memory load or store operation is performed directly. In case
of loops operating incrementally over potentially sensitive
pointers, we further optimize their label lookups as discussed
in Appendix D.

We should stress that Steensgaard’s analysis identifies only
a fraction of all memory accesses as potentially sensitive, and
only these are instrumented with label lookups. At runtime,
only the fraction of potentially sensitive memory operations
that truly access sensitive objects undergo the expensive AES
transformations. Indicatively, our evaluation shows that about
15% of all memory operations in the tested programs are
instrumented with label lookups, and at runtime, only 1–5%
of all memory accesses undergo AES transformation.

E. In-memory Data Protection using Encryption

Sensitive data remains encrypted in memory as long as
it flows within DynPTA’s protection domain. This domain
depends on the code that takes part in DynPTA’s whole-program
analysis, on which points-to analysis is performed. If sensitive
data has to flow to an external library that is not part of the
protection domain, then for compatibility reasons DynPTA first
decrypts the data. At that point, the plaintext form of sensitive
data will exist in memory, and could be leaked due to some
vulnerability. This is the main reason we require whole program
analysis (including external libraries), to ensure that DynPTA’s
protection domain spans the whole (to the extent possible)
code base of the application. Based on our experiments with
various applications and use cases (Section VI), we did not
encounter and could not identify any other situation in which
sensitive data should escape the protection domain.

Similarly to our previous work [33], we use AES-128 in
Electronic Code Book (ECB) mode to ensure the confidentiality
of sensitive data in memory. Modern processors offer hardware-
accelerated AES operations, such as the AES-NI extensions of
Intel processors, on which we rely to improve performance.

AES-128 has 10 rounds of operations for both encryption
and decryption. Each of these rounds has its own “round keys”
that are generated from the initial secret key. To avoid the
overhead of generating the round keys from scratch before
each AES operation, DynPTA pregenerates them from the
initial secret key and stores them in registers. Modern Intel
and AMD processors support SSE [46] and provide 16 128-bit
registers (XXM0–XMM15). We use these registers to store
the expanded round keys for all ten encryption round keys.
Decryption round keys are the inverse of the encryption round
keys, and Intel provides the aesimc instruction to efficiently
compute them. Applications that rely on XMM registers for
computation are not directly compatible with DynPTA. This
is not a major issue, however, because most such applications
have the option of being compiled without SSE support for
backwards compatibility reasons.

V. IMPLEMENTATION

We implemented DynPTA on top of LLVM 7.0 [47]. As
DynPTA needs to perform whole-program analysis on the
application and its dependent libraries, we use link time
optimization (LTO) with the Gold linker [48]. We include
all imported libraries in our analysis except Glibc, for which
instead we provide our own implementation of commonly used
functions (e.g., memcpy, memcmp, strcpy). Our observation
is that sensitive data is not passed to other Libc functions, but
additional ones can be supported as needed. We modified
the build scripts of the applications and libraries to use the
LLVM tools (clang, llvm-ar, and llvm-ranlib), which
operate on LLVM’s intermediate representation (IR), instead
of their counterparts from the GCC toolchain.

A. Context-sensitive Heap Modeling

The first step for modeling a context-sensitive heap is
to identify all memory allocation wrappers (as discussed in
Section IV-B), for which we have implemented an LLVM
pass. For functions that return pointers, we use the intrapro-
cedural Andersen’s points-to analysis provided by LLVM
(CFLAAAnders), to determine if the function returns a
pointer to memory allocated from within the function. Being
intraprocedural, this is a lightweight and inexpensive analysis
with few constraints, and we can thus afford to use the more
expensive (but more precise) Andersen’s algorithm.

As discussed in Section IV-B1, we must iteratively analyze
functions to identify nested wrappers. We set the iteration
limit for this process to five, which is more than enough for
the tested applications. Once the wrappers are identified, we
generate their summary and insert it at the respective call sites.

B. Steensgaard’s Analysis

We implemented our Steensgaard’s pointer analysis on top
of SVF [36], a popular static analysis framework, as an LTO
pass. SVF supports multiple variants of Andersen’s algorithm,
but does not support Steensgaard’s algorithm.

SVF operates on the LLVM IR representation by iterating
over every IR instruction and capturing their pointer constraints.
We solve each of the constraints collected, performing set unifi-
cation operations when required, as described in Section II-A1.
That is, when we discover a new points-to target t for a pointer
p, we unify the sets T and P , where t ∈ T , and P is the
set of objects that p points to. The details are provided in
Appendix C. Solving these constraints results in computing
all points-to relationships associated with the constraints. Only
when solving a constraint results in the derivation of a new call
target for an indirect function call, the constraints associated
with the newly discovered target must be recomputed. Apart
from this, every constraint is processed exactly once, allowing
the algorithm to operate in almost linear time.

We use SVF’s interfaces to export the analysis results.
This allows our implementation to be seamlessly used as
a replacement for the other variants of Andersen’s analysis
provided by SVF (we are in the process of contributing our
Steensgaard’s analysis implementation to the SVF project).

C. Static Value Flow Analysis

As discussed in Section IV-C, objects marked as sensitive
may be copied and stored to other objects and variables. The
LLVM instructions LoadInst and StoreInst are used
to read from and write to memory, respectively. To identify
sensitive value flows, we track the flows that begin from a
LoadInst reading a sensitive object, and terminate in a
StoreInst writing to a non-sensitive object.

As discussed earlier, indirect value flows via pointers are
possible, and we use the Steensgaard’s analysis results to
resolve the sources and targets of any pointers involved in
indirect value flows. Due to its inherent overapproximation,
this means that the sink sites of some of the identified value
flows may not receive any sensitive values at runtime—this
is the reason for introducing dynamic data flow tracking to
maintain sensitivity labels. To aid the DFT phase identify these
potentially sensitive value flows, we add metadata to every
instruction that is part of them.

D. Scoped Dynamic Data Flow Tracking

Similarly to existing DFT frameworks [49], DynPTA main-
tains a shadow memory located at a fixed offset in the process’
address space, which keeps a sensitivity label for each byte of
process data. To speed up label initialization and lookup, we
use hand-crafted assembly code. Note that the shadow memory
does not have to be kept secret from the attacker.

The set of tracked memory objects (located on the stack,
heap, or the global section) includes the objects annotated
directly by the programmer, as well as the rest of the objects
derived through value flow analysis. At program startup, the
only memory locations labeled as sensitive are the locations
that are explicitly marked by the programmer using DynPTA’s
mark_sensitive() function. Marking a memory location
as sensitive i) applies the sensitive label to it, and ii) encrypts the
existing data at that location. From that point on, our scoped
DFT logic propagates sensitive labels only for instructions
that contain our inserted metadata (Section V-C), i.e., the
instructions that take part in potentially sensitive value flows.

If a LoadInst reads from a memory location marked
as sensitive, the location of the terminating StoreInst is
also labeled as sensitive. At that point, we insert an LLVM
BranchInst that checks if the value about to be stored is
marked as sensitive, in which case it encrypts the value before
storing it. Any further operations on this object will always
undergo AES transformation, as the label is maintained for
the lifetime of the object. In this way, we apply AES only to
objects that are sinks for truly sensitive value flows.

In addition to properly maintaining sensitive value flows,
Steensgaard’s analysis provides us with every LoadInst and
StoreInst that may access sensitive data. For each of these
instructions, we again perform a label lookup to determine
whether the memory operand is actually sensitive. In that
case, an LLVM BranchInst invokes the corresponding AES
operations—otherwise the memory access proceeds normally.

TABLE I: Applications used for performance evaluation.

Application Protected KLOC Bitcode DynPTA
Data Size Compilation

Nginx + OpenSSL Private Key 389 8M 50.6 min
Httpd Password 179 3.7M 11.0 min
Lighttpd + ModAuth Password 83 1.9M 2.8 min
MbedTLS server Private Key 54 726K 1.3 min
OpenVPN Private Key 329 3.5M 59.1 min
Memcached + Auth. Password 71 1.1M 1.0 min
ssh-agent Private Key 52 640K 1.3 min
Minisign Private Key 45 1.2M 37 sec

VI. PERFORMANCE EVALUATION

We evaluated DynPTA with a set of eight popular applica-
tions. In each case, we annotate sensitive data such as passwords
and private keys to be protected. Every experiment is performed
20 times, and we report averages. We run all our applications
under test on a machine with an Intel Core i7-6700 CPU and 32
GB of RAM, running Ubuntu 19.10 and Linux kernel 5.3.0-40.
For server–client experiments, we run the client on a machine
with an Intel Xeon E5-2620 CPU and 64 GB of RAM, running
Ubuntu 18.04 and Linux kernel 4.15.0-106. Both the server
and client machines were on the same local 1Gbit/s network.

A. Applications

Table I lists the applications used in our evaluation, and the
respective data annotated as sensitive. We included popular
web servers, VPN servers, and desktop utilities. We also report
the number of source code lines, the LLVM bitcode size, and
the time that DynPTA takes to generate the hardened binaries.

Nginx: We built Nginx with the HTTP_SSL_module
enabled and linked it with the OpenSSL library. We use
LLVM’s link time optimization (LTO) to generate the combined
bitcode that includes the main Nginx executable and all libraries.
Our use case for DynPTA is to protect the parameters of the SSL
private key. These are in BIGNUM objects, which are referred
to by pointers stored in the rsa field of the pkey object. The
function ssl_set_pkey initializes these pointers, which we
mark as sensitive. As shown in Table I, the use of Steensgaard’s
algorithm [37] allows DynPTA to complete in less than an
hour all its analysis and instrumentation passes. Indicatively,
an Andersen’s pass alone for the same code requires almost
11 hours to complete.

Apache Httpd with Authentication: We used LTO to link
Httpd statically with Apache’s Portable Runtime (APR). Httpd
supports password protection for certain directories through
the ModAuth module. The password is stored on the heap
and is referred to through the pointer file_password (in
mod_authn_file.c), which we annotate as sensitive. This
object is allocated via the wrapper ap_getword(), provided
by APR. Our context-sensitive heap modeling successfully
identifies this function as a memory allocation wrapper.

Lighttpd: Similarly to Httpd, Lighttpd also
supports ModAuth for password-protecting files and
directories. The pointer password_buf in function
mod_authn_file_htpasswd_get is initialized to store
the address of the password, and we annotate it as sensitive.

0 100K 200K 300K 400K 500K 600K 700K 800K 900K 1M
Total Instructions

Minisign
Ssh-agent

Memcached
OpenVPN
MbedTLS
Lighttpd

Httpd
Nginx

0.9%
9.16%

0.04%
8.62%

9.88%
8.25%

9.83%
7.2%

Original Original + Scoped DFT

Fig. 6: New instructions added due to scoped DFT for
potentially sensitive value flows.

0 2 4 6 8 10 12 14 16 18
% of Memory Instructions

Minisign
Ssh-agent

Memcached
OpenVPN
MbedTLS
Lighttpd

Httpd
Nginx

12.23%
15.21%

0.98%
16.62%

11.6%
13.12%

13.66%
12.79%

Fig. 7: Percentage of protected memory instructions.

MbedTLS server: MbedTLS is a lightweight TLS library
which also provides a simple TLS server. Similarly to OpenSSL,
MbedTLS uses a custom data type to represent multi-precision
integers called mbedtls_mpi. The SSL private key is
stored within mbedtls_rsa_context, in objects of type
mbedtls_mpi, which we annotate as sensitive.

OpenVPN: We configured OpenVPN to work with OpenSSL
certificates, and used LTO to build the combined LLVM IR
bitcode. Similarly to Nginx, we annotate the parameters of the
SSL private keys as sensitive.

Memcached with Authentication: When Memcached is
compiled with LibSASL, client connections can be pro-
tected with a password. The variable buffer in function
sasl_server_userdb_checkpass stores this password,
which we mark as sensitive.

ssh-agent: Private SSH keys are typically password-protected
on disk, and ssh-agent conveniently keeps them in memory
so that users do not have to re-type the password. The private
key is stored in an object of type ssh_key (initialized in
function sshkey_new), which we mark as sensitive.

Minisign: Minisign is a simple file signing tool that uses
Libsodium for hashing and signing. The private key used for
signing is stored in an object of type SeckeyStruct, which
we mark as sensitive.

B. Scoped Data Flow Tracking

1) Static Instrumentation: As discussed in Section IV-D,
DynPTA uses scoped DFT to track sensitive value flows
and maintain labels for sensitive data. Figure 6 shows the

0 10 20 30 40 50 60 70 80 90 100
% of Executed Memory Instructions

Minisign
ssh-agent

Memcached
OpenVPN
MbedTLS
Lighttpd

Httpd
Nginx

Unmodified Label Lookup Label Lookup + AES

Fig. 8: At runtime, the vast majority of memory accesses
proceed normally. Label lookups are performed only for up to
24% of all memory accesses (Nginx), and only a fraction of
those (up to 4% for Nginx) involve AES operations.

percentage of new instructions added for scoped DFT, compared
to the original program. Among the evaluated applications, the
maximum percentage of additional instructions for the DFT
logic is only 9.08%.

Similarly, only a fraction of all memory load and store
instructions have to be instrumented to protect sensitive data.
The instrumentation in this case consists of a lightweight
shadow memory lookup, which invokes the AES transformation
in case the data is indeed sensitive. Figure 7 shows the
percentage of memory instructions that are instrumented for
data protection. In the worst case (OpenVPN), only 16.62%
of all memory operations have to be instrumented.

2) Runtime Performance Benefit: Without scoped DFT, all
protected memory accesses (Figure 7) would always have
to undergo expensive AES transformation. By introducing
a lightweight label lookup, AES can be avoided when the
accessed data turns out to be non-sensitive.

To assess the performance benefit of this approach, we
first compare the cost of a shadow memory lookup with the
cost of the AES data transformation using a microbenchmark.
We performed three experiments by instrumenting one billion
single-byte memory accesses with i) a label lookup, ii) AES
encryption, and iii) AES decryption, which took 3.3, 14.2, and
16.5 seconds to complete, respectively. This means that the
cost of AES encryption and decryption is at least 430% and
500% that of a label lookup.

Then, we use a custom Pin [50] tool to record how many
memory accesses involve label lookups, and among those, how
many perform AES operations on the accessed data. As shown
in Figure 8, shadow memory lookups are performed only for
up to 24% of all memory accesses, while only up to 4% of
them undergo expensive AES cryptographic operations.

Without scoped DFT, all protected memory accesses would
always involve AES, resulting in a prohibitively high runtime
overhead. To demonstrate this, we applied DynPTA without
scoped DFT on MbedTLS. This required significant amount of
effort because applying AES to all potentially sensitive memory
instructions identified by the pointer analysis and value flow
analysis involves many unintended objects, such as file handles

and network sockets. These objects are passed directly to Libc
interfaces and used by the kernel. Ensuring that every Libc or
kernel interface appropriately decrypts (and re-encrypts) these
objects requires significant engineering effort and therefore we
did not attempt it for the rest of the (more complex) applications.
When removing scoped DFT, the runtime overhead for running
MbedTLS server increases from 4.1% to 56%. We provide
the details of this experiment and the rest of our performance
evaluation results in the following section.

C. Runtime Overhead

1) Real-world Use Cases: To evaluate the runtime overhead
of DynPTA, we harden the applications listed in Table I to
protect their sensitive data (listed in the second column), and
drive them using various workloads. For all applications we
use their default configuration. For web servers (Nginx, Httpd,
Lighttpd) we use ApacheBench [51] to perform five rounds of
10,000 requests, with each round requesting a file of increasing
size (from 4KB to 1MB).

Figures 9(a)–9(c) show the overhead of DynPTA when pro-
tecting the TLS key for Nginx and the authentication password
for Httpd and Lighttpd. In all cases, the in-memory protected
objects are accessed only during connection establishment, and
the AES transformations are performed only at that time. We
observe the highest overhead (19%) for Nginx, because the
TLS handshake involves multiple complex operations to derive
a new session key from the (protected) TLS private key per
connection. In contrast, password-based authentication involves
a one-time decryption and a short sequence of byte-by-byte
comparisons of the user-provided password with the password
on file. This results in a lower overhead ranging from 6.5% in
the worst case for the shortest response size, to an amortized
1.86% for 1MB responses. Nginx’s overhead is not amortized
as the response size increases, because many label lookups
(proportional to the response size) still have to be performed
(as shown in Figure 8, Nginx has at least twice as many label
lookups compared to other applications).

For the rest of the applications (Figure 9(d)), we used a
variety of workloads. For the MbedTLS server, we used its TLS
client to perform 100,000 requests for a 4KB file over the same
connection (default behavior), which has also been the main
use case in previous selective data protection works [31, 33].
The overhead in this case is just 4%, as the protected private
key is used only during the initial connection establishment.
Indicatively, although this result is not directly comparable to
previous works due to the different experimental environment,
for the same server application, workload, and protected data,
the reported overhead for in-memory encryption [33] is 13%
and for DataShield [31] is 35%.

For OpenVPN, we downloaded a 100KB file 10,000 times
over a VPN connection using ApacheBench, observing an
overhead of 10.47%. Similarly to Nginx, although most of
the expensive AES operations happen during connection
establishment, there is still a significant amount of label
lookups throughout the whole duration of the experiment. For
Memcached, we used its benchmarking tool Mutilate [52] to

4KB 50KB 100KB 500KB 1MB
Response Size

0

50

100

150

200

250

300

350

Ti
m

e
in

 s
ec

on
ds

19.17%
18.77% 18.76%

18.31%

17.92%

(a) Nginx
Baseline
DynPTA

4KB 50KB 100KB 500KB 1MB
Response Size

0

25

50

75

100

125

150

175

200

225

5.8%
3.13% 2.23%

2.15%

1.86%

(b) Httpd
Baseline
DynPTA

4KB 50KB 100KB 500KB 1MB
Response Size

0

25

50

75

100

125

150

175

200

225

6.5%
2.84% 2.77%

2.44%

1.87%

(c) Lighttpd
Baseline
DynPTA

MbedTLS
OpenVPN

Memcached
ssh-agent

Minisign
0

25

50

75

100

125

150

175

4.08% 9.81% 0.32%

3.15%

22.02%

(d) Other Applications
Baseline
DynPTA

Fig. 9: Runtime overhead of DynPTA for popular web servers (a)–(c) and other applications (d).

generate five billion operations with its default configuration
(get/set ratio of 0.5, key size of 30 bytes, value size of 400
bytes). DynPTA’s overhead in this case is negligible (0.32%),
because the variable that stores the protected password is not
pointed to by any pointer and is not copied to any other variable,
requiring only a fraction (about 1%) of memory accesses to
be protected, as also shown in Figure 8.

For the two client-side utilities, we performed 500 logins to
another host in the same subnet that triggered ssh-agent, and
signed a 1GB file using Minisign. The overhead for ssh-agent
is just 3.15%, while Minisign exhibits the highest overhead
among all our use cases at 22%. Minisign operates by first pre-
hashing the file and then signing the hash value byte-by-byte,
with every iteration of the signing loop requiring a decryption
of the private key, resulting in such a high overhead—which
though is expected as a fully compute-bound use case.

2) Increasing the Amount of Sensitive Data: The key insight
behind selective data protection, and DynPTA in particular, is
that instead of protecting all data by spending as few extra
CPU cycles per memory access as possible, we protect only
data that is really security-critical, and thus afford to spend
more CPU cycles for only a fraction of memory accesses. As
expected, however, any performance benefits will diminish as
the amount of protected data increases, and for this reason we
performed some additional experiments to explore this tradeoff.

We used MbedTLS to explore a worst-case scenario by
marking additional non-critical data as sensitive. Specifically,
besides the SSL private key, we progressively mark other fields
of the mbedtls_ssl_context data structure as sensitive.
These include SSL handshake parameters, configuration options,
and input/output buffers. In each round we mark more fields as
sensitive, until the whole data structure is marked as sensitive.

Figure 10 shows how the overhead increases modestly from
4% to 11% in the first four measurement rounds, as we
keep marking mostly configuration-related fields as sensitive.
Marking the input and output buffers as sensitive in the final two
rounds increases the overhead considerably to 46%, because
these buffers are used as part of every transmission, in contrast
to the private key and the rest of the fields, which are accessed
only during the TLS handshake.

Besides MbedTLS, we also experimented with Nginx by
enabling HTTP password authentication and protecting the
in-memory passwords (in addition to the SSL private key),

S1 S1-S2 S1-S3 S1-S4 S1-S5 S1-S6
Sensitive Annotated Data

0
5

10
15
20
25
30
35
40
45
50

O
ve

rh
ea

d
(%

)

4.08% 5.22%
9.44% 10.92%

34.16%

45.75%S1: SSL private key
S2: SSL config
S3: SSL handshake params
S4: Remaining fields in mbedtls_ssl_context
S5: Input buffers
S6: Output buffers

Fig. 10: Runtime overhead of MbedTLS for an increasing
amount of protected (non-critical) data.

observing only a minor increase of 1% in the overall per-
formance overhead. We discuss in detail this experiment in
Appendix F. Finally, we also performed some microbenchmarks
to further study the benefits of scoped DFT as the percentage
of sensitive data in the program increases, the results of which
we provide in Appendix G. Our main finding is that once
sensitive data exceeds 70–80% of all data, the scoped DFT
and label lookups become more costly than simply encrypting
all objects identified by the points-to analysis.

VII. SECURITY EVALUATION

A. Heartbleed

Heartbleed [5] is a heap overflow vulnerability due to a
missing bounds check in the TLS Heartbeat feature of OpenSSL.
An attacker can send a malicious request that causes a buffer
over-read in the server’s memory and allows the leakage of
sensitive data, including the private server SSL keys, back to
the attacker through the generated response.

We compiled Nginx with OpenSSL v1.0.1f and verified
that the PoC exploit [53] was indeed capable of leaking the
private TLS key. We observed that the leakage of the key was
dependent on the heap allocations, that is, the address of the
private key and the address of the vulnerable request buffer that
is over-read. The private key is initialized during server startup
and typically occupies a low address on the heap. To leak the
private key, the vulnerable request buffer must be allocated
below this address. During experimentation, we observed that
there are “holes” below the address of the private key on the

heap that occasionally would be allocated to the vulnerable
request buffer, allowing the exfiltration of the private key.

We then marked the private key as sensitive, as described in
Section VI-A, and hardened the server using DynPTA. Using
the above PoC exploit, we repeatedly verified that whenever
the private key was leaked, it was always encrypted.

B. Spectre

Transient execution vulnerabilities allow the leakage of
otherwise inaccessible data from memory, and are thus another
class of attacks DynPTA can defend against. We evaluated
DynPTA against this type of attacks using two Spectre [18]
variants for which we could obtain PoC exploits [40, 41].

Intel CPUs contain a pattern history table (PHT) that
uses the history of past taken/not-taken branches for branch
prediction. The Spectre-PHT variant poisons the PHT, causing
mispredictions in the direction of conditional branches, which
can be used by attackers to bypass bounds checks in the
program, and speculatively load sensitive data into the cache.
From there, data can be leaked via various cache side-channel
attacks. The Spectre-PHT PoC [40] contains a bounds check
which is bypassed to leak a secret string.

Besides the PHT, CPUs also contain a branch target buffer
(BTB) that uses the history of past branch targets for branch
target prediction. The Spectre-BTB variant poisons the BTB
to steer transient execution to special “gadgets” found in the
program, which can be used to leak sensitive data. Similarly
to the previous exploit, the Spectre-BTB PoC [41] contains
a secret string that is leaked by redirecting the speculative
execution to an appropriate gadget.

For both PoCs, we marked the secret string as sensitive, and
used DynPTA to harden the exploit program (more details and
the code for both PoCs are provided in Appendix E). When the
string is speculatively accessed, its encrypted form is loaded in
the cache. Therefore, the confidentiality of the string is always
preserved when being leaked through a cache side channel.

VIII. LIMITATIONS AND DISCUSSION

a) Performance Optimizations: Although DynPTA allows
us to scale selective data protection to larger applications
with modest overhead, there is still opportunity for further
optimizations that will lower the overhead even further. Label
lookups can disrupt cache locality, resulting in a higher number
of cache misses. We plan to investigate this issue further and
adapt the shadow memory implementation accordingly.

DynPTA performs context-sensitive modeling only for heap
analysis. Other regions in the program code, such as code
hotspots and critical objects, could also benefit from selective,
summary-based, context sensitivity. Smaragdakis et al. [54,
55] discussed selective context sensitivity with respect to Java
programs. Similarly, Sridharan et al. [56] proposed refinement-
based context sensitive pointer analysis. In their current form,
these techniques are applicable only to Java programs, but we
plan to investigate their adaptation for C/C++ programs.

Our DFT-based optimization is not limited to Steensgaard’s
algorithm, and can improve the precision of any static pointer

analysis algorithm. In particular, TeaDSA [57] is a promising
unification-based pointer analysis algorithm that aims to limit
oversharing and thus improve scalability. Despite our efforts,
however, we could not successfully use it to run larger
applications such as Nginx with OpenSSL.

Iodine [58] successfully uses profiling to improve the
performance of DFT. Similarly, various works have presented
techniques to optimize dynamic flow tracking [59, 60, 61, 62,
63]. We plan to investigate the application of these techniques
to improve the performance of our system.

b) Ensuring Data Integrity: DynPTA protects all memory
operations to sensitive objects with strong AES encryption.
Encryption is not enough though to fully guarantee data
integrity, as the attacker may be able to swap encrypted objects,
or corrupt existing values (altering protected data with arbitrary
values is still not possible, as the encryption key remains
inaccessible to the attacker) [33]. To that end, we plan to
extend our data protection mechanism with an HMAC-based
scheme to ensure data integrity.

c) Leaking Register Contents via Vector Register Sam-
pling: Vector Register Sampling [64] is a recent speculative
execution vulnerability that might allow partial data values to
be leaked from vector registers under certain microarchitectural
conditions. Although this vulnerability could affect the security
of our system, as we rely on vector registers to store the AES
round keys, it was patched via a microcode update [65].

IX. RELATED WORK

Data-only attacks were introduced more than a decade
ago [1], but have only recently started gaining popularity [2,
3, 4, 6, 66, 67]. On the other hand, transient execution attacks
such as Spectre [18] are more recent, and can leak secrets from
a process’s memory through microarchitectural side channels.
In the following, we discuss various types of defenses that can
be used against these attacks.

a) Memory Safety: Defenses based on memory safety
ensure that all pointers access their intended referents, thus
ensuring spatial safety. SoftBound [14] and CCured [68]
maintain bounds information for each pointer and ensure
spatial safety by performing bounds checks during all pointer
dereferences. AddressSanitizer (ASan) [69] and Baggy Bounds
Checking [15] associate metadata with each object and detect
out-of-bounds memory accesses. In general, defenses based on
memory safety use whole-program instrumentation to protect
all program data and require every memory instruction to be
instrumented with bounds checks. Therefore, they incur a very
high runtime overhead. Moreover, these techniques do not
protect against transient execution attacks.

DataShield [31] enforces memory safety at an object
granularity by partitioning process memory into sensitive and
non-sensitive regions. It then performs fine-grained bounds
checks for sensitive pointers and coarse-grained bounds checks
for non-sensitive pointers. Similarly, ConfLLVM [70] partitions
the memory into private and public regions and ensures that
every pointer points to its own memory region. Moreover,
ConfLLVM requires the programmer to classify all arguments

of a function as public or private, whereas we only require
annotating the initial sensitive data. As these are software-based
defenses, they can protect against data leakage attacks, but not
against transient execution attacks.

b) Data Flow Integrity: Dataflow Integrity (DFI) [16]
ensures that all memory accesses adhere to valid data flow
paths identified by static analysis. Therefore, any static analysis
imprecision results in false negatives. DFI requires every
memory instruction to be instrumented with software checks,
leading to high overhead (up to 104% for SPEC [71]).
Hardware-based DFI techniques [72, 73] have lower overhead,
but require custom hardware. Moreover, DFI cannot protect
against transient execution attacks.

c) Isolation-based Defenses: Many works rely on memory
isolation to protect security-critical data [30, 32, 42, 74, 75,
76, 77, 78]. Glamdring [32] moves all sensitive-annotated data
into SGX enclaves, and uses static dataflow analysis [79] and
static backward slicing [80] to transform all functions that
may access the sensitive data to use the appropriate SGX
entry and exit routines. ERIM [42] and LibMPK [81] provide
hardware-enforced isolation for sensitive code and data using
Intel Memory Protection Keys (MPK) [82]. However, Intel
MPK is vulnerable to transient execution attacks [7], therefore
these solutions cannot protect against them. Donky [83] is
a hardware-software codesign for the RISC-V [84] Ariane
CPU, offering strong in-process isolation based on memory
protection domains. The xMP [30] system relies on Xen [85]
to protect selective sensitive data. However, the programmer
has the burden of manually inserting the xMP domain switches,
making the process cumbersome and error-prone. Overall,
unlike DynPTA, which provides fine-grained protection, these
isolation-based approaches provide page-level protection and
this requires refactoring the data layout.

Ginseng [74] ensures that sensitive data is always stored in
registers and relies on ARM TrustZone to protect against an
untrusted operating system. PT-rand [75] protects kernel page
tables by randomizing and hiding their locations.

For Android applications, FlexDroid [86] introduces an
isolation mechanism that provides fine-grained access control
for third-party Android libraries. On the browser front, privilege
separation techniques such as Chrome’s Site Isolation [87] and
Firefox’s RLBox [88] are being widely deployed [89].

Various works have presented techniques to assist program
partitioning and privilege separation [21, 90, 91, 92, 93, 94].
These techniques cannot be easily applied to the problem
of tracking sensitive memory operations because they are
specific to privilege separation. PtrSplit [92] is a type-based
technique that allows the use of only intra-procedural analysis
instead of requiring global interprocedural analysis. However, it
assumes that void pointers are not used as function arguments.
Based on experience with codebases such as OpenSSL, this
assumption does not always hold.

d) In-memory Transformation: Defenses based on in-
memory transformation [33, 95] change the representation
of memory-resident objects using encryption. Data space
randomization [95] transforms in-memory data using simple

XOR, and was originally designed to defend against code
injection attacks. It thus cannot prevent data leakage, as the
memory-resident XOR keys can be leaked as well, and the
XOR transformation can be reversed. CoDaRR [96] extends
DSR to periodically rerandomize the masks used to provide
probabilistic guarantees against disclosure attacks, but suffers
from the same weaknesses as DSR due to the use of XOR.
HARD [97] is an ISA extension to the RISC-V architecture to
support DSR at the hardware level.

e) Defenses against Transient Execution Attacks: Ret-
poline [98] mitigates Spectre [18] by hardening all branch
instructions against speculative execution. ConTExT [99]
proposes a backwards-compatible architectural change that
mitigates transient execution attacks. SpecFuzz [100] performs
fuzzing to determine which branches are benign and which
can lead to speculative execution, and removes hardening from
the benign ones, thus lowering the overhead. SPECCFI [101]
proposes a hardware extension that uses CFI [102] to determine
whether speculative execution targets a legal destination or not.
Blade [103] stops the leakage of sensitive data via speculative
execution by cutting the dataflow (e.g., using memory fences)
from expressions that speculatively introduce secrets, to those
that leak them through the caches. Swivel [104] hardens
WebAssembly [105] applications against Spectre attacks.

The above defenses focus on hardening all or a subset of all
branches in a program, without considering whether speculative
execution might actually leak sensitive data. In comparison,
DynPTA focuses on preventing the leakage of only sensitive
data, obviating the need for the above mitigations.

X. CONCLUSION

DynPTA combines static and dynamic analysis to provide a
practical defense against data leakage attacks due to memory
disclosure or transient execution vulnerabilities. DynPTA
requires developers to just mark certain objects in the program’s
memory as sensitive, and automatically derives all sensitive
memory operations, which are then protected using encryption.
To ameliorate the inherent overapproximation of static pointer
analysis, DynPTA uses a scoped form of data flow tracking that
maintains sensitivity labels and tracks their flow over the set
of instructions identified by the pointer analysis. This allows
DynPTA to ensure the confidentiality of sensitive data in real-
world applications with modest overhead. As part of our future
work, we plan to implement support for data integrity, and also
investigate further optimizations to our scoped DFT logic that
will reduce the runtime overhead even further.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their valuable
feedback, and our PC point of contact, Yajin Zhou, for helping us
revise our manuscript. We also thank Hamed Ghavamnia for his
valuable comments on an earlier draft of this paper. This work was
supported by the Office of Naval Research (ONR) through award
N00014-17-1-2891, the National Science Foundation (NSF) through
award CNS-1749895, and the Defense Advanced Research Projects
Agency (DARPA) through award D18AP00045.

REFERENCES

[1] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in Proceedings of the 14th USENIX
Security Symposium, August 2005.

[2] D. Moghimi, “Subverting without EIP,” https://moghimi.org/blog/
subverting-without-eip.html, 2014.

[3] F. Falcon, “Exploiting adobe flash player in the era of control flow
guard,” in Black Hat Europe, 2015.

[4] B. Sun, C. Xu, and S. Zhu, “The power of data-oriented attacks:
Bypassing memory mitigation using data-only exploitation,” in Black
Hat Asia, 2017.

[5] “The heartbleed bug,” https://heartbleed.com/, 2020.
[6] R. Rogowski, M. Morton, F. Li, K. Z. Snow, F. Monrose, and

M. Polychronakis, “Revisiting browser security in the modern era:
New data-only attacks and defenses,” in Proceedings of the 2nd IEEE
European Symposium on Security & Privacy (Euro S&P), April 2017.

[7] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in Proceedings of the 28th
USENIX Security Symposium, 2019, pp. 249–266.

[8] J. Voisin, “Spectre exploits in the ”wild”,” https://dustri.org/b/spectre-
exploits-in-the-wild.html, 2020.

[9] “Virus total: Spectre exploit”,” https://www.virustotal.com/gui/file/
6461d0988c835e91eb534757a9fa3ab35afe010bec7d5406d4dfb30ea767a62c/
detection, 2021.

[10] S. Rottger and A. Janc, “Leaky page: Spectre proof-of-concept for
Chrome browser,” https://leaky.page/, 2021.

[11] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with WIT,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2008, pp. 263–277.

[12] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in Proceedings of the USENIX
Annual Technical Conference (ATC), 2002, pp. 275–288.

[13] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “CETS:
Compiler-enforced temporal safety for C,” in Proceedings of the
International Symposium on Memory Management (ISMM), 2010, pp.
31–40.

[14] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly compatible and complete spatial memory safety for C,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2009, pp. 245–258.

[15] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy Bounds
Checking: An efficient and backwards-compatible defense against out-of-
bounds errors,” in Proceedings of the 18th USENIX Security Symposium,
2009, pp. 51–66.

[16] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006, pp. 147–160.

[17] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Everything you
want to know about pointer-based checking,” in Proceedings of the 1st
Summit on Advances in Programming Languages, (SNAPL), 2015, pp.
190–208.

[18] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in Proceedings of the 40th
IEEE Symposium on Security and Privacy (S&P), May 2019.

[19] A. Mambretti, A. Sandulescu, A. Sorniotti, W. Robertson, E. Kirda, and
A. Kurmus, “Bypassing memory safety mechanisms through speculative
control flow hijacks,” in Proceedings of the 6th IEEE European
Symposium on Security & Privacy (EuroS&P), 2021.

[20] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege escalation,”
in Proceedings of the 12th USENIX Security Symposium, 2003.

[21] D. Brumley and D. Song, “Privtrans: Automatically partitioning
programs for privilege separation,” in Proceedings of the 13th USENIX
Security Symposium, 2004.

[22] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell et al., “SCONE:
Secure Linux containers with Intel SGX,” in Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation
(OSDI), 2016, pp. 689–703.

[23] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation and
security isolation of library OSes for multi-process applications,” in

Proceedings of the Ninth European Conference on Computer Systems,
2014, pp. 1–14.

[24] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP), 1993, pp. 203–
216.

[25] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula,
“XFI: Software guards for system address spaces,” in Proceedings of
the 7th Symposium on Operating Systems Design and Implementation
(OSDI), 2006.

[26] B. Zeng, G. Tan, and G. Morrisett, “Combining control-flow integrity
and static analysis for efficient and validated data sandboxing,” in
Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security (CCS), 2011.

[27] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,” in
Proceedings of the 12th European Conference on Computer Systems
(EuroSys), 2017, pp. 437–452.

[28] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory
disclosure with efficient hypervisor-enforced intra-domain isolation,”
in Proceedings of the 22nd ACM Conference on Computer and
Communications Security (CCS), 2015, pp. 1607–1619.

[29] J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy for
user applications on a per-page basis,” in ACM International Conference
on Virtual Execution Environments (VEE), 2008, pp. 71–80.

[30] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-
chronakis, “xMP: Selective memory protection for kernel and user
space,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2020, pp. 584–598.

[31] S. A. Carr and M. Payer, “DataShield: Configurable data confidentiality
and integrity,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, 2017, pp. 193–204.

[32] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza et al.,
“Glamdring: Automatic application partitioning for Intel SGX,” in
Proceedings of the USENIX Annual Technical Conference (ATC), 2017,
pp. 285–298.

[33] T. Palit, F. Monrose, and M. Polychronakis, “Mitigating data leakage
by protecting memory-resident sensitive data,” in Proceedings of the
35th Annual Computer Security Applications Conference. ACM, 2019,
pp. 598–611.

[34] Intel, “Intel software guard extensions,” https://software.intel.com/
content/www/us/en/develop/topics/software-guard-extensions.html,
2020.

[35] L. O. Andersen, “Program analysis and specialization for the C
programming language,” Ph.D. dissertation, University of Cophenhagen,
1994.

[36] Y. Sui and J. Xue, “SVF: Interprocedural static value-flow analysis
in LLVM,” in Proceedings of the 25th international conference on
compiler construction. ACM, 2016, pp. 265–266.

[37] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1996, pp. 32–41.

[38] M. Hind and A. Pioli, “Which pointer analysis should I use?” in
Proceedings of the 2000 ACM SIGSOFT international symposium on
Software testing and analysis, 2000, pp. 113–123.

[39] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?”
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, 2001, pp. 54–61.

[40] “Proof of concept – Spectre variant 1,” https://github.com/crozone/
SpectrePoC, 2020.

[41] “Proof of concept – Spectre variant 2,” https://github.com/Anton-Cao/
spectrev2-poc, 2020.

[42] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, efficient in-process isolation
with protection keys (MPK),” in Proceedings of the 28th USENIX
Security Symposium, 2019, pp. 1221–1238.

[43] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in Proceedings
of the 27th USENIX Security Symposium, 2018.

[44] L. Shang, X. Xie, and J. Xue, “On-demand dynamic summary-based
points-to analysis,” in Proceedings of the Tenth International Symposium
on Code Generation and Optimization, 2012, pp. 264–274.

https://moghimi.org/blog/subverting-without-eip.html
https://moghimi.org/blog/subverting-without-eip.html
https://heartbleed.com/
https://dustri.org/b/spectre-exploits-in-the-wild.html
https://dustri.org/b/spectre-exploits-in-the-wild.html
https://www.virustotal.com/gui/file/6461d0988c835e91eb534757a9fa3ab35afe010bec7d5406d4dfb30ea767a62c/detection
https://www.virustotal.com/gui/file/6461d0988c835e91eb534757a9fa3ab35afe010bec7d5406d4dfb30ea767a62c/detection
https://www.virustotal.com/gui/file/6461d0988c835e91eb534757a9fa3ab35afe010bec7d5406d4dfb30ea767a62c/detection
https://leaky.page/
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://github.com/crozone/SpectrePoC
https://github.com/crozone/SpectrePoC
https://github.com/Anton-Cao/spectrev2-poc
https://github.com/Anton-Cao/spectrev2-poc

[45] R. P. Wilson and M. S. Lam, “Efficient context-sensitive pointer analysis
for c programs,” ACM Sigplan Notices, vol. 30, no. 6, pp. 1–12, 1995.

[46] “Streaming SIMD extensions,” https://software.intel.com/sites/
landingpage/IntrinsicsGuide/, 2020.

[47] “The LLVM compiler infrastructure,” https://llvm.org/, 2020.
[48] “GNU binutils,” https://sourceware.org/binutils/, 2020.
[49] “DataFlowSanitizer,” https://clang.llvm.org/docs/

DataFlowSanitizer.html, 2020.
[50] “Pin 3.2 user guide,” https://software.intel.com/sites/landingpage/

pintool/docs/81205/Pin/html/, 2020.
[51] “Apache HTTP server benchmarking tool,” https://httpd.apache.org/

docs/2.4/programs/ab.html, 2020.
[52] “Mutilate – a memcached load generator,” https://github.com/leverich/

mutilate, 2020.
[53] “Heartbleed proof-of-concept,” https://github.com/mpgn/heartbleed-

PoC, 2020.
[54] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “A principled approach

to selective context sensitivity for pointer analysis,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 42, no. 2, pp.
1–40, 2020.

[55] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-
to analysis,” ACM SIGPLAN Notices, vol. 48, no. 6, pp. 423–434,
2013.

[56] M. Sridharan and R. Bodı́k, “Refinement-based context-sensitive points-
to analysis for Java,” ACM SIGPLAN Notices, vol. 41, no. 6, pp. 387–
400, 2006.

[57] J. Kuderski, N. Lê, A. Gurfinkel, and J. Navas, “TeaDsa: Type-aware
DSA-style pointer analysis for low level code,” FMCAD, 2018.

[58] S. Banerjee, D. Devecsery, P. M. Chen, and S. Narayanasamy, “Iodine:
fast dynamic taint tracking using rollback-free optimistic hybrid analysis,”
in Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2019, pp. 490–504.

[59] A. Henderson, L. K. Yan, X. Hu, A. Prakash, H. Yin, and S. McCamant,
“DECAF: A platform-neutral whole-system dynamic binary analysis
platform,” IEEE Transactions on Software Engineering, vol. 43, no. 2,
pp. 164–184, 2016.

[60] A. Davanian, Z. Qi, Y. Qu, and H. Yin, “DECAF++: Elastic whole-
system dynamic taint analysis,” in 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2019), 2019, pp.
31–45.

[61] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “TaintEraser:
Protecting sensitive data leaks using application-level taint tracking,”
ACM SIGOPS Operating Systems Review, vol. 45, no. 1, pp. 142–154,
2011.

[62] J. Galea and D. Kroening, “The taint rabbit: Optimizing generic taint
analysis with dynamic fast path generation,” in Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security,
2020, pp. 622–636.

[63] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[64] Intel, “Vector register sampling / cve-2020-0548 , cve 2020-8696 /
intel-sa-00329,” https://software.intel.com/security-software-guidance/
advisory-guidance/vector-register-sampling, 2021.

[65] Intel, “Microcode update guidance,” https://www.intel.com/content/dam/
www/public/us/en/security-advisory/documents/sa00329-microcode-
update-guidance.pdf, 2021.

[66] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2016, pp. 969–986.

[67] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
2018, pp. 1868–1882.

[68] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“CCured: Type-safe retrofitting of legacy software,” ACM Trans. Pro-
gram. Lang. Syst., vol. 27, no. 3, pp. 477–526, May 2005.

[69] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in Proceedings of the USENIX
Annual Technical Conference, 2012, pp. 309–318.

[70] A. Brahmakshatriya, P. Kedia, D. P. McKee, D. Garg, A. Lal, A. Rastogi,
H. Nemati, A. Panda, and P. Bhatu, “ConfLLVM: A compiler for

enforcing data confidentiality in low-level code,” in Proceedings of the
Fourteenth EuroSys Conference 2019, 2019, pp. 1–15.

[71] “SPEC CPU,” https://www.spec.org/benchmarks.html#cpu, 2020.
[72] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and

Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 1–17.

[73] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity.” in NDSS, 2016.

[74] M. H. Yun and L. Zhong, “Ginseng: Keeping secrets in registers when
you distrust the operating system,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2019.

[75] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “PT-Rand: Practical
mitigation of data-only attacks against page tables,” in Proceedings of
the Network and Distributed System Security Symposium (NDSS), 2017.

[76] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical
library os for unmodified applications on SGX,” in 2017 USENIX
Annual Technical Conference (USENIX ATC 17), 2017, pp. 645–658.

[77] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB
Linux applications with SGX enclaves.” in NDSS, 2017.

[78] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A secure database
using SGX,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 264–278.

[79] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM, 1995, pp. 49–61.

[80] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering. ACM, 1981, pp. 439–449.

[81] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for Intel memory protection keys (Intel MPK),” in 2019
USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
241–254.

[82] J. Corbet, “Memory protection keys,” https://lwn.net/Articles/643797/,
2015.

[83] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz,
S. Mangard, and D. Gruss, “Donky: Domain keys–efficient in-process
isolation for RISC-V and x86,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 1677–1694.

[84] “RISC-V: The free and open RISC instruction set architecture,” https:
//riscv.org/, 2020.

[85] Xen, “The xen hypervisor,” https://xenproject.org/developers/teams/xen-
hypervisor/, 2020.

[86] I. Shin and J. Seo, “FlexDroid: Enforcing in-app privilege separation
in Android,” in Network and Distributed System Security Symposium
(NDSS). Internet Society, 2016.

[87] C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: process separation
for web sites within the browser,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 1661–1678.

[88] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan, “Retrofitting fine grain isolation in the
Firefox renderer,” in 29th USENIX Security Symposium (USENIX)
Security 20), 2020, pp. 699–716.

[89] Nathan Froyd, “Securing Firefox with WebAssembly,” https://
hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/, 2021.

[90] Y. Wu, J. Sun, Y. Liu, and J. S. Dong, “Automatically partition software
into least privilege components using dynamic data dependency analysis,”
in 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2013, pp. 323–333.

[91] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “ACES:
Automatic compartments for embedded systems,” in 27th USENIX
Security Symposium, (USENIX Security 18), 2018, pp. 65–82.

[92] S. Liu, G. Tan, and T. Jaeger, “PtrSplit: Supporting general pointers
in automatic program partitioning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017,
pp. 2359–2371.

[93] S. Liu, D. Zeng, Y. Huang, F. Capobianco, S. McCamant, T. Jaeger,
and G. Tan, “Program-mandering: Quantitative privilege separation,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1023–1040.

[94] J. Huang, O. Schranz, S. Bugiel, and M. Backes, “The art of app
compartmentalization: Compiler-based library privilege separation on
stock Android,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1037–1049.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://llvm.org/
https://sourceware.org/binutils/
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
https://github.com/mpgn/heartbleed-PoC
https://github.com/mpgn/heartbleed-PoC
https://software.intel.com/security-software-guidance/advisory-guidance/vector-register-sampling
https://software.intel.com/security-software-guidance/advisory-guidance/vector-register-sampling
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/sa00329-microcode-update-guidance.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/sa00329-microcode-update-guidance.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/sa00329-microcode-update-guidance.pdf
https://www.spec.org/benchmarks.html#cpu
https://lwn.net/Articles/643797/
https://riscv.org/
https://riscv.org/
https://xenproject.org/developers/teams/xen-hypervisor/
https://xenproject.org/developers/teams/xen-hypervisor/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/

[95] S. Bhatkar and R. Sekar, “Data space randomization,” in Proceedings
of the 5th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), 2008, pp. 1–22.

[96] P. Rajasekaran, S. Crane, D. Gens, Y. Na, S. Volckaert, and M. Franz,
“CoDaRR: Continuous data space randomization against data-only
attacks,” in Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, 2020, pp. 494–505.

[97] B. Belleville, H. Moon, J. Shin, D. Hwang, J. M. Nash, S. Jung, Y. Na,
S. Volckaert, P. Larsen, Y. Paek et al., “Hardware assisted randomization
of data,” in International Symposium on Research in Attacks, Intrusions,
and Defenses. Springer, 2018, pp. 337–358.

[98] “Retpoline: A branch target injection mitigation,” https:
//software.intel.com/security-software-guidance/deep-dives/deep-
dive-retpoline-branch-target-injection-mitigation, 2021.

[99] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“ConTExT: A generic approach for mitigating Spectre,” in Proceedings
of the 27th Annual Network and Distributed System Security Symposium
(NDSS’20). Internet Society, Reston, VA, 2020.

[100] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “SpecFuzz:
Bringing Spectre-type vulnerabilities to the surface,” in Proceedings of
the 29th USENIX Security Symposium, 2020.

[101] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and
N. Abu-Ghazaleh, “SPECCFI: Mitigating Spectre attacks using CFI
informed speculation,” in Proceedings of the 41th IEEE Symposium on
Security and Privacy (S&P). IEEE, 2020.

[102] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS). ACM, 2005, pp. 340–353.

[103] M. Vassena, C. Disselkoen, K. v. Gleissenthall, S. Cauligi, R. G.
Kıcı, R. Jhala, D. Tullsen, and D. Stefan, “Automatically eliminating
speculative leaks from cryptographic code with blade,” Proceedings
of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–30,
2021.

[104] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang,
A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen, and
D. Stefan, “Swivel: Hardening WebAssembly against Spectre,” in
Proceedings of USENIX Security Symposium, 2021.

[105] “WebAssembly (WASM),” https://webassembly.org/, 2020.

APPENDIX

A. Imprecision Introduced by Steensgaard’s Algorithm

To compare the precision of Steensgaard’s pointer analysis
algorithm with that of Andersen’s algorithm, we consider
the function ngx_rbtree_rotate from Nginx’s codebase.
This function accepts as input an argument root, which is of
type ngx_rbtree_node**. Two different call sites invoke
this function with two different arguments (cache->rbtree
and cf->cycle->conf->rbtree). Figure 11 shows how
the use of Steensgaard’s analysis in this case leads to impre-
cision. Because Steensgaard’s algorithm uses unification to
resolve constraints, it unifies all pointer targets for the pointer
root, and concludes that the cf pointer “may” point to both
the cache_rbtree and the cycle_cf_rbtree objects.
However, because Andersen’s analysis is inclusion-based, it
correctly infers that the cycle field of the cf pointer can
point only to the cycle_cf_rbtree object.

B. Constraints and Constraint Resolution Rules

In this section we discuss the various types of constraints
and constraint resolution rules that are relevant to pointer
analysis. Instructions that deal with pointer operations generate
constraints of the four types shown below. The constraint
associated with an instruction remains the same, irrespectively
of whether an inclusion-style (Andersen’s) pointer analysis

Cache
rbtree
object

Conf
cycle
rbtree
object

cache

cf

rbtree

cycle conf_
rbtree

S3S2S1

root

Fig. 11: Imprecision introduced by Steensgaard’s Analysis.
Solid arrows indicate actual points-to relationships. Dashed
arrows indicate fields-of relationships. Circles indicate pointers
and rectangles indicate memory objects. Steensgaard’s pointer
analysis forms three sets (S1, S2, S3), and derives that S1
→ S2, and S2 → S3. Therefore, according to Steensgaard’s
pointer analysis, cf->cycle->conf_tree may point to
both objects in set S3, and cache->rbtree also may point
to both objects in set S3.

algorithm, or a unification-style (Steensgaard’s) algorithm is
used to solve them.

The constraints that are relevant to pointer analysis are:
1) p := &x (Address-of)
2) p := q (Copy)
3) p := ∗q (Dereference)
4) ∗p := q (Assign)
Note that p and q in these examples can be single-indirection

(int *p) or multi-indirection (int **p) pointers.
We assume that the relationship pts(p) represents the points-

to set for the pointer p. Then, the constraint resolution rules
for Andersen’s inclusion-style analysis are as follows:

1) p := &x⇒ x ∈ pts(p)
2) p := q ⇒ pts(p) ⊇ pts(q)
3) p := ∗q ⇒ pts(p) ⊇ pts(pts(q))
4) ∗p := q ⇒ pts(pts(p)) ⊇ pts(q)

Steensgaard’s analysis is a unification-based pointer analysis
algorithm. Every pointer and memory object belongs to a
single “set.” We assume that the operation set can be used to
find the set membership of a pointer (i.e., which set a pointer
belongs to). Constraints in Steensgaard’s analysis are resolved
by unifying these sets and we assume that the operation join
finds the union of two sets. The constraint resolution rules for
Steensgaard’s unification-style analysis are as follows:

1) p := &x⇒ join(pts(set(p)), set(x))
2) p := q ⇒ join(pts(set(p)), pts(set(q)))
3) p := ∗q ⇒ join(pts(set(p)), pts(pts(set(q))))
4) ∗p := q ⇒ join(pts(pts(set(p))), pts(set(q)))

C. Steensgaard Constraint Graph Representation Details

As discussed in Appendix B, different instructions generate
constraints of different types. For example, LLVM instructions
of type AllocaInst, which create and return the address

https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://webassembly.org/

of an object, generate Addr-of constraints. Type casting in-
structions, such as BitCastInst and TruncInst, generate
Copy constraints. LoadInst instructions, which dereference
an IR pointer and return the value stored at the target location,
generate Deref constraints, and StoreInst instructions
generate Assign constraints.

SVF first models these instructions and their constraints as
nodes on a graph, called the pointer assignment graph (PAG).
Instruction operands that are pointers or objects are modeled
as nodes in the PAG, and the IR instructions that represent the
constraints are modeled as edges. SVF then clones the PAG into
a constraint graph and begins solving the constraints. During
solving, the nodes and edges of the graph are modified to reflect
the constraint resolutions. While we reuse the functionality
provided by SVF to build the PAG and to model calls to external
functions, we use our own constraint graph implementation,
which we call the PTSGraph.

In Steensgaard’s analysis, pointers are members of points-
to sets. Therefore, we need a quick way to perform set
membership tests. Moreover, when the constraint solving
process encounters a copy constraint, representing a statement
of the form p := q, where p and q are pointers, we need a way
to quickly unify the two points-to sets of p and q.

In PTSGraph, we represent each points-to set with a unique
identifier. A points-to set can contain multiple objects and other
pointers (in case of double pointers, such as int **p). To
ensure fast set membership tests and set unification operations,
we represent set membership as a BitVector, a data structure
provided by LLVM that is optimized for set operations. The set
operations take time proportional to the size of the bit vector,
and operations are performed one word at a time, instead of
one bit at a time, improving performance further.

Second, points-to relationships are represented by a one-
to-one, directed relationship between two sets. To im-
prove efficiency, we represent these relationships as a
std::unordered_multi_map. After processing each con-
straint in the PTSGraph, this map contains a unique map-
ping from one set identifier to another. However, because
the intermediate processing of these constraints can occa-
sionally result in having to store a 1:M mapping, we use
an unordered_multi_map, to store this mapping. Be-
cause unordered_multi_map uses a hash table internally,
lookup has an average complexity of O(k), where k is the
number of set identifiers returned by the lookup operation.
Because after processing of each constraint k is always 1, the
lookup operation has an average complexity of O(1).

D. DFT Loop Optimizations for Array Accesses

Sensitive label lookups are significantly less expensive than
cryptographic operations (our experiments in Section VI-B
show that AES encryption is 430% more expensive than a label
lookup), and reduce the imprecision of Steensgaard’s analysis,
as shown in Figure 1. However, label lookups still involve
a memory read and have a non-negligible runtime overhead,
especially when they are repeatedly invoked in a loop. We
observed that most label lookups that occur within loops are

due to byte-by-byte array traversals (either on the stack or the
heap) through partially sensitive pointers—as the pointer is
partially sensitive, a lookup is needed before accessing each
element. Our static analysis does not distinguish between the
individual elements of an array, and thus even if one element
is sensitive, then all elements of the array become sensitive.

Given that these in-loop lookups incur considerable runtime
overhead, we optimize them as follows. First, we use LLVM’s
Loop Analysis pass to retrieve all loops in the bitcode of the
program. For each loop, we inspect each instruction to check
if it performs a memory load or store indexed by an offset
from a base pointer, of the form v = *(ptr+i) or v =
ptr[i], where i is the loop counter. For every such loop,
we clone it and specialize the clone to unconditionally perform
the required AES transformation on the identified memory
operations, while the original loop body remains unchanged.

The sensitive label lookup is then hoisted outside the loop,
and checks only the first element of the array. A conditional
branch then transfers control to either the specialized or the
unmodified loop, depending on the presence or absence of
a sensitive label. This allows us to perform a single label
lookup to ascertain the sensitivity of the entire array, instead
of performing multiple byte-by-byte lookups, thus reducing
the performance overhead.

E. Spectre Exploit Details

1) Spectre-PHT (Bounds Check Bypass): The Spectre-PHT
PoC [40] contains a bounds check which is bypassed to leak
a secret string. Listing 2 shows the bounds check in the
function victim_function, that is speculatively bypassed
to overflow array2 and load the secret string from memory
into the cache. We mark this string as sensitive and use
DynPTA to harden the program. This encrypts the in-memory
representation of the secret. When the secret is speculatively
accessed, by overflowing array2, only the encrypted contents
are loaded into the caches. Therefore, only the encrypted
contents can be leaked and the confidentiality of the secret is
preserved.
1 void victim_function(size_t x) {
2 ...
3 if (x < array1_size) {
4 temp &= array2[array1[x] * 512];
5 }
6 ...
7 }
8
9 int main(void) {

10 char* secret = "This is a secret";
11 mark_sensitive(secret);
12 ...
13 }

Listing 2: Code snippet for Spectre Variant-1 vulnerability

2) Spectre-BTB (Indirect Branch Poisoning): The Spectre-
BTB PoC [41] contains a secret string that is leaked by
redirecting the speculative execution to an appropriate gadget.
Listing 3 shows the relevant snippet of code from the PoC. The
function victim_function contains the indirect branch
that can be poisoned to redirect (speculative) execution to
the gadget that leaks the in-memory secret. Similarly to the

4KB 50KB 100KB 500KB 1MB
Response Size

0
50

100
150
200
250
300
350

Ti
m

e
in

 s
ec

on
ds

20.32%
20.3% 19.55%

19.35%

17.65%Baseline
DynPTA

Fig. 12: Runtime overhead of Nginx for protecting passwords
along with SSL private key when HTTP password authentica-
tion is enabled.

Spectre-PHT exploit, we mark this secret as sensitive and use
DynPTA to harden the program. This encrypts the in-memory
representation of the secret, ensuring that only the encrypted
contents are loaded into (and potentially leaked from) the cache,
while the plaintext secret remains confidential.

1 int gadget(char *addr) {
2 return channel[*addr * 1024];
3 }
4
5 int safe_target() {
6 return 42;
7 }
8
9 int victim_function(*addr, int input) {

10 ...
11 (*addr)();
12 ...
13 }
14
15 int main(void) {
16 char* secret = "This is a secret";
17 mark_sensitive(secret);
18 ...
19 victim(...);
20 }

Listing 3: Code snippet for Spectre Variant-2 vulnerability

F. Nginx with Password Authentication

In addition to protecting the SSL private key, we enabled
HTTP password authentication for Nginx and also protect the
in-memory passwords. Although this is a rarely encountered
use case in real-world deployments, marking these two different
types of data as sensitive results in additional instrumentation at
different parts of the code. During authentication, the provided
user password is checked against a list of credentials loaded in
memory from a file, which we mark as sensitive. Using the same
set of experiments described in Section VI-C1, we observed
only a minor increase of 1% in the overall performance
overhead, as shown in Figure 12. This is in line with our
experience with protecting the HTTP password for Httpd and
Lighttpd (Figure 9(b)–(c)).

During startup, the SSL private key is read from a file, and
thus its plaintext form is briefly exposed on the stack, before
being encrypted by DynPTA. In practice, these stack frames
are destroyed (overwritten) right after the server’s initialization

0 10 20 30 40 50 60 70 80 90100
%…of…Sensitive…Data

0
50

100
150
200
250
300
350
400
450

O
ve
rh
ea
d…

(%
)

(a)…Largest…Number

DynPTA
Without…scoped-DFT

0 10 20 30 40 50 60 70 80 90100
%…of…Sensitive…Data

0
50

100
150
200
250
300
350
400
450

(b)…Merge…Sort

DynPTA
Without…scoped-DFT

Fig. 13: Microbenchmark results of DynPTA’s run-time over-
head with and without scoped-DFT, for an increasing ratio
of sensitive vs. non-sensitive data in the program. As the
percentage of sensitive data exceeds 70–80%, the scoped DFT
and label lookups become more costly than simply encrypting
all objects identified by the points-to analysis.

completes (and the called function returns). For our work, we
assume that the system starts from a clean state, and because
the server has not started handling requests yet, this window of
opportunity does not represent a vulnerability. Still, to illustrate
that sensitive data can be protected right upon their initial
introduction in memory from external sources, we marked as
sensitive the stack objects in which the SSL private key is
loaded temporarily during program initialization (specifically,
buf, data, and dataB in function PEM_read_bio). The
data in these objects is read via the fread Glibc call. Marking
these objects as sensitive, using the mark_sensitive
primitive, encrypts them in memory. Because PEM_read_bio
is invoked only during program startup and these objects are
never referenced again, we did not observe any performance
impact due to these additional sensitive objects.

G. Microbenchmarks

To further study the performance characteristics of DynPTA
as an increasing amount of application data is marked as
sensitive, we implemented two microbenchmark programs and
hardened them using DynPTA. The data in both programs
comprise a list of 100 arrays, with each array initialized with
100,000 random integers. In each round, we can vary the
percentage of arrays that are marked as sensitive. The first
microbenchmark computes the largest number of all items in
the list of arrays, and the second microbenchmark sorts all
integers in the list of arrays using the merge sort algorithm.

For our experiments, we varied the ratio of sensitive to
non-sensitive arrays in each microbenchmark and measured
the run-time overhead at each point. As shown in Figure 13,
as the ratio of sensitive to non-sensitive arrays increases, the
overhead increases linearly as well (from 5.4% to 401% for
largest number, and from 6% to 393% for merge sort).

To study the performance benefits of scoped DFT, we
repeated the above experiments by disabling scoped DFT and
label lookups, i.e., using the results of Steensgaard’s analysis
directly to encrypt all objects identified by the points-to analysis.
As shown in Figure 13, without scoped DFT the overhead is

significantly higher and overall remains constant, irrespectively
of how many arrays are actually marked as sensitive. Both
microbenchmarks consist of a tight loop that reads the items
from each array in the list and performs an operation on
them. Because the same pointer is used to perform the indirect
memory read access from each arrays, pointer analysis infers
that this is a sensitive pointer, and thus applies the AES
transformations to it. This results in all arrays being treated
as sensitive (and requiring to be encrypted in memory), even
though the programmer explicitly annotated only a fraction of

them as sensitive. This results in high performance impact even
though only a fraction of the arrays are marked as sensitive.

Although DynPTA performs better than this “naive” approach
as long as the amount of sensitive data remains below 70–80%,
scoped DFT actually becomes more costly once the amount of
sensitive data exceeds this threshold. The main reason is that the
cost of the excessive number of DFT label lookups at that point
becomes higher than the benefit of eliding AES operations, as
only a fraction of data at that point is non-sensitive.

	Introduction
	Background and Motivation
	Pointer Analysis
	Set Inclusion vs. Set Unification
	Memory Object Modeling

	In-memory Data Encryption

	Threat Model
	Design
	Sensitive Object Identification
	Summarization-based Context-sensitive Heap Modeling
	Memory Allocation Wrapper Identification
	Memory Allocation Wrapper Summarization

	Pointer and Value Flow Analysis
	Scoped Dynamic Data Flow Tracking
	Dynamic DFT on Potentially Sensitive Value Flows
	Runtime Handling of Potentially Sensitive Pointers

	In-memory Data Protection using Encryption

	Implementation
	Context-sensitive Heap Modeling
	Steensgaard's Analysis
	Static Value Flow Analysis
	Scoped Dynamic Data Flow Tracking

	Performance Evaluation
	Applications
	Scoped Data Flow Tracking
	Static Instrumentation
	Runtime Performance Benefit

	Runtime Overhead
	Real-world Use Cases
	Increasing the Amount of Sensitive Data

	Security Evaluation
	Heartbleed
	Spectre

	Limitations and Discussion
	Related Work
	Conclusion
	References
	Appendix
	Imprecision Introduced by Steensgaard's Algorithm
	Constraints and Constraint Resolution Rules
	Steensgaard Constraint Graph Representation Details
	DFT Loop Optimizations for Array Accesses
	Spectre Exploit Details
	Spectre-PHT (Bounds Check Bypass)
	Spectre-BTB (Indirect Branch Poisoning)

	Nginx with Password Authentication
	Microbenchmarks

