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ABSTRACT

Intel SGX is a hardware-based trusted execution technology that
partitions an application into trusted and untrusted parts. The
trusted part, known as an enclave, executes within an encrypted
memory environment, preventing the host application and the OS
from being able to access its memory. The enclave, however, has
the ability to access the host’s memory. When considering mali-
cious code running in an enclave, the strong memory isolation and
encryption properties offered may aid the stealthiness of malware,
since malware detection tools cannot inspect the enclave. The en-
clave and the host communicate over bi-directional interfaces that
the Intel SGX SDK generates.

In this work, we present SGXPecial, a best-effort interface spe-
cialization tool that statically analyzes both the host and the enclave
to generate interfaces tailored only to their needs. SGXPecial is
implemented as an extension to the Edger8r tool of the SGX SDK,
and performs API specialization at build time. In particular, SGXPe-
cial performs function, argument, and type-based specialization to
restrict the valid control flows across the host-to-enclave boundary.
We evaluate SGXPecial’s security impact by testing it on SGX SDK
sample applications and four open-source SGX applications. SGX-
Pecial effectively prevents five proof-of-concept code reuse attacks
in all tested applications.
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1 INTRODUCTION

Intel Software Guard Extensions (SGX) can be used to isolate trusted
enclaves that are part of a host application from the rest of the
system using hardware-based isolation. Using SGX, the protected
enclave remains secure even when the host application, operating
system, or hypervisor turn malicious. The same isolation, however
provides a means for malicious code to safely hide in an enclave
without getting detected by generic malware detection tools.
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While SGX’s memory encryption enhances the security of en-
claves, an attacker could take advantage of SGX to prevent malware
from being inspected. Furthermore, SGX supports the use of generic
loaders which could load the executable code from a remote source
only at runtime, preventing install-time analysis of the enclave code.
Recently, several attack scenarios in which malicious enclaves ex-
ploit the host application have been proposed [12, 19, 23].

Application debloating and specialization have recently gained
popularity as a means to reduce the code present in the address
space of a running process that an adversary could use as part of an
exploit. Sources of code bloat include unused application features
and unused functions from shared, among others. Debloating tech-
niques either statically analyze an application’s source code [1, 18]
or binary [16, 21], or execute the application with a representative
set of inputs to extract the set of functions that are used [2]. Once
identified, the unused functions are removed.

API specialization, on the other hand, does not remove any code,
but tightens function interfaces so that calls to these functions are
restricted in the arguments that can be accepted [14, 15]. Similarly,
the system calls available to a process [7] or even a whole con-
tainer [6] can be restricted by applying a Seccomp filter tailored to
their needs. These techniques have been used in a variety of do-
mains, including end-user applications, Java bytecode, interpreters,
containers, and the OS kernel. To the best of our knowledge, our
work is the first to study the application of code specialization in
the domain of trusted execution environments.

Intel SGX provides a communication interface between the host
and the enclave which is analogous to the library call interface
in regular applications. The Intel SGX runtime libraries provide
a variety of functionalities, only few of which are actually used
during an application’s lifetime. Thus, a specialization approach
that performs static analysis of the enclave and host application
and specializes interactions between them could be used to restrict
an attacker who has compromised the host or the enclave. To that
end, we propose SGXPecial, a lightweight, best-effort approach
for analyzing and specializing the SGX interfaces that handle the
communication between the enclave and the host application.

We summarize our main contributions as follows.

e We propose SGX interface specialization, a best-effort spe-
cialization technique for host-to-enclave interfaces.

e We designed and implemented SGXPecial based on the Intel
SGX SDK, which employs interface specialization to trans-
parently protect the host application and enclaves from ex-
ploiting each other through code reuse attacks.

o We studied five proof-of-concept code reuse exploits that per-
form attacks against SGX-based systems, and demonstrate
the effectiveness of SGXPecial in stopping blocking them.
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Figure 1: SGX Internals

2 BACKGROUND AND MOTIVATION
2.1 Intel SGX Internals

In this section we provide a brief introduction to Intel SGX and its
SDK. The Intel SGX SDK is one of the most widely used platform
for enclave development. We focus our discussion on the various
transition interfaces in an enclave’s lifetime.

Enclaves are loaded to the memory space of the host application
in the form of a shared library, the memory of which is encrypted.
According to SGX’s threat model, the enclave is considered trusted,
and thus has complete access to the host’s memory. This access is
required for sharing data in and out of the enclave.

As an application is essentially divided into trusted and untrusted
parts, their interaction is handled via two runtime system layers,
one on each side of the trust boundary. The Trusted Runtime Sys-
tem (tRTS) is statically compiled into the enclave code, while the
Untrusted Runtime System (uRTS) is dynamically loaded when the
host executes.

An Enclave Description Language (EDL) file defines the entry
points into the enclave. When a project is compiled, the Edger8r
tool parses the EDL file and generates the appropriate interfaces,
in the form of wrapper functions for the functions mentioned in
the EDL. Each function is assigned two wrapper functions, one in
the untrusted half and one in trusted half. These interfaces marshal
data in and out of the enclave and maintain function success status.

The entry points are accessed by making a special function call,
known as ECALL. These ECALLSs start with an EENTER instruction.
Figure 1 shows the process of making an in-enclave function call.
The host calls a trusted function func1(), which is executed after
crossing the enclave boundary by calling sgx_ecall(). The secure
functions are specified by an index in the array of ECALLs.

Inside the trusted environment, when the enclave requires the
invocation of an external function, these are accessed using another
special set of functions called OCALLs. These OCALLs could be
functions in the host application, or system calls to the OS. Similarly
to ECALLs, OCALLs are also specified by an index in the array
passed from the host application. In Figure 1, the ECALL function
calls func2(), which is a function in the host application, and is
transitioned to the host via sgx_ocall().

2.2 Control Flow Hijacking in SGX

The Intel SGX SDK allows enclave development in C/C++, which
means that traditional memory corruption vulnerabilities are also
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possible in enclaves. Conventionally, enclaves are assumed secure
from code reuse attacks like return-oriented programming (ROP)
due to enclave memory encryption. An attacker thus cannot read
the memory from outside an enclave and find gadgets to chain
together. While this seems like a robust design at first, there have
been several attacks which manage to successfully explore the
enclave memory [3, 4, 11]. At the same time, attacks where ma-
licious enclaves exploit the host have been recently explored as
well [19, 23].

Dark-ROP relies on repeatedly executing the enclave, under the
assumption that in-enclave memory layout does not change across
multiple runs. SGX-Shield [20], a fine-grained randomization de-
fense, offers some protection against the Dark-ROP attack. However,
the trusted enclave runtime system cannot be randomized using the
techniques proposed in SGX-shield. The Guard’s Dilemma [3] and
TeeRex [4] attacks also reuse instructions from the trusted runtime
system libraries.

2.3 Securing SGX Interfaces

Memory corruption vulnerabilities can be present in both the un-
trusted and trusted parts of an application. In the TeeRex [4] and
Coin Attacks [9], the authors discuss memory vulnerabilities in a
number of popular enclave setups. They found vulnerabilities using
symbolic execution and were also able to hijack control flow in-
side enclaves using specially crafted arguments to ECALLs. On the
other end, SGXJail [23] and SGX-ROP [19] have highlighted that a
malicious enclave can hijack the control flow of the host. Given that
an enclave has complete access to the host’s memory, SGXJail and
SGX-ROP have demonstrated that the current model of considering
enclaves as fully trusted could lead to security implications for the
host.

With these two attack scenarios in consideration, there is an
emergence of a potential enclave malware threat, in addition to the
threat of untrusted hosts. We believe that instead of considering
one half (enclave) as trusted, while the other (host and host OS) as
untrusted, the two halves should both be segregated as two separate
domains, and they should both be treated as untrusted. The only
trusted component in this architecture should be the interfaces
generated by the SDK.

3 THREAT MODEL

3.1 SGX’s Threat Model

In the threat model for SGX, every piece of software outside the
enclave, including the host application and the OS, are deemed
untrusted. However, features such as enclaves having access to the
entire address space of the application, and the fact that enclaves can
avoid getting their code inspected by using a generic loader, make
it possible for a malicious enclave to exploit the host application.
Recent attacks [19, 23] have proven that the Intel SGX threat model
could put host applications at risk.

3.2 Our Threat Model

For our work, we identify three key parties in the application ecosys-
tem:
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Figure 2: Overview of SGXPecial.

(1) Host Application: A host application is deemed untrusted
by the SGX threat model. We assume the host application
source code is available for us to analyze.

(2) Enclave: An enclave or the trusted part of the SGX ecosystem
is considered to be a self-contained entity in itself. Enclaves
can either be part of the host application, or third-party
enclaves that the current application imports and uses.

(3) Interface: In this work we focus on the Intel SGX SDK, as
it is one of the most popular tools for enclave development,
but any development environment can be considered as an
interface. Interfaces facilitate data and control transfer be-
tween trusted and untrusted components. The SGX runtime
libraries which perform data marshaling and unmarshal-
ing, copying data into and out of the enclave and use EEN-
TER, EEXIT and similar instructions to also move control
in and out of the enclave. For Intel SGX SDK, this set of li-
braries includes libsgx_trts.a (Trusted Runtime System) and
libsgx_urts.so (Untrusted Runtime Systems) amongst others.

We consider two different attack profiles: Malicious Host Applica-
tion or Malicious Host OS [3, 4, 11]. This is the standard SGX threat
model described previously. The host application is untrusted, and
hence, enclave memory should not be visible to it. Along with
this, as SGX and similar trusted environments are used by more
applications, and more code is added to enclaves, the chances of
exploitable vulnerabilities within the enclaves also increase. An
untrusted host application could exploit these vulnerabilities and
try to gain control of enclave.

Malicious Enclaves [19, 23]. As third party enclaves gain popular-
ity, an application developer using such enclaves has little control
on what the enclave does. The attackers could defer fetching mali-
cious payload to execution time, which would prevent the detection
of malicious behavior before they are executed. The application
should be protected against any malformed inspection or update of
its memory by an enclave. But the model of memory access is still
maintained as in SGX, i.e., the enclave has complete access to the
host’s address space.

SGXPecial identifies that the application could not be secured
efficiently if the enclave and host application boundaries are not
clearly defined. For example, a too permissive ECALL interface,
where every argument is marked as user_check, would not be
verified by SGX boundary checks, and thus would make the defenses
worthless. Limitations in enclave design are thus out of scope.

4 DESIGN

In this section, we present SGXPecial, a novel technique to protect
i) naive trusted enclaves from untrusted host applications, and
ii) host applications from malicious third-party enclaves.

Host Application Untrusted Runtime System(uRTS) Trusted Runtime System(tRTS)
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Figure 3: Function Specialization for SGXPecial. SGXPecial
identifies the functions that are not used by the application
or by the enclave and creates wrappers to stop them from
crossing the interface.

4.1 SGX Runtime Specialization

The communication between trusted and untrusted worlds happens
via SGX interfaces. SGXPecial creates a specialized set of interfaces
customized to the current application.

Figure 2 presents an overview of SGXPecial. For every statically
identified function call that goes through the interfaces, we derive
policies specific to each call site. We perform three levels of spe-
cialization in the SGX interface: i) Function level specialization, ii)
Argument specialization, iii) Type-based filtering.

4.1.1  Function-level Specialization. Attack Surface reduction tech-
niques [1, 2, 7, 10, 18] that identify the set of functions that an
application uses and restrict access to any other functions have
gained popularity in recent years.

Although this is a popular technique, there is one major differ-
ence while porting it to SGX. Identifying a function that is not used
by both the application and enclave does not make it a candidate
for removal from address space. For example, it might still be used
for remote attestation or for report generation purposes. Removing
a function from the address space, only because it is not used by the
application and the enclave, thus, might lead to execution errors.

Therefore, we statically analyze the source to identify the set
of function calls that are made across the interface and at runtime
restrict any other functions calls from crossing the host-to-enclave
boundary. We create wrapper functions for every function used
by the application and the enclave. For every in-enclave function
that an application uses, we create a custom wrapper function in
the untrusted bridge. For the functions that the current application
uses, these wrappers call the actual function in the uRTS, but for
the functions that the application does not use, the function calls
are returned without execution of any further code. Figure 3 shows
a sample application which only uses sgx_create_enclave(), but
an adversary can execute function egetkey () to retrieve sensitive
cryptographic keys. With SGXPecial, the function egetkey() is
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Figure 4: Argument Specialization. A custom function is gen-
erated for every call site, which neutralizes static arguments
from the original function call.

intercepted and blocked. Similar wrappers are created in tRTS for
calls made from within the enclave.

For the OCALLSs, i.e. calls from inside the enclave to outside, this
function level specialization identifies the external functions (from
the host application, system calls or from uRTS), that the enclave
uses. Using the same wrapper function based technique, every call
from inside the enclave is intercepted by its custom wrapper in the
trusted runtime(tRTS).

4.1.2  Argument Specialization. Communication in and out of en-
claves happen via means of function calls. While some functions
are meant for specific purposes, for e.g. create or launch an enclave,
destroy or delete an enclave etc, other functions such as ECALLs
are used to invoke different functionalities inside the enclave. One
of the arguments passed to an ECALL/OCALL is the index of the
function to be executed. Changing this argument value can make
a specific call site alter the function that gets executed. Thus, it is
critical to ensure that an attacker can not make arbitrary changes
to the arguments.

SGXPecial creates specialized versions of functions for each of
the function call sites. These specialized functions are tailor made by
neutralizing the arguments used at the call site. Figure 4 explains ar-
gument specialization step of SGXPecial. The top half of the figure,
shows a standard sgx_ecall(). The functions ecall_func1() and
ecall_func2(), access sgx_ecall() within the uRTS. The only
way to differentiate between the two functions is by the ecall_id
argument passed to sgx_ecall. SGXPecial performs argument spe-
cialization and creates two specialized versions sgx_ecall_1()
and sgx_ecall_2(), one for each sgx_ecall invocation. As can
be seen, the ecall_id is neutralized and removed from the argu-
ments. At the same time, other statically known arguments are also
neutralized.

4.1.3 Type-based Filtering. For generic implementation purposes,
the arguments for individual functions are marshaled into a struc-
ture and a pointer to this structure is passed as the argument to
sgx_ecall or sgx_ocall. An adversary can take advantage of this
generic struct passing, by marshaling any set of values into the
struct and passing them into the enclave. A similar attack scenario
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Figure 5: Type-based Filtering. SGXPecial verifies that the
number and types of arguments are the same as those ex-
pected by the called function.

is used in Teerex [4], shown in Figure 5. While the original ECALL
function expects an argument of type mpz_t, the attackers alter the
elements in the structure creating a new type mpz_t_ext.

Type-based filtering ensures that the number and types of argu-
ments marshaled into the structure are the same as the type and
number of arguments in the original function.

SGXPecial does not make any changes to the enclave or to the
host. This means that SGXPecial has complete backward compati-
bility, thus an application can be run using a pair of interfaces that
are not specialized.

Path of an ECALL with SGXPecial. The host makes a function call
to one of the trusted functions. This function call is intercepted by
the untrusted interface. Next, this SGXPecial enabled interface per-
forms verification at function, argument and type levels to ensure
that the function call is in accordance with the statically defined
behavior. When the function is part of the naive host application,
the static arguments are removed from the argument set and a call
to is made to the sgx_ecall() function corresponding to this call
site, tailored only to the arguments of this invocation.

Lastly, SGXPecial performs type based filtering to ensure that
only the argument number and types from the current function
invocation are copied into the enclave. At this point, EENTER instruc-
tion is used to call the actual in-enclave function. A path similar to
this is followed for an sgx_ocall.

SGXPecial enforces every communication between the trusted
and untrusted worlds to occur over the Intel SGX SDK bridge. Every
attempt to call a function within the enclave is captured by the
SGXPecial enabled uRTS, which after thorough verification lets the
function execute.

5 IMPLEMENTATION

We implemented SGXPecial by extending the Edger8r tool provided
by the Intel SGX SDK.

Function-level Specialization. SGXPecial ensures that every in-
enclave function that is used by an application is part of the naive
host. We augment the edger8r tool, to create wrappers for ev-
ery function within the uRTS. A custom wrapper is also created
for every function that is not used by the application, which re-
turns without executing the function. For example, if an applica-
tion uses the function sgx_create_enclave(), but does not use
sgx_create_enclave_ex(), the call simply returns for the latter,
while the former one is executed within the enclave.

Argument Specialization. The core of SGXPecial is its ability to
neutralize argument values. We modify the Edger8r tool to identify
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values of arguments known at build time. The static arguments
are introduced inside the interface code by creating specialized
wrapper versions for each such call.

For OCALLs, the SGX SDK passes arguments to the host by
writing them to application’s stack using sgx_ocalloc. An enclave
can modify the arguments to sgx_ocalloc and alter the contents of
the stack. To prevent this, SGXPecial specializes OCALL functions
as well.

Type-based Filtering. Edger8r creates functions that marshal the
arguments into structures. We extend edger8r to augment this with
a type verification step. SGXPecial validates the number of elements
and their types. The types are only verified for primitive data types
using sizeof. Using type based filtering, only valid argument types
are allowed to pass in form of marshaled structure. This restricts
adversaries like those in Teerex [4], from exploiting the argument
structure.

6 EVALUATION

In this section, we present results of our experimental evaluation in
terms of the security impact and performance overhead of interface
specialization using SGXPecial. We also present case studies of five
real world exploits and SGXPecial’s effectiveness against them.

6.1 Data Set

We studied a wide range of exploits against Intel SGX. Along with
code reuse exploits, we also studied other exploits like side-channels
to gain insight into the malicious operations they perform, to come
up with a list of security-critical functions in SGX runtimes. These
functions include sgx_is_within_enclave, asm_oret, do_egetkey,

sgx_ocalloc, trts_mprotect,do_oret, restore_xregsanddo_ecall.

We studied five real-world exploits and the functions they invoke.
Each of these exploits use one or more critical functions.

e Dark-ROP [11]: do_ereport, do_egetkey, memcpy, do_ecall
e Guard’s Dilemma [3]: do_ereport, do_egetkey, do_ecall
e TeeRex [4]: asm_oret, do_egetkey, do_ecall

e Sgx]Jail [23]: sgx_ocall

e SGX-ROP [19]: sgx_ocall

As can be seen, do_ecall() is used in every untrusted applica-

tion attack scenario, and do_ocall() is used in every attack where
the enclave is malicious. This is because do_ecall() is one of the
most frequently used entry points into the enclave. Most of the
exploits use do_ecall() or do_ocall() with malicious functions
and arguments to hijack the control flow of the enclave. As these
functions are used in the application, the access to these can not be
completely blocked using mere function level specialization.

6.2 Application Specialization

6.2.1 Intel SGX SDK Sample Enclave Applications. We tested SGX-
Pecial with sample applications installed with Intel SGX SDK. We
discuss our findings in the first half of Table 1. Each row in table
is for one application. The first two columns provide the percent-
age of functions from uRTS and tRTS that the application along
with its trusted enclave use. For instance, in SampleEnclave only
9 (43%) of the 21 functions exported by the uRTS are used by the
host. Similarly the enclave uses only 7 (7%) out of 98 functions that
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tRTS exports. In absence of SGXPecial all the other functions can
be exploited by an attacker. But with SGXPecial, the attacker can
only access the functions used by the application/enclave.

In the next two columns we present the number of ECALL invo-
cations in each functions and the percentage of arguments within
these call sites that we could statically identify. In SampleEnclave,
for 64 ECALLs, 78 (30%) out of 256 arguments could be statically
known, while for Switchless 5 (31%) of 16 arguments were known
from 4 ECALLs.

There is no direct way of gauging the security benefit of type
based filtering, thus we leave that discussion to specific exploits in
the next section.

6.2.2  Real-world Applications. We picked four real world open-
source SGX applications to test SGXPecial, listed in the bottom
half of Table 1. MbedTLS, a popular open source SSL library, only
uses 4 (19%) out of 21 exported functions from uRTS, while the
SGX based implementation of SQLite database only uses 10 (47%)
functions.

For argument level specialization, third and forth columns of
the table provide the number of ECALLs and the percentage of
arguments that could be statically known and thus specialized. For
the SGX implementation of SSL, there are two ECALLSs, half of
the arguments to which were neutralized. For the SGX-based file
encryption engine SGXCryptofile, for four OCALLs, half of the
arguments are statically known and were neutralized.

6.3 Security Case Studies

6.3.1  Dark-ROP [11]. Dark-ROP exploits an enclave by using pop
instructions to set registers and find gadgets in the enclave. The
adversary uses ECALLSs to propagate malicious instructions into
the enclave. When executed, these instructions find useful gadgets.
The attack starts by overwriting the rbx register to address of
import_data_to_enclave() function inside the enclave. Through
our experiments, we deduce that this function is never used by
the host application, thus function level specialization prevents the
attack.

6.3.2 Guard’s Dilemma [3]. Guard’s dilemma attack looks for ROP
gadgets in the tRTS. The first step however, is to execute one of
their two primitives from outside the enclave. This attack uses
two primitives: 1. CONT- triggered by continue_execution(),
to restore context after an exception or, 2. ORET- triggered by
function asm_oret () used to restore context after an OCALL. Once
SGXPecial specializes these functions and neutralizes arguments
passed to them, both these primitives are prevented.

6.3.3 TeeRex Exploits [4]. Teerex exploits detect five vulnerability
classes that occur in enclaves. In one of their PoC exploits, they
replace arguments passed to the ECALL (Figure 5). Inside the en-
clave, the additional fields overwrite the stack. The control is then
transferred to asm_oret (), which restores a counterfeit context in-
serted as part of the same struct. Using SGXPecial, before argument
marshaling the arguments types are verified. This way a struct with
extra elements would not be copied into the enclave.

6.3.4 SGXJail Exploits [23]. SGX]Jail considers a malicious enclave
and uses shared memory and Seccomp filters to restrict the system



EuroSec’21, April 26, 2021, Online, United Kingdom

Shachee Mishra and Michalis Polychronakis

Application % of uRTS % of tRTS #ECALLs % of Known #OCALLs % of Known
function used functions used Arguments Arguments
SampleEnclave 43% 7% 64 30% 22 55%
LocalAttestation 19% 6% 14 25% 4 50%
SealUnseal 43% 6% 3 25% 10 50%
Switchless 43% 7% 4 31% 6 59%
PowerTransition 47% 2% 2 25% 6 50%
Cxx11SGXDemo 14% 4% 26 50% 6 50%
SampleEnclavePCL 38% 3% 32 31% 11 55%
mbedtls-SGX 19% 8% 8 34% 11 50%
SGX_SQLite 47% 11% 3 33% 24 50%
Intel SGX SSL 38% 9% 2 50% 9 55%
SGXCryptofile 14% 5% 5 25% 4 50%

Table 1: Results from sample and real-world applications.

Table 2: Average Runtime overhead (in ns) for single ECALL
and OCALL. The numbers in braces correspond to the stan-
dard deviation.

Latency ECALL OCALL
Vanilla 1244 (£56) 1410 (£78)
SGXPecial 1380 (£75) 1537 (+102)

calls an enclave has access to. But, a system call can be a valid
OCALL in the enclave EDL and SGXJail would still block its execu-
tion. However, using SGXPecial, the system calls are identified and
allowed to execute securely.

6.3.5 SGX-ROP [19]. SGX-ROP uses write-anything-anywhere
primitive from a malicious enclave to create a fake stack and pivot
the host control to it. This fake stack has the attacker inserted pay-
load as sequence of gadgets. SGXPecial monitors and blocks writes
which do not correspond to the original enclave. SGX-ROP uses
Intel TSX to handle memory exceptions. In absence of TSX, this
attack requires careful memory probing via OCALLs, which are
specialized using SGXPecial.

6.4 Runtime Performance

Measuring the runtime overhead of a system like SGXPecial is a
challenging task. Host and enclave interactions are infrequent and
thus the real overhead depends on the number of function calls
made during the test run. In order to measure the runtime overhead
of SGXPecial, we used a set of custom host and enclave. All the tests
are performed over a 64-bit Intel Core i5 machine with 32GB of
RAM running Ubuntu 18.04 Bionic. To measure an ECALL overhead,
we perform ECALL invocations for 1 million times, each invocation
to a random trusted function. This is orders of magnitude above
the average number of ECALLs made by real applications.

The results are summarized in Table 2. The time taken for in-
dividual function calls, only marginally increases with SGXPecial
enabled SDK against Vanilla implementation.

7 LIMITATIONS AND FUTURE WORK

SGXPecial enforces three phases of specialization that collectively
increase the efforts required by an adversary to cross the trust
boundary. An attacker can however still launch a successful attack
by creating payloads closely corresponding to the benign applica-
tion/enclave. This can be done by using the same set of functions as
the enclave or the host, or by either using the same arguments as
the functions in enclave or the host and also by exploiting the cases
of unknown argument values. Similarly, by using argument struc-
tures which closely correspond to the actual types of arguments,
an adversary can successfully bypass SGXPecial. SGXPecial thus
should be viewed as defense-in-depth solution that considerably
increases the bar for the attackers.

With third-party enclaves, attacker can modify the interfaces
to make them more permissive. This can be done by including
functionalities that are required by the malicious enclave loaded
over network using the generic loader. However, if SGXPecial is
integrated with Intel SGX SDK, creating such libraries would imply
modifying the SDK itself.

We currently do not perform sophisticated static analysis on
the host or on the enclave. Thus, there is a scope for gaining more
insights by detailed analysis to strengthen the specialization. We
leave such analysis to our future work.

Our current work prototype is built on Intel SGX SDK, however
there are multiple SDKs which provide the ability to build appli-
cations on SGX. These include Open Enclave [13], SGX-LKL [17]
and Asylo [8]. Open Enclave provides oeedger8r, an extension to
edger8r from Intel SGX SDK and creates the marshaling runtimes
for the applications. Keystone, an SDK for building TEEs on RISC-V,
provides a set of libraries: Host libraries and Edge libraries provide
interface for enclave creation, management and communication.
Thus in future, SGXPecial can be extended to these SDKs as well.

8 RELATED WORK

Using Control Flow Integrity to prevent against control hijacking
does not block all attack vectors as explained in SGXJail [23]. At-
tacks like Guard’s Dilemma [3], COIN attacks [9] specifically target
the interfaces to mount such attacks. SGX-ROP [19] uses Intel TSX
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to probe host memory from an enclave and steer control flow to a
fake stack. Bulck et al. [22] explore runtime environments of trusted
environments including SGX and conclude that a significant num-
ber of memory safety vulnerabilities still exist in them. SnakeGX [5]
is a novel attack that exploits oret (), the secure function that han-
dles returns from OCALLs and fake contexts to achieve arbitrary
code execution and backdoor installation inside the enclave.
Attack surface reduction has been established as an effective
and low overhead defense against code reuse attacks. Quach et
al. [18] perform dynamic library debloating by only loading the
required functions from shared libraries. Nibbler [1] does the same
at binary level. Temporal specialization [7] identifies the differ-
ent system call needs of a server application at initialization vs.
serving phases and uses Seccomp filters to cater to the changing
needs. Shredder [14] performs binary instrumentation to restrict
arguments to kernel API functions. Saffire [15] performs call-site
specific argument specialization for system calls at build time.

9 CONCLUSION

We presented SGXPecial, a novel interface specialization technique
for Intel SGX based applications. An SGX enclave is hardware iso-
lated from rest of the execution environment. While the traditional
threat model of untrusted host and trusted enclave is valid for most
cases, third party enclaves pose dangers for the host as well. SGX-
Pecial secures an enclave from a malicious host and a naive host
from a potentially dangerous enclave.

SGXPecial is a best-effort tool that performs static analysis of
host and enclave source to create SGX interfaces that are specialized
to the needs of only that application. SGXPecial starts by performing
function based specialization by identifying used functions from the
SGX SDK runtimes, followed by extracting static argument values
from the used function arguments. Finally, SGXPecial performs
validations for the data type of arguments. All these validations
are instrumented into the SGX runtime libraries by modifying the
edger8r tool provided by Intel SGX SDK.

By performing these sequence of function, argument and type
based specialization, SGXPecial prevents a malicious actor from
crossing the host-to-enclave boundary without proper verification.
We evaluated SGXPecial with real world applications and exploits
and found it to be highly effective in preventing code-reuse attacks.
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