A Flexible Framework for Expediting Bug Finding by
Leveraging Past (Mis-)Behavior to Discover New Bugs

Sanjeev Das”
IBM Research
sanjeev.das@ibm.com

Manos Antonakakis
Georgia Tech
manos@gatech.edu

ABSTRACT

Among various fuzzing approaches, coverage-guided grey-box fuzzing
is perhaps the most prominent, due to its ease of use and effective-
ness. Using this approach, the selection of inputs focuses on maxi-
mizing program coverage, e.g., in terms of the different branches
that have been traversed. In this work, we begin with the observa-
tion that selecting any input that explores a new path, and giving
equal weight to all paths, can lead to severe inefficiencies. For in-
stance, although seemingly “new” crashes involving previously
unexplored paths may be discovered, these often have the same
root cause and actually correspond to the same bug.

To address these inefficiencies, we introduce a framework that
incorporates a tighter feedback loop to guide the fuzzing process
in exploring truly diverse code paths. Our framework employs (i) a
vulnerability-aware selection of coverage metrics for enhancing the
effectiveness of code exploration, (ii) crash deduplication informa-
tion for early feedback, and (iii) a configurable input culling strategy
that interleaves multiple strategies to achieve comprehensiveness.
A novel aspect of our work is the use of hardware performance
counters to derive coverage metrics. We present an approach for
assessing and selecting the hardware events that can be used as a
meaningful coverage metric for a target program. The results of
our empirical evaluation using real-world programs demonstrate
the effectiveness of our approach: in some cases, we explore fewer
than 50% of the paths compared to a base fuzzer (AFL, MOpt, and
Fairfuzz), yet on average, we improve new bug discovery by 31%,
and find the same bugs (as the base) 3.3 times faster. Moreover, al-
though we specifically chose applications that have been subject to
recent fuzzing campaigns, we still discovered 9 new vulnerabilities.

CCS CONCEPTS

« Security and privacy — Vulnerability management.

“The research was conducted while the author was a postdoc at UNC Chapel Hill.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7-11, 2020, Austin, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8858-0/20/12...$15.00
https://doi.org/10.1145/3427228.3427269

345

Kedrian James
UNC Chapel Hill
kedjames@cs.unc.edu

Michalis Polychronakis
Stony Brook University
mikepo@cs.stonybrook.edu

Jan Werner
UNC Chapel Hill
jjwerner@cs.unc.edu

Fabian Monrose
UNC Chapel Hill
fabian@cs.unc.edu

KEYWORDS
Fuzzing, Machine Learning, Hardware Performance Counters

ACM Reference Format:

Sanjeev Das, Kedrian James, Jan Werner, Manos Antonakakis, Michalis
Polychronakis, and Fabian Monrose. 2020. A Flexible Framework for Ex-
pediting Bug Finding by Leveraging Past (Mis-)Behavior to Discover New
Bugs. In Annual Computer Security Applications Conference (ACSAC 2020),
December 7-11, 2020, Austin, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3427228.3427269

1 INTRODUCTION

In recent years, fuzz testing (or fuzzing) [30] has emerged as the
preeminent automated technique for finding vulnerabilities in soft-
ware. Generally speaking, the process of fuzzing involves feeding
crafted input to a program in the hope of triggering unhandled
exceptions and crashes. Today, so-called greybox fuzzing has been
very effective in finding vulnerabilities in real-world programs.
The success of greybox fuzzers like the American Fuzzy Lop
(AFL) [61] stems from the fact that they use a feedback loop to
prioritize the inputs fed to a program. The overall process involves
input selection, scheduling, and mutation. In the first stage, inputs
are tested, and based on various feedback mechanisms, interesting
inputs (i.e., those that crashed the program or led to new paths be-
ing explored) are chosen for mutation. The mutation stage typically
assumes input data as a sequence of bytes, and performs operations
such as bit or byte flipping, increment/decrement of integer data,
and so on. Input selection and scheduling have been shown to be
critically important [44, 57] because they govern the doctrine that
fuzzers apply in their search for vulnerabilities [31, 32]. As it per-
tains to the input selection process, contemporary greybox fuzzers
use a coverage-driven principle. Coverage-guided fuzzing (CGF) ap-
proaches select inputs that increase the total program coverage.
For example, AFL uses branch coverage to steer input selection. As
such, it only selects those inputs that explore a new branch that
was not traversed before. The inherent goal of a CGF approach is
to try to increase the code coverage in order to eventually reach a
path that may stumble upon a vulnerability in the program. Indeed,
the success of AFL [61], and extensions thereof [4, 48, 50], is largely
attributable to the use of code coverage as feedback [10].
Unfortunately, blindly adopting such a strategy can be ineffi-
cient because: (i) any input that covers a new path is selected, and
(ii) equal weight is given to each path. To see why this matters,
consider Figure 1 which depicts an offline analysis of crashes gen-
erated by AFL. The topmost line reports the “uniqueness” of the

https://doi.org/10.1145/3427228.3427269
https://doi.org/10.1145/3427228.3427269

ACSAC 2020, December 7-11, 2020, Austin, USA

generated crashes based on the branch edges explored. The fuzzer
generates a lot of crashes, but not all crashes are created equal [23].
Indeed, a straightforward grouping of crashes using a stack trace
approach shows that the number of unique crashes is significantly
lower than AFL indicates. More importantly, these crashes are ob-
tained intermittently (as depicted by the red line), likely due to
time wasted exploring closely related paths or getting stuck in deep
code paths. The fruitless search wastes time on inefficient mutation
operations that do not lead to different code paths, ultimately fail-
ing to finding so-called “quality inputs” that lead to crashes for a
long time [27]. Furthermore, Bohme et al. [2] showed that although
finding some vulnerabilities using contemporary approaches might
be cheap, improving bug finding linearly requires exponentially
more computational power.

AFL (branch edge)

Stack backtrace

No. of new crashes (stack backtrace) observed in-each hour
Category 1 - Stack buffer overflow

Category 2 - Source access violation

2254
2101
195 -
180 -
165 -
150 -
135 -
120 A
105 -
90 -
75 A
60 -
45 A
30
154
04 ————

—

C1

Number of unique crashes

0 4 8

T T T T T T T
24 28 32 36 40 44 48
Hours

T
12 16 20

Figure 1: Inefficiencies in the typical fuzzing process

Additionally, since most of the program paths are (hopefully)
bug-free [33, 51], giving equal value to all program paths is a non-
optimal strategy when the ultimate goal is to discover vulnerabili-
ties [9]. This issue is clearly visible in Figure 1, which also shows
the time when the first instance of each of only two classes of bugs
(a stack overflow and a source access violation vulnerability, respec-
tively) were found. With Chen et al. [9]’s observation about path
coverage in mind, other researchers have proposed ways for im-
proving code coverage by using different coverage metrics [54] (e.g.,
context-sensitive branch coverage [7, 43], memory-access-aware
branch coverage [16], basic block information [25, 43]) have been
proposed. Unfortunately, Wang et al. [54] subsequently demon-
strated that there is no grand slam coverage metric that outperforms
all the others. That is, given limited resources (time and compu-
tation power), all of these coverage metrics offered merit relative
to flipping certain types of branches or in finding vulnerabilities
not readily found by the others. Alas, different coverage metrics
performed better on other benchmarks, underscoring the enormous
diversity that exists between the code base of different programs.
Thus, even though a one size fits all coverage metric may be de-
sirable, doing so is unlikely to discover diverse bug types across a
wide variety of programs.

Taken together, these findings open the door for several areas of
improvement within the practice of fuzzing. For one, by introducing

346

Sanjeev Das, Kedrian James, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose

a tighter feedback loop early on in the workflow, one can better
guide a fuzzer in exploring more diverse code paths. Likewise,
armed with the ability to dynamically choose when to apply a
particular coverage metric, we may be able to improve the overall
success rate of a fuzzer by steering it toward or away from certain
classes of bugs.

Our specific contributions include:

(1) Vulnerability-aware selection of a coverage metric: we use
micro-architectural information obtained through hardware
performance counters (HPCs) to derive coverage metrics.
HPCs are a set of special registers that are available in pro-
cessors to monitor and measure hardware events related to
memory, branches, instructions, and basic blocks. We provide
a principled approach for systematically assessing hundreds
of HPC events to select representative sets of events that can
be utilized as a coverage metric for a given program.

A configurable input selection strategy: using knowledge of
past bugs, we show how one can perform fuzzing under two
modes of operation — to seek bugs that are induced under
similar behavior as witnessed in past bugs, or to hunt for
bugs that are triggered by program behavior that is markedly
different from that observed when previous vulnerabilities
were discovered. Given the large number of events that can
be utilized to build a coverage metric, there is tremendous
flexibility in exploring input selection strategies at runtime,
e.g., by choosing a different set of HPC events than those that
performed best in teasing out past bugs. We leverage this
flexibility to switch between coverage metrics at runtime
(e.g., when the deduplication strategy informs us that the
last few crashes likely fall under the same bug classification).
Using deduplication as a feedback mechanism: we show that
deduplication can be used as an early feedback mechanism
to improve the overall fuzzing progress. Specifically, using
crash deduplication techniques to quickly infer the potential
root cause and to steer the fuzzing process, one can lessen
the chances of discovering the same bugs repeatedly.
Extensibility: We demonstrate that our approach can help
improve the effectiveness of different base fuzzers. Moreover,
we perform an extensive evaluation based on practitioner’s
vantage point, in terms of time to finding a unique crash,
and the consistency of bug discovery over repeated runs. To
demonstrate the benefits of our extensions to the vulnerabil-
ity discovery process, we report on an evaluation on eight
real-world programs that were specifically chosen because
they have been subject to heavy fuzzing attempts in the
recent past.

—
W
=

2 BACKGROUND

In what follows, we provide an overview of hardware performance
counters (HPC), as the usage of these counters plays a key role in
our approach. In short, hardware performance counters are a set of
special registers present in modern processors that can be used to
monitor and measure events at the hardware level. These events are
related to instructions, memory, and the execution behavior on the

A Flexible Framework for Expediting Bug Finding by Leveraging Past (Mis-)Behavior to Discover New Bugs

CPU pipeline. The hardware events supported by performance coun-
ters can be classified as either architectural or non-architectural
events (the latter are also known as micro-architectural events).

Architectural events comprise events that remain consistent
across different processor architectures. Examples include instruc-
tions, branches, and cycles. Non-architectural events are those that
are specific to the micro-architecture of a given processor, for exam-
ple, cache accesses, branch prediction, and TLB accesses. Unlike ar-
chitectural events, non-architectural events vary among processor
architectures and may also change with processor enhancements.
Table 8 in the §A.1 presents a list of commonly used architectural
and non-architectural events in Intel processors. Interested readers
are referred to [14, 34, 46, 52] for excellent overviews of perfor-
mance counters and their proper usage.

In this work, we argue that the wealth of information provided
by performance counters about program behavior offers a unique
opportunity to explore a multitude of coverage metrics to guide
the fuzzing progress. Moreover, since these counters can be used to
monitor more than one event simultaneously, one can build custom
coverage metrics to suit different proposes. From a practitioner’s
point of view, the collection of these characteristics comes with low
overhead, making HPCs extremely well suited for the task at hand.

Intuitively, our entire approach hinges on the assumption that
bugs in prior versions of a program or library can provide a good
enough signal to help find bugs in other versions of the same pro-
gram [37]. Indeed, the seminal work of Ozment and Schechter
showed that much of the “foundational code” remains the same in
the newer versions of a program [40]. Moreover, because similar
coding practices are followed in newer versions of a program, cod-
ing mistakes tend to persist. Based on that observation, we provide
a framework that can operate in two ways: steer the fuzzing process
toward or away from paths that have architectural events similar
to those observed when prior bugs were discovered. To allow for
this flexibility, we provide a way to systematically assess the HPC
events and select representative sets of events (up to four at a time)
that can be used to differentiate between quality (i.e., crashing) and
non-quality inputs. Next, models are built using standard machine
learning approaches. Lastly, at runtime, we apply these models to
help drive the input selection strategy while fuzzing other versions
(albeit past or current) of the program that were not part of the
learning phase.

3 OUR APPROACH: OMNIFUZZ

In this work, we propose a flexible vulnerability-driven fuzzing
framework, called OmniFuzz, for enhancing baseline fuzzers in
order to find bugs faster, and hopefully, to find more unique bugs.
Unlike contemporary approaches that give equal weight to all paths
explored, we prioritize code paths based on knowledge of past bugs.
By judiciously selecting what inputs should be selected for mutation,
we streamline the space of paths that need to be explored, thereby
minimizing the amount of time spent on paths that are unlikely to
lead to successful outcomes in our quest to locate bugs.
OmniFuzz operates in three phases (illustrated in Figure 2). In
the data collection phase, we collect quality and non-quality inputs.
In fuzzing parlance, quality inputs are those that trigger crashes,
whereas non-quality inputs exit the program normally and do not

347

ACSAC 2020, December 7-11, 2020, Austin, USA

result in crashes or hangs. Next, we extract the dynamic behavior for
all the inputs using hardware performance counters. In the model
building phase, we use the HPC traces to select an appropriate
coverage metric for a given program. The metric and the HPC
traces are used to build a machine learning (ML) based classifier,
which is trained to identify the quality and non-quality inputs.
During the runtime phase, the classifier guides the fuzzing of a new
version of the program. We discuss each phase in turn.

3.1 Data Collection

To collect quality inputs, we subject a version of the program to
a baseline fuzzer. The number of quality inputs generated by a
fuzzer depends on multiple factors, including the number of ac-
tual bugs, the seed inputs, and the amount of available computing
resources. To maximize the number of quality inputs, we run the
baseline fuzzer with sufficient computing resources over an ex-
tended period [17, 28]. Since modern fuzzers typically generate
a large number of test inputs quickly, collecting a corpus of non-
quality inputs is not an issue. Next, we curate HPC traces for both
the quality and non-quality inputs. The traces consist of the num-
ber of occurrences of a specific hardware event that was triggered
during the program execution.

Although there are hundreds of hardware events available in
modern processors, only a limited number of counters can be used
to monitor these events simultaneously. Given this constraint, a
natural question is which events should one use? To answer that
question, we conducted an in-depth analysis of processor documen-
tation, and so studied the literature for events that were commonly
used to profile program behavior [5, 29, 38, 56]. We conservatively
selected all those events that could explain the high-level behavior
of a program, but excluded those events that monitor low-level
micro-architectural information or that are difficult to relate to
high-level program behavior. For example, we excluded the events
relating to the pipelining behavior of the CPU. In the end, we were
left with a set of 96 events, which we further grouped into 65 classes
(shown in Table 8). The criteria we used to group events were (a)
events that are similar but only differ due to the change in the
size of hardware components are considered as a single class, and
(b) events that count hits instead of cycles are split into different
classes. To collect the HPC data, we followed the recommendations
of Das et al. [14].

3.2 Model Building

We use a correlation-based technique to identify representative sets
(of 4 events) from the initial set of 96 events. Here, a good feature set
contains features that are correlated with a class, yet uncorrelated
with each other. In our context, a class represents either quality or
non-quality inputs. Given good feature sets, we now need a way to
influence the input selection at runtime. Based on prior knowledge
of the non/quality inputs, one might be able to predict whether
some unknown input is a quality or non-quality input by learning
the dynamic program behavior for these inputs. However, in the
context of fuzzing, the problem is a bit more complicated because
we need to predict whether fuzzing with the current input might
lead to a crash in some future iteration.

ACSAC 2020, December 7-11, 2020, Austin, USA

Sanjeev Das, Kedrian James, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose

Phase 1: Pre-processing

Inputs

Phase 2: Model Building

Feature Selection L i
Heuristic Generation
Selected Features

Base Fuzzer

Ereoute)
{Monitor 3|

| itial
inputs

[Pegen]

[S— i
[y |+ [Froen]

— :
Non- |
quality ;

Trace Collection

L HPC ||
- — i
Tracer |

Features . [nstructions D\
: Instructions | > 4, = |Branches
Branches Arithmetic pr 2
Arithmetic i)
Clomt Floating ops
t . .
oating ops | — | Arithmetic ’
Memory -
Memory

Phase 3: Vulnerability Exploration

Strategy #1: Similar Bugs

Strategy #2: Different Bugs

Base
Base . Base
Approach Classifier 1 Approach Approach

Strategy #3: Dual Mode

Classifier 1

1\ Switch ‘]\

Figure 2: System design of OmniFuzz

To address this challenge, we use a machine learning approach
that learns the dynamic program behavior triggered by the quality
inputs, and guides the fuzzing process accordingly. As part of the
exploratory phase of our research, we performed model selection
using several machine learning algorithms, including decision trees,
random forests, k-nearest neighbors, and multi-layer perceptrons
(MLPs). We found that no particular model significantly outper-
formed the rest. However, we settled on using the MLP approach
for a number of reasons. First, it does not depend on the discrete
numerical value of features (in contrast to decision trees). Second, it
has constant runtime overhead because our neural network model
is small; specifically, it contains a fixed number of nodes (typically
4 neurons in the input layer, 4 neurons in the hidden layer and 2
neurons in the output layer).

3.3 On-the-fly Deduplication

To limit time wasted hitting the same or similar bug(s) repeatedly,
we use root cause analysis as a deduplication mechanism. The root
cause, in our case, is the line or block of code that first propagated
the bad value that led to the crash. To support online deduplication
via root cause analysis, we implemented a custom solution on top
of Mozilla’s Record and Replay framework [35]. The framework
provides a wealth of information that enables precise analysis of
the program states that led to a crash. We also leverage the use of
hardware watchpoints for memory tracking. Our memory tracking
technique is based on the pointer lifecycle in Figure 3. To locate
the root cause of a crash, analysis begins at the crash point by
extracting the variables involved in the crash and their values. We
then perform backward analysis by leveraging record and replay
and hardware watchpoints to locate the line or block of code that
caused the crash.

Under the Hood: The first step of the analysis consists of record-
ing a trace of the program execution with a crashing input. The
trace includes snapshots of the contents of the memory and the
registers of the recorded execution. After the program’s execution
is recorded, the execution is replayed and analyzed. The replay

348

process supports moving between snapshots, thus creating an illu-
sion of forward and reverse execution. Our engine leverages the
reverse execution to track the data and control flows that lead to
the program’s crash. Starting at the crash location, we perform the
following steps:

(1) Initialize: Analyze the crashing line, identify the variable(s)
that caused the violation, and set watchpoint(s) on the iden-
tified variable(s).

Search: Revert the program state to a previous snapshot in
which the value of the observed variable has changed, i.e.,
reverse execute until a watchpoint is hit. Identify the vari-
ables used to define the crashing variable(s) and validate the
corresponding values by inspecting their memory mappings.
Decide: If the observed variable changes state from invalid
to valid (see Figure 3), then return the current line and the
set of variables as the root cause. Otherwise return to step 1.

—
SY)
=

Pointer assignment /

Memory allocation Release of backing memory

IS

Pointer assignment
/ Pointer derefernce

Pointer

Pointer assignment derefernce

Figure 3: Pointer life-cycle

To assess our deduplication strategy, we examined how well it
correctly identified the root cause for the applications shown in
Table 1. Ground truth was obtained via a labor-intensive manual
process. We found that our approach was able to identify multiple
entry points as a single bug. A prominent example is pcre, where our
engine identifies the bug and multiple entry points as a single entry.
False positives occur with tiff and libxml2 because the engine mis-
attributes the root cause to incorrect source lines. Nonetheless, the

A Flexible Framework for Expediting Bug Finding by Leveraging Past (Mis-)Behavior to Discover New Bugs

Table 1: Root Cause Analysis

No. of bugs
#Ent
Library Bug Class Actual Ours niry
points
libarchive (v3.1.0) Heap-buffer-overflow 8 5 9
o Heap-buffer-overflow,
libjpeg (v1.4.2) Null Pointer Dereference 4 2 4
- Heap-buffer-overflow
LRGSR Null Pointer Dereference 2 2 4
libpng (v1.2.56) Null Pointer Dereference 1 1 2
libxml2 (v2.9.2) Heap-buffer-overflow 4 6 7
Heap-buffer-overflow
pere (v10.0) Null Pointer Dereference 5 > 15
. Heap-buffer-overflow,
LD Null Pointer Dereference 3 8 14
yaml (v0.5.3) Logic error 1 1 1

results show our strategy can be used as an effective deduplication
strategy.

During online deduplication, there were cases where we needed
to revert to existing methods (e.g., AddressSanitizer [1]) when our
engine failed to provide diagnostic output. That strategy appears to
work well. For instance, in the case of CVE-2016-5102 (discussed in
§5.3), the different fuzzers generated inputs that led to four distinct
crash locations stemming from the same bug. Our core engine suc-
cessfully identified the root cause for all discovered crash locations
as a single bug, but other approaches (AddressSanitizer and stack
backtrace methods) incorrectly identified the crashes as separate
bugs. However, for CVE 2016-3186, our engine’s output was incon-
clusive as it was unable to determine the root cause of the crashes.
In that cause, we defaulted to the output from contemporary solu-
tions.

3.4 Coverage Guided Fuzzing

With an understanding of how the first two stages of our framework
operate, we now return to a discussion of three different strategies
that can be employed at runtime.

Strategy 1 — Hunting similar bugs of the past: The success of this
strategy hinges on the assumption that because the same coding
practices may have been followed in the latest version of some code
base, similar coding flaws may persist. To uncover the presence
of such bugs, we first check if an input triggers a new code path.
For example, AFL considers an input as interesting if it triggers
new branch edges during execution. If that is the case, we validate
whether this input is a quality input using the trained classifier.
Only if both conditions are satisfied do we then allow the input to
go on for mutation. Functionality wise, we are explicitly limiting
the inputs the base fuzzer intended to pass on for mutation.

Strategy 2 — Hunting different bugs: Alternatively, it might be
safe to assume that once bugs have been discovered in past ver-
sions of a program, the developers would have taken measures to
minimize those errors in more current versions of the program.
Hence, it may make sense to instead steer the fuzzing in a different

349

ACSAC 2020, December 7-11, 2020, Austin, USA

direction. Strategy 2 does just that. First, we check if an input trig-
gers new code paths. If so, we use the classifier to determine if the
input is dissimilar to the ones seen in the past vulnerabilities, i.e.,
if the input is classified as non-quality. If that condition holds, the
input is selected for mutation. In this way, we are offering a more
informative form of path guidance [10].

Strategy 3 — Dual mode: Modern fuzzers often get stuck in deep
code paths or spend too much time on inefficient mutation oper-
ations that do not lead to entirely different code paths [4, 7, 16].
Consequently, they either do not generate quality inputs for a long
time [27], or they end up finding quality inputs that trigger the
same bug repeatedly. Both of these cases reduce the overall perfor-
mance of a fuzzer. In the dual mode strategy, we allow for switching
between ML-based heuristics, which can be triggered based on dif-
ferent conditions. For example, one may choose to switch heuristics
if the fuzzer fails to generate any new crashing inputs for a certain
period of time, or if the vast majority of recent crashes all have the
same root cause. In this way, we allow the fuzzer to perform a more
comprehensive exploration under fixed resource constraints.

4 IMPLEMENTATION DETAILS

From an engineering standpoint, the design of our framework con-
sists of four modules (Profiler, Feature Selector, Heuristic Generator,
Vulnerability Explorer) that map to the corresponding components
outlined in Section 3. As an initial input to the workflow, we first
collect quality and non-quality inputs from old versions of target
programs we wish to fuzz. For that, we can use known crashing
inputs to expedite the process or simply run the baseline fuzzer
for some extended period on the old versions. Note that this is a
one-time cost.

4.1 Profiler

As the name suggest, this module is responsible for recording the
HPC events for all the code paths triggered by both quality and non-
quality inputs during training. The trace, 7, for input, i, is given
as 7; = {ei1, ei2, . .., €i96}, Where e;; represents the measurement
of hardware events. Due to the limited number of programmable
counters, to measure all 96 events, the Profiler executes the program
with a specific input 24 times, each time configuring a different set
of 4, non-overlapping, counters.

4.2 Feature Selector

The Selector is responsible for determining what specific hard-
ware events should be used to guide the input selection process
at runtime. First, the HPC traces are separated into two groups
corresponding to quality and non-quality inputs. Since the num-
ber of traces for quality inputs will only be a small fraction of all
the traces, the collection S = 771, ..., 7N, will be imbalanced. To
mitigate any bias in the feature selection process, S is split into m
smaller datasets by randomly selecting the same number of traces
from each input class. Here, m is the ratio of non-quality to quality
inputs.

Next, we use the CfsSubsetEval algorithm [20] to select the best
subset of features. CfsSubsetEval evaluates the worth of a subset
of features by considering the individual predictive ability of each
feature along with the degree of redundancy between them. The

ACSAC 2020, December 7-11, 2020, Austin, USA

evaluation is conducted using a 10-fold cross-validation approach.
We then assign a score to each HPC event based on the number of
times that event appears among the selected subset of features over
all 10 runs. The overall score of an event is averaged across all m
datasets. Informally, we denote that score as the information gain
of an event. The coverage metric derived at the end of this process
is cov = {e1, e, e3, e4} where e;j denotes the hardware events that
meet some criteria (for example, the 4 events with the highest gain).
To further illustrate how this works, consider the analysis of a
set of well-known libraries we would like to build coverage metrics
for: libpng, libjpeg, yaml, tiff, pcre and libxml. In this case, the set
S in Table 2 was derived by running the AFL fuzzer on known
vulnerable versions of the target libraries for 48 hours each.

Table 2: Example training data

Quality Non-quality

Programs inputs inputs
libarchive (v3.1.0) (bsdtar) 229 6417
libjpeg (v1.4.2) (cjpeg) 1136 52381
libplist (v1.11) (plist_test) 164 1544
libpng (v1.2.56) (pngtest) 496 9592
libxml2 (v2.9.2) (xmllint) 466 25489
pere (v10.0) (pcre2test) 2533 42652
tiff (v4.0) (gif2tiff) 676 7595
yaml (v0.5.3) (parse) 682 11537
1.01 —— libarchive
\ —— libjpeg
0.81 — libplist
= —— libpng
g’ 0.6 — libxmI2
S —— pcre2
e tiff
g 0.4 — yaml
024
\)
0.0

0 8 16 24 32 40 48 56 64 72 80 88 96
Events

Figure 4: Information gain for sample libraries

Figure 4 shows the normalized information gain for all 96 events
for each of the libraries. To further elucidate the relation between
the selected events, we grouped the events into the 65 categories
discussed in Section 3.1. Note that the gain varies across the bench-
marks. This should be the case. While a few event classes show up
across all benchmarks (e.g., event classes dtlb_load_misses,
br_inst_retired, itlb_flush, offcore_requests), different subsets of events
have more discriminatory power for a given benchmark. For most
of the programs, the gain is high for the top 10-12 events.

One can use this insight to build multiple coverage metrics for a
given program. For example, we could select the best 4 events as a
coverage metric or the next 4 events, depending on our desired out-
come. Given that the cost of false positives and false negatives are

350

Sanjeev Das, Kedrian James, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose

very different in our approach, we ensured that the classifier built
using the events has at least an F-measure value of 0.7 (shown in
Figure 5). In addition, there must be sufficient number of events (e.g.,
6-8) with a high information gain to build multiple coverage metric
sets. Based on these measures, we empirically set the information
gain threshold at 0.4 — which yields the prerequisite 8 events in
Figure 4 — and disregarding events with lower gain. Furthermore,
when choosing the next-best grouping of events, we mandated that
there was at least 50% difference in categories with the topmost
4 events. For example, in case of pcre, the topmost set would be:
{ess, €12, €47, €56}, while the next set (above the cut-off) containing
events from at least two different classes would be: {e4¢, €12, €54, €41}
from Table 8.

4.3 Runtime Heuristic

This component is responsible for deriving the heuristic that helps
steer the input selection process. As noted in Section 3, we choose
to use a multilayer perceptron approach because it offered good
accuracy and was straightforward to translate the resulting clas-
sifier into a runtime heuristic. We used the Weka toolkit API to
implement the MLP based classifier.

12 B Next-4-events (MLP)

I Next-4-events (DT)

EEm Top-4-events (MLP)
[Top-4-events (DT)

m 1-event (MLP)
1l-event (DT)

F-measures
© o o =
e o © o

o
N

o
o

PO Pl P2 P3 P4 P5 P6 P7
PO-libarchive, P1-libjpeg, P2-libplist, P3-libpng, P4-libxml2, P5-pcre2, P6-tiff, P7-yaml

Figure 5: Comparison of F-measures

Figure 5 shows the performance of trained classifiers on a set
of real-world libraries. We used 10-folds cross-validation approach
to build our models. For the sake of comparison, we report the
effectiveness of MLP and decision tree (DT) models built using the
top 4 events, next 4 events and the event with the highest informa-
tion gain for each program. Overall, the performance of MLP and
DT classifiers are similar for most of the programs with 4 events,
except in pcre. We choose MLP because DT uses discrete value of
events which restricts the model, and in some cases the tree is quite
complex with a large number of nested nodes (e.g., pcre has over 60
nodes). In the case where the models are built using the single event
with the highest gain, the trained MLP model performed worse,
and sometimes failed to identify the quality inputs.

4.4 Vulnerability Explorer

Motivated by the recent fuzzer benchmarking reports [45], we
decided to apply our framework to AFL, MOpt [27] and Fairfuzz [24].
More details about this choice is given in §5.1. All of these fuzzers
implement a fork server model. In fork server model, the fuzzed
process goes through execve(), linking, libc initialization only once,
and then clones from a stopped process image via copy-on-write.

A Flexible Framework for Expediting Bug Finding by Leveraging Past (Mis-)Behavior to Discover New Bugs

The fork server stops at the first instrumented function to await
commands from a fuzzer module. Our implementation is built in
concert with the fork server model of a base fuzzer. Specifically,
we modified base fuzzer’s original instrumentation such that the
child process waits to receive commands via a pipe before it can
resume its execution. As it waits, our Profiler module configures the
relevant HPC events for the child process created by the fork server.
We use the perf_event_open() API to configure the HPC events.
After the execution of the child process, the hardware events are
recorded. Next, the recorded HPC values are used to build a feature
vector, which is given as an input to the trained classifier. The
classifier predicts whether the feature vector belongs to a quality
class or non-quality class.

Table 3: Vulnerability Exploration Strategies

HPC driven heuristics

Mode Objective Strategies Primary Secondary
Single Finding similar bugs 1-a best 4 events n/a
Finding different bugs 2-a best 4 events n/a
Finding different bugs 2-b next 4 events n/a
Dual Finding similar bugs 3-a best 4 events next 4 events
Finding different bugs 3-b next 4 events best 4 events

The vulnerability explorer module can be configured to pursue
a myriad of strategies. Table 3 outlines variants of three strategies
(see §3.4) we tested. In the single mode instantiation, we build the
variants of Strategies 1 and 2 using either the best 4 events or the
next 4 events, selected as per our criteria described in Section 4.2.
In the dual mode case, we oscillate between the best 4 events and
the next 4 events. The evaluation of these strategies in vulnerability
discovery experiments is presented next.

5 EVALUATION

To assess the soundness of our approach, we first perform an evalu-
ation on downstream versions of programs where ground truth (i.e.,
vulnerabilities and patches) exists. Arguably, there is also practical
relevance in fuzzing downstream versions of a program as doing
so allows an analyst to investigate how long bugs of a particular
type may have persisted. Additionally, practitioners may use such
knowledge to direct their vulnerability discovery processes to hunt
for bugs in prior versions where exploiting those bug may be easier.

Experimental Setup: All experiments were conducted in a virtual-
ized environment running on a server consisting of Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz processor with 20 cores and 128 GB
memory. Each virtual machine runs on a VMware hypervisor (that
supports HPC monitoring), and is configured with 1 core (2 threads)
and 8 GB of memory. Each fuzzer instance runs on a separate VM
(to avoid hogging of resources by a particular instance), and each
experimental run is conducted for a period of 24 hours. To reduce
the impacts of randomness in the fuzzing process, we repeat each
experiment 6 times [23, 28]. Our benchmark consists of utilities
from the real-world libraries shown in Table 4.

351

ACSAC 2020, December 7-11, 2020, Austin, USA

5.1 On Extensibility

To decide which fuzzers to apply our framework to, we initially
selected 4 fuzzers based on source code availability and findings
from a recent fuzzer benchmarking report [45] that ranks fuzzers
based on the medians of reached coverage on different benchmarks.
Table 4 presents the results of these fuzzers in terms of bug discovery
and their consistency over repeated runs. For some programs (e.g.,
libjpeg), we found multiple instances of the same bug that roots to
different code locations (shown in parentheses). Finding multiple
occurrence of the same bug also adds to the efficacy of a fuzzer,
therefore, we classify them as independent bugs although they were
documented using same CVE. The results show that AFL, MOpt
and Fairfuzz fall on the higher end of the spectrum in terms of
consistency and finding more bugs, while Angora falls on the lower
end. In addition, following the recommendation of Klees et al. [23],
we note that recent works address the randomness in the fuzzing
by conducting multiple runs and then present an aggregated result.
But, from a practitioner’s point of view, a true measure of the quality
of a fuzzer is whether it can consistently find a particular bug in
repeated runs. Along those lines, we also report the consistency of
an approach to find a specific bug over multiple runs.

Based on Google’s evaluation using the critical distance met-
ric [45], AFL, MOpt and Fairfuzz performed well on their fuzz
benchmarks. We decided to apply our framework to AFL as it is
by far the most popular fuzzer. MOpt targets a different point in
the fuzzing space in that it offers a novel mutational scheduling
scheme to better enable mutational-fuzzers to discover vulnerabili-
ties. For that reason, we also selected MOpt as a candidate to apply
our framework to. Lastly, we also extended Fairfuzz for a different
point in the space. We chose Fairfuzz because it uses a unique seed
selection approach for guiding the fuzzer toward rarely executed
paths.

5.2 On Expediency

One way to measure whether OmniFuzz finds potential bugs faster
is to compare the time-to-crash ratio for the crashes that are com-
mon between the approaches. That metric has been used else-
where [39, 54] as, at first blush, it appears to be a decent measure of
the efficiency of a fuzzer in reaching bugs. If we apply that yardstick,
the results show that we can find crashes much faster than the base
approach: 1200X faster in the tiff benchmark using strategy 1-a,
70x faster in yaml using strategy 2-a, and 40X faster in libjpeg using
strategy 2-a. While impressive, the time-to-crash ratio is somewhat
misleading because (from a practitioner’s standpoint) the difference
between finding crashes in seconds versus minutes may not be
that suasive. Therefore, we take a slightly different approach and
report the speedup relative to a predefined granularity. E.g., if the
granularity is 15 minutes, and a crash is obtained in 30 seconds by
one fuzzer and in 14 minutes by the other, we consider the speedup
as 1.

Figures 6a-6¢ show the speedup for each unique crash found
on a per run basis for AFL, MOpt, and Fairfuzz respectively. For
a more detailed look, we refer the reader to Tables 9-11 in the
Appendix. In our analyses, the uniqueness of a crash is measured
by the stack trace approach [23]. A larger ratio means that our

ACSAC 2020, December 7-11, 2020, Austin, USA

Sanjeev Das, Kedrian James, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose

Table 4: Consistency in finding bugs (over 6 runs)

Programs CVE/Bugs Bug-description BugID AFL Mopt Angora Fairfuzz
CVE-2015-8932 Heap-buffer-overflow 1 6 (V) o
ID not assigned Heap-buffer-overflow 2 6 © (V]
libarchive (v3.0.3) CVE-2015-8928 Heap-buffer-overflow 3 2 © (1) (1)
CVE-2015-8923 Out of bounds read 4 0
ID not assigned Out of bounds read 5 0
CVE-2018-11212 Divide-by-zero 6 5 (1) ()
Heap-buffer-overflowq) 7 5 (1 © (V)
Heap-buffer-overflow) 8 3 (V) o (V)
CVE-2018-11213 Heap-buffer-overflows) 9 3 o © ©
libjpeg (v1.3.0) Heap-buffer-overflow) 10 3 o © (V)
Heap-buffer-overflow s 11 2 o (V] (V)
Heap-buffer-overflow; 12 5 (1] © ©
CVE-2018-11214 Heap-buffer-overflowy) 13 5 (] o
Heap-buffer-overflow s, 14 0 (1 (1]
o CVE-2017-5209 Type conversion 15 6 X
libplist (v1.9) ID not assigned Out of bounds read 16 6 X
libpng (v1.0.69) ID not assigned Null Pointer Dereference 17 3 (V) (V) o
CVE-2017-9049/9050 Heap-buffer-overflow 18 1 © x (1]
libxml2 (v2.8.0) CVE-2016-1835 Heap use-after-free 19 0 x
x ESs CVE-2015-7497 Heap-buffer-overflow 20 0 x (1]
CVE-2015-7498 Heap-buffer-overflow 21 4 © x
Bug #1783 Out of bounds read 22 3 o o (V)

pcre (v8.38)

CVE-2017-11164 Stack overflow 23 0 () ()
CVE-2016-5102 Heap-buffer-overflow 24 5 (V) (V] (1
CVE-2016-3186 Heap-buffer-overflow 25 6 o ©
tiff (v3.7.0) CVE-2013-4244 Heap-buffer-overflow 26 5 o (1] (1
CVE-2013-4231 Heap-buffer-overflow 27 5 (V) () ()
ID not assigned Heap-buffer-overflow 28 5 o © (1
yaml (v0.3.0) ID not assigned Logic Error 29 6 x

Numbers inside parentheses denote the distinct instances of bugs with different root causes, but addressed by a
single CVE. Benchmarks that Angora failed to run on are listed as . The number of times a bug is found by a fuzzer
is referenced with respect to AFL and shown as (& to denote the same as AFL, @ more than AFL, and @ fewer than

AFL.

approach finds the bug in less time. We apply the pairwise two-
tailed Mann-Whitney U approach to test for statistical significance.
The results show that for most of the programs, the time-to-crash
data obtained using our approach are statistically different from the
base fuzzer. Specifically, we induce crashes 3.5X faster in libjpeg, 7X
faster in tiff; and 2X faster in yaml and libarchive when AFL is the
base fuzzer. We perform worse in the case of libxml2, although there
are only a handful of crashes for that benchmark. With MOpt as
the base fuzzer, we improve the time needed to find unique crashes
by 1.6X in libjpeg, 3X in tiff, 2.3X in yaml, 1.1X in libarchive. The
dual mode (strategies 3-a, 3-b) outperforms the single mode in the
majority of cases. Finally, in the case of Fairfuzz, our approach
improves the time to finding unique crashes by 3.0X in libarchive
and libxml2, 2.3X in tiff and 3.4X in yaml.

352

That said, our approach performs poorly in some cases. Our
painstaking analysis showed that the benefits of our extension
are undermined under certain circumstances. First, if there are
only a few initial seed inputs and those seeds are not selected by
our heuristic, then the fuzzer’s progress slows down. For instance,
libarchive, tiff and libxml2 have only one seed input. With our
strategies such as 1-a and 3-a, the process gets stuck waiting for
the mutation to generate entirely different inputs that can stir the
fuzzing exploration in a new direction. This acts as a chokepoint
and impedes progress. This limitation can be addressed by starting
off with large and diverse initial seeds (e.g., as was the case with
yaml).

Second, we found that the full benefits offered by our extension
may not be realized when composed with certain baseline fuzzers.

A Flexible Framework for Expediting Bug Finding by Leveraging Past (Mis-)Behavior to Discover New Bugs

This is especially true when their core guiding technique(s) coun-
teracts that of our HPC based models. For example, in the case of
Fairfuzz, we found that strategies 1-a and 3-a do not work well be-
cause of Fairfuzz’s conservative policy, which heavily trims inputs
based entirely on rare branches. Given that our approach leverages
more contextual coverage information obtained through HPC, the
restrictions imposed by Fairfuzz undercuts these potential benefits.

5.3 On Bug Discovery

For bug analysis, first we deduplicated crashes based on function
names, line numbers and crashing cause as reported by Address-
Sanitizer [49] or manually using a debugger (e.g., gdb). Next, we
manually inspected all unique crashes to identify their root cause,
and classify them as a unique bug based on the root cause. We
supplemented our understanding of each bug with the publicly
available CVEs, bug reports and the developers’ patches. The ex-
tra validation is important as the root cause can be different from
the crashing cause given by AddressSanitizer [1], e.g., in libplist
a type conversion bug led to a heap overflow vulnerability (CVE-
2017-5209), while in libtiff a buffer overflow (CVE 2016-5102) led
to overwriting of two different pointers, resulting in two distinct
crashes — invalid read access to a file pointer, and invalid free of
memory.

We present our evaluation on extending AFL, MOpt and Fairfuzz
base fuzzers using our approach in Table 5. Overall, our approach
has similar or higher consistency for finding bugs. In particular, with
our extension, AFL is able to find 3 more bugs, MOpt’s discovery
improves by 5 bugs, while Fairfuzz by 8 bugs. This amounts to
> 13% improvement on AFL, > 29% on MOpt and > 53% on Fairfuzz.
These results aptly demonstrate the effectiveness of our approach
in improving bug discovery.

5.4 On Comprehensiveness

Lastly, we explore the effectiveness of a portfolio configuration [17]
where strategies 2-b, 3-a and 3-b are run independently, and the
results combined. For fairness, the baseline fuzzer is run 18 times,
while our strategies are run 6 times each. Table 6 compares base
fuzzers with the portfolio configuration measured by the consis-
tency of bugs. Notice that the combined strategies led to more bugs
than the base, i.e., 2 more bugs in AFL, 5 more bugs in MOpt, and 2
more bugs in Fairfuzz. Moreover, our approach has higher consis-
tency in finding the bugs than the base fuzzers. Interestingly, our
strategies explore 62% of the base paths on average (see Table 12 in
the Appendix). Thus, our approach can be considered more directed
in the search for bugs.

5.5 Vulnerability Discovery in the Wild

Satisfied with the performance of Omnifuzz, we decided to use it to
fuzz the current versions of libjpeg, libarchive and pcre. We limited
fuzzing to those three libraries due to time and resource constraints.
Within several hours, we induced a number of crashes that mapped
to 9 new bugs. The discovered bugs are listed in Table 7. After
reporting the vulnerabilities, 2 CVEs were assigned, and another
two bugs were immediately fixed. Note that these are heavily fuzzed
programs, and are continuously fuzzed on a large scale resources,
such as by Google’s continuous fuzzing framework for open source

353

ACSAC 2020, December 7-11, 2020, Austin, USA

software. For a few others, the maintainers argued that the bugs
identified were due to specific features (e.g., recursion - Bug-2484),
and it is up to the programmer to ensure correct inputs are used
(e.g., Bug-2479-2483).

6 LIMITATIONS

Clearly, the approach we advocate in this paper is not ideal for all
fuzzing campaigns. First, our approach requires a priori knowledge
of prior bugs in past versions to be able to guide the fuzzing process.
That said, it is possible that techniques from transfer learning [18]
and few-shot learning [55] can be used to build more sophisticated
models when a sufficient number of quality inputs are not read-
ily available. Moreover, we are not arguing that the approach we
take using multi-layer perceptrons to build our models is the best
choice. As stated earlier, we chose that solution because it offered
significant operational benefits. Secondly, though we make no as-
sumptions about the input scheduling algorithm used, we do not
study how the guidance we give during the input selection process
could impact optimality. The theoretical frameworks and formal-
izations by Rebert et al. [44] and Hayes et al. [21] could help in
that regard. Lastly, the models we build may not be robust against
anti-fuzzing techniques [19, 22] that try to impede automated bug
finding.

Our deduplication technique is, at present, not applicable to
fuzzing at the binary-level as our current instantiation mandates
that we have access to source code of the target program, and
that it be compiled with debugging symbols and no optimizations.
While this is not an issue for open-source software, closed-source
applications are also subject to fuzzing.

7 RELATED WORK

Deduplication: To date, both deduplication and root cause analy-
sis have been active areas of research. From an industry standpoint,
stack backtrace hashing and edge coverage are the most common
approaches to deduplication [13, 23, 28]. However, these approaches
suffer from either over-approximation or under-approximation [23,
28]. To address those limitations, several academic solutions have
been proposed. For example, Lin et al. [26] used static and dynamic
analysis at the source code level to detect and determine the root
cause of out-of-bounds vulnerabilities. Cui et al. [12] proposed
to deduplicate crashes in production systems by reconstructing
dataflow from a core dump, and performing backward analysis
from the crash point. Crashes are deduplicated based on the first
function from which the bad value that caused the crash was de-
rived. Xu et al. [58] proposed to improve root cause analysis when a
core dump contains corrupted data (e.g., due to memory corruption
vulnerabilities). Xu et al. [59] later proposed an approach (and ex-
tensions [36]) that uses the Intel processor trace feature and a core
dump to perform offline binary analysis to recover instructions that
lead to a crash. Subsequently, Cui et al. [11] suggested a refinement
wherein the accuracy of the recovered data flow is improved.

None of these approaches were designed to be used for on-
line deduplication. We incorporated several ideas (e.g., backward
dataflow [12] and record & replay [8]) from these works in the de-
sign of our deduplication strategy for guiding the fuzzing process.

ACSAC 2020, December 7-11, 2020, Austin, USA

Base-vs-1-a Base-vs-2-a

Base-vs-2-b

Sanjeev Das, Kedrian James, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose

Base-vs-3-a Base-vs-3-b

60

o
S

504
404

N
S

301

4 10
1 5
| e - — & =& = 0

20

N
=]

10

Ratio of time-to-crash

. il

*

- _a-1

40

Y S V1Y W

PO Pl P2 P3 P4 P5 P6 P7 PO PL P2 P3 P4 P5 P6 P7

PO PL P2 P3 P4 PS5 P6

P7 PO PL P2 P3 P4 P5 P6 P7 PO PL P2 P3 P4 P5 P6 P7

(a) On AFL

Base-vs-1-a Base-vs-2-a

Base-vs-2-b

Base-vs-3-a Base-vs-3-b

40 50

404
30
301
20
201

10 101

14 _ = _

Ratio of time-to-crash

S

A&

40

30

20

-

.l

PO PL P2 P3 P4 P5 P6 P7 PO P1 P2 P3 P4 P5 P6 P7

PO PL P2 P3 P4 P5

P6 P7 PO PL P2 P3 P4 PS5 P6 P7 PO PL P2 P3 P4 P5 P6 P7

(b) On Mopt.
Base-vs-1-a Base-vs-2-a Base-vs-2-b Base-vs-3-a Base-vs-3-b

50 30

40
< 25
© 40 60 60
g 30 20
%30 20 15 40
ézo 20
e 10
_%10 20 10 s 20
-4
o = — — — — — o] - - - & _ _ O'WY_E]_— 0 — — — — — — =« 0 - — — B _ _

PO P1 P2 P3 P4 P5 P6 P7 PO P1 P2 P3 P4 P5 P6 P7

PO PL P2 P3 P4 P5 P6

2 PO PL P2 P3 P4 P5 P6 P7 PO PL P2 P3 P4 P5 P6 P7

(c) On Fairfuzz.

Figure 6: Relative time to find a crash. P0: libarchive, P1: libjpeg, P2: libplist, P3: libpng, P4: libxml2, P5: pcre, P6 :tiff, P7: yaml. A
larger ratio in the violin plots means that our approach finds crashes quicker. Statistical significance via a pairwise two-tailed

test is presented in Tables 9-11 in Appendix A.2.

Fuzzing: The art and science of fuzzing has witnessed explosive
growth [3, 4, 6, 27, 41-43, 53, 60], driven in part by the booming
software security market. Many approaches [4, 43] try to explore
low-frequency paths in order to reach bugs hidden inside less ex-
plored paths. Vuzzer [43], for example, uses control and data-flow
features to prioritize deep and less frequently explored code paths.
It performs taint analysis to infer the data types at certain off-
sets in the input, and then uses that knowledge to mutate inputs.
CollAFL [16] prioritizes input selection based on more untouched
branches (to increase the coverage) as well as more memory ac-
cess operations (to find memory corruptions). Similarly, Angora (7]
seeks to increase branch coverage by solving path constraints using
context-sensitive branch count and byte-level taint tracking. To
distinguish the executions of the same branch in different contexts,
Angora appends context to the branch IDs to explore paths more
pervasively. By tracking which input bytes flow into each path
constraint, the approach mutates only these bytes instead of the
entire input.

Li et al. [25] applied a static approach on known vulnerable
programs to extract basic block information, comprising the number
of call instruction, operand types and string types. In some sense,
these attributes can be viewed as characterizing program behavior,
albeit not at the architectural level. Based on these attributes, a deep

354

learning model is built wherein scores are assigned to basic blocks
traversed by the program. By calculating scores for basic blocks, Li
et al. [25] infers the fitness of an input for mutation during fuzzing.
We infer similar control flow and data flow behavior information
using performance counter events but with low overhead.

Concurrent to our work, Osterlund et al. [39] proposed a sanitizer-
based approach to direct fuzzing towards triggering sanitizer checks
to find bugs faster. At a high-level, they also prioritize paths by
steering the program towards locations that are more likely to
have bugs. Unlike ours, their approach is based on sanitizer checks,
which may miss certain bug types e.g., logical errors. Moreover, we
implement a feedback mechanism to actively guide fuzzing and
switch between multiple strategies at runtime.

A handful of works [44, 53, 57] have examined what scheduling
algorithms produce the best results for seed selection. Rebert et al.
[44] formalize the notion of ex post facto optimality seed selection,
and provide evidence-driven techniques for identifying the quality
of a seed selection strategy compared to an optimal solution. Unlike
our work, these proposals focus on ways to measure the optimal
case for bugs found with a particular subset of seeds or to find a
“good” set of seeds that can be reused from one application to an-
other. Overall, these works show that the choice of seed scheduling
algorithm can significantly impact the success of fuzzing campaigns.

A Flexible Framework for Expediting Bug Finding by Leveraging Past (Mis-)Behavior to Discover New Bugs

ACSAC 2020, December 7-11, 2020, Austin, USA

Table 5: Performance of OmniFuzz vs base measured by consistency of finding bugs (over 6 runs)

Programs BugID AFL 1-a 2-a 2b 3a 3b| MOpt 1-a 2a 2b 3-a 3-b || Fairfuzz 1-a 2-a 2b 3a 3b
1 6 O (V) 6 © O 2 © © 0 © ©°

2 6 © O V] 6 © o 1 © © © ©

libarchive 3 2 © 0 0 o ©° 0 O 0 0 o © 6 © © © © ©°
4 0 0 0

5 0 0 © 0 0 0 © 0

6 5 © © © © © 6 5 © © © © ©

7 5 © 06 0 o 6 V 0 o 0 0 ©

8 3 O (V] 0 0 © © 0 ©

9 3 O 0 0 O 0 0 ©

10 3 O (V] 0 0 © © 0 ©

libine 11 2 © 06 0 o 0 0 o 0 0 ©
Ipeg 12 5 o © o 6 © (V] 0 © © 0 ©
13 5 © © O © 5 © © 0 © 0 o o

14 0 © © © © © 3 © © 0 © © 0 o o O

libolist 15 6 6 V 6 (V)
P 16 6 6 © 6 ()
libpng 17 3 || o | o
18 1 © © 06 © O 0 o o 3 o (V)

libxml2 19 0 o 0 0
1o 20 0o © 0 O 0 O 0 0 0o © 5 ©O © © © ©
21 1+ © © © © ©° 0 o 4 © © © © ©

22 3 O 1 © 0 06 0 © 0

pere 23 0 1 © 0 © 0
24 5 0 © 0 O 2 V] o 6 © © 0 ©

25 6 2 o o 6 © © 0 ©

tiff 26 5 © O 1) 2 V] o 6 © © 0 ©
27 5 @ © 0 O 2 o o 6 © © 0 ©

28 5 0 © 0 O 2 V] o O 6 © © 0 ©

yaml 29 6 || 6 | 6

The number of times a bug is found by an approach is presented with respect to the base fuzzer and is shown as (@ to denote same as the base

fuzzer, @ more than the base fuzzer, and @ fewer than the base fuzz

The strategies we apply to accept or reject inputs to be queued for
mutation are complementary to the scheduling algorithms.

Hardware assistance: Lastly, there is a growing body of research
on hardware-assisted fuzzing [10, 15, 47, 50]. These approaches use
the processor trace feature to gather information for gauging pro-
gram coverage. Although these approaches leverage processor trace
facilities to efficiently collect an execution trace, the underlying
coverage-guiding principle is similar to that of AFL.

8 CONCLUSION

We demonstrate inefficiencies in contemporary coverage-guided
fuzzers, due principally to their equal prioritization of all program
paths. To address the inefficiencies, we propose a framework called
OmniFuzz that incorporates on-the-fly crash deduplication as a
feedback mechanism to coax the fuzzer to change course when
no unique crashes are obtained for some time. A unique aspect
of OmniFuzz is its use of performance counter data to derive in-
formation that can be used as a coverage metric to guide input
selection. Armed with these capabilities, we show how one can

€r.

355

devise a multitude of strategies to guide a fuzzer toward finding
similar or different bugs from those discovered in the past. These
improvements can be integrated with most of contemporary fuzzers
as they are not tied to a particular architecture. Our experimental
results show that OmniFuzz can find more unique bugs, and can
also find bugs significantly faster than the base fuzzer it augments
(e.g., AFL, MOpt, Fairfuzz). Taken as a whole, our experiments aptly
demonstrate that our vulnerability-aware selection of coverage
metrics, coupled with our on-the-fly deduplication technique, of-
fers an expedient and comprehensive solution for improving the
performance of a base fuzzer.

ACKNOWLEDGMENTS

We thank Prof. Yousra Aafer and the anonymous reviewers for their
suggestions on how to improve the paper. We also thank Murray
Anderegg for his assistance with deploying the infrastructure used
in this study. This work was supported in part by the Department
of Defense (DoD) under award FA8750-17-C-0016 and the National
Science Foundation (NSF) under award CNS-1749895. Any opinions,

ACSAC 2020, December 7-11, 2020, Austin, USA

Table 6: Portfolio mode consistency (over 18 runs)

Programs ~ BugID ~ AFL OmniFuzz || MOpt OmniFuzz || Fairfuzz ~OmniFuzz
1 18 o 18 11 (V]
2 17 (V] 17 (V] 2 (V)
libarchive 3 2 (1) 0 (1) 18 (V]
4 0 0 1 o
5 0 0 (1] 2 (V)
6 17 (1] 18 15 o
7 17 (1) 18 2 (1)
8 5 (1) 2 (V] 0 (1)
9 5 (1) 2 (V] 0 (1)
10 5 (1) 2 (V] 0 (1)
libive, 11 4 o 2 (V] 0 (1)
Ipeg 12 17 18 © 4 (2]
13 15 17 o 4 (V)
14 11 (1) 15 o 4 ©
libplist 15 18 18 (V) 18 (V)
P 16 18 18 © 18 ©
libpng 17 3 © || o | o
18 1 (1] 0 (1] 10 (Y
libxmi2 19 0 (1) 0 0
20 0 o 0 (1] 11 o
21 4 (1) 0 (1) 13 ©
cre 22 3 o 1 (1] 0
P 23 0 2 0
24 17 2 (1] 18 o
25 18 2 (1] 18 (V)
tiff 26 17 (V] 2 (1] 18 o
27 17 2 (1] 18 (V)
28 17 2 (1) 18 (V)
yaml 29 6 (] | 8 () || 18

The number of times a bug is found by an approach is presented with respect to the base fuzzer
and shown as @ to denote same as the base fuzzer, @ more than the base fuzzer, and @ fewer
than the base fuzzer.

Table 7: List of new bugs discovered by our approach

Programs Versions CVEs/Bugs Bug details
zlcl;;iegg)-turbo 2.0.4 CVE-2020-13790 Heap-based buffer-over-read in get_rgb_row()
libarchive 340, CVE-2019-19221 Outofboundsreadin
3.4.1dev archive_wstring_append_from_mbs()
(bsdtar) e
3.4.1d Bug 1298 Out-of-bounds write in
Aldev ug archive_string_append_from_wecs()
Bug-2479 Heap overflow in GETCHARINC()
Bug-2480 Heap overflow in GETCHARLEN()
pere 10.34-RC1, Bug-2481 Heap overflow in GETCHARLENTEST()
(pcre2test) 10.33 Bug-2482 Heap overflow in GETCHARINCTEST()
Bug-2483 Out-of-bounds read in internal_dfa_match()
Bug-2484 Stack-overflow in internal dfa_match()

findings, and conclusions expressed herein are those of the authors
and do not necessarily reflect the views of the DoD or NSF.

REFERENCES

[1] Tim Blazytko, Moritz Schlégel, Cornelius Aschermann, Ali Abbasi, Joel Frank,

[2

[3

[4

]

]

fla

=

Simon Woérner, and Thorsten Holz. 2020. AURORA: Statistical Crash Analysis for
Automated Root Cause Explanation. In USENIX Security Symposium. 235-252.
Marcel Bohme, Valentin Manés, and Sang Kil Cha. 2020. Boosting fuzzer effi-
ciency: An information theoretic perspective. In Symposium on the Foundations
of Software Engineering (ESEC/FSE). 1-11.

Marcel B6hme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In ACM Conference on Computer and
Communications Security. 2329-2344.

Marcel Bshme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In ACM Conference on Computer and
Communications Security. 1032—-1043.

Augusto Born de Oliveira. 2015. Measuring and Predicting Computer Software
Performance: Tools and Approaches. http://hdl.handle.net/10012/9259

356

[11

[12

(13

[14

[15

[16

(17

[18

[20

[21

[22

[24

[25

[26

[27

[29

[30

[31

]
]

Sanjeev Das, Kedrian James, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose

Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-box Fuzzer. In
ACM Conference on Computer and Communications Security. 2095-2108.

Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In IEEE Symposium on Security & Privacy. 711-725.

Yue Chen, Mustakimur Khandaker, and Zhi Wang. 2017. Pinpointing Vulner-
abilities. In ACM Asia Conference on Computer and Communications Security.
334-345.

Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Long Lu, et al. 2020. SAVIOR: Towards Bug-Driven Hybrid Testing. In IEEE
Symposium on Security & Privacy.

Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen, Xinyu Xing,
Long Lu, and Bing Mao. 2019. PTrix: Efficient Hardware-assisted Fuzzing for
COTS Binary. In ACM Asia Conference on Computer and Communications Security.
ACM, 633-645.

Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu
Wang, and Insu Yun. 2018. REPT: Reverse Debugging of Failures in Deployed
Software. In USENIX Symposium on Operating Systems Design and Implementation.
17-32.

Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and Vasileios P
Kemerlis. 2016. Retracer: Triaging Crashes by Reverse Execution From Partial
Memory Dumps. In IEEE/ACM International Conference on Software Engineering.
820-831.

Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and Peter Nobel.
2012. Rebucket: A method for clustering duplicate crash reports based on call
stack similarity. In IEEE/ACM International Conference on Software Engineering.
1084-1093.

Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian
Monrose. 2019. SoK: The Challenges, Pitfalls, and Perils of Using Hardware
Performance Counters for Security. In IEEE Symposium on Security & Privacy.
20-38.

Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay
Joshi, and Manuel Egele. 2020. PHMon: A Programmable Hardware Monitor and
Its Security Use Cases. In USENIX Security Symposium.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path Sensitive Fuzzing. In IEEE Symposium on
Security & Privacy. 679-696.

Patrice Godefroid. 2020. Fuzzing: Hack, Art, and Science. In Communications of
the ACM, Vol. 63. 70-76.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2019. Deep Learning. MIT
Press.

Emre Giiler, Cornelius Aschermann, Ali Abbasi, and Thorsten Holz. 2019. Anti-
Fuzz: Impeding Fuzzing Audits of Binary Executables. In USENIX Security Sym-
posium. 1931-1947.

Mark Andrew Hall. 1999. Correlation-based Feature Selection for Machine
Learning. (1999).

Liam Hayes, Hendra Gunadi, Adrian Herrera, Jonathon Milford, Shane Ma-
grath, Maggi Sebastian, Michael Norrish, and Antony L Hosking. 2019. Moon-
Light: Effective Fuzzing with Near-Optimal Corpus Distillation. arXiv preprint
arXiv:1905.13055 (2019).

Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan, Kyu Hyung Lee, and
Taesoo Kim. 2019. Fuzzification: Anti-Fuzzing Techniques. In USENIX Security
Symposium. 1913-1930.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In ACM Conference on Computer and Communications
Security. 2123-2138.

Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strat-
egy for Increasing Greybox Fuzz Testing Coverage. In ACM/IEEE International
Conference on Automated Software Engineering.

Yuwei Li, Shouling Ji, Chenyang Lv, Yuan Chen, Jianhai Chen, Qinchen Gu, and
Chunming Wu. 2019. V-Fuzz: Vulnerability-Oriented Evolutionary Fuzzing. arXiv
preprint arXiv:1901.01142.

Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, Bing Mao, and Li Xie. 2007. AutoPaG:
Towards Automated Software Patch Generation with Source Code Root Cause
Identification and Repair. In ACM Asia Conference on Computer and Communica-
tions Security. 329-340.

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In
USENIX Security Symposium. 1949-1966.

Valentin Jean Marie Manés, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. 2019. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering.
Timothy Merrifield, Joseph Devietti, and Jakob Eriksson. 2015. High-Performance
Determinism with Total Store Order Consistency. In European Conference on
Computer Systems. 1-13.

Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of the
Reliability of UNIX Utilities. In Communications of the ACM, Vol. 33. ACM New
York, NY, USA, 32-44.

Charlie Miller. 2010. Babysitting an Army of Monkeys. In CanSecWest.

http://hdl.handle.net/10012/9259

A Flexible Framework for Expediting Bug Finding by Leveraging Past (Mis-)Behavior to Discover New Bugs

[32]

[33]

[38

[39

[40]

[41]

[42]

[43

[44]

[45

[46]

[51

[52

[53]

[54

[55

[56]

David Molnar and Lars Opstad. 2010. Effective fuzzing strategies. In CERT
vulnerability discovery workshop.

Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. In ACM
Computing Surveys. 17:1-17:24.

Tipp Moseley, Neil Vachharajani, and William Jalby. 2011. Hardware Performance
Monitoring for the Rest of Us: A Position and Survey. In International Conference
on Network and Parallel Computing. 293-312.

Mozilla. 2018. Mozilla Record & Replay. https://rr-project.org/.

Dongliang Mu, Yunlan Du, Jianhao Xu, Jun Xu, Xinyu Xing, Bing Mao, and Peng
Liu. 2019. POMP++: Facilitating Postmortem Program Diagnosis with Value-set
Analysis. IEEE Transactions on Software Engineering.

Syed Shariyar Murtaza, Wael Khreich, Abdelwahab Hamou-Lhadj, and Ayse Basar
Bener. 2016. Mining Trends and Patterns of Software Vulnerabilities. Journal of
Systems and Software 117, 218-228.

Andrzej Nowak, Ahmad Yasin, Avi Mendelson, and Willy Zwaenepoel. 2015.
Establishing a Base of Trust with Performance Counters for Enterprise Workloads.
In USENIX Annual Technical Conference. 541-548.

Sebastian Osterlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
ParmeSan: Sanitizer-guided Greybox Fuzzing. In USENIX Security Symposium.
Andy Ozment and Stuart E Schechter. 2006. Milk or Wine: Does Software Security
Improve with Age?. In USENIX Security Symposium. 93-104.

Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. In ACM Conference on Computer and Communications Security.
2155-2168.

Mohit Rajpal, William Blum, and Rishabh Singh. 2017. Not all bytes are equal:
Neural byte sieve for fuzzing. In arXiv preprint arXiv:1711.0459.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
Symposium on Network and Distributed System Security, Vol. 17. 1-14.
Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In USENIX Security Symposium. 861-875.

FuzzBench: 2020-04-21 Report. 2020. URL: https://www.fuzzbench.com/reports
/sample/index.html.

Thomas Rohl, Jan Eitzinger, Georg Hager, and Gerhard Wellein. 2016. Validation
of Hardware Events for Successful Performance Pattern Identification in High
Performance Computing. In Tools for High Performance Computing. 17-28.
Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. KAFL: Hardware-assisted Feedback Fuzzing for OS Kernels.
In USENIX Security Symposium. 167-182.

K Serebryany. 2015. LibFuzzer a Library for Coverage-guided Fuzz Testing. In
LLVM project.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
Annual Technical Conference. 309-318.

Robert Swiecki. 2016. Honggfuzz: A General-purpose, easy-to-use fuzzer with
interesting analysis options. https://github.com/google/honggfuzz.

Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang
Zhai. 2014. Bug characteristics in open source software. Empirical software
engineering 19, 6 (2014), 1665-1705.

Sebastian Vogl and Claudia Eckert. 2012. Using Hardware Performance Events
for Instruction-Level Monitoring on the x86 Architecture. In European Workshop
on System Security.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-driven
Seed Generation for Fuzzing. In IEEE Symposium on Security & Privacy. 579-594.
Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song. 2019. Be
Sensitive and Collaborative: Analyzing Impact of Coverage Metrics in Grey-
box Fuzzing. In International Symposium on Research in Attacks, Intrusions and
Defenses. 1-15.

Yaqing Wang and Quanming Yao. 2019. Few-shot Learning: A Survey.
arXiv:1904.05046 http://arxiv.org/abs/1904.05046

Vince Weaver and Jack Dongarra. 2010. Can hardware performance counters pro-
duce expected, deterministic results?. In Workshop on Functionality of Hardware

357

ACSAC 2020, December 7-11, 2020, Austin, USA

Performance Monitoring.

Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.

Scheduling Black-box Mutational Fuzzing. In ACM Conference on Computer and

Communications Security. 511-522.

[58] Jun Xu, Dongliang Mu, Ping Chen, Xinyu Xing, Pei Wang, and Peng Liu. 2016.
CREDAL: Towards Locating a Memory Corruption Vulnerability with Your Core
Dump. In ACM Conference on Computer and Communications Security. 529-540.

[59] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing Mao. 2017.

Postmortem Program Analysis with Hardware-Enhanced Post-Crash Artifacts.

In USENIX Security Symposium. 17-32.

Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian, and

Bin Liang. 2017. SemFuzz: Semantics-Based Automatic Generation of Proof-of-

Concept Exploits. In ACM Conference on Computer and Communications Security.

2139-2154.

Michal Zalewski. 2017.

http://lcamtuf.coredump.cx/afl.

[57]

[60]

[61] American Fuzzy Lop (AFL). URL:

A APPENDIX
A.1 Hardware Events and Classes

We conservatively selected all those hardware performance counter
events that could explain the high-level behavior of a program, but
excluded those events that monitor low-level micro-architectural
information or that are difficult to relate to high-level program be-
havior. For example, we excluded the events relating to the pipelin-
ing behavior of the CPU. In the end, we were left with a set of 96
events, which we further grouped into 65 classes, shown in Table 8.
The criteria we used to group events were (a) events that are similar
but only differ due to the change in the size of hardware compo-
nents are considered as a single class, and (b) events that count hits
instead of cycles are split into different classes.

A.2 Time-to-crash Analysis

Tables 9, 10 and 11 present a detailed analysis on speedup for each
unique crash found on a per run basis on AFL, MOpt, and Fairfuzz
respectively, as discussed in §5.2. The column ‘E’ represents the
exact ratio of time to finding a crash by the base fuzzer vs our
approach, while the column ‘W’ scales the relative speedup in
terms of time window, where the granularity of the window is 15
minutes, i.e., if a fuzzer finds a crash in seconds vs 15 minute, W =
1. A larger ratio means that our approach finds the bug faster than
the base. To test for statistical significance we apply the pairwise
two-tailed Mann-Whitney U approach, represented by p-value (p).
The results show that, for most of the programs, the time-to-crash
data obtained using our approach are statistically different from
the base fuzzer.

A.3 DPaths Exploration

Table 12 shows that, on average, we explore less paths than the base
fuzzer, but we still obtain as good, or better, outcomes. Thus, our
approach can be considered more directed in the search for bugs.

https://rr-project.org/
https://github.com/google/honggfuzz
https://arxiv.org/abs/1904.05046
http://arxiv.org/abs/1904.05046

ACSAC 2020, December 7-11, 2020, Austin, USA

Sanjeev Das, Kedrian James, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose

Table 8: Hardware events and their classes

‘ # ‘ Classes Events ‘ # ‘ Classes Events
1 cache-references cache-references 34 | mem_load_retired_fb_hit mem_load_retired.fb_hit
2 cache-misses cache-misses 35| mem-stores mem-stores
3 dTLB-loads dTLB-loads 36 | mem_inst_retired_all_stores mem_inst_retired.all_stores
4 dtlb_load_misses dTLB-load-misses 37 | mem_inst_retired_split_stores mem_inst_retired.split_stores
5 dtlb_load_misses_stlb_hit dtlb_load_misses.stlb_hit 38 | mem_inst_retired_stlb_miss_stores mem_inst_retired.stlb_miss_stores
6 dtlb_load_miss_causes_a_walk dtlb_load_misses.miss_causes_a_walk 39 | mem_load_retired_l1_miss mem_load_retired.11_miss
dtlb_load_misses.walk_completed_1g
7 dtlb_load_misses_walk_completed dtlb_load_misses.walk_completed_2m_4m 40 | mem_load_retired_l2_miss mem_load_retired.12_miss
dtlb_load_misses.walk_completed_4k
8 dtlb_load_misses_walk_active_cycles dtlb_load_misses.walk_active 41| mem_load_retired_l3_miss mem_load_retired.13_miss
9 dtlb_load_misses_walk_pending_cycles dtlb_load_misses.walk_pending 42 | instructions instructions
10 | dTLB-stores dTLB-stores 43 | arith.divider_active_cycles arith.divider_active
11 | dtlb_store_misses dTLB-store-misses 44 | branch-loads branch-loads
12 | dtlb_store_misses_stlb_hit dtlb_store_misses.stlb_hit 45| br_inst_retired branches, br_inst_retired.all_branches
13 | dtlb_store_misses_miss_causes_a_walk dtlb_store_misses.miss_causes_a_walk 46 | br_inst_retired_conditional br_inst_retired.conditional
dtlb_store_misses.walk_completed_1g
14 | dtlb_store_misses_walk_completed gtlbistoreim%sses.walkicomp leted_2m_dm 47 | br_inst_retired_far_branch br_inst_retired.far_branch
tIb_store_misses.walk_completed_4k
dtlb_store_misses.walk_completed
15| dtlb_store_misses_walk_active_cycles dtlb_store_misses.walk_active 48 | br_inst_retired_near_call br_inst_retired.near_call
16 | dtlb_store_misses_walk_pending_cycles dtlb_store_misses.walk_pending 49 | br_inst_retired_near_return br_inst_retired.near_return
17 | iTLB-loads iTLB-loads 50 | br_inst_retired_near_taken br_inst_retired.near_taken
18 | iTLB-load-misses iTLB-load-misses 51| br_inst_retired_not_taken br_inst_retired.not_taken
19 | itlb_misses_stlb_hit itlb_misses.stlb_hit 52 | branch-load-misses branch-load-misses
branch-misses
20 | itlb_misses_causes_a_walk itlb_misses.miss_causes_a_walk 53| br_misp_retired br_misp_retired.all_branches
br_misp_retired.all_branches_pebs
itlb_misses.walk_completed 1g
21| itlb_misses_walk_completed :3::::::::z:it:zgzg}z:g:ir’llm 54 | br_misp_retired_conditional br_misp_retired.conditional
itlb_misses.walk_completed
22| itlb_misses_walk_active_cycles itlb_misses.walk_active 55 | br_misp_retired_near_call br_misp_retired.near_call
23| itlb_misses_walk_pending_cycles itlb_misses.walk_pending 56 | br_misp_retired_near_taken br_misp_retired.near_taken
fp_arith_inst_retired.128b_packed_double
fp_arith_inst_retired.128b_packed_single
24| Li-dcache-loads L1-dcache-loads 57 | fp_arith_inst_retired g; ::iﬁ:::ﬁzt:::i:i:zzgz:iiztzg::]&ug}ﬁe
fp_arith_inst_retired.scalar_double
fp_arith_inst_retired.scalar_single
25| Lil-dcache-stores L1-dcache-stores 58 | fp_assist.any fp_assist.any
26 | L1-dcache-load-misses L1-dcache-load-misses 59 | hw_interrupts hw_interrupts.received
27 | Li-icache-load-misses L1-icache-load-misses 60 | uops_executed.x87 uops_executed.x87
28 | longest_lat_cache.miss longest_lat_cache.miss 61| longest_lat_cache.reference longest_lat_cache.reference
machine_clears.count
29 | mem-loads mem-loads 62 | machine_clears machine_clears.memory_ordering
machine_clears.smc
offcore_requests.all_data_rd
offcore_requests.all_requests
offcore_requests_buffer.sq_full
offcore_requests.demand_code_rd
offcore_requests.demand_data_rd
30 | mem_inst_retired_all_loads mem_inst_retired.all_loads 63 | offcore_requests offcore_requests.demand_rfo
offcore_requests_outstanding.all_data_rd
offcore_requests_outstanding.demand_code_rd
offcore_requests_outstanding.demand_data_rd
offcore_response
offcore_response.demand_code_rd.any_response
31| mem_inst_retired_lock_loads mem_inst_retired.lock_loads 64 | tlb_flush tlb_flush.dtlb_thread, tlb_flush.stlb_any
32| mem_inst_retired_split_loads mem_inst_retired.split_loads 65 | itlb_flush itlb.itlb_flush
33 | mem_inst_retired_stlb_miss_loads mem_inst_retired.stlb_miss_loads

Table 9: Performance of OmniFuzz vs AFL measured by the time to find a unique crash (on a per run-basis)

B: No. of base fuzzer crashes, C: Common crashes, E: Exact ratio, W: Window ratio, p: MannWhitney U test p-value

‘ Strategy-1-a ‘ Strategy-2-a ‘ Strategy-2-b ‘ Strategy-3-a ‘ Strategy-3-b

Programs B ‘ C E w P ‘ C E w P ‘ C E w P ‘ C E w P ‘ C E w P

libarchive 24 10 2.67 2.00 069 | 16 158 1.00 0.01 | 21 131 081 015 | 8 133 0.63 0.10 | 19 133 0.89 | 0.02
libjpeg 122 67 0.26 0.10 | 0.00 | 80 4.29 220 034 | 72 229 1.10 0.00 | 60 0.87 0.67 | 0.00 | 83 9.36 348 094
libplist 25 22 1.18 1.00 088 | 24 129 100 097 | 24 127 100 070 | 24 074 1.00 097 | 24 076 1.00 0.70
libpng 3 0 n/a n/a 0.00 | 3 113 100 0.03 | 2 09 000 039 | 0 n/a n/a 0.00 | 1 0.80 0.00 0.11
libxml2 11 0 n/a n/a 0.04 | 5 105 040 034 | 5 099 0.60 084 | 0 n/a n/a 023 | 4 0.83 0.50 034
pcre 3 0 n/a n/a 0.00 | 3 099 033 019 | 2 1.04 1.00 013 | 2 1.02 1.00 013 | 3 1.02 1.00 0.16
tiff 76 62 76.91 6.94 0.00 | 27 0.40 059 0.1 | 37 1.01 095 0.00 | 45 56.56 4.11 059 | 48 330 269 078

yaml 396 156 2.03 1.67 0382 141 2.70 196 0.22 108 228 177 094 | 98 164 131 088 147 1.68 1.01 0.01

Statistically significant MannWhitney U test p-values (p) are highlighted p < 0.15 . p < 0.10 . p < 0.05 .

358

A Flexible Framework for Expediting Bug Finding by Leveraging Past (Mis-)Behavior to Discover New Bugs ACSAC 2020, December 7-11, 2020, Austin, USA
Table 10: Performance of OmniFuzz vs MOpt measured by the time to find a unique crash (on a per run-basis)

B: No. of base fuzzer crashes, C: Common crashes, E: Exact ratio, W: Window ratio, p: MannWhitney U test p-value

‘ Strategy-1-a ‘ Strategy-2-a ‘ Strategy-2-b ‘ Strategy-3-a ‘ Strategy-3-b

Programs B ‘ C E w P ‘ C E w P ‘ C E w P ‘ C E w P ‘ C E w P

libarchive 30 21 1.93 110 0.00 | 23 0.78 0.52 0.00 | 18 0.87 0.61 0.00 | 23 176 091 0.00 | 23 161 1.00 0.07

libjpeg 85 68 0.07 0.00 = 0.00 20 0.06 0.00 = 0.00 65 824 094 021 38 0.05 0.03 = 0.00 69 10.01 1.61 0.02
libplist 28 8 8.28 0.75 0.46 7 391 129 0.16 19 5.75 3.05 047 8 3.26 075 0.67 13 6.44 338 074
libpng 0 0 n/a n/a 000 | 0 n/a n/a | 000 | 0 n/a n/a 000 | 0 n/a n/a 000 | 0 n/a n/a | 0.00
libxml2 0 0 n/a n/a 000 | 0 n/a n/a 000 | 0 n/a n/a 000 | 0 n/a n/a 000 | 0 n/a n/a | 0.00
pere 3 0 n/a n/a 0.64 | 1 0.18 0.00 0.16 [0 n/a n/a 0.64 | 1 013 0.00 023 | 0 n/a n/a 0.33
tiff 19 0 n/a n/a 0.00 | 0 n/a n/a 0.00 | 0 n/a n/a 0.00 | 10 116 1.00 0.00 | 14 3.67 2.93 036
yaml 264 91 4.65 1.66 0.01 91 10.55 1.85 0.37 103 233 1.28 0.00 93 498 231 034 103 2.57 145 0.02

Statistically significant MannWhitney U test p-values (p) are highlighted p < 0.15 . p < 0.10 . p < 0.05 .
Table 11: Performance of OmniFuzz vs Fairfuzz measured by the time to find a unique crash (on a per run-basis)

B: No. of base fuzzer crashes, C: Common crashes, E: Exact ratio, W: Window ratio, p: MannWhitney U test p-value

Strategy-1-a Strategy-2-a Strategy-2-b Strategy-3-a Strategy-3-b
34 8y 8y By 34

Programs B ‘ C E W P ‘ C E w P ‘ C E w P ‘ C E w P ‘ C E w P

libarchive 13 0 n/a n/a n/a 1 365 3.00 011 | 4 113 075 068 | 0 n/a n/a n/a 0 n/a n/a n/a
libjpeg 5 0 n/a n/a n/a 2 0.08 0.50 0.16 3 034 067 0.13 0 n/a n/a n/a 3 0.50 1.00 0.37
libplist 20 8 049 100 0.57 13 045 0.92 = 0.02 14 084 093 025 12 0.93 1.00 047 10 0.48 1.00 0.29
libpng 0 0 n/a n/a n/a 0 n/a n/a n/a 0 n/a n/a n/a 0 n/a n/a n/a 0 n/a n/a n/a
libxml2 80 0 n/a n/a n/a | 6 174 117 028 | 5 3.79 3.00 | 0.00 | 0 n/a n/a n/a | 6 3.16 2.67 | 0.00
pcre 0 0 n/a n/a n/a 0 n/a n/a n/a 0 n/a n/a n/a 0 n/a n/a n/a 0 n/a n/a n/a
tiff 91 60 20.29 235 059 | 0 n/a n/a n/a 2 0.48 1.00 0.66 1 0.91 1.00 0.66 | 0 n/a n/a n/a
yaml 477 174 2.74 198 @ 0.00 106 4.09 299 0.00 165 2.71 1.98 @ 0.00 106 2.78 191 0.00 101 4.23 3.38 = 0.00

Statistically significant MannWhitney U test p-values (p) are highlighted p < 0.15 . p < 0.10 . p < 0.05 .

Table 12: Paths explored

OmniAFL % of base OmniMOpt % of base OmniFairfuzz % of base

Programs Base AFL Portfolio paths ‘ ‘ Base MOpt Portfolio paths ‘ ‘ Base Fairfuzz Portfolio paths
libarchive 51634 31552 61.10 111157 40145 36.12 53000 15906 30.01
libjpeg 62314 49391 79.26 109165 41416 37.94 65111 24426 37.51
libplist 2435 2208 90.68 15364 3507 22.83 7096 3596 50.68
libpng 18699 21844 116.82 36386 21017 57.76 60200 6597 10.96
libxml2 115762 78503 67.81 126724 79175 62.48 103109 60918 59.08
pcre 81424 48114 59.09 222959 43614 19.56 73900 40115 54.28
tiff 10210 6208 60.80 1547 5362 346.61 10399 196 1.88
yaml 65787 25430 38.66 110981 18380 16.56 59768 15845 26.51
Combined 71.78 || 74.99 || 38.74

359

	Abstract
	1 Introduction
	2 Background
	3 Our Approach: OmniFuzz
	3.1 Data Collection
	3.2 Model Building
	3.3 On-the-fly Deduplication
	3.4 Coverage Guided Fuzzing

	4 Implementation Details
	4.1 Profiler
	4.2 Feature Selector
	4.3 Runtime Heuristic
	4.4 Vulnerability Explorer

	5 Evaluation
	5.1 On Extensibility
	5.2 On Expediency
	5.3 On Bug Discovery
	5.4 On Comprehensiveness
	5.5 Vulnerability Discovery in the Wild

	6 Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Hardware Events and Classes
	A.2 Time-to-crash Analysis
	A.3 Paths Exploration

