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A systematic collection of voltage reflection data for semi-
insulating N-GaN wafer surface along with the reference re-
flection voltages are accomplished using a very stable con-
tinuous wave (CW) frequency stable probe source. The 2” di-
ameter direct-bandgap 5um silicon doped 10° -cm GaN on
434pum sapphire is a commercial sample and was mounted
in the path of collimated BWO generated millimeter wave
beam with spot size ~3 mm and rotated 64.5° to millimeter
wave reflected energy into an antenna fed zero-bias Schot-
tky barrier diode (ZBD), a negative polarity detector with re-
sponsivity 3.6 V/mW. Data obtained pertain to photon ener-
gies between 400 and 700 peV (107.35-165 GHz). Data con-
tains the 30-sample average and respective standard devi-
ations for reference (mirror) and N-GaN reflected voltages.
Anomalies in d.c. reflection coefficients (based on the raw
data) are identified for users.
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Specifications Table

Subject

Physics

Specific subject area

Type of data

How data were acquired

Data format

Parameters for data collection

Description of data collection

Data source location

Data accessibility

Related research article

Millimeter wave dielectric property of commercial grade direct-bandgap
semi-insulating Gallium Nitride (GaN) on sapphire wafer

Floating-point (E-notation) raw tabular data pertaining to reflection of probe beam
at each frequency; ASCII delimited CSV file (time and voltage); Figure showing
spectrum of D.C. voltages captured after reflection from wafer surface by zero-bias
Schottky detector diode (ZBD)
Commercially acquired 10° ©-cm N-GaN wafer and a highly polished gold mirror
surfaces were used to reflect continuous ~0.3 mW millimeter-wave probe beam at
an angle of 64.5° and acquire detected voltage signal of the reflected probe beam
using the ZBD and Time-Resolved Millimeter Wave (TR-mmW(C) apparatus.
Apparatus consists of Elva-1 SGMW-PLL series D-band backward wave oscillator
(BWO) sweeper generator operated with frequency accuracy ~ +0.1% and single
lens horn antenna and controllable using LabVIEW 2017, a ZBD with noise equiv.
power ~ 2pW/vHz) with antenna, a set of 3 collimators and one focus poly-4
methyl pentene-1 (TPX) lenses, and a Keithley 2782 digital multimeter (DMM). The
sample was rotated with respect to the millimeter wave beam path (64.5°) and
direct current (d.c.) output of reflected frequency swept RF power (voltage signal
acquired through detector) using antenna fed Schottky barrier diode with a
bias-tee, averaged using DMM, and stored in files using LabVIEW

Raw

Floating-point, ASCII delimited .CSV (comma separated variable)

BWO probe beam reflected power was maximized by adjusting optical elements
and fine orientation of wafer surface; The BWO frequency was swept using
LabVIEW virtual instrument software architecture (VISA) with standard 1/O
resource and same for the Keithley model 2782 digital multi-meter (DMM) data
acquisition and averaging; BWO start and end frequencies were 107.35 GHz and
165 GHz and was swept with delay 500 ms every increment of 0.1 GHz; DMM
acquired 30 samples for each frequency hold and provided standard deviation and
mean of the acquired voltages at each frequency point
The sweeper generator was warmed up for 30 min, millimeter-wave (mmWw)
reflected beam power was maximized using highly polished mirror and by
adjusting the lenses and orientation, ensure polarizer passing only vertically
aligned electric field, mmW probe beam was turned on at 107.35 GHz and probe
beam power was maximized by adjusting the optical elements in the system; The
gold mirror was used first for collecting the reference voltages while the frequency
is swept using LabVIEW virtual instruments code. A constant visual quality control
procedure was maintained using LabVIEW graphical outputs to assure the data
does not show spurious signals such as standing waves, etc. LabVIEW then holds
the data acquisition until step 2. In step 2, the mirror is removed and the SI
N-GaN wafer is mounted at the same inclination as the mirror, and LabVIEW VI
code is one again initiated to acquire the sample surface reflection voltages at each
of the probe frequency. The files with ASCII data are then stored in .CSV format
and archived.
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Value of the Data

« Silicon-doped [1] N-GaN on sapphire with C-plane (0001) is an important electronic material
used for sensors, amplifiers, power and control devices, and photoluminescence. 2-photon
absorption (TPA) process is an important property of GaN wafers [2]. TPA uses frequency
dependent refractive indices. Reflectance used for evaluating dielectric and optical metrics.
This data will enable users directly compute coefficient spectrum in the unique probe range
107.35-165 GHz.

N-GaN reflection coefficients have been earlier published by Akinlami and Olateju (2012)
[3] in the photon energy range 2 to 10eV. These data pertain to much lower photon en-
ergies in regime 444 peV to 682 peV and with energy resolution 413 neV (0.1 GHz interval).
They can be used to infer accurate dielectric properties such as relative permittivity. Interfer-
ence patterns can be used to infer the refractive index, especially for circuit elements made
for the fifth generation wireless (5G) and internet of things (IoT) applications.

This data corresponds to radiating far-field distances (space where radiation pattern does not
change with distance) [4] between 83.14 mm to 129.6 mm respectively and is unique set of
data obtained in free space configuration.

Industry standard millimeter wave test methods involve microstrip differential phase length
and ring-resonator methods mostly in the transmission through material under test (MUT)
[5]. This data is reflection coefficient measured in free space method and may be very useful
to supplement industry methods to ascertain the dielectric constant.

1. Data Description

Comma Separated Variable (.csv) file is shared in Mendeley.com. Column 1 is frequency in
GHz, columns 2 is reflected voltage captured by the ZBD and averaged by the DMM when pol-
ished mirror is used, column 3 is standard deviation of the mirror reflected voltage. Columns 4
and 5 are the same as columns 2 and 3 except when Si GaN on sapphire is used as the mmW
reflector. In entire experiment there is no light excitement of the sample. The RF voltage mag-
nitudes are obtained under dark conditions only. Fig. 1 shows the reflected voltage spectra for
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Fig. 1. Shows the reflected voltage |V| spectra of the reference gold mirror (in black) and the N-GaN wafer surface (in
red). Anomalous data in reflection possibly due to standing wave or multiple reflections. N-GaN data are flagged for
110.4, 110.5 110.7 114.2 114.7 114.8 114.9 115.0 115.2 115.4 118.3 118.7 156.4 GHz.
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Fig. 2. Shows the 30-sample standard deviations spectra of voltage data acquired after reflection from the reference
gold polished mirror (blue) and from N-GaN surface (orange) from the Keithley 2782 digital multimeter for each of the
swept frequency point.

reference gold mirror reflector and N-GaN sample. An averaging of 10-30 samples is performed
at each frequency point, and the data are stored in columnar fashion. Some of the sample re-
flection data show anomaly (points identified with a circle in Fig. 1) where sample reflected
voltages are found to exceed gold mirror reflected voltages for the same frequency and power
level. Those points must be excluded from use for data applications. Exact frequencies of these
anomalous reflection data are also mentioned in the Fig. 1 caption below. With reference to the
DC voltage spectrum given in Fig. 1 it needs to be pointed out that the N-GaN wafer (5 pm thick)
is epitaxially grown over a 434 pm thick sapphire substrate resulting in multiple surfaces from
where the electromagnetic energy get reflected, hence, for an incident millimeter wave beam
on the GaN surface the detector responds to multiple reflected components of the return signal
due to those surface discontinuity. The noise in DC signals can only be minimized by use of a
thick wafer of the material under testing, instead of growing film on a substrate. Corresponding
spectra of standard deviations for the gold mirror reflected reference voltages, and the N-GaN
surface reflections are plotted in Fig. 2.

2. Experimental Design, Materials and Methods

We have used a newly developed quasi-optical, free-space, time-resolved millimeter wave
conductivity (TR-mmW(C) system [6] operated in the D waveguide-band (107.35 GHz to 165 GHz)
with 0.1 GHz resolution to acquire surface reflected probe beam voltages from high resistivity
(10° ©-cm) 5pum silicon doped N-GaN on sapphire substrate. The source for millimeter waves is
the backward wave oscillator (BWO) with a spot diameter ~3 mm, and GaN sample is of com-
mercial grade, and is rotated at an angle of 65.4° from the probe beam direction. Probe beam
photon energies are in the range 0.4 to 0.7 meV. GaN refractive index for 532 nm laser pulse is
2.33 with large penetration depth compared to its thickness. BWOs are highly coherent sources
and this system has extremely good frequency stability [7,8]. It is a phased locked BWO source
capable of providing extraordinary frequency accuracy ~ +0.01% in CW mode with full one band
sweep period less than 200 ps. The frequency stability for 15 min is 2 x 10~4 with outputs volt-
age standing wave ratio 1.5. It has an impressive output power regulation range ~ 0-10dB (con-
trolled situation).



B. Roy, M.H. Wu and B. Vlahovic/Data in Brief 33 (2020) 106419 5

ZBD DC

DMM

Labview PC

Fig. 3. Shows the schematic for the TR-mmWC data acquisition system using TPX collimator lenses (C), wire grid polar-
izer (P), one 2.5mm TPX focusing lens (f), Mylar beam-splitter (S), beam dump(D), and a ZBD. The ZBD d.c. voltages are
acquired with sweep delay of 500 ms and averaged for each BWO sweeper probe beam frequency.

Virginia Diode ZBD [9] with RF input in the range 110-170 GHz and responsivity ~ 3.6 V/mW
has linear RF power < —25dBm with input power at 1dB compression —20dBm and NEP 2
pW/+Hz is used for signal detection. Probe beam frequency is swept automatically using Lab-
VIEW and sampling period is 500 ms.

Let us say Eg is the incident amplitude on mirror/sample surface, then Egp is the reflected
voltage registered by the detector, p being the mmW reflection coefficient of the material. We
measure ZBD voltage response at various BWO mmW frequency and obtain a 30-sample average
voltage using the DMM by directly feeding the ZBD DC output to it. The BWO is successively
tuned to yield reflection signals off the first reflecting surface of mirror and N-GaN respectively.
At first, a reference voltage spectrum is generated using the highly polished gold mirror reflector,
and then, the mirror is replaced using the N-GaN on sapphire wafer and the sample reflection
voltage spectrum is obtained likewise. The schematic of the experimental arrangement is shown
below in Fig. 3.

For the data given here we have collected voltages that signify real part of reflection coeffi-
cient spectra at a frequency resolution 100 MHz. Following three steps are used for acquisition
of reflection voltage response data:

1. Collect gold mirror reflected (Eq) spectral response of ZBD voltage by sweeping BWO between
107.35-165 GHz with resolution of 0.1 GHz and store data along with 10-sample standard de-
viation profile obtained from digital multimeter.

2. Mount N-GaN sample and rotate sample holder by 24.6° and perform alignment tests so that
maximum power is received.

3. Replace gold mirror with sample as shown in position for N-GaN in Fig. 1 and repeat step
1 for collection of sample Eyp (reflected voltage) data as function of frequency and corre-
sponding standard deviation data from digital multimeter also using LabVIEW.
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