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Abstract

Field-flow fractionation (FFF) is a family of techniques that was created es-
pecially for separating and characterizing macromolecules, nanoparticles,
and micrometer-sized analytes. It is coming of age as new nanomaterials,
polymers, composites, and biohybrids with remarkable properties are intro-
duced and new analytical challenges arise due to synthesis heterogeneities
and the motivation to correlate analyte properties with observed perfor-
mance. Appreciation of the complexity of biological, pharmaceutical, and
food systems and the need to monitor multiple components across many size
scales have also contributed to FFF’s growth. This review highlights recent
advances in FFF capabilities, instrumentation, and applications that feature
the unique characteristics of different FFF techniques in determining a va-
riety of information, such as averages and distributions in size, composition,
shape, architecture, and microstructure and in investigating transformations
and function.
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MW: molecular
weight or molar mass

ThFFF: thermal
field-flow fractionation

SAFFF: centrifugal or
sedimentation
field-flow fractionation

FIFFF: flow field-flow

fractionation

AF4: asymmetrical
flow field-flow

fractionation

Dry: thermal diffusion
coefficient

NNP: naturally
occurring nanoparticle

ENP: engineered
nanoparticle

1. INTRODUCTION

Nanometer- and larger-size analytes present formidable analytical challenges, as they are often
heterogeneous mixtures with distributions in multiple physicochemical attributes or are part of
complex mixtures (1-4). Adding to this complexity, some analytes are dynamic and undergo trans-
formations that lead to changes in size, morphology, or surface chemistry and charge (5-7). For
many of these cases, a separation technique and additional orthogonal methods are needed to
obtain a more complete picture (8-10).

The use of external fields to achieve separations in an open channel lies at the heart of field-flow
fractionation (FFF) techniques. One important feature is that it is a family of elution techniques
and thus lends itself well to coupling with on-line detectors and collection of fractions containing
purified or enriched subpopulations. The former creates a platform that incorporates orthogonal
analyses of eluting enriched fractions within a single experiment. For example, the size of eluting
nanoparticles (NPs) can be determined from retention time using FFF theory and by on-line
multiangle and dynamic light scattering detectors or single-particle inductively coupled plasma
mass spectrometry (splCP-MS). The FFF separation is important, as these detectors benefit from
the increased monodispersity of the eluting sample fractions, and average values and distributions
are determined. The ease of fraction collection post-FFF gives access to well-defined materials
and biological species that are essential for investigating function. These and other attributes,
such as FFF retention theories that are grounded in first principles, an open channel design that
is highly conducive for probing fragile species and simultaneously monitoring species that span
multiple orders of magnitude in size or molecular weight (MW), and flexibility in choice of carrier
liquid, are some of the hallmarks expanded upon in later sections.

FFF is a group of distinctive techniques that utilize different types of fields, such as temperature
gradient, centrifugal, and cross flow, giving rise to thermal (ThFFF), sedimentation (SdFFF or
CF3), and flow FFF (FIFFF), respectively. Figure 1 shows the general layout of an FFF channel
and the types of fields that have been used thus far, along with the separation mechanism. The
extent of retention in FFF depends on the magnitude of the interactions between the applied field
and physicochemical properties of the analyte and the diffusion coefficient D of each analyte.
Both factors lead to opposing transport that results in each analyte occupying a unique velocity
streamline of the parabolic flow in the FFF channel. Each analyte is thus driven through the
channel at different speeds and elutes at different times. An FFF technique may also have different
variants. For example, FIFFF is commercially available in an asymmetrical (AF4) or a hollow fiber
(HF5) channel format. Sample introduction and the requisite relaxation into unique equilibrium
layers prior to the start of the separation can be implemented using different processes that include
stop-flow (used in SAFFF), focusing flow (used in AF4), and frit inlet sample introduction with
hydrodynamic relaxation. In addition to having different equipment, each FFF technique also has
distinctive theories that relate retention time to analyte properties (2, 11). FIFFF separates on the
basis of differences in D (or hydrodynamic diameter dy,), SAFFF separates according to differences
in effective mass (or diameter and the difference in density between the analyte and the carrier
liquid), and ThFFF differentiates according to analyte Soret coefficients (or the ratio of thermal
diffusion coefficient D to D). For more details on retention theories and processes specific to
each type of FFF field, refer to References 2, 4, and 11.

This review highlights the latest advances in FFF technology over the past decade and how FFF
has contributed to the characterization of biological particles, naturally occurring NPs (INNPs)
and engineered NPs (ENPs), and polymers, as well as to the understanding of transformations such
as protein aggregation kinetics, NP degradation, and protein coronas. Practical considerations for
FFF operation and challenges and opportunities of this technology are also discussed.
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Figure 1

A simplified scheme of a field-flow fractionation (FFF) channel operating in normal mode. As analytes enter
the channel, the applied field interacts with specific physicochemical properties of the analyte transporting it
to the sample accumulation wall. The analyte’s translational diffusion counteracts the field-induced
transport, creating a steady state. This interplay leads to the formation of sample clouds whose average
positions are in different flow velocity streamlines of the parabolic flow. In this schematic, the smaller
particles diffuse faster and elute before the larger particles. FFF instruments with different externally applied
fields, e.g., centrifugal, cross flow, electrical asymmetrical flow, and thermal, are available commercially.
Electrical, acoustic, magnetic, and dielectrophoretic fields have also been successfully implemented.

2. APPLICATIONS
2.1. Cells and Subcellular Particles

The use of FFF in bioparticle characterization spans predictive diagnosis to biomarker discovery
and therapeutic development. FFF’s ability to separate and elute fractions of different sizes and
mass components and to couple with multiple analytical methods has advanced understanding
of biological content and function for cells, lipoproteins, extracellular vesicles (EVs), ribosomes,
viruses, and virus-like particles (VLPs). Tumor formation, purification, and subassembly formation
have also been examined, leading to insights into protein expression for diagnostics and vaccine
development (12, 13). AF4 has been most utilized for these applications, with additional contri-
butions from FIFFE, SAFFF electrical FFF (EIFFF), and dielectrophoretic FFF (DEPFFF). The
majority of FFF separations of bioparticles occur in the normal mode (< ~1 pum), with cell sepa-
rations occurring in the steric/hyperlayer mode (> ~1 pm).

Label-free cell sorting is important for reducing costs of cell isolation in biological and clin-
ical research. Current cell-sorting techniques rely heavily on cell-specific markers or chemical
labels, which can lead to cell differentiation or apoptosis and potentially impact successive cul-
tures. Hyperlayer mode SAFFF has shown promise as a tagless, noninvasive method for cell sort-
ing (14). These advantages were demonstrated with human pluripotent stem cells and progenital
cells (15). Tumor-initiating cells (TICs) are usually in low abundance (~1-5%) but are responsible
for driving tumor growth and treatment resistance. SAFFF-sorted TICs were amplified to study
tumor development, apoptosis, proliferation, vascularization, and protein expression (12). Cancer
stem cells have been hypothesized to have variances in cell differentiation if grown on Classic
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Medium compared to colorectal cancer—specific defined medium (16). This effect was confirmed
with SAFFF. Additional efforts have focused on astrocyte subpopulations to help foster therapeu-
tic approaches for improving neural stem cell function (17, 18). While SdFFF has been dominant
in cell sorting, HF5’s smaller volume is well suited for analyzing submicroliter sample volumes.
HF5 columns are low cost and can be interchanged with the column on a high-performance liq-
uid chromatography (HPLC) system (19, 20). The separation of tumor cells from blood cells and
other cell types has been explored using DEPFFF (21, 22). The magnitude of the applied electric
field can be constrained to localized regions of the channel, and targeted tumor cells can be lev-
itated and ablated at higher microchannel positions. This configuration allows tumor cells to be
removed while blood cells remain unharmed at the accumulation wall (21).

Analytical AF4 and semipreparative (SP)-AF4 have both contributed to advanced lipidomic
characterization and aided in identifying lipoprotein markers for disease diagnostics (23-26). An-
alytical AF4 with offline liquid chromatography—tandem mass spectrometry is used for multi-
plexed lipoprotein analysis and provides an in-depth understanding of size-dependent compo-
sitional differences (23). Lipidomic analysis of SP-AF4 fractionated lipoproteins via nanoflow
ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrome-
try (MUHPLC-ESI-MS/MS) introduced potential diagnostic methods for coronary artery dis-
ease, acute coronary syndrome (24), Alzheimer’s disease (25), and postmenopausal osteoporosis
(26). Lipoproteins from patients with these ailments had distinct differences in their lipidomes
when compared to healthy control groups. Beyond evolving diagnostics and lipidomic analysis,
a comparison of samples prepared by SP-AF4 and ultracentrifugation showed a 98% overlap in
the high-density and low-density lipoprotein lipidome (27). Additionally, SP-AF4 isolated higher
protein amounts per sample volume, was significantly faster (~1 h instead of multiple hours or
days), and used buffers with lower ionic strengths, thereby reducing the likelihood of lipopro-
tein aggregation and damage or apolipoprotein dissociation. The ability to obtain quantitative
measurements of lipoproteins with low starting volumes (100 wL) of serum postfractionation is
significant compared to other methods.

Exosomes and EVs have come of interest owing to their potential as biomarkers and therapeu-
tics and their role in cell signaling. The main challenge of characterizing these vesicles is the lack of
knowledge of their biogenesis, composition, and biodistributions. FIFFF with offline nUHPLC-
ESI-MS/MS analysis of pancreatic cancer exosomes helped determine disease status and elu-
cidate size-dependent lipidomic differences (28). A landmark study used AF4-multiangle light
scattering-dynamic light scattering (MALS-DLS) to isolate exosome subpopulations of melanoma
cells (29, 30) (Figure 2). Postfractionation biochemical analyses revealed that each subpopulation
had unique lipid, protein, and nucleic acid expression depending on the size, cell type, and vascular
membrane structure. The in-depth protocol on exosome AF4 fractionation provided a framework
for further developing EV separations. Beyond size and composition, the surface charge of EVs is
also of interest and has been examined using cyclical electrical FFF (CyEIFFF) (31).

AF4 and CyEIFFF applications have expanded further into ribosomes (32), viruses (33), and
VLPs (34). Recent work in this area has led to new questions about virology, how these materi-
als are classified, and purification (35). AF4’s low shear mitigates undesirable changes associated
with traditional methods such as ultracentrifugation and sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE). Gentle purification using AF4 provided the unaltered samples
necessary for identifying genome expression in the protein shell and lipid envelope. These two
components are specific to host recognition of the virus and are vulnerable to biophysical and
biochemical stresses (33). Enveloped bacteriophages, such as ®6, are gaining interest because of
their similarities to animal viruses. The use of anionic detergents can result in undesirable residual
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Figure 2

Asymmetrical flow field-flow fractionation (AF4) separation followed by orthogonal analyses have led to further understanding of
extracellular vesicle (EV) heterogeneity. () AF4 separation of B10-F16 melanoma-derived EVs with ultraviolet spectroscopy (UV) and
dynamic light scattering (DLS) detection shows five distinct peaks that correspond to unretained analytes (P1), a new class of vesicles
termed exomeres (<50 nm, P2), small exosomes (60-80 nm, P3), large exosomes (90-120 nm, P4), and large aggregates (P5). The line
above the fractograms corresponds to the hydrodynamic radius and confirms differences in size as a function of retention time. (5) A
correlation function in QELS (quasielastic light scattering, also known as DLS) analysis corresponding to P3. (¢) Transmission electron
microscopy (TEM) images show vesicles in the stock solution prefractionation and the P2-P4 fractions collected after AF4 separation.
(d) Western blot analyses confirmed the presence of exosomal proteins in whole-cell extract (WCE), exosome and exomere mixture
(input), and three fractionated subpopulations. (¢) Different cell lines F10, Pan02, AsPC1, 4175, and 4T'1 show similar size distributions
for all three populations of vesicles. Figure adapted with permission from Reference 29; copyright 2018 Springer Nature. Other
abbreviation: MW, molecular weight.

and release of major proteins from the phage, a risk that has been mitigated using AF4. Beyond
purification, AF4 has been used to study the disassembly of complex virions of phage ®6. Through
controlled dissociation treatments, biologically active subassemblies were identified based on their
three distinct structural layers (36). CyEIFFF-MALS-DLS has been utilized to determine elec-
trophoretic mobilities of three Q beta bacteriophage VLPs containing different surface peptides
(13). Understanding surface composition and partial separation of monomer and aggregated VLPs
initiates further opportunities for CyEIFFF use to characterize VLPs.
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2.2. Engineered and Naturally Occurring Nanoparticles

The broad separation range and versatility of FFF provide a beneficial platform for the analysis
of ENPs and NNPs, and most studies have employed AF4 and SAFFF (37). Typically, ENPs in-
clude metallic, metal-oxide, and polymeric NPs, while biopolymers, dissolved organic matter, and
colloidal inorganic minerals are considered NNPs. Model ENP systems composed of polystyrene
latex or SiO; are also commonly used to calibrate and evaluate FFF separations (38). Studies of
ENPs and NNPs cover fate and transport, particle transformation, and interactions in complex
media. Several comprehensive reviews cover ENPs and NNPs as synthesized (39) and in the en-
vironment (40, 41), consumer goods (42), and food (43).

As nanomaterials have become more common in consumer products, ENPs are inevitably
released into the environment. ENPs and NNPs cannot be discriminated by size alone, and
composition-sensitive detectors have proven to be important (43). AF4 coupled to ICP-optical
emission spectrometry, ICP-MS, and spICP-MS are increasingly used combinations (44-46).
These methods have enabled comprehensive size and composition characterization of ENPs,
which is important for understanding their risk and fate in environmental matrices (47). Optimized
extraction methods prior to analysis have shown that elemental ratios can be used to differentiate
ENPs such as TiO; and CeO; from their NNP counterparts in soils (48). Other FFF techniques
such as ThFFF or SAFFF can separate ENPs based on their size and surface or bulk composition
to identify compositional heterogeneity. ThFFF separation and characterization of metallic and
metal-oxide NPs as well as of multicomponent hybrids have exploited differences in NP thermal
diffusion originating from surface and bulk composition differences (Figure 3a-d) (49). SAFFF
utilizes differences in effective mass for separating particles with differing bulk composition (50).
Effective mass and particle volume from SAFFF and transmission electron microscopy (TEM)
independently has also allowed comparative particle densities to be calculated (51).

When ENPs enter different chemical environments, they have the propensity to transform
through aggregation, absorption, and/or dissolution mechanisms (52). Investigation of these trans-
formations, especially below 10 nm, is important to understanding the fate, risk, and transport
of ENPs in the environment. Figure 3ef shows the AF4-UV-ICP-MS separation of N-vinyl-2-
pyrrolidone-protected silver NPs (PVP-AgNPs) in the presence of tripeptide glutathione (GSH).
The presence of GSH transformed the PVP-AgNP from a single larger NP population into a
heterogeneous mixture composed of Ag*, nanoclusters, and small NPs (5). Optimization of AF4
separation conditions enabled the identification of distinct NP and nanocluster subpopulations.
This is the first study demonstrating AF4 isolation of ~1-nm nanoclusters. Transformed parti-
cles exist in a spectrum that commonly goes unnoticed, particularly when they are introduced
to environmental or biological systems (53). Multidetector approaches can identify and quantify
species in this low size range and provide further insight into the size-specific risks associated with
individual subpopulations of ions, metal-ligand complexes, nanoclusters, and NPs.

Carbon-based nanomaterials (e.g., fullerenes, carbon nanotubes, graphene) provide an addi-
tional challenge due to colloidal stability (54) and aggregation (55). High-resolution methods have
been developed (56) to further understand aggregation mechanisms (6) and probe the interactions
between ENPs and NNPs to study their fate in complex environmental media (57). Character-
ization of particle shape (e.g., structure, aspect ratio) has been of specific interest and highlights
the benefits of AF4 (58-60). It is important to note that both the NP surfaces and carrier fluid
composition can also strongly influence aggregation and interactions with the AF4 accumulation
wall (61).

The potential environmental and health impacts of microplastics and nanoplastics are topics
of intense interest (62). Both types of particles are highly challenging to separate and analyze
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in an expedient manner because of their low numbers. AF4 in normal and steric modes demon-
strated similar recoveries of nanoplastics and microplastics from aqueous environmental samples
compared to analytical ultracentrifugation (3). AF4-MALS was used to detect nanoplastics in
complex food matrices such as fish and helped optimize digestion protocols (63). Pyrolysis gas
chromatography-MS and on-line Raman microspectroscopy have added important chemical
characterization capabilities to the analysis of nanoplastics (3, 9).

The interaction of analytes with the sample accumulation wall and the subsequent effect on
retention time have opened a new avenue of research. Analyte-wall interactions are generally gov-
erned by electrostatic and van der Waals forces, and the sum of dispersion forces can be described
in terms of the Hamaker constant. Care is often taken to select a FIFFF membrane that minimizes
these interactions based on the surface coating of the particles in question (64). Similar-sized nano-
materials have shown variation in AF4 retention time that can be correlated to these interactions
via the Hamaker constants of the membrane and analyte (65). This link has enabled the develop-
ment of an AF4 method for calculating an effective Hamaker constant for a given material in a
variety of conditions and in various solvents (66). The ability to predict repulsive and attractive
forces between particles and substrates could play an influential role in the development of col-
loidal assemblies and thin film technologies. Accordingly, this approach opens a new path to study
interactions at nanomaterial surfaces and the role of surface functionalization.

2.3. Nanomaterials in Drug Delivery: Nanocarriers and Nanomedicines

Nanotherapeutics often take the form of polymer micelles and dendrimers, polymersomes, li-
posomes, stable emulsions, porous NPs, and other “nanocarriers.” Many of these require a gentle
separation technique owing to their delicate structures. This challenge makes AF4 uniquely suited
for the analysis of biomedicines, and in-depth reviews of FFF for such analysis can be found else-
where (67-70). The use of FFF has several benefits over batch methods such as DLS, including the
quantification of populations undergoing aggregation or dissolution and examination of changes
associated with drug delivery, storage, and release (71-73).

Polymeric nanocarriers, including micelles, dendrimers, and polymersomes, can be produced
over a wide size range and with tunable chemical functionality. This flexibility enables them to
carry both hydrophilic and hydrophobic therapeutics as well as control stability, lifetime, and
therefore the release of drugs. The chemistry of the nanocarrier components and the composition
of formulation buffer strongly impact the size, volume, and morphology of polymer micelles (74).
Studies of block copolymer micelles via AF4-MALS-DLS determined the size, shape, and MW of
such particles. In conjunction with hyphenated detection, changes in these properties with respect
to the carrier fluid composition can be monitored and related to degradation and aggregation (75,
76). AF4-UV/vis-MALS has been used to study the impact of nanocarriers’ size and colloidal sta-
bility on uptake, in vitro toxicity, and encapsulation of dyes for photodynamic therapy in block
copolymer micelles (77). The release of therapeutics can be controlled via several mechanisms,
including the response of nanocarriers to changes in the external chemical environment. The for-
mulation and stability of polymersomes have been studied with respect to responses in variation of
external pH and ionic strength (78). As observed in similar studies, a change in the pH environment
may cause micelles to undergo morphological deformation and degradation (79). These studies
highlight AF4’s applicability to investigating formulation-based control of micelle morphology
and how morphologies may exhibit differing degradation pathways and responses to changes in
external environment. Similarly, porous inorganic and organic nanomaterials have shown promise
for the loading and targeted delivery of proteins, dyes, and other therapeutics (80). Formulation
of metal-organic frameworks for drug delivery has been studied by AF4-MALS, highlighting the
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ability to monitor morphological changes, formation of aggregates, and the impact of drug loading
on particle stability (81).

Nanostructured lipid carriers (82) and other emulsion-prepared therapeutics (83) for specific
drug delivery have recently gained attention, with AF4 becoming a preferred method for particle
characterization. Measurement of particle size distributions in medicinal products is especially im-
portant for understanding the biological effects of lipid-based nanotherapeutics (7). Understand-
ing the aggregation, interaction, and assembly of liposomes with existing micelles and vesicles in
biological matrices is necessary for a mechanistic understanding of the bioavailability and uptake
of poorly water-soluble hydrophobic drugs (84). Although AF4 is a gentle separation technique
compared to centrifugation and size exclusion chromatography (SEC), typical AF4 methodology
involves a sample focusing step that has been noted to cause fusion of very small lipid particles
into larger mixed micelles (72). To circumvent problems during sample focusing, researchers have
investigated frit inlet versions of both FIFFF and AF4 and shown them to be good options (85).
Specific uses of frit inlet FFF are discussed in Section 3. FIFFF techniques continue to meet the
accelerating characterization needs of regulatory science (86) and help the further development
of new nanotechnology-enabled pharmaceuticals and nanoformulations (87).

2.4. Assemblies and Complexes: Interactions of Polymers, Proteins, and Particles

Biologically derived drugs show promise for drug delivery and treatment. Assessing the interac-
tions of these therapeutic candidates allows for a deeper understanding of factors controlling their
efficacy. Aptamer-protein complexation was studied using a creative experimental design that ex-
ploited the physical characteristics of the AF4 channel. The cross flow field dictates that the chan-
nel wall must be semipermeable so analytes are retained but carrier liquid can permeate through.
This feature enabled incubation of the aptamer-protein solutions during the focusing/relaxation
step within the AF4 channel, followed immediately by separation and measurement of dissocia-
tion constants for aptamer-protein complexes (88). Determination of weak dissociation constants
at a micromolar level were also shown for protein complexes, highlighting the potential for char-
acterizing challenging binding systems (89).

Protein therapeutics show promise for disease treatment, but the formation of aggregates
in formulations can reduce efficacy and potentially increase immunogenicity. AF4 provided the
essential separation of anti-streptavidin immunoglobulin G (IgG) monomer from aggregates,
whereas the MALS-differential refractive index (dRI) reported the MW of the eluting subpop-
ulations. These data were fit to the Lumry-Eyring nucleated polymerization model, and kinetic
analysis suggested that slow nucleation and aggregate condensation were the main pathways to
the formation of nanometer and submicron aggregates (90). In addition, FFF’s characteristic
open channel permitted a comparative study of uncentrifuged and centrifuged heat-stressed anti-
streptavidin IgG. (Centrifugation is commonly used as a sample preparation step to remove large-
sized species that can clog chromatography columns.) AF4-MALS-dRI results suggested that the
removal of large aggregates may influence aggregation kinetics. Polymeric protective agents that
prevent aggregation during heat stress of IgG proteins were also studied using AF4 (91). Near the
IgG unfolding temperature, polymer agents formed complexes with IgG to slow aggregate for-
mation. Whole-blood separation by AF4 often requires extensive pretreatment owing to the large
number of blood cells, platelets, and plasma present. However, a new AF4 method characterized
protein therapeutics and their aggregates in whole blood (92). This is an exciting development that
facilitates a better understanding of biotherapeutic behavior in complex biological media without
disturbing aggregate species during sample preparation. Despite these successes, AF4 method de-
velopment should consider the impact of sample injection, focusing, and separation on delicate
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or transient aggregate populations (93). Additionally, the composition of the carrier fluid can im-
pact protein retention due to protein—protein interactions and protein-membrane interactions
94).

Potential use of NP therapeutic delivery agents along with the prevalence of nanomaterials
in the environment has raised questions about the fate of these materials in biologically relevant
media (95). AF4 characterization of functionalized NPs (96), antibody-NP conjugates (97-99),
functionalized carbon nanotubes (100), and protein-NP adsorption (101) has shown promise for
understanding these complex systems. The protein corona formed on NP surfaces in biological
media has also been studied. The nature of the protein corona-NP interactions and the relative
dissociation rate of the protein corona were screened using AF4 and ultracentrifugation (102).
The separation mechanism in AF4 allowed fast-dissociating proteins to be isolated from slow-
dissociating proteins and the NPs. Differences in protein dissociation rates as NPs moved between
different environments could have important implications for the protein corona. AF4 was com-
pared to ultracentrifugation to show that loosely bound proteins (soft corona) could be preserved
(103). In this study, polystyrene latex particles were incubated with human plasma and then sep-
arated using AF4 or ultracentrifugation. The identification of more human serum albumin and
IgG proteins associated with the particles separated by AF4 confirmed the preservation of the
soft protein corona compared to ultracentrifugation. Access to such NPs allowed further studies,
concluding that only the hard protein corona impacted cell uptake behavior. Topological features
of large biohybrid systems may play an important role in their applications but are challenging to
analyze. Avidin and biotinylated glycodendrimer (GD-B) complexes were formed by varying the
degree of biotinylation and the ligand—receptor stoichiometry and characterized by AF4-MALS-
DLS-dRI (104). The apparent density, determined from the measured size and MW, and the MW
dependence of the shape factor (0 = 7,,,/7; ), were examined to understand the scaling behav-
ior of the avidin/GD-B, structures. Conformation plots of p as a function of MW suggested the
transformation from stiff rod-like structures to more branched microgels. This type of in-depth
characterization is important for understanding the structure-function relationship of these large,
complex, biohybrid systems.

Polymeric assemblies have potential use as delivery vectors for therapeutic treatments. Size
and shape characterization for these assemblies is important for understanding their efficacy
and function. Amphiphilic poly(ethyleneoxide-5-g-caprolactone) (PEO-5-PCL) and poly(ethylene
oxide-b-methylmethacrylate) block copolymer self-assemblies were characterized by AF4-MALS-
DLS-dRI, and the results were compared to batch-mode light scattering, TEM, and atomic force
microscopy to understand the morphologies of the formed polymersomes (79). Separation and
identification of PEO-4-PCL micelles and vesicles by AF4 contributed to our understanding of
the synergistic effects of polymersome morphology on photodynamic therapy cancer treatments
(105). Comparison of AF4 and batch-mode DLS showed the poor suitability of the latter to ac-
curately characterize complex mixtures of micelles and vesicles. The AF4-determined micelle and
vesicle morphology distributions could be used to better understand the impact of polymersome
morphology on the efficacy of photodynamic therapy during in vitro testing.

The analysis of shear-sensitive assemblies and complexes requires consideration of the FFF
process, particularly the sample relaxation or focusing step where undesirable alteration of
samples may occur. In such cases, frit inlet-FIFFF systems have proven to be a good alternative.
Frit inlet-FIFFF and frit inlet-AF4 were shown to be suitable for characterizing shear-prone
polyion complexes (PICs) (85). Batch-mode DLS measurements and conventional AF4 were
unable to accurately characterize the complexes and dissociated the PICs, respectively. Frit inlet
techniques not only preserved the self-assemblies but also identified changes in PIC composi-
tions as a function of NaCl concentration. Frit inlet-AF4 has also improved characterization of
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high-molecular-weight biopolymers such as glycogen and pullulan compared to conventional
AF4 (106). The main drawback with frit inlet systems is lower separation resolution compared to
conventional AF4.

The use of FFF to detect weakly bound biopolymer complexes, acquire topological informa-
tion about biohybrid complexes, and determine the structures of micelles in complex mixtures
represents state-of-the-art analyses. These types of studies are not as straightforward as those
showing the well-documented capability of AF4 and light scattering to determine size and molar
mass distributions. Despite significant method development and data analysis, this information
content is difficult to achieve using other methods.

3. DEVELOPMENTS IN INSTRUMENTATION AND ANALYSIS

Opver the past decade, new applications have expanded the use of FFF, and advancing instrumen-
tation and on-line detection capabilities have elevated FFF into emerging fields. AF4’s widespread
use has led to many developments in channel design and on-line instrumentation. Comparison of
analytical AF4 channels with SP-AF4 has shown how channel design impacts overloading behav-
ior and resolution (107). This work provides insights into SP-AF4 in both aqueous and organic
solvents and highlights SP-AF4’s potential for characterizing and collecting milligram quantities
of different NPs.

At the analytical scale, microstructured membranes were developed and examined in efforts to
increase retention, selectivity, and resolution. By hot-embossing a 30-kDa regenerated cellulose
membrane with perpendicular grooves, an increase in retention of bovine serum albumin, y- glob-
ulin, apoferritin, and thyroglobulin was achieved (108). Further optimization with lower molecular
weight cutoff (MWCO) membranes, membrane fabrication processes, and COMSOL modeling
helped increase the selectivity and resolution for smaller MW analytes. This initial structured
membrane work led to a potentially high-throughput, two-dimensional (2D) fractionation for
proteins and NP mixtures using frit inlet-AF4 (109).

Long-standing analysis centered around metal NPs and aquatic samples has led to develop-
ments involving the coupling of ICP-MS with AF4. Owing to MWCO limitations for AF4 mem-
branes, an interface was recently developed to direct cross flow fluid from AF4 into the ICP-MS
(110). Monitoring the dissolved analytes in the cross flow and particulates in the channel flow of
AF4 with ICP-MS increased the efficiency of analysis. The abundance of particles between 0.3
and 1 kDa in natural waters has led to the use of low (~300-Da) MWCO membranes that ne-
cessitated channel modifications to handle higher channel pressures (111). Lower-MWCO mem-
branes used for dissolved organic matter could open a new realm of analysis to AF4 that has often
been dominated by SEC, including oligomeric polymer species in a variety of solvents, and bet-
ter facilitate the monitoring of degradation and dissolution of ENPs by ICP-MS. Comparison of
spICP-MS and AF4-ICP-MS in regard to size resolution and multiform metal analysis has shown
AF4-ICP-MS to have better size resolution, providing an understanding of NP complexation and
aggregation (47).

Beyond ICP-MS, other novel detection schemes have recently been coupled to AF4 chan-
nels, including a liquid waveguide capillary cell (LWCC) (10), optical-trap-based Raman flow cell
(9), and a y-ray detector (112). A longer optical path length for the capillary cell coupling of
LWCC to AF4 has provided enhanced sensitivity of AgNNPs down to the part-per-billion level
without any preconcentration steps. The development of optical-trap flow cells for Raman mi-
crospectroscopy and coupling to AF4 and CF3 (or SAdFFF) are major breakthroughs in on-line
chemical analysis of <I-wm particles. This has allowed the identification of polystyrene latex
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and polymethylmethacrylate particles (9) and overcomes the size and compositional limitations
observed in traditional Raman spectroscopy. Coupling a y-ray detector to an AF4 channel serves
as a stepping stone in the analysis of theragnostic particles used in radiation and alpha therapy.
This powerful tool consolidates analysis time by monitoring liposome sizes and retention of ra-
dioactive metal within the lipid vesicles. This allows AF4 to be used in tracking the dissolution,
release, and retention of radioactive components in vesicles after they are incubated in biologically
relevant media such as human blood serum.

The rise in bioparticle analysis has led to an increased interest in particle counting. Traditional
batch methods such as flow cytometry, particle tracking analysis, and resistive-pulse sensing are of-
ten hindered by polydisperse analytes, instrument sensitivity, and operator error (113, 114). More
recently, NP tracking analysis has been successfully coupled to AF4, demonstrating its potential
for on-line particle counting (8). Particle counting with AF4-MALS is also gaining attention, yet
little work has been done in this area thus far (115, 116).

Recently updated designs have been implemented to analyze particles spanning the 1-10 pm
size range utilizing an acoustic force field for a separation based on particle size and density and
physical properties of the solvent. Unlike previous acoustic FFF systems where the acoustic radi-
ation forces provide lift to sedimenting particles (in opposition to the gravitational field), this sys-
tem was designed to suppress diffusive and lift forces by accelerating sedimentation velocity (117).
"This novel approach minimized sample relaxation time, thus enabling faster analyses over a wider
separation range and with enhanced resolution over traditional gravitational FFF. These advance-
ments make acoustic FFF a promising technique for high-throughput screening of micron-sized
particles.

Surface charge is important for understanding macromolecular and particle interactions. This
capability was realized by the introduction of electrical asymmetrical flow FFF (EAF4), which can
separate particles and macromolecules by size and charge while providing orthogonal determina-
tion of electrophoretic mobilities and zeta potentials (118). EAF4 is an improvement over phase
analysis light scattering for polydisperse systems, as it can measure the distribution of surface
charges as a function of size. Polystyrene latex beads and proteins showed increased resolution
and fractionating power over FIFFF techniques.

The past five years have seen advancements in polymer analysis using ThFFF (119). The in-
creased use of on-line MALS-dRI detectors has revealed issues with the analysis of high MW
and complex polymers by size exclusion chromatography (120-123). A new approach to deter-
mining the degree of branching and distributions of architecture exploited the Soret coefficient
measured by ThFFFE. Similar to other contraction factors obtained by light scattering and vis-
cometry, the Soret contraction factor g” from ThFFF could provide insight into the degree of
branching and distributions of architecture (124). This work deconvoluted subtleties in architec-
ture for aromatic-aliphatic polyesters (Figure 44). Similar work followed with examining chain-
walking polyethylene polymers but with an alternative approach to determine g”” (125). Both stud-
ies showed a significant influence of solvent selection on polymer topology when calculating the
thermal diffusion coefficient DT for the polymer system. In conjunction with g”, 2D separations
conducted with both ThFFF and SEC have provided detailed size and compositional information
for polystyrene-poly(methyl methacrylate) (126). The sensitivity of ThFFF separations to polymer
microstructure has also been demonstrated (127) (Figure 4b), and the effect of microstructure on
stereocomplexation of polymers during micelle formation and annealing was investigated in sub-
sequent ThFFF studies (128). The ability of ThFFF to analyze both the polymeric precursors and
their self-assemblies by size, composition, and architecture/morphology has implications for the
characterization of polymer micelles, polyplexes, and polymer aggregate systems being designed
for numerous industrial applications (129).
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Figure 4

A new approach to polymer architecture and tacticity analysis uses parameters measured by thermal field-flow fractionation (ThFFF).
(@) Degree of branching (DB) distributions are determined for a series of aromatic-aliphatic polyesters with varying DB. Soret
coefficients calculated from measured retention times of branched and linear polymers of the same molecular weight (MW) are ratioed
to yield a Soret contraction factor g”. An increase in DB from linear to pseudodendritic polyesters correlated with a decrease in the
Soret contraction factor (g”) and yielded an architecture calibration plot. Low-MW species with positive g’ values were collected after
elution from ThFFE, examined by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and

found to be cyclic polyester species. Panel adapted with permission from Reference 124; copyright 2019 American Chemical Society.
(b) Three poly(methyl methacrylate) samples of similar MW and different tacticity show varying retention time (t) in acetonitrile.
Owing to the similar translational diffusion coefficients, the difference in t. during ThFFF fractionation is suggested to be driven by
the polymer microstructure. Rigidity in the isotactic sample has been observed to increase thermal diffusion coefficient (D) compared
to syndiotactic and atactic samples. Panel adapted with permission from Reference 127; copyright 2015 American Chemical Society.

4. PRACTICAL CONSIDERATIONS

Proper selection of FFF technique, separation conditions, carrier liquid, sample accumulation
wall, and detection method is central to obtaining meaningful results. Most recent work address-
ing these practical considerations focuses on AF4 but can be applied to all FFF techniques. The
wide range of AF4 applications has led to many sample specific methods. The creation of a stan-
dard method development workflow for NP characterization by AF4 provides guidance for novice
and expert users (130), and the standardization of AF4 and CF3 methods has been established in
an International Organization for Standardization method (131). A critical overview of FIFFF also
provides users with the fundamental theory and relevant factors that impact analysis (132). The
overview offers practical recommendations for common problems, a discussion of the strong and
weak points of FIFFE, and recommendations for good method development and reporting prac-
tices. Other recent publications present excellent practical and theoretical discussions (133-139).
Some additional impactful and practical examples are reviewed below.

Carrier fluid ionic strength is important for controlling electrostatic interactions between the
FIFFF membrane and analytes. Ions can accumulate near the semipermeable membrane and re-
duce the Debye length, leading to increased particle-membrane interactions and thus sample loss
(140). Higher-charge-state anions accumulate more than lower-charge-state anions, highlighting
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the need for careful carrier fluid composition selection. Sample composition is also important
for selecting FFF conditions because the sample loss mechanism can vary significantly between
samples. Gold NPs (AuNPs) stabilized by citrate or polyethylene glycol (PEG) chains with vary-
ing MW were shown to have different sample loss mechanisms during AF4 analysis (141). The
relatively weakly bound citrate compared to the covalently bonded PEG chains resulted in more
sample loss for citrate stabilized AuNPs than PEG-stabilized particles. Most of the sample loss
for citrate AuNPs was due to the polyetheretherketone tubing rather than the AF4 membrane.
At low ionic strengths, electrostatic repulsion between particles and the membrane resulted in
lower sample loss; higher ionic strengths led to increased sample loss due to bridging interactions
between the PEG chains and the membrane. Additionally, membrane “hot spots” of AuNP ad-
sorption were observed, which is a reminder that membrane heterogeneity still remains a weak
point for FIFFF (142).

The FFF separation mechanism under ideal conditions is well established. Recent work has
strengthened the understanding of how nonidealities influence separation. For instance, the im-
pact of cooperative diffusion of silica NPs was demonstrated during AF4 analysis (143). Faster-
diffusing 50-nm particles were shown to significantly increase the diffusion of the slower-diffusing
100-nm particles, resulting in poor size resolution. Cooperative diffusion effects could be elimi-
nated by reducing both sample load and Debye length by adding sodium dodecyl sulfate. Theo-
retical and experimental studies of the impact of secondary relaxation during flow programming
as well as improvements to determine the channel thickness parameter have also been reported
(133, 134). Recent theoretical work that calculated the nonparabolicity correction of laminar flow
profiles in 59 solvents will continue to improve accuracy of the retention parameter determined
for ThFFF (144).

Coupling light scattering detectors with FFF separations has become standard practice and en-
ables fast, accurate, and in-depth characterization. The shape factor (7,,,,/7;) obtained from on-line
MALS and DLS measurements permitted determination of particle shape. However, the accuracy
of these measurements is key to ensuring proper determination of the shape factor. Channel or
detector flow rate has been shown to impact DLS measurements owing to additional translational
motion along with Brownian motion and analyte deformation (145). Increasing flow rate from 0.2
to 1 mL/min had a significant impact on DLS accuracy for particles >100 nm, with higher flow
rates and larger particles contributing to the largest errors. Manufacturers have recognized erro-
neous DLS measurements, and advancements have been made to improve accuracy. Extension of
the Rayleigh-Ganz light scattering theory to more complex NP structures, such as ellipsoids, rods,
and tubes, facilitated the characterization of complex shapes (146). For instance, determining rod
length distributions using a rod model can be done directly using FFF-MALS data when the rod
diameter is known. The parallel development and understanding of FFF separations and MALS
analysis for nonspherical particles offer an exciting path forward.

In addition to NP size and shape characterization, FFF-MALS is now often used for deter-
mining absolute MW and 7,,,,, distributions, especially for high-MW (>10¢ g/mol) polymers and
proteins. Coelution effects observed as a downturn or upturn in the MW determined by on-line
MALS-dRI measurements across AF4 fractograms have been encountered in complex sample mix-
tures (147). Downturns may be observed in light scattering data, often thought of as an artifact, but
they are caused by compact glycogen having a smaller size and similar MW to pullulan. Upturns
may also be observed showing coelution of a mixture with overlapping size distributions but dif-
ferent MW distribution. While coelution can be observed for two or more distinct polymers, this
phenomenon may be indicative of a sample mixture of a single-polymer composition containing
both linear and branched chains, complexes, or aggregates. Furthermore, samples with broad size
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distributions that span ~1 pm will cross the steric transition and result in reverse elution order of
the largest components (148). In this case, coelution causes poor Zimm plot fits that bias the 7,
determination toward larger sizes. Separation conditions can be adjusted to reduce or eliminate
this coelution, but samples must often be filtered or centrifuged to remove the large components.
The expansion of FFF techniques to new users and to address new challenges continues to push
current instrument capabilities.

5. CONCLUSION AND FUTURE TRENDS

FFF continues to be used for separating and characterizing macromolecules, NPs, colloids, and
micrometer-sized particles with the goal of determining average size, MW, and density as well
as distributions representative of heterogeneity in these various primary properties. In the last
decade, FFF techniques coupled with orthogonal analyses have broadened the scope of investiga-
tive studies of increasingly complex systems where questions about nanomaterial transformations
and bioparticle functions can start to be answered. In doing so, FFF has helped tie different fields
together. Moving forward, FFF will likely play an important role in new fields such as nanoplas-
tics and their environmental and biological impacts, design and function of smart materials, and
classification and purpose of extracellular vesicles. Despite the observed growth, FFF is not yet
a standard technique in analytical laboratories. Challenges and opportunities are plentiful and
include improving the robustness of membranes for AF4 and methods to obtain a reproducible
membrane surface from day to day; obtaining a better understanding of thermal diffusion and
other secrets it may hold with respect to unlocking new characterization capabilities; standard-
izing protocols for specific high-impact applications; decreasing instrumental band broadening;
further flattening the learning curve for new users through simulations and machine learning; and
developing sensitive on-line composition detectors and capabilities for nonspherical analytes.
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