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A loop is a rather general algebraic structure that has 
an identity element and division, but is not necessarily 
associative. Smooth loops are a direct generalization of Lie 
groups. A key example of a non-Lie smooth loop is the 
loop of unit octonions. In this paper, we study properties of 
smooth loops and their associated tangent algebras, including 
a loop analog of the Maurer-Cartan equation. Then, given 
a manifold, we introduce a loop bundle as an associated 
bundle to a particular principal bundle. Given a connection 
on the principal bundle, we define the torsion of a loop 
bundle structure and show how it relates to the curvature, 
and also develop aspects of a non-associative gauge theory. 
Throughout, we see how some of the known properties of 
G2-structures can be seen from this more general setting.
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1. Introduction

A major direction in differential geometry is the study of Riemannian manifolds 
with exceptional holonomy, i.e. 7-dimensional G2-manifolds and 8-dimensional Spin (7)-
manifolds, as well as more generally, G2-structures and Spin (7)-structures. As it turns 
out, both of these structure groups are closely related to the octonions [20], which is the 
8-dimensional nonassociative normed division algebra O over R. A number of properties 
of G2-structures and Spin (7)-structures are hence artifacts of the octonionic origin of 
these groups. In particular, in [15], the author has explicitly used an octonion formalism 
to investigate properties of isometric G2-structures. In that setting, it emerged that ob-
jects such as the torsion of a G2-structure are naturally expressed in terms of sections of 
a unit octonion bundle. The set of unit octonions UO ∼= S7, has the algebraic structure 
of a Moufang loop. Indeed, a closer look at the properties of octonions that were used 
in [15] shows that it was not really the algebra structure of O that played the key role, 
but rather the loop structure on UO and the corresponding cross-product structure on 
the tangent space at the identity T1UO ∼= ImO, the pure imaginary octonions. This 
suggests that there is room for generalization by considering bundles of other smooth 
loops. As far as possible, we will minimize assumptions made on the loops. Although 
smooth loops at first sight may seem like an exotic structure, in fact, there is a large 
supply of smooth loops, because given a Lie group G, a Lie subgroup H, and a smooth 
section σ : G/H −→ G (i.e. a smooth collection of coset representatives), we may define 
a loop structure on G/H if σ satisfies certain conditions, such as σ (H) = 1, and for any 
cosets xH and yH, there exists a unique element z ∈ σ (G/H) such that zxH = yH [35]. 
A classical example of a smooth loop obtained directly from a Lie group quotient is the 
space of positive definite hermitian matrices [24]. Conversely, any smooth loop can also 
be described in terms of a section of a quotient of Lie groups. Special kinds of smooth 
loops, such as Moufang loops have been classified [35], however for broader classes, such 
as Bol loops, there exists only a partial classification [11].
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The main purpose of this paper is develop substantial generalizations of Lie theory, 
principal bundles, and gauge theory to the non-associative setting. In the process, we 
carefully build up the theory of loop bundles starting with all the necessary algebraic 
preliminaries and properties of smooth loops. There are several anticipated applications 
of this theory. Firstly, this will help define a unified framework through which special 
geometric structures may be studied. In this sense, this can be considered as an extension 
of the normed division algebra approach to various special structures in Riemannian 
geometry as developed by Leung [29]. The long-term goal in G2-geometry and Spin (7)-
geometry is to obtain an analogue of Yau’s celebrated theorem on existence of Calabi-Yau 
metrics [52], and thus a key theme in the study of such special geometries is to try to 
compare and contrast the corresponding theory of Kähler and Calabi-Yau manifolds. 
This requires putting the complex and octonionic geometries into the same framework. 
In [15], the octonion bundle is constructed out of the tangent bundle, and is hence very 
specific, one could say canonical. However to understand properties of the bundle, it 
is helpful to decouple the bundle structure and the properties of the base manifold. 
This leads directly to consider loop bundles over arbitrary manifolds. In particular, 
such an approach will also clarify which properties of the octonion bundle in the G2
setting are generic, in the sense that they hold true for any loop bundle, and which are 
specific to G2-structures. This leads directly to the second expected application, namely 
using the non-associative version of Chern-Simons theory to study connections with 
special properties on bundles. Indeed, nonassociativity allows to define new nontrivial 
functionals in different dimensions with nontrivial critical points, and this should give 
rise to a new invariant theory, in the spirit of Floer [12] in 3-dimensions. Finally, it is 
also expected that the ideas developed in this paper will find applications in physics. It 
is already known that octonions play a role in supersymmetric theories such as String 
Theory and M-theory (for example, [2,4,16]), so a better developed non-associative theory 
will help advance in these directions.

In Section 2 we give an overview of the key algebraic properties of loops. While many 
basic properties of loops may be known to algebraists, they may be new to geometers. 
Moreover, we adopt a point of view where we emphasize the pseudoautomorphism group 
of a loop, which is a generalization of the automorphism group, and properties of mod-
ified products defined on loops. These are the key objects that are required to define 
loop bundles, even though in algebraic literature they typically take the backstage. In 
particular, we show how the pseudoautomorphism group, the automorphism group, the 
nucleus of a loop are related and how these relationships manifest themselves in the 
octonion case as well-known relationships between the groups Spin (7), SO (7), and G2.

In Section 3, we then restrict attention to smooth loops, which are the not necessarily 
associative analogs of Lie groups. We also make the assumption that the pseudoauto-
morphism group acts on the smooth loop via diffeomorphisms and is hence itself a Lie 
group. This is an important assumption and it is not known whether this is always true. 
The key example of a non-associative smooth loop is precisely the loop of unit octo-
nions. We first define the concept of an exponential function, which is similar to that 
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on Lie groups. This is certainly not a new concept - it first defined by Malcev in 1955 
[32], but here we show that in fact, generally, there may be different exponential maps, 
based on the initial conditions of the flow equation. This then relates to the concept of 
the modified product as defined in Section 2. Then, in Section 3.2, we define an algebra 
structure on tangent spaces of the loop. The key difference with Lie algebras is that in 
the non-associative case, there is a bracket defined at each point of the loop.

In Section 3.3, Theorem 3.59 gives us a loop version of the Maurer-Cartan structural 
equation. Namely, for any point p in the loop, the right Maurer-Cartan form satisfies the 
following equation:

(dθ)p − 1
2 [θ, θ](p) = 0, (1.1)

where [·, ·](p) is the bracket at point p. To the best of the author’s knowledge, this is a new 
result. Further, we show how the differential of the bracket depends on the associator, 
which of course vanishes on Lie algebras, but is non-trivial on tangent algebras of non-
associative loops. Differentiating the structural equation then gives the Akivis identity 
[21], which is a non-associative generalization of the Jacobi identity. Indeed, in Lie theory, 
the Jacobi identity is the integrability condition for the Maurer-Cartan equation, however 
in the non-associative case, derivatives of the bracket give rise to the additional terms.

Then, we define another key component in the theory of smooth loops. As discussed 
above, each element s of the loop L defines a bracket bs on the tangent algebra l. More-
over, we also define a map ϕs that maps the Lie algebra p of the pseudoautomorphism 
group to the loop tangent algebra. The kernel of this map is precisely the Lie algebra hs

of the stabilizer of s in the pseudoautomorphism group. In the case of unit octonions, we 
know p ∼= so (7) ∼= Λ2 (

R7)∗ and l = ImO ∼= R7, so ϕs can be regarded as an element of 
R7⊗ Λ2R7, and this is (up to a constant factor) a dualized version of the G2-invariant 
3-form ϕ, as used to project from Λ2 (

R7)∗ to R7. The kernel of this map is then the Lie 
algebra g2. The 3-form ϕ also defines the bracket on ImO, so in this case, both bs and ϕs

are determined by the same object, but in general they have different roles. By consid-
ering the action of U (n) on U (1) (i.e. the unit complex numbers) and Sp (n) Sp (1) on 
Sp (1) (i.e. the unit quaternions), we find that Hermitian and hyperHermitian structures 
fit into the same framework. Namely, a complex Hermitian form, a quaternionic triple 
of Hermitian forms, and the G2-invariant 3-form have the same origin as 2-forms with 
values in imaginary complex numbers, quaternions, and octonions, respectively.

In Section 3.4 we define an analog of the Killing form on l and give conditions for it 
to be invariant under both the action of p and the bracket on l. In particular, using the 
Killing form, we define the adjoint ϕt

s of ϕs. This allows one to use the Lie bracket on p
to define another bracket on l. In the case of octonions, it’s proportional to the standard 
bracket on l, but in general it could be a distinct object.

In Section 3.5, we consider maps from some smooth manifold M to a smooth loop. 
Given a fixed map s, we can then define the corresponding products of loop-valued 
maps and correspondingly a bracket of l-valued maps. Similarly as for maps to Lie 
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groups, we define the Darboux derivative [45] of s - this is just s∗θ - the pullback of the 
Maurer-Cartan form on L. This now satisfies a structural equation, which is just the 
pullback of the loop Maurer-Cartan equation, as derived in Section 3.3, with respect to 
the bracket defined by s. For maps to Lie groups, there holds a non-abelian “Fundamental 
Theorem of Calculus” [45, Theorem 7.14], namely that if a Lie algebra-valued 1-form on 
M satisfies the structural equation, then it is the Darboux derivative of some Lie group-
valued function. Here, we prove an analog for l-valued 1-forms (Theorem 3.59). However, 
since in the non-associative case, the bracket in the structural equation depends on s, 
Theorem 3.59 requires that such a map already exists and some additional conditions 
are also needed, so as expected, it’s not as powerful as for Lie groups. However, in the 
case the loop is associative, it does reduce to the theorem for Lie groups.

Further, in Section 4, we turn our attention to loop bundles over a smooth manifold 
M . In fact, since it’s not a single bundle, it’s best to refer to a loop structure over a 
manifold. The key component is Ψ-principal bundle P where Ψ is a group that acts via 
pseudoautomorphisms on the loop L. Then, several bundles associated to P are defined: 
two bundles Q and Q̊ with fibers diffeomorphic to L, but with the bundle structure 
with respect to different actions of Ψ; the vector bundle A with fibers isomorphic to l, 
as well as some others. Crucially, a section s of the bundle Q̊ then defines a fiberwise 
product structure on sections of Q, a fiberwise bracket structure, and a map ϕs from 
sections of the adjoint bundle pP to sections of A. In the key example of a G2-structure 
on a 7-manifold M , the bundle P is then the Spin (7)-bundle that is the lifting of the 
orthonormal frame bundle. The bundles Q and Q̊ are unit octonion bundles, similarly 
as defined in [15], but Q transforms under SO (7), and hence corresponds to the unit 
subbundle of R ⊕ TM , while Q̊ transforms under Spin (7), and hence corresponds to the 
unit subbundle of the spinor bundle. The section s then defines a global unit spinor, 
and hence defines a reduction of the Spin (7)-structure group to G2, and thus defines a 
G2-structure. In the complex and quaternionic examples, the corresponding bundle P
then has U (n) and Sp (n) Sp (1) structure group, respectively, and the section s defines 
a reduction to SU (n) and Sp (n), respectively. Thus, as noted in [29], indeed the oc-
tonionic analog of a reduction from Kähler structure to Calabi-Yau structure and from 
quaternionic Kähler to HyperKähler, is the reduction from Spin (7) to G2.

Using the equivalence between sections of bundles associated to P and corresponding 
equivariant maps, we generally work with equivariant maps. Indeed, in that case, s :
P −→ L is an equivariant map, and given a connection ω on P, we find that the 
Darboux derivative of s decomposes as

s∗θ = T (s,ω) − ω̂(s), (1.2)

where ω̂(s) = ϕs (ω) and T (s,ω) is the torsion of s with respect to the connection ω, which 
is defined as the horizontal part of s∗θ. The quantity T (s,ω) is called the torsion because 
in the case of G2-structures on a 7-manifold, if we take P to be the spin bundle and ω the 
Levi-Civita connection for a fixed metric, then T (s,ω) is precisely (up to the chosen sign 
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convention) the torsion of the G2-structure defined by the section s. Moreover, vanishing 
of T (s,ω) implies a reduction of the holonomy group of ω. As shown in [15], the torsion 
of a G2-structure may be considered as a 1-form with values in the bundle of imaginary 
octonions. Indeed, in general, T (s,ω) is a basic (i.e. horizontal and equivariant) l-valued 
1-form on P, so it corresponds to an A-valued 1-form on M . It also enters expressions 
for covariant derivatives of products of sections of Q and the bracket on A.

The relation (1.2) is significant because it shows that the torsion vanishes if, and 
only if, −ω̂(s) is equal to the l-valued Darboux derivative s∗θ. In particular, a necessary 
condition is then that −ω̂(s) satisfies the loop structural equation. In Theorem 4.25, we 
give a partial converse under certain assumptions on L.

In Section 4.2, we then also consider the projection of the curvature F of ω to l. 
We define F̂ = ϕs (F ), which is then equal to the horizontal part of dω̂, and show in 
Theorem 4.19 that F̂ and T are related via a structural equation:

F̂ = dHT − 1
2 [T, T ](s)

, (1.3)

where [·, ·](s) is the bracket defined by s. Again, such a relationship is recognizable 
from G2-geometry, where the projection π7 Riem of the Riemann curvature to the 7-
dimensional representation of G2 satisfies the “G2 Bianchi identity” [15,23]. We also 
consider gauge transformations. In this setting, we have two quantities - the connection 
and the section s. We show that under a simultaneous gauge transformation of the pair 
(s, ω), F̂ and T transform equivariantly.

Finally, in Section 5, we establish a non-associative generalization of some aspects of 
gauge theory. In Section 5.1 we consider the loop bundle structure over a compact 3-
dimensional manifold and on it, define a loop Chern-Simons functional. In Theorem 5.4
we show that the critical points over the space of connections, but with a fixed section 
s, are connections for which F̂ = 0, i.e. the curvature lies in hs everywhere. So unlike 
the flat connections which are critical points of the standard Chern-Simons functional, 
here the condition is less restrictive, and the Lie algebra part of the curvature is required 
to lie in a particular subalgebra. Similarly, we define a generalized loop Chern-Simons 
functional on a compact n-dimensional manifold, in the presence of closed (n − 3)-form 
ψ. This the analogue of the higher-dimensional Chern-Simons functional as defined in 
[9,40]. In this case, Theorem 5.6 shows that the critical points satisfy F̂ ∧ ψ = 0.

An additional feature of gauge theory in the non-associative setting is that apart from 
the choice of connection, we also have a choice of the defining section s. Hence, the loop 
Chern-Simons functional may be considered as functionals on pairs (s, ω). Indeed, if we 
consider the critical points over pairs (s, ω), then in Corollary 5.10 we get an additional 
condition on the torsion, namely that [T, T, T ](s) = 0, where [·, ·, ·](s) is the associator 
defined by s and wedge products of 1-forms are implied.

In Section 5.2 we define a loop analog of the Yang-Mills functional on a compact 
Riemannian manifold. This is essentially the L2-norm of F̂ . The corresponding Yang-
Mills equations, as derived in Theorem 5.12, involve the torsion, as it would be expected. 
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In particular, in 4 dimensions, we find that self-dual and anti-self-dual connections satisfy 
the new Yang-Mills equation if and only if they satisfy an additional property - namely 
that the torsion is invariant under the action of the hs-component of the curvature.

Another functional that we consider (in Section 5.3) is the L2-norm squared of the 
torsion 

∫
M

|T |2. In this case, we fix the connection, and consider critical points over 
the space of sections s, or equivalently, equivariant loop-valued maps from P. In the 
G2 setting, similar functionals have been considered in [5,10,15,17,19,31]. This is then 
closely related to the Dirichlet energy functional, but restricted to equivariant maps. The 
critical points then are maps s, for which the torsion is divergence-free.

Acknowledgments
This work was supported by the National Science Foundation [DMS-1811754]. The au-
thor also thanks Henrique Sá Earp, Jonathan D.H. Smith, and the anonymous referee 
for helpful suggestions.

2. Loops

2.1. Definitions

The main object of study in this paper is a loop. Roughly, this can be thought of as 
a non-associative analog of a group, but with a few caveats. According to [37], this term 
was coined by the group of Abraham Albert in Chicago in 1940’s, as rhyming with group
and also referring to the Chicago Loop. Unfortunately however, for non-algebraists, and 
especially in geometry and topology, this term may cause confusion. A less ambiguous 
term would be something like a unital quasigroup or quasigroup with identity, however 
this would be nonstandard terminology and also much longer than a loop. In general, 
non-associative algebra requires a large number of definitions and concepts that become 
unnecessary in the more standard associative setting. In this section we go over some 
of the terminology and notation that we will be using. The reader can also refer to 
[21,24,35,41,48] for the various concepts, although, as far as the author knows, much of 
the notation in this setting is not standardized.

Definition 2.1. A quasigroup L is a set together with the following operations L ×L −→ L

1. Product (p, q) �→ pq

2. Right quotient (p, q) �→ p/q

3. Left quotient (p, q) �→ q\p,

that satisfy the following properties

1. (p/q) q = p

2. q (q\p) = p
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3. pq�q = p

4. pq/p = q.

We will interchangeably denote the product operation by p · q. To avoid multiple 
parentheses, at times we will use the convention a · bc = a (bc) and ab/c = (ab) /c. 
If the same underlying set L is equipped with a different product operation ◦r (to be 
defined later), then the corresponding quasigroup will be denoted by (L, ◦r) and the 
corresponding quotient operation by \r.

Definition 2.2. Let L be a quasigroup. The right nucleus N R (L) of L is the set of all 
r ∈ L, such that for any p, q ∈ L,

pq · r = p · qr. (2.1)

Similarly, define the left nucleus N L (L) and the middle nucleus N M (L).

Elements of N R (L) satisfy several other useful properties.

Lemma 2.3. If r ∈ N R (L), then for any p, q ∈ L,

1. pr�qr = p/q

2. p · q/r = pq�r
3. qr/p = p\q · r.

Lemma 2.4. The first property follows from (2.1) using

p/q · qr = (p/q · q) r.

The second property follows similarly using

p (q/r · r) = (p · q/r) r.

The third property follows using

(p · p\q) r = p (p\q · r) .

In group theory the only reasonable morphism between groups is a group homomor-
phism, however for quasigroups there is significantly more flexibility.

Definition 2.5. Suppose L1, L2 are quasigroups. Then a triple (α, β, γ) of maps from L1
to L2 is a homotopy from L1 to L2 if for any p, q ∈ L1,

α (p) β (q) = γ (pq) . (2.2)
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If (α, α, α) is a homotopy, then α is a quasigroup homomorphism. If each of the maps 
α, β, γ is a bijection, then (α, β, γ) is an isotopy. An isotopy from a quasigroup to itself 
is an autotopy. The set of all autotopies of a quasigroup L is clearly a group under 
composition. If (α, α, α) is an autotopy, then α is an automorphism of L, and the group 
of automorphisms is denoted by Aut (L).

We will only be concerned with quasigroups that have an identity element, i.e. loops.

Definition 2.6. A loop L is a quasigroup that has a unique identity element 1 ∈ L such 
that for any q ∈ L,

1 · q = q · 1 = q. (2.3)

Definition 2.7. Let L be a loop. Then, for any q ∈ L define

1. The right inverse qρ = q\1.
2. The left inverse qλ = 1/q.

In particular, they satisfy

qqρ = qλq = 1. (2.4)

For a general quasigroup, the nuclei may be empty, however if L is a loop, the identity 
element 1 associates with any other element, so the nuclei are non-empty. Moreover, it 
is easy to show that N R (L) (and similarly, N L (L) and N M (L)) is a group [24].

Loops may be endowed with additional properties that bestow various weaker forms 
of associativity and inverse properties.

1. Two-sided inverse: for any p ∈ L, pρ = pλ. Then we can define a unique two-sided 
inverse p−1.

2. Right inverse property: for any p, q ∈ L, pq · qρ = p. In particular, this implies that 
the inverses are two-sided, so we can set p−1 = pρ = pλ, and moreover p/q = pq−1. 
The left inverse property is defined similarly. A loop with both the left and right 
inverse properties is said to be an inverse loop.

3. Power-associativity (or monoassociativity): any element p ∈ L generates a subgroup 
of L. In particular, this implies that L has two-sided inverses. Power-associativity 
allows to unambiguously define integer powers pn of elements. Note that some authors 
use monoassociativity as a more restrictive property, namely only that pp · p = p · pp.

4. (Left)-alternative: for any p, q ∈ L, p · pq = pp · q. Similarly we can define the 
right-alternative property (i.e. q · pp = qp · p). In each of these cases, L has two-
sided inverses. If L is both left-alternative and right-alternative, then it is said to be 
alternative. A loop with a similar property that p · qp = pq · p is known as a flexible 
loop.
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5. Diassociative: any two elements p, q ∈ L generate a subgroup of L. Clearly, a diasso-
ciative loop has the inverse property, is power-associative, alternative, and flexible.

6. (Left) Bol loop: for any p, q, r ∈ L,

p (q · pr) = (p · qp) r. (2.5)

It is easy to see that a left Bol loop has the left inverse property and is left-alternative 
and flexible [38]. It is also power-associative. Similarly, define a right Bol loop: for 
any p, q, r ∈ L

(pq · r) q = p (qr · q) . (2.6)

7. Moufang loop: a loop is a Moufang loop if it satisfies both the left and right Bol 
identities. In particular, Moufang loops are diassociative.

8. Group: clearly any associative loop is a group.

Example 2.8. The best-known example of a non-associative loop is the Moufang loop of 
unit octonions.

Example 2.9. Suppose G is a group with a subgroup H. Suppose σ : G/H −→ G is 
a section of G, regarded as a bundle over G/H. Then, let L = σ (G/H), known as a 
transversal to H in G. Suppose σ (H) = 1. Then, define a product structure on L, given 
by

a ◦ b = σ (abH) . (2.7)

Equivalently, we can define a product on cosets of G/H: (aH) ◦ (bH) = σ (aH) bH. 
Consider the equation a ◦ x = b. Since σ is a section, we can see right away that we have 
a unique solution x = a−1 ◦ b = σ

(
a−1bH

)
. Thus, (L, ◦) has left division, and is thus a 

left loop [24,35]. To define right division, and hence to obtain a full loop structure, more 
structure is needed. It is known that a left loop that satisfies the Bol condition (2.5) is 
in fact a Bol loop [24, 3.11].

Example 2.10. Consider the set P+
n of n ×n positive-definite hermitian matrices, then by 

the polarization, any A ∈ GL (n,C) can be written uniquely as A = PU where P ∈ P+
n

and U ∈ U (n), with P =
(
AA†) 1

2 . We can then definite a product ◦ on P+
n given by

A ◦ B =
(
AB2A

) 1
2 (2.8)

for any A, B ∈ P+
n . Note that AB2A = (AB) (AB)†, so the square root is well-

defined. Clearly, the identity matrix is the identity element in (P+
n , ◦). In fact, the 

map A �→
(
AA†) 1

2 gives rise to a section σ: GL (n,C) /U (n) −→ GL (n,C), with 
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P+
n = σ (GL (n,C) /U (n)) and so by Example 2.9, this is a transversal of U (n) in 

GL (n,C) and thus (P+
n , ◦) is a left loop. It is not difficult to check that it also admits 

right division, and is hence a loop. Moreover, it can be shown that (P+
n , ◦) is a Bol 

loop [24, Theorem 9.1]. Similarly, one can construct loops on GL (n,R) /O (n), or other 
quotients of general linear or special linear groups.

Example 2.11. Using similar ideas as above, it is possible to see that in special relativity, 
the set of boosts forms a loop transversal to the subgroup of spatial rotations in the 
Lorentz group. More specifically, in this case L ∼= O(n, 1)/(O(n) × O (1)), and the loop 
operation corresponds to relativistic addition of velocities [24].

2.2. Pseudoautomorphisms

Suppose now L is a loop and (α, β, γ) is an autotopy of L. Let B = α (1), A = β (1), 
C = γ (1). It is clear that BA = C. Moreover, from (2.2) we see that

α (p) =γ (p) /A

β (p) =B\γ (p) .

We can rewrite (2.2) as

α (p) · a (q) A/B = α (pq) A

If B = 1, then, we obtain a right pseudoautomorphism α of L with companion A, which 
we’ll denote by the pair (α, A), and which satisfies

α (p) · α (q) A = α (pq) A. (2.9)

We have the following useful relations for quotients:

α (q\p) A = α (p) A/α (q) (2.10a)

α (p/q) · α (q) A =α (p) A (2.10b)

There are several equivalent ways of characterizing right pseudoautomorphisms.

Theorem 2.12. Let L be a loop and suppose α : L −→ L. Also, let A ∈ L and γ = RA ◦α. 
Then the following are equivalent:

1. (α, A) is a right pseudoautomorphism of L with companion A.
2. (α, β, γ) is an autotopy of L with α (1) = 1 and β (1) = γ (1) = A.
3. γ (1) = A and γ satisfies

γ (p) γ
(
qγ−1 (1)

)
= γ (pq) . (2.11)
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Remark 2.13. Similarly, if A = 1, then we can rewrite (2.2) as

Bβ (p) · β (q) = Bβ (pq)

and in this case, β is a left pseudoautomorphism with companion B. Finally, suppose 
C = 1, so that then A = Bρ, and we can rewrite (2.2)

γ (p) /Bρ · B\γ (q) = γ (pq)

so that in this case, γ is a middle pseudoautomorphism with companion B.

Example 2.14. In a Moufang loop, consider the map Adq, given by p �−→ qpq−1. Note 
that this can be written unambiguously due to diassociativity. Then, this is a right 
pseudoautomorphism with companion q3 [35, Lemma 1.2]. Indeed, using diassociativity 
for {q, xy}, we have

q (xy) q−1 · q3 = q (xy) q2.

On the other hand,

qxq−1 · qyq2 =q
(
xq−1)

· (qyq) q

=
(
q

(
xq−1 · qyq

))
q

= (q (xy · q)) q

=q (xy) q2,

where we have use appropriate Moufang identities. Hence, indeed,

q (xy) q−1 · q3 =
(
qxq−1) (

qyq−1 · q3)
.

In general, the adjoint map on a loop is not a pseudoautomorphism or a loop homomor-
phism. For each q ∈ L, Adq is just a bijection that preserves 1 ∈ L. However, as we see 
above, it is a pseudoautomorphism if the loop is Moufang. Keeping the same terminology 
as for groups, we’ll say that Ad defines an adjoint action of L on itself, although for a 
non-associative loop, this is not an action in the usual sense of a group action.

We can easily see that the right pseudoautomorphisms of L form a group under 
composition. Denote this group by PsAutR (L). Clearly, Aut (L) ⊂ PsAutR (L). Similarly 
for left and middle pseudoautomorphisms. More precisely, α ∈ PsAutR (L) if there exists 
A ∈ L such that (2.9) holds. Here we are not fixing the companion. On the other 
hand, consider the set ΨR (L) of all pairs (α, A) of right pseudoautomorphisms with fixed 
companions. This then also forms a group.
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Lemma 2.15. The set ΨR (L) of all pairs (α, A), where α ∈ PsAutR (L) and A ∈ L is its 
companion, is a group with identity element (id, 1) and the following group operations:

product: (α1, A1) (α2, A2) = (α1 ◦ α2, α1 (A2) A1) (2.12a)

inverse: (α, A)−1 =
(
α−1, α−1 (

Aλ
))

=
(

α−1,
(
α−1 (A)

)ρ
)

. (2.12b)

Proof. Indeed, it is easy to see that α1 (A2) A1 is a companion of α1 ◦ α2, that (2.12a)
is associative, and that (id, 1) is the identity element with respect to it. Also, it is easy 
to see that

(α, A)
(
α−1, α−1 (

Aλ
))

= (id, 1) .

On the other hand, setting B = α−1 (
Aλ

)
, we have

B =α−1 (1) B = α−1 (
AλA

)
B

=α−1 (
Aλ

)
· α−1 (A) B

=B · α−1 (A) B.

Canceling B on both sides on the left, we see that B =
(
α−1 (A)

)ρ. �
Let CR (L) be the set of elements of L that are a companion for a right pseudoau-

tomorphism. Then, (2.12a) shows that there is a left action of ΨR (L) on CR (L) given 
by:

ΨR (L) × CR (L) −→CR (L) (2.13a)

((α, A) , B) �→ (α, A) B = α (B) A. (2.13b)

This action is transitive, because if A, B ∈ CR (L), then exist α, β ∈ PsAutR (L), such 

that (α, A) , (β, B) ∈ ΨR (L), and hence 
(

(β, B) (α, A)−1
)

A = B. Similarly, ΨR (L) also 

acts on all of L. Let h = (α, A) ∈ ΨR (L), then for any p ∈ L, h (p) = α (p) A. This is in 
general non-transitive, but a faithful action (assuming L is non-trivial). Using this, the 
definition of (2.9) can be rewritten as

h (pq) = α (p) h (q) (2.14)

and hence the quotient relations (2.10) may be rewritten as

h (q\p) =α (q) \h (p) (2.15a)

α (p/q) =h (p) /h (q) . (2.15b)
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If ΨR (L) acts transitively on L, then CR (L) ∼= L, since every element of L will be a 
companion for some right pseudoautomorphism. In that case, L is known as a (right) G-
loop. Note that usually a loop is known as a G-loop if every element of L is a companion 
for a right pseudoautomorphism and for a left pseudoautomorphism [26]. However, in 
this paper we will only be concerned with right pseudoautomorphisms, so for brevity we 
will say L is a G-loop if ΨR (L) acts transitively on it.

There is another action of ΨR (L) on L - which is the action by the pseudoautomor-
phism. This is a non-faithful action of ΨR (L), but corresponds to a faithful action of 
PsAutR (L). Namely, let h = (α, A) ∈ ΨR (L), then h acts on p ∈ L by p �→ α (p). To 
distinguish these two actions, we make the following definitions.

Definition 2.16. A loop L admits two left actions of the group of right pseudoautomor-
phism pairs ΨR (L).

1. The full action is given by (h, p) �→ h (p) = α (p) A. The set L together with this 
action of ΨR (L) will be denoted by L̊.

2. The partial action, given by (h, p) �→ h′ (p) = α (p). The set L together with this 
action of ΨR (L) will be denoted by L again.

Remark 2.17. The relation (2.14) between these two actions suggests that the loop prod-
uct on L can be regarded as a map · : L × L̊ −→ L̊. When ΨR (L) acts via the full 
action on a product pq, the left factor p admits the partial action of ΨR (L), while the 
right factor q admits the full action. The pairing between L and L̊ is to some extent 
analogous to the Clifford action of a vector space V on the corresponding spinor space 
S, with v · s ∈ S for v ∈ V and s ∈ S, where V and S admit different representation of 
the same group. The major difference is that V and S are vector spaces, and in general 
have different dimensions, whereas L and L̊ have no linear structure, but are identical 
as sets.

Now let us consider several relationships between the different groups associated to 
L. First of all define the following maps:

ι1 : Aut (L) ↪→ ΨR (L)
γ �→ (γ, 1)

(2.16)

and

ι2 : N R (L) ↪→ ΨR (L)
C �→ (id, C) .

(2.17)

The map ι1 is clearly injective and is a group homomorphism, so ι1 (Aut (L)) is a sub-
group of ΨR (L). On the other hand, if A, B ∈ N R (L), then in ΨR (L), (id, A) (id, B) =
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(id, BA), so ι2 is an antihomomorphism from N R (L) to ΨR (L) and thus a homomor-
phism from the opposite group N R (L)op. So, ι2

(
N R (L)

)
is a subgroup of ΨR (L) that 

is isomorphic to N R (L)op.
Using (2.16) let us define a right action of Aut (L) on ΨR (L). Given γ ∈ Aut (L) and 

(α, A) ∈ ΨR (L), we define

(α, A) · γ = (α, A) ι1 (γ) = (α ◦ γ, A) . (2.18)

Similarly, (2.17) induces a left action of N R (L)op, and hence a right action of N R (L), 
on ΨR (L):

C · (α, A) = ι2 (C) (α, A) = (α, AC) . (2.19)

The actions (2.18) and (2.19) commute, so we can combine them to define a left action 
of Aut (L) × N R (L)op. Indeed, given γ ∈ Aut (L) and C ∈ N R (L),

(α, A) · (γ, C) = ι2 (C) (α, A) ι1 (γ) = (α ◦ γ, AC) . (2.20)

Remark 2.18. Since any element of N R (L) is a right companion for any automorphism, 
we can also define the semi-direct product subgroup ι1 (Aut (L))�ι2

(
N R (L)

)
⊂ ΨR (L). 

Suppose β, γ ∈ Aut (L) and B, C ∈ N R (L), then in this semi-direct product,

(β, B) (γ, C) = (β ◦ γ, β (C) B) .

Lemma 2.19. Given the actions of Aut (L) and N R (L) on ΨR (L) as in (2.18) and 
(2.19), respectively, we have the following properties.

1. ΨR (L)�Aut (L) ∼= CR (L) as ΨR (L)-sets.
2. The image ι2

(
N R (L)

)
is a normal subgroup of ΨR (L) and hence

ΨR (L)
�N R (L)

∼= PsAutR (L) .

3. Moreover,

ΨR (L)
�Aut (L) × N R (L)

∼= PsAutR (L)
�Aut (L) ∼= CR (L)

�N R (L)

where equivalence is as Aut (L) × N R (L)-sets.

Proof. Suppose L is a loop.

1. Consider the projection on the second component prj2 : ΨR (L) −→ CR (L) under 
which (α, A) �→ A. Both ΨR (L) and CR (L) are left ΨR (L)-sets, since both admit a 
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Aut(L) ΨR(L) N R(L)op

PsAutR(L) ∼= ΨR(L)/N R(L)op ΨR(L)
�Aut(L) ∼= CR(L)

PsAutR(L)
�Aut(L)

CR(L)
�N R(L)

(·,1)

prj1
prj2

(id,·)

∼=

Fig. 1. Groups related to the loop L.

left ΨR (L) action - ΨR (L) acts on itself by left multiplication and acts on CR (L)
via the action (2.13). Hence, prj2 is a ΨR (L)-equivariant map (i.e. a G-set homomor-
phism). On the other hand, given the action (2.18) of Aut (L) on ΨR (L), we easily 
see that two pseudoautomorphisms have the same companion if, and only if, they lie 
in the same orbit of Aut (L). Thus, prj2 descends to a ΨR (L)-equivariant bijection 
ΨR (L) / Aut (L) −→ CR (L), so that ΨR (L) / Aut (L) ∼= CR (L) as ΨR (L)-sets.

2. It is clear that C ∈ CR (L) is a right companion of the identity map id if, and only 
if, C ∈ N R (L). Now, let ν = (id, C) ∈ ι2

(
N R (L)

)
and g = (α, A) ∈ ΨR (L). Then,

gνg−1 = (α, A) (id, C)
(
α−1, α−1 (

Aλ
))

=
(
id, Aλ · α (C) A

)
. (2.21)

In particular, this shows that gνg−1 ∈ ι2
(
N R (L)

)
since Aλ · α (C) A is the right 

companion of id. Thus indeed, ι2
(
N R (L)

)
is a normal subgroup of ΨR (L). Now 

consider the projection on the first component prj1 : ΨR (L) −→ PsAutR (L) under 
which (α, A) �→ α. This is clearly a group homomorphism with kernel ι2

(
N R (L)

)
. 

Thus, R (L)op \ΨR (L) ∼= ΨR (L) /N R (L) ∼= PsAutR (L).
3. Since the actions of N R (L) and Aut (L) on ΨR (L) commute, the action of Aut (L)

descends to N R (L)op \ΨR (L) ∼= PsAutR (L) and the action of N R (L)op descends to 
ΨR (L) / Aut (L) ∼= CR (L). Since the left action of N R (L)op on ΨR (L) corresponds 
to an action by right multiplication on CR (L), we find that there is a bijection 
PsAutR (L) / Aut (L) −→ CR (L) /N R (L).
Suppose (α, A) ∈ ΨR (L) and let [α]Aut(L) ∈ PsAutR (L) / Aut (L) be the orbit of α
under the action of Aut (L) and let [A]N R(L) ∈ CR (L) /N R (L) be the orbit of A
under the action of N R (L). Then the bijection is given by [α]Aut(L) �→ [A]N R(L). 
Moreover, each of these orbits also corresponds to the orbit of (α, A) under the 
right action of Aut (L) × N R (L) on ΨR (L). These quotients preserve actions of 
Aut (L) × N R (L) on corresponding sets and thus these coset spaces are equivalent 
as Aut (L) × N R (L)-sets. �

The above relationships between the different groups are summarized in Fig. 1.
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Example 2.20. Suppose L =UH ∼= S3 - the group of unit quaternions. Then, since this 
is associative, N R (UH) = UH ∼= Sp (1). We also know that Aut (UH) ∼= SO (3). Now 
however, ΨR (UH) consists of all pairs (α, A) ∈ SO (3) × UH with the group structure 
defined by (2.12a), which is the semi-direct product

ΨR (UH) ∼= SO (3) � Sp (1) ∼= Sp (1) Sp (1) ∼= SO (4) . (2.22)

In this case, PsAutR (UH) ∼= Aut (UH) ∼= SO (3). Here (p, q) ∼ (−p, −q) acts on UH

via r �→ prq−1.

Example 2.21. More generally, suppose L =G is a group. Then, PsAutR (G) ∼= Aut (G)
and ΨR (G) ∼= Aut (G) � Gop, with h = (α, A) ∈ ΨR (G) acting on G by

h (g) = α (g) A (2.23)

Note that the group Aut (G) � G is known as the holomorph of G.

Example 2.22. Suppose L =UO - the Moufang loop of unit octonions, which is homeo-
morphic to the 7-sphere S7. From [20, Lemma 14.61] we know that g ∈ O (O) belongs 
to Spin (7) if, and only if,

g (uv) = χg (u) g (v) (2.24)

for all u, v ∈ O where χg (u) = g
(
ug−1 (1)

)
gives the vector representation of Spin (7)

on ImO. We may as well restrict everything to the non-zero octonions O∗ or the unit 
octonions UO, so that we have a loop. Now,

g (u) =g (u · 1) = χg (u) g (1)

g (uv) =g (uv · 1) = χg (uv) g (1)

Hence, we find that (2.24) implies

χg (uv) g (1) = χg (u) · χg (v) g (1) .

Thus, (χg, g (1)) is a right pseudoautomorphism of UO with companion g (1). Thus, in 
this case we find that ΨR (UO) ∼= Spin (7). We also know that N R (UO) = {±1} ∼= Z2
and thus the projection (χ, A) �→ χ corresponds to the double cover Spin (7) −→ SO (7). 
Hence, PsAutR (UO) ∼= SO (7) and as we know, Aut (UO) ∼= G2. Since UO is a Moufang 
loop, and we know that for any q, the map Adq is a right pseudoautomorphism with 
companion q, we see that CR (UO) = UO, and indeed as we know, Spin (7) /G2 ∼= S7.

Remark 2.23. We have defined the group ΨR (L) as the set of all right pseudoautomor-
phism pairs (α, A), however we could consistently truncate ΨR (L) to a subgroup, or 
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more generally, if G is some group with a homomorphism ρ : G −→ ΨR (L), we can use 
this homomorphism to define a pseudoautomorphism action of G on L. For example, if 
G = Aut (L)�N R (L)op, then we know that ι1 × ι2 : G −→ ΨR (L) is a homomorphism. 
With respect to the action of G, the companions would be just the elements of N R (L).

Example 2.24. In [29], Leung developed a general framework for structures in Rieman-
nian geometry based on division algebras - R, C, H, O. As a first step, this involved 
representations of unitary groups with values in each of these algebras on the algebras 
themselves. The unitary groups, O (n), U (n), Sp (n) Sp (1), and Spin (7), as well as the 
corresponding special unitary groups SO (n) , SU (n), Sp (n), and G2, are precisely the 
possible Riemannian holonomy groups for irreducible, not locally symmetric smooth 
manifolds [6]. By considering the corresponding loops (groups for the associative cases) 
we can look at the pseudoautomorphism actions. The octonionic case is already covered 
in Example 2.22.

1. In the case of R, consider instead the group of “unit reals” UR = {±1} ∼= Z2. Then, 
ΨR (UR) = {1}� {±1} ∼= Z2, however consider now for some positive integer n, the 
homomorphism det : O (n) −→ Z2. Thus, O (n) acts on Z2 via this homomorphism: 
(g, x) �→ x det g, where x ∈ Z2 and g ∈ O (n). The preimage Aut (Z2) = {1} is then 
just ker det = SO (n). Thus, we can now define the group ΨR

n (UR) = O (n). The full 
action of ΨR

n (UR) on UR is transitive, while the partial action is trivial. Similarly, 
we can also define Autn (UR) = SO (n).

2. In the complex case, the group of unit complex numbers UC = U (1) ∼= S1. Similarly, 
as above, ΨR (UC) = {1} � U (1) ∼= U (1). Now however, we also have the homo-
morphism detC : U (n) −→ U (1). Then, U (n) acts on U (1) via (g, z) �→ z det g, 
where z ∈ U (1) and g ∈ U (n). The preimage of Aut (U (1)) = {1} is then 
just ker detC = SU (n). Thus, similarly as above, we can now define the group 
ΨR

n (UC) = U (n). The full action of ΨR
n (UR) on UC is transitive, while the partial 

action is trivial. Similarly, we can also define Autn (UC) = SU (n).
3. In the quaternionic case, we have already seen the case n = 1 in Example 2.20. The 

n-dimensional quaternionic unitary group is in general Sp (n) Sp (1), where Sp (n) is 
the compact symplectic group or equivalently, the quaternion special unitary group. 
The group Sp (n) Sp (1) acts on Hn by Sp (n) on the left, and multiplication by a 
unit quaternion on the right, and hence can be represented by pairs h = (α, q) ∈
Sp (n) × Sp (1), with the identification (−α, −q) ∼ (α, q). For n ≥ 2, define the 
homomorphism ρH : Sp (n) Sp (1) −→ Sp (1) Sp (1) given by [α, q] �→ [1, q]. The 
image of this homomorphism simply corresponds to elements of ΨR (UH) that are 
of the form (id, q), i.e. act by right multiplication of UH on itself. The preimage 
of Aut (UH) ∼= SO (3) is then ker ρH

∼= Sp (n). Overall, we may define the group 
ΨR

n (UH) = Sp (n) Sp (1) and Autn (UH) = Sp (n). As in the previous examples, 
the full action of ΨR

n (UH) on UH is transitive, whereas the partial action is again 
trivial. We will refer to this example later on, with the assumption that n ≥ 2.
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Thus, in each of the above cases, we may regard ΨR
n (O (n) , U (n), or Sp (n) Sp (1)) 

as a group of pseudoautomorphism pairs acting on the unit real numbers, unit complex 
numbers, and unit quaternions with a trivial partial action and will the full action just 
given by right multiplication. The corresponding automorphism subgroups are then the 
“special” unitary subgroups SO (n), SU (n), Sp (n).

2.3. Modified product

Let r ∈ L, and define the modified product ◦r on L via

p ◦r q = (p · qr)�r. (2.25)

Then, p ◦r q = p · q if, and only if, p · qr = pq · r. This is true for all p, q if, and only 
if, r ∈ N R (L). However, this will not hold for all r unless L is associative (and is thus 
a group). If L is a right Bol loop, and a ∈ L, setting r = q\a in the right Bol identity 
(2.6), gives us

pq · q\a = (p · aq)�q = p ◦q a. (2.26)

On octonions, the left-hand side of (2.26) is precisely the “modified octonion product”
defined in [15] and also used in [16]. Since unit octonions are in particular a right Bol 
loop, the two products are equal on octonions.

The product (2.25) gives us a convenient definition of the loop associator.

Definition 2.25. Given p, q, r ∈ L, the loop associator of p, q, r is given by

[p, q, r] = (p ◦r q)�pq. (2.27)

The loop commutator of p and q is given by

[p, q] = (pq/p)�q. (2.28)

From the definition (2.27), we see that [p, q, r] = 1 if, and only if, p (qr) = (pq) r. 
There are several possible equivalent definitions of the associator, but from our point of 
view, (2.27) will be the most convenient. Similarly, the loop commutator can be defined 
in different ways, however (2.28) has an advantage, because if we define Adp (q) = pq/p, 
then [p, q] = (Adp (q)) /q, which is a similar relation as for the group commutator.

We can easily see that (L, ◦r) is a loop.

Lemma 2.26. Consider the pair (L, ◦r) of the set L equipped with the binary operation 
◦r.
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1. The right quotient /r and the left quotient \r on (L, ◦r) are given by

p/rq =pr�qr (2.29a)

p\rq =(p\qr)�r, (2.29b)

and hence, (L, ◦r) is a quasigroup.
2. 1 ∈ L is the identity element for (L, ◦r), and hence (L, ◦r) is a loop.
3. Let q ∈ L, the left and right inverses with respect to ◦r are given by

qλ(r) =r�qr (2.30a)

qρ(r) =(q\r)�r. (2.30b)

4. (L, ◦r) is isomorphic to (L, ·) if, and only if, r ∈ CR (L). In particular, α : (L, ·) −→
(L, ◦r) is an isomorphism, i.e. for any p, q ∈ L,

α (pq) = α (p) ◦r α (q) , (2.31)

if, and only if, α is a right pseudoautomorphism on (L, ·) with companion r.

Proof. Let x, p, q, r ∈ L.

1. Suppose

x ◦r q = p.

Using (2.25),

x · qr = pr,

and thus

x = pr/qr := p/rq.

Similarly, suppose

p ◦r x = q,

so that

p · xr = qr,

and thus
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x = (p\ (qr)) /r := p\rq.

Since the left and right quotients are both defined, (L, ◦r) is a quasigroup.
2. We have

p ◦r 1 = (p · r) /r = p

1 ◦r p = (1 · pr) /r = p.

Hence, 1 is indeed the identity element for (L, ◦r), and thus (L, ◦r) is a loop.
3. Setting p = 1 in (2.29) we get the desired expressions.
4. Suppose (α, r) ∈ ΨR (L). Then, by definition, for any p, q ∈ L,

α (pq) = (α (p) · α (q) r)�r

Hence, from (2.25),

α (pq) = α (p) ◦r α (q) . (2.32)

Thus, α is an isomorphism from (L, ·) to (L, ◦r). Clearly the converse is also true: 
if α is an isomorphism from (L, ·) to (L, ◦r), then r is companion for α. Hence, 
(L, ·) and (L, ◦r) are isomorphic if, and only if, r is a companion for some right 
pseudoautomorphism. �

Suppose r, x ∈ L, then the next lemma shows the relationship between products ◦x

and ◦rx.

Lemma 2.27. Let r, x ∈ L, then

p ◦rx q = (p ◦x (q ◦x r)) /xr. (2.33)

Proof. Let r, x ∈ L, and suppose y = rx. Then, by (2.25),

p · qy = (p ◦y q) · y

= (p ◦y q) · rx

= ((p ◦y q) ◦x r) · x.

On the other hand, using (2.25) in a different way, we get

p · qy =p · q (rx)

=p · ((q ◦x r) x)

= (p ◦x (q ◦x r)) · x
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Hence,

(p ◦y q) ◦x r = p ◦x (q ◦x r) .

Dividing by r on the right using /x gives (2.33). �
Remark 2.28. Lemma 2.27 shows that the rx-product is equivalent to the r-product, but 
defined on (L, ◦x). That is, if we start with ◦x and define the r-product using ◦x, then 
we obtain the rx-product on (L, ·). If x ∈ CR (L, ·), then (L, ◦x) is isomorphic to (L, ·). 
Similarly, if r ∈ CR (L, ◦x), then (L, ◦rx) is isomorphic to (L, ◦x).

On (L, ◦x) we can define the associator and commutator. Given p, q, r ∈ L, the loop 
associator on (L, ◦x) is given by

[p, q, r](x) = (p ◦rx q) /x (p ◦x q) . (2.34)

The loop commutator on (L, ◦x) is given by

[p, q](x) = ((p ◦x q) /xp) /xq. (2.35)

For any x ∈ L, the adjoint map Ad(x): L × L −→ L with respect to ◦x is given by

Ad(x)
p (q) =

((
R(x)

p

)−1
◦ L(x)

p

)
q = (p ◦x q) /xp (2.36)

for any p, q ∈ L, and its inverse for a fixed p is

(
Ad(x)

p

)−1
(q) =

((
L(x)

p

)−1
◦ R(x)

p

)
q = p\x (q ◦x p) . (2.37)

Let us now consider how pseudoautomorphisms of (L, ·) act on (L, ◦r).

Lemma 2.29. Let h = (β, B) ∈ ΨR (L, ·). Then, for any p, q, r ∈ L,

β (p ◦r q) = β (p) ◦h(r) β (q) (2.38)

and β is a right pseudoautomorphism of (L, ◦r) with companion h (r) /r. It also follows 
that

β (p/rq) = β (p) /h(r)β (q) . (2.39)

Proof. Consider β (p ◦r q). Then, using (2.12a) and (2.15),

β (p ◦r q) =β ((p · qr) /r)
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=h (p · qr) /h (r)

= (β (p) · h (qr)) /h (r)

= (β (p) · β (q) h (r)) /h (r)

=β (p) ◦h(r) β (q) ,

and hence we get (2.38). Alternatively, using (2.29a),

β (p ◦r q) =(β (p) · β (q) h (r))�h (r)

=
(

(β (p) · β (q) h (r))�r

)
/r

(
h (r)�r

)
.

Now, let C = h (r) /r. Thus,

β (p ◦r q) =
(

(β (p) (β (q) · Cr))�r

)
/rC

= (β (p) ◦r (β (q) ◦r C)) /rC

Thus, indeed, β is a right pseudoautomorphism of (L, ◦r) with companion C = h (r) /r.
Now using (2.38) with p/rq and q, we find

β (p) = β (p/rq ◦r q) = β (p/rq) ◦h(r) β (q)

and hence we get (2.39). �
Remark 2.30. We will use the notation (β, C)r to denote that (β, C)r is considered as 
a pseudoautomorphism pair on (L, ◦r), i.e. (β, C)r ∈ ΨR (L, ◦r). Of course, the product 
of C with any element in N R (L, ◦r) on the right will also give a companion of β on 
(L, ◦r). Any right pseudoautomorphism of (L, ·) is also a right pseudoautomorphism 
of (L, ◦r), however their companions may be different. In particular, PsAutR (L, ·) =
PsAutR (L, ◦r). For ΨR (L, ·) and ΨR (L, ◦r) we have a group isomorphism

ΨR (L, ·) −→ ΨR (L, ◦r)
h = (β, B) �→ hr =

(
β, h (r)�r

)
r
.

(2.40)

Conversely, if we have hr = (β, C)r ∈ ΨR (L, ◦r), then this corresponds to h = (β, B) ∈
ΨR (L, ·) where

B = β (r) \ (Cr) . (2.41)

The group isomorphism (2.40) together with R−1
r (right division by r) induces a G-set 

isomorphism between 
(
L̊, ·

)
with the action of ΨR (L, ·) and 

(
L̊, ◦r

)
with the action of 

ΨR (L, ◦r).
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Lemma 2.31. Let r ∈ L, then the mapping (2.40) h �→ hr from ΨR (L, ·) to ΨR (L, ◦r)
together with the map R−1

r :
(
L̊, ·

)
−→

(
L̊, ◦r

)
gives a G-set isomorphism. In particular, 

for any A ∈ L̊ and h ∈ ΨR (L, ·),

h (A) /r = hr (A/r) . (2.42)

Proof. Suppose h = (β, B) and correspondingly, from (2.40), hr =
(

β, h (r)�r

)
. Then, 

we have,

hr (A/r) =β (A/r) ◦r
h (r)�r

=(h (A) /h (r) · h (r))�r

=h (A) /r,

where we have also used (2.15b). �
Using (2.40), we now have the following characterizations of CR (L, ◦r), N R (L, ◦r), 

and Aut (L, ◦r).

Lemma 2.32. Let r, C ∈ L, then

C ∈CR (L, ◦r) ⇐⇒ C = A/r for some A ∈ OrbΨR(L,·) (r) (2.43a)

C ∈N R (L, ◦r) ⇐⇒ C = Adr (A) for some A ∈ N R (L, ·) (2.43b)

and

Aut (L, ◦r) ∼= StabΨR(L,·) (r) . (2.44)

If r ∈ CR (L, ·), so that there exists a right pseudoautomorphism pair h = (α, r) ∈
ΨR (L, ·), then Aut (L, ◦r) ∼= h Aut (L, ·) h−1.

Proof. From (2.40) we see that any companion in (L, ◦r) is of the form h (r) /r for some 
h ∈ ΨR (L, ·). Therefore, C ∈ L is a companion in (L, ◦r) if, and only if, it is of the form 
C = A/r for some A ∈ OrbΨR(L,·) (r).

The right nucleus N R (L, ◦r) corresponds to the companions of the identity map id on 
L, hence taking β = id in (2.40), we find that companions of id in (L, ◦r) must be of the 
form C = (rA) /r = Adr (A) for some A ∈ N R (L, ·). Conversely, suppose C = (rA) /r

for some A ∈ N R (L, ·), then we can explicitly check that for any p, q ∈ L, we have

(p ◦r q) ◦r C = ((p · qr) /r · rA) /r

= ((p · qr) · A) /r

= (p · (qr · A)) /r = (p · (q · rA)) /r
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= (p · (q · Cr)) /r = (p · (q ◦r C) r) /r

=p ◦r (q ◦r C)

and hence, C ∈ N R (L, ◦r).
The group Aut (L, ◦r) is isomorphic to the preimage prj−1

2 (1) with respect to the 
projection map prj2: ΨR (L, ◦r) −→ CR (L, ◦r). From (2.40), this corresponds precisely 
to the maps h ∈ ΨR (L, ·) for which h (r) = r. If r is in the ΨR (L, ·)-orbit of 1, then 
clearly Aut (L, ◦r) is conjugate to Aut (L, ·). �
Remark 2.33. Suppose r ∈ CR (L), then from (2.43a), we see that if A ∈ CR (L, ◦r), 
then Ar ∈ CR (L). Also, using the isomorphism (2.40), we can define the left action of 
ΨR (L, ◦r) on ΨR (L, ·) just by composition on the left by the corresponding element in 
ΨR (L, ·). Now recall that

CR (L, ◦r) ∼= ΨR (L, ◦r)
�Aut (L, ◦r) and CR (L) ∼= ΨR (L, ·)

�Aut (L, ·).

Then, for any equivalence classes �α, A�r ∈ ΨR (L, ◦r)�Aut (L, ◦r) and �β, r� ∈
ΨR (L, ·)�Aut (L, ·), we find that

�α, A�r · �β, r� = �α ◦ β, Ar� . (2.45)

Another way to see this is the following. From (2.41), the element in ΨR (L, ·) that 
corresponds to (α, A)r ∈ ΨR (L, ◦r) is (α, Ar/α (r) ). The composition of this with (β, r)
is then (α ◦ β, Ar). Then, it is easy to see that this reduces to cosets.

Example 2.34. Recall that in a Moufang loop L, the map Adq is a right pseudoautomor-
phism with companion q3. The relation (2.45) then shows that for any r ∈ L,

Ad
(
r3)

q ◦ Adr = Ad
(q3r3)

1
3

◦h (2.46)

where h ∈ Aut (L). This follows because Ad
(
r3)

q has companion q3 in ΨR (L, ◦r3) and 
Adr has companion r3 in ΨR (L), thus the composition has companion q3r3, so up to 
composition with Aut (L), it is given by Ad

(q3r3)
1
3
. A similar expression for octonions 

has been derived in [15].

As we have seen, ΨR (L) acts transitively on CR (L) and moreover, for each r ∈ CR (L), 
the loops (L, ◦r) are all isomorphic to one another, and related via elements of ΨR (L). 
Concretely, consider (L, ◦r) and suppose h = (α, A) ∈ ΨR (L). Then, define the map

h : (L, ◦r) −→
(
L, ◦h(r)

)
,
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where h acts on L via the partial action (i.e. via α). Indeed, from (2.31), we have for 
p, q ∈ h (L)

α
(
α−1 (p) ◦r α−1 (q)

)
= p ◦h(r) q. (2.47)

Moreover, if we instead consider the action of ΨR (L, ◦r), then given hr = (α, x)r ∈
ΨR (L, ◦r), hr (L) ∼= (L, ◦xr). This is summarized in the theorem below.

Theorem 2.35. Let L be a loop with the set of right companions CR (L). For every r ∈
CR (L) and every h ∈ ΨR (L), the loop (L, ◦r) is isomorphic to 

(
L, ◦h(r)

)
. Moreover, 

if instead, the action of ΨR (L, ◦r) is considered, then an element of ΨR (L, ◦r) with 
companion x induces a loop isomorphism from (L, ◦r) to (L, ◦xr).

Now again, let h = (α, A) ∈ ΨR (L), and we will consider the action of h on the 
nucleus. It is easy to see how the loop associator transforms under this map. Using 
(2.34) and (2.39), we have

α
(

[p, q, r](x)
)

=α ((p ◦rx q) /x (p ◦x q))

=
(
α (p) ◦α(r)h(x) α (q)

)
/h(x)

(
α (p) ◦h(x) α (q)

)
= [α (p) , α (q) , α (r)](h(x))

. (2.48)

So in particular, taking x = 1, C ∈ N R (L) if, and only if, α (C) ∈ N R (L, ◦A). However 
from (2.43b), we know that C ∈ N R (L) if, and only if, (AdA) C ∈ N R (L, ◦A). In 
particular, this means that C ∈ N R (L) if, and only if,

α−1 (AdA C) ∈ N R (L) .

This defines a left action of ΨR (L) on N R (L):

h′′ (C) = Ad−1
A (α (C)) = h (C)/A (2.49)

for h = (α, A) ∈ ΨR (L) and C ∈ N R (L). The action (2.49) can be seen from the 
following considerations. Recall N R (L)op embeds in ΨR (L) via the map C �→ ι2 (C) =
(id, C). The group ΨR (L) acts on itself via the adjoint action, so let h = (α, A) ∈ ΨR (L), 
then from (2.21) recall,

h (ι2 (C)) h−1 = (α, h (C)) h−1 =
(
id, Aλ · h (C)

)
. (2.50)

On the other hand, suppose

(α, h (C)) h−1 = (id, x) ,
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so that

(α, h (C)) = (id, x) (α, A) = (α, Ax)

Therefore, x = A\h (C). In particular, A\h (C) ∈ N R (L). Thus the induced action on 
N R (L) is precisely C �→ A\h (C) = Ad−1

A (α (C)). Moreover, right multiplication of 
elements in L̊ by elements of N R (L) is compatible with the corresponding actions of 
ΨR (L).

Lemma 2.36. For any s ∈ L̊, C ∈ N R (L), and h ∈ ΨR (L), we have

h (sC) = h (s) h′′ (C) , (2.51)

where h′′ is the action (2.49).

Proof. Indeed, to show (2.51), we have

h (sC) =α (s) h (C)

=h (s) /A · Ah′′ (C)

= (h (s) /A · A) h′′ (C)

=h (s) · h′′ (C) ,

since h′′ (C) ∈ N R (L). �
3. Smooth loops

Suppose the loop L is a smooth finite-dimensional manifold such that the loop mul-
tiplication and division are smooth functions. Define maps

Lr : L −→ L

q �−→ rq
(3.1)

and

Rr : L −→ L

q �−→ qr.
(3.2)

These are diffeomorphisms of L with smooth inverses L−1
r and R−1

r that correspond to 
left division and right division by r, respectively. Also, assume that ΨR (L) acts smoothly 
on L (as before, L together with the full action of ΨR (L) will be denoted by ̊L). Thus, the 
action of ΨR (L) is a group homomorphism from ΨR (L) to Diff (L). In particular, this 
induces a Lie group structure on ΨR (L). Similarly, PsAutR (L) is then also a Lie group, 
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and for any s ∈ L̊, Aut (L, ◦s) ∼= StabΨR(L) (s) is then a Lie subgroup of ΨR (L), and 
indeed of PsAutR (L) as well. The assumption that pseudoautomorphisms act smoothly 
on L may be nontrivial. To the best of the author’s knowledge, it is an open question 
whether this is always true. However, for the loop UO of unit octonions, this is indeed 
true, as can be seen from Example 2.22.

Define X to be a right fundamental vector field if for any q ∈ L, it is determined by 
a tangent vector at 1 via right translations. That is, given a tangent vector ξ ∈ T1L, we 
define a corresponding right fundamental vector field ρ (ξ) given by

ρ (ξ)q = (Rq)∗ ξ (3.3)

at any q ∈ L. If L is a Lie group, then this definition is equivalent to the standard 
definition of a right-invariant vector field X such that (Rq)∗ Xp = Xpq, however in the 
non-associative case, Rq ◦ Rp �= Rpq, so the standard definition wouldn’t work, so a right 
fundamental vector field is not actually right-invariant in the usual sense. We can still 
say that the vector space of right fundamental vector fields has dimension dimL, and at 
any point, they still form a basis for the tangent space. In particular, any smooth loop 
is parallelizable. However this vector space is now in general not a Lie algebra under the 
Lie bracket of vector fields, which is to be expected, since T1L doesn’t necessarily have 
the Lie algebra structure either.

Instead of right invariance, we see that given a right fundamental vector field X =
ρ (ξ),

(
R−1

p

)
∗ Xq =

(
R−1

p ◦ Rq

)
∗ ξ

=
(

R
(p)
q/p

)
∗

ξ (3.4)

where R(p) is the right product with respect to the operation ◦p. This is because
(
R−1

p ◦ Rq

)
r = (rq) /p

= (r · (q/p · p)) /p

=r ◦p (q/p) = R
(p)
q/pr, (3.5)

where we have used (2.25). In (3.4) we are using the standard chain rule, because we are 
regarding R−1

p and Rq simply as differentiable maps, so non-associativity does not cause 
any problems for the chain rule.

3.1. Exponential map

For some ξ ∈ T1L, define a flow pξ on L given by
{

dpξ(t)
dt =

(
Rpξ(t)

)
∗ ξ

p (0) = 1
(3.6)
ξ
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This generally has a solution for some sufficiently small time interval (−ε, ε), and is only 
a local 1-parameter subgroup. However it is shown in [28,32] that if L is at least power-
associative, then pξ (t + s) = pξ (t) pξ (s) for all t, s, and hence the solution can extended 
for all t. Recall that power-associativity means that powers of the same element of L
associate, and thus this assumption is required in order to be able to define pξ (nh) =
pξ (h)n unambiguously.

The solutions of (3.6) define the (local) exponential map: exp (tξ) := pξ (t). The 
corresponding diffeomorphisms are then the right translations Rexp(tξ). We will generally 
only need this locally, so the power-associativity assumption will not be necessary. Now 
consider a similar flow but with a different initial condition:

{
dpξ,q(t)

dt =
(
Rpξ,q(t)

)
∗ ξ

pξ,q (0) = q
(3.7)

where q ∈ L. Applying R−1
q , and setting p̃ (t) = pξ,q (t)�q, we obtain

{
dp̃(t)

dt =
(
R−1

q ◦ Rpξ,q(t)
)

∗ ξ

p̃ (0) = 1
. (3.8)

If L is associative, then R−1
q ◦ Rpξ,q(t) = R(pξ,q(t))/q, and thus p̃ (t) would satisfy (3.6), 

and we could conclude that pξ,q (t) = exp (tξ) q. However, in the general case, we have 
(3.5) and hence, p̃ (t) satisfies the following equation

{
dp̃(t)

dt =
(

R
(q)
p̃(t)

)
∗

ξ

p̃ (0) = 1
. (3.9)

This is now an integral curve equation for ξ on (L, ◦q), and hence for sufficiently small 
t we can define a local exponential map expq for (L, ◦q):

p̃ (t) = expq (tξ) , (3.10)

so, that

pξ,q (t) = expq (tξ) q. (3.11)

If q ∈ CR (L), then (L, ◦q) is isomorphic to L, so if L is power-associative, then so is 
(L, ◦q), and hence, the solutions (3.10) are defined for all t.

Suppose h = (α, q) ∈ ΨR (L), then let p̂ (t) = α−1 (p̃ (t)). This then satisfies p̂ (0) = 1
and

dp̂ (t) =
(
α−1) (

R
(q)
p̃(t)

)
ξ. (3.12)
dt ∗ ∗
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However, let r ∈ L and consider R(q)
p :

R(q)
p r =r ◦q p = α

(
α−1 (r) · α−1 (p)

)
=

(
α ◦ Rα−1(p) ◦ α−1)

(r) .

Thus,

R(q)
p = α ◦ Rα−1(p) ◦ α−1, (3.13)

and hence, (3.12) becomes

dp̂ (t)
dt

=
(
Rp̂(t)

)
∗

((
α−1)

∗ ξ
)

. (3.14)

This shows that p̂ is a solution of (3.6) with initial velocity vector 
(
α−1)

∗ ξ ∈ T1L, and 
is hence given by p̂ = exp

(
t
(
α−1)

∗ ξ
)
. Comparing with (3.10) we see that in this case,

expq (tξ) = α
(
exp

(
t
(
α−1)

∗ ξ
))

, (3.15)

and hence the solution pξ,q (t) of (3.7) can be written as

pξ,q (t) = h
(
exp

(
t
(
α−1)

∗ ξ
))

. (3.16)

We can summarize these findings in the theorem below.

Theorem 3.1. Suppose L is a smooth loop and suppose q ∈ CR (L). Then, given ξ ∈ T1L, 
the equation

{
dp(t)

dt =
(
Rp(t)

)
∗ ξ

p (0) = q
(3.17)

has the solution

p (t) = expq (tξ) q (3.18)

for sufficiently small t, where

expq (tξ) = α
(
exp

(
t
(
α−1)

∗ ξ
))

where α is a right pseudoautomorphism of L that has companion q and exp (tξ) is defined 
as the solution of (3.17) with initial condition p (t) = 1. In particular, ξ defines a flow 
Φξ,t, given by

Φξ,t (q) = expq (tξ) q. (3.19)
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Remark 3.2. The expression (3.15) can be made a bit more general. Suppose L1 and L2
are two loops and α : L1 −→ L2 is a loop homomorphism. If we suppose exp(1) and 
exp(2) are the exponential maps on L1 and L2, respectively, then the following diagram 
commutes (Fig. 2).

T1L1 T1L2

L1 L2

α∗

exp(1) exp(2)

α

Fig. 2. Loop exponential maps.

Remark 3.3. The action of Φξ,t given by (3.19) looks like it depends on q, however we 
easily see that for sufficiently small t, expq (tξ) = expr (tξ) whenever q and r are on 
the same integral curve generated by ξ (equivalently in the same orbit of Φξ). This is 
consistent with the 1-parameter subgroup property Φξ,t (Φξ,s (q)) = Φξ,t+s (q).

Indeed, consider r = expq (sξ) q and r̃ = expq ((t + s) ξ) q. These are points that lie 
along the solution curve of (3.17). On the other hand, consider the solution of (3.17) at 
with p (0) = r. This is then given by r̂ = expr (tξ) r. However, clearly by uniqueness of 
solutions of ODEs, r̂ = r̃. So now,

r̂ =r̃

= expq ((t + s) ξ) q =
(
expq (tξ) ◦q expq (sξ)

)
q

= expq (tξ)
(
expq (sξ) q

)
= expq (tξ) r

Hence, we conclude that expq (tξ) = expr (tξ).

Remark 3.4. Suppose (L, ·) power left-alternative, i.e. xk
(
xlq

)
= xk+lq for all x, q ∈ L

and any integers k, l. In particular this also means that (L, ·) is power-associative and 
has the left inverse property. In particular, powers of x ∈ L with respect to ◦q are equal 
to powers of x with respect to ·. For any q ∈ L, (L, ◦q) is then also power left-alternative. 
Now the right-hand side of (3.9) can be written as

(
R

(q)
p̃(t)

)
∗

ξ = d

ds
(r (s) ◦q p̃ (t))

∣∣∣∣
s=0

(3.20)

where r (s) is a curve with r (0) = 1 and r′ (0) = ξ, so we may take r (s) = p̃ (s). Suppose 
there exist integers n, k and a real number h, such that t = nh and s = kh. Then

p̃ (s) ◦q p̃ (t) =p̃ (kh) ◦q p̃ (nh)

=
(

p̃ (h)k · p̃ (h)n
q
)

/q
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=p̃ (h)k+n = p̃ (kh) p̃ (nh)

=p̃ (s) p̃ (t) .

This is independent of n and k, and is hence true for any s, t. Thus we find that (3.20)
is equal to the right-hand side of (3.6), so p̃ actually satisfies the same equation as p, so 
by uniqueness of solutions p̃ = p. Hence, in this case, expq = exp. In general however, 
the exponential map will not be unique and will depend on the choice of q.

3.2. Tangent algebra

Suppose ξ, γ ∈ T1L and let X = ρ (ξ) and Y = ρ (γ) be the corresponding right 
fundamental vector fields on L. Then, recall that the vector field Lie bracket of X and 
Y is given by

[X, Y ]p = d

dt

((
Φ−1

t

)
∗

(
YΦt(p)

))∣∣∣∣
t=0

, (3.21)

where Φt = Φ (ξ, t) is the flow generated by X. For sufficiently small t, we have Φt (p) =
expp (tξ) p, and thus

YΦt(p) =
(

Rexpp(tξ)p

)
∗

γ.

Hence

(
Φ−1

t

)
∗

(
YΦt(p)

)
=

(
L−1

expp(tξ) ◦ Rexpp(tξ)p

)
∗

γ. (3.22)

Now right translating back to T1L, we obtain

(
R−1

p

)
∗ [X, Y ]p = d

dt

((
R−1

p ◦ L−1
expp(tξ) ◦ Rexpp(tξ)p

)
∗

γ
)∣∣∣∣

t=0
. (3.23)

In general, let q, x, y ∈ L, then

(
R−1

p ◦ L−1
x ◦ Ryp

)
q = (x\ (q · yp))�p

= (x\ ((q · yp) /p · p))�p

= x\p (q ◦p y)

=
((

L(p)
x

)−1
◦ R(p)

y

)
q,

where we have used (2.29b). Hence (3.23) becomes
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(
R−1

p

)
∗ [X, Y ]p = d

dt

(((
L

(p)
expp(tξ)

)−1
◦ R

(p)
expp(tξ)

)
∗

γ

)∣∣∣∣
t=0

= d

dt

((
Ad(p)

expp(tξ)

)−1

∗
γ

)∣∣∣∣ ;t=0

= − d

dt

((
Ad(p)

expp(tξ)

)
∗

γ
)∣∣∣∣

t=0

= − dξ

(
Ad(p)

)
∗

∣∣∣
1

(γ) (3.24)

Here, 
(

Ad(p)
x

)
∗

denotes the induced adjoint action of L on T1L. As remarked earlier, 
this is not an action in the sense of group actions. Similarly, as for Lie groups and Lie 
algebras, we can also think of 

(
Ad(p)

)
∗

: L −→ End (T1L), and then (3.24) is just the 

differential of this map at 1 ∈ L in the direction ξ ∈ T1L. The differential of 
(

Ad(p)
)

∗
at 

an arbitrary point in L is given in Lemma A.3. This now allows us to define the tangent 
adjoint map ad(p) on T1L.

Definition 3.5. For any ξ, γ ∈ T1L, the tangent adjoint map ad(p)
ξ : T1L −→ T1L is 

defined as

ad(p)
ξ (γ) = dξ

(
Ad(p)

)
∗

∣∣∣
1

(γ) = −
(
R−1

p

)
∗ [X, Y ]p . (3.25)

The negative sign in (3.25) is there to be consistent with the corresponding definitions 
for Lie groups for right-invariant vector fields. We then define the p-bracket [·, ·](p) on 
T1L as

[ξ, γ](p) = ad(p)
ξ (γ) . (3.26)

From (3.25) it is clear that it’s skew-symmetric in ξ and γ. Equivalently, we can say

[(
R−1

p

)
∗ Xp,

(
R−1

p

)
∗ Yp

](p)
= −

(
R−1

p

)
∗ [X, Y ]p . (3.27)

Definition 3.6. The vector space T1L together with the bracket [·, ·](p) is the tangent 
algebra or L-algebra l(p) of (L, ◦p).

This is obviously a generalization of a Lie algebra. However, since now there is a 
bracket [·, ·](p) corresponding to each point p ∈ L, it does not make sense to try and 

express 
[
[·, ·](p)

, ·
](p)

in terms of Lie brackets of corresponding vector fields. Hence, the 

Jacobi identity for [·, ·](p) cannot be inferred, as expected. From (3.27), we cannot even 
infer that the bracket of two right fundamental vector fields is again a right fundamental 
vector field. In fact, at each point p it will be the pushforward of the bracket on T1L
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with respect to p. Overall, we can summarize properties of the bracket in the theorem 
below.

Theorem 3.7. Let ξ, γ ∈ T1L and suppose X = ρ (ξ) and Y = ρ (γ) are the corresponding 
right fundamental vector fields on L. Then, for any p ∈ L,

[ξ, γ](p) = ad(p)
ξ (γ) = d

dt

((
Ad(p)

exp(tξ)

)
∗

γ
)∣∣∣∣

t=0
= −

(
R−1

p

)
∗ [X, Y ]p , (3.28)

and moreover,

[ξ, γ](p) = d2

dtdτ
[exp (tξ) , exp (τγ)](L,◦p)

∣∣∣∣
t,τ=0

= d2

dtdτ
exp (tξ) ◦p exp (τγ)

∣∣∣∣
t,τ=0

(3.29)

− d2

dtdτ
exp (τγ) ◦p exp (tξ)

∣∣∣∣
t,τ=0

.

Here [·, ·](p) is the L-algebra bracket on l(p), [·, ·]p refers to the value of the vector field 

Lie bracket at p ∈ L, and [·, ·](L,◦p) is the loop commutator (2.35) on (L, ◦p).

Proof. We have already shown (3.28), so let us prove (3.29). Recall from (2.35) that

[exp (tξ) , exp (τγ)](L,◦p) = Ad(p)
exp(tξ) (exp (τγ)) /p exp (τγ) . (3.30)

Differentiating (3.30) with respect to τ and evaluating at τ = 0 using Lemma A.1 gives

d

dτ
[exp (tξ) , exp (τγ)](L,◦p)

∣∣∣∣
τ=0

= d

dτ
Ad(p)

exp(tξ) (exp (τγ))
∣∣∣∣
τ=0

− d

dτ
exp (τγ)

∣∣∣∣
τ=0

=
(

Ad(p)
exp(tξ)

)
∗

γ − τ (3.31)

where we have also used the definition of expp via (3.9). This gives us the first part of 
(3.29). Now, using Lemma A.1 again, we can differentiate 

(
Ad(p)

exp(tξ)

)
∗

γ with respect to 

t to get the second part:

d

dt

((
Ad(p)

exp(tξ)

)
∗

γ
)∣∣∣∣

t=0
= d2

dtdτ
((exp (tξ) ◦p exp (τγ)) /p exp (tξ))

∣∣∣∣
t,τ=0

= d2

dtdτ
(exp (tξ) ◦p exp (τγ))

∣∣∣∣

t,τ=0
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− d2

dtdτ
exp (τγ) ◦p exp (tξ)

∣∣∣∣
t,τ=0

. �

Remark 3.8. Applying (3.29) to the Moufang loop of unit octonions and the corre-
sponding L-algebra of imaginary octonions shows that as expected, the bracket on the 
L-algebra coincides with the commutator of imaginary octonions in the algebra of octo-
nions.

Although L and l are not in general a Lie group and a Lie algebra, there are analogs 
of actions of these spaces on one another, which we summarize below.

Let s ∈ L̊, A ∈ L, and ξ, η ∈ l, then we have the following:

1. Action of L on L̊: A · s = As.
2. Adjoint action of (L, ◦s) on L: A · B = Ad(s)

A (B) = (A ◦s B) /sA.
3. Action of (L, ◦s) on l: A · ξ =

(
Ad(s)

A

)
∗

ξ.

4. Action of l(s) on itself: ξ ·s η = [ξ, η](s).
5. Action of l on L̊: ξ · s = (Rs)∗ ξ = d

dt exps (tξ) s
∣∣
t=0.

Remark 3.9. There may be some confusion about notation because we will sometimes 
consider the same objects but in different categories. Generally, for the loop L, the 
notation “L” will denote the underlying set, the underlying smooth manifold, the loop, 
and the G-set with the partial action of ΨR (L). Similarly, L̊ will denote the same 
underlying set, the same underlying smooth manifold, but will be different as a G-set 
- it has the full action of ΨR (L). Since L and L̊ are identical as smooth manifolds, 
they have the same tangent space at 1. Generally, we will only refer to L̊ if we need to 
emphasize the group action. For the L-algebra, the notation “l” will denote both the 
underlying vector space, and the vector space with the algebra structure on T1L induced 
from the loop L. For different values of p ∈ L, l(p) is identical to l as a vector space, but 
has a different algebra structure. We will use the notation l(p) to emphasize the algebra 
structure.

3.3. Structural equation

Let us now define an analog of the Maurer-Cartan form on right fundamental vector 
fields. Given p ∈ L and ξ ∈ l, define θp to be

θp

(
ρ (ξ)p

)
=

(
R−1

p

)
∗ ρ (ξ)p = ξ. (3.32)

Thus, this is an l-valued 1-form. The right fundamental vector fields still form a global 
frame for TL, so this is sufficient to define the 1-form θ. Just as the right fundamental 
vector field ρ (ξ) is generally not right-invariant, neither is θ. Indeed, let q ∈ L and 
consider 

(
R−1

q

)∗
θ. Then, given Xp = (Rp) ξ ∈ TpL
∗
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((
R−1

q

)∗
θ
)

p
(Xp) =θp/q

((
R−1

q ◦ Rp

)
∗ ξ

)
=

(
R−1

p/q ◦ R−1
q ◦ Rp

)
∗

ξ

=
(

R−1
p/q ◦ R

(q)
p/q

)
∗

ξ (3.33)

where same idea as in (3.4) was used.
Now consider dθ. Generally, for a 1-form, we have

dθ (X, Y ) = Xθ (Y ) − Y θ (X) − θ ([X, Y ]) . (3.34)

Suppose X, Y are right fundamental, then from (3.27), we get

(dθ)p (X, Y ) − [θ (X) , θ (Y )](p) = 0. (3.35)

However, since right fundamental vector fields span the space of vector fields on L, (3.35)
is true for any vector fields, and we obtain the following analogue of the Maurer-Cartan 
equation.

Theorem 3.10. Let p ∈ L and let [·, ·](p) be bracket on l(p). Then, θ satisfies the following 
equation at p:

(dθ)p − 1
2 [θ, θ](p) = 0, (3.36)

where [θ, θ](p) is the bracket of L-algebra-valued 1-forms such that for any X, Y ∈ TpL, 
1
2 [θ, θ](p) (X, Y ) = [θ (X) , θ (Y )](p).

Let q ∈ L and θ(q) = (Rq)∗
θ, then θ(q) satisfies

(
dθ(q)

)
p

− 1
2

[
θ(q), θ(q)

](pq)
= 0, (3.37)

where [·, ·](pq) is the bracket on l(pq).

Proof. The first part already follows from (3.35). For the second part, by applying (Rq)∗

to (3.36) we easily see that θ(q) satisfies (3.36) with the translated bracket [·, ·](pq), and 
hence we get (3.37). �
Remark 3.11. The 1-form θ(q) can be seen as translating a vector in TpL by Rq to TpqL, 
and then by R−1

pq back to l. However, given the identity xq/pq = x/qp, we see that θ(q)

is just the loop Maurer-Cartan form in (L, ◦q).

The obvious key difference with the Lie group picture here is that the bracket in 
(3.36) is non-constant on L, i.e. given a basis, the structure “constants” would vary. 
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In particular, the Jacobi identity is the integrability condition for the Maurer-Cartan 
equation on Lie groups, however here we see that the right-hand side of the Jacobi 
identity is related to a ternary form given by the derivative of the bracket. For any 
ξ, η, γ ∈ l(p), define

Jac(p) (ξ, η, γ) =
[
ξ, [η, γ](p)

](p)
+

[
η, [γ, ξ](p)

](p)
+

[
γ, [ξ, η](p)

](p)
. (3.38)

We also need the following definition.

Definition 3.12. Define the bracket function b : L̊ −→ l ⊗ Λ2l∗ to be the map that takes 
p �→ [·, ·](p) ∈ l ⊗ Λ2l∗, so that b (θ, θ) is an l-valued 2-form on L, i.e. b (θ, θ) ∈ Ω2 (l).

Lemma 3.13 below will give the differential of b. The proof is given in Appendix A.

Lemma 3.13. For fixed η, γ ∈ l,

db|p (η, γ) = [η, γ, θp](p) − [γ, η, θp](p) , (3.39)

where [·, ·, ·](p) is the L-algebra associator on l(p) given by

[η, γ, ξ](p) = d3

dtdτdτ ′ exp (τη) ◦p (exp (τ ′γ) ◦p exp (tξ))
∣∣∣∣
t,τ,τ ′=0

(3.40)

− d3

dtdτdτ ′ (exp (τη) ◦p exp (τ ′γ)) ◦p exp (tξ)
∣∣∣∣
t,τ,τ ′=0

.

Moreover,

[η, γ, ξ](p) = d3

dtdτdτ ′ [exp (τη) , exp (τ ′γ) , exp (tξ)](L,◦p)
∣∣∣∣
t,τ,τ ′=0

(3.41)

where [·, ·, ·](L,◦p) is the loop associator on (L, ◦p) as defined by (2.34).

The skew-symmetric combination of associators, as in (3.39) will frequently occur 
later on, so let us define for convenience

ap (η, γ, ξ) = [η, γ, ξ](p) − [γ, η, ξ](p)
, (3.42)

which we can call the left-alternating associator, so in particular, (3.39) becomes

db|p (η, γ) = ap (η, γ, θp) . (3.43)

The loop Maurer-Cartan equation can be rewritten as

dθ = 1
b (θ, θ) , (3.44)
2
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and hence we see that b (θ, θ) is an exact form, so in particular, d (b (θ, θ)) = 0. We will 
now use this to derive a generalization of the Jacobi identity.

Theorem 3.14. The maps a and b satisfy the relation

b (θ, b (θ, θ)) = a (θ, θ, θ) , (3.45)

where wedge products are assumed. Equivalently, if ξ, η, γ ∈ l and p ∈ L, then

Jac(p) (ξ, η, γ) = ap (ξ, η, γ) + ap (η, γ, ξ) + ap (γ, ξ, η) . (3.46)

Proof. We know that d (b (θ, θ)) = 0, and thus, using (3.39) and (3.44), we have

0 =d (b (θ, θ))

= (db) (θ, θ) + b (dθ, θ) − b (θ, dθ)

=a (θ, θ, θ) − b (θ, b (θ, θ)) .

So indeed, (3.45) holds. Now let X, Y, Z be vector fields on L, such that X =
ρ (ξ), Y = ρ (η), Z = ρ (γ). Then, a (θ, θ, θ)p (X, Y, Z) = 2 Jac(p) (ξ, η, γ) and 
1
2b (θ, b (θ, θ))p (X, Y, Z) gives the right-hand side of (3.46). �
Remark 3.15. An algebra (A, [·, ·] , [·, ·, ·]) with a skew-symmetric bracket [·, ·] and ternary 
multilinear bracket [·, ·, ·] that satisfies (3.46) is known as an Akivis algebra [1,46]. If 
(L, ◦p) is left-alternative, we find from (3.40) that for any ξ, η ∈ l, [ξ, ξ, η](p) = 0, 
that is, the L-algebra associator on l(p) is skew-symmetric in the first two entries, and 
thus ap = 2 [·, ·, ·](p). If the algebra is alternative, then Jac(p) (ξ, η, γ) = 6 [ξ, η, γ](p). 
Conversely, to an alternative Akivis algebra, there corresponds a unique local analytic 
alternative loop, up to local isomorphism [21]. If (L, ◦p) is a left Bol loop (so that it 
is left-alternative) then the corresponding algebra on l(p) will be a Bol algebra, where 
[·, ·](p) and [·, ·, ·](p) satisfy additional identities [1,36,42]. If (L, ◦p) is a Moufang loop 
(so in particular it is alternative), then the associator is totally skew-symmetric and the 
algebra on l(p) is then a Malcev algebra. It then satisfies in addition the following identity 
[28,32]:

[
ξ, η, [ξ, γ](p)

](p)
=

[
[ξ, η, γ](p)

, ξ
](p)

. (3.47)

Moreover, all non-Lie simple Malcev algebras have been classified [27] - these are either 
the imaginary octonions over the real number, imaginary octonions over the complex 
numbers, or split octonions over the real numbers.

We generally will not distinguish the notation between loop associators and L-algebra 
associators. It should be clear from the context which one is being used. Moreover, it 
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will be convenient to define mixed associators between elements of L and l. For example, 
an (L,L, l)-associator is defined for any p, q ∈ L and ξ ∈ l as

[p, q, ξ](s) =
(

L(s)
p ◦ L(s)

q

)
∗

ξ −
(

L
(s)
p◦sq

)
∗

ξ ∈ Tp◦sqL (3.48)

and an (L, l, l)-associator is defined for an p ∈ L and η, ξ ∈ l as

[p, η, ξ](s) = d

dtdτ
(p ◦s (exp (tη) ◦s exp (τξ)))

∣∣∣∣
t ,τ=0

− d

dtdτ
((p ◦s exp (tη)) ◦s exp (τξ))

∣∣∣∣
t,τ=0

, (3.49)

where we see that [p, η, ξ](s) ∈ TpL. Similarly, for other combinations.

Remark 3.16. To avoid long expressions with derivatives and exponentials, let us formally 
define the notation

p ◦s ξ =
(

L(s)
p

)
∗

ξ = d

dt
(p ◦s exp (tξ))

∣∣∣∣
t=0

(3.50)

ξ ◦s p =
(

R(s)
p

)
∗

ξ = d

dt
(exp (tξ) ◦s p)

∣∣∣∣
t=0

(3.51)

η ◦s ξ = d

dtdτ
(exp (tη) ◦s exp (τξ))

∣∣∣∣
t=0

(3.52)

for p ∈ L and η, ξ ∈ l, and similarly for quotients and pushforwards of tangent vectors 
at other points of L. Using this convention, (3.48) and (3.49) can be written as

[p, q, ξ](s) =p ◦s (q ◦s ξ) − (p ◦s q) ◦ ξ (3.53a)

[p, η, ξ](s) =p ◦s (η ◦s ξ) − (p ◦s η) ◦ ξ.

Let us now consider the action of loop homomorphisms on L-algebras.

Lemma 3.17. Suppose L1 and L2 are two smooth loops with tangent algebras at identity 
l1 and l2, respectively. Let α : L1 −→ L2 be a smooth loop homomorphism. Then, α∗: 
l1 −→ l2 is an L-algebra homomorphism, i.e., for any ξ, γ ∈ l1,

α∗ [ξ, γ](1) = [α∗ξ, α∗γ](2)
, (3.54)

where [·, ·](1) and [·, ·](2) are the corresponding brackets on l1 and l2, respectively. More-
over, α∗ is an associator homomorphism, i.e., for any ξ, γ, η ∈ l1,

α∗ [ξ, γ, η](1) = [α∗ξ, α∗γ, α∗η](2) (3.55)
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where [·, ·, ·](1) and [·, ·, ·](2) are the corresponding ternary brackets on l1 and l2, respec-
tively.

Proof. Suppose exp(1): l1 −→ L1 and exp(2) : l2 −→ L2 are the corresponding exponen-
tial maps. Let ξ, γ ∈ l1. We know from (2) that

α
(

exp(1) ξ
)

= exp(2) (α∗ξ) . (3.56)

From (3.29), we have

[ξ, γ](1) = d2

dtdτ
exp(1) (tξ) exp(1) (τγ)

∣∣∣∣
t,τ=0

− d2

dtdτ
exp(1) (τγ) exp(1) (tξ)

∣∣∣∣
t,τ=0

.

Applying α∗ to [ξ, γ](1), we find

α∗ [ξ, γ](1) = d2

dtdτ
α

(
exp(1) (tξ) exp(1) (τγ)

)∣∣∣∣
t,τ=0

− d2

dtdτ
α

(
exp(1) (τγ) exp(1) (tξ)

)∣∣∣∣
t,τ=0

.

However, since α is a loop homomorphism, and using (3.56), we have,

α∗ [ξ, γ](1) = d2

dtdτ
exp(2) (tα∗ξ) exp(1) (τα∗γ)

∣∣∣∣
t,τ=0

− d2

dtdτ
exp(1) (τα∗γ) exp(1) (tα∗ξ)

∣∣∣∣
t,τ=0

= [α∗ξ, α∗γ](2)
.

Similarly, using the definition (3.40) for the L-algebra associator, we obtain (3.55). �
In particular, if (α, p) ∈ ΨR (L), then α induces an L-algebra isomorphism α∗ :

(l, [·, ·]) −→
(
l, [·, ·](p)

)
. This shows that as long as p is a companion of some smooth 

right pseudoautomorphism, the corresponding algebras are isomorphic. More generally, 
we have the following.

Corollary 3.18. Suppose h = (α, p) ∈ ΨR (L), and q ∈ L̊, then, for any ξ, η, γ ∈ l,

α∗ [ξ, η](q) = [α∗ξ, α∗η]h(q) (3.57a)

α∗ [ξ, η, γ](q) = [α∗ξ, α∗η, α∗γ]h(q)
. (3.57b)
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Proof. Since h = (α, p) is right pseudo-automorphism of L, by Lemma 2.29, it induces 
a loop homomorphism α : (L, q) −→ (L, h (q)), and thus by Lemma 3.17, α∗ : l(q) −→
l(h(q)) is a loop algebra homomorphism. Thus (3.57) follows. �
Remark 3.19. In general, Akivis algebras are not fully defined by the binary and ternary 
brackets, as shown in [47]. Indeed, for a fuller picture, a more complicated structure of 
a Sabinin algebra is needed [41].

Generally, we see that ΨR (L) acts on l via pushforwards of the action on L, i.e. for 
h ∈ ΨR (L) and ξ ∈ l, we have h · ξ = (h′)∗ ξ.

The expressions (3.57) show that the maps b ∈ C∞
(
L̊, Λ2l∗ ⊗ l

)
and a ∈

C∞
(
L̊,

(
⊗3l∗

)
⊗ l

)
that correspond to the brackets are equivariant maps with respect 

to the action of ΨR (L). Now suppose s ∈ L̊, and denote bs = b (s) ∈ Λ2l∗ ⊗ l. Then the 
equivariance of b means that the stabilizer StabΨR(L) (bs) in ΨR (L) of bs is equivalent 
to the set of all h ∈ ΨR (L) for which bh(s) = bs. In particular, StabΨR(L) (bs) is a Lie 
subgroup of ΨR (L), and clearly Aut (L, ◦s) = StabΨR(L) (s) ⊂ StabΨR(L) (bs). Moreover, 
note that if h = (γ, C) ∈ Aut (L, ◦s) × N R (L, ◦s), then we still have bh(s) = bs. So, we 
can say that the corresponding subgroup ι1 (Aut (L, ◦s)) � ι2

(
N R (L, ◦s)

)
⊂ ΨR (L) is 

contained in StabΨR(L) (bs). Hence, as long as N R (L, ◦s) is non-trivial, StabΨR(L) (bs)
strictly contains Aut (L, ◦s). Similarly for a.

Let us now also consider how the bracket [·, ·] is transformed by 
(

Ad(s)
p

)
∗
.

Theorem 3.20. Suppose s ∈ L̊, p ∈ L, and ξ, η, γ ∈ l. Then

(
Ad(s)

p

)
∗

[ξ, η](s) =
[(

Ad(s)
p

)
∗

ξ,
(

Ad(s)
p

)
∗

η
](ps)

(3.58)

−
(

R(s)
p

)−1

∗

[(
Ad(s)

p

)
∗

ξ, p, η
](s)

+
(

R(s)
p

)−1

∗

[(
Ad(s)

p

)
∗

η, p, ξ
](s)

+
(

R(s)
p

)−1

∗
[p, ξ, η](s) −

(
R(s)

p

)−1

∗
[p, η, ξ](s)

.

The bracket [·, ·](ps) is related to [·, ·](s) via the expression

[ξ, η](ps) = [ξ, η](s) +
(

R(s)
p

)−1

∗
as (ξ, η, p) . (3.59)

Proof. Consider

(
Ad(s)

p

)
∗

[ξ, η](s) = d

dtdτ
(p ◦s (exp (tξ) ◦s exp (τη))) /sp

∣∣∣∣
t,τ=0

− d

dtdτ
(p ◦s (exp (tη) ◦s exp (τξ))) /sp

∣∣∣∣
t,τ=0

. (3.60)



42 S. Grigorian / Advances in Mathematics 393 (2021) 108078
For brevity and clarity, let us use the notation from Remark 3.16. Then, we can write 
(3.60) as

(
Ad(s)

p

)
∗

[ξ, η](s) = (p ◦s (ξ ◦s η)) /sp − (p ◦s (η ◦s ξ)) /sp. (3.61)

Using mixed associators from (3.53), we can write

(p ◦s (ξ ◦s η)) /sp = ((p ◦s ξ) ◦s η) /sp + [p, ξ, η](s)
/sp

= (((p ◦s ξ) /sp ◦s p) ◦s η) /sp + [p, ξ, η](s)
/sp

=
(

Ad(s)
p ξ ◦s (p ◦s η)

)
/sp −

[
Ad(s)

p ξ, p, η
](s)

/sp

+ [p, ξ, η](s)
/sp.

Applying (2.33), we get

(p ◦s (ξ ◦s η)) /sp = Ad(s)
p ξ ◦ps Ad(s)

p η −
[
Ad(s)

p ξ, p, η
](s)

/sp + [p, ξ, η](s)
/sp. (3.62)

Subtracting the same expression with ξ and η reversed, (3.61) becomes

(
Ad(s)

p

)
∗

[ξ, η](s) =
[(

Ad(s)
p

)
∗

ξ,
(

Ad(s)
p

)
∗

η
](ps)

(3.63)

−
(

R(s)
p

)−1

∗

[(
Ad(s)

p

)
∗

ξ, p, η
](s)

+
(

R(s)
p

)−1

∗

[(
Ad(s)

p

)
∗

η, p, ξ
](s)

+
(

R(s)
p

)−1

∗
[p, ξ, η](s) −

(
R(s)

p

)−1

∗
[p, η, ξ](s)

.

To obtain (3.59), using (3.29), we can write

[ξ, η](ps) = d2

dtdτ
exp (tξ) ◦ps exp (τη)

∣∣∣∣
t,τ=0

(3.64)

− d2

dtdτ
exp (τξ) ◦ps exp (tη)

∣∣∣∣
t,τ=0

.

However, from (2.33),

exp (tξ) ◦ps exp (τη) = (exp (tξ) ◦s (exp (τη) ◦s p)) /sp,

thus

d2

dtdτ
exp (tξ) ◦ps exp (τη)

∣∣∣∣ =
(

R(s)
p

)−1

∗

d2

dtdτ
exp (tξ) ◦s (exp (τη) ◦s p)

∣∣∣∣

t,τ=0 t,τ=0
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=
(

R(s)
p

)−1

∗
[ξ, η, p](s)

+ d2

dtdτ
exp (tξ) ◦s exp (τη)

∣∣∣∣
t,τ=0

and similarly for the second term in (3.64). Hence, we obtain (3.59). �
From (3.59) and noting that for any h ∈ ΨR (L), h (s) = h (s) /s · s, we find that 

[·, ·](s) = [·, ·](h(s)) if, and only if,

as

(
ξ, η, h (s)�s

)(s)
= 0 (3.65)

for any ξ, η ∈ l. From (2.40) recall that h (s) /s is the companion that corresponds to h
in (L, ◦s).

Also, note that from (3.59), we have

[θ, θ](p) = [θ, θ](1) + (Rp)−1
∗ a1 (θ, θ, p) , (3.66)

so the left-alternating associator with p is the obstruction for the brackets [·, ·](p) and 
[·, ·](1) to be equal. Moreover, the structural equation (3.36) can be rewritten as

dθ − 1
2 [θ, θ](1) = 1

2 (Rp)−1
∗ a1 (θ, θ, p) . (3.67)

This makes the dependence on the associator more explicit.
Using the associator on l(p) we can define the right nucleus N R

(
l(p)) of l(p).

Definition 3.21. Let p ∈ L̊, then, the right nucleus N R
(
l(p)) is defined as

N R
(
l(p)

)
= {ξ ∈ l : ap (η, γ, ξ) = 0 for all η, γ ∈ l} . (3.68)

It may seem that N R
(
l(p)) could be defined more naturally as the set of all ξ ∈ l

such that [η, γ, ξ](p) = 0 for any η, γ ∈ l. However, the advantage of (3.68) is that, as 
we will see, it will always be a Lie subalgebra of l(p). For a left-alternative algebra, the 
skew-symmetrization in (3.68) would be unnecessary of course.

Theorem 3.22. The right nucleus N R
(
l(p)) is a Lie subalgebra of l(p).

Proof. We first need to show that N R
(
l(p)) is closed under [·, ·](p). Indeed, taking the 

exterior derivative of (3.43), for vector fields X, Y on L we have

0 =
(
d2b (β, γ)

)
(X, Y ) = X (dY b (β, γ)) − Y (dXb (β, γ)) − d[X,Y ]b (β, γ)

=X (a (β, γ, θ (Y ))) − Y (a (β, γ, θ (X))) − a (β, γ, θ ([X, Y ])) .
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Suppose now ξ, η ∈ l(p) and let X = ρ (ξ), Y = ρ (η) be the corresponding right funda-
mental vector fields, then using (3.26), we have

a (β, γ, b (ξ, η)) = −X (a (β, γ, η)) + Y (a (β, γ, ξ)) (3.69)

Suppose now ξ, η ∈ N R
(
l(p)). Then, the right-hand side of (3.69) vanishes, and at p ∈ L,

ap

(
β, γ, [ξ, η](p)

)
= 0, (3.70)

and thus [ξ, η](p) ∈ N R
(
l(p)).

To conclude that N R
(
l(p)) is a Lie subalgebra, we also need to verify that Lie algebra 

Jacobi identity holds. That is, for any ξ, η, γ ∈ N R
(
l(p)), Jac(p) (ξ, η, γ) = 0. Indeed, 

from the Akivis identity (3.46),

Jac(p) (ξ, η, γ) = ap (ξ, η, γ) + ap (η, γ, ξ) + ap (γ, ξ, η) = 0, (3.71)

by definition of N R
(
l(p)). �

For any smooth loop, consider the loop right nucleus N R (L, ◦p) as a submanifold of 
L. Then,

T1N R (L, ◦p) =
{

ξ ∈ l : [q, r, ξ](p) = 0 for all q, r ∈ L
}

, (3.72)

where here we are using the mixed associator as defined by (3.48). Then, (3.41) implies 
that T1N R (L, ◦p) ⊂ N R

(
l(p)). It is unclear what are the conditions for the converse, 

and hence equality, of the two spaces.
Recall from (2.43b) that A ∈ N R (L) if, and only if, Adp (A) ∈ N R (L, ◦p), so in 

particular, η ∈ T1N R (L) if, and only if, (Adp)∗ η ∈ T1N R (L, ◦p). In (3.58) we then see 
that for η, γ ∈ T1N R (L), the associators vanish, and we get

(Adp)∗ [η, γ] =
[
(Adp)∗ η, (Adp)∗ γ

](p)
. (3.73)

Hence, for each p ∈ L̊, T1N R (L) ∼= T1N R (L, ◦p) as Lie algebras.

Example 3.23. Consider the Moufang loop of unit octonions UO. Then, T1UO ∼= ImO -
the space of imaginary octonions, with the bracket given by the commutator on ImO: for 
any ξ, η ∈ ImO, [ξ, η] = ξη −ηξ. We also know that N (UO) ∼= Z2 and N (ImO) = {0}. 
On the other hand, taking a direct product G × UO with any Lie group G will give a 
non-trivial nucleus.

Let s ∈ L̊. Suppose the Lie algebras of ΨR (L) and Aut (L, ◦s) are p and hs, respec-
tively. In particular, hs is a Lie subalgebra of p. Define qs = T1CR (L, ◦s), then since 
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CR (L, ◦s) ⊂ L, so qs ⊂ l(s) ∼= T1L. On the other hand, CR (L, ◦s) ∼= ΨR (L)�Aut (L, ◦s), 
and the tangent space at the coset 1 = �Aut (L, ◦s)� is p/hs. Hence, we see that qs

∼= p/hs, 
at least as vector spaces. The groups ΨR (L) and Aut (L, ◦s) act on p and hs via their 
respective adjoint actions and hence Aut (L, ◦s) acts on qs via a restriction of the adjoint 
action of ΨR (L). Now note that given h = (α, A) ∈ ΨR (L) and β ∈ Aut (L, ◦s), the 
conjugation of h by β is given by

(β, 1) (α, A)
(
β−1, 1

)
=

(
β ◦ α ◦ β−1, β (A)

)
and hence the corresponding action on the companion A is via standard action of β

on L. The differentials of these actions give the corresponding actions on the tangent 
spaces. We thus see that the adjoint action of Aut (L, ◦s) on p/hs is equivalent to the 
standard tangent action of Aut (L, ◦s) on qs. Hence, qs and p/hs are isomorphic as 
linear representations of Aut (L, ◦s). We can make the isomorphism from p/hs to qs

more explicit in the following way.

Definition 3.24. Define the map ϕ : L̊ −→ l ⊗ p∗ such that for each s ∈ L̊ and γ ∈ p,

ϕs (γ) = d

dt
(exp (tγ) (s))�s

∣∣∣∣
t=0

∈ l. (3.74)

Thus, for each s ∈ L̊, ϕs gives a map from p to l(s).

Theorem 3.25. The map ϕ as in (3.74) is equivariant with respect to corresponding ac-
tions of ΨR (L), in particular for h ∈ ΨR (L), s ∈ L̊, γ ∈ p, we have

ϕh(s) ((Adh)∗ γ) = (h′)∗ ϕs (γ) . (3.75)

Moreover, the image of ϕs is qs and the kernel is hs, and hence,

p ∼= hs ⊕ qs. (3.76)

Proof. Consider h ∈ ΨR (L). Then, using (2.15b), we have

ϕh(s) (γ) = d

dt
[exp (tγ) (h (s))]�h (s)

∣∣∣∣
t=0

= d

dt
h′

[
Adh−1 (exp (tγ)) (s)�s

]∣∣∣∣
t=0

=(h′)∗
d

dt
exp (t (Adh−1)∗ γ) (s)�s

∣∣∣∣
t=0

.

Since ΨR (L) acts on l via (h′)∗ and on p via (Adh)∗ we see that ϕ is equivariant.
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Since Aut (L, ◦s) is a Lie subgroup of ΨR (L), the projection map π : ΨR (L) −→
ΨR (L)�Aut (L, ◦s) ∼= CR (L, ◦s) is a smooth submersion given by π (h) = h (s) /s for 
each h ∈ ΨR (L). Thus, π∗|id : p −→ qs is surjective. However, since exp is a surjective 
map from p to a neighborhood of id ∈ ΨR (L), we find that π∗|id (γ) = ϕs (γ). So 
indeed, the image of the map ϕs is qs. Clearly the kernel is hs. Then, (3.76) follows 
immediately. �

Theorem 3.25 implies that ϕ : L̊ −→ l ⊗ p∗ is equivariant with respect to 
the action of ΨR (L), and similarly as for b, we can define StabΨR(L) (ϕs) ={

h ∈ ΨR (L) : ϕh(s) = ϕs

}
. This is then a Lie subgroup of ΨR (L), and Aut (L, ◦s) ⊂

StabΨR(L)
(
ϕ(s)). Suppose h = (α, A) ∈ StabΨR(L)

(
ϕ(s)), then

ϕs (γ) = ϕh(s) (γ) = d

dt
[exp (tγ) (α (s) A)] / (α (s) A)

∣∣∣∣
t=0

We can also see the effect on ϕ of left multiplication of s by elements of L.

Lemma 3.26. Suppose A ∈ L and s ∈ L̊, then for any γ ∈ p,

ϕAs (γ) =
(

R
(s)
A

)−1

∗
(γ′ · A) +

(
Ad(s)

A

)
∗

ϕs (γ) , (3.77)

where γ′ · A = d
dt (exp tγ)′ (A)

∣∣
t=0 represents the infinitesimal action of p on L.

Proof. This follows from a direct computation:

ϕAs (γ) = d

dt
exp (tγ) (As) /As

∣∣∣∣
t=0

= d

dt

[
exp (tγ)′ (A) exp (tγ) (s)

]
/As

∣∣∣∣
t=0

= d

dt
[A exp (tγ) (s)] /As

∣∣∣∣
t=0

+ d

dt

([
exp (tγ)′ (A)

]
s
)

/As

∣∣∣∣
t=0

=
(

Ad(s)
A

)
∗

ϕs (γ) +
(

R
(s)
A

)−1

∗
(γ′ · A) ,

where we have used (2.29a). �
Example 3.27. If L is the loop of unit octonions, then we know p ∼= so (7) ∼= Λ2 (

R7)∗

and l ∼= R7, so ϕs can be regarded as an element of R7 ⊗ Λ2R7, and this is precisely a 
dualized version of the G2-invariant 3-form ϕ. The kernel is isomorphic to g2.

Example 3.28. Suppose L =UC ∼= S1 - the unit complex numbers, so that l ∼= R. From 
Example 2.24, we may take ΨR

n (UC) = U (n), with a trivial partial action on UC. The 
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corresponding Lie algebra is pn
∼= u (n) ∼= su (n) ⊕ iR. The map ϕs : pn −→ iR is then 

just the projection su (n) ⊕ iR −→ iR (i.e. trace). It is independent of s. The kernel is 
su (n). Suppose V is a n-dimensional real vector space, and V ⊗C = V 1,0 ⊕ V 0,1. Then, 
the group U (n) acts via unitary transformations on the complex vector space V 1,0, and 
correspondingly u (n) ∼= V 1,1 (i.e. the space of (1, 1)-forms). Then, we see that ϕs is just 
the dualized version of a Hermitian form on V ⊗ C.

Example 3.29. Suppose L = UH ∼= S3 - the unit quaternions, so that l ∼= sp (1). From 
Example 2.24, we may take ΨR

n (UH) = Sp (n) Sp (1), with n ≥ 2, with a trivial partial 
action on UH. The corresponding Lie algebra is pn

∼= sp (n) ⊕ sp (1). The map ϕs :
pn −→ sp (1) is then given by (a, ξ) �→ (Ads)∗ ξ. The kernel is then sp (n). Suppose 
Sp (n) Sp (1) acts on a 4n-dimensional real vector space V , sp (n) ⊕ sp (1) ⊂ Λ2V ∗. 
Given that sp (1) ∼= ImH, we can then write ϕs = iω∗

1 + jω∗
2 + kω∗

3 , where the ω∗
i are 

dualized versions of the 3 linearly independent Hermitian forms that span the sp (1)
subspace of Λ2V ∗ [44].

Remark 3.30. The above examples clearly show that one interpretation of the G2-
structure 3-form ϕ is as ImO-valued 2-form. A complex Hermitian form is then an 
ImC-valued 2-form, and a quaternionic Hermitian form is an ImH-valued 2-form.

Now let us summarize the actions of different spaces on one another. For a fixed γ, 
define the map γ̂ : L̊ −→ l given by s �→ γ̂(s) = ϕs (γ).

Theorem 3.31. Suppose L is a smooth loop with tangent algebra l and suppose ΨR (L) is 
a Lie group with Lie algebra p. Let A ∈ L, s ∈ L̊, ξ ∈ l, and γ ∈ p. Then, denoting by ·
the relevant action, we have the following:

1. Infinitesimal action of p on L̊:

γ · s = d

dt
exp (tγ) (s)

∣∣∣∣
t=0

= (Rs)∗ γ̂(s) ∈ TsL (3.78)

2. Infinitesimal action of p on L, for any s ∈ L̊:

γ · A = d

dt
exp (tγ)′ (A)

∣∣∣∣
t=0

=
(

R
(s)
A

)
∗

γ̂(As) −
(

L
(s)
A

)
∗

γ̂(s) ∈ TAL. (3.79)

In particular, if s = 1,

γ · A = (RA)∗ γ̂(A) − (LA)∗ γ̂(1). (3.80)

3. Action of p on l for any s ∈ L̊:

γ · ξ = d (
exp (tγ)′)

∗ (ξ)
∣∣∣∣
dt t=0



48 S. Grigorian / Advances in Mathematics 393 (2021) 108078
= dγ̂|s (ρs (ξ)) +
[
γ̂(s), ξ

](s)
. (3.81)

In particular, for s = 1, we have

γ · ξ = dγ̂|1 (ξ) +
[
γ̂(1), ξ

]
. (3.82)

Proof. Let A, B ∈ L, s ∈ L̊, ξ, η ∈ l, h ∈ ΨR (L), and γ ∈ p. Then we have the following.

1. The infinitesimal action of a Lie algebra is a standard definition.
2. Consider now the action of p on L. Suppose now γ ∈ p and A ∈ L

γ′ · A = d

dt

(
exp (tγ)′) (A)

∣∣∣∣
t=0

. (3.83)

Suppose h ∈ ΨR (L, ◦s), then by (2.40), the action of h on A ∈ L is

h (A) = h′ (A) ◦s

(
h (s)�s

)

Thus, the partial action h′ (A) is given by

h′ (A) =
(

h (As)�s

)
/s

(
h (s)�s

)
. (3.84)

Moreover,

h (As)�s =
(

h (As)�As

)
◦s A. (3.85)

Hence, substituting into (3.83), we have

γ′ · A = d

dt

(
exp (tγ (As))�As ◦s A

)
/s

(
exp (tγ) (s)�s

)∣∣∣∣
t=0

= d

dt

(
exp (tγ (As))�As ◦s A

)∣∣∣∣
t=0

− d

dt
A ◦s

(
exp (tγ) (s)�s

)∣∣∣∣
t=0

=
(

R
(s)
A

)
∗

γ̂(As) −
(

L
(s)
A

)
∗

γ̂(s). (3.86)

Setting s = 1 immediately gives (3.80).
3. Suppose now γ ∈ p and ξ ∈ l, then we have

γ · ξ = d

dt

(
exp (tγ)′)

∗ (ξ)
∣∣∣∣
t=0

= d2

dtdτ
exp (tγ)′ (exps τξ)

∣∣∣∣
t,τ=0

. (3.87)
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Let Ξ = exps τξ ∈ L, then using (3.84) and (3.85), we can write

exp (tγ)′ (exps τξ) = exp (tγ)′ (Ξ)

(exp (tγ) (Ξs/Ξs ◦s Ξ)) /s

(
exp (tγ) (s)�s

)
.

Using this, (3.87) becomes

γ′ · ξ = d2

dtdτ
(exp (tγ) ((exps τξ) s))�((exps τξ) s ◦s exps τξ)

∣∣∣∣
t,τ=0

− d2

dtdτ
exps τξ ◦s

(
exp (tγ) (s)�s

)∣∣∣∣
t,τ=0

= d2

dtdτ
exp (tγ) ((exps τξ) s) / (exps τξ) s

∣∣∣∣
t,τ=0

+

+ d2

dtdτ

(
exp (tγ) (s)�s

)
◦s exps τξ

∣∣∣∣
t,τ=0

− d2

dtdτ
exps τξ ◦s

(
exp (tγ) (s)�s

)∣∣∣∣
t,τ=0

(3.88)

However γ̂(s) = d
dt exp (tγ) (s) /s

∣∣
t=0 ∈ l, and thus

d

dτ

(
L

(s)
exps τξ

)
∗

γ̂(s)
∣∣∣∣
τ=0

= d2

dtdτ
(exps τξ) ◦s exps

(
tγ̂(s)

)∣∣∣∣
t,τ=0

d

dτ

(
R

(s)
exps τξ

)
∗

γ̂(s)
∣∣∣∣
τ=0

= d2

dtdτ
exps

(
tγ̂(s)

)
◦s exps τξ

∣∣∣∣
t,τ=0

.

Hence, using the expression (3.29) for [·, ·](s), we get

γ′ · ξ = d

dτ
γ̂(exps τξ)s

∣∣∣∣
τ=0

+
[
γ̂(s), ξ

](s)
. (3.89)

The first term in (3.89) is then precisely the differential of γ̂ at s ∈ L in the direction 
(Rs)∗ ξ. Setting s = 1 we get (3.82). �

Remark 3.32. Since the full action of ΨR (L) does not preserve 1, the pushforward of 
the action of some h ∈ ΨR (L) sends T1L to TAL, where A = h (1) is the companion 
of L. To actually obtain an action on T1L, translation back to 1 is needed. This can be 
achieved either by right or left division by A. Dividing by A on the right reduces to the 
partial action of ΨR (L), i.e. action by h′. This is how the action of p on l in (3.81) is 
defined. Dividing by A on the left, gives the map h′′ = AdA−1 ◦h′, as defined in (2.49). 
In that setting, it was defined on the nucleus, and hence gave an actual group action of 
ΨR (L), however in a non-associative setting, in general this will not be a group action.
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Combining some of the above results, we also have the following useful relationship.

Lemma 3.33. Suppose ξ ∈ p and η, γ ∈ l, then

ξ · [η, γ](s) = [ξ · η, γ](s) + [η, ξ · γ](s) + as (η, γ, ϕs (ξ)) . (3.90)

Proof. Using the definition (3.81) of the action of p on l, we have

ξ · [η, γ](s) = d

dt

(
exp (tξ)′)

∗ [η, γ](s)
∣∣∣∣
t=0

= d

dt

[(
exp (tξ)′)

∗ η,
(
exp (tξ)′)

∗ γ
]exp(tξ)(s)

∣∣∣∣
t=0

where we have also used (3.57a). Hence,

ξ · [η, γ](s) = [ξ · η, γ](s) + [η, ξ · γ](s) + d

dt
[η, γ]exp(tξ)(s)

∣∣∣∣
t=0

. (3.91)

We can rewrite the last term in (3.91) as

d

dt
[η, γ]exp(tξ)(s)

∣∣∣∣
t=0

= d

dt
[η, γ]exps(tϕs(ξ))s

∣∣∣∣
t=0

= d
ρ

(
ξ̂
)b

∣∣∣∣
s

(η, γ)

where ξ̂ = ϕs (ξ). Then, from (3.39), we see that

d
ρ

(
ξ̂
)b

∣∣∣∣
s

(η, γ) = as

(
η, γ, ξ̂

)
(3.92)

and overall, we obtain (3.90). �
Recall that for each s ∈ L̊, the bracket function bs is in Λ2l∗ ⊗ l, which is a tensor 

product of p-modules, so (3.90) can be used to define the action of ξ ∈ p on bs. Using 
the derivation property of Lie algebra representations on tensor products, we find that 
for η, γ ∈ l,

(ξ · bs) (η, γ) =ξ · (bs (η, γ)) − bs (ξ · η, γ) − bs (η, ξ · γ)

=as (η, γ, ϕs (ξ)) . (3.93)

Definition 3.34. Suppose g is a Lie algebra with a representation on a vector space M , 
so that (M, g) is a g-module. Then if x ∈ M , define the annihilator subalgebra Anng (x)
in g of x as

Anng (x) = {ξ ∈ g : ξ · x = 0} . (3.94)
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From (3.93), we see that

Annp (bs) = {ξ ∈ p : as (η, γ, ϕs (ξ)) = 0 for all η, γ ∈ l} . (3.95)

The definition (3.95) is simply that ξ ∈ Annp (bs) if, and only if, ϕs (ξ) ∈ N R
(
l(s)), so 

that Annp (bs) = ϕ−1
s

(
N R

(
l(s)))

. This is the Lie algebra that corresponds to the Lie 
group StabΨR(L) (bs). Indeed, the condition (3.95) is precisely the infinitesimal version 
of (3.65). If L is a G-loop, so that ϕs (p) = l(s), then ϕs (Annp (bs)) = N R

(
l(s)). Hence, 

in this case, Annp (bs) ∼= hs ⊕ N R
(
l(s)).

Using the definition (3.74) of ϕs, let us consider the action of p on ϕs.

Lemma 3.35. Suppose ξ, η ∈ p, then for any s ∈ L, we have

ξ · ϕs (η) − η · ϕs (ξ) = ϕs

(
[ξ, η]

p

)
+ [ϕs (ξ) , ϕs (η)](s)

, (3.96)

where · means the action of p on l.

Proof. Using (3.81) and the definition (3.74) of ϕs, we have

ξ · ϕs (η) = d2

dtdτ
exp (tξ)′

(
exp (τη) (s)�s

)∣∣∣∣
t,τ=0

= d2

dtdτ
exp (tξ) (exp (τη) (s))�exp (tξ) (s)

∣∣∣∣
t,τ=0

= d2

dtdτ
exp (tξ) (exp (τη) (s)) /s

∣∣∣∣
t,τ=0

− d2

dtdτ

(
exp (τη) (s)�s · exp (tξ) (s)

)
/s

∣∣∣∣
t,τ=0

= d2

dtdτ
(exp (tξ) exp (τη)) (s) /s

∣∣∣∣
t,τ=0

(3.97)

− d2

dtdτ
exp (τη) (s)�s ◦s

exp (tξ) (s)�s

∣∣∣∣
t,τ=0

,

where we have used (2.15b) and Lemma A.1. Now subtracting the same expression but 
with ξ and η switched around, we obtain (3.96). �
Remark 3.36. In terms of the Chevalley-Eilenberg complex of p with values in l, the 
relation (3.96) shows that if we regard ϕs ∈ C1 (p; l), i.e. a 1-form on p with values in l, 
then the Chevalley-Eilenberg differential dCE of ϕs is given by

(dCEϕs) (ξ, η) = [ϕs (ξ) , ϕs (η)](s) (3.98)
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for any ξ, η ∈ p. It is interesting that, at least on qs, the bracket [·, ·](s) corresponds to 
an exact 2-cochain.

Similarly, from (3.96), we then see that the action of ξ ∈ p on ϕs as an p∗ ⊗ l-valued 
map. Indeed, given ξ, η ∈ p, we have

(ξ · ϕs) (η) =ξ · ϕs (η) − ϕs

(
[ξ, η]

p

)
=η · ϕs (ξ) − [ϕs (η) , ϕs (ξ)](s) (3.99)

where we have first used the fact that p acts on itself via the adjoint representation and 
then (3.96) in the second line.

Let us now consider Annp (ϕs). From (3.99), we see that we have two equivalent 
characterizations of Annp (ϕs). In particular, ξ ∈ Annp (ϕs) if, and only if,

ξ · η̂ = ϕs

(
[ξ, η]

p

)
(3.100)

or equivalently, for ξ /∈ hs, if, and only if,

η · ξ̂ =
[
η̂, ξ̂

](s)
, (3.101)

for any η ∈ p. Here we are again setting ξ̂ = ϕs (ξ) and η̂ = ϕs (η). In particular, (3.100)
shows that qs is a representation of Annp (ϕs). Suppose now, ξ1, ξ2 ∈ Annp (ϕs), then 
using (3.100) and (3.101), we find that

ϕs

(
[ξ1, ξ2]

p

)
= ξ1 · ξ̂2 =

[
ξ̂1, ξ̂2

](s)
. (3.102)

Therefore, ϕs (Annp (ϕs)) is a Lie subalgebra of l(s) with ϕs being a Lie algebra ho-
momorphism. The kernel hs = ker ϕs is then of course an ideal of Annp (ϕs). Thus, the 
quotient Annp (ϕs) /hs is again a Lie algebra, and hence Annp (ϕs) is a trivial Lie algebra 
extension of hs. Moreover, note that the Lie algebra Annp (ϕs) corresponds to the Lie 
group StabΨR(L) (ϕs), and thus if Aut (L, ◦s) and StabΨR(L) (ϕs) are both connected, 
then we see that Aut (L, ◦s) is a normal subgroup of StabΨR(L) (ϕs).

In the special case when L is a G-loop, we get a nice property of Annp (ϕs).

Theorem 3.37. Suppose L is a G-loop, then Annp (ϕs) ⊂ Annp (bs).

Proof. Suppose ξ ∈ Annp (ϕs) and let η, γ ∈ p. Consider

[γ, η]
p

· ξ̂ =γ ·
(

η · ξ̂
)

− η ·
(

γ · ξ̂
)

=γ ·
[
η̂, ξ̂

](s)
− η ·

[
γ̂, ξ̂

](s)
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=
[
γ · η̂, ξ̂

](s)
+

[
η̂, γ · ξ̂

](s)
+ as

(
η̂, ξ̂, γ̂

)

−
[
η · γ̂, ξ̂

](s)
−

[
γ̂, η · ξ̂

](s)
− as

(
γ̂, ξ̂, η̂

)(s)

=
[
ϕs

(
[γ, η]

p

)
, ξ̂

](s)
+

[
[γ̂, η̂](s)

, ξ̂
]

+
[
η̂,

[
γ̂, ξ̂

](s)
](s)

−
[
γ̂,

[
η̂, ξ̂

](s)
](s)

+ as

(
η̂, ξ̂, γ̂

)
− as

(
γ̂, ξ̂, η̂

)
= [γ, η]

p
· ξ̂ − as

(
γ̂, ξ̂, η̂

)

where we have used (3.101), (3.90), (3.96), and the Akivis identity (3.46). We hence find 
that

as

(
γ̂, ξ̂, η̂

)
= 0. (3.103)

We know that if L is a G-loop, then l(s) = ϕs (p), and thus the condition (3.103) is the 
same as (3.95), that is ξ ∈ Annp (bs). �
Remark 3.38. Overall, if L is a G-loop, we have the following inclusions of Lie algebras

ker ϕs = hs ⊂
ideal

Annp (ϕs) ⊂ Annp (bs) ∼= hs ⊕ N R
(
l(s)

)
⊂ p. (3.104)

If we look at the octonion case, with L =UO, then p = so (7), hs
∼= g2. Moreover, in 

this case, N R (l) = {0}, so we must have hs = Annp (ϕs) = Annp (bs). This also makes 
sense because in this case, ϕs and bs are essentially the same objects, and moreover, 
almost uniquely determine s (up to ±1). At the other extreme, if L is associative, so 
that N R (l) = l, then Annp (bs) = p, but Annp (ϕs) does not have to equal Annp (bs).

Example 3.39. Using the setup from Examples 2.24, 3.28, and 3.29, if L =UC with 
ΨR

n (UC) = U (n) or L =UH with ΨR
n (UH) = Sp (n) Sp (1), since the partial action of 

ΨR
n in each case here is trivial, from (3.87), we see that the action of each Lie algebra 

pn on l is trivial. In the complex case, l ∼= R, and is thus abelian. Hence, from (3.99), we 
see that in this case ξ · ϕs = 0 for each ξ ∈ pn. This makes because in Example 3.28 we 
noted that ϕs does not depend on s in the complex case. In the quaternion case, (3.99)
shows that if ξ, η ∈ sp (n) ⊕ sp (1) = pn, then

(ξ · ϕs) (η) = − ϕs

(
[ξ, η]

pn

)
= − [ξ1, η1]Im H (3.105)
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where ξ1, η1 are the sp (1) components of ξ and η, and [·, ·]Im H is the bracket on ImH

(and equivalently on sp (1)). In particular, Annpn
(ϕs) = sp (n).

Note that, while it is known that any simple (i.e. has no nontrivial proper normal 
subloops) Moufang loop is a G-loop, it is not known whether there are simple Bol loops 
that are neither G-loops nor isotopic to Bruck loops [34] (a Bruck loop is a Bol loop 
for which the inverse is an automorphism). On the other hand, there is an example of 
a Bol loop that is a G-loop but is not a Moufang loop [39]. That particular example is 
constructed from an alternative division ring, but if that is taken to be O, we obtain a 
smooth loop.

3.4. Killing form

Similarly as for Lie groups, we may define a Killing form K(s) on l(s). For ξ, η ∈ l, we 
have

K(s) (ξ, η) = Tr
(

ad(s)
ξ ◦ ad(s)

η

)
, (3.106)

where ◦ is just composition of linear maps on l and ad(s)
ξ (·) = [ξ, ·](s), as in (3.25). 

Clearly K(s) is a symmetric bilinear form on l. Given the form K(s) on l, we can extend 
it to a “right-invariant” form 〈·, ·〉(s) on L via right translation, so that for vector fields 
X, Y on L,

〈X, Y 〉(s)
L = K(s) (θ (X) , θ (Y )) . (3.107)

Theorem 3.40. The bilinear form K(s) (3.106) on l has the following properties.

1. Let h ∈ ΨR (L), then for any ξ, η ∈ l,

K(h(s)) (h′
∗ξ, h′

∗η) = K(s) (ξ, η) . (3.108)

2. Suppose also γ ∈ l, then

K(s)
(

ad(s)
γ η, ξ

)
= − K(s)

(
η, ad(s)

γ ξ
)

+ Tr
(

Jac(s)
ξ,γ ◦ ad(s)

η

)
+ Tr

(
Jac(s)

η,γ ◦ ad(s)
ξ

)
, (3.109)

where Jac(s)
γ,ξ : l −→ l is given by Jac(s)

η,γ (ξ) = Jac(s) (ξ, η, γ).
3. Let α ∈ p, then

K(s) (α · ξ, η) = − K(s) (ξ, α · η) + Tr
(

a
(s)
η,α̂ ◦ ad(s)

ξ

)
(3.110)

+ Tr
(

a
(s)
ξ,α̂ ◦ ad(s)

η

)
,
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where a(s)
ξ,η : l −→ l is given by a(s)

ξ,η (γ) = [γ, ξ, η](s) − [ξ, γ, η](s) and α̂ = ϕs (α).

The proof of Theorem (3.40) is given in Appendix A.

Remark 3.41. If (L, ◦s) is an alternative loop, we know that Jac(s)
η,γ = 3a(s), so in that in 

case, K(s) is invariant with respect to both ad(s) and the action of p if, and only if,

Tr
(

a
(s)
η,α̂ ◦ ad(s)

ξ

)
+ Tr

(
a

(s)
ξ,α̂ ◦ ad(s)

η

)
= 0. (3.111)

Indeed, in [43], it is shown that for a Malcev algebra, the Killing form is ad-invariant. A 
Malcev algebra is alternative and hence the Killing form is also p-invariant in that case. 
Moreover, it shown in [30] that for a semisimple Malcev algebra, the Killing form is non-
degenerate. Here the definition of “semisimple” is the same as for Lie algebras, namely 
that the maximal solvable ideal is zero. Indeed, given the algebra of imaginary octonions 
on R7, it is known that the corresponding Killing form is negative-definite [3]. Moreover, 
since in this case, the pseudoautomorphism group is SO (7), so (3.108) actually shows 
that Kh(s) = Ks for every h, and thus is independent of s. General criteria for a loop 
algebra to admit an invariant definite (or even just non-degenerate) Killing form do not 
seem to appear in the literature, and could be the subject of further study. At least for 
well-behaved loops, such as Malcev loops, it is likely that there is significant similarity 
to Lie groups.

Suppose now K(s) is nondegenerate and both ad(s)- and p-invariant, and moreover 
suppose p is semisimple itself, so that it has a nondegenerate, invariant Killing form 
Kp. We will use 〈·, ·〉(s) and 〈·, ·〉

p
to denote the inner products using K(s) and Kp,

respectively. Then, given the map ϕs : p −→ l(s), we can define its adjoint with respect 
to these two bilinear maps.

Definition 3.42. Define the map ϕt
s : l(s) −→ p such that for any ξ ∈ l(s) and η ∈ p,

〈
ϕt

s (ξ) , η
〉
p

= 〈ξ, ϕs (η)〉(s)
. (3.112)

Since hs
∼= ker ϕs, we then clearly have p ∼= hs ⊕ Im ϕt

s, so that h⊥
s = Im ϕt

s. On the 
other hand, we also have l(s) ∼= ker ϕt

s ⊕ qs, since qs = Im ϕs. Define the corresponding 
projections πhs

, πh⊥
s

and πqs
, πq⊥

s
. We then have the following properties.

Lemma 3.43. Suppose qs is an irreducible representation of h and suppose the base field 
of p is F = R or C. Then, there exists a λs ∈ F such that

ϕsϕt
s = λsπq(s) and ϕt

sϕs = λsπh⊥
s

. (3.113)

Moreover, for any h ∈ ΨR (L), λs = λh(s).
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Proof. Let γ, η ∈ p and ξ ∈ l(s), then using (3.99),

〈(
γ · ϕt

s

)
(ξ) , η

〉
p

=
〈[

γ, ϕt
s (ξ)

]
p

, η
〉
p

−
〈
ϕt

s (γ · ξ) , η
〉
p

= −
〈

ϕt
s (ξ) , [γ, η]

p

〉
− 〈γ · ξ, ϕs (η)〉(s)

=
〈

ξ, γ · ϕs (η) − ϕs

(
[γ, η]

p

)〉(s)

= 〈ξ, (γ · ϕs) (η)〉(s)
, (3.114)

so in particular, Annp (ϕs) = Annp (ϕt
s). Thus, the map ϕsϕt

s : l(s) −→ l(s) is an equiv-
ariant map of representations of the Lie subalgebra Annp (ϕs) ⊂ p and is moreover 
self-adjoint with respect to 〈·, ·〉(s). We can also restrict this map to qs, which is also a 
representation of Annp (ϕs), and in particular of hs. Hence, if qs is an irreducible repre-
sentation of hs, since ϕsϕt

s is diagonalizable (in general, if C is the base field, or because 
it symmetric if the base field is R), by Schur’s Lemma, there exists some number λs �= 0
such that

ϕsϕt
s

∣∣
q(s) = λs idq(s) . (3.115)

Applying ϕt
s to (3.115), we also obtain.

ϕt
sϕs

∣∣
h⊥

s
= λs idh⊥

s
. (3.116)

Since ϕt
s and ϕs vanish on q⊥

s and hs, respectively, we obtain (3.113).
Let h ∈ ΨR (L), then from (3.75), recall that

ϕh(s) = (h′)∗ ◦ ϕs ◦
(
Ad−1

h

)
∗ . (3.117)

It is then easy to see using (3.108) and the invariance of the Killing form on p that

ϕt
h(s) = (Adh)∗ ◦ ϕt

s ◦ (h′)−1
∗ . (3.118)

In particular, we see that

(h′)∗ qs = qh(s) and (Adh)∗ h
⊥
s = h⊥

h(s).

Hence,

ϕh(s)ϕ
t
h(s)

∣∣∣
qh(s)

= (h′)∗ ◦ ϕsϕt
s ◦ (h′)−1

∗

∣∣∣
qh(s)

=λs idqh(s)

and so indeed, λs = λh(s). �
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Example 3.44. In the case of octonions, suppose we set ϕs (η)a = kϕabcηbc where η ∈
so (7) ∼= Λ2 (

R7)∗, ϕ is the defining 3-form on R7, and k ∈ R is some constant. Then, 
ϕt

s (γ)ab = kϕabcγc where γ ∈ R7 ∼= ImO. Now, R7 is an irreducible representation 
of g2, so the hypothesis of Lemma 3.43 is satisfied. In this case, λs = 6k2 due to the 
contraction identities for ϕ [14,22].

Consider the action of ϕt
s

(
l(s)) ⊂ p on qs. Let ξ, η ∈ qs, then from (3.96),

ϕt
s (ξ) · ϕsϕt

s (η) − ϕt
s (η) · ϕsϕt

s (ξ) = ϕs

([
ϕt

s (ξ) , ϕt
s (η)

]
p

)
+

[
ϕsϕt

s (ξ) , ϕsϕt
s (η)

](s)
,

(3.119)
and thus,

ϕt
s (ξ) · η − ϕt

s (η) · ξ = 1
λs

ϕs

([
ϕt

s (ξ) , ϕt
s (η)

]
p

)
+ λs [ξ, η](s)

. (3.120)

We now show that ϕt
s (ξ) · η is skew-symmetric when restricted to qs and then projected 

back to qs.

Lemma 3.45. Suppose L is a loop and s ∈ L, such that the Killing form is non-degenerate 
and ad(s)- and p-invariant. Then, for any ξ, η ∈ qs,

πqs

(
ϕt

s (ξ) · η
)

= −πqs

(
ϕt

s (η) · ξ
)

. (3.121)

Proof. Suppose ξ, η ∈ qs, then using the ad(s)- and p-invariance of the Killing form on 
l(s) and (3.120) we have

〈
ϕt

s (η) · η, ξ
〉(s) = −

〈
η, ϕt

s (η) · ξ
〉(s)

= −
〈

η, ϕt
s (ξ) · η − 1

λs
ϕs

([
ϕt

s (ξ) , ϕt
s (η)

]
p

)
− λs [ξ, η](s)

〉(s)

= −
〈
η, ϕt

s (ξ) · η
〉(s) + 1

λs

〈
ϕt

s (η) ,
[
ϕt

s (ξ) , ϕt
s (η)

]
p

〉

− λs

〈
[η, η](s)

, ξ
〉(s)

= −
〈
η, ϕt

s (ξ) · η
〉(s) =

〈
ϕt

s (ξ) · η, η
〉(s)

=0.

Thus, we see that πqs
(ϕt

s (η) · η) = 0, and hence (3.121) holds. �
Taking the πqs

projection of (3.120) gives

πqs

(
ϕt

s (ξ) · η
)

= 1
ϕs

([
ϕt

s (ξ) , ϕt
s (η)

]
p

+ λsϕt
s

(
[ξ, η](s)

))
. (3.122)
2λs
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The relation (3.122) suggests that we can define a new bracket [·, ·]ϕs
on l(s) using ϕs.

Definition 3.46. Suppose L satisfies the assumptions of Lemma 3.45. Then, for ξ, η ∈ l(s), 
define

[ξ, η]ϕs
= ϕs

([
ϕt

s (ξ) , ϕt
s (η)

]
p

)
. (3.123)

This bracket restricts to qs and vanishes on q⊥
s , so that q⊥

s is an abelian ideal with 
respect to it. We can rewrite (3.122) as

πqs

(
ϕt

s (ξ) · η
)

= 1
2λs

[ξ, η]ϕs
+ λs

2 πqs

(
[ξ, η](s)

)
. (3.124)

Example 3.47. In the case of octonions, if, as before, we set ϕs (η)a = kϕabcηbc and (
[ξ, γ](s)

)
a

= 2ϕabcξbγc, we find that [·, ·]ϕs
= 3k3 [·, ·](s). Then, recalling that λs = 6k2, 

(3.124) shows that in this case

ϕt
s (ξ) · γ =

(
k

4 + 3k2
)

[ξ, γ](s)
,

and to be consistent with the standard action of so (7) on R7, we must have

kϕabcξcγb =
(

k

2 + 6k2
)

ϕabcξbγc,

which means that 6k2 + 3
2k = 0 and therefore, k = −1

4 . This also implies that λs = 3
8 in 

this case. We also thus obtain

ϕt
s (ξ) · γ = 1

8 [ξ, γ](s)
. (3.125)

Example 3.48. If L is a Lie group, and ΨR (L) is the full group of pseudoautomorphism 
pairs, then p ∼= aut (L) ⊕ l, where aut (L) is the Lie algebra of Aut (L) and l is the 
Lie algebra of L. In this case, ϕt

sϕs is just the projection to l ⊂ p, and thus λs =
1 and [·, ·]ϕs

= [·, ·](s). Then (3.124) just shows that l acts on itself via the adjoint 
representation, i.e.

ϕt
s (ξ) · η = [ξ, η] . (3.126)

Remark 3.49. Both of the above examples have the two brackets [·, ·]ϕs
and [·, ·](s) pro-

portional to one another. This really means that l(s) and h⊥
s have equivalent L-algebra 

structures with ϕs and ϕt
s (up to a constant factor) being the corresponding isomor-

phisms. It is not clear if this is always the case.

The bracket [·, ·]ϕ has some reasonable properties.

s
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Lemma 3.50. Under the assumptions of Lemma 3.45, the bracket [·, ·]ϕs
satisfies the 

following properties. Let ξ, η, γ ∈ l, then

1.
〈

[ξ, η]ϕs
, γ

〉(s)
= − 

〈
η, [ξ, γ]ϕs

〉(s)
.

2. For any h ∈ ΨR (L), [ξ, η]ϕh(s)
= (h′)∗

[
(h′)−1

∗ ξ, (h′)−1
∗ η

]
ϕs

.

Proof. The first property follows directly from the definition (3.123) and the ad-
invariance of the Killing form on p. Indeed,

〈
[ξ, η]ϕs

, γ
〉(s)

=
〈

ϕs

([
ϕt

s (ξ) , ϕt
s (η)

]
p

)
, γ

〉(s)

=
〈[

ϕt
s (ξ) , ϕt

s (η)
]
p

, ϕt
s (γ)

〉(s)

= −
〈

ϕt
s (η) ,

[
ϕt

s (ξ) , ϕt
s (γ)

]
p

〉(s)

= −
〈

η, [ξ, γ]ϕs

〉(s)
.

Now let h ∈ ΨR (L), and then since (Adh)∗ is a Lie algebra automorphism of p, we have

[ξ, η]ϕh(s)

=ϕh(s)

([
ϕt

h(s) (ξ) , ϕt
h(s) (η)

]
p

)

= (h′)∗ ◦ ϕs ◦
(
Ad−1

h

)
∗

([
(Adh)∗

(
ϕt

s

(
(h′)−1

∗ (ξ)
))

, (Adh)∗

(
ϕt

s

(
(h′)−1

∗ (η)
))]

p

)

= (h′)∗ ◦ ϕs

([
ϕt

s

(
(h′)−1

∗ (ξ)
)

, ϕt
s

(
(h′)−1

∗ (η)
)]

p

)

= (h′)∗

[
(h′)−1

∗ ξ, (h′)−1
∗ η

]
ϕs

. (3.127)

Therefore, [·, ·]ϕs
is equivariant with respect to transformations of s. �

3.5. Darboux derivative

Let M be a smooth manifold and suppose s : M −→ L is a smooth map. The map s
can be used to define a product on L-valued maps from M and a corresponding bracket 
on l-valued maps. Indeed, let A, B : M −→ L and ξ, η : M −→ l be smooth maps, then 
at each x ∈ M , define

A ◦s B|x =Ax ◦sx
Bx ∈ L (3.128a)

A/sB|x =Ax/sx
Bx ∈ L (3.128b)
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A\sB|x =Ax\sBx ∈ L (3.128c)

[ξ, η](s)
∣∣∣
x

= [ξx, ηx](sx) ∈ l. (3.128d)

In particular, the bracket [·, ·](s) defines the map bs : M −→ Λ2l∗ ⊗ l. We also have the 
corresponding associator [·, ·, ·](s) and the left-alternating associator map as : M −→
Λ2l∗ ⊗ l∗ ⊗ l. Similarly, define the map ϕs : M −→ p∗ ⊗ l.

Then, similarly as for maps to Lie groups, we may define the (right) Darboux derivative
θs of s, which is an l-valued 1-form on M given by s∗θ [45]. In particular, at every x ∈ M ,

(θs)|x =
(

R−1
s(x)

)
∗

ds|x . (3.129)

It is then clear that θs, being a pullback of θ, satisfies the loop Maurer-Cartan structural 
equation (3.35). In particular, for any vectors X, Y ∈ TxM ,

dθs (X, Y ) − [θs (X) , θs (Y )](s) = 0. (3.130)

We can then calculate the derivatives of these maps. For clarity, we will be using nota-
tion from Remark 3.16, in that we will suppress the pushforwards of right multiplication 
and their inverses (i.e. quotients) on TL, so that if X ∈ TqL, then we will write X ◦s A

for 
(

R
(s)
A

)
∗

X.

Theorem 3.51. Let M be a smooth manifold and let x ∈ M . Suppose A, B, s ∈
C∞ (M,L), then

d (A ◦s B) = (dA) ◦s B + A ◦s (dB) + [A, B, θs](s) (3.131)

and

d (A/sB) =dA/sB − (A/sB ◦s dB) /sB (3.132a)

− [A/sB, B, θs](s)
/sB

d (B\sA) =B\sdA − B\s (dB ◦s (B\sA)) (3.132b)

− B\s [B, B\sA, θs](s)
.

Suppose now ξ, η ∈ C∞ (M, l), then

d [ξ, η](s) = [dξ, η](s) + [ξ, dη](s) + as (ξ, η, θs) . (3.133)

The l ⊗ p∗-valued map ϕs : M −→ l ⊗ p∗ satisfies

dϕs = idp ·θs − [ϕs, θs](s)
, (3.134)
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where idp is the identity map of p and · denotes the action of the Lie algebra p on l given 
by (3.87)

Proof. Let V ∈ TxM and let x (t) be a curve on M with x (0) = x and ẋ (0) = V . To 
show (3.131), first note that

d (A ◦s B)|x (V ) = d

dt

(
Ax(t) ◦sx(t) Bx(t)

)∣∣∣∣
t=0

. (3.135)

However,

d

dt

(
Ax(t) ◦sx(t) Bx(t)

)∣∣∣∣
t=0

= d

dt

(
Ax(t) ◦sx

Bx

)∣∣∣∣
t=0

+ d

dt

(
Ax ◦sx

Bx(t)
)∣∣∣∣

t=0

+ d

dt

(
Ax ◦sx(t) Bx

)∣∣∣∣
t=0

=
(

R
(sx)
Bx

)
∗

dA|x (V ) +
(

L
(sx)
Ax

)
∗

dB|x (V ) (3.136)

+ d

dt

(
Ax ◦sx(t) Bx

)∣∣∣∣
t=0

and then, using Lemma A.1,

d

dt

(
Ax ◦sx(t) Bx

)∣∣∣∣
t=0

= d

dt

((
Ax · Bxsx(t)

)
/sx(t)

)∣∣∣∣
t=0

= d

dt

((
Ax · Bxsx(t)

)
/sx

)∣∣∣∣
t=0

(3.137)

+ d

dt

(
(Ax · Bxsx) /sx · sx(t)

)
/sx

∣∣∣∣
t=0

.

Looking at each term in (3.137), we have

(
Ax · Bxsx(t)

)
/sx =

(
Ax · Bx

(
sx(t)/sx · sx

))
/sx

=Ax ◦sx

(
Bx ◦sx

(
sx(t)/sx

))
and

(
(Ax · Bxsx) /sx · sx(t)

)
/sx = (Ax ◦sx

Bx) ◦sx

(
sx(t)/sx

)
.

Overall (3.136) becomes,

d (
Ax ◦sx(t) Bx

)∣∣∣∣ =
((

L
(sx)
Ax

◦ L
(sx)
Bx

)
−

(
L

(sx)
Ax◦sx Bx

) ) (
R−1

sx

)
∗ ds|x (Vx) (3.138)
dt t=0 ∗ ∗
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and hence we get (3.131) using the definitions of θs and the mixed associator (3.11).
Let us now show (3.132). From Lemma A.1, we find

d (A/B) = (dA) /B − (A/B · dB) /B (3.139a)

d (B\A) =B\ (dA) − B\ (dB · B\A) . (3.139b)

Now if we instead have the quotient defined by s, using (2.29a), we have a modification:

d (A/sB) =d (As/Bs) = d (As) / (Bs) − (A/sB · d (Bs)) / (Bs)

=dA/sB + A (ds) / (Bs) − (A/sB · (dB) s) / (Bs)

− (A/sB · B (ds)) / (Bs)

=dA/sB − (A/sB ◦s dB) /sB + (A ◦s θs) /sB

− (A/sB ◦s (B ◦s θs)) /sB

=dA/sB − (A/sB ◦s dB) /sB − [A/sB, B, θs](s)
/sB. (3.140)

Similarly, for the left quotient, using (2.29b), we have

d (B\sA) =d ((B\As) /s)

=d (B\As) /s − (((B\As) /s) · ds) /s

= (B\d (As)) /s − (B\ (dB · B\As)) /s − (B\sA) ◦s θs

=B\sdA + (B\ (A (ds))) /s − B\s ((dB · B\As) /s)

− (B\sA) ◦s θs

=B\sdA − B\s (dB ◦s (B\sA)) + B\s (A ◦s θs)

− (B\sA) ◦s θs (3.141)

However, using the mixed associator (3.11),

A ◦s θs = (B ◦s (B\sA)) ◦s θs

=B ◦s ((B\sA) ◦s θs) − [B, B\sA, θs](s)
, (3.142)

and thus,

d (B\sA) = B\sdA − B\s (dB ◦s (B\sA)) − B\s [B, B\sA, θs](s)
.

To show (3.133), note that

d
(

[ξ, η](s)
)∣∣∣ (V ) = d [

ξx(t), ηx(t)
](

sx(t)
)∣∣∣∣
x dt t=0



S. Grigorian / Advances in Mathematics 393 (2021) 108078 63
= [dξ|x (V ) , ηx](sx) + [ξx, dη|x](sx)

+ d

dt
[ξx, ηx]

(
sx(t)

)∣∣∣∣
t=0

However, using (3.39), the last term becomes

d

dt
[ξx, ηx]

(
sx(t)

)∣∣∣∣
t=0

= asx
(ξx, ηx, θs|x)

and hence we obtain (3.133).
Let us now show (3.134). From (3.81), given γ ∈ p, setting γ̂ (r) = ϕr (γ) for each 

r ∈ L, we have

dγ̂|r (ρr (ξ)) = γ · ξ − [γ̂ (r) , ξ](r) (3.143)

for some ξ ∈ l. Now for at each x ∈ M we have

d (ϕs (γ))|x (V ) = dγ̂|sx
◦ ds|x (V )

= dγ̂|sx
(ρsx

(θs (V )))

=γ · θs (V ) − [ϕsx
(γ) , θs (V )](sx)

. (3.144)

Therefore, dϕs is given by

dϕs (γ) = γ · θs − [ϕs (γ) , θs](s)
. � (3.145)

Remark 3.52. Suppose A and B are now smooth maps from M to L. In the case when 
L has the right inverse property, i.e. A/B = AB−1 for any A, B ∈ L, (3.139a) becomes

d
(
AB−1)

= (dA) B−1 −
(
AB−1 · dB

)
B−1. (3.146)

However, from d 
(
BB−1)

= 0, we find that d 
(
B−1)

= −B−1 (
dB · B−1)

, and then 
expanding d 

(
AB−1)

using the product rule, and comparing with (3.146), we find

(
AB−1 · dB

)
B−1 = A

(
B−1 (

dB · B−1))
, (3.147)

which is an infinitesimal version of the right Bol identity (2.6). In particular,

(
B−1 · dB

)
B−1 = B−1 (

dB · B−1)
. (3.148)

Similarly, using (3.132b), the left inverse property then implies an infinitesimal left Bol 
identity.
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At each point x ∈ M , the map s defines a stabilizer subgroup Stab (sx) =
Aut (L, ◦s) ⊂ ΨR (L) with the corresponding Lie algebra hsx

. Similarly, we also have 

the orbit of sx given by CR (L, ◦sx
) ∼= ΨR (L)�Aut (L, ◦sx

), and the corresponding tan-
gent space qsx

∼= p/hsx
. Suppose θs|x ∈ qsx

for each x ∈ M . This of course always holds 
if L is a G-loop, in which case qsx

= l(sx). In this case, there exists a p-valued 1-form Θ
on M such that θs = ϕs (Θ). We can then characterize Θ in the following way.

Theorem 3.53. Suppose there exists Θ ∈ Ω1 (M, p) such that θs = ϕs (Θ). Then, for each 

x ∈ M , dΘ − 1
2 [Θ, Θ]

p

∣∣∣
x

∈ hsx
, where [·, ·]

p
is the Lie bracket on p.

Proof. Consider dθs in this case. Using (3.145), we have

dθs =d (ϕs (Θ)) = (dϕs) (Θ) + ϕs (dΘ)

= − Θ · θs + [ϕs (Θ) , θs](s)
. (3.149)

Note that the signs are switched in (3.149) because we also have an implied wedge 
product of 1-forms. Overall, we have

d (ϕs (Θ)) = ϕs (dΘ) − Θ · ϕs (Θ) + [ϕs (Θ) , ϕs (Θ)](s)
, (3.150)

however since θs = ϕs (Θ), it satisfies the Maurer-Cartan structural equation (3.130), so 
we also have

d (ϕs (Θ)) = 1
2 [ϕs (Θ) , ϕs (Θ)] . (3.151)

Equating (3.150) and (3.151), we find

ϕs (dΘ) = Θ · ϕs (Θ) − 1
2 [ϕs (Θ) , ϕs (Θ)](s)

. (3.152)

However, from (3.96), we find that

Θ · ϕs (Θ) − 1
2 [ϕs (Θ) , ϕs (Θ)] = 1

2ϕs

(
[Θ, Θ]

p

)
. (3.153)

Thus, we see that

ϕs

(
dΘ − 1

2 [Θ, Θ]
p

)
= 0. � (3.154)

Remark 3.54. In general, we can think of d −Θ as a connection on the trivial Lie algebra 
bundle M × p with curvature contained in hs(x) for each x ∈ M . In general the spaces 
hs(x) need not be all of the same dimension, and thus may this may not give a vector 
subbundle. On the other hand, if L is a G-loop, then we do get a subbundle.
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Now consider how θs behaves under the action of ΨR (L).

Lemma 3.55. Suppose h : M −→ ΨR (L) is a smooth map, then

θh(s) = (h′)∗

(
ϕs

(
θ

(p)
h

)
+ θs

)
, (3.155)

where θ
(p)
h = h∗θ(p) is the pullback of the left-invariant Maurer-Cartan form θ(p) on 

ΨR (L).

Proof. Suppose h : M −→ ΨR (L) is a smooth map, then consider θh(s). We then have

(
θh(s)

)∣∣
x

=
(

R−1
h(s(x))

)
∗

d (h (s))|x

=
(

R−1
h(s(x))

)
∗

((dh) (s) + h (ds))|x .

Consider each term. Using simplified notation, we have

(dh) (s) /h (s) = (h′)∗
((

h−1dh
)

(s) /s
)

(
R−1

h(s(x))

)
∗

(h (ds))|x = (h′)∗ (θs) .

Thus,
(

R−1
h(s(x))

)
∗

(dh) (s)|x =
(
h (x)′)

∗ ϕs(x)

(
θ

(p)
h

∣∣∣
x

)
,

and hence we get (3.155). �
If we have another smooth map f : M −→ L, using right multiplication with respect 

to ◦s(x), we can define a modified Darboux derivative θ(s)
f with respect to s:

(
θ

(s)
f

)∣∣∣
x

=
(

R
(s(x))
f(x)

)−1

∗
df |x . (3.156)

Note that this is now no longer necessarily a pullback of θ and hence may not satisfy 
the Maurer-Cartan equation. Adopting simplified notation, we have the following:

d (fs) /fs = (df · s + f · ds) /fs

=df/sf + Ad(s)
f θs (3.157)

Hence,

θ
(s)
f = θfs −

(
Ad(s)

f

)
θs. (3.158)
∗



66 S. Grigorian / Advances in Mathematics 393 (2021) 108078
Lemma 3.56. Suppose f, s ∈ C∞ (M,L), then

dθ
(s)
f = 1

2

[
θ

(s)
f , θ

(s)
f

](fs)
−

(
R

(s)
f

)−1

∗

[
θ

(s)
f , f, θs

](s)
. (3.159)

Proof. Applying the exterior derivative to (3.158) and then the structural equation for 
θfs, we have

dθ
(s)
f = 1

2 [θfs, θfs](fs) − d
((

Ad(s)
f

)
∗

θs

)
. (3.160)

From Lemma A.3, we can see that for ξ ∈ l,

d
(

Ad(s)
f

)
∗

ξ =
[
θ

(s)
f ,

(
Ad(s)

f

)
∗

ξ
](fs)

−
(

R
(s)
f

)−1

∗

[
θ

(s)
f , f, ξ

](s)

+
(

R
(s)
f

)−1

∗
[f, ξ, θs](s) (3.161)

−
(

R
(s)
f

)−1

∗

[(
Ad(s)

f

)
∗

ξ, f, θs

](s)
,

and hence

d
(

Ad(s)
f

)
∗

∧ θs =
[
θ

(s)
f ,

(
Ad(s)

f

)
∗

θs

](fs)
−

(
R

(s)
f

)−1

∗

[
θ

(s)
f , f, θs

](s)

−
(

R
(s)
f

)−1

∗
[f, θs, θs](s) (3.162)

+
(

R
(s)
f

)−1

∗

[(
Ad(s)

f

)
∗

θs, f, θs

](s)
,

where wedge products are implied. Now, using the structural equation and (3.58), we 
find (

Ad(s)
f

)
∗

dθs =1
2

(
Ad(s)

f

)
∗

[θs, θs](s)

=1
2

[(
Ad(s)

f

)
∗

θs, (Ad f)∗ θs

](fs)

−
(

R
(s)
f

)−1

∗

[(
Ad(s)

f

)
∗

θs, f, θs

](s)

+
(

R
(s)
f

)−1

∗
[f, θs, θs](s)

. (3.163)

Combining (3.162) and (3.163), we see that

d
((

Ad(s)
f

)
∗

θs

)
=d

(
Ad(s)

f

)
∗

∧ θs +
(

Ad(s)
f

)
∗

dθs

=
[
θ

(s)
f , (Ad f)∗ θs

](fs)
+ 1 [(

Ad(s)
f

)
θs, (Ad f)∗ θs

](fs)
2 ∗
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−
(

R
(s)
f

)−1

∗

[
θ

(s)
f , f, θs

](s)

=1
2 [θfs, θfs](fs) − 1

2

[
θ

(s)
f , θ

(s)
f

](fs)
(3.164)

−
(

R
(s)
f

)−1

∗

[
θ

(s)
f , f, θs

](s)
.

Thus, overall, substituting (3.164) into (3.160), we obtain (3.159). �
For Lie groups, θf determines f up to right translation by a constant element, however 

in the non-associative case this is not necessarily true.

Lemma 3.57. Let M be a connected manifold and suppose A, B : M −→ L be smooth 
maps. Then, A = BC for some constant C ∈ L if, and only if,

θA = θ
(B\A)
B . (3.165)

Proof. From (3.158),

θA − θ
(B\A)
B =

(
Ad(B\A)

B

)
∗

θB\A,

and thus, B\A is constant if, and only if, (3.165) holds. �
In particular, if B\A ∈ N R (L), then θ

(B\A)
B = θB , and hence θA = θB . If L is 

associative, then of course θ(A)
B = θB for any A, B, and we get the standard result [45].

We can also get a version of the structural equation integration theorem. In particular, 
the question is whether an l-valued 1-form that satisfies the structural equation is the 
Darboux derivative of some L-valued function.

Lemma 3.58. Suppose M is a smooth manifold and L a smooth loop. Let s ∈ C∞ (M,L)
and α ∈ Ω1 (M, l) satisfy the structural equation

dα − 1
2 [α, α](s) = 0, (3.166)

then

[α, α, α − θs](s) = 0, (3.167)

where wedge products are implied.

Proof. Applying d to (3.166) we have

0 =d [α, α](s)
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= [dα, α](s) − [α, dα](s) + [α, α, θs](s)

= [[α, α] , α] + [α, α, θs](s)

= − [α, α, α](s) + [α, α, θs](s)
,

where we have used (3.39) and in the last line an analog of (3.45). �
Theorem 3.59. Suppose M be a 1-connected (i.e. connected and simply-connected) smooth 
manifold and L a smooth loop. Let s ∈ C∞ (M,L) and α ∈ Ω1 (M, l) is such that

dα − 1
2 [α, α](s) = 0, (3.168)

and
(
Ad−1

s

)
∗ (α − θs) ∈ Ω1 (

M, T1N R (L)
)

. (3.169)

Then, there exists a function f ∈ C∞ (
M, N R (L)

)
such that α = θsf . Moreover, f is 

unique up to right multiplication by a constant element of N R (L).

Proof. Modifying the standard technique [45,51], let N = M × N R (L) ⊂ M ×L. Define 
the projection map πM : N −→ M and the map

Ls :N −→ L

(x, p) �→ s (x) p

Given the Maurer-Cartan form θ on L and α ∈ Ω1 (M, l), define β ∈ Ω1 (N, l) by

β = π∗
M α − (Ls)∗

θ. (3.170)

Then, at each point (x, p) ∈ N , define D(x,p) = ker β|(x,p). We can then see that this 
is a distribution on N of rank dim M . Let (v, w) ∈ T(x,p)N , where we consider w ∈
TpN R (L) ⊂ TpL. Then,

β(x,p) (v, w) = αx (v) − θs(x)p ((Ls)∗ (v, w)) . (3.171)

Now, let x (t) be a curve on M with x (0) = x and ẋ (0) = v, and p (t) a curve in 
N R (L) ⊂ L with p (0) = p and ṗ (0) = w. Then, using the fact that p is in the right 
nucleus,

θs(x)p ((Ls)∗ (v, w)) = d

dt
(s (x (t)) p (t))�(s (x) p)

∣∣∣∣
t=0

= d

dt
s (x (t))�s (x)

∣∣∣∣ + d

dt

(
s (x)

(
p (t)�p

))
�s (x)

∣∣∣∣∣

t=0 t=0
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= θs (v)|x +
(
Ads(x)

)
∗ w.

So overall,

β(x,p) (v, w) = (α − θs)x (v) −
(
Ads(x)

)
∗ w. (3.172)

Hence, (v, w) ∈ D(x,p) if, and only if, (α − θs)x (v) =
(
Ads(x)

)
∗ w. Now, consider 

(πM )∗|(x,p) : D(x,p) −→ TxM . Suppose (πM )∗|(x,p) (v, w) = 0. Then, v = 0, and 

since (α − θs)x (v) =
(
Ads(x)

)
∗ w, we have w = 0. Thus (πM )∗|(x,p) is injective on 

D(x,p). On the other hand, it is also clearly surjective, since if given v ∈ TxM , then (
v,

(
Ad−1

s(x)

)
∗

((α − θs)x (v))
)

∈ D(x,p). Overall, (πM )∗|(x,p) is a bijection from D(x,p) to 

TxM , so in particular, dim D(x,p) = dim M and thus D is a distribution of rank dim M .
Now let us show that D is involutive. We have

dβ|(x,p) = π∗
M dα|(x,p) − (Ls)∗

dθ
∣∣
(x,p)

=1
2 π∗

M [α, α](s)
∣∣∣
(x,p)

− 1
2 (Ls)∗ [θ, θ]

∣∣
(x,p)

=1
2

[
π∗

M α|(x,p) , π∗
M α|(x,p)

]s(x)
(3.173)

− 1
2

[
(Ls)∗

θ
∣∣
(x,p) , (Ls)∗

θ
∣∣
(x,p)

]s(x)p

.

Note however that because p ∈ N R (L), we have [·, ·]s(x) = [·, ·]s(x)p. So overall, using 
(3.170), we get

dβ|(x,p) = 1
2

[
β|(x,p) , β|(x,p)

]s(x)
+

[
β|(x,p) , (Ls)∗

θ
∣∣
(x,p)

]s(x)
.

Thus, dβ = 0 whenever β = 0, and hence D = ker β is involutive, and by the Frobenius 
Theorem, D is integrable. Let L be a leaf through the point (x, p) ∈ N . Then, πM

induced a local diffeomorphism from a neighborhood to (x, p) to some neighborhood of 
x ∈ M . Then, let F : U −→ L be the inverse map, such that F (y) = (y, f (y)) for some 
f : U −→ N R (L). By definition, F ∗β = 0, so

0 =F ∗β

=F ∗ (
π∗

M α − (Ls)∗
θ
)

=α − (Ls ◦ f)∗
θ

Hence, on U , α = θsf .
It is obvious that the distribution D is right-invariant with respect to N R (L), then 

proceeding in the same way as for Lie groups, we find that in fact that when M is 
1-connected, the function f extends to the whole manifold.
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Now suppose f, g ∈ C∞ (
M, N R (L)

)
such that θsf = θsg. Then using (3.157), but 

with roles of s and f reversed, we find

θsf = θs + (Ads)∗ θf ,

and similarly for g. Hence, we see that θf = θg. Using Lemma 3.57 for Lie groups, we 
find that f = gC for some constant C ∈ N R (L). �
Remark 3.60. In the case when L is a group, Theorem 3.59 reduces to the well-known 
analogous result for groups since the function s can be taken to be arbitrary. In particular, 
the hypothesis (3.169) is automatically satisfied in that case. On the other hand, for the 
loop of unit octonions, this theorem becomes trivial. In this case, N R (L) ∼= Z2, so the 
hypothesis (3.169) immediately implies that α = θs, even without using the equation 
(3.168). However, under certain additional assumptions about α and s, (3.168) may 
actually imply (3.169). Generally, (3.169) is stronger than (3.167), which we know holds 
for any α ∈ Ω1 (M, l) that satisfies (3.168). To bridge the gap between (3.167) and 
(3.169), additional properties of L and α are needed.

Corollary 3.61. Suppose M be a 1-connected smooth manifold and L a smooth loop such 
that dim

(
N R (L)

)
= dim

(
N R (l)

)
. Also suppose that s ∈ C∞ (M,L) and α ∈ Ω1 (M, l)

are such that

1. dα − 1
2 [α, α](s) = 0,

2. α|x : TxM −→ l is surjective for every x ∈ M ,
3. TxM ∼= ker α|x + ker (θs|x − α|x) for every x ∈ M ,
4. sx ∈ CR (L) for every x ∈ M .

Then, there exists a function f ∈ C∞ (
M, N R (L)

)
such that α = θsf with f unique 

up to right multiplication by a constant element of N R (L).

Proof. Since α satisfies (3.168), from Lemma 3.58 we know that it also satisfies (3.167). 
Suppose X, Y, Z ∈ TxM , such that Z ∈ ker α|x. Then, from (3.167) we obtain

[α (X) , α (Y ) , (α − θsx
) Z](sx) − [α (Y ) , α (X) , (α − θsx

) Z](sx) = 0. (3.174)

However, since TxM ∼= ker α|x + ker (θs|x − α|x), this is true for any Z ∈ TxM . Since 
α|x is surjective, we hence find that for any ξ, η ∈ l,

[ξ, η, (α − θsx
) Z](sx) − [η, ξ, (α − θsx

) Z](sx) = 0. (3.175)

Now, since sx ∈ CR (L), it is the right companion of some h ∈ ΨR (L), thus applying 
(h′)−1

∗ to (3.175), and using (3.57b), we find that for any ξ, η ∈ l,



S. Grigorian / Advances in Mathematics 393 (2021) 108078 71
[
ξ, η, (h′)−1

∗ ((α − θsx
) Z)

](1)
−

[
η, ξ, (h′)−1

∗ ((α − θsx
) Z)

](1)
= 0.

Thus, we see that for any Z ∈ TxM , (h′)−1
∗ ((α − θsx

) Z) ∈ N R (l). We know that 
T1N R (L) ⊂ N R (l), however by hypothesis, their dimensions are equal, so in fact, 

T1N R (L) = N R (l). Thus, (h′)−1
∗ ((α − θsx

) Z) ∈ T1N R (L) and hence, from (2.49), (
Ad−1

s(x)

)
∗

(α − θsx
) ∈ Ω1 (

M, T1N R (L)
)
. This fulfils the hypothesis (3.169) for Theo-

rem 3.59, and thus there exists a function f ∈ C∞ (
M, N R (L)

)
such that α = θsf . �

Remark 3.62. Since α is assumed to be surjective in Corollary 3.61 and α = θsf , we see 
that sf : M −→ L is a smooth submersion.

4. Loop bundles

Let L be a smooth loop with the L-algebra l, and let us define for brevity ΨR (L) = Ψ, 
Aut (L) = H, and PsAutR (L) = G ⊃ H, and N R (L) = N . Suppose Ψ, H, G, N are Lie 
groups. Recall that we also have Ψ/N ∼= G.

Let M be a smooth, finite-dimensional manifold with a Ψ-principal bundle P. Then 
we will define several associated bundles. In general, recall that there is a one-to-one cor-
respondence between equivariant maps from a principal bundle and sections of associated 
bundles. More precisely, suppose we have a manifold S with a left action l : Ψ ×S −→ S. 
Consider the associated bundle E = P ×Ψ S. Suppose we have a section f̃ : M −→ E, 
then this defines a unique equivariant map f : P −→ S, that is, such that for any h ∈ Ψ,

fph = lh−1 (fp) . (4.1)

Conversely, any equivariant map f : P −→ S defines a section (id, f) : P −→ P × S, and 
then via the quotient map q : P × S −→ P ×Ψ S = E, it defines a section f̃ : M −→ E. 
In particular, for each x ∈ M , f̃ (x) = �p, fp�Ψ where p ∈ π−1 (x) ⊂ P and �·, ·�Ψ is the 
equivalence class with respect to the action of Ψ:

(p, fp) ∼ (ph, lh−1 (fp)) = (ph, fph) for any h ∈ Ψ. (4.2)

For our purposes we will have the following associated bundles. Let h ∈ Ψ and, as before, 
denote by h′ the partial action of h.

Bundle Equivariant map Equivariance property
P k : P −→ Ψ kph = h−1kp

Q = P ×Ψ′ L q : P −→ L qph = (h′)−1 qp

Q̊ = P×ΨL̊ r : P −→ L̊ rph = h−1 (rp)
N ∼= P ×Ψ (Ψ/H) s : P −→ Ψ/H ∼= C ⊂L̊ sph = h−1 (sp)
A = P×Ψ′

∗
l η : P −→ l ηph = (h′)−1

∗ ηp

pP = P×(
Adξ

)
∗
p ξ : P −→ p ξph =

(
Ad−1

h

)
∗

ξp

G = P ×Ψ′ G γ : P −→ G γph = (h′)−1 γp
−1

(4.3)
Ad (P) = P ×AdΨ Ψ u : P −→ Ψ uph = h uph
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The bundle Q is the loop bundle with respect to the partial action Ψ′ and the bundle 
Q̊ is the loop bundle with respect to the full action of Ψ. The bundle N has fibers 
isomorphic to Ψ/H ∼= C, which is the set of right companions CR (L) ⊂ L̊. Thus it is 
a subbundle of Q̊. Equivalently, N = P/H is the orbit space of the right H-action on 
P. Recall that the structure group of P reduces to H if, and only if, the bundle N has 
a global section. If this is the case, then we can reduce the bundle P to a principal 
H-bundle H over M , and then since H ⊂ G, lift to a principal G-bundle G. Also, let 
Q = P ×Ψ′ L be the bundle associated to P with fiber L, where Ψ′ denotes that the left 
action on L is via the partial action of Ψ.

We also have some associated vector bundles - namely the vector bundle A with fibers 
isomorphic to the L-algebra l with the tangent partial action of Ψ and the vector bundle 
pP with fibers isomorphic to the Lie algebra p, with the adjoint action of Ψ.

Example 4.1. Let L = UO be the Moufang loop of unit octonions. In this case, Ψ =
Spin (7), H = G2, G = SO (7), N = Z2, and then we have the well-known relations

SO (7) ∼= Spin (7) /Z2

Spin (7) /G2 ∼=UO ∼= S7

SO (7) /G2 ∼=S7/Z2.

Then, if an orientable 7-manifold has spin structure, we have a principal Spin (7)-bundle 
P over M and the corresponding Spin (7) /G2-bundle always has a smooth section, hence 
allowing the Spin (7)-bundle to reduce to a G2-principal bundle, which in turn lifts to 
an SO (7)-bundle. The associated bundle Q in this case transforms under SO (7), and is 
precisely the unit subbundle of the octonion bundle R ⊕ TM defined in [15]. The bundle 
Q̊ then transforms under Spin (7) and corresponds to the bundle of unit spinors. The 
associated vector bundle A in this case has fibers isomorphic to ImO ∼= R7, and then 
the bundle itself is isomorphic to the tangent bundle TM .

Let s: P −→ L̊ be an equivariant map. In particular, the equivalence class �p, sp�Ψ
defines a section of the bundle Q̊. We will refer to s as the defining map (or section). It 
should be noted that such a map may not always exist globally. If L is a G-loop, then 

˚Q ∼= N and hence existence of a global section of Q̊ is equivalent to the reduction of the 
structure group of P. There may be topological obstructions for this.

Example 4.2. As in Example 2.24, let L =UC ∼= U (1) be the unit complex numbers, and 
Ψ = U (n), H = G = SU (n). Then in this setting, P is a principal U (n)-bundle over 
M and Q is a circle bundle. Existence of a section of Q is equivalent to the reduction of 
the structure group of P to SU (n). The obstruction for this is the first Chern class of Q
[33]. In the quaternionic case, at least for the tangent bundle, obstruction to structure 
group reduction from Sp (n) Sp (1) to Sp (n) is also given by Chern class.
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Given equivariant maps q, r : P −→ L, we can define an equivariant product using s, 
such that for any p ∈ P,

q ◦s r|p = qp ◦sp
rp. (4.4)

Indeed, using (2.38),

q ◦s r|ph =qph ◦sph
rph

= (h′)−1
qp ◦h−1(sp) (h′)−1

rp

= (h′)−1
(

q ◦s r|p
)

. (4.5)

In particular, this induces a fiberwise product on sections of Q. Similarly, we define 
equivariant left and right quotients, and thus well-defined fiberwise quotients of sections 
of Q.

Remark 4.3. The map s is required to define an equivariant product of two L-valued 
maps. In the G2-structure case, as discussed above, sections of Q̊ correspond to unit 
spinors, and each unit spinor defines a G2-structure, and hence a product on the corre-
sponding octonion bundle [15]. On the other hand, a product of an equivariant L-valued 
map and an equivariant L̊-valued map will be always equivariant, using (2.12a). In the 
G2-structure case, this corresponds to the Clifford product of a unit octonion, interpreted 
as an element of R ⊕ TxM at each point, and a unit spinor. The result is then again a 
unit spinor. This does not require any additional structure beyond the spinor bundle.

Given equivariant maps ξ, η : P −→ l, we can define an equivariant bracket using s. 
For any p ∈ P:

[ξ, η](s)
∣∣∣
p

= [ξp, ηp](sp)
. (4.6)

Here the equivariance follows from (3.57). Using (3.75) we then also have an equivariant 
map ϕs from equivariant p-valued maps to equivariant l-valued maps:

ϕs (γ)|p = ϕsp
(γp) . (4.7)

Other related objects such as the Killing form K(s) and the adjoint ϕt
s to ϕs are then 

similarly also equivariant.
Overall, we can condense the above discussion into the following definition and theo-

rem.

Definition 4.4. A loop bundle structure over a smooth manifold M is a quadruple 
(L, Ψ, P, s) where
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1. L is a finite-dimensional smooth loop with a smoothly acting group of right pseu-
doautomorphism pairs Ψ.

2. P is a principal Ψ-bundle over M .
3. s : P −→ L̊ is a smooth equivariant map.

Theorem 4.5. Given a loop bundle structure (L, Ψ, P, s) over a manifold M , and asso-
ciated bundles Q = P ×Ψ′ L, Q̊ = P×ΨL̊, A = P×Ψ′

∗ l, and pP = P×(Adξ)∗
p, where l is 

the L-algebra of L and p the Lie algebra of Ψ,

1. s determines a smooth section σ ∈ Γ 
(

Q̊
)

.
2. For any A, B ∈ Γ (Q), σ defines a fiberwise product A ◦σ B, via (4.4).
3. For any X, Y ∈ Γ (A), σ defines a fiberwise bracket [X, Y ](σ), via (4.6).
4. σ defines a fiberwise map ϕσ : Γ (pP) −→ Γ (A), via (4.7).

4.1. Connections and torsion

Suppose the principal Ψ-bundle P has a principal Ehresmann connection given by the 
decomposition

T P = HP ⊕ VP (4.8)

with HphP = (Rh)∗ HpP for any p ∈ P and h ∈ Ψ and VP = ker dπ, where π : P −→ M

is the bundle projection map. Let the projection

v : T P −→ VP

be the Ehresmann connection 1-form. Similarly, define the projection projH : TP −→
HP.

Let p be the Lie algebra of Ψ. Then, as it is well-known, we have an isomorphism

σ :P × p −→ VP

(p, ξ) �→ d

dt
(p exp (tξ))

∣∣∣∣
t=0

. (4.9)

For any ξ ∈ p, this defines a vertical vector field σ (ξ) on P. Given the Ehresmann 
connection 1-form v, define the p-valued connection 1-form ω via

(π, ω) = σ−1 ◦ v : T P −→ P × p

and recall that for any h ∈ Ψ,

(Rh)∗
ω = Adh−1 ◦ω.
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As before, suppose S is a manifold with a left action l of Ψ. Given an equivariant map 
f : P −→ S, define

dHf := f∗ ◦ projH : T P −→ HP −→ TS. (4.10)

This is then a horizontal map since it vanishes on any vertical vectors. Equivalently, for 
any Xp ∈ TpP, if γ (t) is a curve on P with γ (0) = 0 and γ̇ (0) = projH Xp ∈ HpP, then

dHf
∣∣
p

(Xp) = d

dt
f (γ (t))

∣∣∣∣
t=0

. (4.11)

The map dHf is moreover still equivariant. The group Ψ acts on TP via pushforwards 
of the right action of Ψ on P. Let h ∈ Ψ, so that rh : P −→ P gives the right action of 
Ψ on P, and the corresponding action of Ψ on TP is (rh)∗ : TP −→ TP. Note that the 
corresponding action of Ψ on TS is then (lh−1)∗ : TS −→ TS. Now,

dHf ◦ (rh)∗ =f∗ ◦ projH ◦ (rh)∗ = f∗ ◦ (rh)∗ ◦ projH
= (f ◦ rh)∗ ◦ projH = (lh−1 ◦ f)∗ ◦ projH
= (lh−1)∗ ◦ dHf

where we have used the equivariance of both f and projH. So indeed, dHf is equivariant. 
Now consider the quotient map q′ : P × TS −→ P×ΨTS, where Ψ acts via rh on P and 
(lh−1)∗ on TS. This is a partial differential of the map q : P × S −→ E. Since dHf is 
horizontal, it vanishes on the kernel of π∗ : TP −→ TM . Given f̃ , the section of the 
associated bundle P ×Ψ S that corresponds to f , we can use dHf to define the unique 
map

dHf̃ : TM −→ P×ΨTS (4.12)

such that

dHf̃ ◦ π∗ =
(
πT P , dHf

)
◦ q′

where πT P : TP −→ P is the bundle projection for TP. Moreover, dHf̃ covers the 
identity map on M , and hence is a section of the fiber product TM ×M (P×ΨTS). This 
construction is summarized in the commutative diagram in Fig. 3.

Of course, if S is a vector space, then this reduces to the usual definition of the exterior 
covariant derivative of a vector bundle-valued function and dHf is a vector-bundle-valued 
1-form.

Given the above correspondence between equivariant maps from P and sections of 
associated bundles, for convenience, we will work with equivariant maps rather than 
sections. This will allow us to use the properties of L from the previous section more 
directly.
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P × T S P ×Ψ T S

T P T M

P × S P ×Ψ S

P M

q′

(πT P ,dHf)

πT P

π∗

πT M

dHf̃

q

prj1
πE

π

(id,f) f̃

Fig. 3. Covariant derivative on maps and sections.

Given a p-valued connection 1-form ω on P, we can concretely work out dHf . Suppose 
X ∈ Γ (TP) is a vector field on P, then using the definition (4.10), we have

(
dHf

)
(X) =df (projH (X))

=df (X − v (X))

=df (X) − df (σ (πT P (X) , ω (X)))

where from (4.9), for p ∈ P,

σ (πT P (X) , ω (X))p = d

dt
(p exp (tω (Xp)))

∣∣∣∣
t=0

.

Now, let γ (t) = exp (tω (Xp)) ∈ Ψ, and note that γ (t)−1 = γ (−t), so that

df (σ (πT P (X) , ω (X)))|p = d

dt
(f (pγ (t)))

∣∣∣∣
t=0

= − d

dt
(exp (tω (Xp)) f (p))

∣∣∣∣
t=0

= − ω (Xp) · f (p) (4.13)

where we have used the equivariance of f and where, ω (Xp) · f (p) ∈ Tf(p)S denotes the 
infinitesimal action of ω (Xp) ∈ p on S.

Lemma 4.6. Let s be a Ψ-equivariant S-valued function on P and let ω be a p-valued 
connection 1-form on P, then the covariant differential dHs : TP −→ TS is given by

dHs = ds + ω · s (4.14)

where ω · s : TpP −→ Ts(p)S for each p ∈ P gives the infinitesimal action of ω on S.
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Now, more concretely, given a principal connection ω on P, consider the induced 
covariant derivatives on equivariant L- and L̊-valued maps. To avoid confusion, denote 
dH acting on L-valued maps by D and by D̊ when it is acting on ̊L-valued maps. Similarly, 
consider equivariant l-valued maps from P. Given ξ : P −→ l such that ξph =

(
h−1)′

∗ (ξ), 
define the covariant derivative dHξ via (4.14), so overall, given X ∈ Γ (TP),

dH
Xξ = dXξ + ω (X) · ξ (4.15)

where ω (X) ·ξ refers to the linear representation of the Lie algebra p on l given by (3.87).
We have the following useful relation between D and D̊.

Lemma 4.7. Suppose A : P −→ L and s : P −→ L̊ are equivariant, and let p ∈ P. Then,

D̊ (As)
∣∣∣
p

=
(
Rsp

)
∗ DA|p +

(
LAp

)
∗ D̊s

∣∣∣
p

. (4.16)

Note that D̊ (As)
∣∣∣
p

: TpP −→ TAsL̊.

Proof. Let Xp ∈ TpP and let p (t) be a curve on P with p (0) = p and ṗ (0) =
projH (Xp) ∈ HpP. Consider

D̊ (As)
∣∣∣
p

(Xp) = d

dt

(
Ap(t)sp(t)

)∣∣∣∣
t=0

(4.17)

However,

d

dt

(
Ap(t)sp(t)

)∣∣∣∣
t=0

= d

dt

(
Ap(t)sp

)∣∣∣∣
t=0

+ d

dt

(
Apsp(t)

)∣∣∣∣
t=0

=
(
Rsp

)
∗ (DA)p (Xp) +

(
LAp

)
∗

(
D̊s

)
p

(Xp) (4.18)

and thus (4.16) holds. �
Suppose now (L, Ψ, P, s) is a loop bundle structure, as in Definition 4.4, so that s is 

an L̊-valued equivariant map. Then we have the following important definition.

Definition 4.8. The torsion T (s,ω) of (L, Ψ, P, s) with respect to ω is a horizontal l-valued 
1-form on P given by

T (s,ω) = θs ◦ projH (4.19)

where θs is the Darboux derivative of s. Equivalently, at p ∈ P, we have

T (s,ω)
∣∣∣ =

(
R−1

sp

)
D̊s

∣∣∣ . (4.20)

p ∗ p
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Thus, T (s,ω) is the horizontal component of θs. We also easily see that it is Ψ-
equivariant. Using the equivariance of s and D̊s, we have for h ∈ Ψ,

T
(s,ω)
ph = (h′

∗)−1
T (s,ω)

p . (4.21)

Thus, T (s,ω) is a basic (i.e. horizontal and equivariant) l-valued 1-form on P, and thus 
defines a 1-form on M with values in the associated vector bundle A = P×Ψ′

∗ l. We also 
have the following key property of T (s,ω).

Theorem 4.9. Suppose T (s,ω) is as given in Definition 4.8 and also let ω̂(s) ∈ Ω1 (P, l) be 
given by

ω̂(s) = ϕs (ω) . (4.22)

Then,

θs = T (s,ω) − ω̂(s). (4.23)

In particular, T (s,ω) and the quantity −ω̂(s) are respectively the horizontal and vertical 
components of θs.

Proof. Let p ∈ P. Then, from (4.14) we have
(

R−1
sp

)
∗

D̊s
∣∣∣
p

=
(

R−1
sp

)
∗

ds|p +
(

R−1
sp

)
∗

(ω · sp)

= θs|p + d

dt
(exp (tωp) (sp))�sp

∣∣∣∣
t=0

= θs|p + ϕsp
(ωp) (4.24)

where we have used the definition (3.74) of ϕs. Hence we get (4.23). �
Suppose p (t) is a curve on P with p (0) = p and with a horizontal initial velocity 

vector ṗ (0) = XH
p . Then, by definition,

d

dt
sp(t)

∣∣∣∣
t=0

= D̊Xs
∣∣∣
p

=
(
Rsp

)
∗ T

(s,ω)
Xp

∣∣∣
p

, (4.25)

where T (s,ω)
X = T (s,ω) (X) ∈ l. This observation will come in useful later on.

Remark 4.10. If sp ∈ C ∼= �/H for all p ∈ P, then as we know, the structure group of P
is reduced to H. Moreover, the reduced holonomy group of ω is contained in H if, and 
only if, there exists such a map s with dHs = 0. This is equivalent to T (s,ω) = 0, so this 
is the motivation for calling this quantity the torsion. If s is not necessarily in C, then 
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we can still say something about the holonomy of ω in the case dHs = 0. Let p ∈ P and 
suppose Γ (t) is the horizontal lift with respect to the connection ω of some closed curve 
based at π (p). Then, the endpoint of Γ is Γ (1) = ph for some h ∈ Ψ. The set of all such 
h ∈ Ψ form the holonomy group Holp (ω) of ω at p [25]. Now if we have an equivariant 
map s : P −→ L, then s ◦ Γ is a curve on L with s (Γ (1)) = sph = h−1sp. However, 
d
dt (s ◦ Γ (t)) =

(
dHs

)
s◦Γ(t) Γ̇ (t) since the velocity vectors of Γ (t) are horizontal. Thus, 

if dHs = 0 everywhere, then the curve s ◦ Γ (t) is constant, and hence h−1sp = sp. By 
(2.44), this means that h ∈ Aut

(
L, ◦sp

)
. This is true for any horizontal lift Γ, hence we 

see that Holp (ω) ⊂ Aut
(
L, ◦sp

)
.

The torsion also enters expressions for covariant derivatives of the loop product, loop 
algebra bracket, as well as the map ϕs.

Theorem 4.11. Suppose A, B : P −→ L, and s : P −→ L̊ are equivariant, and let p ∈ P. 
Then,

D (A ◦s B)|p =
(

R
(sp)
Bp

)
∗

DA|p +
(

L
(sp)
Ap

)
∗

DB|p (4.26)

+
[
Ap, Bp, T (s,ω)

∣∣∣
p

](sp)

.

If ξ, η : P −→ l are equivariant, then

dH [ξ, η](s) =
[
dHξ, η

](s) +
[
ξ, dHη

](s) +
[
ξ, η, T (s,ω)

](s)
−

[
η, ξ, T (s,ω)

](s)
. (4.27)

The l ⊗ p∗-valued map ϕs : P −→ l ⊗ p∗ satisfies

dHϕs = idp ·T (s,ω) −
[
ϕs, T (s,ω)

](s)
, (4.28)

where idp is the identity map of p and · denotes the action of the Lie algebra p on l given 
by (3.87).

Proof. Let Xp ∈ TpP and let p (t) be a curve on P with p (0) = p and ṗ (0) =
projH (Xp) ∈ HpP. To show (4.26), first note that

D (A ◦s B)|p (Xp) = d

dt

(
Ap(t) ◦sp(t) Bp(t)

)∣∣∣∣
t=0

. (4.29)

However,

d

dt

(
Ap(t) ◦sp(t) Bp(t)

)∣∣∣∣
t=0

= d

dt

(
Ap(t) ◦sp

Bp

)∣∣∣∣
t=0

+ d

dt

(
Ap ◦sp

Bp(t)
)∣∣∣∣

t=0

+ d (
Ap ◦sp(t) Bp

)∣∣∣∣
dt t=0
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=
(

R
(sp)
Bp

)
∗

DA|p (Xp) +
(

L
(sp)
Ap

)
∗

DB|p (Xp)

+ d

dt

(
Ap ◦sp(t) Bp

)∣∣∣∣
t=0

(4.30)

and then, using Lemma A.1,

d

dt

(
Ap ◦sp(t) Bp

)∣∣∣∣
t=0

= d

dt

((
Ap · Bpsp(t)

)
/sp(t)

)∣∣∣∣
t=0

= d

dt

((
Ap · Bpsp(t)

)
/sp

)∣∣∣∣
t=0

(4.31)

+ d

dt

(
(Ap · Bpsp) /sp · sp(t)

)
/sp

∣∣∣∣
t=0

.

Looking at each term in (4.31), we have

(
Ap · Bpsp(t)

)
/sp =

(
Ap · Bp

(
sp(t)�sp

· sp

))
/sp

=Ap ◦sp

(
Bp ◦sp

(
sp(t)�sp

))
and

(
(Ap · Bpsp) /sp · sp(t)

)
/sp =

(
Ap ◦sp

Bp

)
◦sp

(
sp(t)�sp

)
.

Overall (4.30) becomes,

d

dt

(
Ap ◦sp(t) Bp

)∣∣∣∣
t=0

=
((

L
(sp)
Ap

◦ L
(sp)
Bp

)
∗

−
(

L
(sp)
Ap◦sp Bp

)
∗

) (
R−1

sp

)
∗

D̊s
∣∣∣
p

(Xp) (4.32)

and hence we get (4.26) using the definitions of T (s,ω) and the mixed associator (3.11).
To show (4.27), note that

dH
X

(
[ξ, η](s)

)∣∣∣
p

= d

dt

[
ξp(t), ηp(t)

](
sp(t)

)∣∣∣∣
t=0

=
[

dH
Xξ

∣∣
p

, ηp

](sp)
+

[
ξp, dH

Xη
∣∣
p

](sp)

+ d

dt
[ξp, ηp]

(
sp(t)

)∣∣∣∣
t=0

.

However, using (3.39) and (4.25), the last term becomes

d [ξp, ηp]
(
sp(t)

)∣∣∣∣ =
[
ξp, ηp, T

(s,ω)
X

∣∣∣ ](sp)

−
[
ηp, ξp, T

(s,ω)
X

∣∣∣ ](sp)
dt t=0 p p
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and hence we obtain (4.27).
Let us now show (4.28). From (3.81), given γ ∈ p, setting γ̂ (r) = ϕr (γ) for each 

r ∈ L, we have

dγ̂|r (ρr (ξ)) = γ · ξ − [γ̂ (r) , ξ](r) (4.33)

for some ξ ∈ l. Now for a map s : P −→ L and some vector field X on P, we have at 
each p ∈ P

d (ϕs (γ))|p (X) = dγ̂|sp
◦ ds|p (X)

= dγ̂|sp

(
ρsp

(θs (Xp))
)

=γ · θs (Xp) −
[
ϕsp

(γ) , θs (Xp)
](sp)

. (4.34)

Therefore, dϕs is given by

dϕs (γ) = γ · θs − [ϕs (γ) , θs](s)
. (4.35)

To obtain dHϕs we take the horizontal component, and hence using (4.23), we just 
replace θs in (4.35) by T (s,ω), which gives (4.28). �
Remark 4.12. If L is associative, i.e. is a group, then certainly A ◦s B = AB and this is 
then an equivariant section, if A and B are such. In (4.26) the second term on the right 
vanishes, and thus D satisfies the product rule with respect to multiplication on L.

We can rewrite (4.16) as

D̊ (As) = (DA) s + A
((

D̊s
)

/s · s
)

= (DA) s +
(

A ◦s T (s,ω)
)

s. (4.36)

Using this, we can then define an adapted covariant derivative D(s) on equivariant L-
valued maps, given by

D(s)A
∣∣∣
p

=
(

R−1
sp

)
∗

D̊ (As)
∣∣∣
p

= DA|p +
(

L
(sp)
Ap

)
∗

T (s,ω)
p (4.37)

with respect to which,

D(s) (A ◦s B)
∣∣∣
p

=
(

R
(sp)
Bp

)
∗

DA|p +
(

L
(sp)
Ap

)
∗

D(s)B
∣∣∣
p

. (4.38)

This is the precise analog of the octonion covariant derivative from [15]. The deriva-
tive D(s) essentially converts an L-valued map into an L̊-valued one using s and then 
differentiates it using D̊ before converting back to L. In particular, if we take A = 1,
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D(s)1 = T (s,ω). (4.39)

Remark 4.13. Up to the sign of T , (4.26) and (4.37) are precisely the expressions obtained 
in [15] for the covariant derivative with respect to the Levi-Civita connection of the 
product on the octonion bundle over a 7-manifold. In that case, T is precisely the torsion 
of the G2-structure that defines the octonion bundle. This provides additional motivation 
for calling this quantity the torsion of s and ω. In the case of G2-structures, usually one 
takes the torsion with respect to the preferred Levi-Civita connection, however in this 
more general setting, we don’t have a preferred connection, thus T (s,ω) should also be 
taken to depend on the connection.

Corollary 4.14. Suppose L is an alternative loop, so that the associator is skew-
symmetric. Suppose ξ, η −→ l and s : P −→ L̊ are equivariant. Then, defining a modified 
exterior derivative d(s) on equivariant maps from P to l via

d(s)ξ = dHξ + 1
3

[
ξ, T (s)

](s)
, (4.40)

it satisfies

d(s) [ξ, η](s) =
[
d(s)ξ, η

](s)
+

[
ξ, d(s)η

](s)
. (4.41)

Proof. If L is alternative, then the loop Jacobi identity (3.46) becomes

[
ξ, [η, γ](s)

](s)
+

[
η, [γ, ξ](s)

](s)
+

[
γ, [ξ, η](s)

](s)
= 6 [ξ, η, γ](s)

. (4.42)

On the other hand, (4.27) becomes

dH [ξ, η](s) =
[
dHξ, η

](s) +
[
ξ, dHη

](s) + 2
[
ξ, η, T (s)

](s)
. (4.43)

Thus, using both (4.42) and (4.43), we obtain

d(s) [ξ, η](s) =dH [ξ, η](s) + 1
3

[
[ξ, η](s)

, T (s)
](s)

=
[
d(s)ξ, η

](s)
+

[
ξ, d(s)η

](s)

− 1
3

[[
ξ, T (s)

](s)
, η

](s)

− 1
3

[
ξ,

[
η, T (s)

](s)
](s)

+ 1
3

[
[ξ, η](s)

, T (s)
](s)

+ 2
[
ξ, η, T (s)

](s)

=
[
d(s)ξ, η

](s)
+

[
ξ, d(s)η

](s)
. �
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Remark 4.15. In the case of G2-structures and octonions, the derivative (4.40) exactly 
replicates the modified covariant derivative that preserves the G2-structure that was 
introduced in [10].

Example 4.16. The map ϕs is equivariant on P and hence defines a section of the as-
sociated bundle A ⊗ ad (P)∗ over M . If L is the loop of unit octonions and l ∼= ImO, 
and we have a G2-structure on M , then ϕs corresponds to a section of TM ⊗ Λ2TM , 
which up to a constant factor is a multiple of the corresponding G2-structure 3-form ϕ
with indices raised using the associated metric. The torsion T of ϕ with respect to the 
Levi-Civita connection on TM is then a section of TM ⊗ T ∗M . Noting that so (7) acts 
on R7 by matrix multiplication, if we set (ϕs)abc = −1

4ϕabc in local coordinates, then 
(4.28) precisely recovers the well-known formula for ∇ϕ in terms of T . Indeed, suppose 
ξ ∈ Γ 

(
Λ2T ∗M

)
, then in a local basis {ea}, for some fixed vector field X, we have

(∇Xϕs) (ξ) =ξ · TX − [ϕs (ξ) , TX ](s)

=
(

ξa
bT b

X + 1
2ϕa

bcϕbdeξdeT c
X

)
ea

=
(

ξa
bT b

X − 1
2

(
ψa

c
de + gadgc

e − gaegc
d
)

ξdeT c
X

)
ea

=1
2T c

Xψc
adeξdeea,

where ψ = ∗ϕ. Hence, indeed,

∇Xϕ = −2TX�ψ, (4.44)

which is exactly as in [15], taking into account that the torsion here differs by a sign 
from [15]. Here we also used the convention that [X, Y ] = 2X�Y �ϕ and also contraction 
identities for ϕ [14,22]. This is also consistent with the expression (4.27) for the covariant 
derivative of the bracket. Indeed, in the case of an alternative loop, (4.43) shows that 
the covariant derivative of the bracket function bs is given by

dHbs = 2
[
·, ·, T (s ,ω)

](s)
. (4.45)

Taking bs = 2ϕ and [·, ·, ·](s) given by 
(

[X, Y, Z](s)
)a

= 2ψa
bcdXbY cZd, as in [15], we 

again recover (4.44).

Example 4.17. Suppose P is a principal U (n)-bundle and L ∼= U (1), the unit complex 
numbers, as in Example 3.28. Then, (4.28) shows that dHϕs = 0. If V is an n-dimensional 
complex vector space with the standard action of U (n) on it and V = P ×U(n) V is the 
associated vector bundle to P with fiber V , then ϕs defines a Kähler form on V.
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Example 4.18. Suppose P is a principal Sp (n) Sp (1)-bundle and L ∼= Sp (1), the unit 
quaternions, as in Example 3.29. Then, (4.28) shows that dHϕs = − 

[
ϕs, T (s ,ω)]

Im H
. If 

V is an n-dimensional quaternionic vector space with the standard action of Sp (n) Sp (1)
on it and V = P×Sp(n)Sp(1)V is the associated vector bundle to P with fiber V , then ϕs

defines a 2-form on V with values in ImH (since the bundle A is trivial). So this gives 
rise to 3 linearly independent 2-forms ω1, ω2, ω3. If T (s,ω) = 0, then this reduces to a 
HyperKähler structure on V. It is an interesting question whether the case T (s,ω) �= 0 is 
related to “HyperKähler with torsion” geometry [13,50].

4.2. Curvature

Recall that the curvature F ∈ Ω2 (P, p) of the connection ω on P is given by

F (ω) = dHω = dω ◦ projH, (4.46)

so that, for X, Y ∈ Γ (TP),

F (ω) (X, Y ) = dω
(
XH, Y H)

= −ω
([

XH, Y H])
, (4.47)

where XH, Y H are the projections of X, Y to HP.
Similarly as ω̂, define F̂ (s,ω) ∈ Ω2 (P, l) to be the projection of the curvature F (ω) to 

l with respect to s, such that for any Xp, Yp ∈ TpP,

F̂ (s,ω) (Xp, Yp) =ϕs

(
F (ω)

)
(Xp, Yp)

= d

dt

(
exp

(
tF (ω) (Xp, Yp)

)
(sp)

)
�sp

∣∣∣∣∣
t=0

. (4.48)

We easily see that

dHω̂(s) = F̂ (s,ω). (4.49)

Indeed,

dHω̂(s) = dH (ϕs (ω)) = dHϕs ∧ (ω ◦ projH) + ϕs

(
dHω

)
= F̂ (s,ω),

where we have used the fact that ω is vertical.
We then have the following structure equations

Theorem 4.19. F̂ (s,ω) and T (s,ω) satisfy the following structure equation

F̂ (s,ω) = dHT (s,ω) − 1 [
T (s,ω), T (s,ω)

](s)
, (4.50)
2
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where a wedge product between the 1-forms T (s,ω) is implied. Equivalently, (4.50) can be 
written as

dω̂(s) + 1
2

[
ω̂(s), ω̂(s)

](s)
= F̂ (s,ω) − dHϕs ∧ ω, (4.51)

where 
(
dHϕs ∧ ω

)
(X, Y ) =

(
dH

Xϕs

)
(ω (Y ))−

(
dH

Y ϕs

)
(ω (X)) for any vector fields X and 

Y on P.

Proof. Using (4.23), we have

dHT (s,ω) =dT (s,ω) ◦ projH

=
(

dθs + dω̂(s)
)

◦ projH . (4.52)

Now consider the first term. Let Xp, Yp ∈ TpP, then

dθs

(
XH

p , Y H
p

)
= (dθ)sp

(
s∗XH

p , s∗Y H
p

)
= (dθ)sp

(
D̊Xp

s, D̊YP
s
)

(4.53)

=
[
θ

(
D̊Xp

s
)

, θ
(

D̊YP
s
)](sp)

=
[
T (s,ω) (Xp) , T (s,ω) (Yp)

](sp)
, (4.54)

where we have used the Maurer-Cartan structural equation for loops (3.35). Using (4.49)
for the second term, overall, we obtain (4.50).

From the Maurer-Cartan equation (3.35),

dθs − 1
2 [θs, θs](s) = 0.

We also have from (4.23)

[θs, θs](s) =
[
T (s,ω), T (s,ω)

](s)
− 2

[
ω̂(s), T (s,ω)

](s)
+

[
ω̂(s), ω̂(s)

](s)
.

Hence

dθs = dT (s,ω) − dω̂(s) = 1
2

[
T (s,ω), T (s,ω)

](s)
−

[
ω̂(s), T (s,ω)

](s)
+ 1

2

[
ω̂(s), ω̂(s)

](s)
.

Noting that

dT (s,ω) = dHT (s,ω) − ω∧̇T (s,ω)

we find
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dω̂(s) + 1
2

[
ω̂(s), ω̂(s)

](s)
=dHT (s,ω) − ω∧̇T (s,ω)

− 1
2

[
T (s,ω), T (s,ω)

](s)
+

[
ω̂(s), T (s,ω)

](s)

and then using (4.50) and (4.28) we obtain (4.51). �
Corollary 4.20 (Bianchi identity). The quantity F̂ (s,ω) satisfies the equation

dHF̂ (s,ω) = dHϕs ∧ F

=F ∧̇T (s,ω) −
[
F̂ (s,ω), T (s,ω)

](s)
(4.55)

where ∧̇ denotes the linear action of p on l combined with a wedge product.

Proof. Using the definition (4.48) of F̂ (s,ω), we have

dHF̂ (s,ω) = dH (ϕs (F )) = dHϕs ∧ F + ϕs

(
dHF

)
,

however using the standard Bianchi identity, dHF = 0, and (4.28), we obtain (4.55). �
Remark 4.21. Since the Bianchi identity (4.55) is not a standard one, one may wonder 
if differentiating it leads to additional identities. It is however a straightforward exercise 
using previously established identities for F̂ and T , as well as the Akivis identity (3.46), 
to show that the identity (4.55) does not lead to any other additional identities.

Example 4.22. The equation (4.50) is the precise analog of what is known as the “G2-
structure Bianchi identity” [15,23] (not to be confused with the Bianchi identity (4.55)). 
In the case of G2-structures, F̂ corresponds precisely to the quantity 1

4π7 Riem, which 
is the projection of the endomorphism part of Riem to the 7-dimensional representation 
of G2. In local coordinates, it is given by 1

4 Riemabcd ϕcde.

Example 4.23. In the complex case, with L =UC and P a principal U (n)-bundle, (4.50)
shows that F̂ (s,ω) = dT (s,ω). Here dH = d on l-valued forms because the action of pn on 
l is trivial (as in Example 3.28). If s is a global section, then this shows that F̂ is an 

exact 2-form - and so the class 
[
F̂

]
= 0. This is consistent with a vanishing first Chern 

class which is a necessary condition for existence of a global s. On the other hand, if 
we suppose that s is only a local section, so that T (s,ω) is a local 1-form, then we only 
get that F̂ (s,ω) is closed, so in this case it may define a non-trivial first Chern class. If 
P is the unitary frame bundle over a complex manifold, it defines a Kähler metric, and 
then F̂ precisely corresponds to the Ricci curvature, so that the Ricci-flat condition for 
reduction to a Calabi-Yau manifold is F̂ = 0.
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The equation (4.51) is interesting because this is an analog of the structure equation 
for the connection 1-form ω on P. However, in the case of ω, the quantity dω − 1

2 [ω, ω] is 
horizontal. However, for ω̂(s), F̂ (s,ω) gives the horizontal component, while the remaining 
terms give mixed vertical and horizontal components. The fully vertical components 
vanish. We also see that ω̂(s) satisfies the loop Maurer-Cartan equation if, and only if, 
F̂ (s,ω) = 0 and dHϕs = 0. In the G2 case, ∇ϕ = 0 of course is equivalent to T = 0 and 
hence implies 1

4π7 Riem = 0. More generally, this may not need to be the case.

Lemma 4.24. Suppose L is a left-alternative loop and suppose −ω̂(s) satisfies the Maurer-
Cartan equation

dω̂(s) + 1
2

[
ω̂(s), ω̂(s)

](s)
= 0, (4.56)

then for any α, β ∈ q(sp) ∼= T1CR
(
L, ◦sp

)
,

[
α, β, T (s,ω)

p

](sp)
= 0. (4.57)

Proof. Taking the exterior derivative of (4.56) and applying (3.166), we find ω̂(s) satisfies

0 =
[
ω̂(s), ω̂(s), θs + ω̂(s)

](s)
=

[
ω̂(s), ω̂(s), T (s,ω)

](s)
. (4.58)

Since L is left-alternative, we know that the L-algebra associator is skew in the first two 
entries, so if given vector fields X, Y, Z on P, we have

0 =
[
ω̂(s) (X) , ω̂(s) (Y ) , T (s,ω) (Z)

](s)
+

[
ω̂(s) (Y ) , ω̂(s) (Z) , T (s,ω) (X)

](s)

+
[
ω̂(s) (Z) , ω̂(s) (X) , T (s,ω) (Y )

](s)
. (4.59)

Let ξ ∈ p and let X = σ (ξ) be a vertical vector field on P, then

ω̂(s) (X) = ϕs (ω (X)) = ϕs (ξ) .

In (4.59), we take X = σ (ξ) and Y = σ (η) to be vertical vector fields and Z = Zh a 
horizontal vector field. Then since ω̂(s) is vertical and T (s,ω) is horizontal, we find that 
for any ξ, η ∈ p,

[
ϕs (ξ) , ϕs (η) , T (s,ω) (Z)

](s)
= 0.

We know that for each p ∈ P, the map ϕsp
is surjective onto q(sp) ⊂ l(sp) and thus (4.57)

holds. �
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Theorem 4.25. Suppose P is 1-connected and L a smooth loop such that

1. l is a left-alternative algebra (i.e. the associator on l is skew-symmetric in the first 
two entries),

2. dim
(
N R (L)

)
= dim

(
N R (l)

)
.

Moreover, suppose sp ∈ CR (L) for every p ∈ P, then ω̂(s) satisfies the Maurer-Cartan 
equation (4.56) if, and only if, there exists a map f : P −→ N R (L) such that

T (s,ω) = − (Ads)∗ θf . (4.60)

Proof. Since s has values in CR (L), using Lemma 4.24, we see that the conditions of 
Corollary 3.61 are satisfied, and hence there exists a map f : P −→ N R (L) such that

−ω̂(s) = θsf

= θs + (Ads)∗ θf .

From (4.23),

T (s,ω) = θs + ω̂(s) = − (Ads)∗ θf .

Conversely, suppose (4.60) holds for some right nucleus-valued map f . Then, clearly 
ω̂(s) = −θsf , and thus −ω̂(s) satisfies (4.56). �
Remark 4.26. Theorem 4.25 shows that if L has a sufficiently large nucleus, then F̂ (s,ω) =
0 and dHϕs = 0 do not necessarily imply that T (s,ω) = 0. In the case of unit octonions, the 
nucleus is just {±1}, so any nucleus-valued map is constant on connected components, 
hence in this case if ω̂(s) satisfies (4.56), then T (s,ω) = 0.

4.3. Deformations

The torsion of a loop structure is determined by the equivariant L̊-valued map s and 
the connection ω on P. There are several possible deformations of s and ω. In particular, s
may be deformed by the action of Ψ or by left multiplication action of L. The connection 
ω may be deformed by the affine action of Ω1

basic (P, p) or by gauge transformations in Ψ. 
Moreover, of course, these deformations may be combined or considered infinitesimally. 
Since T (s,ω) is the horizontal part of θs, when considering deformations of s it is sufficient 
to consider what happens to θs and then taking the horizontal component.

Recall that the space of connections on P is an affine space modeled on equivariant 
horizontal (i.e. basic) p-valued 1-forms on P. Thus, any connection ω̃ = ω + A for some 
basic p-valued 1-form A. Then,

T (s,ω̃) = θs + ϕs (ω̃) = T (s,ω) + Â (4.61)



S. Grigorian / Advances in Mathematics 393 (2021) 108078 89
where Â = ϕs (A). Thus, we can set T (s,ω̃) = 0 by choosing A such that Â = −T (s,ω)

if, and only if, for each p ∈ P , T
(s,ω)
p ∈ q(sp) = ϕsp

(p). Since ω̂ is always in the image 
of ϕs, we conclude there exists a connection ω̃ for which T (s,ω̃) = 0 if, and only if, θs|p
∈ q(sp) for each p. In that case, θs = −ϕs (ω̃). From Theorem 3.53, we then see that ω̃
has curvature with values in hs.

Recall that if φ : P −→ P is a gauge transformation, then there exists an AdΨ-
equivariant map u : P −→ Ψ such that for each p ∈ P, φ (p) = pup. Each such map 
then corresponds to a section of the associated bundle Ad (P). The gauge-transformed 
connection 1-form is then ωφ = u∗ω, where

u∗ω = (Adu−1)∗ ω + u∗θΨ (4.62)

where θΨ is the left-invariant Maurer-Cartan form on Ψ. Then,

du∗Hs =
(
l−1
u

)
∗ dH (lus)

=dHs + (u∗θΨ)H · sp (4.63)

where at each p ∈ P.

(u∗θΨ)H
∣∣∣
p

=
(
lup

)−1
∗ ◦

(
dHu

)
p

.

Hence,

T (s,u∗ω) =
(
R−1

s

)
∗ du∗Hs = T (s,ω) + ϕs

(
(u∗θΨ)H

)
. (4.64)

Consider the curvature F u∗ω of the connection u∗ω. It is well-known that it is given by

F u∗ω = (Adu−1)∗ F. (4.65)

From Theorem 3.25, we then have

F̂ (s,u∗ω) = ϕs ((Adu−1)∗ F ) =
(
u−1)′

∗ F̂ (u(s),ω). (4.66)

On the other hand, using (4.63) and (4.37) we have

T (s,u∗ω) =
(
R−1

s

)
∗

(
u∗D̊

)
(s)

=
(
R−1

s

)
∗

(
u−1)

∗ D̊ (u (s))

=
(
u−1)′

∗

(
R−1

u(s)

)
∗

D̊ (u (s))

=
(
u−1)′

∗ T (u(s),ω).

Summarizing, we have the following.
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Theorem 4.27. Suppose s : P −→ L̊ and u : P −→ Ψ are equivariant smooth maps. 
Then,

T (s,u∗ω) =T (s,ω) + ϕs

(
(u∗θΨ)H

)
(4.67a)

=
(
u−1)′

∗ T (u(s),ω)

F̂ (s,u∗ω) =
(
u−1)′

∗ F̂ (u(s),ω). (4.67b)

In particular,

T
(
u−1(s),u∗ω

)
= (u′)−1

∗ T (s,ω) and F̂
(
u−1(s),u∗ω

)
=

(
u−1)′

∗ F̂ (s,ω). (4.68)

This shows that both T and F̂ transform equivariantly with respect to a simultaneous 
transformation of s and ω. In particular, if we have a Riemannian metric on the base 
manifold M and a Ψ-covariant metric on l, then with respect to the induced metric on 
T ∗P ⊗ l, the quantities |T |2 and |F |2 are invariant with respect to the transformation 
(s, ω) �→

(
u−1 (s) , u∗ω

)
. In the case of G2-structure, the key question is regarding the 

holonomy of the Levi-Civita connection, so in this general setting, if we are interested 
in the holonomy of ω, it makes sense to consider individual transformations s �→ As for 
some equivariant A ∈ C∞ (P,L) and ω �→ u∗ω because each of these transformations 
leaves the holonomy group unchanged. We also see that every transformation s �→ u (s)
for some equivariant u ∈ C∞ (P, Ψ) corresponds to a transformation s �→ As, where 
A = h (s) /s. From (2.40), this is precisely the companion of the corresponding map 
us ∈ Ψ (L, ◦s). Moreover, this correspondence is one-to-one if, and only if, L is a G-
loop. It is easy to see that A is then an equivariant L-valued map. Thus, considering 
transformations s �→ As is more general in some situations.

Theorem 4.28. Suppose A : P −→ L and s : P −→ L̊. Then,

T (As,ω) =
(

R
(s)
A

)−1

∗
DA +

(
Ad(s)

A

)
∗

T (s,ω) =
(

R
(s)
A

)−1

∗
D(s)A (4.69a)

F̂ (As,ω) =
(

R
(s)
A

)−1

∗
(F ′ · A) +

(
Ad(s)

A

)
∗

F̂ (s,ω), (4.69b)

where F ′ · A denotes the infinitesimal action of p on L.

Proof. Recall from (3.158), that

θAs = θ
(s)
A +

(
Ad(s)

A

)
∗

θs. (4.70)

Now, T (s,ω) is just the horizontal part of θs, so taking the horizontal projection in (4.70), 
we immediately get (4.69a). To obtain (4.69b), from (3.77) we have
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F̂ (As,ω) = ϕAs (F ) =
(

R
(s)
A

)−1

∗
(F ′ · A) +

(
Ad(s)

A

)
∗

ϕs (F ) , (4.71)

and hence we obtain (4.69b). �
Remark 4.29. The expression (4.69a) precisely replicates the formula for the transforma-
tion of torsion of a G2-structure within a fixed metric class, as derived in [15].

Now suppose st is a 1-parameter family of equivariant L̊-valued maps that satisfy

∂st

∂t
= (Rst

)∗ ξt (4.72)

where ξt is a 1-parameter family of l-valued maps. In particular, if ξ (t) is independent of 
t, then s (t) = exps0

(tξ) s0. Then let us work out the evolution of T (s(t),ω) and F̂ (s(t),ω). 
First consider the evolution of θs(t) and ϕs(t).

Lemma 4.30. Suppose s (t) satisfies (4.72), then

∂θs(t)

∂t
=dξ (t) −

[
θs(t), ξ (t)

](s(t)) (4.73a)

∂ϕs(t)

∂t
= idp ·ξ (t) −

[
ϕs(t), ξ (t)

](s(t))
. (4.73b)

Proof. For θs(t), suppressing pushforwards, we have

∂θs(t)

∂t
= ∂

∂t
((ds (t)) /s (t))

= (dṡ) /s − ((ds) /s · ṡ) /s

=d (ξs) /s − ((ds) /s · (ξs)) /s

=dξ −
[
θs(t), ξ

](s(t))
. (4.74)

Similarly, for ϕs(t), let η ∈ p, then

∂ϕs(t) (η)
∂t

= ∂

∂t

(
d

dτ
exp (τη) (s) /s

∣∣∣∣
τ=0

)

= d

dτ
exp (τη) ((ξs) /s)

∣∣∣∣
τ=0

− d

dτ
(exp (τη) ((s) /s) · (ξs)) /s

∣∣∣∣
τ=0

= d

dτ
exp (τη)′ (ξ)

∣∣∣∣
τ=0

+ d

dτ
(ξ exp (τη) (s)) /s

∣∣∣∣
τ=0

− d

dτ
(exp (τη) ((s) /s) · (ξs)) /s

∣∣∣∣
τ=0

=η · ξ (t) −
[
ϕs(t) (η) , ξ (t)

](s(t))
. � (4.75)
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To obtain the evolution of T (s(t),ω) and F̂ (s(t),ω), we just take the horizontal component 
of (4.73b) and substitute F into (4.73b).

Corollary 4.31. Suppose s (t) satisfies (4.72), then

∂T (s(t),ω)

∂t
=dHξ (t) −

[
T (s(t),ω), ξ (t)

](s(t))
(4.76a)

∂F̂ (s(t),ω)

∂t
=F · ξ (t) −

[
F̂ (s(t),ω), ξ (t)

](s(t))
. (4.76b)

The expression (4.76a) is the analog of a similar expression for the evolution of the 
torsion of a G2-structure, as given in [17,23].

Remark 4.32. Suppose ut is a 1-parameter family of equivariant Ψ-valued maps that 
satisfy

∂ut

∂t
= (lut

)∗ γt (4.77)

for a 1-parameter family γt of equivariant p-valued maps. Then, each ut defines a gauge 
transformation of the connection ω. Define

ωt = u∗
t ω. (4.78)

Then, it is easy to see that

∂ωt

∂t
= dγt + [ωt, γt]p = dHtγt, (4.79)

where dHt is the covariant derivative corresponding to ωt. Similarly, the corresponding 
curvature Ft evolves via the equation

∂Ft

∂t
= [Ft, γt]p . (4.80)

Using (4.79) together with (4.76a) gives

∂T (st,ωt)

∂t
= dHtξt −

[
T (st,ωt), ξt

](st)
+ ϕst

(
dHtγt

)
. (4.81)

However,

ϕst

(
dHtγt

)
=dHt γ̂

(st)
t −

(
dHtϕst

)
(γt)

=dHt γ̂
(st)
t − γt · T (st,ωt) −

[
T (st,ωt), γ̂

(st)
t

](st)
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and thus (4.81) becomes

∂T (st,ωt)

∂t
= −γt · T (st,ωt) + dHt

(
ξt + γ̂

(st)
t

)
−

[
T (st,ωt), ξt + γ̂

(st)
t

](st)
. (4.82)

For the curvature, using (4.80) together with (4.76b) gives

∂F̂ (st,ωt)

∂t
= Ft · ξt −

[
F̂ (st,ωt), ξt

](st)
+ ϕst

(
[Ft, γt]p

)
. (4.83)

Using (3.96), we then get

∂F̂ (st,ωt)

∂t
= −γt · F̂t + Ft ·

(
ξt + γ̂

(st)
t

)
−

[
F̂ (st,ωt), ξt + γ̂

(st)
t

](st)
. (4.84)

Taking ξt = −γ̂
(st)
t in (4.82) and (4.84), we obtain the infinitesimal versions of (4.68).

5. Non-associative gauge theory

In general we have seen that the loop bundle structure is given by ̊L-valued equivariant 
map s as well as a connection ω on P. We call the pair (s, ω) the configuration of the loop 
bundle structure. Each point in the configuration space gives rise to the corresponding 
torsion T (s,ω) and curvature F̂ (s,ω). Previously we considered T and F̂ as horizontal 
equivariant forms on P, but of course we can equivalently consider them as bundle-
valued differential forms on the base manifold M . The loop bundle framework will allow 
us to generalize various aspects of gauge theory to the nonassociative setting.

To be able to define functionals on M , let us suppose M has a Riemannian metric 
and moreover, L has the following properties:

1. For each s ∈ L̊, the Killing form K(s) is nondegenerate and invariant with respect 
to ad(s) and the action of p.

2. L is a G-loop, so that in particular, for each s ∈ L̊, l(s) = qs.
3. For each s ∈ L̊, the space qs is an irreducible representation of the Lie algebra hs.

These properties may not be strictly necessary, but they will simplify arguments. 
Moreover, these are the properties satisfied by the loop of unit octonions, which is the 
key example. The non-degeneracy of K(s) means we can define the map ϕt

s, and then the 
second and third properties together make sure that there exists a constant λ such that 
for any s ∈ L̊, ϕsϕt

s = λ idl and ϕt
sϕs = λπh⊥

s
, as per Lemma 3.43. If qs is a reducible 

representation, then each irreducible component may have its own constant. Moreover, 
the first and second properties together imply that K(s) is independent of the choice of 
s, and when extended as an inner product on sections, it is covariantly constant with 
respect to a principal connection on P.
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For a fixed s ∈ L̊, let us consider what happens to the torsion T and the curvature F̂
with respect to deformations of the connection.

Lemma 5.1. Let s ∈ L̊ be fixed. Suppose we have a path of connections on P given by 
ω̃ (t) = ω + tA for some basic p-valued 1-form A and a fixed principal connection ω. 
Then, defining T (t) = T (s,ω̃(t)) and F̂ (t) = F̂ (s,ω̂(t)), we have

d

dt
T (t)

∣∣∣∣
t=0

=Â (5.1a)

d

dt
F̂ (t)

∣∣∣∣
t=0

=dHÂ + A · T −
[
Â, T

](s)
, (5.1b)

where T = T (0) = T (s,ω).

Proof. Using (4.61), we have

T (t) = T (s,ω̃(t)) = θs + ϕs (ω̃ (t)) = T (s,ω) + tÂ,

and hence we get (5.1a). Also, using (4.50),

F̂ (t) =F̂ (s,ω̂(t)) = ϕs

(
F ω̃(t)

)
= F̂ (s,ω) + tϕs

(
dHA

)
(5.2)

+ 1
2 t2ϕs

(
[A, A]

p

)
,

and then using (4.28),

d

dt
F̂ (t)

∣∣∣∣
t=0

= ϕs

(
dHA

)
= dHÂ −

(
dHϕs

)
∧ A

= dHÂ + A · T −
[
Â, T

](s)
. � (5.3)

From (5.1a), we see that if for each p ∈ P, Ap ∈ hsp
, then Â = 0, and thus the 

torsion is unaffected, so these deformations are not relevant for the loop bundle structure. 
Therefore, let us assume that Ap ∈ h⊥

sp
for each p ∈ P. Equivalently, this means that 

A ∈ ϕt
s (l). So now suppose ξ ∈ Ω1

basic (P, l) is a basic l-valued 1-form on P such that 
A = 1

λ ϕt
s (ξ), and thus, Â = ξ. Then the deformations of T and F̂ become the following.

Corollary 5.2. Suppose ξ ∈ Ω1
basic (P, l) is a basic l-valued 1-form on P such that A =

1
λ ϕt

s (ξ), and thus, Â = ξ. Then,

d

dt
T (t)

∣∣∣∣
t=0

=ξ (5.4a)

d
F̂ (t)

∣∣∣∣ =dHξ + 1
2 [ξ, T ]ϕs

− 1 [ξ, T ](s)
. (5.4b)
dt t=0 2λ 2
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Proof. The first equation follows immediately from (5.1a). For the deformation of F̂ , 
from (3.122), we see that

A · T = 1
λ

ϕt
s (ξ) · T = 1

2λ2 [ξ, T ]ϕs
+ 1

2 [ξ, T ](s)
, (5.5)

where the bracket [·, ·]ϕs
on l is given by

[ξ, η]ϕs
= ϕs

([
ϕt

s (ξ) , ϕt
s (η)

]
p

)
, (5.6)

as defined in (3.123). Substituting this and Â = ξ into (5.1b), we this obtain (5.4b). �
5.1. Loop Chern-Simons functional

Using the above technical results we can now generalize some aspects of Chern-Simons 
theory to loops.

Definition 5.3. Suppose M is a 3-dimensional compact manifold. For a fixed section 
s ∈ Q̊, consider now the loop Chern-Simons functional F (s) on the space of connections 
on P modulo hs, given by

F (s) (ω) =
∫
M

〈
T, F̂

〉(s)
− 1

6λ2

〈
T, [T, T ]ϕs

〉(s)
, (5.7)

where wedge products between forms are implicit.

From the properties of T, F̂ , [·, ·]ϕs
, and 〈·, ·〉(s) that were obtained in Section 4.3, 

we see that this is invariant under simultaneous gauge transformation (s, ω) �→(
u−1 (s) , u∗ω

)
. This shows that this is an appropriate invariant functional to use.

Theorem 5.4. The critical points of the functional F (s) are connections for which F̂ = 0.

Proof. Using (5.4) consider deformations of each piece of (5.7). For the first term, using 
(5.4), we obtain

d

dt

∫
M

〈
T (t) , F̂ (t)

〉(s)
∣∣∣∣∣∣
t=0

=
∫
M

〈
ξ, F̂

〉(s)

+
∫
M

〈
T, dHξ + 1

2λ2 [ξ, T ]ϕs
− 1

2 [ξ, T ](s)
〉(s)

=
∫ 〈

ξ, F̂ + dHT + 1
2λ2 [T, T ]ϕs

− 1
2 [T, T ](s)

〉(s)
M
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=
∫
M

〈
ξ, 2F̂ + 1

2λ2 [T, T ]ϕs

〉(s)

. (5.8)

For the second term in (5.7), using Lemma 3.50, we obtain

− 1
6λ2

d

dt

∫
M

〈
T, [T, T ]ϕs

〉(s)
∣∣∣∣∣∣
t=0

= − 1
2λ2

∫
M

〈
ξ, [T, T ]ϕs

〉(s)
. (5.9)

Combining (5.8) and (5.9), we obtain

d

dt
F (s) (ω̃ (t))

∣∣∣∣
t=0

= 2
∫
M

〈
ξ, F̂

〉(s)
. (5.10)

Therefore, we see that the critical points of F (s) are precisely the connections for which 
F̂ = 0. �

From the loop Bianchi identity (4.55), we also obtain an integrability condition for 
F̂ = 0:

F ∧̇T = 0, (5.11)

where as before, ∧̇ denotes the linear action of p on l combined with a wedge prod-
uct. Differentiating (5.11) however, we do not get any additional conditions, due to the 
standard Bianchi identity for F and the relations (3.90) and (4.50).

Remark 5.5. Theorem 5.4 shows that the condition F̂ = 0 is the loop generalization of 
the flat curvature condition that corresponds to the critical points of the standard Chern-
Simons functional. The condition F̂ = 0 means that each point, the curvature F (ω) lies 
in hs. This is a restriction on the Lie algebra part of the curvature. The flat curvature 
condition is of course is a very special case, in which the curvature is restricted to the 
trivial Lie subalgebra. It may be tempting to regard F̂ = 0 as some kind of instanton, 
however instantons have restrictions on the 2-form part of the curvature, rather than the 
Lie algebra part. So what we have here is a different kind of condition to an instanton, 
and there is term for this, coined by Spiro Karigiannis - an extanton. As we see from 
Example 4.23, on a Kähler manifold, this just corresponds to the Ricci-flat condition.

The above construction on 3-manifolds can be extended to an n-dimensional manifold 
M if we have a closed (n − 3)-dimensional form ψ. This idea was first introduced in [9]
and then developed further in [40]. In this setting, let us define the generalized loop 
Chern-Simons functional as

G(s) (ω) =
∫ (〈

T, F̂
〉(s)

− 1
6λ2

〈
T, [T, T ]ϕs

〉(s)
)

∧ ψ. (5.12)

Mn
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It is then easy to see the following.

Theorem 5.6. The critical points of the functional G(s) are connections for which

F̂ ∧ ψ = 0. (5.13)

This also implies that

F ∧̇T ∧ ψ = 0. (5.14)

For example if M is a 7-dimensional manifold with a co-closed G2-structure, i.e. 
ψ = ∗ϕ is closed, then (5.13) shows that as a 2-form, F̂ has a vanishing component 
in the 7-dimensional representation of G2. In contrast, G2-instantons (also known as 
Donaldson-Thomas connections) [9,40] satisfy F ∧ ψ = 0. If F = Riem, is the Riemann 
curvature on the frame bundle, then equation (5.13) shows that, in local coordinates,

Riemijkl ϕij
αϕkl

β = 0. (5.15)

The quantity on the left-hand side of (5.15), is sometimes denoted as Ric∗ [7,8,18]. The 
traceless part of Ric∗ corresponds to a component of the Riemann curvature that lies 
in a 27-dimensional representation of G2, with another 27-dimensional component given 
by the traceless Ricci tensor Ric. The condition (5.14) is then given by

Riemijkl T l
mϕijm = 0. (5.16)

Remark 5.7. In the spirit of Remark 5.5, we may refer to connections on bundles over 
compact 7-manifolds with co-closed G2-structures that satisfy (5.13) as G2-extantons. 
This is a generalization of the G2-instanton condition.

The torsion T and the curvature F̂ of a configuration (s, ω) of a loop bundle structure 
depend on both s and ω. So far, we have considered variations of the corresponding 
Chern-Simons functionals with respect to changes of ω. Suppose M is again a compact 
3-dimensional manifold and let us consider (5.7) as functional on sections of Q̊ for a fixed 
connection ω, so that now we vary s. Thus, we now have the functional F (ω).

F (ω) (s) =
∫
M

〈
T, F̂

〉(s)
− 1

6λ2

〈
T, [T, T ]ϕs

〉(s)
. (5.17)

Let us now make additional assumptions:

1. [·, ·]ϕs
= k [·, ·](s), for some scalar k.

2. L is alternative.
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The last assumption implies in particular, that the associator is skew-symmetric, and 
moreover, for any α, β, ξ, η ∈ l(s),

〈as (α, β, ξ) , η〉(s) = 〈ξ, as (α, β, η)〉(s)
. (5.18)

Thus, we can rewrite F (ω) as

F (ω) (s) =
∫
M

〈
T, F̂

〉(s)
− k

6λ2

〈
T, [T, T ](s)

〉(s)
. (5.19)

Theorem 5.8. The critical points of the functional F (ω) satisfy

F · T −
(

1
2 + k

2λ2

) [
F̂ , T

](s)
+ 2k

3λ2 [T, T, T ](s) = 0. (5.20)

Proof. As in (4.72), suppose s (t) is a path of defining sections of Q̊ that satisfy

∂s (t)
∂t

= (Rs)∗ η (t) (5.21)

where η (t) is a 1-parameter family of sections of A (i.e. correspond to equivariant l-valued 
maps). From (4.76),

∂T (s(t),ω)

∂t
=dHη (t) −

[
T (s(t),ω), η (t)

](s(t))
(5.22a)

∂F̂ (s(t),ω)

∂t
=F · η (t) −

[
F̂ (s(t),ω), η (t)

](s(t))
. (5.22b)

From this, we find that the derivative of F (ω) (s) is

d

dt
F (ω) (s (t))

∣∣∣∣
t=0

=
∫
M

〈
dHη − [T, η](s)

, F̂
〉(s)

+
∫
M

〈
T, F · η −

[
F̂ , η

](s)
〉(s)

− k

2λ2

∫
M

〈
dHη − [T, η](s)

, [T, T ](s)
〉(s)

− k

6λ2

∫
M

〈T, as (T, T, η)〉(s)
, (5.23)

where we have used (3.39) for the derivative of the bracket [·, ·](s), as well as the assump-
tion that the Killing form 〈·, ·〉(s) is invariant. Consider the first two terms in (5.23).
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∫
M

〈
dHη − [T, η](s)

, F̂
〉(s)

=
∫
M

〈
η, −dHF̂ −

[
F̂ , T

](s)
〉(s)

(5.24a)

∫
M

〈
T, F · η −

[
F̂ , η

](s)
〉(s)

=
∫
M

〈
η,

[
F̂ , T

](s)
− F · T

〉(s)

. (5.24b)

The third term in (5.23) becomes

∫
M

〈
dHη − [T, η](s)

, [T, T ](s)
〉(s)

=
∫
M

〈
η, −dH [T, T ](s) +

[
T, [T, T ](s)

](s)
〉(s)

=
∫
M

〈
η, −2

[
F̂ , T

](s)
+ as (T, T, T )

〉(s)

,

where we used the Akivis identity (3.45) to get 
[
T, [T, T ](s)

](s)
= as (T, T, T ). Using, 

alternativity, the last term in (5.23) is

∫
M

〈T, as (T, T, η)〉(s) =
∫
M

〈η, as (T, T, T )〉(s)
.

Therefore

d

dt
F (ω) (s (t))

∣∣∣∣
t=0

= −
∫
M

〈
η, dHF̂ + F · T − k

λ2

[
F̂ , T

](s)
〉(s)

(5.25)

−
∫
M

〈
η,

2k

3λ2 as (T, T, T )
〉(s)

. �

From the Bianchi identity (4.55),

dHF̂ = F · T −
[
F̂ , T

](s)
,

and by definition of as,

as (T, T, T ) = 2 [T, T, T ](s)
.

Hence,

d

dt
F (ω) (s (t))

∣∣∣∣
t=0

= −
∫ 〈

η, 2F · T −
(

1 + k

λ2

) [
F̂ , T

](s)
〉(s)

(5.26)

M



100 S. Grigorian / Advances in Mathematics 393 (2021) 108078
−
∫
M

〈
η,

4k

3λ2 [T, T, T ](s)
〉(s)

. (5.27)

Thus, the critical points with respect to deformations of s satisfy

F · T −
(

1
2 + k

2λ2

) [
F̂ , T

](s)
+ 2k

3λ2 [T, T, T ](s) = 0. (5.28)

Example 5.9. In the case when L is a Lie group, the associator vanishes, and k = λ = 1, 
so we just obtain dHF̂ = 0, which is of course the standard Bianchi identity. This shows 
that we just have a reduction from a ΨR (L)-connection to an L-connection. In the case 
of L being the loop of unit octonions, it is easy to verify that λ = 3

8 and k = 3λ3 = 81
512

so (5.20) becomes

F · T − 17
16

[
F̂ , T

](s)
+ 3

4 [T, T, T ](s) = 0. (5.29)

The significance of this condition is not immediately clear.

We have considered separately the critical points of the functional F with respect 
to deformations of the connection ω and the defining section s. Combining the two 
variations of F , we immediately find the following.

Corollary 5.10. Consider the functional

F (s, ω) =
∫
M

〈
T, F̂

〉(s)
− 1

6λ2

〈
T, [T, T ]ϕs

〉(s)
. (5.30)

The critical points (s, ω) of the functional F satisfy

{
F̂ = 0

[T, T, T ](s) = 0
. (5.31)

In the spirit of (5.12), given an n-dimensional manifold and an (n − 3)-form ψ, we 
could also define a generalized functional

G (s, ω) =
∫

Mn

(〈
T, F̂

〉(s)
− 1

6λ2

〈
T, [T, T ]ϕs

〉(s)
)

∧ ψ. (5.32)

If ψ is assumed to be independent of s, the critical points of G would then satisfy

{
F̂ ∧ ψ = 0

[T, T, T ](s) ∧ ψ = 0
. (5.33)
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If M is a 7-dimensional manifold with a G2-structure, and ψ = ∗ϕ is the G2-structure 
4-form, then the second condition in (5.33) says that as a 3-form, [T, T, T ](s) lies in the 
7 and 27 dimensional representations of G2, i.e. the 1-dimensional component vanishes.

Remark 5.11. We have defined the Chern-Simons functional in 3 dimensions and for 
higher dimensions followed the ideas from standard higher dimensional gauge. How-
ever, in the non-associative case, since the Jacobi does not hold, the l-valued 3-form [
T, [T, T ](s)

](s)
is non-trivial. Moreover, the brackets may be iterated to obtain higher 

rank forms, and thus there are additional ways in which to define similar higher-
dimensional functionals. It will be the subject of further work to understand the sig-
nificance of such Chern-Simons type functionals. The functional F is invariant under 
simultaneous gauge transformations of (s, ω), but not the individual ones. The stan-
dard Chern-Simons functional in 3 dimensions not gauge invariant, which causes it to 
be multi-valued, and only the exponentiated action functional is truly gauge-invariant. 
It will be interesting to see if there are any analogous properties in the non-associative 
case.

5.2. Loop Yang-Mills functional

Using the quantity F̂ , we may also define a loop Yang-Mills functional. Indeed, on a 
compact n-dimensional Riemannian manifold (M, g), define

Y(s) (ω) =
∫
M

〈
F̂ , ∗F̂

〉(s)
, (5.34)

where as before, a wedge product is assumed. We have the following result regarding 
critical points.

Theorem 5.12. The critical points of Y(s) are connections that satisfy

dH ∗ F̂ = (−1)n

(
∗πh⊥

s
F · T −

[
∗F̂ , T

](s)
)

. (5.35)

Proof. Using (5.4b), we have

d

dt

∫
M

〈
F̂ (t) , ∗F̂ (t)

〉(s)
∣∣∣∣∣∣
t=0

=2
∫
M

〈
dHξ + 1

2λ2 [ξ, T ]ϕs
− 1

2 [ξ, T ](s)
, ∗F̂

〉

=2
∫
M

〈
ξ, dH ∗ F̂ − (−1)n

2λ2

[
∗F̂ , T

]
ϕs

+ (−1)n

2

[
∗F̂ , T

](s)
〉

.
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Thus, critical points satisfy

dH ∗ F̂ = (−1)n

(
1

2λ2

[
∗F̂ , T

]
ϕs

− 1
2

[
∗F̂ , T

](s)
)

. (5.36)

However, from (3.122), we have

∗ 1
λs

ϕt
s

(
F̂

)
· T = 1

2λ2
s

[
∗F̂ , T

]
ϕs

+ 1
2

[
∗F̂ , T

](s)
,

and from (3.113),

ϕt
s

(
F̂

)
= ϕt

sϕs (F ) = λsπh⊥
s

F.

Hence

1
2λ2

[
∗F̂ , T

]
ϕs

− 1
2

[
∗F̂ , T

](s)
= ∗πh⊥

s
F · T −

[
∗F̂ , T

](s)
,

and we obtain (5.35). �
Example 5.13. Since we have ∗πh⊥

s
F ·T = 1

λs
ϕt

s

(
F̂

)
, then as in Example 3.47, if L =UO,

∗πh⊥
s

F · T = 1
3

[
∗F̂ , T

](s)

and critical points of Y(s) satisfy

dH ∗ F̂ = (−1)n+1 2
3

[
∗F̂ , T

](s)
.

Similarly, following Example 3.48, if L is a Lie group, then ∗πh⊥
s

F · T =
[
∗F̂ , T

](s)
, and 

hence we recover the standard Yang-Mills condition for F̂ , which is the restriction of F
to h⊥ ∼= l. In this case, we just have standard gauge theory with gauge group L. This 
justifies considering (5.34) as the loop Yang-Mills functional.

If n = 4, then we may decompose the 2-form F̂ into self-dual and anti-self-dual parts.

Lemma 5.14. Suppose M is a compact 4-dimensional manifold. If F̂ (s,ω) is self-dual or 
anti-self-dual, then ω is a critical point of Y(s) if and only if

πhs
F · T = 0. (5.37)
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Proof. Suppose F̂ is self-dual, so that ∗F̂ = F̂ , then from the loop Bianchi identity 
(4.55),

dH ∗ F̂ = F · T −
[
∗F̂ , T

](s)
.

Comparing with (5.35), we see that ω with a self-dual F̂ is a critical point of (5.34) if 
and only if

∗πh⊥
s

F · T = F · T.

However,

∗πh⊥
s

F = 1
λs

ϕt
s

(
∗F̂

)

= 1
λs

ϕt
s

(
F̂

)
=πh⊥

s
F.

Thus we see that in this case, ω is a critical point of (5.34) if and only if

πhs
F · T = 0. (5.38)

Similarly, suppose F̂ is anti-self-dual, so that ∗F̂ = −F̂ , then the loop Bianchi identity 
gives

dH ∗ F̂ = −F · T −
[
∗F̂ , T

](s)
.

Now however,

∗πh⊥
s

F · T = −πh⊥
s

F

and we see that ω with a anti-self-dual F̂ is also critical point of (5.34) if and only if 
(5.38) holds. �
Remark 5.15. From Lemma 5.14, we may define the notion of a loop instanton on a 
4-manifold: a connection for which F̂ is self-dual or anti-self-dual, and the h-component 
of F satisfies πhs

F · T = 0.

Similarly, as for the loop Chern-Simons functionals, we may also consider the varia-
tions of Y with respect to deformations of s. So if we fix ω, and instead define

Y(ω) (s) =
∫ 〈

F̂ , ∗F̂
〉(s)

, (5.39)

M
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where as before we assume a wedge product. We then have the following.

Theorem 5.16. The critical points of the functional Y(ω) satisfy

F ·
(

∗F̂
)

= 0. (5.40)

Proof. As before, suppose s (t) is a path of defining sections of Q̊ that satisfy

∂s (t)
∂t

= (Rs)∗ η (t) (5.41)

where η (t) is a 1-parameter family of sections of A. Also, from (5.22), we have

∂F̂ (s(t),ω)

∂t
= F · η (t) −

[
F̂ (s(t),ω), η (t)

](s(t))
. (5.42)

From this, we find that the derivative of Y(ω) (s) is

d

dt
Y(ω) (s (t))

∣∣∣∣
t=0

=
∫
M

〈
F · η −

[
F̂ , η

](s)
, ∗F̂

〉(s)

=
∫
M

〈
η,

[
F̂ , ∗F̂

](s)
− F · ∗F̂

〉
.

However, due to symmetry considerations, 
[
F̂ , ∗F̂

](s)
= 0, and thus we obtain that 

critical points satisfy (5.40). �
Remark 5.17. From (3.122), we see that

Fh⊥
s

·
(

∗F̂
)

= 1
λ

ϕt
s

(
F̂

)
·
(

∗F̂
)

= 1
2λ2

[
F̂ , ∗F̂

]
ϕs

+ 1
2

[
F̂ , ∗F̂

](s)

=0,

and thus ∗F̂ is always invariant with respect to the action of the h⊥
s -component of F , 

and thus the condition (5.40) is actually equivalent to saying that

Fhs
·
(

∗F̂
)

= 0. (5.43)

However, ϕs is invariant under the action of hs, so
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Fhs
·
(

∗F̂
)

=Fhs
· (ϕs (∗F ))

=ϕs

(
[Fhs

, ∗F ]
p

)
=ϕs

([
Fhs

, ∗Fh⊥
s

]
p

)
.

This shows that (5.43) is equivalent to
[〈

Fhs
, Fh⊥

s

〉
M

]
p

∈ hs

at every point. Here 〈·, ·〉M is the inner product of 2-forms on M .

5.3. Energy functional

In the context of G2-structures, another functional has been considered in several 
papers [5,10,15,17,31], namely the L2-norm of the torsion, considered as functional on 
the space of isometric G2-structures, i.e. G2-structures that correspond to the same 
metric. In the context of loop structures we may define a similar functional. Given a 
compact Riemannian manifold (M, g) and a fixed connection ω on P, for any section 

s ∈ Γ 
(

Q̊
)

let T (s) be the torsion of s with respect to ω. Then define the energy functional 

on Γ 
(

Q̊
)

given by:

E (s) =
∫
M

〈
T (s), ∗T (s)

〉(s)
, (5.44)

where the wedge product is assumed. We then have the following.

Theorem 5.18. The critical points of the functional E satisfy
(
dH)∗

T (s) = 0. (5.45)

Proof. With respect to deformations of s given by (4.72) and the corresponding defor-
mation of T given by (5.22) we have

d

dt
E (s (t))

∣∣∣∣
t=0

=2
∫
M

〈
dHη −

[
T (s), η

](s)
, ∗T (s)

〉(s)

= − 2
∫
M

〈
η, dH ∗ T (s) −

[
T (s), ∗T (s)

](s)
〉(s)

= − 2
∫
M

〈
η, dH ∗ T (s)

〉(s)
, (5.46)
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where 
[
T (s), ∗T (s)](s) = 0 due to symmetry considerations. Hence we obtain (5.45). �

Thus the critical points of E satisfy which is precisely the analog of the “divergence-
free torsion” condition in [5,10,15,17,31]. Also, similarly as in [31], if we assume P is 
compact, the functional E may be related to the equivariant Dirichlet energy functional 
for maps from P to L̊. Given a metric 〈·, ·〉(s) on l, we may extend it to a metric on all 

of L via right translations: 〈·, ·〉(s)
p =

〈
(Rp)−1

∗ ·, (Rp)−1
∗ ·

〉(s)
. Then, the Dirichlet energy 

functional on equivariant maps from P to L̊ is given by

D (s) =
∫
P

|ds|2 =
∫
P

|θs|2 , (5.47)

where we endow T P with a metric such that the decomposition TP = HP ⊕ VP is 
orthogonal with respect to it, and moreover such that it is compatible with the metrics 
on M and Ψ. Then, using (4.23)

D (s) =
∫
P

∣∣∣T (s)
∣∣∣2

+
∫
P

∣∣∣ω̂(s)
∣∣∣2

(5.48)

Note that given an orthogonal basis {Xi} on p, 
∣∣ω̂(s)

∣∣2 =
∣∣ω̂(s) (σ (Xi))

∣∣2 =
∣∣∣X̂i

∣∣∣2
=

λs dim l. With our previous assumptions, λs = λ, and thus does not depend on s, so we 
have

D (s) = aE (s) + b

where a = Vol (Ψ) and b = λ (dimL) Vol (P). Hence, the critical points of E (s) are 
precisely the critical points of D (s) with respect to deformations through equivariant 
maps, i.e. equivariant harmonic maps. So indeed, to understand the properties of these 
critical points, a rigorous equivariant harmonic map theory is required, as initiated in 
[31].

6. Concluding remarks

Given a smooth loop L with tangent algebra l and a group Ψ that acts smoothly on L
via pseudoautomorphism pairs, we have defined the concept of a loop bundle structure 
(L, Ψ, P, s) for a principal Ψ-bundle and a corresponding equivariant L̊-valued map s, 
that also defines a section of the corresponding associated bundle. If we moreover have 
a connection ω on P, then horizontal component of the Darboux derivative of s defines 
an l-valued 1-form T (s,ω), which we called the torsion. This object T (s,ω) then satisfies 
a structural equation based on the loop Maurer-Cartan equation and gives rise to an 
l-valued component of the curvature F̂ (s,ω). Overall, there are several possible directions 
to further this non-associative theory.
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1. From a more algebraic perspective it would be interesting to construct additional 
examples of smooth loops, in particular those that are not Moufang and possibly 
are not even G-loops in order to more concretely study the corresponding bundles in 
those situations. In fact, it may not even be necessary to have a full loop structure 
- it may be sufficient to just have a right loop structure, so that division is possible 
only on the right. Left division was used rarely, and it may be possible to build up a 
full theory without needing it. New examples of loops may give rise to new geometric 
structures.

2. In Lie theory, the Maurer-Cartan equation plays a central role. As we’ve seen there 
is an analog in smooth loop theory as well. A better understanding of this equation 
is needed. The standard Maurer-Cartan equation is closely related to the concept of 
integrability, but it is not clear how to interpret the non-associative version.

3. In defining the loop bundle structure, we generally have assumed that the map s is 
globally defined. However, this may place strict topological restrictions. It may be 
reasonable to allow s to be defined only locally. This would give more flexibility, but it 
would need to be checked carefully whether other related quantities are well-defined.

4. We have defined a functional of Chern-Simons type in Section 5.1. There are fur-
ther properties that need to be investigated. For example, is it possible to use the 
associator to define reasonable functionals on higher-dimensional manifolds? If the 
section s is defined only locally, are these functionals well-defined? Finally, do these 
functionals have any topological meaning?

5. In G2-geometry, significant progress has been made in [5,10,15,17,31] regarding the 
existence of critical points of the energy functional (5.44) via a heat flow approach. 
However, it is likely that a more direct approach, similar to Uhlenbeck’s existence 
result for the Coulomb gauge [49], could also be used. This would give existence of 
a preferred section s for a given connection or conversely, a preferred connection in 
a gauge class for a fixed section s.

Overall, the framework presented in this paper may give an impetus to the develop-
ment of a larger theory of “nonassociative geometry”.

Appendix A

Lemma A.1. Suppose A (t) and B (t) are smooth curves in L with A (0) = A0 and B (0) =
B0, then

d

dt
A (t) /B (t)

∣∣∣∣
t=0

= d

dt
A (t) /B0

∣∣∣∣
t=0

− d

dt
(A0/B0 · B (t)) /B0

∣∣∣∣
t=0

(A.1a)

d

dt
B (t) \A (t)

∣∣∣∣
t=0

= d

dt
B0\A (t)

∣∣∣∣
t=0

− d

dt
B0\ (B (t) · B0\A0)

∣∣∣∣
t=0

(A.1b)
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Proof. First note that

d

dt
A (t)

∣∣∣∣
t=0

= d

dt
(A (t) /B (t) · B (t))

∣∣∣∣
t=0

= d

dt
(A (t) /B (t)) · B0

∣∣∣∣
t=0

+ d

dt
(A0/B0 · B (t))

∣∣∣∣
t=0

= (RB0)∗
d

dt
A (t) /B (t)

∣∣∣∣
t=0

+ d

dt
(A0/B0 · B (t))

∣∣∣∣
t=0

Hence, applying 
(
R−1

B0

)
∗ to both sides, we obtain (A.1a). Similarly,

d

dt
A (t)

∣∣∣∣
t=0

= d

dt
(B (t) · B (t) \A (t))

∣∣∣∣
t=0

= (LB0)∗
d

dt
(B (t) \A (t))

∣∣∣∣
t=0

+ d

dt
(B (t) · B0\A0)

∣∣∣∣
t=0

and applying 
(
L−1

B0

)
∗ to both sides gives (A.1b). �

Lemma A.2 (Lemma 3.13). For fixed η, γ ∈ l,

db|p (η, γ) = [η, γ, θp](p) − [γ, η, θp](p) , (A.2)

where [·, ·, ·](p) is the L-algebra associator on l(p) given by

[η, γ, ξ](p) = d3

dtdτdτ ′ exp (τη) ◦p (exp (τ ′γ) ◦p exp (tξ))
∣∣∣∣
t,τ,τ ′=0

(A.3)

− d3

dtdτdτ ′ (exp (τη) ◦p exp (τ ′γ)) ◦p exp (tξ)
∣∣∣∣
t,τ,τ ′=0

.

Moreover,

[η, γ, ξ](p) = d3

dtdτdτ ′ [exp (τη) , exp (τ ′γ) , exp (tξ)](L,◦p)
∣∣∣∣
t,τ,τ ′=0

(A.4)

where [·, ·, ·](L,◦p) is the loop associator on (L, ◦p) as defined by (2.34).

Proof. Let X = ρ (ξ) and x (t) = expp (tξ) p, then consider

X (b (η, γ))p = d

dt

(
[η, γ]x(t)

)∣∣∣∣
t=0

= d3

dtdτdτ ′
(
exp (τη) ◦x(t) exp (τ ′γ)

)∣∣∣∣ (A.5)

t,τ,τ ′=0
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− d3

dtdτdτ ′
(
exp (τ ′γ) ◦x(t) exp (τη)

)∣∣∣∣
t,τ,τ ′=0

where we have used (3.29). Then,

exp (τη) ◦x(t) exp (τ ′γ) = (exp (τη) (exp (τ ′γ) x (t)))�x (t). (A.6)

For brevity let us Ξ for exp, and d3
0 for d3

dtdτdτ ′

∣∣∣
t,τ,τ ′=0

, so that, using Lemma A.1, we 

get

d3
0

(
Ξ (τη) ◦x(t) Ξ (τ ′γ)

)
=d3

0

(
Ξ (τη) (Ξ (τ ′γ) x (t))�p

)
(A.7)

− d3
0

((
Ξ (τη) (Ξ (τ ′γ) p)�p

)
· x (t)

�p

)

However,

(Ξ (τη) (Ξ (τ ′γ) x (t))) /p =
(

Ξ (τη)
(

Ξ (τ ′γ)
(

x (t)�p · p
)))

/p

=
(

Ξ (τη)
((

Ξ (τ ′γ) ◦p

(
x (t)�p

))
p
))

/p

=Ξ (τη) ◦p (Ξ (τ ′γ) ◦p Ξp (tξ)) (A.8)

and similarly,
(

Ξ (τη) (Ξ (τ ′γ) p)�p · x (t)
)

/p = (Ξ (τη) ◦p Ξ (τ ′γ)) ◦p Ξp (tξ) . (A.9)

The derivatives of Ξp (tξ) and Ξ (tξ) with respect to t at t = 0 are equal, thus, from 
(A.7), we find

d3

dtdτdτ ′
(
Ξ (τη) ◦x(t) Ξ (τ ′γ)

)∣∣∣∣
t,τ,τ ′=0

= [η, γ, ξ](p) (A.10)

and hence, from (A.5),

X (b (η, γ))p = [η, γ, ξ](p) − [γ, η, ξ](p)
. (A.11)

For the last part, using (2.34) and Lemma A.1, we get

d3
0 [Ξ (τη) , Ξ (τ ′γ) , Ξ (tξ)](L,◦p) =d3

0
(
Ξ (τη) ◦Ξp(tξ)p Ξ (τ ′γ)

)
/p (Ξ (τη) ◦p Ξ (τ ′γ))

=d3
0

(
Ξ (τη) ◦Ξp(tξ)p Ξ (τ ′γ)

)
/pΞ (τ ′γ)

− d3
0 (Ξ (τη) ◦p Ξ (τ ′γ)) /Ξ (τη)

=d3
0

(
Ξ (τη) ◦Ξp(tξ)p Ξ (τ ′γ)

)



110 S. Grigorian / Advances in Mathematics 393 (2021) 108078
and hence from (A.10) we see that indeed (3.41) holds. �
Lemma A.3. Suppose s (t) and f (t) are smooth curves in L with s (0) = s, f (0) = f , 
ṡ (0) = ṡ, ḟ (0) = ḟ . Also, let ξ ∈ l, then

d

dt

(
Ad(s(t))

f(t)

)
∗

ξ

∣∣∣∣
t,τ=0

=
[(

R
(s)
f

)−1

∗
ḟ ,

(
Ad(s)

f

)
∗

ξ

](fs)

(A.12)

−
(

R
(s)
f

)−1

∗

[(
R

(s)
f

)−1

∗
ḟ , f, ξ

](s)

+
(

R
(s)
f

)−1

∗

[
f, ξ, (Rs)−1

∗ ṡ
](s)

−
(

R
(s)
f

)−1

∗

[(
Ad(s)

f

)
∗

ξ, f, (Rs)−1
∗ ṡ

](s)
.

Proof. Let ξ ∈ l, and consider st = s (t), ft = f (t), then, for brevity suppressing 
pushforwards, we have

d

dt

(
Ad(st)

ft

)
∗

ξ

∣∣∣∣
t=0

= d

dt
(ft ◦st

ξ) /st
ft

∣∣∣∣
t=0

= d

dt
(f ◦st

ξ) /st
f

∣∣∣∣
t=0

+ d

dt
(ft ◦s ξ) /sft

∣∣∣∣
t=0

= d

dt
(f · ξst) / (fst)

∣∣∣∣
t=0

+ d

dt
(ft ◦s ξ) /sf

∣∣∣∣
t=0

− d

dt
((f ◦s ξ) /sf ◦s ft) /sf

∣∣∣∣
t=0

= d

dt
(f · ξst) / (fs)

∣∣∣∣
t=0

− d

dt
((f · ξs) / (fs) · fst) /fs

∣∣∣∣
t=0

+ d

dt
(ft ◦s ξ) /sf

∣∣∣∣
t=0

− d

dt

(
Ad(s)

f ξ ◦s ft

)
/sf

∣∣∣∣
t=0

(A.13)

Now consider the first two terms (suppressing the derivatives for clarity):

(f · ξst) / (fs) = (f ◦s (ξ ◦s (st/s))) /sf

((f · ξs) / (fs) · fst) /fs = (((f ◦s ξ) /sf) ◦s (f ◦s st/s)) /sf

= ((f ◦s ξ) ◦s st/s) /sf +
[
Ad(s)

f ξ, f, st/s
](s)

/sf

Thus,

(f · ξst) / (fs) − ((f · ξs) / (fs) · fst) /fs = [f, ξ, st/s](s)
/sf (A.14)
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−
[
Ad(s)

f ξ, f, st/s
](s)

/sf.

The next two terms in (A.13) become

(ft ◦s ξ) /sf = ((ft/sf ◦s f) ◦s ξ) /sf

= (ft/sf ◦s (f ◦s ξ)) /sf − [ft/sf, f, ξ](s)
/sf

= (ft/sf) ◦fs Ad(s)
f ξ − [ft/sf, f, ξ](s)

/sf(
Ad(s)

f ξ ◦s ft

)
/sf = Ad(s)

f ξ ◦fs (ft/sf)

Thus,

(ft ◦s ξ) /sf −
(

Ad(s)
f ξ ◦s ft

)
/sf =

[
ft/sf, Ad(s)

f ξ
](fs)

− [ft/sf, f, ξ](s)
/sf (A.15)

Overall, combining (A.14) and (A.15) and now using proper notation, we obtain 
(A.12). �
Theorem A.4 (Theorem 3.40). The bilinear form K(s) (3.106) on l has the following 
properties.

1. Let h ∈ ΨR (L), then for any ξ, η ∈ l,

K(h(s)) (h′
∗ξ, h′

∗η) = K(s) (ξ, η) . (A.16)

2. Suppose also γ ∈ l, then

K(s)
(

ad(s)
γ η, ξ

)
= − K(s)

(
η, ad(s)

γ ξ
)

+ Tr
(

Jac(s)
ξ,γ ◦ ad(s)

η

)
+ Tr

(
Jac(s)

η,γ ◦ ad(s)
ξ

)
, (A.17)

where Jac(s)
γ,ξ : l −→ l is given by Jac(s)

η,γ (ξ) = Jac(s) (ξ, η, γ).
3. Let α ∈ p, then

K(s) (α · ξ, η) = − K(s) (ξ, α · η) + Tr
(

a
(s)
η,α̂ ◦ ad(s)

ξ

)
(A.18)

+ Tr
(

a
(s)
ξ,α̂ ◦ ad(s)

η

)
,

where a(s)
ξ,η : l −→ l is given by a(s)

ξ,η (γ) = [γ, ξ, η](s) − [ξ, γ, η](s) and α̂ = ϕs (α).

Proof. 1. Let h ∈ Ψ, and then using the cyclic property of trace as well as (3.57), we 
have
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K(h(s)) (h′
∗ξ, h′

∗η) = Tr
(

ad(h(s))
h′

∗ξ ◦ ad(h(s))
h′

∗η

)

= Tr
([

h′
∗ξ, [h′

∗η, ·](h(s))
](h(s))

)

= Tr
([

h′
∗ξ,

[
h′

∗η, h′
∗ (h′

∗)−1 ·
](h(s))

](s)
)

= Tr
([

h′
∗ξ, h′

∗

[
η, (h′

∗)−1 ·
](s)

](s)
)

= Tr
(

h′
∗

[
ξ,

[
η, (h′

∗)−1 ·
](s)

](s)
)

= Tr
(

h′
∗ ◦

(
ad(s)

ξ ◦ ad(s)
η

)
◦ (h′

∗)−1
)

= Tr
(

ad(s)
ξ ◦ ad(s)

η

)
=K(s) (ξ, η) .

2. From (3.38), we see that

ad(s)
[η,γ](s) = −

[
·, [η, γ](s)

](s)

=
[
η, [γ, ·](s)

](s)
−

[
γ, [η, ·](s)

](s)
− Jac(s)

η,γ

= ad(s)
η ◦ ad(s)

γ − ad(s)
γ ◦ ad(s)

η − Jac(s)
η,γ (A.19)

Hence,

ad(s)
[η,γ](s) ◦ ad(s)

ξ = ad(s)
η ◦ ad(s)

γ ◦ ad(s)
ξ − ad(s)

γ ◦ ad(s)
η ◦ ad(s)

ξ

− Jac(s)
η,γ ◦ ad(s)

ξ

and so using the cycling symmetry of trace, we have

K(s)
(

[η, γ](s)
, ξ

)
= Tr

(
ad(s)

η ◦
(

ad(s)
γ ◦ ad(s)

ξ − ad(s)
ξ ◦ ad(s)

γ

))
− Tr

(
Jac(s)

η,γ ◦ ad(s)
ξ

)
= Tr

(
ad(s)

η ◦ ad(s)
[γ,ξ](s)

)
+ Tr

(
ad(s)

η ◦ Jac(s)
γ,ξ

)
− Tr

(
Jac(s)

η,γ ◦ ad(s)
ξ

)
=K(s)

(
η, [γ, ξ](s)

)
+ Tr

(
Jac(s)

γ,ξ ◦ ad(s)
η

)
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+ Tr
(

Jac(s)
γ,η ◦ ad(s)

ξ

)
.

This then gives (A.17).
3. Now let α ∈ p and consider

K(s) (α · ξ, η) = Tr
(

ad(s)
α·ξ ◦ ad(s)

η

)
.

Denote by lα : l −→ l the left action of p on l. From (3.90), we then have

ad(s)
α·ξ = lα ◦ ad(s)

ξ − ad(s)
ξ ◦lα + a

(s)
ξ,α̂ (A.20)

So now,

K(s) (α · ξ, η) = Tr
(

lα ◦ ad(s)
ξ ◦ ad(s)

η − ad(s)
ξ ◦lα ◦ ad(s)

η

)
+ Tr

(
a

(s)
ξ,α̂ ◦ ad(s)

η

)
= Tr

(
ad(s)

ξ ◦
(

ad(s)
η ◦lα − lα ◦ ad(s)

η

))
+ Tr

(
a

(s)
ξ,α̂ ◦ ad(s)

η

)
= − Tr

(
ad(s)

ξ ◦ ad(s)
α·η

)
+ Tr

(
ad(s)

ξ ◦a
(s)
η,α̂

)
+ Tr

(
a

(s)
ξ,α̂ ◦ ad(s)

η

)
= − K(s) (ξ, α · η) + Tr

(
a

(s)
η,α̂ ◦ ad(s)

ξ

)
+ Tr

(
a

(s)
ξ,α̂ ◦ ad(s)

η

)
. �
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