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1. Introduction

A major direction in differential geometry is the study of Riemannian manifolds
with exceptional holonomy, i.e. 7-dimensional Gy-manifolds and 8-dimensional Spin (7)-
manifolds, as well as more generally, Ga-structures and Spin (7)-structures. As it turns
out, both of these structure groups are closely related to the octonions [20], which is the
8-dimensional nonassociative normed division algebra @ over R. A number of properties
of Gy-structures and Spin (7)-structures are hence artifacts of the octonionic origin of
these groups. In particular, in [15], the author has explicitly used an octonion formalism
to investigate properties of isometric Ga-structures. In that setting, it emerged that ob-
jects such as the torsion of a Ga-structure are naturally expressed in terms of sections of
a unit octonion bundle. The set of unit octonions UQ = S7, has the algebraic structure
of a Moufang loop. Indeed, a closer look at the properties of octonions that were used
in [15] shows that it was not really the algebra structure of @ that played the key role,
but rather the loop structure on UQ and the corresponding cross-product structure on
the tangent space at the identity T3UQ = Im O, the pure imaginary octonions. This
suggests that there is room for generalization by considering bundles of other smooth
loops. As far as possible, we will minimize assumptions made on the loops. Although
smooth loops at first sight may seem like an exotic structure, in fact, there is a large
supply of smooth loops, because given a Lie group G, a Lie subgroup H, and a smooth
section o : G/H — G (i.e. a smooth collection of coset representatives), we may define
a loop structure on G/ H if o satisfies certain conditions, such as o (H) = 1, and for any
cosets ¢ H and yH, there exists a unique element z € o (G/H) such that za H = yH [35].
A classical example of a smooth loop obtained directly from a Lie group quotient is the
space of positive definite hermitian matrices [24]. Conversely, any smooth loop can also
be described in terms of a section of a quotient of Lie groups. Special kinds of smooth
loops, such as Moufang loops have been classified [35], however for broader classes, such
as Bol loops, there exists only a partial classification [11].
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The main purpose of this paper is develop substantial generalizations of Lie theory,
principal bundles, and gauge theory to the non-associative setting. In the process, we
carefully build up the theory of loop bundles starting with all the necessary algebraic
preliminaries and properties of smooth loops. There are several anticipated applications
of this theory. Firstly, this will help define a unified framework through which special
geometric structures may be studied. In this sense, this can be considered as an extension
of the normed division algebra approach to various special structures in Riemannian
geometry as developed by Leung [29]. The long-term goal in Ga-geometry and Spin (7)-
geometry is to obtain an analogue of Yau'’s celebrated theorem on existence of Calabi-Yau
metrics [52], and thus a key theme in the study of such special geometries is to try to
compare and contrast the corresponding theory of K&ahler and Calabi-Yau manifolds.
This requires putting the complex and octonionic geometries into the same framework.
In [15], the octonion bundle is constructed out of the tangent bundle, and is hence very
specific, one could say canonical. However to understand properties of the bundle, it
is helpful to decouple the bundle structure and the properties of the base manifold.
This leads directly to consider loop bundles over arbitrary manifolds. In particular,
such an approach will also clarify which properties of the octonion bundle in the Gs
setting are generic, in the sense that they hold true for any loop bundle, and which are
specific to Ga-structures. This leads directly to the second expected application, namely
using the non-associative version of Chern-Simons theory to study connections with
special properties on bundles. Indeed, nonassociativity allows to define new nontrivial
functionals in different dimensions with nontrivial critical points, and this should give
rise to a new invariant theory, in the spirit of Floer [12] in 3-dimensions. Finally, it is
also expected that the ideas developed in this paper will find applications in physics. It
is already known that octonions play a role in supersymmetric theories such as String
Theory and M-theory (for example, [2,4,16]), so a better developed non-associative theory
will help advance in these directions.

In Section 2 we give an overview of the key algebraic properties of loops. While many
basic properties of loops may be known to algebraists, they may be new to geometers.
Moreover, we adopt a point of view where we emphasize the pseudoautomorphism group
of a loop, which is a generalization of the automorphism group, and properties of mod-
ified products defined on loops. These are the key objects that are required to define
loop bundles, even though in algebraic literature they typically take the backstage. In
particular, we show how the pseudoautomorphism group, the automorphism group, the
nucleus of a loop are related and how these relationships manifest themselves in the
octonion case as well-known relationships between the groups Spin (7), SO (7), and G.

In Section 3, we then restrict attention to smooth loops, which are the not necessarily
associative analogs of Lie groups. We also make the assumption that the pseudoauto-
morphism group acts on the smooth loop via diffeomorphisms and is hence itself a Lie
group. This is an important assumption and it is not known whether this is always true.
The key example of a non-associative smooth loop is precisely the loop of unit octo-
nions. We first define the concept of an exponential function, which is similar to that
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on Lie groups. This is certainly not a new concept - it first defined by Malcev in 1955
[32], but here we show that in fact, generally, there may be different exponential maps,
based on the initial conditions of the flow equation. This then relates to the concept of
the modified product as defined in Section 2. Then, in Section 3.2, we define an algebra
structure on tangent spaces of the loop. The key difference with Lie algebras is that in
the non-associative case, there is a bracket defined at each point of the loop.

In Section 3.3, Theorem 3.59 gives us a loop version of the Maurer-Cartan structural
equation. Namely, for any point p in the loop, the right Maurer-Cartan form satisfies the
following equation:

Loy g0

(d9)p ~3 6,01 =0, (1.1)
where [, -](p ) is the bracket at point p. To the best of the author’s knowledge, this is a new
result. Further, we show how the differential of the bracket depends on the associator,
which of course vanishes on Lie algebras, but is non-trivial on tangent algebras of non-
associative loops. Differentiating the structural equation then gives the Akivis identity
[21], which is a non-associative generalization of the Jacobi identity. Indeed, in Lie theory,
the Jacobi identity is the integrability condition for the Maurer-Cartan equation, however
in the non-associative case, derivatives of the bracket give rise to the additional terms.

Then, we define another key component in the theory of smooth loops. As discussed
above, each element s of the loop IL defines a bracket b; on the tangent algebra [. More-
over, we also define a map ¢ that maps the Lie algebra p of the pseudoautomorphism
group to the loop tangent algebra. The kernel of this map is precisely the Lie algebra b
of the stabilizer of s in the pseudoautomorphism group. In the case of unit octonions, we
know p = 50 (7) = A? (R7)* and [ =Im O = R7, so ¢, can be regarded as an element of
R7® A%R7, and this is (up to a constant factor) a dualized version of the G-invariant
3-form ¢, as used to project from A2 (R7)* to R”. The kernel of this map is then the Lie
algebra go. The 3-form ¢ also defines the bracket on Im O, so in this case, both bs; and 5
are determined by the same object, but in general they have different roles. By consid-
ering the action of U (n) on U (1) (i.e. the unit complex numbers) and Sp (n) Sp (1) on
Sp (1) (i.e. the unit quaternions), we find that Hermitian and hyperHermitian structures
fit into the same framework. Namely, a complex Hermitian form, a quaternionic triple
of Hermitian forms, and the Gs-invariant 3-form have the same origin as 2-forms with
values in imaginary complex numbers, quaternions, and octonions, respectively.

In Section 3.4 we define an analog of the Killing form on [ and give conditions for it
to be invariant under both the action of p and the bracket on [. In particular, using the
Killing form, we define the adjoint ¢’ of ¢s. This allows one to use the Lie bracket on p
to define another bracket on [. In the case of octonions, it’s proportional to the standard
bracket on [, but in general it could be a distinct object.

In Section 3.5, we consider maps from some smooth manifold M to a smooth loop.
Given a fixed map s, we can then define the corresponding products of loop-valued
maps and correspondingly a bracket of [-valued maps. Similarly as for maps to Lie
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groups, we define the Darboux derivative [45] of s - this is just s*6 - the pullback of the
Maurer-Cartan form on L. This now satisfies a structural equation, which is just the
pullback of the loop Maurer-Cartan equation, as derived in Section 3.3, with respect to
the bracket defined by s. For maps to Lie groups, there holds a non-abelian “Fundamental
Theorem of Calculus” [45, Theorem 7.14], namely that if a Lie algebra-valued 1-form on
M satisfies the structural equation, then it is the Darboux derivative of some Lie group-
valued function. Here, we prove an analog for [-valued 1-forms (Theorem 3.59). However,
since in the non-associative case, the bracket in the structural equation depends on s,
Theorem 3.59 requires that such a map already exists and some additional conditions
are also needed, so as expected, it’s not as powerful as for Lie groups. However, in the
case the loop is associative, it does reduce to the theorem for Lie groups.

Further, in Section 4, we turn our attention to loop bundles over a smooth manifold
M. In fact, since it’s not a single bundle, it’s best to refer to a loop structure over a
manifold. The key component is W-principal bundle P where ¥ is a group that acts via
pseudoautomorphisms on the loop L. Then, several bundles associated to P are defined:
two bundles Q@ and Q with fibers diffeomorphic to IL, but with the bundle structure
with respect to different actions of ¥; the vector bundle A with fibers isomorphic to [,
as well as some others. Crucially, a section s of the bundle O then defines a fiberwise
product structure on sections of Q, a fiberwise bracket structure, and a map ¢, from
sections of the adjoint bundle pp to sections of A. In the key example of a Ga-structure
on a 7-manifold M, the bundle P is then the Spin (7)-bundle that is the lifting of the
orthonormal frame bundle. The bundles Q and Q are unit octonion bundles, similarly
as defined in [15], but Q transforms under SO (7), and hence corresponds to the unit
subbundle of R @ TM, while Q transforms under Spin (7), and hence corresponds to the
unit subbundle of the spinor bundle. The section s then defines a global unit spinor,
and hence defines a reduction of the Spin (7)-structure group to G, and thus defines a
Go-structure. In the complex and quaternionic examples, the corresponding bundle P
then has U (n) and Sp (n) Sp (1) structure group, respectively, and the section s defines
a reduction to SU (n) and Sp(n), respectively. Thus, as noted in [29], indeed the oc-
tonionic analog of a reduction from Ké&hler structure to Calabi-Yau structure and from
quaternionic Kéhler to HyperKéhler, is the reduction from Spin (7) to Gs.

Using the equivalence between sections of bundles associated to P and corresponding
equivariant maps, we generally work with equivariant maps. Indeed, in that case, s :
P — L is an equivariant map, and given a connection w on P, we find that the
Darboux derivative of s decomposes as

550 = T — o), (1.2)

where (%) = o, (w) and T(:%) is the torsion of s with respect to the connection w, which
is defined as the horizontal part of s*6. The quantity 7> is called the torsion because
in the case of Ga-structures on a 7-manifold, if we take P to be the spin bundle and w the
Levi-Civita connection for a fixed metric, then T(*) is precisely (up to the chosen sign
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convention) the torsion of the Ga-structure defined by the section s. Moreover, vanishing
of T¢%) implies a reduction of the holonomy group of w. As shown in [15], the torsion
of a Ga-structure may be considered as a 1-form with values in the bundle of imaginary
octonions. Indeed, in general, T(5%) is a basic (i.e. horizontal and equivariant) [~valued
1-form on P, so it corresponds to an A-valued 1-form on M. It also enters expressions
for covariant derivatives of products of sections of Q and the bracket on A.

The relation (1.2) is significant because it shows that the torsion vanishes if, and
only if, —&®) is equal to the l-valued Darboux derivative s*6. In particular, a necessary
condition is then that —&(*) satisfies the loop structural equation. In Theorem 4.25, we
give a partial converse under certain assumptions on L.

In Section 4.2, we then also consider the projection of the curvature F' of w to [.
We define £ = ¢, (F), which is then equal to the horizontal part of d®, and show in
Theorem 4.19 that £ and T are related via a structural equation:

A 1
F=d"T -3, 7)) (1.3)

(*) is the bracket defined by s. Again, such a relationship is recognizable

where [-, ]
from Ga-geometry, where the projection 77 Riem of the Riemann curvature to the 7-
dimensional representation of Go satisfies the “Go Bianchi identity” [15,23]. We also
consider gauge transformations. In this setting, we have two quantities - the connection
and the section s. We show that under a simultaneous gauge transformation of the pair
(s,w), F and T transform equivariantly.

Finally, in Section 5, we establish a non-associative generalization of some aspects of
gauge theory. In Section 5.1 we consider the loop bundle structure over a compact 3-
dimensional manifold and on it, define a loop Chern-Simons functional. In Theorem 5.4
we show that the critical points over the space of connections, but with a fixed section
s, are connections for which F= 0, i.e. the curvature lies in h everywhere. So unlike
the flat connections which are critical points of the standard Chern-Simons functional,
here the condition is less restrictive, and the Lie algebra part of the curvature is required
to lie in a particular subalgebra. Similarly, we define a generalized loop Chern-Simons
functional on a compact n-dimensional manifold, in the presence of closed (n — 3)-form
1. This the analogue of the higher-dimensional Chern-Simons functional as defined in
[9,40]. In this case, Theorem 5.6 shows that the critical points satisfy E A =0.

An additional feature of gauge theory in the non-associative setting is that apart from
the choice of connection, we also have a choice of the defining section s. Hence, the loop
Chern-Simons functional may be considered as functionals on pairs (s,w). Indeed, if we
consider the critical points over pairs (s,w), then in Corollary 5.10 we get an additional
condition on the torsion, namely that [T, T, T](s) = 0, where [, -, ~](S) is the associator
defined by s and wedge products of 1-forms are implied.

In Section 5.2 we define a loop analog of the Yang-Mills functional on a compact
Riemannian manifold. This is essentially the L?-norm of F'. The corresponding Yang-
Mills equations, as derived in Theorem 5.12, involve the torsion, as it would be expected.
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In particular, in 4 dimensions, we find that self-dual and anti-self-dual connections satisfy
the new Yang-Mills equation if and only if they satisfy an additional property - namely
that the torsion is invariant under the action of the hs-component of the curvature.

Another functional that we consider (in Section 5.3) is the L?-norm squared of the
torsion [ M |T\2. In this case, we fix the connection, and consider critical points over
the space of sections s, or equivalently, equivariant loop-valued maps from P. In the
G4 setting, similar functionals have been considered in [5,10,15,17,19,31]. This is then
closely related to the Dirichlet energy functional, but restricted to equivariant maps. The
critical points then are maps s, for which the torsion is divergence-free.

Acknowledgments

This work was supported by the National Science Foundation [DMS-1811754]. The au-
thor also thanks Henrique S&4 Earp, Jonathan D.H. Smith, and the anonymous referee
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2. Loops
2.1. Definitions

The main object of study in this paper is a loop. Roughly, this can be thought of as
a non-associative analog of a group, but with a few caveats. According to [37], this term
was coined by the group of Abraham Albert in Chicago in 1940’s, as rhyming with group
and also referring to the Chicago Loop. Unfortunately however, for non-algebraists, and
especially in geometry and topology, this term may cause confusion. A less ambiguous
term would be something like a unital quasigroup or quasigroup with identity, however
this would be nonstandard terminology and also much longer than a loop. In general,
non-associative algebra requires a large number of definitions and concepts that become
unnecessary in the more standard associative setting. In this section we go over some
of the terminology and notation that we will be using. The reader can also refer to
[21,24,35,41,48] for the various concepts, although, as far as the author knows, much of
the notation in this setting is not standardized.

Definition 2.1. A quasigroup L is a set together with the following operations L xI. — L
1. Product (p,q) — pq

2. Right quotient (p,q) — p/q

3. Left quotient (p,q) — ¢\p,

that satisfy the following properties

L (p/9)g=rp
2. ¢(¢\p)=p
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3. PYy=p

4. p\pa = q.

We will interchangeably denote the product operation by p - q. To avoid multiple
parentheses, at times we will use the convention a - be = a(bc) and ab/c = (ab) /c.
If the same underlying set L is equipped with a different product operation o, (to be
defined later), then the corresponding quasigroup will be denoted by (L,o,) and the
corresponding quotient operation by \,.

Definition 2.2. Let L be a quasigroup. The right nucleus N (L) of L is the set of all
r € L, such that for any p,q € L,

pg-T=p-qr. (2.1)
Similarly, define the left nucleus N'F (L) and the middle nucleus NM (L).
Elements of N'® (IL) satisfy several other useful properties.

Lemma 2.3. If r € N'E (L), then for any p,q € L,

1. pr/qr:p/q
2. P‘Q/T:pq/r
3. Nt =p\q-T.

Lemma 2.4. The first property follows from (2.1) using
p/g-ar=p/q-q)r
The second property follows similarly using
plg/r-r)=(p-q/r)r.
The third property follows using
(p-P\))r=p(p\g-7).

In group theory the only reasonable morphism between groups is a group homomor-
phism, however for quasigroups there is significantly more flexibility.

Definition 2.5. Suppose L1, Ly are quasigroups. Then a triple (¢, 8,) of maps from IL;
to Lo is a homotopy from Ly to LLs if for any p,q € Ly,

a(p)B(q) =~ (pq) - (2.2)
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If (o, 0, @) is a homotopy, then « is a quasigroup homomorphism. If each of the maps
a, B, is a bijection, then («, 8,7) is an isotopy. An isotopy from a quasigroup to itself
is an autotopy. The set of all autotopies of a quasigroup L is clearly a group under
composition. If («, «, ) is an autotopy, then « is an automorphism of L, and the group
of automorphisms is denoted by Aut (IL).

We will only be concerned with quasigroups that have an identity element, i.e. loops.

Definition 2.6. A Joop L is a quasigroup that has a unique identity element 1 € L. such
that for any ¢ € L,

l-g=q-1=4q. (2.3)
Definition 2.7. Let L be a loop. Then, for any g € I define

1. The right inverse ¢° = ¢\1.
2. The left inverse ¢* = 1/q.
In particular, they satisfy

q¢” = ¢*q = 1. (2.4)

For a general quasigroup, the nuclei may be empty, however if L is a loop, the identity
element 1 associates with any other element, so the nuclei are non-empty. Moreover, it
is easy to show that N2 (IL) (and similarly, N'Z (L) and N"™ (L)) is a group [24].

Loops may be endowed with additional properties that bestow various weaker forms
of associativity and inverse properties.

1. Two-sided inverse: for any p € L, p? = p*. Then we can define a unique two-sided
inverse p~!.
2. Right inverse property: for any p,q € L, pq - ¢° = p. In particular, this implies that

! = p# = p*, and moreover p/q = pg~'.

the inverses are two-sided, so we can set p~
The left inverse property is defined similarly. A loop with both the left and right
inverse properties is said to be an inverse loop.

3. Power-associativity (or monoassociativity): any element p € L generates a subgroup
of L. In particular, this implies that I has two-sided inverses. Power-associativity
allows to unambiguously define integer powers p™ of elements. Note that some authors
use monoassociativity as a more restrictive property, namely only that pp-p = p-pp.

4. (Left)-alternative: for any p,q € L, p-pq = pp - q. Similarly we can define the
right-alternative property (i.e. ¢- pp = gp - p). In each of these cases, L. has two-
sided inverses. If IL is both left-alternative and right-alternative, then it is said to be
alternative. A loop with a similar property that p - qp = pq - p is known as a flexible
loop.
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5. Diassociative: any two elements p, ¢ € L generate a subgroup of L. Clearly, a diasso-
ciative loop has the inverse property, is power-associative, alternative, and flexible.
6. (Left) Bol loop: for any p,q,r € L,

p(g-pr)=(p-qp)r. (2.5)

It is easy to see that a left Bol loop has the left inverse property and is left-alternative
and flexible [38]. It is also power-associative. Similarly, define a right Bol loop: for
any p,q,r € L

(pg-r)qg=p(qr-q). (2.6)

7. Moufang loop: a loop is a Moufang loop if it satisfies both the left and right Bol
identities. In particular, Moufang loops are diassociative.
8. Group: clearly any associative loop is a group.

Example 2.8. The best-known example of a non-associative loop is the Moufang loop of
unit octonions.

Example 2.9. Suppose G is a group with a subgroup H. Suppose o : G/H — G is
a section of G, regarded as a bundle over G/H. Then, let L = o (G/H), known as a
transversal to H in G. Suppose o (H) = 1. Then, define a product structure on L, given
by

aob=oc(abH). (2.7)

Equivalently, we can define a product on cosets of G/H: (aH) o (bH) = o (aH)bH.
Consider the equation a ox = b. Since o is a section, we can see right away that we have
a unique solution t =a 'ob=0 (a’le). Thus, (L, o) has left division, and is thus a
left loop [24,35]. To define right division, and hence to obtain a full loop structure, more
structure is needed. It is known that a left loop that satisfies the Bol condition (2.5) is
in fact a Bol loop [24, 3.11].

Example 2.10. Consider the set P, of n x n positive-definite hermitian matrices, then by
the polarization, any A € GL (n,C) can be written uniquely as A = PU where P € P,

and U € U (n), with P = (AAT) % We can then definite a product o on P, given by

N

Ao B = (AB*A) (2.8)

for any A,B € P;. Note that AB2A = (AB)(AB)', so the square root is well-
defined. Clearly, the identity matrix is the identity element in (P,7,0). In fact, the

map A — (AAT)% gives rise to a section o: GL(n,C) /U (n) — GL(n,C), with
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Pt = o(GL(n,C) /U (n)) and so by Example 2.9, this is a transversal of U (n) in
GL (n,C) and thus (P,,0) is a left loop. It is not difficult to check that it also admits
right division, and is hence a loop. Moreover, it can be shown that (P, 0) is a Bol
loop [24, Theorem 9.1]. Similarly, one can construct loops on GL (n,R) /O (n), or other
quotients of general linear or special linear groups.

Example 2.11. Using similar ideas as above, it is possible to see that in special relativity,
the set of boosts forms a loop transversal to the subgroup of spatial rotations in the
Lorentz group. More specifically, in this case L = O(n,1)/(O(n) x O (1)), and the loop
operation corresponds to relativistic addition of velocities [24].

2.2. Pseudoautomorphisms

Suppose now L is a loop and («, 8,7) is an autotopy of L. Let B =« (1), A = 5(1),
C =~ (1). It is clear that BA = C. Moreover, from (2.2) we see that

a(p) =y (p) /A
B(p) =B\7(p).

We can rewrite (2.2) as
a(p) - B\e@A =a(pg) A

If B = 1, then, we obtain a right pseudoautomorphism « of 1L with companion A, which
we’ll denote by the pair (o, A), and which satisfies

a(p)-alq) A=alpg)A. (2.9)
We have the following useful relations for quotients:

a(q\p) A =a(@\> @A (2.10a)
a(p/q)-a(q) A=a(p)A (2.10b)

There are several equivalent ways of characterizing right pseudoautomorphisms.

Theorem 2.12. Let IL be a loop and suppose o : . — L. Also, let A €L andy = Raoa.
Then the following are equivalent:

1. (o, A) is a right pseudoautomorphism of I with companion A.
2. (o, B,7) is an autotopy of L with o (1) =1 and (1) =~ (1) = A.
3. v(1) = A and v satisfies

Y(P)v (v " (1) = (pa). (2.11)
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Remark 2.13. Similarly, if A =1, then we can rewrite (2.2) as

BB (p) - B(q) = BB (pq)

and in this case, S is a left pseudoautomorphism with companion B. Finally, suppose
C =1, so that then A = B”, and we can rewrite (2.2)

v (p) /B” - B\ (q) = (pq)

so that in this case, v is a middle pseudoautomorphism with companion B.

Example 2.14. In a Moufang loop, consider the map Ad,, given by p — gpq~'. Note
that this can be written unambiguously due to diassociativity. Then, this is a right
pseudoautomorphism with companion ¢* [35, Lemma 1.2]. Indeed, using diassociativity
for {q, zy}, we have

q(zy)qa ' ¢® =q(zy) ¢

On the other hand,

qxq~ " qyq® =q (zq7") - (qyq) q

=(q(z¢™" - quq)) q
=(q(ry-q)q
=q (zy) ¢°,

where we have use appropriate Moufang identities. Hence, indeed,

q(zy)q - ¢° = (qzq™") (aya™" - &%)
In general, the adjoint map on a loop is not a pseudoautomorphism or a loop homomor-
phism. For each ¢ € L, Ad, is just a bijection that preserves 1 € L. However, as we see
above, it is a pseudoautomorphism if the loop is Moufang. Keeping the same terminology
as for groups, we’ll say that Ad defines an adjoint action of IL on itself, although for a
non-associative loop, this is not an action in the usual sense of a group action.

We can easily see that the right pseudoautomorphisms of I form a group under
composition. Denote this group by PsAut™ (IL). Clearly, Aut (L) C PsAut™ (IL). Similarly
for left and middle pseudoautomorphisms. More precisely, o € PsAut? (L) if there exists
A € L such that (2.9) holds. Here we are not fixing the companion. On the other
hand, consider the set ¥ (IL) of all pairs (v, A) of right pseudoautomorphisms with fived
companions. This then also forms a group.
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Lemma 2.15. The set U (L) of all pairs (o, A), where o € PsAut® (L) and A € L is its
companion, is a group with identity element (id, 1) and the following group operations:

product: (a1, A1) (ag, As) = (a1 0 ag, aq (Az) Ay) (2.12a)
inverse: (o, A)™' = (a7t o™t (4Y) = (oz_l, (a7t (A))p) . (2.12b)
Proof. Indeed, it is easy to see that aj (Ag) Ay is a companion of a; o ag, that (2.12a)

is associative, and that (id, 1) is the identity element with respect to it. Also, it is easy
to see that

(a,A) (' a™! (A/\)) = (id, 1).
On the other hand, setting B = o~ ! (A)‘), we have
B=a"'(1)B=a"' (4*A)B

=a ' (AY) 2 (A)B
=B-a ' (A)B.

Canceling B on both sides on the left, we see that B = (a™* (A))p. O

Let CE(IL) be the set of elements of L. that are a companion for a right pseudoau-
tomorphism. Then, (2.12a) shows that there is a left action of U (L) on CF (L) given
by:

TR (L) x (L) —Cf (L) (2.13a)

((a,A),B) — (a, A) B=a(B) A. (2.13Db)

This action is transitive, because if A, B € Cf* (L), then exist o, 3 € PsAut? (L), such
that (o, A), (8, B) € ¥F (L), and hence ((ﬁ, B) (a,A)_1> A = B. Similarly, ¥ (IL) also
acts on all of L. Let h = («, A) € U (L), then for any p € L, h (p) = «a (p) A. This is in

general non-transitive, but a faithful action (assuming L is non-trivial). Using this, the
definition of (2.9) can be rewritten as

h(pq) = a(p) h(q) (2.14)

and hence the quotient relations (2.10) may be rewritten as

h(g\p) =a (q) \h (p) (2.15a)
a(p/q) =h(p) /h(q). (2.15b)
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If UR (L) acts transitively on L, then C® (L) = L, since every element of L. will be a
companion for some right pseudoautomorphism. In that case, L is known as a (right) G-
loop. Note that usually a loop is known as a G-loop if every element of IL is a companion
for a right pseudoautomorphism and for a left pseudoautomorphism [26]. However, in
this paper we will only be concerned with right pseudoautomorphisms, so for brevity we
will say L is a G-loop if UF (L) acts transitively on it.

There is another action of U (L) on L - which is the action by the pseudoautomor-
phism. This is a non-faithful action of W% (IL), but corresponds to a faithful action of
PsAut® (IL). Namely, let h = (o, A) € U (L), then h acts on p € L by p — a(p). To
distinguish these two actions, we make the following definitions.

Definition 2.16. A loop L admits two left actions of the group of right pseudoautomor-
phism pairs U# (IL).

1. The full action is given by (h,p) — h(p) = a(p) A. The set L together with this
action of W% (L) will be denoted by L.

2. The partial action, given by (h,p) — k' (p) = a(p). The set L together with this
action of W (IL) will be denoted by L again.

Remark 2.17. The relation (2.14) between these two actions suggests that the loop prod-
uct on L can be regarded as a map - : L x . — L. When WE (L) acts via the full
action on a product pq, the left factor p admits the partial action of W% (IL), while the
right factor ¢ admits the full action. The pairing between IL and L is to some extent
analogous to the Clifford action of a vector space V on the corresponding spinor space
S, withv-se€ S forveV and s €S, where V and S admit different representation of
the same group. The major difference is that V' and S are vector spaces, and in general
have different dimensions, whereas . and L have no linear structure, but are identical
as sets.

Now let us consider several relationships between the different groups associated to
L. First of all define the following maps:

1 Aut(L) < UE(L)

y o (1) (2.16)

and

: R(L TR (L
C — (id,C).

The map ¢ is clearly injective and is a group homomorphism, so ¢; (Aut (IL)) is a sub-

group of ¥ (IL). On the other hand, if A, B € N (L), then in ¥¥ (L), (id, 4) (id, B) =
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(id, BA), so i is an antihomomorphism from A'F (L) to W (L) and thus a homomor-
phism from the opposite group N7 (L)°". So, 1o (N® (L)) is a subgroup of ¥ (L) that
is isomorphic to N’ (L)°P.

Using (2.16) let us define a right action of Aut (L) on ¥# (L). Given v € Aut (L) and
(o, A) € UF (L), we define

(a,A) -y = (a, A) 11 (7) = (@07, 4). (2.18)

Similarly, (2.17) induces a left action of N'% (IL)°", and hence a right action of N'f (L),
on U (L):

C-(a,A) =12 (C) (e, A) = (o, AC) . (2.19)

The actions (2.18) and (2.19) commute, so we can combine them to define a left action
of Aut (L) x N'E(LL)°P. Indeed, given v € Aut (L) and C € N (L),

(@A) (7,0) =12 (C) (e, A) 11 (7) = (a0, AC). (2.20)

Remark 2.18. Since any element of N7 (L) is a right companion for any automorphism,
we can also define the semi-direct product subgroup ¢; (Aut (L)) x o (N (L)) C ¥F (L).
Suppose 3,7 € Aut (L) and B,C € N'E(LL), then in this semi-direct product,

(8, B) (7,C) = (Bev,5(C)B).

Lemma 2.19. Given the actions of Aut (L) and NE (L) on VR (L) as in (2.18) and
(2.19), respectively, we have the following properties.

R
1. v (]L)/Aut (L) =~ CE(L) as WE(IL)-sets.
2. The image 13 (N (L)) is a normal subgroup of W (L) and hence

v UL)/NR (L) =~ PsAut” (L) .

3. Moreover,

v (L)

~ PsAut™ (L
V) x a2 By

R
= m

where equivalence is as Aut (L) x N'E (IL)-sets.
Proof. Suppose LL is a loop.

1. Consider the projection on the second component prj, : ¥ (L) — CF (L) under
which (o, A) — A. Both W (L) and C¥ (L) are left U (IL)-sets, since both admit a
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Aut(LL) wi(L) NE(L)°eP
R
PsAut R (L) & A (r )\ (L) v (L)/Aut(L) ~ cB(L)

| !

PsAut’ (]L)/Aut(]L) ch (]L)/NR @

—_ .

Fig. 1. Groups related to the loop L.

left U (L) action - W (IL) acts on itself by left multiplication and acts on C (IL)
via the action (2.13). Hence, prj, is a ¥ (IL)-equivariant map (i.e. a G-set homomor-
phism). On the other hand, given the action (2.18) of Aut (L) on U (L), we easily
see that two pseudoautomorphisms have the same companion if, and only if, they lie
in the same orbit of Aut (). Thus, prj, descends to a ¥ (IL)-equivariant bijection
UE (L) / Aut (L) — C® (L), so that U (L) / Aut (L) = CE (L) as UF (L)-sets.

It is clear that C' € C¥ (L) is a right companion of the identity map id if, and only
if, C € NE(L). Now, let v = (id, C) € 15 (N (L)) and g = (o, A) € U7 (L). Then,

grg~t = (o, A) (id, C) (at o™t (A)‘)) = (id,A)‘ ca(C)A). (2.21)

In particular, this shows that grg~! € iy (NR (]L)) since A* - a (C) A is the right
companion of id. Thus indeed, to (N7 (L)) is a normal subgroup of ¥ (L). Now
consider the projection on the first component prj, : U (L) — PsAut (IL) under
which (a, A) — a. This is clearly a group homomorphism with kernel 15 (V% (L)).
Thus, © (L)°°\¥F (L) = U7 (L) /N (L) = PsAut™ (L).

Since the actions of A% (L) and Aut (L) on W% (IL) commute, the action of Aut (IL)
descends to N7 (IL)°P \ W% (L) = PsAut” (L) and the action of N7 (IL)°® descends to
VR (L) /Aut (L) = CE (LL). Since the left action of N'E (IL)°" on W (L) corresponds
to an action by right multiplication on C (IL), we find that there is a bijection
PsAut® (L) / Aut (L) — C® (L) /NE (L).

Suppose (o, A) € UE (L) and let (0] Auer) € PsAut” (L) / Aut (L) be the orbit of o
under the action of Aut (L) and let [A]yr,) € CE (L) /NE (L) be the orbit of A
under the action of AN (L). Then the bijection is given by [a] auew) = [Alyre)-
Moreover, each of these orbits also corresponds to the orbit of (a, A) under the
right action of Aut (L) x N®(LL) on W (L). These quotients preserve actions of
Aut (L) x N (L) on corresponding sets and thus these coset spaces are equivalent
as Aut (L) x N (L)-sets. O

The above relationships between the different groups are summarized in Fig. 1.
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Example 2.20. Suppose L =UH 2 S2 - the group of unit quaternions. Then, since this
is associative, N (UH) = UH = Sp (1). We also know that Aut (UH) = SO (3). Now
however, U (UH) consists of all pairs («, A) € SO (3) x UH with the group structure
defined by (2.12a), which is the semi-direct product

UR(UH) = SO (3) x Sp(1) = Sp (1) Sp (1) = SO (4). (2.22)

In this case, PsAut” (UH) = Aut (UH) = SO (3). Here (p,q) ~ (—p, —¢q) acts on UH

via r = prg~ L.

Example 2.21. More generally, suppose I =@ is a group. Then, PsAut™ (G) = Aut (G)
and U (G) & Aut (G) x G°P, with h = (a, A) € U (G) acting on G by

h(g) =a(g)A (2.23)
Note that the group Aut (G) x G is known as the holomorph of G.

Example 2.22. Suppose . =UQO - the Moufang loop of unit octonions, which is homeo-
morphic to the 7-sphere S7. From [20, Lemma 14.61] we know that g € O (Q) belongs
to Spin (7) if, and only if,

g (w) = xg (u) g (v) (2.24)

for all u,v € O where x,4 (u) = g (ug~* (1)) gives the vector representation of Spin (7)
on Im O@. We may as well restrict everything to the non-zero octonions O* or the unit
octonions UQ, so that we have a loop. Now,

g(u) =g (u-1) = x4 (u) g (1)
g (uv) =g (wv - 1) = x4 (w) g (1)

Hence, we find that (2.24) implies

Xg (u0) g (1) = Xg (u) - Xg (v) g (1) -

Thus, (xg,9 (1)) is a right pseudoautomorphism of UQ with companion g (1). Thus, in
this case we find that U# (UQ) = Spin (7). We also know that N'F (UQ) = {£1} = Z,
and thus the projection (x, A) — x corresponds to the double cover Spin (7) — SO (7).
Hence, PsAut”™ (UQ) = SO (7) and as we know, Aut (UQ) = Gs. Since UQ is a Moufang
loop, and we know that for any ¢, the map Ad, is a right pseudoautomorphism with
companion ¢, we see that C¥ (UQ) = UQ, and indeed as we know, Spin (7) /Ga = S7.

Remark 2.23. We have defined the group W% (IL) as the set of all right pseudoautomor-
phism pairs (a, A), however we could consistently truncate U (L) to a subgroup, or



18 S. Grigorian / Advances in Mathematics 393 (2021) 108078

more generally, if G is some group with a homomorphism p : G — W% (L), we can use
this homomorphism to define a pseudoautomorphism action of G on L. For example, if
G = Aut (L) x N (IL)°P, then we know that ¢y x 15 : G — U (IL) is a homomorphism.
With respect to the action of G, the companions would be just the elements of A% (IL).

Example 2.24. In [29], Leung developed a general framework for structures in Rieman-
nian geometry based on division algebras - R,C,H, Q. As a first step, this involved
representations of unitary groups with values in each of these algebras on the algebras
themselves. The unitary groups, O (n), U (n), Sp(n) Sp (1), and Spin (7), as well as the
corresponding special unitary groups SO (n), SU (n), Sp(n), and Ga, are precisely the
possible Riemannian holonomy groups for irreducible, not locally symmetric smooth
manifolds [6]. By considering the corresponding loops (groups for the associative cases)
we can look at the pseudoautomorphism actions. The octonionic case is already covered
in Example 2.22.

1. In the case of R, consider instead the group of “unit reals” UR = {+1} = Zs. Then,
VR (UR) = {1} x {#1} = Z5, however consider now for some positive integer n, the
homomorphism det : O (n) — Zs. Thus, O (n) acts on Zg via this homomorphism:
(9,z) — xdet g, where x € Z3 and g € O (n). The preimage Aut (Zs) = {1} is then
just ker det = SO (n). Thus, we can now define the group U2 (UR) = O (n). The full
action of U2 (UR) on UR is transitive, while the partial action is trivial. Similarly,
we can also define Aut,, (UR) = SO (n).

2. In the complex case, the group of unit complex numbers UC = U (1) = S*. Similarly,
as above, ¥R (UC) = {1} x U (1) = U (1). Now however, we also have the homo-
morphism detc : U (n) — U (1). Then, U (n) acts on U (1) via (g,2) — zdetg,
where z € U(1) and ¢ € U (n). The preimage of Aut (U (1)) = {1} is then
just kerdetc = SU (n). Thus, similarly as above, we can now define the group
VE(UC) =U (n). The full action of ¥ (UR) on UC is transitive, while the partial
action is trivial. Similarly, we can also define Aut,, (UC) = SU (n).

3. In the quaternionic case, we have already seen the case n = 1 in Example 2.20. The
n-dimensional quaternionic unitary group is in general Sp (n) Sp (1), where Sp (n) is
the compact symplectic group or equivalently, the quaternion special unitary group.
The group Sp(n) Sp (1) acts on H™ by Sp (n) on the left, and multiplication by a
unit quaternion on the right, and hence can be represented by pairs h = («,q) €
Sp(n) x Sp(1), with the identification (—a,—q) ~ (a,q). For n > 2, define the
homomorphism pg : Sp(n) Sp(1) — Sp(1) Sp(1) given by [o,q] — [1,¢q]. The
image of this homomorphism simply corresponds to elements of W# (UH) that are
of the form (id, g), i.e. act by right multiplication of UH on itself. The preimage
of Aut (UH) = SO (3) is then ker pg = Sp(n). Overall, we may define the group
VE(UH) = Sp(n)Sp(1) and Aut,, (UH) = Sp(n). As in the previous examples,
the full action of U2 (UH) on UH is transitive, whereas the partial action is again
trivial. We will refer to this example later on, with the assumption that n > 2.
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Thus, in each of the above cases, we may regard WE (O (n),U (n), or Sp (n) Sp (1))
as a group of pseudoautomorphism pairs acting on the unit real numbers, unit complex
numbers, and unit quaternions with a trivial partial action and will the full action just
given by right multiplication. The corresponding automorphism subgroups are then the
“special” unitary subgroups SO (n), SU (n), Sp (n).

2.8. Modified product
Let r € L, and define the modified product o, on L via
porq=Par),. (2.25)

Then, po, g = p - q if, and only if, p- qr = pg - r. This is true for all p, ¢ if, and only
if, r € N (). However, this will not hold for all r unless L is associative (and is thus
a group). If IL is a right Bol loop, and a € L, setting r = ¢g\a in the right Bol identity
(2.6), gives us

pa-q\a=P )0 =po,a. (2.26)

On octonions, the left-hand side of (2.26) is precisely the “modified octonion product”
defined in [15] and also used in [16]. Since unit octonions are in particular a right Bol
loop, the two products are equal on octonions.

The product (2.25) gives us a convenient definition of the loop associator.

Definition 2.25. Given p, q,r € L, the loop associator of p,q,r is given by

[p,q,7] = (por q)/pq- (2.27)

The loop commutator of p and ¢ is given by

Ip,q) = (P2/P),. (2.28)

From the definition (2.27), we see that [p,q,r] = 1 if, and only if, p(qr) = (pq)r.
There are several possible equivalent definitions of the associator, but from our point of
view, (2.27) will be the most convenient. Similarly, the loop commutator can be defined
in different ways, however (2.28) has an advantage, because if we define Ad, (¢) = pq/p,
then [p, q] = (Ad, (¢)) /g, which is a similar relation as for the group commutator.

We can easily see that (L, o,.) is a loop.

Lemma 2.26. Consider the pair (IL,o,) of the set L equipped with the binary operation

Op.
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1. The right quotient /. and the left quotient \, on (L,o,) are given by

P/rq :qur (2.29a)
p\rg =P\a7) (2.29D)
and hence, (L, 0,) is a quasigroup.

2. 1 €L is the identity element for (L, o,), and hence (L, 0,.) is a loop.
3. Let g € L, the left and right inverses with respect to o, are given by

s =T/ yr (2.30a)

g =d\r)/ (2.30b)

4. (L, 0,) is isomorphic to (L, ) if, and only if, r € C® (). In particular, o : (L,-) —
(L,o,) is an isomorphism, i.e. for any p,q € L,

a(pg) = a(p)oralq), (2.31)
if, and only if, « is a right pseudoautomorphism on (IL,-) with companion r.
Proof. Let x,p,q,r € L.
1. Suppose

x o, q=p.
Using (2.25),

x - qr = pr,
and thus

x=pr/qr:=p/.q.

Similarly, suppose

porx =g,
so that

p-ar = qr,

and thus
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z = (p\(qr)) /1 :=p\rq.

Since the left and right quotients are both defined, (L, o,) is a quasigroup.
2. We have

porl=(-r)/r=p
lo,p=(1-pr)/r=p.

Hence, 1 is indeed the identity element for (IL, o,.), and thus (I, o,.) is a loop.
3. Setting p =1 in (2.29) we get the desired expressions.
4. Suppose (a,7) € U (L). Then, by definition, for any p,q € L,
o (pq) = (a (p> T (Q) T)/

r

Hence, from (2.25),

a(pg) = a(p)or a(q). (2.32)

Thus, « is an isomorphism from (IL,-) to (L, o,). Clearly the converse is also true:
if @ is an isomorphism from (IL,-) to (L, o,), then r is companion for «. Hence,
(L,-) and (L,o,) are isomorphic if, and only if, r is a companion for some right
pseudoautomorphism. O

Suppose r,z € L, then the next lemma shows the relationship between products o,

and o,.4.
Lemma 2.27. Let r,x € I, then
Porz ¢ = (poy (qou7)) /ar. (2.33)
Proof. Let r,x € L, and suppose y = rx. Then, by (2.25),
pray=({poyq) -y

=(poyq)-rz
=((poyq)oxr)-a.

On the other hand, using (2.25) in a different way, we get
p-qy=p-q(rz)

=p-((gos 1))
:(pom (qomr)) K4
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Hence,

(poyq)oar =poy(qosT).
Dividing by 7 on the right using /. gives (2.33). O
Remark 2.28. Lemma 2.27 shows that the rz-product is equivalent to the r-product, but
defined on (L,0,). That is, if we start with o, and define the r-product using o, then
we obtain the rx-product on (L,-). If z € CE (L, ), then (L, o,) is isomorphic to (L, ).

Similarly, if r € C® (I, 0,.), then (L, 0,.,) is isomorphic to (L, o).

On (L, o,) we can define the associator and commutator. Given p,q,r € L, the loop
associator on (L, o,) is given by

2,¢,7") = (pore @) /o (Do q) . (2.34)

The loop commutator on (L, o, ) is given by

[p.d” = (P or 0) /ap) /20 (2.35)
For any = € L, the adjoint map Ad®: L x L — L with respect to o, is given by
(@) @) o @
AdSY (q) = ((R,, ) oL ) 4= (powq) /op (2.36)

for any p,q € L, and its inverse for a fixed p is

@) " @\ o p@
(Adp ) (9) = ((Lp ) o Ry ) q=p\e (q02p)- (2.37)
Let us now consider how pseudoautomorphisms of (L, -) act on (L, o).
Lemma 2.29. Let h = (3, B) € W& (L,-). Then, for any p,q,r € L,

B(porq)=pB(p)one B(q) (2.38)

and 3 is a right pseudoautomorphism of (L, o,) with companion h(r) /r. It also follows
that

Bw/ra) =B @) /nmB(9)- (2.39)

Proof. Consider 3 (p o, q). Then, using (2.12a) and (2.15),

B(porq)=B((p-qr)/r)
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=h(p-qr)/h(r)

=(B(p) - h(gr))/h(r)
=(B(p)-B(q)h(r))/h(r)
=B (p) Oh(r) B(q),

and hence we get (2.38). Alternatively, using (2.29a),
B(po,q) :(ﬁ (p) - B (Q) h (T))/h (T)
_(B@)-B@h),) ), (1)),

Now, let C = h (r) /r. Thus,

=B () or (B(g) or C)) /rC

Thus, indeed, § is a right pseudoautomorphism of (L, o,.) with companion C' = h (r) /r.
Now using (2.38) with p/,.¢ and ¢, we find

B(p) = B(p/rqorq) = B(p/rq) on(ry B (q)
and hence we get (2.39). O

Remark 2.30. We will use the notation (3,C), to denote that (5,C'), is considered as
a pseudoautomorphism pair on (L, 0,), i.e. (3,C), € UE(L,0,). Of course, the product
of C' with any element in AN (L, 0,) on the right will also give a companion of 3 on
(L,o,). Any right pseudoautomorphism of (L,-) is also a right pseudoautomorphism
of (IL,0,), however their companions may be different. In particular, PsAut® (L,-) =
PsAut? (L, 0,.). For ¥# (L) and W% (L, 0,.) we have a group isomorphism

UR(L,) — TR (L, o,)
h=(B) v h=(8"0)).

T

(2.40)

Conversely, if we have h, = (3,C), € ¥ (L, 0,), then this corresponds to h = (3, B) €
UE (L, ) where

B=3(r)\(Cr). (2.41)

The group isomorphism (2.40) together with R;-! (right division by r) induces a G-set
isomorphism between (IL, ) with the action of U (L, -) and (]L7 o,,) with the action of
VR (L,o0,).
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Lemma 2.31. Let r € L, then the mapping (2.40) h = h, from WE (L,.) to VT (L,o0,)
together with the map R (}L, ) — (}L, or) gives a G-set isomorphism. In particular,
for any A€ L. and h € UF (L,-),

h(A) Jr = hy (AJr). (2.42)

Proof. Suppose h = (8, B) and correspondingly, from (2.40), h, = <B,h (r) r)- Then,
we have,

he (Afr) =B(A/r) o, ()
_(h(A) /B (r) - h (),
=h (A) /r,

where we have also used (2.15b). O

Using (2.40), we now have the following characterizations of C¥ (I, 0,.), N (L, 0,.),
and Aut (L, o,.).

Lemma 2.32. Let r,C € 1L, then

C eCH(LL,o,) < C = A/r for some A € Orbyr, ) (r) (2.43a)
C eNT(L,o,) <= C = Ad,(A) for some Ac NB(L,) (2.43b)

and
Aut (L, 0,.) = Stabgr,.) (1) - (2.44)

If r € CRB(L,-), so that there exists a right pseudoautomorphism pair h = (a,r) €
UE(L,.), then Aut (L,o,) = h Aut (L,-) h 1.

Proof. From (2.40) we see that any companion in (L, o,.) is of the form A (r) /r for some
h € WE(L,-). Therefore, C' € L is a companion in (L, o,.) if, and only if, it is of the form
C = A/r for some A € Orbgr(, . (7).

The right nucleus N (L, o,.) corresponds to the companions of the identity map id on
L, hence taking 8 = id in (2.40), we find that companions of id in (IL, o,.) must be of the
form C = (rA) /r = Ad, (A) for some A € N (L,-). Conversely, suppose C = (rA) /r
for some A € N'E (L, -), then we can explicitly check that for any p,q € IL, we have

(porq)orC=((p-qr)/r-rA)/r

(
((p-qr)-A)/r
=(p-(qgr-A)/r=@ (qg-TA)/r
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=(p-(q¢-Cr)/r=@m (gorC)7) /7
=po, (qo,C)

and hence, C € NF (L, o,.).

The group Aut (L,0,) is isomorphic to the preimage prj;* (1) with respect to the
projection map prjy: WE (L, 0,) — Cf (L, 0,). From (2.40), this corresponds precisely
to the maps h € W (L,.) for which h(r) = r. If r is in the W% (L, -)-orbit of 1, then
clearly Aut (L, o,) is conjugate to Aut (L,). O

Remark 2.33. Suppose r € C¥ (L), then from (2.43a), we see that if A € C*(L,o0,),
then Ar € C®(LL). Also, using the isomorphism (2.40), we can define the left action of
U (L,o,) on ¥F(IL,-) just by composition on the left by the corresponding element in
U2 (LL,-). Now recall that

R R
Ch(L,o,) = (L, Or)/Aut (L, o,) and Cf (L) = vE (T, ')/Aut (L,-)

Pl (L,o,)

Then, for any equivalence classes |, A], € Y Aut (L,o,) and |B,r] €

R .
(L, )/Aut (L,.) We find that

LO‘7AJT ' Lﬁvrj = LO[Oﬁ,AT‘J . (245)

Another way to see this is the following. From (2.41), the element in W% (IL,-) that
corresponds to (a, 4), € ¥ (L,0,) is (o, a(r)\A"). The composition of this with (3,7)
is then («wo 3, Ar). Then, it is easy to see that this reduces to cosets.

Example 2.34. Recall that in a Moufang loop L, the map Ad, is a right pseudoautomor-
phism with companion ¢3. The relation (2.45) then shows that for any r € L,

AdY o Ad, = Ad vy h O (2.46)

q*r®)s

3
where h € Aut (). This follows because Adz(f ) has companion ¢* in U (IL,0,3) and
Ad, has companion 7® in U (L), thus the composition has companion ¢*r%, so up to

composition with Aut (L), it is given by Ad (g7 A similar expression for octonions

)5

has been derived in [15].
As we have seen, U% (L) acts transitively on C* (L) and moreover, for each r € Ct (L),
the loops (L, o,.) are all isomorphic to one another, and related via elements of W% (IL).

Concretely, consider (L, o,.) and suppose h = (a, A) € ¥ (IL). Then, define the map

h: (]L7O7.) — (]Laoh('r‘)) ’
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where h acts on L via the partial action (i.e. via «). Indeed, from (2.31), we have for
p,q€h(L)

a(a (p)ora~t(q)) =ponw) ¢- (2.47)

Moreover, if we instead consider the action of U#(L,0,), then given h, = (a,z), €
UE(L,0,), h (L) 2 (L, 0.). This is summarized in the theorem below.

Theorem 2.35. Let I be a loop with the set of right companions CT (L). For every r €
CE (L) and every h € W (L), the loop (IL,o,) is isomorphic to (]L,oh(r)). Moreover,
if instead, the action of WE(IL,0,) is considered, then an element of WE (L, o,) with
companion x induces a loop isomorphism from (L, o,) to (IL, 0y ).

Now again, let h = (o, A) € UE (L), and we will consider the action of h on the
nucleus. It is easy to see how the loop associator transforms under this map. Using
(2.34) and (2.39), we have

o (1p.0,71%) =a (0 ore 0) [« (902 )

= (@ () Ca@rnt) @ (@) /n@) (@ (p) o) @ ()

=l (p). e (g), o (m) ™. (2.48)
So in particular, taking z = 1, C € N (L) if, and only if, a (C) € N'E (L, 04). However
from (2.43b), we know that C € NE(L) if, and only if, (Ada)C € NE(L,04). In
particular, this means that C € N'% (L) if, and only if,

al(AdC) e NR(L).

This defines a left action of W (IL) on N'® (IL):

B (C) = Ady" (a(C)) = A\ (©) (2.49)
for h = (a, A) € U (L) and C € NE(L). The action (2.49) can be seen from the
following considerations. Recall N (L)°? embeds in % (IL) via the map C ~ 15 (C) =

(id, C). The group ¥ (L) acts on itself via the adjoint action, so let h = (a, A) € ¥F (L),
then from (2.21) recall,

h(t2(C)) ™! = (o, h (C))h™! = (id, A* - h(C)) . (2.50)
On the other hand, suppose

(ah (C) h™" = (id,2),
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so that
(a7 (C)) = (id, z) (o, A) = (e, Ax)

Therefore, z = A\h (C). In particular, A\h (C) € N'E (L). Thus the induced action on
NE(L) is precisely C +— A\h(C) = Ad,"' (a(C)). Moreover, right multiplication of
elements in L by elements of AN'® (L) is compatible with the corresponding actions of
U (L).
Lemma 2.36. For any s € L,C € N (L), and h € UF (L), we have

h(sC)=h(s)h" (C), (2.51)
where h" is the action (2./9).
Proof. Indeed, to show (2.51), we have

h(sC) (s)h(C)

=h(s) JA- AW (C)
=(h(s)/A-A)"(C)
=h(s)-h"(C),

)
)

since b’ (C) e NR(L). O
3. Smooth loops

Suppose the loop L is a smooth finite-dimensional manifold such that the loop mul-
tiplication and division are smooth functions. Define maps

L.. L — L

3.1
¢ g (3.1)

and

R.: L — L (3.2)
qg — qr.

These are diffeomorphisms of I with smooth inverses L ! and R, that correspond to
left division and right division by r, respectively. Also, assume that W (IL) acts smoothly
on L (as before, L together with the full action of ¥ (IL) will be denoted by ). Thus, the
action of U (L) is a group homomorphism from ¥# (L) to Diff (L). In particular, this
induces a Lie group structure on W* (). Similarly, PsAut® (L) is then also a Lie group,
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and for any s € I, Aut (L, o,) = Stabyrr) (s) is then a Lie subgroup of ¥ (L), and
indeed of PsAut? (L) as well. The assumption that pseudoautomorphisms act smoothly
on L may be nontrivial. To the best of the author’s knowledge, it is an open question
whether this is always true. However, for the loop UQ of unit octonions, this is indeed
true, as can be seen from Example 2.22.

Define X to be a right fundamental vector field if for any ¢ € L, it is determined by
a tangent vector at 1 via right translations. That is, given a tangent vector £ € T1LL, we
define a corresponding right fundamental vector field p (£) given by

p (&), = (Ry), € (3.3)

at any ¢ € L. If LL is a Lie group, then this definition is equivalent to the standard
definition of a right-invariant vector field X such that (R,)
non-associative case, R, o R, # Ryq, so the standard definition wouldn’t work, so a right

Xp = Xpq, however in the

*

fundamental vector field is not actually right-invariant in the usual sense. We can still
say that the vector space of right fundamental vector fields has dimension dim L, and at
any point, they still form a basis for the tangent space. In particular, any smooth loop
is parallelizable. However this vector space is now in general not a Lie algebra under the
Lie bracket of vector fields, which is to be expected, since T1IL doesn’t necessarily have
the Lie algebra structure either.

Instead of right invariance, we see that given a right fundamental vector field X =

p(§),

=(r") € (3.4)
where R®) is the right product with respect to the operation op. This is because

(R, o Rg) 1 =(rq) /p
=(r-(¢/p-p))/p
=r o, (¢/p) = R")r, (3.5)

where we have used (2.25). In (3.4) we are using the standard chain rule, because we are
regarding R, !'and R, simply as differentiable maps, so non-associativity does not cause
any problems for the chain rule.

3.1. Exponential map

For some £ € T1LL, define a flow p¢ on L given by

dpe(t) _ (R ) ¢
dt Pe(t) )« 3.6
{ pe (0)=1 (36)
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This generally has a solution for some sufficiently small time interval (—e, ), and is only
a local 1-parameter subgroup. However it is shown in [28,32] that if IL is at least power-
associative, then pe (t + s) = pe (t) pe (s) for all ¢, s, and hence the solution can extended
for all ¢. Recall that power-associativity means that powers of the same element of L
associate, and thus this assumption is required in order to be able to define p¢ (nh) =
pe (h)" unambiguously.

The solutions of (3.6) define the (local) exponential map: exp (t§) := p¢ (t). The
corresponding diffeomorphisms are then the right translations Reypse)- We will generally
only need this locally, so the power-associativity assumption will not be necessary. Now
consider a similar flow but with a different initial condition:

dpe.o(t) _
pgdt( } = (Bpe ), € (3.7)
Peq(0) =4q

where ¢ € L. Applying R, ', and setting  (t) = P&.q (t>/q, we obtain

dp(t —
{ B2 = (R o Ry ), € . (3.8)

If IL is associative, then R;l o Ry, (1) = RBpe ,(1))/q» and thus p () would satisfy (3.6),
and we could conclude that pe 4 (t) = exp (t£) g. However, in the general case, we have
(3.5) and hence, p (t) satisfies the following equation

{ & = (Réq&))* <. (3.9)

This is now an integral curve equation for £ on (L, o4), and hence for sufficiently small
t we can define a local exponential map exp, for (I, o,):

P (t) = exp, (t6), (3.10)
so, that
Pe,q (t) = expg (t€) q. (3.11)
If ¢ € CB(L), then (LL,o,) is isomorphic to L, so if L is power-associative, then so is
(L, 04), and hence, the solutions (3.10) are defined for all ¢.

Suppose h = (a, q) € UE (L), then let p (t) = o= (p(¢)). This then satisfies p (0) = 1
and

o) _ (41 (Ré%i))* ¢. (3.12)
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However, let » € IL and consider Rz(,q):

R@r =rogp=a(a™(r)-a™(p))

=(aoRy-1pyoa ) (r).

Thus,
R =aoR,-1o0at, (3.13)
and hence, (3.12) becomes
dp (t) -

This shows that p is a solution of (3.6) with initial velocity vector (ofl)*f € 1L, and
is hence given by p = exp (t (a’l)* 5). Comparing with (3.10) we see that in this case,

exp, (té) = « (exp (t (ofl)* 5)) , (3.15)

and hence the solution p¢ 4 (¢) of (3.7) can be written as
Pe,q (t) =h(exp (¢ (oz_l)* €)). (3.16)

We can summarize these findings in the theorem below.

Theorem 3.1. Suppose L is a smooth loop and suppose q € CT (). Then, given & € T,
the equation

G = (Row), €
dt P(t)) « 3.17
{ p(0)=¢ (317
has the solution
p(t) = exp, (t§) ¢ (3.18)

for sufficiently small t, where

expy (16) = a (exp (t (o), €))

where a is a right pseudoautomorphism of L that has companion q and exp (t€) is defined
as the solution of (3.17) with initial condition p (t) = 1. In particular, £ defines a flow
D¢+, given by

D¢t (q) = exp, (t§) q. (3.19)
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Remark 3.2. The expression (3.15) can be made a bit more general. Suppose L, and L,
are two loops and « : L; — Ly is a loop homomorphism. If we suppose exp(;) and
exp(y) are the exponential maps on Ly and Ly, respectively, then the following diagram
commutes (Fig. 2).

L, —* 7L,

Lléﬂqg

Fig. 2. Loop exponential maps.

Remark 3.3. The action of ®¢; given by (3.19) looks like it depends on ¢, however we
easily see that for sufficiently small ¢, exp, (t§) = exp, (t{) whenever ¢ and r are on
the same integral curve generated by ¢ (equivalently in the same orbit of ®,). This is
consistent with the 1-parameter subgroup property ®¢: (P¢ s (¢)) = P s45 (q).

Indeed, consider r = exp, (s§) ¢ and 7 = exp, ((t + s) §) ¢. These are points that lie
along the solution curve of (3.17). On the other hand, consider the solution of (3.17) at
with p (0) = r. This is then given by # = exp,. (t£) r. However, clearly by uniqueness of
solutions of ODEs, # = 7. So now,

=exp, ((t+5) &) q = (exp, (t§) oq exp, (s€)) q
=exp,, () (exp, (s€) q)
=exp, (t&)r

Hence, we conclude that exp, (t§) = exp,. (££).

Remark 3.4. Suppose (L,-) power left-alternative, i.e. z* (z'q) = z*Tlq for all z,q € L
and any integers k,l. In particular this also means that (IL,-) is power-associative and
has the left inverse property. In particular, powers of x € IL with respect to o, are equal
to powers of  with respect to -. For any ¢ € L, (L, o,) is then also power left-alternative.
Now the right-hand side of (3.9) can be written as

() €= L r(s) o (1) (3.20)

s=0

where 7 (s) is a curve with r (0) = 1 and 7’ (0) = &, so we may take r (s) = p (s). Suppose
there exist integers n, k and a real number h, such that ¢t = nh and s = kh. Then

5 (kh) o4 7 (nh)
(5" 51" q) /a

D (S) og P (t)
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=5 (h)**" = p (kh) p (nh)

=p(s)p(t).

This is independent of n and k, and is hence true for any s,¢. Thus we find that (3.20)
is equal to the right-hand side of (3.6), so p actually satisfies the same equation as p, so
by uniqueness of solutions p = p. Hence, in this case, exp, = exp. In general however,
the exponential map will not be unique and will depend on the choice of q.

3.2. Tangent algebra

Suppose &,v € ThL and let X = p(€£) and Y = p(y) be the corresponding right
fundamental vector fields on IL. Then, recall that the vector field Lie bracket of X and
Y is given by

, (3.21)

X.Y),= 4 (07, Ga))|

where &, = @ (£,t) is the flow generated by X. For sufficiently small ¢, we have ®; (p) =
exp,, (t§) p, and thus

Yo, = (Rexppas)p) e

Hence

((I);l)* (bet(p)) = (L;xlpp(tg) °© chpp(lté)p)>k v (3.22)

Now right translating back to T1IL, we obtain

(3.23)

(7). 0¥, = g (B 0 Lo Roa0) 7)|

In general, let ¢, x,y € L, then

(Ry' oL oR,,) q= (z\ (¢~ yp))/p

= (@\((a-wp) /p-P)),,

=12\p(q0py)

-1
= ((L;p)> o R?(f)> q,

where we have used (2.29b). Hence (3.23) becomes
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d

- _ (») L)
(Rp 1)* [Xv Y]p - % (((Leipp(tg)) °© Reipp(t§)>* ’Y)
_d () -1
T ((Adeippao)* 7)

— % ((Adi@pus))* 7)

=~ de (Ad(p))

t=0

3t=0

t=0

) (3.24)

*

Here, (Adgcp)) denotes the induced adjoint action of I on T1LL. As remarked earlier,

this is not an action in the sense of group actions. Similarly, as for Lie groups and Lie
algebras, we can also think of (Ad(p)) : L — End (T1L), and then (3.24) is just the
differential of this map at 1 € L in the direction £ € T11LL. The differential of (Ad(p )) at

*
an arbitrary point in L is given in Lemma A.3. This now allows us to define the tangent

adjoint map ad® on TyL.

Definition 3.5. For any &,v € TiLL, the tangent adjoint map adgp) : 'L — TiL is
defined as

ad? (7) = de (Aa®)

(v)=— (R, [X,Y],. (3.25)

*

1

The negative sign in (3.25) is there to be consistent with the corresponding definitions
for Lie groups for right-invariant vector fields. We then define the p-bracket [-, ~](p ) on

TiL as
6,4 = ad{” (7). (3.26)

From (3.25) it is clear that it’s skew-symmetric in £ and 7. Equivalently, we can say

(1), X0 (B1), V)] Y (R’ XY, (3.27)

Definition 3.6. The vector space TiLL together with the bracket [-, ~](p) is the tangent
algebra or L-algebra 1P) of (L, 0p)-

This is obviously a generalization of a Lie algebra. However, since now there is a
bracket [-, .](p ) corresponding to each point p € L, it does not make sense to try and

(p
express [[, ~](p ) , ] in terms of Lie brackets of corresponding vector fields. Hence, the

Jacobi identity for [-, ~](p ) cannot be inferred, as expected. From (3.27), we cannot even
infer that the bracket of two right fundamental vector fields is again a right fundamental

vector field. In fact, at each point p it will be the pushforward of the bracket on TiIL
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with respect to p. Overall, we can summarize properties of the bracket in the theorem
below.

Theorem 3.7. Let &, v € T1L and suppose X = p(§) andY = p () are the corresponding
right fundamental vector fields on L. Then, for any p € L,

d
[577}(13) = adép) (,Y) = % ((Adii;(t5)>*7) ‘t_o = — (R;l)* [X, Y]p, (328)

and moreover,

(L,0p)

6,717 = 0 lexp (1) ,exp ()]

t,7=0
2

= dtdr
d2

 dtdr

exp (t€) op, exp (1) (3.29)

t, 7=0

exp (1) o, exp (t€)

t,7=0

Here [, -](p) is the L-algebra bracket on () [, ], refers to the value of the vector field
Lie bracket at p € L, and [, ~](L’°p) is the loop commutator (2.35) on (IL,0,).

Proof. We have already shown (3.28), so let us prove (3.29). Recall from (2.35) that
lexp (£€) , exp ()] &) = AdL) o (exp (7)) /p exp (7). (3.30)
Differentiating (3.30) with respect to 7 and evaluating at 7 = 0 using Lemma A.1 gives

d (p)

L,op o
NE = o AdZ g (exp (7))

d
. [exp (t€) , exp (T

7=0 7=0

d

T exp (1)

7=0

- (Adgc)p(tf))* YT (3.31)

where we have also used the definition of exp,, via (3.9). This gives us the first part of

(3.29). Now, using Lemma A.1 again, we can differentiate (Ad(p )

exp(t£)> . ~ with respect to

t to get the second part:
d ®)
7 (Ad%e) )

2

= dtdr

2

= dtdr

((exp (£€) op exp (7)) /p exp (££))

t=0 t,7=0

(exp (t€) op exp (77))

t,7=0
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d2

 dtdr

exp (77y) op exp (t§) . O

t,7=0
Remark 3.8. Applying (3.29) to the Moufang loop of unit octonions and the corre-
sponding [L-algebra of imaginary octonions shows that as expected, the bracket on the
L-algebra coincides with the commutator of imaginary octonions in the algebra of octo-
nions.

Although L and [ are not in general a Lie group and a Lie algebra, there are analogs
of actions of these spaces on one another, which we summarize below.
Let se L, A€ L, and £,n € [, then we have the following:

Action of L on I: A-s = As.

Adjoint action of (L,o5) onL: A- B = Adg‘s) (B) = (Ao, B) / A.
Action of (IL,0o5) on I: A-& = (Adff)) €.

Action of I(®) on itself: & -5 i = [¢,n]'.

Action of [on I: £ - s = (Rs), & = % exp, (t§) s}t:O.

SANLEEE

Remark 3.9. There may be some confusion about notation because we will sometimes
consider the same objects but in different categories. Generally, for the loop L, the
notation “IL” will denote the underlying set, the underlying smooth manifold, the loop,
and the G-set with the partial action of ¥F (LL). Similarly, L will denote the same
underlying set, the same underlying smooth manifold, but will be different as a G-set
- it has the full action of W% (L). Since L and L are identical as smooth manifolds,
they have the same tangent space at 1. Generally, we will only refer to I if we need to
emphasize the group action. For the L-algebra, the notation “[” will denote both the
underlying vector space, and the vector space with the algebra structure on T3l induced
from the loop L. For different values of p € L, [(?) is identical to [ as a vector space, but
has a different algebra structure. We will use the notation [?) to emphasize the algebra
structure.

3.8. Structural equation

Let us now define an analog of the Maurer-Cartan form on right fundamental vector
fields. Given p € L and £ € [, define 6, to be

0 (p(6),) = (B;1), p(6), =€ (3.32)

Thus, this is an [-valued 1-form. The right fundamental vector fields still form a global
frame for T1L, so this is sufficient to define the 1-form 6. Just as the right fundamental
vector field p (€) is generally not right-invariant, neither is 6. Indeed, let ¢ € L and
consider (Rq_l)* 6. Then, given X, = (R,), £ € T,L
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(Xp) =0/ (R0 Ry),€)
= (Ryj o Bt o Ry) €
= (R, o RY)) € (3.33)

where same idea as in (3.4) was used.
Now consider dfl. Generally, for a 1-form, we have

do (X, Y)=X0(Y)-YO0(X)—-0([X,Y]). (3.34)
Suppose X, Y are right fundamental, then from (3.27), we get
(df), (X,Y) = [0(X),0 (¥))¥ =o0. (3.35)

However, since right fundamental vector fields span the space of vector fields on L, (3.35)
is true for any vector fields, and we obtain the following analogue of the Maurer-Cartan
equation.

Theorem 3.10. Let p € L and let [-, -](p) be bracket on (). Then, 0 satisfies the following
equation at p:

(d6), ~ 516,61 =0, (3.36)

where [0, 9](;7) is the bracket of L-algebra-valued 1-forms such that for any X,Y € T,L,
510.6)7 (X.Y) = [6(X).0 ().
Let g € L and 9D = (R,)" 0, then 69 satisfies

(d9<q>)p - % [0, 0] ", (3.37)

where [-, |7 is the bracket on P9,

Proof. The first part already follows from (3.35). For the second part, by applying (R,)"
to (3.36) we easily see that 0(?) satisfies (3.36) with the translated bracket [-, -](pq), and
hence we get (3.37). O

Remark 3.11. The 1-form (9 can be seen as translating a vector in T,L by R, to Tp,lL,
and then by Rp_q1 back to . However, given the identity xq/pg = z/,p, we see that 6@
is just the loop Maurer-Cartan form in (L, o,).

The obvious key difference with the Lie group picture here is that the bracket in
(3.36) is non-constant on L, i.e. given a basis, the structure “constants” would vary.
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In particular, the Jacobi identity is the integrability condition for the Maurer-Cartan
equation on Lie groups, however here we see that the right-hand side of the Jacobi
identity is related to a ternary form given by the derivative of the bracket. For any
£,m,v € 1P| define

3ac® (€, 7) = [ 10.17) " + 1y 6]+ [en®] . @9

We also need the following definition.

Definition 3.12. Define the bracket function b : L — [® A%I* to be the map that takes
P [ -](p) € I ® A?I*, so that b(6,0) is an l-valued 2-form on L, i.e. b(6,6) € Q2 (I).

Lemma 3.13 below will give the differential of b. The proof is given in Appendix A.

Lemma 3.13. For fized n,v € |,

(p)

dbl, (,7) = [1,7,0,]" = [y,1,6,]" (3.39)

where [+, -, .](p) is the L-algebra associator on () given by
(p) d3 /
(1,7, €] = g exp (1) op (exp (777) 0p exp (£6)) o (3.40)
d3 ,
= Gidrdr (xXP (1) op exp (177)) op exp (£€) .
Moreover,
(p) ’ / (L,op)
(1,7, &1 = ——— [exp (Tn) , exp (7'7) , exp (tE)] " o (3.41)
where [+, -, -](L’op) is the loop associator on (IL,op) as defined by (2.3/).

The skew-symmetric combination of associators, as in (3.39) will frequently occur
later on, so let us define for convenience

ap (1,7,€) = [0, 7, P = [y,m,6, (3.42)

which we can call the left-alternating associator, so in particular, (3.39) becomes

dbl, (n,v) = ap (n,7,0p) - (3.43)

The loop Maurer-Cartan equation can be rewritten as

do = %b 0,0), (3.44)
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and hence we see that b(6,0) is an exact form, so in particular, d (b (6,6)) = 0. We will
now use this to derive a generalization of the Jacobi identity.

Theorem 3.14. The maps a and b satisfy the relation
b(6,5(0,0) = a(0,6,0), (3.45)
where wedge products are assumed. Equivalently, if £,m,v €  and p € L, then

Jac!? (&,1,7) = ap (€,1,7) + ap (0,7,€) + ap (v,6,7) - (3.46)

Proof. We know that d(b(6,0)) = 0, and thus, using (3.39) and (3.44), we have

0=d(b(6,9))
= (db) (8,0) + b (d6,0) — b (6, db)
=a(0,0,0) —b(0,b(6,0)).

So indeed, (3.45) holds. Now let X,Y,Z be vector fields on L, such that X =
p(€). Y = pm), Z = p(y). Then, a(4,6,6),(X,Y,2) = 2Jac'” (§,1,7) and
%b(@,b(@,@))p (X,Y, Z) gives the right-hand side of (3.46). O

Remark 3.15. An algebra (A, [-,-],[,-,]) with a skew-symmetric bracket [-, -] and ternary
multilinear bracket [-,-,-] that satisfies (3.46) is known as an Akivis algebra [1,46]. If
(L,op) is left-alternative, we find from (3.40) that for any &, n € [, [£,§,n](p) = 0,
that is, the L-algebra associator on [(®) is skew-symmetric in the first two entries, and
thus a, = 2 [~,-,-](p). If the algebra is alternative, then Jac? (€,71,7) = 6[{,77,7](17).
Conversely, to an alternative Akivis algebra, there corresponds a unique local analytic
alternative loop, up to local isomorphism [21]. If (IL,0,) is a left Bol loop (so that it
is left-alternative) then the corresponding algebra on [(?) will be a Bol algebra, where
[ ~](p) and [, -, ~](p) satisfy additional identities [1,36,42]. If (IL,o,) is a Moufang loop
(so in particular it is alternative), then the associator is totally skew-symmetric and the
algebra on [(P) is then a Malcev algebra. It then satisfies in addition the following identity
[28,32]:

[em1e.41”)" = [em1® €] (3.47)

Moreover, all non-Lie simple Malcev algebras have been classified [27] - these are either
the imaginary octonions over the real number, imaginary octonions over the complex
numbers, or split octonions over the real numbers.

We generally will not distinguish the notation between loop associators and IL-algebra
associators. It should be clear from the context which one is being used. Moreover, it
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will be convenient to define mixed associators between elements of I and [. For example,
n (L, L, )-associator is defined for any p,q € L and £ € [ as

P 0.6 = (L) 0 1§)) ¢ = (L§y) €€ ThouL (3.48)

and an (L, [, [)-associator is defined for an p € L and n,£ € [ as

[p,n, €] = s (exp (tn) o, exp (1€)))

dtdr (pe

t, 7=0

, (3.49)

t,7=0

e ((pos exp (tn)) o5 exp (7€)

where we see that [p, 7, 5](5) € T, L. Similarly, for other combinations.

Remark 3.16. To avoid long expressions with derivatives and exponentials, let us formally
define the notation

d
pog &= (LI()S))*EZ a(pos exp (t€)) . (3.50)
d
corp=(A)) €= e 9)0p) (351)
0, &= tn) oy 3.52
105§ = o (exp (tn) o5 exp (7€) . (3.52)

for p € L and n,¢ € [, and similarly for quotients and pushforwards of tangent vectors
at other points of L. Using this convention, (3.48) and (3.49) can be written as

[P, 0,6 =pos (qos €) = (posq) o€ (3.53a)
.16 =po, (N0, &) — (posn) o
Let us now consider the action of loop homomorphisms on L-algebras.

Lemma 3.17. Suppose L1 and Ly are two smooth loops with tangent algebras at identity
[ and ls, respectively. Let o : L1 — Lo be a smooth loop homomorphism. Then, cu:
l;, — Iy is an L-algebra homomorphism, i.e., for any £,v € 1y,

Qs [5)7](1) [04*5704*’7](2) (354)

where [-, -](1) and [-, ~](2) are the corresponding brackets on Iy and ly, respectively. More-
over, a, 1s an associator homomorphism, i.e., for any &,v,n € Iy,

o [6,7, M = [0, aur, aun] @ (3.55)
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where [-, -, -](1) and [-, -, ~](2) are the corresponding ternary brackets on Iy and lo, respec-
tively.

Proof. Suppose expy: [1 — L; and expy) : [ — L2 are the corresponding exponen-
tial maps. Let £, v € [;. We know from (2) that

! (exp(l) f) = exp(g) (k) - (3.56)
From (3.29), we have
2
W _ _d
9" = Trdr P (t€) exp(1y (T7) -
d2

~ 21dr Py (77) exp(y) (£6) .

Applying o, to [577](1), we find

W _ &
o 6917 = o (expgy (1) expiry ()

t,7=0
d2
~ g (eXP(1) (T7) expq) (tf)>

t,7=0
However, since « is a loop homomorphism, and using (3.56), we have,

d2
a6, = ——— expy) (ta.€) expy) (T7)

dtdr t7=0
d2
— ———expqy) (Tawy) exp(y) (towd)
dtdr (€3] 1) A
=[a.é, 04*7](2) .

Similarly, using the definition (3.40) for the L-algebra associator, we obtain (3.55). O

In particular, if (a,p) € W (L), then « induces an LL-algebra isomorphism a; :
L) — (L] ~](p) . This shows that as long as p is a companion of some smooth
right pseudoautomorphism, the corresponding algebras are isomorphic. More generally,
we have the following.

Corollary 3.18. Suppose h = (a,p) € VE (L), and q € L, then, for any &,y el

Qs [57 77] @ — [a*f» a*n]h(q) (3573)

Oy [f,n,y](q) = &, au, a*’y]h(Q) ) (3.57b)



S. Grigorian / Advances in Mathematics 393 (2021) 108078 41

Proof. Since h = («, p) is right pseudo-automorphism of L, by Lemma 2.29, it induces
a loop homomorphism « : (L,q) — (L, (q)), and thus by Lemma 3.17, a, : [(9) —
(7(2)) is a loop algebra homomorphism. Thus (3.57) follows. O

Remark 3.19. In general, Akivis algebras are not fully defined by the binary and ternary
brackets, as shown in [47]. Indeed, for a fuller picture, a more complicated structure of
a Sabinin algebra is needed [41].

Generally, we see that W (IL) acts on [ via pushforwards of the action on L, i.e. for
h € R (L) and € € [, we have h - & = (h') €.
The expressions (3.57) show that the maps b € C (L, A ® [) and a €

Cc*> (}L, (®3 [*) ® I) that correspond to the brackets are equivariant maps with respect

to the action of UF (I). Now suppose s € L, and denote by = b (s) € A2[* @ . Then the
equivariance of b means that the stabilizer Stabgrr) (bs) in W (IL) of by is equivalent
to the set of all h € W (IL) for which by(s) = bs. In particular, Stabgr,) (bs) is a Lie
subgroup of U# (L), and clearly Aut (L, o ) = Stabgrr,) (s) C Stabgr () (bs). Moreover,
note that if h = (v,0) € Aut (L, 0,) x N (L, 0,), then we still have bp(s) = bs. So, we
can say that the corresponding subgroup ¢1 (Aut (L, 0,)) x 1o (N®(L,0,)) C UF (L) is
contained in Stabyrr, (bs). Hence, as long as NE(L,o,) is non-trivial, Stabyr Ly (bs)
strictly contains Aut (IL, os). Similarly for a.

Let us now also consider how the bracket [, ] is transformed by (Adl(f) ) .

Theorem 3.20. Suppose s € ]I:, pel, and &,n,v €. Then

()l = [(a4) . () o] -
() ()] () (). 0]

+ (Rz(f))j [, &m® - (Rz(f))j [,

The bracket [, ] P is related to [-,-]'*) via the expression
-1
el ® = e + (BS))  as(€m.p). (3.59)

Proof. Consider

(Adg))* €, 7)](8) - #ZT (pos (exp (t€) o5 exp (1)) /sp

t,7=0

— L (poy (exp (tn) 0x exp (7€))) /up (3.60)

dtdr

t,7=0
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For brevity and clarity, let us use the notation from Remark 3.16. Then, we can write
(3.60) as

(AdSY) e = (o (€osm) /up = (pos (00, ©)) /up. (3.61)

Using mixed associators from (3.53), we can write

(pos (E0sm) /sp=((pos €) osn) [sp+ [, &1 [sp
=(((pos &) /sposp)osn) [p+ [0 &1 [op

- (Adz(f) §os (pos n)) /sp— [Adﬁf) &1, n} 1
+[p. &1 /op.

Applying (2.33), we get

(s) .
(pos (€05 m)) /sp = AdY € 0 AdY 5 — [AdY €, p,m] Jup+ 0,6 fop. (3.62)

Subtracting the same expression with £ and 1 reversed, (3.61) becomes

( A dég)* el = [( Ad;)s>>* ‘ ( Ady) 77] (pe) (3.63)

*

- (Rz(f))j [(AdfY) &p.n) Yy (R;S));l (A4 np.g] (=)
#(8), el - (7)ol

To obtain (3.59), using (3.29), we can write

s d?
[€,n)®*) = Ty &P (t&) ops exp (1)

(3.64)

t,7=0
d2

= . &P (T€) ops exp (tn)

t,7=0

However, from (2.33),

exp (t€) ops exp (1) = (exp (£&) os (exp (1) 05 p)) /sp,

thus

2

dtdr

-1 42
= (Rff)) Ty P (t8) 05 (exp (71) o5 p)

t,7=0 * t,7=0

€xp (tg) Ops €XP (7—77)
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= (1) el
2

+ o eXp (t€) o5 exp (1)

t,7=0

and similarly for the second term in (3.64). Hence, we obtain (3.59). O

From (3.59) and noting that for any h € W (L), h(s) = h(s)/s- s, we find that

[, .}(S) =1, .](h(s)) if, and only if,

as (g,mh (s) S) ©_0 (3.65)

for any &,n € [. From (2.40) recall that h (s) /s is the companion that corresponds to h
in (L, og).
Also, note that from (3.59), we have

0,0 = 16,0V + (R,) " a1 (6,6.p), (3.66)

so the left-alternating associator with p is the obstruction for the brackets [-, .](p ) and
[, ~](1) to be equal. Moreover, the structural equation (3.36) can be rewritten as

do — % 9,000 = L (R)" a1 (6,0.p). (3.67)

1
2
This makes the dependence on the associator more explicit.

Using the associator on [(?) we can define the right nucleus N2 ([(7’)) of 1(P),

Definition 3.21. Let p € ]IZ, then, the right nucleus N2 ([(p)) is defined as

N (0) ={€ €10, (n,7,€) =0 for all n,y € 1}, (3.68)

It may seem that NP ([(1’)) could be defined more naturally as the set of all £ € [
such that [77,7,5](’)) = 0 for any 7n,v € [. However, the advantage of (3.68) is that, as
we will see, it will always be a Lie subalgebra of [(?). For a left-alternative algebra, the
skew-symmetrization in (3.68) would be unnecessary of course.

Theorem 3.22. The right nucleus N'% ([(”)) is a Lie subalgebra of ().

Proof. We first need to show that N7 ([(p)) is closed under [-, -](p). Indeed, taking the
exterior derivative of (3.43), for vector fields X,Y on L we have
0=(d(8,7)) (X,Y) = X (dyb(8,7)) =Y (dxb(5,7)) — dxv1b (5,7)
=X (a(B,7,0(Y)) =Y (a(B8,7,0(X))) —a(B,7,0([X,Y])).
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Suppose now &,n € [ and let X = p (€), Y = p(n) be the corresponding right funda-
mental vector fields, then using (3.26), we have

Suppose now &, € N'F ([(p)). Then, the right-hand side of (3.69) vanishes, and at p € L,

ap (ﬂ,% [5,77](”)) =0, (3.70)

and thus [¢, 7] € NE (1®).

To conclude that N ([(p)) is a Lie subalgebra, we also need to verify that Lie algebra
Jacobi identity holds. That is, for any &,17,v € NE ([(p)), Jac®) (&,m,7v) = 0. Indeed,
from the Akivis identity (3.46),

Jac(p) (67 777 ’Y) = ap (f, nv 7) + ap (T]v 77 5) + ap (77 57 7)) = 07 (371)
by definition of N2 (IP)). O

For any smooth loop, consider the loop right nucleus N% (IL, op) as a submanifold of
L. Then,

TN (L, o,) = {g el lgr€® =0 forall gre ]L} , (3.72)

where here we are using the mixed associator as defined by (3.48). Then, (3.41) implies
that TWNE (L, 0,) ¢ NE ([(p)). It is unclear what are the conditions for the converse,
and hence equality, of the two spaces.

Recall from (2.43b) that A € NB (L) if, and only if, Ad, (A) € NE(L,o,), so in
particular, n € YN (L) if, and only if, (Ad,), n € AN (L, 0p). In (3.58) we then see
that for n,y € TyN'E (L), the associators vanish, and we get

(Ady), [.7] = [(Ady), . (Ad,), 7] (3.73)
Hence, for each p € I, TWNVE (L) =2 TyNE (L, 0,) as Lie algebras.

Example 3.23. Consider the Moufang loop of unit octonions UQ. Then, T;UQ = Im O -
the space of imaginary octonions, with the bracket given by the commutator on Im Q: for
any £,n € Im O, [£,n] = &én—né. We also know that N (UQ) = Zs and N (Im Q) = {0}.
On the other hand, taking a direct product G x UQ with any Lie group G will give a
non-trivial nucleus.

Let s € L. Suppose the Lie algebras of U (L) and Aut (IL, o,) are p and b, respec-
tively. In particular, b, is a Lie subalgebra of p. Define qs = T1CT (I, 0,), then since
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Cf(L,o,) C L, so qs C I®) 2 T1IL. On the other hand, C® (L, 0,) = v (L)/Aut (L, o04)
and the tangent space at the coset 1 = [Aut (IL, o5)] is p/b. Hence, we see that q,= p/b._,
at least as vector spaces. The groups ¥ (L) and Aut (I, 0,) act on p and b, via their
respective adjoint actions and hence Aut (IL, o5) acts on g5 via a restriction of the adjoint
action of W (IL). Now note that given h = (a, A) € UE (L) and 8 € Aut (L, 0;), the
conjugation of h by [ is given by

(8.1) (@, A) (B71,1) = (Boao f71, 3 (A))

and hence the corresponding action on the companion A is via standard action of 3
on L. The differentials of these actions give the corresponding actions on the tangent
spaces. We thus see that the adjoint action of Aut (IL,o0,) on p/b; is equivalent to the
standard tangent action of Aut(L,os) on qs. Hence, qs and p/h, are isomorphic as
linear representations of Aut (L, o). We can make the isomorphism from p/hs to qs
more explicit in the following way.

Definition 3.24. Define the map ¢ : L—I® p* such that for each s € L and Y EP,

05 () = 4 (exp (1) (s)),

T S el (3.74)

t=0

Thus, for each s € ]Io_,, @, gives a map from p to [(*).

Theorem 3.25. The map ¢ as in (5.74) is equivariant with respect to corresponding ac-
tions of W (L), in particular for h € WF (L), s € L, v € p, we have

en(s) (Adn), 7) = (1), 95 (7) - (3.75)
Moreover, the image of s is qs and the kernel is b, and hence,
p=bs s (3.76)

Proof. Consider h € ¥ (L). Then, using (2.15b), we have

orie () = L () N

_ Ao TAd, o (ex s
Ly [ () 5)

t=0

t=0
= (), Lexp(t(Ady). ) (s)

t=0

Since WF (L) acts on [ via (h'), and on p via (Ady), we see that ¢ is equivariant.
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Since Aut (L, o) is a Lie subgroup of WF (L), the projection map 7 : UE (L) —
v (]L)/Aut (L, o05) =~ CR(L,o4) is a smooth submersion given by m(h) = h(s) /s for
each h € UR (L). Thus, 7|y : p — qs is surjective. However, since exp is a surjective
map from p to a neighborhood of id € ¥ (L), we find that m.|, (v) = ¢s (7). So
indeed, the image of the map @5 is qs. Clearly the kernel is hy. Then, (3.76) follows
immediately. O

Theorem 3.25 implies that ¢ : L - I1® p* is equivariant with respect to
the action of W7 (L), and similarly as for b, we can define Stabgr) (ps) =
{h € UR (L) : gp(s) = ¢s}. This is then a Lie subgroup of ¥# (L), and Aut (L,o,) C
Stabg () (¢*)). Suppose h = (a, A) € Stabyr, (¢(*), then

©s (7) = @ne) () = % [exp (t7) (a () A)] / (a(s) A) .

We can also see the effect on ¢ of left multiplication of s by elements of L.

Lemma 3.26. Suppose A € 1L and s € ]IZ, then for any v € p,

-1
pas ()= (RD) (- 4)+ (845 v, (), (3.77)
where v' - A = % (expty)’ (A)|t:0 represents the infinitesimal action of p on L.

Proof. This follows from a direct computation:

pas (7) = - exp (1) (43) /As

t=0

= % exp (1) (A)exp (17) ()] /As

t=0

+ i ([exp (t’)/)/ (A)} 5) /As

= % [Aexp (t7) (s)] /As dt

t=0 t=0

=(ad}) e+ (RY) (-4,

where we have used (2.29a). O
Example 3.27. If IL is the loop of unit octonions, then we know p = 50 (7) = A2 (R7)*

and [ 2 R7, so ¢, can be regarded as an element of R” ® A?R”, and this is precisely a
dualized version of the Gy-invariant 3-form . The kernel is isomorphic to ga.

Example 3.28. Suppose L =UC = S - the unit complex numbers, so that [ = R. From
Example 2.24, we may take W[ (UC) = U (n), with a trivial partial action on UC. The
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corresponding Lie algebra is p, = u(n) = su(n) ¢ iR. The map ps : p, — iR is then
just the projection su(n) @ iR — iR (i.e. trace). It is independent of s. The kernel is
su(n). Suppose V is a n-dimensional real vector space, and V ® C = V10 @ V91, Then,
the group U (n) acts via unitary transformations on the complex vector space V1V, and
correspondingly u (n) = V! (i.e. the space of (1,1)-forms). Then, we see that o, is just
the dualized version of a Hermitian form on V ® C.

Example 3.29. Suppose L. = UH = S - the unit quaternions, so that [ = sp (1). From
Example 2.24, we may take WE (UH) = Sp (n) Sp (1), with n > 2, with a trivial partial
action on UH. The corresponding Lie algebra is p, = sp(n) @ sp (1). The map ¢ :
pn — sp (1) is then given by (a,§) — (Ads), §. The kernel is then sp (n). Suppose
Sp(n)Sp(1) acts on a 4n-dimensional real vector space V, sp(n) @ sp (1) C A2V*.
Given that sp (1) = ImH, we can then write ¢ = iw; + jws + kwj, where the w} are
dualized versions of the 3 linearly independent Hermitian forms that span the sp (1)
subspace of A2V* [44].

Remark 3.30. The above examples clearly show that one interpretation of the Go-
structure 3-form ¢ is as Im O-valued 2-form. A complex Hermitian form is then an
Im C-valued 2-form, and a quaternionic Hermitian form is an Im H-valued 2-form.

Now let us summarize the actions of different spaces on one another. For a fixed -,
define the map 4 : . — [ given by s — 4() = o, (7).

Theorem 3.31. Suppose L is a smooth loop with tangent algebra | and suppose WE (L) is
a Lie group with Lie algebra p. Let A €L, s € ]i, & el, and v € p. Then, denoting by -
the relevant action, we have the following:

1. Infinitesimal action of p on L:

d A (s
1os= Sen(t) () = (R4 €T (3.78)
t=0
2. Infinitesimal action of p on L, for any s € L:
d s ~(As s ~(s
v A= Zepty) (4) = (BY) 40— (1Y) 4V emil.  (379)
t=0 * *
In particular, if s =1,
v A= (Ra), A = (La), A, (3.80)

3. Action of p on I for any s € L:

v-€= % (exp (t7)), (€)

t=0
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= a4, (e )+ [3.€] . (3:81)

In particular, for s =1, we have
7€ = dil; (&) + [3D.¢] . (3.82)
Proof. Let A,BelL,se ]I:, ¢&mnel he¥E(L), and v € p. Then we have the following.

1. The infinitesimal action of a Lie algebra is a standard definition.
2. Consider now the action of p on L. Suppose now v € p and A € L

d
7 A= o (exp(t7)') (A) (3.83)
t=0
Suppose h € UE (IL,0,), then by (2.40), the action of h on A € L is
P(A) = (), ((s)5)
Thus, the partial action h' (A) is given by
W' (A) = (h (AS)/S) /s (h (5) ) (3.84)
Moreover,
h(As), (h (AS)/AS) o5 A. (3.85)
Hence, substituting into (3.83), we have
d
1A= 2 (exp(ty(As)) exp (t7) (s)
e (09 8) ()
_ 4 fexp (ty (As)) _d exp (ty) (s)
- dt( a0 A) T ate ( ) o
= (R(j))* AAs) _ (L(j))* 49), (3.86)
Setting s = 1 immediately gives (3.80).
3. Suppose now v € p and & € [, then we have
d /
&= 2 (e (1)), ()
t=0
d2
= T exp (1) (exp, 76) (3.87)
t,7=0
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Let = = exp, 7€ € L, then using (3.84) and (3.85), we can write
exp (1) (exp, 7€) =exp (t7) (2)
(exp (ty) (Es/Zs 04 T)) /s (exp (ty) (s) s)
Using this, (3.87) becomes

/ d2 exX €ex T S
Vg = L (e ) (.9 9)

exp, 7€) 505 exp, 7E)|

- % exp, 7€ 0 (5P (1) (5) )
d2
= ———exp () ((exp, 7€) 5) / (exp, 7€) 8

t,7=0

t,7=0

+ % (exp (ty) (8)/8) 0 €xp, TE

t,7=0
2

=L xp e, (exp (t9) (5) 8)

dtdr (3:88)

t,7=0

However 4(*) = % exp (ty) (s) /S|t:0 € [, and thus

d (s) 2 (s)
o (L) A9

(RS, ) A9

d2
_,  dtdr
d2

., dtdr

(exp, TE) og €xp, (t,-AY(S))

t,7=0

exp, (t&(s)> 05 expy TE
t,7=0

Hence, using the expression (3.29) for [, -](S), we get

v €= iﬁ(exps TE)s

I +[3),¢] . (3.89)

7=0

The first term in (3.89) is then precisely the differential of 4 at s € L in the direction
(Rs), & Setting s =1 we get (3.82). O

Remark 3.32. Since the full action of W (IL) does not preserve 1, the pushforward of
the action of some h € UE (L) sends T1LL to T4LL, where A = h (1) is the companion
of L. To actually obtain an action on 7311, translation back to 1 is needed. This can be
achieved either by right or left division by A. Dividing by A on the right reduces to the
partial action of W% (IL), i.e. action by A’. This is how the action of p on [ in (3.81) is
defined. Dividing by A on the left, gives the map h” = Ad -1 oh/, as defined in (2.49).
In that setting, it was defined on the nucleus, and hence gave an actual group action of
U (L), however in a non-associative setting, in general this will not be a group action.
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Combining some of the above results, we also have the following useful relationship.
Lemma 3.33. Suppose & € p and n,y € 1, then

£ = [0 + 1,62 +as (0,7, 05 (€)) - (3.90)

Proof. Using the definition (3.81) of the action of p on [, we have

1 (exp (t€)'), . 1™

t=0

[(exp (t€)'). m, (exp (t€)') 7] “T)

Sl

=

t=0

where we have also used (3.57a). Hence,

S S S d ex’ S
R e U A U0 (3.91)
t=0
We can rewrite the last term in (3.91) as
d xp(t€)(s) d o jexp.(te.()s
— [, 7] = [, A7 d &bl (1,7)
dt t=0 dt t=0 P(E) s
where £ = @, (£). Then, from (3.39), we see that
%) (n,7) = as (nmé) (3.92)

and overall, we obtain (3.90). O

Recall that for each s € ]Iz, the bracket function b, is in A%l* ® I, which is a tensor
product of p-modules, so (3.90) can be used to define the action of £ € p on b,. Using
the derivation property of Lie algebra representations on tensor products, we find that
for n,v €,

(f : bs) (777’7) =< (bs (7777)) — bs (5 ' 7777) —bs (7775 ) ’7)
=ag (777 Y5 Ps (5)) . (393)

Definition 3.34. Suppose g is a Lie algebra with a representation on a vector space M,
so that (M, g) is a g-module. Then if x € M, define the annihilator subalgebra Anng (z)
in g of x as

Anng (z) ={{€g:& -2 =0}. (3.94)
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From (3.93), we see that

Ann, (bs) ={{€p:as(n,7,¢s (&) =0 forall n,y e (}. (3.95)

The definition (3.95) is simply that £ € Ann,, (by) if, and only if, ¢, (£) € N'E ([(s)), SO
that Anny (bs) = ¢, * (NR ([(S))). This is the Lie algebra that corresponds to the Lie
group Stabgrr) (bs). Indeed, the condition (3.95) is precisely the infinitesimal version
of (3.65). If L is a G-loop, so that ¢, (p) = I(*), then ¢, (Ann, (b)) = N'E (1(*)). Hence,
in this case, Anny (bs) & by & N7 (1)),

Using the definition (3.74) of s, let us consider the action of p on ;.

Lemma 3.35. Suppose &, € p, then for any s € L, we have
€ s () =m0 (6) = s ([61],) + s (€) 05 M), (3.96)
where - means the action of p on .

Proof. Using (3.81) and the definition (3.74) of pg, we have

2

= dtdr

exp (t€)’ (GXP (n) (s) S)

g CPs (77)
t,7=0

d? ex exp (7n) (s
= e ) e () () e )

= dtdr

t,7=0

exp (t€) (exp (1) (s)) /s

t,7=0
2
_ d;% (5P (T (5 exp (1) (5) ) /9

2

= dtdr

t,7=0

(exp (t&) exp (7)) (s) /s (3.97)

t,7=0

& exp () (5),, o, X (£€) (5)

© dtdr s

;
t,7=0

where we have used (2.15b) and Lemma A.1. Now subtracting the same expression but
with £ and n switched around, we obtain (3.96). O

Remark 3.36. In terms of the Chevalley-Eilenberg complex of p with values in [, the

relation (3.96) shows that if we regard ¢, € C* (p;[), i.e. a 1-form on p with values in I,
then the Chevalley-FEilenberg differential dop of ¢, is given by

(depps) (€,1) = [ps (€) s ()] (3.98)
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for any &,n € p. It is interesting that, at least on qs, the bracket [-, ~](S) corresponds to
an exact 2-cochain.

Similarly, from (3.96), we then see that the action of £ € p on ¢, as an p* ® [-valued
map. Indeed, given &, 7 € p, we have

(- 5) (n) =€ 05 () — 0 (1€, )
= 04 (&) = s (1) 05 ()] (3.99)

where we have first used the fact that p acts on itself via the adjoint representation and
then (3.96) in the second line.

Let us now consider Ann, (¢,). From (3.99), we see that we have two equivalent
characterizations of Ann, (p5). In particular, £ € Ann, (¢,) if, and only if,

&= ([&m),) (3.100)

or equivalently, for & ¢ b, if, and only if,
A e
n-§= {n,f} ; (3.101)

for any 7 € p. Here we are again setting £ = ¢, (€) and 9 = ¢, (1). In particular, (3.100)
shows that g, is a representation of Ann, (¢s). Suppose now, &1,&2 € Ann, (¢5), then
using (3.100) and (3.101), we find that

@s ([61752],,) =& b= [51,52} v (3.102)

Therefore, ps (Anny, (¢,)) is a Lie subalgebra of [(*) with ¢, being a Lie algebra ho-
momorphism. The kernel b, = ker ¢, is then of course an ideal of Ann, (¢5). Thus, the
quotient Anny (p5) /s is again a Lie algebra, and hence Ann, () is a trivial Lie algebra
extension of hs. Moreover, note that the Lie algebra Ann, (¢s) corresponds to the Lie
group Stabyr ) (©s), and thus if Aut(L,o,) and Stabyrr,) (¢s) are both connected,
then we see that Aut (L, o,) is a normal subgroup of Stabyr ) (¢s)-

In the special case when L is a G-loop, we get a nice property of Ann,, (¢s).

Theorem 3.37. Suppose IL is a G-loop, then Ann, (¢s) C Anny (bs).
Proof. Suppose £ € Ann,, (p5) and let 0,y € p. Consider
o], - &= (n-f) —n- (vf)

=y - [ﬁ,f] R [%5] w
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=y €~ a (3,€7)

where we have used (3.101), (3.90), (3.96), and the Akivis identity (3.46). We hence find
that

s (&,é, n) —0. (3.103)

We know that if L is a G-loop, then [(#) = ¢ (p), and thus the condition (3.103) is the
same as (3.95), that is £ € Ann, (bs). O

Remark 3.38. Overall, if L is a G-loop, we have the following inclusions of Lie algebras
ker o, = by _dC 1 Ann, () C Anny (bs) = b, e NFE ([(S)) cp. (3.104)

If we look at the octonion case, with L. =UQ, then p = so0 (7), hs = go. Moreover, in
this case, N'Z (I) = {0}, so we must have h; = Ann, (¢s) = Ann, (bs). This also makes
sense because in this case, ¢ and by are essentially the same objects, and moreover,
almost uniquely determine s (up to £1). At the other extreme, if IL is associative, so
that N2 (1) = I, then Ann, (bs) = p, but Ann,, (¢5) does not have to equal Anny, (bs).

Example 3.39. Using the setup from Examples 2.24, 3.28, and 3.29, if L. =UC with
VE(UC) =U (n) or L =UH with W (UH) = Sp(n) Sp (1), since the partial action of
U2 in each case here is trivial, from (3.87), we see that the action of each Lie algebra
pn on [ s trivial. In the complex case, [ = R, and is thus abelian. Hence, from (3.99), we
see that in this case £ - p; = 0 for each £ € p,,. This makes because in Example 3.28 we
noted that ¢, does not depend on s in the complex case. In the quaternion case, (3.99)
shows that if £,n € sp (n) @ sp (1) = p,, then

(- 0s) () = = s (161,

=— ¢, Mlm (3.105)
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where &, 7 are the sp (1) components of £ and 7, and [-,-];,,
(and equivalently on sp (1)). In particular, Ann,  (¢s) = sp (n).

g is the bracket on Im H

Note that, while it is known that any simple (i.e. has no nontrivial proper normal
subloops) Moufang loop is a G-loop, it is not known whether there are simple Bol loops
that are neither G-loops nor isotopic to Bruck loops [34] (a Bruck loop is a Bol loop
for which the inverse is an automorphism). On the other hand, there is an example of
a Bol loop that is a G-loop but is not a Moufang loop [39]. That particular example is
constructed from an alternative division ring, but if that is taken to be Q, we obtain a
smooth loop.

3.4. Killing form

Similarly as for Lie groups, we may define a Killing form K on (). For £,7 € [, we

have
K (&) = Tr (adg” 0ad(), (3.106)
where o is just composition of linear maps on [ and ad( () = [&, ] , as in (3.25).

Clearly K(®) is a symmetric bilinear form on [. Given the form K®) on [, we can extend

it to a “right-invariant” form (-, ~>(S) on L via right translation, so that for vector fields

X,Y on L,
(X, V) = K& (0(X),0(Y)). (3.107)
Theorem 3.40. The bilinear form K (3.106) on | has the following properties.
1. Let h € U (L), then for any &,n €1,
KD (ng, hon) = K (€.1) . (3.108)
2. Suppose also v € |, then
K (ad n,€) = = KO (1,ad) €) + Tr (Jacf) oady)

+ Tt (Jacl) 0ad”), (3.109)

where Jac(s) [ — [ is given by Jaucff’)7 &) = Jac® (f 7,7)-
3. Let a € p, then

K (a-&m) =— K®) (&a-n)+Tr (aE}S’L o adés)) (3.110)

+ Tr (aésl o adgf)) ,
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where a(s) (f)

&)t Uis given by af’) () = [v.&,0) = [€, 7,0

and & = @5 (a).
The proof of Theorem (3.40) is given in Appendix A.

Remark 3.41. If (L, o,) is an alternative loop, we know that Jac;fzy =3a(¥), so in that in

case, K®) is invariant with respect to both ad® and the action of p if, and only if,
Tr (aif?l o adés)) + Tr (aésl o ade)) =0. (3.111)

Indeed, in [43], it is shown that for a Malcev algebra, the Killing form is ad-invariant. A
Malcev algebra is alternative and hence the Killing form is also p-invariant in that case.
Moreover, it shown in [30] that for a semisimple Malcev algebra, the Killing form is non-
degenerate. Here the definition of “semisimple” is the same as for Lie algebras, namely
that the maximal solvable ideal is zero. Indeed, given the algebra of imaginary octonions
on R7, it is known that the corresponding Killing form is negative-definite [3]. Moreover,
since in this case, the pseudoautomorphism group is SO (7), so (3.108) actually shows
that K"*) = K* for every h, and thus is independent of s. General criteria for a loop
algebra to admit an invariant definite (or even just non-degenerate) Killing form do not
seem to appear in the literature, and could be the subject of further study. At least for
well-behaved loops, such as Malcev loops, it is likely that there is significant similarity
to Lie groups.

Suppose now K ) is nondegenerate and both ad®- and p-invariant, and moreover
suppose p is semisimple itself, so that it has a nondegenerate, invariant Killing form
K,. We will use <',~>(S) and (,-), to denote the inner products using K®) and K,,
respectively. Then, given the map ¢, : p — [(*), we can define its adjoint with respect
to these two bilinear maps.

Definition 3.42. Define the map ¢, : ((8) — p such that for any & € [(*) and n € p,

(h (&) ), = (& 00 ). (3.112)
Since b, = ker p,, we then clearly have p 2 b, @ Im %, so that bt = Im’. On the
other hand, we also have [(*) = ker ! @ qg, since qs = Im ;. Define the corresponding

projections my, Ty and mq,, 1. We then have the following properties.

Lemma 3.43. Suppose qs is an irreducible representation of b and suppose the base field
of pisF =R or C. Then, there exists a \s € F such that

Qs = AeTrqer and phos = AgmyL. (3.113)

Moreover, for any h € UE (L), A\, = Ah(s)-
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Proof. Let v,n € p and ¢ € [(®), then using (3.99),

((v-5) (©).m), =<[%<ﬂ2 ©], ﬂ7>p — (¥ (v-€),m),
=— <<p§ (€[ n}p> — (7 & s (M)

= (& (v 0s) )™ (3.114)

so in particular, Ann, (¢s) = Ann, (¢!). Thus, the map g% : [(9) — ((5) is an equiv-
ariant map of representations of the Lie subalgebra Ann, (¢s) C p and is moreover
self-adjoint with respect to (-, ~>(S). We can also restrict this map to qs, which is also a
representation of Ann, (¢5), and in particular of h. Hence, if q, is an irreducible repre-
sentation of b, since 5! is diagonalizable (in general, if C is the base field, or because
it symmetric if the base field is R), by Schur’s Lemma, there exists some number Ag # 0
such that

PPl i = Asidgo - (3.115)
Applying ¢ to (3.115), we also obtain.
PePslys = Asidyy - (3.116)

Since ¢! and ¢, vanish on g and b, respectively, we obtain (3.113).
Let h € U (L), then from (3.75), recall that

Pnisy = (1), 0 ps0 (A, ), (3.117)
It is then easy to see using (3.108) and the invariance of the Killing form on p that

-1

Chis) = (Adp), 0 @5 o (B), (3.118)

In particular, we see that

(1), ds = Qn(sy and (Ady), by = biy)-

Hence,

1
@h(s)‘pZ(s) = (h’,)* © 4,05902 ° (h',)*
An(s) dn(s)

=\ 1dqh(s)

and so indeed, A\s = Ap(5)- O
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Example 3.44. In the case of octonions, suppose we set ¢, (n), = kapen®® where 1 €
s0(7) = A? (R7)*, ¢ is the defining 3-form on R”, and k € R is some constant. Then,
O (V)p = k@abey© where v € R” = Im O. Now, R” is an irreducible representation
of go, so the hypothesis of Lemma 3.43 is satisfied. In this case, A = 6k due to the
contraction identities for ¢ [14,22].

Consider the action of ¢, ([(S)) C pon gs. Let £,n € qs, then from (3.96),

PL(E) - 0ot (1) = 94 (1) - 0ot (6) = s ([04(©) 0L )], ) + [0t (€) el ()]
(3.119)
and thus,

po () -n—pi(n)-€= /\is@s ([wi (), ¥ (n)]p) + A E,m. (3.120)

We now show that ¢! (€) -7 is skew-symmetric when restricted to qs and then projected
back to qs.

Lemma 3.45. Suppose L is a loop and s € L., such that the Killing form is non-degenerate
and ad® - and p-invariant. Then, for any &,1 € qs,

Tq. (@4 (&) -n) = —mq, (¢} () - €) . (3.121)

Proof. Suppose &,7 € qs, then using the ad®)- and p-invariance of the Killing form on
((*) and (3.120) we have

(o ) -1, & == (0L (m) - )"

7/\s<[n,n](s),€>(3)

—— (et (&) ) = (! (©) - )™
—0.

Thus, we see that 74, (¢! () -n) =0, and hence (3.121) holds. O

Taking the 7,4, projection of (3.120) gives

Mo, (219 1) = 5-ee ([24© L ], + At () ). (3.122)
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The relation (3.122) suggests that we can define a new bracket [-,-] , on [(5) using .

Definition 3.46. Suppose L satisfies the assumptions of Lemma 3.45. Then, for &,7 € [(5),
define

€, = s ([#1(8) 6t )], ) - (3.123)

This bracket restricts to qs and vanishes on q7, so that gL is an abelian ideal with
respect to it. We can rewrite (3.122) as

. (95 (€) ) = % €., + %qu (1e.n®). (3.124)

a — k@abcnbc and
([5,7](5)) = 20apcE"7°, we find that [, -], = 3k* [, 1®). Then, recalling that A, = 6k2,
(3.124) shows that in this case

Example 3.47. In the case of octonions, if, as before, we set ¢, ()

k s
e (€) v = (Z + 3k2) €71,
and to be consistent with the standard action of so0 (7) on R”, we must have

k
k@abcfcvb = (5 + 6k2> (Pabcgb’ycv
which means that 6k2 + %k = 0 and therefore, k = —i. This also implies that Ay = % in
this case. We also thus obtain

€)= gle". (3.125)

Example 3.48. If LL is a Lie group, and W% (IL) is the full group of pseudoautomorphism
pairs, then p = aut (L) @ [, where aut(IL) is the Lie algebra of Aut (L) and [ is the
Lie algebra of L. In this case, ¢lps is just the projection to [ C p, and thus A\ =
Land [, = [~,~}(S). Then (3.124) just shows that [ acts on itself via the adjoint
representation, i.e.

@s (&) -n=1[&m]. (3.126)

Remark 3.49. Both of the above examples have the two brackets [-,-], and [, ~](S) pro-
portional to one another. This really means that [(¥) and bL have equivalent L-algebra
structures with ¢, and % (up to a constant factor) being the corresponding isomor-
phisms. It is not clear if this is always the case.

The bracket [-,-] , has some reasonable properties.
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Lemma 3.50. Under the assumptions of Lemma 3.45, the bracket [~,~]% satisfies the
following properties. Let €,m,~ € [, then

1. (1, ,v>(s) =—(u, [ém]%>(8).
2. Forany h € WR (L), [&,1],, = (). [(W)7"& ()" ]

®s

Proof. The first property follows directly from the definition (3.123) and the ad-
invariance of the Killing form on p. Indeed,

(e )" = (o (et © ) 1)

_ <soi (), [5 (€) » 5 (v)}p>(8)
=— <n, [57’)’]¢S>(S)~

Now let h € U (L), and then since (Ady), is a Lie algebra automorphism of p, we have

[&:mlg, .,

=Ph(s) ({‘Pi(s) () ’902(5) (77)} P)

~—
*
[
—
R
~—
N—
N——
[E—
k=2
N———

=), 000 (aq), ([(Aan), (4 (1074 ©)) (A, (ot (0

=), o ([ (007 ©) ot (0007 )] )

Therefore, [+, ], is equivariant with respect to transformations of s. O
3.5. Darbouz derivative

Let M be a smooth manifold and suppose s : M — L is a smooth map. The map s
can be used to define a product on LL-valued maps from M and a corresponding bracket
on [-valued maps. Indeed, let A, B : M — L and &, : M — | be smooth maps, then
at each x € M, define

Aoy B|, =Az 05, B, €L (3.128a)
A/sB|, =A;/s, By, €L (3.128b)
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A\ B|, =A,\B, €L (3.128¢)

&, m® L= [0, m2) ) € L. (3.128d)

In particular, the bracket [-, -](S) defines the map b, : M — A%[* @ [. We also have the

corresponding associator [, -, -](S) and the left-alternating associator map as : M —

A%1* @ I* ® I. Similarly, define the map ¢, : M — p* @ L.
Then, similarly as for maps to Lie groups, we may define the (right) Darboux derivative
05 of s, which is an [-valued 1-form on M given by s*6 [45]. In particular, at every x € M,

0], = (B3h) dsl, - (3.129)

It is then clear that 65, being a pullback of 6, satisfies the loop Maurer-Cartan structural
equation (3.35). In particular, for any vectors X, Y € T, M,

by (X,Y) — 05 (X),0, (V)] =0. (3.130)

We can then calculate the derivatives of these maps. For clarity, we will be using nota-
tion from Remark 3.16, in that we will suppress the pushforwards of right multiplication
and their inverses (i.e. quotients) on T'L, so that if X € T,LL, then we will write X o, A

for (R(:)) . X.

Theorem 3.51. Let M be a smooth manifold and let x € M. Suppose A,B,s €
C> (M,L), then

d(Ao, B) = (dA) oy B+ Ao, (dB) + [A, B,6,]"” (3.131)
and

d(A/,B) =dA/,B — (A/,Bo,dB) /B (3.132a)
~[A/,B.B.6,)” /B

d(B\sA) =B\,dA — B\, (dB o, (B\,A)) (3.132b)
— B\ [B,B\.A,0,]".

Suppose now £, € C*® (M, 1), then
de, )" = [dg,m + €, dn + as (€,1,05) . (3.133)
The | ® p*-valued map ps: M — [ ® p* satisfies

dips = idy -0 — s, 0], (3.134)
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where idy is the identity map of p and - denotes the action of the Lie algebra p on | given

by (3.87)

Proof. Let V € T, M and let = (t) be a curve on M with = (0) = « and £ (0) = V. To
show (3.131), first note that

d
d(Aos B)l, (V) = = (Aa(t) 0.y Bat) (3.135)
t=0
However,
d d d
gt e Osaco Bow)| = g (e 00 Ba)| 4 G (Ao Bo)|
+ 4y, B
dt x sw(t) x o
- (ng)* dA|, (V) + (LS:))* dB|_ (V) (3.136)
d
+ % (Aa: Osm(t) Bz) —o
and then, using Lemma A.1,
D Apon, B =L (A Busa) J5a)
dt x Osy4) P o dt T z9x(t) x(t) o
d
= E ((Aa: . stz(t)) /SQJ) o (3137)

d
+ 7 ((Az - Busg) /S5 Sur)) /Sa
t=0

Looking at each term in (3.137), we have

:Ax Os, (Bw Os, (Sm(t)/sw))

and
((Aac Bysg) [8s - Sa;(t)) /82 = (Az 05, Bz) 0s, (SI(t)/Sx) .

Overall (3.136) becomes,

= (5 or?), = (2520 n) ) (B2D), dsl, (Vi) (3139)
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and hence we get (3.131) using the definitions of §; and the mixed associator (3.11).
Let us now show (3.132). From Lemma A.1, we find

d(A/B) =(dA) /B — (A/B -dB) /B (3.139a)
d(B\A) =B\ (dA) — B\ (dB - B\A). (3.139b)

Now if we instead have the quotient defined by s, using (2.29a), we have a modification:

d(A/sB) =d(As/Bs) = d(As) / (Bs) — (A/sB - d(Bs)) / (Bs)
—dA/B+ A(ds) / (Bs) — (A/sB - (dB) s) / (Bs)
— (A/sB-B(ds)) / (Bs)
=dA/sB — (A/sBosdB) /B + (Aos0s) /B
— (A/sBos (Bosby))/sB
—dA/,B— (A/ Bo,dB) /B —[A/,B,B,0, /,B. (3.140)

Similarly, for the left quotient, using (2.29b), we have

d(B\sA) =d((B\As) /s)
=d(B\As) /s — (((B\As) /s) - ds) /5
=(B\d(4s)) /s — (B\ (dB - B\As)) /s — (B\sA) o 0,
=B\sdA + (B\ (A (ds))) /s — B\s ((dB - B\As) /s)
— (B\sA4) o5 0,
=B\,dA — B\, (dB o, (B\,A)) + B\, (Ao, 0,)
— (B\sA) o5 0 (3.141)

However, using the mixed associator (3.11),

Aog s =(Bog (B\sA)) o, 05
=Bo, ((B\,A) o, 0,) — [B, B\,A, 0, , (3.142)

and thus,
d(B\sA) = B\sdA — B\, (dB o, (B\;4)) — B\, [B, B\s4,0,]" .

To show (3.133), note that

. d
d ([é“,n]( )) ’z (V)= 7 [qu)v’?z(t)]( o

t=0
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= [de], (V)0 + (&4, dn],])

a (s2(y)
+ dt [517771’] —0

However, using (3.39), the last term becomes

d s
E [gmﬂh]( I“)) = Qs, (59;77717 es|m)

t=0

and hence we obtain (3.133).
Let us now show (3.134). From (3.81), given v € p, setting 4 (r) = ¢, (y) for each
r € L, we have

Al (pr () =7 &= [ (r), " (3.143)

for some & € . Now for at each x € M we have

d(ps ()|, (V) =dAl, ods|, (V)
= dAl,. (ps. (65 (V)
=705 (V) = [0, (), 05 (V)] (3.144)

Therefore, dp; is given by
d‘Ps (7) =7 0s — [SOS (’Y) , 05](5) . O (3145)

Remark 3.52. Suppose A and B are now smooth maps from M to L. In the case when
L has the right inverse property, i.e. A/B = AB~! for any A, B € L, (3.1392a) becomes

d(AB™') = (dA)B™' — (AB™'-dB) B~ (3.146)

However, from d (BB™!) = 0, we find that d (B™') = —B~!(dB-B™!), and then
expanding d (AB_l) using the product rule, and comparing with (3.146), we find

(AB™'-dB)B™'=A (B~ (dB-B™")), (3.147)
which is an infinitesimal version of the right Bol identity (2.6). In particular,
(B~'-dB)B™'=B""(dB-B"). (3.148)

Similarly, using (3.132Db), the left inverse property then implies an infinitesimal left Bol
identity.
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At each point € M, the map s defines a stabilizer subgroup Stab(s,) =
Aut (L,0,) € ¥R (L) with the corresponding Lie algebra b, . Similarly, we also have
the orbit of s, given by C¥ (L, o, ) & oh (]L)/Aut (L, o5, ) and the corresponding tan-
gent space s, = p/b,, . Suppose 6,|, € q,, for each x € M. This of course always holds
if L is a G-loop, in which case q5, = ((5=) In this case, there exists a p-valued 1-form ©
on M such that 65 = ¢, (©). We can then characterize © in the following way.

Theorem 3.53. Suppose there exists © € QO (M, p) such that 0, = @5 (0). Then, for each
reM, do—1 [©,0],| €bs,, where [-,], is the Lie bracket on p.

Proof. Counsider dfy in this case. Using (3.145), we have
dfs =d (s (©)) = (dps) (©) + ¢, (dO)
=—0-0,+[ps (0),0,]) . (3.149)

Note that the signs are switched in (3.149) because we also have an implied wedge
product of 1-forms. Overall, we have

d (5 (0)) = s (d0) — O -, (©) + [ (©) , 5 (©)], (3.150)

however since 05 = @, (0), it satisfies the Maurer-Cartan structural equation (3.130), so
we also have

4(p: (0)) = 3 [0 (©) 44 (O)]. (3.151)

Equating (3.150) and (3.151), we find

05 (dO) = O -, (©) — % (05 (©), 5 (©)]). (3.152)

However, from (3.96), we find that

O -9 (0) - % [s (©), 05 ()] = %@s ([G,G]p) . (3.153)
Thus, we see that
Ps <d9 - % [©, 9]p) =0. O (3.154)

Remark 3.54. In general, we can think of d —© as a connection on the trivial Lie algebra
bundle M x p with curvature contained in b, for each x € M. In general the spaces
Bs(z) need not be all of the same dimension, and thus may this may not give a vector
subbundle. On the other hand, if IL is a G-loop, then we do get a subbundle.
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Now consider how 6, behaves under the action of W (L).

Lemma 3.55. Suppose h : M — W (IL) is a smooth map, then

Onisy = (1), (% (92”’) n as) : (3.155)

where Ggp) = h*0W) s the pullback of the left-invariant Maurer-Cartan form 0% on
Ui (L).

Proof. Suppose h: M — ¥ (IL) is a smooth map, then consider On(s)- We then have

On), = (Baany), B @)L,
= (Rity) ((h) (5) + h(ds)), -

Consider each term. Using simplified notation, we have
(dh) (s) /B (s) = ('), ((h~"dh) () /5)

(Ruly) . (B (@), = (), (8,).

Thus,

(Bt @) )], = (h(@)), o (657

)

and hence we get (3.155). O

If we have another smooth map f: M — L, using right multiplication with respect
to 04(z), we can define a modified Darboux derivative 0}5) with respect to s:

()

Note that this is now no longer necessarily a pullback of # and hence may not satisfy

(s(@))
) (Rf(m)) dfl.. . (3.156)

the Maurer-Cartan equation. Adopting simplified notation, we have the following:

d(fs)/fs=(df -s+f-ds)/fs
=df /sf + AdS 0, (3.157)

Hence,

(6 _ (5
o) =0, — (Ad}) .. (3.158)
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Lemma 3.56. Suppose f,s € C* (M,L), then

a8 — % 0,081 (F9) _ ( R@)j 059, 1,0 © (3.159)

Proof. Applying the exterior derivative to (3.158) and then the structural equation for
s, we have

dol?) = % 075,077 — d ((Adgf))* 0,). (3.160)

From Lemma A.3, we can see that for £ € [

o(s09) = () - (). 10
+(RY) g0 (3.161)

() [0 0]

and hence
o) .= [ () 0] (). 10
— (B) 170,00 (3.162)
() [(r)0.00]

where wedge products are implied. Now, using the structural equation and (3.58), we
find

(Adgf))*des: (Ad}s)) AR

*

1
2
1 (Fs)
= }

[(Adf) 0., (Ad ). 0,

(). [(aa) s

N
+ (R(;)) [f,0,.0,). (3.163)
Combining (3.162) and (3.163), we see that

a((Adf?) 0.) =d (Ad?) no.+ (adf) do,

*

_ [95;07 (Ad f), 98} U % [(Ady))* 0,, (Ad f), 03} )
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), el
:% (075,075 — % {05{9),0?)
) na)

Thus, overall, substituting (3.164) into (3.160), we obtain (3.159). O

} o (3.164)

For Lie groups, 6 determines f up to right translation by a constant element, however
in the non-associative case this is not necessarily true.

Lemma 3.57. Let M be a connected manifold and suppose A,B : M — 1L be smooth
maps. Then, A = BC' for some constant C € L if, and only if,

04 =0\, (3.165)
Proof. From (3.158),
04— 05\ = (Adgf\“‘))* O,
and thus, B\ A is constant if, and only if, (3.165) holds. O

In particular, if B\A € N (L), then GSBB\A) = 0p, and hence 64 = 0. If L is
associative, then of course HJ(BA) = 0p for any A, B, and we get the standard result [45].

We can also get a version of the structural equation integration theorem. In particular,
the question is whether an [-valued 1-form that satisfies the structural equation is the
Darboux derivative of some L-valued function.

Lemma 3.58. Suppose M is a smooth manifold and L a smooth loop. Let s € C*° (M,LL)
and o € QY (M, 1) satisfy the structural equation

1
do— 3 o, a]®) =0, (3.166)
then
[a, 0,00 — 6,)) =0, (3.167)

where wedge products are implied.
Proof. Applying d to (3.166) we have

0 =d|a, a](s)
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= [da,a]® = [a,d]"®) + [a, @, 0,])
= ([, a],a] + [, a,0,]"

== [0, + [0,0,0,),
where we have used (3.39) and in the last line an analog of (3.45). O

Theorem 3.59. Suppose M be a 1-connected (i.e. connected and simply-connected) smooth
manifold and 1L a smooth loop. Let s € C* (M,LL) and o € Q' (M, 1) is such that

do — % [, 0] =0, (3.168)
and
(Ad;), (@ —0,) € Q' (M, TN (L)) . (3.169)

Then, there exists a function f € C* (M, NE (]L)) such that o = 0s¢. Moreover, f is
unique up to right multiplication by a constant element of Nt ().

Proof. Modifying the standard technique [45,51], let N = M x Nt (L) C M x L. Define
the projection map mps : N — M and the map

L,:N — L
(z,p) = s(x)p
Given the Maurer-Cartan form 6 on L and o € Q! (M, 1), define 8 € Q' (N, 1) by
B =mia— (Ls)*0. (3.170)

Then, at each point (z,p) € N, define D(, ) = kerﬂ|($,p). We can then see that this
is a distribution on N of rank dim M. Let (v,w) € T(; N, where we consider w €
T,N% (L) C T,L. Then,

ﬂ(m,p) (U’ w) = Qg ('U) - os(w)p ((Le)* (U’ w)) . (3171)

Now, let z(t) be a curve on M with = (0) = z and ¢ (0) = v, and p(¢t) a curve in
NE(L) c L with p(0) = p and p(0) = w. Then, using the fact that p is in the right
nucleus,

dt t=0
_ s d (s () (P0)
DA I il Q%mho
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=05 ()], + (Ady)) , w-

So overall,

Bap) (0, w) = (= 05), (v) = (Ady(m)) , w- (3.172)

Hence, (v,w) € D(,p) if, and only if, (a —6;), (v) = (Ady), w. Now, consider

()il (2 py * Plapy — TeM. Suppose (WM)*‘(%;D) (v,w) = 0. Then, v = 0, and

since (a —0y), (v) = (Adyq)), w, we have w = 0. Thus (7ar). ], I8 injective on

D(z,p)- On the other hand, it is also clearly surjective, since if given v € T, M, then

(v, (Ad;@) . ((a—¥6,), (v))) € D(yp)- Overall, (7TM)*|(w,p) is a bijection from D, ;) to

T, M, so in particular, dim D(, ) = dim M and thus D is a distribution of rank dim M.
Now let us show that D is involutive. We have

B () = Thrd () — (Ls)"db)]
1

\P)

== @ (L) [0,0
2 T [ o wp) 2 (Ls)" [0, H(I’p)
. . s(z)
== [ﬂ'Ma|(l_7p) , 7rMoz|(w’p)} (3.173)
1 ) . s@p
) [(Ls) 0|(w7p)’ (Ls) 9|(w,p)}
Note however that because p € % (L), we have [-,-]*® = [., ]"®”_ So overall, using

(3.170), we get

1 s(@) . s(@)
dﬂ\(w) - 2 [5I($,p) ) ﬂ|(g;,p)} + [5I(W) ’ (Ls) 9|(w’p)}

Thus, d8 = 0 whenever 5 = 0, and hence D =ker 8 is involutive, and by the Frobenius
Theorem, D is integrable. Let £ be a leaf through the point (x,p) € N. Then, mps
induced a local diffeomorphism from a neighborhood to (z,p) to some neighborhood of
x € M. Then, let F : U — L be the inverse map, such that F (y) = (y, f (y)) for some
f:U — NE(L). By definition, F*3 = 0, so

0=F*3
=F* (mya — (L) 6)
=a— (Lso f)"6

Hence, on U, a = 0,5.

It is obvious that the distribution D is right-invariant with respect to N'? (IL), then
proceeding in the same way as for Lie groups, we find that in fact that when M is
1-connected, the function f extends to the whole manifold.
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Now suppose f,g € C* (M,NR (]L)) such that 0,5 = 0,4. Then using (3.157), but
with roles of s and f reversed, we find

Os5 = 05 + (Ads), 0y,

and similarly for g. Hence, we see that 6y = 0,. Using Lemma 3.57 for Lie groups, we
find that f = gC for some constant C € N2 (L). O

Remark 3.60. In the case when L is a group, Theorem 3.59 reduces to the well-known
analogous result for groups since the function s can be taken to be arbitrary. In particular,
the hypothesis (3.169) is automatically satisfied in that case. On the other hand, for the
loop of unit octonions, this theorem becomes trivial. In this case, N (L) & Zy, so the
hypothesis (3.169) immediately implies that o = 6, even without using the equation
(3.168). However, under certain additional assumptions about a and s, (3.168) may
actually imply (3.169). Generally, (3.169) is stronger than (3.167), which we know holds
for any a € Q! (M,I) that satisfies (3.168). To bridge the gap between (3.167) and
(3.169), additional properties of I and « are needed.

Corollary 3.61. Suppose M be a 1-connected smooth manifold and . a smooth loop such
that dim (N'E (L)) = dim (NE (1)). Also suppose that s € C> (M,L) and a € Q" (M, 1)
are such that

da — 3 [a, o] =0,

al, : TpM — Uis surjective for every x € M,

TpM = ker o, + ker (0], — ) for every x € M,

sy € CE (L) for every x € M.

AR

Then, there exists a function f € C>® (M, NE (]L)) such that o = 05 with f unique
up to right multiplication by a constant element of N'% (IL).

Proof. Since « satisfies (3.168), from Lemma 3.58 we know that it also satisfies (3.167).
Suppose X,Y, Z € T, M, such that Z € ker a|,. Then, from (3.167) we obtain

o (X), (V) (0= 0,,) 2]° = [a(V), 0 (X), (a—0.,) 2] =0. (3.174)

Sz

However, since T, M = ker o, + ker (6,], — |, ), this is true for any Z € T, M. Since
|, is surjective, we hence find that for any &,n € [,

(€., (@ — 05,) 2 — [, €, (a — 6,,) 2] = 0. (3.175)

Now, since s, € C¥ (L), it is the right companion of some h € ¥¥ (L), thus applying
(h’)*_1 to (3.175), and using (3.57b), we find that for any &,n € [,
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M O

&n ) (@=0.)2)] = [n.&. ) (a-0.) D] =0
Thus, we see that for any Z € T,M, (K')." (= 0,,)Z) € NE (). We know that
TWNE (L) ¢ NE(I), however by hypothesis, their dimensions are equal, so in fact,
TNE (L) = NE(1). Thus, (W), ((a—0,,) Z) € TZNE (L) and hence, from (2.49),
(Ad;(}[))* (a—0,,) € Q' (M, TyAR (L)), This fulfils the hypothesis (3.169) for Theo-
rem 3.59, and thus there exists a function f € C* (M, NE (]L)) such that o = 0s5. O

Remark 3.62. Since « is assumed to be surjective in Corollary 3.61 and a = 0,y, we see
that sf : M — L is a smooth submersion.

4. Loop bundles

Let L be a smooth loop with the L-algebra [, and let us define for brevity ¥# (L) = ¥,
Aut (L) = H, and PsAut” (L) = G > H, and N7 (L) = NV Suppose ¥, H, G, N are Lie
groups. Recall that we also have ¥/N = G.

Let M be a smooth, finite-dimensional manifold with a W-principal bundle P. Then
we will define several associated bundles. In general, recall that there is a one-to-one cor-
respondence between equivariant maps from a principal bundle and sections of associated
bundles. More precisely, suppose we have a manifold .S with a left action [ : ¥ x S — S.
Consider the associated bundle £ = P x g S. Suppose we have a section f M — E,
then this defines a unique equivariant map f : P — S, that is, such that for any h € ¥,

Jon = ln=1 (fp) - (4.1)

Conversely, any equivariant map f : P — S defines a section (id, f) : P — P x S, and
then via the quotient map q: P x .S — P x¢ S = E, it defines a section f: M — FE.
In particular, for each € M, f () = |p, f,], where p € 77! (z) C P and |-, -], is the
equivalence class with respect to the action of U:

(pa fp) ~ (phalh’l (fp)) = (pha fph) for any hew. (42)

For our purposes we will have the following associated bundles. Let h € ¥ and, as before,
denote by h' the partial action of h.

Bundle Equivariant map Equivariance property

P k:P— U kph = h ™1k

Qn:PX‘I,LIL q:'P—HI: qph:(h’)flqp

Q =Pxygl r:P—1L . rpn = h71 (rp)

N =P xyg (V/H) s:P—U/H=CCL | spr, =h7 1 (sp) (4.3)
A:PX\I,/*[ n:P—1 nph:(h’):lnp

PP =PX(aqe) P | E:P—p &n = (Ady") &

G=Pxy G ¥:P— G Yor = (W)
Ad(P) =P xpaa, ¥ | u: P — T uph:h_luph




72 S. Grigorian / Advances in Mathematics 393 (2021) 108078

The bundle Q is the loop bundle with respect to the partial action ¥’ and the bundle
O is the loop bundle with respect to the full action of ¥. The bundle N has fibers
isomorphic to W/H = C, which is the set of right companions C% (L) C L. Thus it is
a subbundle of O. Equivalently, N = P/H is the orbit space of the right H-action on
P. Recall that the structure group of P reduces to H if, and only if, the bundle N has
a global section. If this is the case, then we can reduce the bundle P to a principal
H-bundle ‘H over M, and then since H C G, lift to a principal G-bundle G. Also, let
Q = P x g L be the bundle associated to P with fiber IL, where ¥’ denotes that the left
action on L is via the partial action of W.

We also have some associated vector bundles - namely the vector bundle A with fibers
isomorphic to the L-algebra [ with the tangent partial action of ¥ and the vector bundle
pp with fibers isomorphic to the Lie algebra p, with the adjoint action of W.

Example 4.1. Let L = UO be the Moufang loop of unit octonions. In this case, ¥ =
Spin (7), H = G2, G = SO (7), N' = Z5, and then we have the well-known relations

SO (7) = Spin (7) /Z4
Spin (7) /Gy 2UOQ = §7
SO (7) /Gy 287/ Zs.

Then, if an orientable 7-manifold has spin structure, we have a principal Spin (7)-bundle
P over M and the corresponding Spin (7) /G3-bundle always has a smooth section, hence
allowing the Spin (7)-bundle to reduce to a Ga-principal bundle, which in turn lifts to
an SO (7)-bundle. The associated bundle Q in this case transforms under SO (7), and is
precisely the unit subbundle of the octonion bundle R & T M defined in [15]. The bundle
Q then transforms under Spin (7) and corresponds to the bundle of unit spinors. The
associated vector bundle A in this case has fibers isomorphic to Im @ = R7, and then
the bundle itself is isomorphic to the tangent bundle T'M.

Let s: P — L be an equivariant map. In particular, the equivalence class [p, s, |
defines a section of the bundle Q. We will refer to s as the defining map (or section). It
should be noted that such a map may not always exist globally. If L is a G-loop, then
Q =~ N and hence existence of a global section of Q is equivalent to the reduction of the
structure group of P. There may be topological obstructions for this.

Example 4.2. As in Example 2.24, let L =UC = U (1) be the unit complex numbers, and
U =U(n), H= G = SU (n). Then in this setting, P is a principal U (n)-bundle over
M and Q@ is a circle bundle. Existence of a section of Q is equivalent to the reduction of
the structure group of P to SU (n). The obstruction for this is the first Chern class of Q
[33]. In the quaternionic case, at least for the tangent bundle, obstruction to structure
group reduction from Sp (n) Sp (1) to Sp (n) is also given by Chern class.
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Given equivariant maps ¢, : P — L, we can define an equivariant product using s,
such that for any p € P,

q0s 7“|p = {qp Os,, Tp- (44)

Indeed, using (2.38),

q s r|ph =Aph Cs,p, Tph
-1

= (1) gy on-1(s,) (W) "1y

=) (qos rlp). (4.5)

In particular, this induces a fiberwise product on sections of Q. Similarly, we define
equivariant left and right quotients, and thus well-defined fiberwise quotients of sections

of Q.

Remark 4.3. The map s is required to define an equivariant product of two L-valued
maps. In the Ga-structure case, as discussed above, sections of o) correspond to unit
spinors, and each unit spinor defines a Ga-structure, and hence a product on the corre-
sponding octonion bundle [15]. On the other hand, a product of an equivariant L-valued
map and an equivariant L-valued map will be always equivariant, using (2.12a). In the
(Gs-structure case, this corresponds to the Clifford product of a unit octonion, interpreted
as an element of R @& T,,M at each point, and a unit spinor. The result is then again a
unit spinor. This does not require any additional structure beyond the spinor bundle.

Given equivariant maps &, : P — [, we can define an equivariant bracket using s.
For any p € P:

€| = epm] ™ (4.6)

Here the equivariance follows from (3.57). Using (3.75) we then also have an equivariant
map s from equivariant p-valued maps to equivariant [-valued maps:

@s (Vlp = @5, (W) - (4.7)

Other related objects such as the Killing form K*) and the adjoint ¢ to ¢, are then
similarly also equivariant.

Overall, we can condense the above discussion into the following definition and theo-
rem.

Definition 4.4. A loop bundle structure over a smooth manifold M is a quadruple
(L,¥,P,s) where
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1. L is a finite-dimensional smooth loop with a smoothly acting group of right pseu-
doautomorphism pairs W.

2. P is a principal U-bundle over M.

3. s: P — L is a smooth equivariant map.

Theorem 4.5. Given a loop bundle structure (L, ¥, P,s) over a manifold M, and asso-
ciated bundles @ = P xg/ L, 0= PX‘I,I[Z, A=Pxy |, and pp = PX (ade), Ps where [ is
the L-algebra of IL and p the Lie algebra of ¥,

s determines a smooth section o € I' (Q)

For any A, B € T'(Q), o defines a fiberwise product Ao, B, via (4.4).
For any X,Y € T'(A), o defines a fiberwise bracket [X, Y}(U), via (4.6).
o defines a fiberwise map ¢, : T (pp) — T (A), via (4.7).

o =~

4.1. Connections and torsion

Suppose the principal U-bundle P has a principal Ehresmann connection given by the
decomposition

TP = HP ® VP (4.8)

with H,n P = (Rp), HpP for any p € P and h € ¥ and VP = kerdr, where 7 : P — M
is the bundle projection map. Let the projection

v: TP — VP

be the Ehresmann connection 1-form. Similarly, define the projection proj, : TP —
HP.

Let p be the Lie algebra of W. Then, as it is well-known, we have an isomorphism
o Pxp— VP

1.6 G resp 1) (19

For any £ € p, this defines a vertical vector field o (£) on P. Given the Ehresmann
connection 1-form v, define the p-valued connection 1-form w via

(myw)=0ctov:TP —Pxp
and recall that for any h € ¥,

(Rp)" w = Adj,-1 ow.
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As before, suppose S is a manifold with a left action [ of ¥. Given an equivariant map
f:P — S, define

d™f:= f.oproj, : TP — HP — TS. (4.10)

This is then a horizontal map since it vanishes on any vertical vectors. Equivalently, for
any X, € T,P, if v (¢) is a curve on P with v (0) = 0 and % (0) = proj,, X, € H,P, then

4], (%) = G o) (411)

The map d’ f is moreover still equivariant. The group ¥ acts on TP via pushforwards
of the right action of ¥ on P. Let h € ¥, so that r, : P — P gives the right action of
U on P, and the corresponding action of ¥ on TP is (r}), : TP — T'P. Note that the
corresponding action of ¥ on T'S is then (I;-1), : T'S — T'S. Now,

dHf o (Th)* :f* © proj?-[ o (Th)* = f* ° (Th)* © pI'Oij
=(forp), oprojy = (Ip-1 0 f), oprojy
= (lhfl)* © dHf

where we have used the equivariance of both f and proj,,. So indeed, d’ f is equivariant.
Now consider the quotient map ¢’ : P x T'S — Px¢T'S, where ¥ acts via r;, on P and
(I-1), on T'S. This is a partial differential of the map ¢ : P x S — E. Since d’*f is
horizontal, it vanishes on the kernel of w, : TP — TM. Given f, the section of the
associated bundle P xy S that corresponds to f, we can use d’f to define the unique
map

d*f:TM — PxyTS (4.12)
such that
d"fom. = (nrp,df)oq

where mpp : TP — P is the bundle projection for TP. Moreover, d™ f covers the
identity map on M, and hence is a section of the fiber product TM x p; (Px¢TS). This
construction is summarized in the commutative diagram in Fig. 3.

Of course, if S is a vector space, then this reduces to the usual definition of the exterior
covariant derivative of a vector bundle-valued function and d™ f is a vector-bundle-valued
1-form.

Given the above correspondence between equivariant maps from P and sections of
associated bundles, for convenience, we will work with equivariant maps rather than
sections. This will allow us to use the properties of I from the previous section more
directly.
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(""7“P dar f) d”f

PxS—213PxgsS rrm
Pl“Jl
(1d )

Fig. 3. Covariant derivative on maps and sections.

Given a p-valued connection 1-form w on P, we can concretely work out d’* f. Suppose
X € T'(T'P) is a vector field on P, then using the definition (4.10), we have

(d™f) (X) =df (projy (X))
=df (X —v (X))
=df (X) — df (o (m7p (X),w (X)))

where from (4.9), for p € P,

@ pexp (1w (X,)))

o (rrp (X),w (X)), = &

Now, let 7 (t) = exp (tw (X,)) € ¥, and note that v (t) " =~ (—t), so that

=—w(Xp) - f(p) (4.13)

where we have used the equivariance of f and where, w (X,) - f (p) € Tf(,)S denotes the
infinitesimal action of w (X,) € pon S.

Lemma 4.6. Let s be a V-equivariant S-valued function on P and let w be a p-valued
connection 1-form on P, then the covariant differential d’*s : TP — TS is given by

dts=ds+w-s (4.14)

where w - s : TP — Ts,)S for each p € P gives the infinitesimal action of w on S.
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Now, more concretely, given a principal connection w on P, consider the induced
covariant derivatives on equivariant L- and L-valued maps. To avoid confusion, denote
d™ acting on L-valued maps by D and by D when it is acting on L-valued maps. Similarly,
consider equivariant [-valued maps from P. Given £ : P — ['such that &,), = (hil); &),

define the covariant derivative d*¢ via (4.14), so overall, given X € I' (TP),
d¥e=dxé+w(X)-§ (4.15)

where w (X)- & refers to the linear representation of the Lie algebra p on [ given by (3.87).
We have the following useful relation between D and D.

Lemma 4.7. Suppose A: P — L and s: P — L are equivariant, and let p € P. Then,

D(4s)| = (R,,), DA, + (La,). ﬁs‘p. (4.16)

P

o

Note that D (As)| : T,P — Ta.L.
p

Proof. Let X, € T,P and let p(t) be a curve on P with p(0) = p and p(0) =
projy (Xp) € HypP. Consider

o d
D (As)‘ (Xp) = — (Ap(t)sp(t)) (4.17)
P dt t=0
However,
d d d
— (A, s = — (A, s + — (A,s
g Aromo)| =g Won)| + g (Ase)|
= (Ry,). (DA), (Xp) + (La,). (Ds) (X)) (418)

and thus (4.16) holds. O

Suppose now (L, ¥, P, s) is a loop bundle structure, as in Definition 4.4, so that s is
an L-valued equivariant map. Then we have the following important definition.

Definition 4.8. The torsion T*) of (I, ¥, P, s) with respect to w is a horizontal l-valued
1-form on P given by

T#) =6, o projy, (4.19)
where 6, is the Darboux derivative of s. Equivalently, at p € P, we have

T — (Ry!) Ds
P *

(4.20)

p
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Thus, T¢%) is the horizontal component of #s. We also easily see that it is -
equivariant. Using the equivariance of s and Ds, we have for h € U,

S,w —1 s.w
T = (b)), (4.21)
Thus, T%) is a basic (i.e. horizontal and equivariant) [-valued 1-form on P, and thus
defines a 1-form on M with values in the associated vector bundle A = P xy/ [. We also

have the following key property of T(5).

Theorem 4.9. Suppose T is as given in Definition 4.8 and also let &%) € Q' (P, 1) be
given by

o) =, (W). (4.22)
Then,
0, = TG — o), (4.23)

In particular, T and the quantity —>®) are respectively the horizontal and vertical
components of 0.

Proof. Let p € P. Then, from (4.14) we have

(RS_:) Ds

= (Rs_pl)* dsl, + (RS_P1>* (w-sp)

p

+ i(exp (twp) (sp))/s

t=0
= 0], + ¢s, (p) (4.24)

where we have used the definition (3.74) of ¢,. Hence we get (4.23). O

Suppose p (t) is a curve on P with p(0) = p and with a horizontal initial velocity
vector p(0) = X]t. Then, by definition,

d

Esp(t) = DXs

t=0

, (4.25)

p

= (RSP) * T_gfsp,u})

P
where T)(;’w) =T« (X) € [. This observation will come in useful later on.

Remark 4.10. If s, € C = &/H for all p € P, then as we know, the structure group of P
is reduced to H. Moreover, the reduced holonomy group of w is contained in H if, and
only if, there exists such a map s with d*s = 0. This is equivalent to T(>*) = 0, so this
is the motivation for calling this quantity the torsion. If s is not necessarily in C, then
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we can still say something about the holonomy of w in the case d"s = 0. Let p € P and
suppose T (¢) is the horizontal lift with respect to the connection w of some closed curve
based at 7 (p). Then, the endpoint of T' is " (1) = ph for some h € W. The set of all such
h € ¥ form the holonomy group Hol, (w) of w at p [25]. Now if we have an equivariant
map s : P — L, then so I is a curve on L with s(I'(1)) = s, = h™'s,. However,
% (so'(t)) = (d”s)sor(t) I (t) since the velocity vectors of I' (t) are horizontal. Thus,
if d"s = 0 everywhere, then the curve s oI (t) is constant, and hence h=1s, = s,. By
(2.44), this means that h € Aut (]L7 osp). This is true for any horizontal lift I', hence we
see that Hol, (w) C Aut (L, o5, ).

The torsion also enters expressions for covariant derivatives of the loop product, loop
algebra bracket, as well as the map ;.

Theorem 4.11. Suppose A,B: P — L, and s: P — L are equivariant, and let p € P.
Then,

D (Ao, B)|, = <R(§§))* DA|, + (Lf:)>* DB, (4.26)

(sp)
g

s s (s) (s)
a e, = [ ) + [e, )7 + [en, T T < g 7O (1)

+ {Ap, B,, T

If&,m: P — 1 are equivariant, then

The | ® p*-valued map ps : P — [ @ p* satisfies

(s)

dMp, = idy TC) — |, T (4.28)

where idy s the identity map of p and - denotes the action of the Lie algebra p on | given
by (3.87).

Proof. Let X, € T,P and let p(t) be a curve on P with p(0) = p and p(0) =
projy, (Xp) € H,P. To show (4.26), first note that

d
D (A Og B)|p (Xp) = a (Ap(t) Osp(t) Bp(t)) (429)

t=0

However,

d
at (Ap(t) Osp(t) Bp(t))

d
= — (Apw) °s, B
—o dt( p(t) p) —o
d
+ at (Ap Osp(t) BP)

t=0



80 S. Grigorian / Advances in Mathematics 393 (2021) 108078

= (R DAL (X,) + (L57) DB, (X,)

d
+ = (Ao, B (4.30)
dt ( P (t) ;D) —0
and then, using Lemma A.1,

d d

at (4p 05,y By) - = ((Ap - Bospw) /p(1)) -
d
= = (4p - Busy(n)) /sp) (4.31)

t=0

d
+ at ((Ap “Bpsp) /sp - Sp(t)) /5p
t=0

Looking at each term in (4.31), we have

(Ap - Bpsp(r)) /8p = (Ap "By (Sp(tysp ‘ 510)) /5p
=Ap o5, (Bp Osp (‘SP(t)/sp))

and

((Ap Bypsp) /sp - Sp(t)) /sp = (Ap Osp Bp) Osp (Sp(tysp)'

Overall (4.30) becomes,

d

= (A es,, = (257 ri?) — (252 5,) ) (R}, bs’p (X,) (4.32)

t=0

By)

and hence we get (4.26) using the definitions of 7(**) and the mixed associator (3.11)

To show (4.27), note that

2 (1) = & 6o
[ vﬁp}( [gpad |} "
+ = a [g;mnp} o)
t=0

However, using (3.39) and (4.25), the last term becomes
(sp)
|:§p777p7 (S W)‘p:| |:77p7£p7 SW)

(sp)
)

d

= € 10)] (sp(0))

t=0
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and hence we obtain (4.27).
Let us now show (4.28). From (3.81), given v € p, setting 4 (r) = ¢, (v) for each
r € L, we have

Al (pr () =~ -€ =[5 (r), € (4.33)

for some £ € [. Now for a map s : P — L and some vector field X on P, we have at
eachpe P

-0 (X,) — [ps, (7), 05 (X,)] 7. (4.34)
Therefore, dp, is given by
dos (v) =705 — [ps (7),65).. (4.35)

To obtain d"¢, we take the horizontal component, and hence using (4.23), we just
replace 6, in (4.35) by T(), which gives (4.28). 0O

Remark 4.12. If L is associative, i.e. is a group, then certainly A oy B = AB and this is
then an equivariant section, if A and B are such. In (4.26) the second term on the right
vanishes, and thus D satisfies the product rule with respect to multiplication on L.

We can rewrite (4.16) as
D (As)=(DA)s+ A ((Ds) /s-s)

— (DA)s + (A o, T(S’“’)> s. (4.36)

Using this, we can then define an adapted covariant derivative D®) on equivariant L-
valued maps, given by

D@A| = (R;!) D(4s)| = DA+ (Lh) 1) (4.37)
P P/ % P P/ %
with respect to which,
() , ‘ _ (ps») (sp) (s) ’
DY (A0, B)| (RBP ) DA, + (LAP ) DYB| . (4.38)

This is the precise analog of the octonion covariant derivative from [15]. The deriva-
tive D(®) essentially converts an L-valued map into an L-valued one using s and then
differentiates it using D before converting back to L. In particular, if we take A =1,
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D) = 7w, (4.39)

Remark 4.13. Up to the sign of T', (4.26) and (4.37) are precisely the expressions obtained
in [15] for the covariant derivative with respect to the Levi-Civita connection of the
product on the octonion bundle over a 7-manifold. In that case, T is precisely the torsion
of the Go-structure that defines the octonion bundle. This provides additional motivation
for calling this quantity the torsion of s and w. In the case of Ga-structures, usually one
takes the torsion with respect to the preferred Levi-Civita connection, however in this
more general setting, we don’t have a preferred connection, thus 7¢*) should also be
taken to depend on the connection.

Corollary 4.14. Suppose I is an alternative loop, so that the associator is skew-

symmetric. Suppose &,m — Land s : P — L are equivariant. Then, defining a modified
exterior derivative d®) on equivariant maps from P to | via

d¥¢ = dhe 1 - [5TS>](), (4.40)

it satisfies
© 1. ©® = [g®e 1 ()]
d 1e,n)" = [d9en] " + [6,.dn] (4.41)
Proof. If IL is alternative, then the loop Jacobi identity (3.46) becomes
1) 21 1) .
[5, .91 )] + [n, [, €)¢ )} + [% 3 )} =6[¢m9)¢. (4.42)
On the other hand, (4.27) becomes
()
g™ = [ )Y + g a2 6, O] (4.43)

Thus, using both (4.42) and (4.43), we obtain

(s)
46 =l + g [le.n® 7]

= [d(s)é“,n} + {f,d(s)n} )
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Remark 4.15. In the case of Ga-structures and octonions, the derivative (4.40) exactly
replicates the modified covariant derivative that preserves the Ga-structure that was
introduced in [10].

Example 4.16. The map ¢ is equivariant on P and hence defines a section of the as-
sociated bundle A ® ad (P)" over M. If L is the loop of unit octonions and [ = Im Q,
and we have a Gg-structure on M, then ¢, corresponds to a section of TM ® A2TM,
which up to a constant factor is a multiple of the corresponding Gs-structure 3-form ¢
with indices raised using the associated metric. The torsion T" of ¢ with respect to the
Levi-Civita connection on TM is then a section of TM ® T*M. Noting that so (7) acts
on R” by matrix multiplication, if we set ((ps)abc = —%g@“bc in local coordinates, then
(4.28) precisely recovers the well-known formula for V¢ in terms of T'. Indeed, suppose

el (AQT*M), then in a local basis {e,}, for some fixed vector field X, we have
(V) (€) =€+ Tx = [0 (€) , Tx]"

1
= <§abT)b( + §@abc¢bde£deT§(> €aq

1
_ (gabT)b( _ 5 (wacde + gadgce _ gaegcd) gdeT)C(> €a

1
= §T)C( 'l/}cadegde €a,

where 1 = *xp. Hence, indeed,
Vxp=-2Tx ), (4.44)

which is exactly as in [15], taking into account that the torsion here differs by a sign
from [15]. Here we also used the convention that [X,Y] = 2X /Y g and also contraction
identities for ¢ [14,22]. This is also consistent with the expression (4.27) for the covariant
derivative of the bracket. Indeed, in the case of an alternative loop, (4.43) shows that
the covariant derivative of the bracket function by is given by

dMby =2 [+, 7] “ (4.45)

Taking b, = 2¢ and [,-,]) given by ([X7 Y, Z](S)) = 2¢% ,XbY°Z4 as in [15], we
again recover (4.44).

Example 4.17. Suppose P is a principal U (n)-bundle and . 2 U (1), the unit complex
numbers, as in Example 3.28. Then, (4.28) shows that d”*¢, = 0. If V is an n-dimensional
complex vector space with the standard action of U (n) on it and V = P X,y V is the
associated vector bundle to P with fiber V', then ¢, defines a Kéhler form on V.
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Example 4.18. Suppose P is a principal Sp (n) Sp (1)-bundle and L = Sp (1), the unit
quaternions, as in Example 3.29. Then, (4.28) shows that dp, = — [goS,T(S *“’)]ImH. It
V is an n-dimensional quaternionic vector space with the standard action of Sp (n) Sp (1)
on it and V = P X gp(n)sp(1)V is the associated vector bundle to P with fiber V', then ¢y
defines a 2-form on V with values in Im H (since the bundle A is trivial). So this gives
rise to 3 linearly independent 2-forms wr,ws,ws. If T) = 0, then this reduces to a
HyperKihler structure on V. It is an interesting question whether the case T(*) #£ 0 is
related to “HyperKéahler with torsion” geometry [13,50].

4.2. Curvature
Recall that the curvature F' € Q2 (P,p) of the connection w on P is given by
F@ = d"y =dwo Projyy, (4.46)
so that, for X, Y € T (TP),
FO(X,Y) = dw (X®,YH) = —w ([X", Y"]), (4.47)
where X7 Y™ are the projections of X,Y to HP.

Similarly as @, define F(s) ¢ Q2 (P, 1) to be the projection of the curvature F) to
[ with respect to s, such that for any X,,,Y, € T,P,

Frlsw) (Xp,Y;;) S (F(w)) (Xp,Yp)

_d (exp (tF(w) (vayp)> (%))/S

== (4.48)

t=0

We easily see that
Ao = ), (4.49)
Indeed,
A" = J (s (W) =d"p, A (wo projy ) + s (de) = [lsw)

where we have used the fact that w is vertical.
We then have the following structure equations

Theorem 4.19. F'(%) gnd T(s*) satisfy the following structure equation

R ) 1 31
Flow) = gHgles) — 2 T(sm,T(s,w)} , (4.50)
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where a wedge product between the 1-forms T%) is implied. Equivalently, (4.50) can be
written as

1 (s) N
Aot 1 5 [@(s>,@<s>} = F6@) — qMo, Aw, (4.51)

where (Ao, Aw) (X,Y) = (d%ps) (w (V)= (dltes) (w (X)) for any vector fields X and
Y onP.

Proof. Using (4.23), we have
d*TE9) =dT) o proj,,
= (d&s + ddz(s)> O projy - (4.52)
Now consider the first term. Let X,,,Y,, € TP, then
a8, (X[ ) = (@9), (5. X}, .7
= (df), (Dxps, Dy, s) (4.53)
= [9 (BXPS> ,0 (Bypsﬂ(sp)

}(Sp)

= [TC9 (), T ()] (4.54)

‘

where we have used the Maurer-Cartan structural equation for loops (3.35). Using (4.49)
for the second term, overall, we obtain (4.50).
From the Maurer-Cartan equation (3.35),

1
o, — = [0,,0,]) = 0.
2
We also have from (4.23)

Hence

(s)

9, — dT) _ dpl®) — {T(sw),T(s,w)}(s) N [@<s),T(s,«u>](s) n % {@<s>7@(s>]

1
2
Noting that

A7) = gHTw) — AT ()

we find
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4o 4 % [6),50] © _ ptpsw) _ ip(sw)

_1 [T(sm T(s,m}(s) . [@(s) T(sm}(s)
2 b b

and then using (4.50) and (4.28) we obtain (4.51). O
Corollary 4.20 (Bianchi identity). The quantity Fsw) satisfies the equation
ARG = Mo A F

—FAT) _ [ﬁ“vw),T(va)}(S) (4.55)
where A denotes the linear action of p on | combined with a wedge product.
Proof. Using the definition (4.48) of () we have
dHEE) = @™ (p, (F)) = Moy ANF + ¢, (d7F),
however using the standard Bianchi identity, d*F = 0, and (4.28), we obtain (4.55). O

Remark 4.21. Since the Bianchi identity (4.55) is not a standard one, one may wonder
if differentiating it leads to additional identities. It is however a straightforward exercise
using previously established identities for ' and T, as well as the Akivis identity (3.46),
to show that the identity (4.55) does not lead to any other additional identities.

Example 4.22. The equation (4.50) is the precise analog of what is known as the “Go-
structure Bianchi identity” [15,23] (not to be confused with the Bianchi identity (4.55)).
In the case of Ga-structures, 2 corresponds precisely to the quantity %7‘(‘7 Riem, which
is the projection of the endomorphism part of Riem to the 7-dimensional representation
of GG3. In local coordinates, it is given by iRiemabcd pcde,

Example 4.23. In the complex case, with L =UC and P a principal U (n)-bundle, (4.50)
shows that F(5«) = dT(%) Here d" = d on l-valued forms because the action of p,, on
[ is trivial (as in Example 3.28). If s is a global section, then this shows that F is an
exact 2-form - and so the class [13' ] = 0. This is consistent with a vanishing first Chern
class which is a necessary condition for existence of a global s. On the other hand, if
we suppose that s is only a local section, so that 7% is a local 1-form, then we only
get that F(s) g closed, so in this case it may define a non-trivial first Chern class. If
P is the unitary frame bundle over a complex manifold, it defines a Kéhler metric, and
then F precisely corresponds to the Ricci curvature, so that the Ricci-flat condition for
reduction to a Calabi-Yau manifold is F' = 0.
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The equation (4.51) is interesting because this is an analog of the structure equation
for the connection 1-form w on P. However, in the case of w, the quantity dw — % [w,w] is
horizontal. However, for &%), Flsw) gives the horizontal component, while the remaining
terms give mixed vertical and horizontal components. The fully vertical components
vanish. We also see that &(*) satisfies the loop Maurer-Cartan equation if, and only if,
F(#) =0 and d"p, = 0. In the G case, Vi = 0 of course is equivalent to 7' = 0 and
hence implies %m Riem = 0. More generally, this may not need to be the case.

Lemma 4.24. Suppose L is a left-alternative loop and suppose —®) satisfies the Maurer-
Cartan equation

1 (&)
4o + 2 [@(S),@(S)} —0, (4.56)

then for any o, B € qt») = TyCH (L,os,),

[a, 3, TZSS’“’)] “) o, (4.57)

Proof. Taking the exterior derivative of (4.56) and applying (3.166), we find &(*) satisfies

(s) ()

0= [@(S),(D(S),HS +w<5>} - [aJ(S),w(S),T(W] (4.58)

Since L is left-alternative, we know that the L-algebra associator is skew in the first two
entries, so if given vector fields X,Y,Z on P, we have

(s) (s)
0= | (X)) (), 76 (2)] " + [0 (v),60) (2), 76 ()]

+ [0(2),6¢) (X), ¢ (v)] © (4.59)
Let £ € p and let X = o (§) be a vertical vector field on P, then
O (X) = s (W (X)) = s (€) -
In (4.59), we take X = o (£) and Y = o (1) to be vertical vector fields and Z = Z" a

horizontal vector field. Then since &(®) is vertical and T(**) is horizontal, we find that
for any &,n € p,

s (£) s (), T (Z)} “ o

We know that for each p € P, the map ¢, is surjective onto q(»)  1*») and thus (4.57)
holds. O
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Theorem 4.25. Suppose P is 1-connected and I a smooth loop such that

1. s a left-alternative algebra (i.e. the associator on | is skew-symmetric in the first
two entries),

2. dim (M (L)) = dim (MR (1)).

Moreover, suppose s, € CR (L) for every p € P, then &) satisfies the Maurer-Cartan
equation (/.56) if, and only if, there exists a map f: P — NE (L) such that

TEw) = — (Ad,), 0;. (4.60)

Proof. Since s has values in C? (IL), using Lemma 4.24, we see that the conditions of
Corollary 3.61 are satisfied, and hence there exists a map f : P — N (L) such that

—o) = Osf
=05+ (Ady), 0;.

From (4.23),
TE9) — g, + o) = — (Ady), 05

Conversely, suppose (4.60) holds for some right nucleus-valued map f. Then, clearly
&) = —0,;, and thus —&(®) satisfies (4.56). O

Remark 4.26. Theorem 4.25 shows that if I has a sufficiently large nucleus, then Flsw) —
0 and d™y, = 0 do not necessarily imply that T(**) = 0. In the case of unit octonions, the
nucleus is just {£1}, so any nucleus-valued map is constant on connected components,
hence in this case if (%) satisfies (4.56), then T(5%) = 0.

4.8. Deformations

The torsion of a loop structure is determined by the equivariant L-valued map s and
the connection w on P. There are several possible deformations of s and w. In particular, s

may be deformed by the action of ¥ or by left multiplication action of L. The connection

1

basic (P, p) or by gauge transformations in .

w may be deformed by the affine action of €2
Moreover, of course, these deformations may be combined or considered infinitesimally.
Since T(5) is the horizontal part of 6, when considering deformations of s it is sufficient
to consider what happens to 6, and then taking the horizontal component.

Recall that the space of connections on P is an affine space modeled on equivariant
horizontal (i.e. basic) p-valued 1-forms on P. Thus, any connection @ = w + A for some

basic p-valued 1-form A. Then,

T(s,&;) =0, + ¢, (a}) - T(va) + A (461)
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where A = ¢, (A). Thus, we can set T = 0 by choosing A such that A= —T6w
if, and only if, for each p € P, Tf’“’) € qlsr) = @s, (p). Since @ is always in the image
of ¢, we conclude there exists a connection @ for which 7% = 0 if, and only if, 95|p
€ q») for each p. In that case, f; = —¢, (@). From Theorem 3.53, we then see that &
has curvature with values in by.

Recall that if ¢ : P — P is a gauge transformation, then there exists an Ady-
equivariant map v : P — ¥ such that for each p € P, ¢ (p) = pu,. Each such map
then corresponds to a section of the associated bundle Ad (P). The gauge-transformed
connection 1-form is then w? = u*w, where

w'w=(Ady-1), w+ u" by (4.62)
where 0y is the left-invariant Maurer-Cartan form on W. Then,

d* Hs = (1;1), d (lus)
=dM"s + (u 0g)" - 5, (4.63)

where at each p € P.

Hence,
T = (R, d* s =T 4, (o)) . (4.64)
Consider the curvature F*'“ of the connection u*w. It is well-known that it is given by
F¥% = (Ad,-1), F. (4.65)

From Theorem 3.25, we then have

!

F(s,u*w) =@, ((Adu—l)* F) — (ufl) F(u(s),w). (466)

*

On the other hand, using (4.63) and (4.37) we have

Summarizing, we have the following.
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Theorem 4.27. Suppose s : P — L andu: P — U are equivariant smooth maps.
Then,

T W) =pew) 4o, ((u*t‘)q;)ﬂ) (4.67a)
— (u—l);T(u(s)w)
Plowre) = (y=1)] plu)e), (4.67b)
In particular,
T ) = ()P TEw) gpg POTTEWW) = (1) plse), (4.68)

This shows that both T and F transform equivariantly with respect to a simultaneous
transformation of s and w. In particular, if we have a Riemannian metric on the base
manifold M and a ¥-covariant metric on [, then with respect to the induced metric on
T*P @ [, the quantities |T|*> and |F|* are invariant with respect to the transformation
(s,w) — (u™'(s),u*w). In the case of Ga-structure, the key question is regarding the
holonomy of the Levi-Civita connection, so in this general setting, if we are interested
in the holonomy of w, it makes sense to consider individual transformations s — As for
some equivariant A € C* (P,L) and w — u*w because each of these transformations
leaves the holonomy group unchanged. We also see that every transformation s — u (s)
for some equivariant u € C* (P, ¥) corresponds to a transformation s — As, where
A = h(s)/s. From (2.40), this is precisely the companion of the corresponding map
us € W (L, o5). Moreover, this correspondence is one-to-one if, and only if, L is a G-
loop. It is easy to see that A is then an equivariant L-valued map. Thus, considering
transformations s — As is more general in some situations.

Theorem 4.28. Suppose A: P — L and s: P — L. Then,

—1 —1
T(As,w) _ (Rfj)> DA + (Adf:)) T(s:w) — (RE?) DG A (4.69&)
) ~1 .
F(As,w) _ (RS)> (F’ . A) + (Adf;)) F(sv"")’ (4.69b)

where F' - A denotes the infinitesimal action of p on L.

Proof. Recall from (3.158), that

0as =05 + (AdY) o, (4.70)

*

Now, T(*%) is just the horizontal part of 6, so taking the horizontal projection in (4.70),
we immediately get (4.69a). To obtain (4.69b), from (3.77) we have
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-1

P — o (F) = (RY) (B 4)+ (AdD) o (P, (4.71)

*

and hence we obtain (4.69b). O

Remark 4.29. The expression (4.69a) precisely replicates the formula for the transforma-
tion of torsion of a Ga-structure within a fixed metric class, as derived in [15].

Now suppose s; is a 1-parameter family of equivariant L-valued maps that satisfy

aSt

E = (Rst)* &t (4‘72)

where ; is a 1-parameter family of l-valued maps. In particular, if £ (¢) is independent of
t, then s (t) = exp,, (t£) so. Then let us work out the evolution of 7)) and Fls®).w),
First consider the evolution of ;) and @y

Lemma 4.30. Suppose s (t) satisfies (4.72), then

00, s

=0 —dg () = [0y, § (0] (4.73a)
Opsty _. :

S —idy € () — [an € (0] (4.73b)

Proof. For 0, suppressing pushforwards, we have

8Hs(t) - 0
0 20 ((as (1) /s 1)

=(ds) /s — ((ds) [s-8) /s
=d(&s) /s — ((ds) /s - (§s)) /s

—dg — [040), €] (4.74)
Similarly, for @, let n € p, then
ot ot Eexp (tn)(s) /s .

= Loxp () (€)/5)]  — < (exp(rn) () ) - (€9)) /s

7=0 7=0

= Lexp(r) (©

L gexp (o) (5)) /s

7=0

B % (exp (1) ((s) /5) - (§s)) /s

7=0

7=0

—n-€(t) = [pay ), €] . o (4.75)
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To obtain the evolution of T¢®):w) and F((1):@) we just take the horizontal component
of (4.73b) and substitute F' into (4.73b).

Corollary 4.31. Suppose s (t) satisfies (4.72), then

HT(s(M.w) e (s(8)
o =) - [T( ®), Lg(t)} (4.76a)
HE((H)w) ) (s(®)
S =F £ - [F : ,f(t)] . (4.76D)

The expression (4.76a) is the analog of a similar expression for the evolution of the
torsion of a Go-structure, as given in [17,23].

Remark 4.32. Suppose u; is a 1-parameter family of equivariant W-valued maps that
satisfy

3ut o
E = (lut)* Ve (4-77)

for a 1-parameter family ~; of equivariant p-valued maps. Then, each u; defines a gauge
transformation of the connection w. Define

W = Uyw. (4.78)

Then, it is easy to see that

3wt H
E = d’}/t + [wt,’yt]p =d t")/t, (479)
where d"* is the covariant derivative corresponding to wy. Similarly, the corresponding

curvature F} evolves via the equation

OF;
ot [Ft,’Yt]p . (4.80)

Using (4.79) together with (4.76a) gives
QT (5t:w¢) (st)

+ s, (dMry) . (4.81)
However,

s, (A1) =d" A0 — (0 py,) (1)

St S¢,w S¢,w 2~ (St (St)
:d?ltpyt( ) — .T( W) _ [T( Wt ) ’Y( )}

) It
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and thus (4.81) becomes

T (sv00)

St St ,w 2S¢t (s¢)
= = T (g +4()) = [T000 6 450070 (48)

For the curvature, using (4.80) together with (4.76b) gives

3F(St,wt) N (st)
N L {F(St’wt),ft} + s, ([Ft,%]p) ~ (4.83)
Using (3.96), we then get
aF(st,wt) N ~(s¢) £(se,we) ~(s¢) (st)
TR :*’Yt'FtﬂLFt'(ft + 0 )* {F Y ST el ] : (4.84)

Taking & = —fAyt(s‘) in (4.82) and (4.84), we obtain the infinitesimal versions of (4.68).
5. Non-associative gauge theory

In general we have seen that the loop bundle structure is given by L-valued equivariant
map s as well as a connection w on P. We call the pair (s,w) the configuration of the loop
bundle structure. Each point in the configuration space gives rise to the corresponding
torsion 7(*%) and curvature F(5:@). Previously we considered T' and F' as horizontal
equivariant forms on P, but of course we can equivalently consider them as bundle-
valued differential forms on the base manifold M. The loop bundle framework will allow
us to generalize various aspects of gauge theory to the nonassociative setting.

To be able to define functionals on M, let us suppose M has a Riemannian metric
and moreover, I has the following properties:

1. For each s € ]I:, the Killing form K () is nondegenerate and invariant with respect
to ad® and the action of p.

2. L is a G-loop, so that in particular, for each s € ]I:, () = q,.

3. For each s € I[:, the space g, is an irreducible representation of the Lie algebra bs.

These properties may not be strictly necessary, but they will simplify arguments.
Moreover, these are the properties satisfied by the loop of unit octonions, which is the
key example. The non-degeneracy of K(*) means we can define the map ¢!, and then the
second and third properties together make sure that there exists a constant A such that
for any s € ]I:, 0spt = ANidy and plepg = ATy, as per Lemma 3.43. If g, is a reducible
representation, then each irreducible component may have its own constant. Moreover,
the first and second properties together imply that K ) is independent of the choice of
s, and when extended as an inner product on sections, it is covariantly constant with
respect to a principal connection on P.
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For a fixed s € ]I:, let us consider what happens to the torsion 7" and the curvature F
with respect to deformations of the connection.

Lemma 5.1. Let s € L be fized. Suppose we have a path of connections on P given by
@ (t) = w+ tA for some basic p-valued 1-form A and a fized principal connection w.
Then, defining T (t) = TS®) and F (t) = F&2®) | we have

d

A~

—T(t =A 1

370 (5.1a)
N X . (s)

Tpw| —dtAsaA.T- [A,T] , (5.1b)

at’ ),

where T =T (0) = T),
Proof. Using (4.61), we have
T (1) = TERO) = 0, 4 g, (3(1) = T + 14,

and hence we get (5.1a). Also, using (4.50),

F(t) =FGe0) = o (FW) = P9 4t (dA) (5.2)
1
+ 5%, (14, 4],),

and then using (4.28),

=, (d"A) =d"A — (d"p) N A
t=0

—d*A+ AT [A,T}(S). 0 (5.3)

From (5.1a), we see that if for each p € P, A, € b, , then A = 0, and thus the
torsion is unaffected, so these deformations are not relevant for the loop bundle structure.
Therefore, let us assume that A, € hslp for each p € P. Equivalently, this means that
A € ¢! (I). So now suppose £ € Q. (P,) is a basic [-valued 1-form on P such that

basic

A= %gpi (), and thus, A = ¢. Then the deformations of T and F' become the following.

Corollary 5.2. Suppose & € Q},.;. (P,1) is a basic [-valued 1-form on P such that A =
1ot (), and thus, A=¢. Then,

d
ET (t) . =¢ (5.4a)
4z ey L 1 e
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Proof. The first equation follows immediately from (5.1a). For the deformation of F,
from (3.122), we see that

r=toe.re L Lie
where the bracket [-,-] on [is given by
gy, = s ([¢1(©) 6L m)],), (5.6)

as defined in (3.123). Substituting this and A = ¢ into (5.1b), we this obtain (5.4b). O
5.1. Loop Chern-Simons functional

Using the above technical results we can now generalize some aspects of Chern-Simons
theory to loops.

Definition 5.3. Suppose M is a 3-dimensional compact manifold. For a fixed section
s € Q, consider now the loop Chern-Simons functional F*) on the space of connections
on P modulo b, given by

FO) (i) = / <T7F>(S) - 61? (T.IT, T}%>(S), (5.7)

M

where wedge products between forms are implicit.

From the properties of T, F, [, -}%, and (-, ->(s) that were obtained in Section 4.3,

we see that this is invariant under simultaneous gauge transformation (s,w)
(u_l (s) ,u*w). This shows that this is an appropriate invariant functional to use.

Theorem 5.4. The critical points of the functional F*) are connections for which F=o.

Proof. Using (5.4) consider deformations of each piece of (5.7). For the first term, using
(5.4), we obtain

(s)
+f <T, P+ 5 6T, — 5 [£,T}“>>

M
b M 1 1 @\
= F T+ —|T,T — — [T, 7"°
/<€? +d +2)\2[7 ]st 2[7 ] >
M
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R 1 (s)
:/<g,2F+W [T,T]%> . (5.3)
M

For the second term in (5.7), using Lemma 3.50, we obtain

—6—; %/<T7 [T,T]%>(S) — —ﬁ/@, [T,T]%>(S). (5.9)

M t=0 M
Combining (5.8) and (5.9), we obtain

d

SFO @ ()

= 2/<§,F>(S). (5.10)

- M

Therefore, we see that the critical points of F(*) are precisely the connections for which

N

F=0. O

From the loop Bianchi identity (4.55), we also obtain an integrability condition for
F=o0:

FAT =0, (5.11)

where as before, A denotes the linear action of p on [ combined with a wedge prod-
uct. Differentiating (5.11) however, we do not get any additional conditions, due to the
standard Bianchi identity for F' and the relations (3.90) and (4.50).

Remark 5.5. Theorem 5.4 shows that the condition F' = 0 is the loop generalization of
the flat curvature condition that corresponds to the critical points of the standard Chern-
Simons functional. The condition F' = 0 means that each point, the curvature F«) lies
in h,. This is a restriction on the Lie algebra part of the curvature. The flat curvature
condition is of course is a very special case, in which the curvature is restricted to the
trivial Lie subalgebra. It may be tempting to regard ' = 0 as some kind of instanton,
however instantons have restrictions on the 2-form part of the curvature, rather than the
Lie algebra part. So what we have here is a different kind of condition to an instanton,
and there is term for this, coined by Spiro Karigiannis - an extanton. As we see from
Example 4.23, on a Kéhler manifold, this just corresponds to the Ricci-flat condition.

The above construction on 3-manifolds can be extended to an n-dimensional manifold
M if we have a closed (n — 3)-dimensional form . This idea was first introduced in [9)
and then developed further in [40]. In this setting, let us define the generalized loop
Chern-Simons functional as

G*) (w) = / (<T,F>(S) - 6% (T[T, T]%>(S)> A, (5.12)

Mn
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It is then easy to see the following.
Theorem 5.6. The critical points of the functional G are connections for which
FAy=0. (5.13)
This also implies that
FAT A = 0. (5.14)

For example if M is a 7-dimensional manifold with a co-closed Gs-structure, i.e.
1 = xp is closed, then (5.13) shows that as a 2-form, F has a vanishing component
in the 7-dimensional representation of Go. In contrast, Go-instantons (also known as
Donaldson-Thomas connections) [9,40] satisty F' A = 0. If F' = Riem, is the Riemann
curvature on the frame bundle, then equation (5.13) shows that, in local coordinates,

Riem;jx gpiggaklﬁ =0. (5.15)

The quantity on the left-hand side of (5.15), is sometimes denoted as Ric* [7,8,18]. The
traceless part of Ric* corresponds to a component of the Riemann curvature that lies
in a 27-dimensional representation of G5, with another 27-dimensional component given
by the traceless Ricci tensor Ric. The condition (5.14) is then given by

Riem; ;i T, "™ = 0. (5.16)

Remark 5.7. In the spirit of Remark 5.5, we may refer to connections on bundles over
compact 7-manifolds with co-closed Ga-structures that satisfy (5.13) as Ga-extantons.
This is a generalization of the G-instanton condition.

The torsion T and the curvature £ of a configuration (s,w) of a loop bundle structure
depend on both s and w. So far, we have considered variations of the corresponding
Chern-Simons functionals with respect to changes of w. Suppose M is again a compact
3-dimensional manifold and let us consider (5.7) as functional on sections of Q for a fixed
connection w, so that now we vary s. Thus, we now have the functional F«).

F) () = / <T7ﬁ>(5) _ # <T, T, T]%>(S). (5.17)

M

Let us now make additional assumptions:

L[], = k[, 1% for some scalar k.
2. L is alternative.
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The last assumption implies in particular, that the associator is skew-symmetric, and
moreover, for any a, 3,&,1 € (5,

(as (@, 8.€) ) = (€, as (a, B,m). (5.18)

Thus, we can rewrite F(“) as

F) (s) = / <T,F>(S) _ 6% <T, T, T](S>>(S). (5.19)
M

Theorem 5.8. The critical points of the functional F“) satisfy

1 ks 1@ 2% )
F-T—(§+ﬁ> a4 + 5y (T T.T1 = 0. (5.20)

Proof. As in (4.72), suppose s (t) is a path of defining sections of Q that satisfy

0s (t)
ot

= (Rs), n (1) (5.21)

where 7 (t) is a 1-parameter family of sections of A (i.e. correspond to equivariant [-valued
maps). From (4.76),

9T (D)) . (s(£))

. —d"y (1) - {T@(t), )m(t)} (5.22a)
QE (1)) N (s(t)
——— =Fn(t) - [F(s(t)’“),n (t)] . (5.22b)

From this, we find that the derivative of F(“) (s) is

4

SF (1)

- &/(T,as (T, T,n)*, (5.23)

where we have used (3.39) for the derivative of the bracket [-, ~](S), as well as the assump-
tion that the Killing form (-, ->(s) is invariant. Consider the first two terms in (5.23).
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© 5\ O PR TOIN
/ [T, 7] F> :/ n, —d"E — [FT} (5.24a)
M M
(s) (s) R (s) (s)
/<TF n— F n} > =/<777 [FT} —F-T> . (5.24b)
M M

The third term in (5.23) becomes

" (s) )\ o () @@\
[{@n-za® @) = [ (n-a* 1@+ 202,11
M

J /
/ <n, ) [FT} Y (T, T)>(S) ,
M

(s)
where we used the Akivis identity (3.45) to get [T, [T, T](S)] = as (T,T,T). Using,
alternativity, the last term in (5.23) is

/m%ﬂﬂwﬂ“:/m%GIIW”

M M

Therefore

R TOMNS
_ H
- /<n,d F+F- T—ﬁ[F,T} > (5.25)
M

and by definition of as,
as (T,T,T) =2[T,T, 7).

Hence,

— / <"’2F T~ (1 + %) [7.7] (S)>(S) (5.26)




100 S. Grigorian / Advances in Mathematics 393 (2021) 108078

4k s (s)
- [ {n gy (5.27)
M

Thus, the critical points with respect to deformations of s satisfy

1 k A (s) 2k (s) _
r-T7—-\-+-—||FT T, 7, T 2
(2+2>\2>[ ’ } Tl m=0 (5.28)

Example 5.9. In the case when L is a Lie group, the associator vanishes, and k = A =1,
so we just obtain d*"* I’ = 0, which is of course the standard Bianchi identity. This shows
that we just have a reduction from a W# (IL)-connection to an L-connection. In the case

. . . . . . _ 3 _ 3 _ 81
of I being the loop of unit octonions, it is easy to verify that A = ¢ and k = 3\° = 55

0 (5.20) becomes

17 © 3 -
F-T - [F T} + 5011 =0, (5.29)

The significance of this condition is not immediately clear.

We have considered separately the critical points of the functional F with respect
to deformations of the connection w and the defining section s. Combining the two
variations of F, we immediately find the following.

Corollary 5.10. Consider the functional
.\ (8) 1 (s)
F(s,w) = /<TF> - <T, T, T}%> . (5.30)

The critical points (s,w) of the functional F satisfy

F=0
{ .11 (5.31)

In the spirit of (5.12), given an n-dimensional manifold and an (n — 3)-form v, we
could also define a generalized functional

G (s,w) = / (<T,F>(S) - & (T[T, T]%>(S)> A (5.32)
M™

If ¢ is assumed to be independent of s, the critical points of G would then satisfy

{ Fmp_o (5.33)

[T, T, 7] A =0
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If M is a 7-dimensional manifold with a Ga-structure, and ¥ = %@ is the Ga-structure
4-form, then the second condition in (5.33) says that as a 3-form, [T, 7, T ](s) lies in the
7 and 27 dimensional representations of Go, i.e. the 1-dimensional component vanishes.

Remark 5.11. We have defined the Chern-Simons functional in 3 dimensions and for
higher dimensions followed the ideas from standard higher dimensional gauge. How-
ever, in the non-associative case, since the Jacobi does not hold, the [-valued 3-form

[T, [T, T](s)} © is non-trivial. Moreover, the brackets may be iterated to obtain higher
rank forms, and thus there are additional ways in which to define similar higher-
dimensional functionals. It will be the subject of further work to understand the sig-
nificance of such Chern-Simons type functionals. The functional F is invariant under
simultaneous gauge transformations of (s,w), but not the individual ones. The stan-
dard Chern-Simons functional in 3 dimensions not gauge invariant, which causes it to
be multi-valued, and only the exponentiated action functional is truly gauge-invariant.
It will be interesting to see if there are any analogous properties in the non-associative
case.

5.2. Loop Yang-Mills functional

Using the quantity F, we may also define a loop Yang-Mills functional. Indeed, on a
compact n-dimensional Riemannian manifold (M, g), define

YO (@) = / <F *F>(s) : (5.34)

M

where as before, a wedge product is assumed. We have the following result regarding
critical points.

Theorem 5.12. The critical points of Y®) are connections that satisfy

)
A" s B = (—1)" (»:mﬁF T [*FT] ) . (5.35)

Proof. Using (5.4b), we have

% / (P (1), +F (t)>(5)

M t=0
=3 <ng + oz 6], - 51671 F>
M
:2/<§,dH B - (g;gn [*F,T] o + (_21)” [*F, }(S)>
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Thus, critical points satisfy

A = (=1)" (2; [*F,TL - % [+, 7] (S)> . (5.36)

However, from (3.122), we have

1, /- 17 . 17 . 16
e (F) 1= g [eB7] + g [+R1]
and from (3.113),
t (&) _ ot
Ps (F> = PsPs (F) - )‘S’”th
Hence
I[FT} 1{?1“](5) F.T [FT](S)
—— |xF, — — |xF, =xmp  F'-T — |%F, ,
222 e, 2 E

and we obtain (5.35). O

Example 5.13. Since we have s’y BT = %cpg (ﬁ'), then as in Example 3.47,if L =UQ,

1 a1
smps P T = 2 [+F.7]

and critical points of Y(*) satisfy

A 20 . 10
dM = (1) 2 {*FT} .

L ()
Similarly, following Example 3.48, if L is a Lie group, then *my - T' = {*F, T} , and
hence we recover the standard Yang-Mills condition for F', which is the restriction of F
to b+ = [. In this case, we just have standard gauge theory with gauge group L. This
justifies considering (5.34) as the loop Yang-Mills functional.

If n = 4, then we may decompose the 2-form F into self-dual and anti-self-dual parts.

Lemma 5.14. Suppose M is a compact 4-dimensional manifold. If Fls@) g self-dual or
anti-self-dual, then w is a critical point of Y if and only if

my. F-T =0. (5.37)
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Proof. Suppose Fis self-dual, so that «F = F , then from the loop Bianchi identity
(4.55),

A

) (s)
AN F—F.T— [*FT} .

Comparing with (5.35), we see that w with a self-dual F is a critical point of (5.34) if
and only if

*whSLF-TzF-T.

However,

Thus we see that in this case, w is a critical point of (5.34) if and only if
my, F - T =0. (5.38)

Similarly, suppose F is anti-self-dual, so that xF' = —F', then the loop Bianchi identity
gives

T NRTO)
d *F:7F~T—{*F,T} .

Now however,

and we see that w with a anti-self-dual F" is also critical point of (5.34) if and only if
(5.38) holds. O

Remark 5.15. From Lemma 5.14, we may define the notion of a loop instanton on a
4-manifold: a connection for which £ is self-dual or anti-self-dual, and the h-component
of F' satisfies my, F'- T = 0.

Similarly, as for the loop Chern-Simons functionals, we may also consider the varia-
tions of Y with respect to deformations of s. So if we fix w, and instead define

V@) (5) = / (F, *F>(S) , (5.39)

M
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where as before we assume a wedge product. We then have the following.
Theorem 5.16. The critical points of the functional Y“) satisfy

F- (*F> —0. (5.40)
Proof. As before, suppose s (t) is a path of defining sections of O that satisfy

0s (t)
ot

= (Rs). 1 (t) (5.41)

where 7 (t) is a 1-parameter family of sections of A. Also, from (5.22), we have

HF(s(t)w)

(s(1)
= } . (5.42)

Fon(t) = [FCO<) ()

From this, we find that the derivative of V) (s) is

O RN

t_O_A[<F.n[F,n} ,*F>

/<77, [F,*F}(S)F~*F>.
M

A

N (s)
However, due to symmetry considerations, [F,*F} = 0, and thus we obtain that

d w
SV (s(1))

critical points satisfy (5.40). O

Remark 5.17. From (3.122), we see that

and thus *£ is always invariant with respect to the action of the h-component of F,
and thus the condition (5.40) is actually equivalent to saying that

Fy. - (*F) —0. (5.43)

However, ¢, is invariant under the action of b, so
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Fy, - (+F) =Fy, - (¢ (+F)
=0, (1Fy..+F],)
=04 ([Fo.o +Fys],) -

This shows that (5.43) is equivalent to

|:<Fhsth§—>M:|p S bs
at every point. Here (-,-),, is the inner product of 2-forms on M.
5.3. Energy functional

In the context of Ga-structures, another functional has been considered in several
papers [5,10,15,17,31], namely the La-norm of the torsion, considered as functional on
the space of isometric Gao-structures, i.e. Ga-structures that correspond to the same
metric. In the context of loop structures we may define a similar functional. Given a
compact Riemannian manifold (M, g) and a fixed connection w on P, for any section

sel (Q) let T(%) be the torsion of s with respect to w. Then define the energy functional
onT (Q) given by:

£(s) = / <T(S), *T(S)>(S) : (5.44)

M

where the wedge product is assumed. We then have the following.
Theorem 5.18. The critical points of the functional £ satisfy
(d)" T =0. (5.45)

Proof. With respect to deformations of s given by (4.72) and the corresponding defor-
mation of T' given by (5.22) we have

:2/ <d”n— [T“),n} " ,*T(S)>(S)

(o\ )
- 2/ <n,d” £ T — [T(S),*T(S)} ’ >

M

", ( )

-2 77, d , (5.46)
M

d
e (s (1)

t=0
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where [T(s), *T(s)] S 0 due to symmetry considerations. Hence we obtain (5.45). O

Thus the critical points of £ satisfy which is precisely the analog of the “divergence-
free torsion” condition in [5,10,15,17,31]. Also, similarly as in [31], if we assume P is
compact, the functional £ may be related to the equivariant Dirichlet energy functional

for maps from P to L. Given a metric (-,-)*)

of L via right translations: (-, '>1(78) = <(Rp)*_1 - (Rp)

functional on equivariant maps from P to L is given by

D(s) = [ las* = [ 10, (5.47)
P P

where we endow TP with a metric such that the decomposition TP = HP & VP is
orthogonal with respect to it, and moreover such that it is compatible with the metrics
on M and ¥. Then, using (4.23)

on [, we may extend it to a metric on all

(s)
-t > . Then, the Dirichlet energy

*

2
D(s):/‘:ﬂé) +/ &) (5.48)
P P
2
Note that given an orthogonal basis {X;} on p, @(3)|2 = |o®) (o (Xz))|2 = |X;| =

As dim [. With our previous assumptions, A; = A, and thus does not depend on s, so we
have

where a = Vol(¥) and b = A (dimIL) Vol (P). Hence, the critical points of &£ (s) are
precisely the critical points of D (s) with respect to deformations through equivariant
maps, i.e. equivariant harmonic maps. So indeed, to understand the properties of these
critical points, a rigorous equivariant harmonic map theory is required, as initiated in
[31].

6. Concluding remarks

Given a smooth loop L with tangent algebra [ and a group ¥ that acts smoothly on L
via pseudoautomorphism pairs, we have defined the concept of a loop bundle structure
(L, W, P,s) for a principal U-bundle and a corresponding equivariant L-valued map s,
that also defines a section of the corresponding associated bundle. If we moreover have
a connection w on P, then horizontal component of the Darboux derivative of s defines
an l-valued 1-form 7(*) which we called the torsion. This object T(5*) then satisfies
a structural equation based on the loop Maurer-Cartan equation and gives rise to an
[-valued component of the curvature Flsw), Overall, there are several possible directions
to further this non-associative theory.
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1. From a more algebraic perspective it would be interesting to construct additional
examples of smooth loops, in particular those that are not Moufang and possibly
are not even G-loops in order to more concretely study the corresponding bundles in
those situations. In fact, it may not even be necessary to have a full loop structure
- it may be sufficient to just have a right loop structure, so that division is possible
only on the right. Left division was used rarely, and it may be possible to build up a
full theory without needing it. New examples of loops may give rise to new geometric
structures.

2. In Lie theory, the Maurer-Cartan equation plays a central role. As we’ve seen there
is an analog in smooth loop theory as well. A better understanding of this equation
is needed. The standard Maurer-Cartan equation is closely related to the concept of
integrability, but it is not clear how to interpret the non-associative version.

3. In defining the loop bundle structure, we generally have assumed that the map s is
globally defined. However, this may place strict topological restrictions. It may be
reasonable to allow s to be defined only locally. This would give more flexibility, but it
would need to be checked carefully whether other related quantities are well-defined.

4. We have defined a functional of Chern-Simons type in Section 5.1. There are fur-
ther properties that need to be investigated. For example, is it possible to use the
associator to define reasonable functionals on higher-dimensional manifolds? If the
section s is defined only locally, are these functionals well-defined? Finally, do these
functionals have any topological meaning?

5. In Ga-geometry, significant progress has been made in [5,10,15,17,31] regarding the
existence of critical points of the energy functional (5.44) via a heat flow approach.
However, it is likely that a more direct approach, similar to Uhlenbeck’s existence
result for the Coulomb gauge [49], could also be used. This would give existence of
a preferred section s for a given connection or conversely, a preferred connection in
a gauge class for a fixed section s.

Overall, the framework presented in this paper may give an impetus to the develop-
ment of a larger theory of “nonassociative geometry”.

Appendix A

Lemma A.1. Suppose A (t) and B (t) are smooth curves in 1L with A (0) = Ag and B (0) =
By, then

d d d

GAO/BO| = GAO/B| — G e/By BO) /B (ML)
Tpinam| = LBoag LB\ (B (1) - Bo\A A.1b
FEOVAO| =GB EBABO B\ (AD)
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Proof. First note that

d d

FAO| = f@w/BO-BO)|
= GO /B@)- B+ G (Ao/Bo-BW)|
= (Ren). GAW/BO| + G o/B-BO)|

Hence, applying (R;é)* to both sides, we obtain (A.la). Similarly,

d d
—A(t =—(B(t)-B(t)\A(t
GAO| =5 Bw-BAW)
d d
= (Ln), TBOVAD)|  + 5 (B ) Bo\Ay)
t=0 t=0
and applying (Lp!), to both sides gives (A.1b). O
Lemma A.2 (Lemma 5.13). For fixed n,v € |,
dblp (7777) = [777 v, Gp](p) - [% 777 ap](l)) ’
where [-, -, -](p) is the LL-algebra associator on [(P) given by
(p) ° /
1767 = G S M (e (P e ()]
d3 ,
= o (exp (7)) op exp (177)) op exp (£€)
t,7,7'=0
Moreover,
176 = T fexp () exp (') exp (1)) -
n dtdrdr’ ’ ’ =0
where [-, -, -](L’Op) is the loop associator on (IL,o,) as defined by (2.3/).

Proof. Let X = p({) and z (t) = exp,, (t£) p, then consider

X (b(n,7)), = % ([77,7]1(”)
d3

= dtdrdr’

t=0

(exp (1) 0z exp (7'7))

t,7,7'=0

(A.2)

(A.5)
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dS

— ——— (exp (7'7) oy(s) exp (7))
dtdrdr’ * b =0
where we have used (3.29). Then,
exp (T1) oty exp (7'7) = (exp (1) (exp (') x (t)))/x (t): (A.6)
For brevity let us = for exp, and d3 for #ﬁh/ , so that, using Lemma A.1, we
t,7,7'=0
get
= = ('
43 (E(rm) oa (7'7) =} (E (D E TN () 1) (A7)
e ((5 (tn) (E (') P)/p) o (@/)
—d3 D
However,

E@m) E@Tz®)/p=

(™0) 0p (E(7"7) 0p Ep (t£)) (A.8)

and similarly,

(E (TTI) (E (T'W) p)/p . (t)) /p=(E(m) op B (T/’y)) op Zp (t€). (A.9)

The derivatives of E, (t§) and = (t£) with respect to ¢t at t = 0 are equal, thus, from
(A.7), we find

d3

- _ (»)
dtdrdr’ [1:7:¢] (A.10)

t,7,7'=0

(E(m) opwy E(177))

and hence, from (A.5),

X bm7), =787 — ng®. (A.11)

For the last part, using (2.34) and Lemma A.1, we get
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and hence from (A.10) we see that indeed (3.41) holds. O

Lemma A.3. Suppose s (t) and f(t) are smooth curves in L with s(0) = s, f(0) = f,
5(0) = s, f(O) = f. Also, let € € 1, then

i (A)).

o - [(Rgﬁ)j 7. (A 5} " (A.12)

(7)) for. f] ;
(s)

t,7=0
+ (Rgf))fl :f,& (Ry)." s]

- (m) (), er ]

Proof. Let £ € [, and consider s; = s(t), f = f(t), then, for brevity suppressing
pushforwards, we have

(7).

d
dt = 2 Jres &) /s fi

t=0 t=0

+ 4 foue) ot

d
= E(fost E)/étf

d
=7 (f-&se) [ (fse)

t=0

d
+ E(ftosg)/sf

t=0

d
- E((fosf)/Sfosft)/Sf

t=0

d d
= S [ (f9)] = S ((F69)/ (£3)- fs0) /Fs

t=0 t=0

d d (s)
+ S (feos©) [f| = = (A4 €0l ) /of

(A.13)

t=0 t=0

Now consider the first two terms (suppressing the derivatives for clarity):

(f-&se) [/ (fs) =(fos (§os (5¢/9))) /sf
((f-&s)/(fs)- fse) [fs=(((fos&)/sf)os (fossi/s)/sf

—(Fox € onsefs) /o + [AdY & Fosefs] /ot

Thus,

(f-€se)/ (Fs) = ((f-€5)/ (fs) - Fse) [fs =f.&se/s) /of (A.14)
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. (s)
— |AdY € fosi/s| /s
The next two terms in (A.13) become

(fros &) /sf =((fe/sf 0s ) 0s€) /f
=(fu/sf 0s (f05€)) /sf = [fe) oS, £, /of
=(fu/sf) ops AdY € — o) f. 1.6 /o f
(4P ou 1) [of =AdP € 0p (fi/of)

Thus,

(fs)
(feos© [uf = (AdP €0, fi) [uf = [/ oS AP €| = 1£/uf £, Juf - (A15)

Overall, combining (A.14) and (A.15) and now using proper notation, we obtain
(A12). O

Theorem A.4 (Theorem 5./0). The bilinear form K) (3.106) on | has the following
properties.

1. Let h € UE (L), then for any &,m €1,
KD (W6, W) = K (€,1). (A.16)
2. Suppose also v € |, then

K (ad n,€) == KO (1,40 €) + Tr (Jacl?) oad?)

+Tr (Jac,(f’)7 o adés)) ) (A.17)

where Jacsj)g s — [ is given by Jacgﬁzy (&) = Jac'™ (£,1,7).
3. Let a € p, then

K®(a-&n)=—K® (& a-n)+Tr (a(S)A o adés)) (A.18)

&

+ Tr (aési o adgf)) ,

s) (s)

where aém 1L — Lis given by ag, () = v, &1 = 1€, 7,0 and & = ¢, ().

Proof. 1. Let h € ¥, and then using the cyclic property of trace as well as (3.57), we
have
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s h(s h(s
KOO (16, W) =T (ad () 0l

3
=K (&,n)
2. From (3.38), we see that
ad? =[] ?
= [119]" = [l 49)" - gacly)
= ad%s) o ad(vs) - ad(vs) o adgf) - Jacsf’ly (A.19)

Hence,
adf:,)w}“) o adés) = ad%s) o adfys) o adgs) — adgs) o ad;‘g) o adés)
- Jac%f}v o adg‘g)

and so using the cycling symmetry of trace, we have

K® ([n, 7, 5) = (ad5f> ° (ad(vs) oady” —adg”o ad(vs)»

s (s)
—Tr (Jac;)y o adf )
_ s (s) (s) (s)
=Tr (adg7 ) oad[%ﬂ(s)> + Tr <ad77 o JaC%E)
s) (s)
= Tr (Jacfy) oad(” )

=K (0. [3,€]?) + T (Jacl?, 0ad?)



S. Grigorian / Advances in Mathematics 393 (2021) 108078 113

+ Tr (Jauc(f)7 o adés)) .

This then gives (A.17).
3. Now let o € p and consider

_ (s) s
K® (a-&n)=Tr (ada_5 oadg )> .
Denote by [, : [ — [ the left action of p on [. From (3.90), we then have

ad(s)E =ly0 ad(s) - ad( ) oly + a(s) (A.20)

So now,

KO (a-&,m) =Tr (za oad” oad?) —ad” ol, o adg5>)
+TI‘< (S)A oad( )>
=Tr (ad{” o (adf}) ol — o 0ad()) ) + Tr (a) 0ad())
—Tr (a4 0ad() ) + Tr (adl” oal?,) + Tr (af7) 0 ad(?)
9o
&

d(s)) . O

T (o) £ ()
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