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Abstract

We survey recent progress in the study of G2-structure Laplacian coflows, that is, heat
flows of co-closed G2-structures. We introduce the properties of the original Laplacian
coflow of G2-structures as well as the modified coflow, reviewing short-time existence and
uniqueness results for the modified coflow and well as recent Shi-type estimates that apply
to a more general class of G2-structure flows.

1 Introduction

One of the most successful techniques in geometric analysis has been the application of geo-
metric flows to various problems in geometry and topology, most notably the use of the Ricci
flow [20, 30] to solve the Poincaré Conjecture [31]. The Ricci flow is a non-linear weakly
parabolic partial differential equation for the Riemannian metric g

∂g

∂t
= −2Ricg (1.1)

so that the evolution of the metric is given by the Ricci curvature defined by the metric.
This can further be interpreted as a heat equation for the metric. In G2-geometry, there
have been a number of proposals for geometric flows of G2-structures. The general idea is
that given an initial G2-structure with weaker assumptions than vanishing torsion, the flow
should eventually seek out a torsion-free G2-structure, if one exists on the given manifold. A
G2-structure is defined by a positive 3-form ϕ, which in turn defines the metric g, and the
corresponding Hodge dual 4-form ∗ϕ =: ψ. Therefore, a natural equation to consider is the
analog of the heat equation for the 3-form ϕ

∂ϕ

∂t
= ∆ϕϕ. (1.2)

This Laplacian flow of the 3-form ϕ is now nonlinear in ϕ, because the metric and hence the
Laplacian depend on ϕ itself. A particular case of this flow has been first studied by Robert
Bryant [5], where he restricted it to closed G2-structures, that is ones where dϕ = 0. For
a closed G2-structure, ∆ϕ = dd∗ϕ, so in this case, the 3-form ϕ stays closed under the flow
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(1.2), and in fact remains within the same cohomology class since ∆ϕ is exact. Short-time
existence and uniqueness of solutions to (1.2) was proved in [6]. Moreover, on a compact
manifold M , this flow can be interpreted as the gradient flow of the Hitchin functional V
given by

V (ϕ) =
1

7

∫
M
ϕ ∧ ∗ϕϕ. (1.3)

The functional V is then the volume of the manifold M . It was shown by Nigel Hitchin in
[21] that if ϕ is closed, then the critical points of the functional V within the cohomology
class [ϕ] correspond precisely to torsion-free G2-structures, and in particular, these critical
points are maxima in the directions transverse to diffeomorphisms. Under the flow (1.2), V
increases monotonically, so if the growth of V is bounded, then ϕ(t) would be expected to
approach a torsion-free G2-structure as t −→ ∞. The stability and analyticity of this flow
has recently been proved by Lotay and Wei [26, 27, 28]

Alternatively, a G2-structure and the corresponding metric may also be defined by the
4-form ψ (up to a choice of orientation). Therefore, instead of deforming ϕ, we may deform
ψ. Using this idea, Karigiannis, McKay, and Tsui, introduced the Laplacian coflow for the
4-form ψ in [25]. Instead of considering the heat flow equation for ϕ, they instead considered
the flow:

∂ψ

∂t
= ∆ψψ. (1.4)

If restricted to co-closed G2-structures (that is, ones with dψ = 0 and equivalently, those with
a symmetric torsion tensor T ) this flow preserves the co-closed condition and in fact preserves
the cohomology class of ψ. In [14], it was shown that this flow has similar characteristics to
the original Laplacian flow for closed G2-structures. In fact, (1.4) can also be regarded as a
gradient flow of the Hitchin functional (but now reformulated via 4-forms). However, a major
difference compared with the Laplacian flow of closed G2-structures (1.2) is that (1.4) is not
even a weakly parabolic equation. In fact, the symbol of the linearized equation is indefinite.
In order to have any hope of proving the existence of solutions, a modified Laplacian coflow
of co-closed G2-structures was introduced in [14]:

dψ

dt
= ∆ψψ + 2d((A− TrT )ϕ) (1.5)

where TrT is the trace of the full torsion tensor T of the G2-structure defined by ψ, and A is a
positive constant. This flow is now weakly parabolic in the direction of closed forms and hence
it is possible to relate it to a strictly parabolic flow using an application of DeTurck’s trick.
Recently, the methods of Lotay and Wei for Shi-type estimates for the flow (1.2) have been
extended by Gao Chen [7] to cover a more general class of G2-structure flows that includes
(1.5) as well. We will first survey the properties of G2-structures and the Laplacian ∆ϕϕ in
sections 2 and 3. Then, in section 4 we will focus on Laplacian coflows.

Despite the apparent similarity between closed and co-closed G2-structures, there are also
important differences. As shown in [10], co-closed G2-structures always satisfy the h-principle
(on both open and closed manifolds) and hence always exist whenever a manifold admits G2-
structures. This is in contrast to closed G2-structures for which the h-principle only holds
on open manifolds. Therefore, co-closed G2-structures are in some sense more generic than
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closed ones. This is both good and bad - it’s good because they always exist, but bad because
one cannot expect their flows to always behave nicely. This is also in part shown by the
non-parabolicity of the original coflow (1.4).

In this survey we will focus on analytic properties of flows on general 7-manifolds, however
another approach to understand the specific behavior of geometric flows and obtain explicit
solutions has been to consider manifolds with some symmetry, in which case the number of
degrees of freedom in the PDE will be reduced. Both the original Laplacian coflow (1.4)
and the modified Laplacian coflow (1.5) have been studied on a variety of such manifolds
with symmetry. Note that while in these situations mostly the original coflow (1.4) with the
negative sign has been studied, results for the coflow with the positive sign (1.4) would be
similar because equations reduce to ODEs. In [25] and [16], the coflow and the modified coflow,
respectively, have been studied on warped product manifolds of the form N6×L where N6 is a
6-dimensional manifold with SU(3)-structure such as a Calabi-Yau or nearly Kähler manifold
and L is either R or S1. In particular, soliton solutions in both cases have been obtained.
In [1], Bagaglini, Fernandez, and Fino, also studied both the coflows on the 7-dimensional
Heisenberg group. In particular, they have shown that the long-term existence properties of
the flow (1.5) depend on the constant A. Similarly, in [2], Bagaglini and Fino studied the
Laplacian coflow on 7-dimensional almost-abelian Lie groups and showed long-term existence
properties and constructed soliton solutions. In [29], Manero, Otal, and Villacampa studied
both the Laplacian flow (4.1) and the coflow (1.4) on solvmanifolds, but instead of restricting
to closed or co-closed G2-structures, they instead restricted to locally conformally parallel
G2-structures, which are the ones where only the 7-dimensional τ1 component of the torsion
may be nonvanishing.
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2 Laplacian of a G2-structure

Suppose M is a smooth 7-dimensional manifold with a G2-structure ϕ. Then we know ϕ
uniquely defines a compatible Riemannian metric gϕ, the volume form volϕ, Hodge star ∗ϕ,
and the dual 4-form ψ = ∗ϕϕ. There is arbitrary choice of orientation, which affects the
relative sign of ψ. We use the same convention as [4] and [13, 14, 15, 16, 18], which is
opposite from the convention used in [23, 24]. For further properties of ϕ and ψ, as well
as different identities that they satisfy, we refer the reader to the above references. We will
also use the following notation. The symbol y will denote contraction of a vector with the
differential form:

(uyϕ)mn = uaϕamn. (2.1)

Note that we will also use this symbol for contractions of differential forms using the metric,
for example (Tyϕ)a = Tmnϕmna. Given a symmetric 2-tensor h on M , we define the map
iϕ : Γ(Sym(T ∗M)) −→ Λ3

1 ⊕ Λ3
27 as

iϕ(h)abc = hd[aϕbc]d.
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We will define the operators π1, π7, π14 and π27 to be the projections of differential forms onto
the corresponding representations. Sometimes we will also use π1⊕27 to denote the projection
of 3-forms or 4-forms into Λ3

1 ⊕ Λ3
27 or Λ4

1 ⊕ Λ4
27 respectively. For convenience, when writing

out projections of forms, we will sometimes just give the vector that defines the 7-dimensional
component, the function that defines the 1-dimensional component or the symmetric 2-tensor
that defines the 1⊕ 27 component whenever there is no ambiguity. For instance,

π1(fϕ) = f π1(fψ) = f
π7(Xyϕ)a = Xa π7(Xyψ)a = Xa π7(X ∧ ϕ)a = Xa

π1⊕27(iϕ(h))ab = hab π1⊕27(∗iϕ(h))ab = hab

(2.2)

The above-mentioned references give more information regarding the properties of decompo-
sition of differential forms with respect to G2 representations.

The intrinsic torsion of a G2-structure is defined by ∇ϕ, where ∇ is the Levi-Civita
connection for the metric g that is defined by ϕ. Following [24], we have

∇aϕbcd = T e
a ψebcd (2.3a)

∇aψbcde = −4Ta[bϕcde] (2.3b)

where Tab is the full torsion tensor. In general we can split Tab according to representations
of G2 into torsion components :

T =
1

4
τ0g − τ1yϕ+

1

2
τ2 −

1

3
τ3 (2.4)

where τ0 is a function, and gives the 1 component of T . We also have τ1, which is a 1-
form and hence gives the 7 component, and, τ2 ∈ Λ2

14 gives the 14 component and τ3 is
traceless symmetric, giving the 27 component. As shown by Karigiannis in [24], the torsion
components τi relate directly to the expression for dϕ and dψ. In fact, in our notation,

dϕ = τ0ψ + 3τ1 ∧ ϕ+ ∗iϕ(τ3) (2.5a)

dψ = 4τ1 ∧ ψ + ∗τ2. (2.5b)

Note that in [14, 15, 16, 18] a different convention is used: τ1 in that convention corresponds
to 1

4τ0 here, τ7 corresponds to −τ1 here, iϕ(τ27) corresponds to −1
3τ3, and τ14 corresponds to

1
2τ2. The notation used here is widely used elsewhere in the literature.

An important special case is when the G2-structure is said to be torsion-free, that is,
T = 0. This is equivalent to ∇ϕ = 0 and also equivalent, by Fernández and Gray [12], to
dϕ = dψ = 0. Moreover, a G2-structure is torsion-free if and only if the holonomy of the
corresponding metric is contained in G2 [22]. On a compact manifold, the holonomy group is
then precisely equal to G2 if and only if the fundamental group π1 is finite. If dϕ = 0, then we
say ϕ defines a closed G2-structure. In that case, τ0 = τ1 = τ3 = 0 and only τ2 is in general
non-zero. In this case, T = −1

2τ2 and is hence skew-symmetric. If instead, dψ = 0, then we
say that we have a co-closed G2-structure. In this case, τ1 and τ2 vanish in (2.5b) and we are
left with τ0 and τ3 components. In particular, the torsion tensor Tab is now symmetric.

We will be using the following notation, as in [14]. Given a tensor ω, the rough Laplacian
is defined by

∆ω = gab∇a∇bω = −∇∗∇ω. (2.6)
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whereas the Hodge Laplacian defined by ϕ or ψ will be denoted by ∆ϕ or ∆ψ, respectively.
For a vector field X, define the divergence of X as

divX = ∇aXa. (2.7)

This operator can be extended to a 2-tensor β:

(div β)b = ∇aβab. (2.8)

Also, for a vector X, we can use the G2-structure 3-form ϕ to define a “curl” operator, similar
to the standard one on R3:

(curlX)a = (∇bXc)ϕ
abc. (2.9)

This curl operator can then also be extended to 2-tensor β:

(curl β)ab = (∇mβna)ϕ mn
b . (2.10)

Note that when βab is symmetric, curl β is traceless. It is also not difficult to see that
schematically,

curl
(
(curl β)t

)
= −∆βt +∇(div β) + Riem~β + T ~∇β + (∇T ) ~ β + T ~ T ~ β (2.11)

where t denotes transpose and ~ is some multilinear operator involving g, ϕ, ψ. From the
context it will be clear whether the curl operator is applied to a vector or a 2-tensor.

As in [14], we can also use the G2-structure 3-form to define a commutative product α ◦β
of two 2-tensors α and β

(α ◦ β)ab = ϕamnϕbpqα
mpβnq (2.12)

Note that (α ◦ β)t =
(
αt ◦ βt

)
. If α and β are both symmetric or both skew-symmetric, then

α ◦ β is a symmetric 2-tensor. Also, for a 2-tensor we have the standard matrix product
(αβ)ab = α k

a βkb.
From [8, 15, 24] we know that the torsion of a G2-structure satisfies the following integra-

bility condition:
1

2
Riem βγ

ij ϕα βγ = ∇iT α
j −∇jT α

i + T β
i T γ

j ϕαβγ . (2.13)

Taking projections of (2.13) to different representations of G2, we obtain the following ex-
pressions:

Lemma 2.1 The torsion tensor T satisfies the following identities

(∇T )yψ = −(Tyϕ)yT + T 2yϕ+ (TrT )(Tyϕ) (2.14a)

0 = d(TrT )− div
(
T t
)
− (Tyϕ)yT t (2.14b)

Ric = − Sym
(
curlT t −∇(Tyϕ) + T 2 − Tr(T )T

)
(2.14c)

1

4
Ric∗ = curlT +

1

2
T ◦ T (2.14d)

R = 2 Tr(curlT )− ψ(T, T )− Tr
(
T 2
)

+ (TrT )2 (2.14e)

where (Ric∗)ab = Riemmnpq ϕ
mn

aϕ
pq
b and ψ(T, T ) = ψabcdT

abT cd. Note that from (2.4),

TrT = 7
4τ0 and Tyϕ = −6τ1.
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The symmetric 2-tensor Ric∗ has been defined and studied by Cleyton and Ivanov in [8, 9].
Note that Tr(Ric∗) = 2R, where R is the scalar curvature. Thus the tensors Ric and Ric∗

span the components of Riem that lie in 1 ⊕ 27 ⊕ 27 representations of G2. It is know that
Riem has no components in the 7 or 14 dimensional representations of G2. The identities
(2.14a), (2.14b), as well as the projection of (2.14d) to Λ2

14 are a consequence of this. In
fact, taking the skew-symmetric part of (2.14d) and using the fact that Ric∗ is by definition
symmetric, gives us

Skew(curlT ) = −1

2
Skew(T ◦ T ). (2.15)

In particular, this shows that curl T is symmetric whenever T is skew-symmetric or symmetric,
and in particular, if ϕ is closed or co-closed.

Let us now look at the properties of ∆ϕϕ = dd∗ϕ+ d∗dϕ.

Proposition 2.2 ([14]) Suppose ϕ defines a G2-structure. Then ∆ϕϕ = Xyψ+ 3iϕ(h) with

X = − div T (2.16a)

h = −1

4
Ric∗ +

1

6

(
R + 2|T |2

)
g − T tT − 1

2
(Tyϕ)(Tyϕ) (2.16b)

+
1

4
T ◦ T +

1

4
T t ◦ T t − 1

2
T ◦ T t + Sym

(
(T )(Tyψ)−

(
T t
)
(Tyψ)

)
.

In particular,

Trh =
2

3
R +

4

3
|T |2. (2.17)

The leading order terms in ∆ϕϕ are those that contain second derivatives of ϕ, and hence
first derivatives of T . Thus, div T fully defines the Λ3

7 component of ∆ϕϕ and the leading
order terms in Λ3

1⊕27 are given by

− 1

4
Ric∗ +

1

6
R g ∼ − curlT +

1

3
Tr(curlT )g. (2.18)

3 Flows of G2-structures

Suppose ϕ(t) is a one-parameter family of G2-structures on a manifold M that satisfies

∂ϕ(t)

∂t
= X(t)yψ(t) + 3iϕ(t)(h(t)). (3.1)

As shown by Karigiannis in [24], the associated quantities g(t), volt, ψ(t), T (t) satisfy the
following evolution equations:

Lemma 3.1 ([24]) If ϕ(t) satisfies the equation (3.1), then we also have the following equa-
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tions:

∂g

∂t
= 2h (3.2a)

∂ vol

∂t
= Tr(h) vol (3.2b)

∂ψ

∂t
= 4iψ(h)−X ∧ ϕ (3.2c)

∂T

∂t
= ∇X − curlh+ Th− (T )(Xyϕ) (3.2d)

where iψ(h)abcd = −he[aψbcd]e and equivalently, 4iψ(h) = −3 ∗ iϕ(h) + (Trh)ψ.

Similarly, as in [14], we can consider flows of ψ, given by

∂ψ(t)

∂t
= ∗(X(t)yψ(t)) + 3 ∗ iϕ(t)(s(t)) (3.3)

for some symmetric 2-tensor s. Since 3 ∗ iϕ(s) = 4iψ
(
1
4(Tr s)g − s

)
, comparing (3.3) with

(3.2c) give us corresponding evolution equations for ϕ(t), g(t), volt, T (t) from (3.1) and (3.2)
by taking h = 1

4(Tr s)g − s.
When constructing geometric flows, there are two main considerations: 1) the flow’s

stationary points should correspond to geometrically interesting objects; and 2) the flow
should be parabolic in some sense. The first property is the main motivation for studying
a flow, since we ideally want the flow to deform a geometric structure to one that has nicer
or more constrained properties and the second property is a minimal requirement to at least
guarantee short-time existence and uniqueness of solutions. In [7], Chen defined a class of
reasonable flows (3.1) of G2-structures that satisfy the following 4 general conditions:

1. The metric should evolve by the Ricci flow to leading order, and be no more than
quadratic in the torsion, that is

∂g

∂t
= 2h = −2 Ric +Cg + L(T ) + T ~ T (3.4)

where C is a constant and L is some linear operator involving g, ϕ, ψ.

2. The vector field X is at most linear in ∇T and at most quadratic in T :

X = L(∇T ) + L(T ) + L(Riem) + T ~ T + C. (3.5)

3. The torsion tensor should evolve by ∆T to leading order, and be at most linear in Riem
and ∇T, and at most cubic in T :

∂T

∂t
= ∆T + L(∇T ) + L(Riem) + Riem~T +∇T ~ T (3.6)

+L(T ) + T ~ T + T ~ T ~ T.

4. The flow (3.1) has short-time existence and uniqueness.
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As one of the key properties of reasonable flows defined above is that the flow of the
metric is the Ricci flow to leading order, we will instead refer to flows that satisfy properties
1.-4. as Ricci-like flows. This is appropriate because a variety of techniques that originated
from the study of the Ricci flow have been applied to these flows. In particular, under the
Ricci flow, invariants of the metric Riem, Ric, R, all satisfy heat-like equations. Therefore it
is appropriate that for a Ricci-like flow of a G2-structure, the torsion, which an invariant of
the G2-structure also satisfies a heat-like equation (3.6). This is important because then ∇kT
and |T |2 also satisfy heat-like equations and this is necessary to be able to obtain estimates
using the maximum principle.

Using techniques developed by Shi in [32] for the Ricci flow and their adaptation to G2-
structures by Lotay and Wei [26], Chen then showed that a reasonable flow satisfies the
following Shi-type estimate.

Theorem 3.2 ([7, Theorem 2.1]) Suppose (3.1) is a Ricci-like flow of G2-structures, such
that the coefficients in equations (3.1), (3.4), (3.5), and (3.6) are bounded by a constant Λ.
Let Br(p) be a ball of radius r with respect to the initial metric g(0). If

|Riem(x, t)|g(t) + |T (x, t)|2g(t) + |∇T (x, t)|g(t) < Λ (3.7)

for any (x, t) ∈ Br(p)× [0, t0], then∣∣∣∇k Riem(x, t)
∣∣∣
g(t)

+
∣∣∣∇k+1T (x, t)

∣∣∣
g(t)

< C(k, r,Λ, t) (3.8)

for any (x, t) ∈ Br/2(p)×
[
t0
2 , t0

]
for all k = 1, 2, 3, ...

It should be noted that in [26], the condition analogous to (3.7) does not include a |T |2
term. This is because in the case of a closed G2-structure, |T |2 = −R ≤ C|Riem|. Therefore,
the norm of the torsion can always be bounded in terms of the norm of Riem . For other
torsion classes, and in particular, co-closed G2-structures, this is no longer true, therefore
|T |2 needs to be included in (3.7).

Using the estimates from Theorem 3.2, Chen then derived an estimate for the blow-up
rate on a compact manifold.

Theorem 3.3 ([7, Theorem 5.1]) If ϕ(t) is a solution to a Ricci-like flow of G2-structures
on a compact manifold in a finite maximal time interval [0, t0), then

sup
M

(
|Riem(x, t)|2g(t) + |T (x, t)|4g(t) + |∇T (x, t)|2g(t)

) 1
2 ≥ C

t0 − t
(3.9)

for some positive constant C.

The estimate (3.9) shows that a solution will exist as long the quantity of the left-hand
side of (3.9) remains bounded.

A classic example of a Ricci-like flow of G2-structures is the Laplacian flow of G2-structures
that was introduced by Bryant in [5]:

∂ϕ

∂t
= ∆ϕϕ. (3.10)
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If the initial G2-structure is closed, then this property is preserved along the flow. It is then
natural to think of (3.10) as a flow of closed G2-structures. In this case, since T t = −T , from
(2.14), Ric∗ = 4 Ric +T ~T and R = 2 Tr(curlT )−ψ(T, T )−Tr

(
T 2
)

= −|T |2; and thus, from
(2.16b), h = −Ric +T ~ T , and so from (3.2a), we do find that (3.4) holds. Moreover, from
(2.14b), we see that div T = 0 in this case, and hence X = 0. The expression (3.6) comes
from (3.2d) and using h = − curlT + T ~ T

∂T

∂t
= curl(curlT ) +∇T ~ T + T ~ T ~ T. (3.11)

Using (2.11) to expand curl(curl T ) together the facts that curl T is symmetric, T is skew-
symmetric, and div T = 0, allows to express the right-hand side of (3.11) as ∆T +Riem~T +
∇T ~T +T ~T ~T . Finally, short-term existence and uniqueness of the flow (3.10) has been
first proved by Bryant and Xu in [6]. For more on the properties of this flow, as well as the
details of the above calculations, the reader is referred to the series of papers by Lotay and
Wei [26, 27, 28]. The results in Theorems 3.2 and 3.3 are extensions of similar results for the
Laplacian flow of closed G2-structures in [26].

4 Laplacian coflow

In [25], Karigiannis, McKay, and Tsui introduced an alternative flow of G2-structures, called
the Laplacian coflow :

∂ψ

∂t
= −∆ψψ. (4.1)

If the initial G2-structure is co-closed, i.e. dψ = 0, then this property is preserved along the
flow. Therefore, the coflow may be regarded as a natural flow of co-closed G2-structures.
In order to understand flows of co-closed G2-structures, we need to understand better the
properties of T and the Hodge Laplacian in this case. Rewriting Lemma 2.1 and Proposition
2.2 in the case of symmetric T , we find the following.

Proposition 4.1 Suppose ϕ is a co-closed G2-structure, then the torsion tensor T satisfies
the following identities

div T = d(TrT ) (4.2a)

curlT = (curlT )t (4.2b)

Ric = curlT − T 2 + Tr(T )T (4.2c)

1

4
Ric∗ = curlT +

1

2
T ◦ T = Ric +

1

2
T ◦ T + T 2 − Tr(T )T (4.2d)

R = (TrT )2 − |T |2. (4.2e)
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The Hodge Laplacian is given by ∆ϕϕ = Xyψ + 3iϕ(s) with

X = − div T (4.3a)

s = −Ric +
1

6

(
R + 2|T |2

)
g + Tr(T )T − 2T 2 − 1

2
T ◦ T (4.3b)

= − curlT +
1

6

(
(TrT )2 + |T |2

)
g − T 2 − 1

2
T ◦ T (4.3c)

Tr s =
2

3
R +

4

3
|T |2 =

2

3

(
(TrT )2 + |T |2

)
. (4.3d)

Comparing (4.1) with (3.3) and using (4.3), we see that to leading order the evolution of
the metric is given by 2 Ric, that is the opposite of the Ricci flow. Thus, in order for the flow
to be Ricci-like and to have any hope of existence and uniqueness, the sign in (4.1) needs to
be reversed. Therefore, let us redefine the Laplacian coflow as

dψ

dt
= ∆ψψ. (4.4)

We then find that
∂g

∂t
= −2 Ric +T ◦ T + 2(TrT )T (4.5)

which now satisfies (3.4). Also, X = − div T , which satisfies (3.5). To obtain the general
form of the evolution of the torsion, note that to leading order, h = −s = curlT , so from
(3.2d),

∂T

∂t
= −∇(div T )− curl(curlT ) +∇T ~ T

however, since both T and curlT are symmetric,

curl(curlT ) = −∆T +∇(div T ) + Riem~T + (∇T ) ~ T + T ~ T ~ T

Hence, overall,

∂T

∂t
= ∆T − 2∇(div T ) + Riem~T + (∇T ) ~ T + T ~ T ~ T. (4.6)

Notice that this does not satisfy (3.6). In fact, we can see that the presence of the ∇(div T )
term in (4.6) is due to the negative sign of div T in (4.3a). As it was shown in [14], the sign
of div T also causes problems at a much more fundamental level: it prevents the flow (4.4)
from being parabolic even along closed 4-forms. Proposition 4.2 below gives the linearization
of ∆ψ. It is then easy to see that for closed 4-forms, the symbol will be negative in the Λ4

7

direction, but non-negative in Λ4
27.

Proposition 4.2 ([14, Prop. 4.7]) The linearization of ∆ψ at ψ is given by

π7(Dψ∆ψ)(χ) = d(divX) ∧ ϕ+ l.o.t. (4.7a)

π1⊕27(Dψ∆ψ)(χ) =
3

2
∗ iϕ

(
∆h+

1

4
Hess(Trh)− 1

2
(∆ Trh)g (4.7b)

− Sym
(
∇ div h+ curl(∇X)t

)
+ l.o.t.

)
10



where χ = ∗(Xyψ + 3iϕ(h)). Moreover, if χ is closed, we can write Dψ∆ψ as

Dψ∆ψ(χ) = −∆ψχ− LV (χ)ψ + 2d((divX)ϕ) + dF (χ) (4.8)

where

V (χ) =
3

4
∇Trh− 2 curlX (4.9)

and F (χ) is a 3-form-valued algebraic function of χ.

Looking closer at the leading terms in the linearization (4.8) evaluated at closed forms, we
see that the term 2d((divX)ϕ) appears for exactly the same reason as the term −2∇(div T )
in (4.6) - namely the “wrong” sign of the π7 component of ∆ψψ. To fix this problem, in [14],
a modified Laplacian coflow has been proposed:

∂ψ

∂t
= ∆ψψ + 2d((A− TrT )ϕ) (4.10)

where A is some constant. Since for co-closed G2-structures, TrT = div T, the leading term
in the modification precisely reverses the sign of the Λ4

7 component of the original flow (1.4).
However, because we want the right hand side of the flow to be an exact 4-form for co-closed
G2-structures, there are some additional lower order terms. The constant A could be set
to zero, however adding it may allow for more flexibility. The linearization of the modified
coflow at a closed 4-form is now given by

∂χ

∂t
= −∆ψχ− LV (χ)ψ + dF̂ (χ) (4.11)

where V (χ) is as in (4.9) and F̂ (χ) involves no derivatives of χ. Hence, in the direction of
closed forms, this flow is now weakly parabolic. Moreover, the undesired term is removed
from the evolution equation for T and its evolution is now given by (3.6).

The additional term in (4.10) now also allows to prove short-time existence and uniqueness,
hence completing the requirements for (4.10) to be a Ricci-like flow. The proof, as given in
[14], follows a procedure similar to the approach taken by Bryant and Xu [6] for the proof
of short-time existence and uniqueness for the Laplacian flow (3.10), which is in turn based
on DeTurck’s [11] and Hamilton’s [19] approaches to the proof of short-time existence and
uniqueness of the Ricci flow. Let ψ(t) = ψ0+χ(t) where χ(t) is an exact 4-form with χ(0) = 0.
Then, given this initial condition, the flow (4.10) can be rewritten as an initial value problem
for χ(t). From the linearization (4.11) we see that by adding the term LV (χ(t))ψ(t) we obtain
a strictly parabolic flow in the direction of closed forms, which is related to the original flow
by diffeomorphism:

∂χ

∂t
= ∆ψψ + 2d((A− TrTψ) ∗ψ ψ) + LV (χ)ψ. (4.12)

This is the essence of what is known as “DeTurck’s trick” - turning a weakly parabolic
flow into a strictly parabolic one. In the case of Ricci flow this is enough to obtain short-time
existence and uniqueness, however in this case, the parabolicity is only along closed forms,
hence we cannot apply the standard parabolic theory right away, and more steps are needed.

11



Let us also define the spaces of time-dependent and time-independent exact 4-forms F and
G, respectively. Moreover, since we know that ψ(t) always defines a G2-structure and is thus
a positive 4-form, χ will always lie in an open subset U ⊂ F defined by

U = {χ ∈ F : ψ0 + χ is a positive 4-form}. (4.13)

Moreover, let us now define a map F : U −→ F × G given by

χ −→
(
∂χ

∂t
−∆ψψ − 2d((A− TrTψ) ∗ψ ψ)− LV (χ)ψ, χ|t=0

)
. (4.14)

Adapting the results in [6], it is easy to see F , G, and H := F × G are graded tame Fréchet
spaces. Moreover, it was then shown in [14] that F is smooth tame map of Fréchet spaces,
such that its derivative DF (χ) : F −→ H is an isomorphism for all χ ∈ U and the inverse
(DF )−1 : U×H −→ F is smooth tame. The significance of these facts are that in the category
of Fréchet spaces there exists an inverse function theorem - the Nash-Moser Inverse Function
[19], which tells us that the map F is locally invertible. From this it follows that the flow
(4.12) has short-time existence and uniqueness.

To prove short-time existence and uniqueness for the flow (4.10) we need to relate (4.10)
and (4.12) via diffeomorphisms. Suppose χ̄(t) is the unique short-time solution to (4.12), and
ψ̄ = ψ0 + χ̄. Consider the following ODE for a family of diffeomorphisms φt:{

∂φt
∂t = −V (χ̄(t))

φ0 = id
(4.15)

This has a unique solution φt. Now let ψ(t) = (φt)
∗ψ̄(t), then ψ(0) = ψ0, and since diffeo-

morphisms commute with d, ψ(t) is closed for all t. Moreover, as shown in [14, Theorem 6.9],
ψ(t) now satisfies (4.10). Uniqueness is obtained similarly using the uniqueness of solutions
of (4.15). Hence, overall, we obtain a unique short-time solution for the modified Laplacian
coflow (4.10) and can now conclude that it is a Ricci-like flow.

Theorem 4.3 The Laplacian coflow (4.10) of co-closed G2-structures is a Ricci-like flow.

5 Further directions

There are several important unanswered questions regarding flows of co-closed G2-structures.
An intriguing question is whether it is possible to obtain at least short-time existence and
uniqueness of the unmodified Laplacian coflow (1.4). To leading order the only difference with
the modified coflow is the sign of the Λ4

7 component which is given by div T . So in particular,
if div T vanishes, then the two flows agree. It is also known [23] that deformations in the Λ4

7

directions keep the metric unchanged. Moreover, in [17], the torsion T has been shown to play
a role of an octonionic connection on the bundle of G2-structures that correspond to the same
metric, which can be given the structure of an octonion bundle. In this interpretation, on
a compact manifold, the condition div T = 0 corresponds to critical points of the functional∫
|T |2 vol, and is hence the analog of a Coulomb gauge. It is therefore tempting to think that
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to relate the flows (1.4) and (1.5), a gauge-fixing condition such as div T = 0 needs to be
introduced.

There are also multiple questions relating to the modified coflow itself. As it is a Ricci-like
flow, Shi-type estimates apply to it, so it is likely that in addition to Chen’s results in [7],
more properties such as real analyticity and stability could be proved using techniques similar
to the ones used by Lotay and Wei in [26, 27, 28]. Indeed, as this article was being finalized,
the author was made aware that Bedulli and Vezzoni [3] have generalized the proof of stability
from [28] to a wider class of geometric flows that also includes the modified Laplacian coflow
with A = 0.

Apart from the Laplacian flow and the coflows, there could be more interesting flows of
G2-structures. For co-closed G2-structures, it is an open question whether the flow ∂ϕ

∂t = d∗dϕ
satisfies the co-closed condition. More generally, the conditions for a flow to be Ricci-like is
a good set of conditions that flows should satisfy. In particular, one could try to construct
flows using the first 3 conditions, but then also making sure that short-time existence and
uniqueness is satisfied.
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