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Abstract—This paper proposes a method for enlarging the region of
attraction of Linear Model Predictive Controllers (MPC) when track-
ing piecewise-constant references in the presence of pointwise-in-time
constraints. It consists of an add-on unit, the Feasibility Governor (FG),
that manipulates the reference command so as to ensure that the optimal
control problem that underlies the MPC feedback law remains feasible.
Offline polyhedral projection algorithms based on multi-objective linear
programming are employed to compute the set of feasible states and
reference commands. Online, the action of the FG is computed by solving
a convex quadratic program. The closed-loop system is shown to satisfy
constraints, be asymptotically stable, exhibit zero-offset tracking, and
display finite-time convergence of the reference.

I. INTRODUCTION

Model Predictive Control [1], [2] (MPC) defines a feedback policy
as the solution of a receding horizon optimal control problem (OCP).
MPC is widely used in applications, it enables high-performance
control while systematically enforcing state and control constraints
and is supported by a robust theoretical literature. Stability guarantees
are typically obtained by incorporating “terminal ingredients” into
the OCP. For example, adding a terminal penalty and an invariant
set based terminal constraint is sufficient to guarantee asymptotic
stability and constraint satisfaction [3]; the closed-loop region of
attraction (ROA) is then the set of all states from which it is possible
to reach the terminal set within the prediction horizon.

Many applications of MPC require the capability to track piecewise
constant references and to safely transition between them. However,
if the change in the reference is large the system may not be able to
reach the new terminal set within the prediction horizon, resulting in
infeasibility and failure of the MPC controller. The obvious strategy
for avoiding infeasibility is increasing the size of the ROA by
either enlarging the terminal set or increasing the prediction horizon.
Unfortunately, the maximum size of the terminal set is fixed by the
constraints [4], and increasing the prediction horizon increases the
computational footprint of the controller.

Another strategy is to treat aspects of the terminal set, e.g., size,
location, or shape, as optimization variables and use these additional
degrees of freedom to enlarge the feasible set. This approach has been
applied to economic operation of nonlinear systems with terminal
state constraints [5] and regulation of linear systems using terminal
set constraints [6]. It has also been applied to reference tracking
problems for linear systems [7], [8] using various parameterizations
of the terminal sets. Computing a contractive sequence of terminal
sets offline which are incorporated into the OCP to enlarge the ROA is
proposed in [9]. This approach is done in a more general nonlinear
MPC setting and the computed sets are not necessarily invariant.
The major disadvantage of these approaches is that they require

M. Nicotra and T. Skibik are with the University of Colorado, Boulder,
Email:  {marco.nicotra, terrence.skibik}@colorado.edu.
D. Liao-McPherson is with ETH Ziirich. Email: dliaomc@ethz.ch.
T. Cunis and I. Kolmanovsky are with the University of Michigan, Ann Arbor.
Email: {tcunis, ilya}@umich.edu. T. Cunis is also with the Univer-
sity of Stuttgart. Email: torbjoern.cunis@ifr.uni-stuttgart.de.

This research is supported by the US National Science Foundation through
awards CMMI 1904441 and CMMI 1904394 and the Toyota Research Institute
provided funds to support this work.

r Governor |V MPC u Plant
v = g(xx, T) g = Kk(xg, Vi) Xp+1 = Axg + Buy —|

1x [ x

Fig. 1. A block diagram of the control architecture. Given a reference r, the
feasibility governor manipulates the auxiliary reference v to ensure that the
primary MPC controller is able to produce a valid control input u.

redesigning the OCP and increase the computational complexity of
the controller.

In this paper, we propose the Feasibility Governor (FG) (illustrated
in Figure 1), an add-on unit in the tradition of reference/command
governors [10], [11], that modifies the reference signal to ensure that
the terminal set remains reachable within the prediction horizon. The
FG does not require any modifications to the primary MPC controller,
exhibits finite time convergence to the desired reference, and expands
the ROA of the MPC controller to all states that can reach the terminal
set of any steady-state admissible reference. It also takes advantage
of offline polyhedral set manipulation tools [12], [13] to limit online
complexity and minimize conservatism.

There is existing literature on avoiding infeasibility in MPC using
reference manipulation. The dual-mode controller in [14] features a
recovery mode that simultaneously computes a modified reference
and control input. This approach converges in finite-time but is
invasive and may reduce performance. An FG like algorithm is
proposed in [15] and is used as an intermediate design stage in
the construction of a piecewise-affine control law that combines a
governor and explicit MPC controller into a single unit. This approach
suffers from the well known complexity limitations of explicit MPC
[16] as the dimension of the state, prediction horizon, and number
of constraints increases.

This paper shows that the FG can be scaled to larger systems/longer
horizons, and provides a more detailed treatment of both the theoret-
ical properties of the governor, including using under-approximation
of the feasible set, and the computation of the terminal and feasible
sets. A governor-like algorithm using ellipsoidal terminal sets is
proposed in [17] and can be considered a special case of the FG
that uses a specific reference parameterization and conservative inner
approximation of the feasible set. In [18] the authors propose a
suboptimal continuous-time analog of the governor in [17]. In [19],
the authors use an MPC to govern the reference of a closed-loop
system, thus recovering recursive feasibility. This method is extended
in [20], where the inner-loop is closed using an MPC, leading to a bi-
level optimization problem. The bi-level formulation aligns the cost
functions of the MPC and RG, leading to good performance, but is
computationally expensive. Finally, a spatial governor is proposed in
[21]. It is specific to precision machining applications and adjusts the
velocity profile passed to a path tracking MPC controller to ensure
recursive feasibility of constraints representing manufacturing error
tolerances.

This paper significantly extend the conference version [22]. Specif-
ically, it addresses the case where the desired reference under/over



determines the steady state of the system, removes the require-
ment that the terminal controller be the linear-quadratic regulator
(LQR), includes additional numerical examples for both simulations
and feasible set computations, and relaxes the forward invariance
requirement on the feasible set to strong returnability. The final
extension is both technically challenging and practically significant as
computation of the feasible set is computationally expensive, relaxing
the forward invariance requirement allows the use of cheaper-to-
compute underapproximations of the feasible set.

Notation: For vectors a and b, (a,b) = [T bT]T. The identity
and zero matrices are denoted Iny € RY*Y and Onxar € RV¥M,
respectively with the subscripts absent whenever the dimensions are
clear from context. Given M € R™*"™ and Y C R", Ker M =
{z | Mz =0}, MU ={Mz |z €U}, M~'U = {x | Mz € U},
and Intl/ denotes the interior of ¢/. Set addition/subtraction is defined
asUtV = {utv| (u,v) eUxV}andfor A € R, XU = {du|u €
U}. Positive (semi) definiteness of a matrix P € R™*" is denoted
by (P = 0) P > 0; and ||z||p = V2T Pz for « € R". Consider
z € R™, y € R™ and a set I' C R™™™, the projection of I" onto x
is the image II,I" where I, = [I, Onxm], i.e., = II;(z,y). The
slice (or cross-section) operation is Sy (I', z) = {y | (z,y) € I'}. For
z €R" and 6 > 0, Bs(z) = {y | ||ly — z|| < }. For a sequence
{zr} CR™ and a set I' C R™ we write that z;, — I" as k — oo, if
and only if limp o infyer ||y — x| = 0. Our use of comparison
functions, i.e., class K, K and KL functions follows [23].

II. PROBLEM SETTING

Consider the linear time invariant (LTI) system

Tr+1 = Azxy + Bug (1a)
yr = Cxr + Dug (1b)
zx = Exp + Fuy, (lc)

where k € N is the discrete-time index and zp € R™*, up € R™*,
yr € R™, and z, € R™ are the states, control inputs, constrained
outputs, and tracking outputs, respectively.

Assumption 1. The pair (A, B) is stabilizable.

The system (1) is subject to pointwise-in-time constraints
VkeN yp €, (@)

where ) C R™ is a specified constraint set.

Assumption 2. The set Y is a compact polyhedron with representa-
tion Y ={y | Yy < h} and satisfies 0 € Int Y.

As detailed in [7], Assumption 1 implies that the matrix

A-I B 0
Z:{E F —1} ©)

has a non-trivial kernel. As a result, is possible to introduce an
auxiliary reference v € R™ that parameterizes the equilibrium
manifold, i.e., every solution to Z [27,u”, 2] =0, as

Ty = Gzv, Uy = Gyuv, and 2z, = GLv @)

where GT = [G] GI GI] is a basis for Ker (Z). Using v
instead of 7 allows us to handle under/over parameterization of the
equilibrium manifold. If G, is square and invertible, then we can
pick v = r. The following assumption excludes pathological cases,
e.g., G, = 0, that are indicative of an ill-posed problem.

Assumption 3. The matrix G is full rank.

Next, we introduce a design parameter € € (0,1) and the corre-
sponding set of strictly steady-state admissible auxiliary references

Ve=G(1—e)Y={v| Gy e (1-e)}, (6))
where Gy, = CG, + DG, and strictly admissible references
Re=G:Ve ={G.v | v eV} 6)

The parameter € is needed because MPC controllers cannot stabilize
points on the boundary of the feasible set.
We are now ready to formally state our control objectives.

Control Objectives: Given the LTI system (1), let ) C R™ be
given, and let » € R™* be a target reference. The goal of this paper
is to design a state feedback law that achieves the following:

e Safety: Ensure yr, € Y Vk > 0;

o Convergence: limy_,o0 2z, = r*, where r* = argmin ||s — r|.
SERe
o Asymptotic Stability: limy_,oo(zg,vr) = (zr,v)) where

(zr,vy) = (Gzuy,vy) is stable and satisfies r* = G, v;..

ITII. PRIMARY CONTROLLER DESIGN

Due to the constraints, we approach the control objectives using a
typical MPC formulation where the feedback policy is defined using
the solution to the following optimal control problem (OCP)

N—1
J(@,v) = min [|gn — Zollp+ D 116 — Boll + llps — Wl %

= (7a)

s.t. & ==, (5]\/,’0) eT (7b)

&ir1 = A& + Bui, i€ Npn_q, (7¢)

ng + DMZ c y, i € N[O,N71]~ (7d)

where N € Nsq is the prediction horizon, u = (uo,...uN—-1)

are the decision variables, P € R"™*"= (@ € R"™*"=  and

R € R™*™ are weighting matrices, and 7 C R™* x R™ is the
terminal set, which is assumed to be polyhedral, i.e.,

T ={(z,v) | Tox + Tov < c}, (8)

and Z,, U, are defined in (4) and will be manipulated.
The following assumptions ensure that (7) is well-posed and can
be used to construct a stabilizing feedback law.

Assumption 4. The stage cost matrices satisfy Q@ = QT > 0, with
(A, Q) observable, and R = RT > 0.

Once the stage weights are defined, the terminal penalty P and
the terminal set 7 can be obtained using a gain K € R™**"* and a
fictitious terminal control law

kn(z,v) = —K(x — Zv) + To.- )

Assumption 5. The terminal set T is invariant and constraint
admissible under (9). Moreover, given (x,v) € T and the terminal
control law (9), the terminal cost matrix satisfies P = PT = 0 and
2 2 2 — -
[(A=BK)éz||p— |67 < —[10z|[(o 4 kT ri) Where 6z = 2 —Zs.

The terminal control law (9) is not used online but is needed to
synthesize P and 7. A conservative choice is K = 0, P = 0, and
T = {(Zv,v)}. Alternatively, for any K such that A— BK is Schur,
P can be obtained by solving the discrete algebraic Riccati equation.

Methods for computing polyhedral approximations of the largest
possible set T are detailed in Appendix A.

It is only possible to compute a control action if (7) admits a
solution. The set of all parameters for which this is possible, i.e., the
feasible set, is

Iy ={(z,v) e R™ x R™| I pu: (7b) — (7d)}, (10)



Fig. 2. The sets used in the paper for the integrator 1 = ) +uj subject
to |zx| < 1, |ug| <0.25 and with e = 0.2, T = 0295 and N = 2.

which is the N-step backwards reachable set of 7. The set of strictly
steady-state admissible equilibria is
Y ={(z,v) | z = Gav, v € Vc}. (11)
If 7 is polyhedral, then I'y is polyhedral as well and can be
computed offline, see Section IV-C. Figure 2 illustrates the various
sets defined in this section. The following technical assumption
guarantees convergence and always holds when 7 is synthesized
using the procedure in Appendix A. Some conditions under which it
holds are given in Lemma 1 which is proven in Appendix C.

Assumption 6. > C Int I'n

Lemma 1. Given Assumption I either (i) ¥ C Int T, or (ii) (A, B)
is controllable, > C T, and N > v, where the controllability index v
is the smallest positive integer such that [B AB A”le}
is full rank is sufficient for Assumption 6 to hold.

The MPC feedback policy x : 'y — R"™ is

k(z,v) = pg(z,v) (12)

where p*(x,v) = [pd”, wiT, ..., uN_1]7 is the minimizer of (7).
The following theorem summarizes the properties of the closed-loop
system for a constant auxiliary reference. The idea behind the proof
is to show that the optimal cost J in (7) is a Lyapunov function for
the closed-loop system.

Theorem 1. ( [2, Theorem 4.4.2]) Let Assumptions 1-5 hold and let
¢(l,z,v) denote the solution at timestep £ > 0 of the closed-loop
dynamics xo41 = Azg + Br(xe,v) with initial condition Ty = .
Then for all (z,v) € I'n (¢(¢,z,v),v) € I'n, V€ > 0, y, €
Y, V£ >0, and lim¢—, o0 ¢(£, x,v) = Ty. If, in addition, v € Int Vo
then T, is asymptotically stable.

Theorem 1 achieves the control objectives assuming there exists a
vo such that G;vg = r and zo satisfying (zo,v0) € I'y. Its main
limitation, however, lies in the fact that the OCP (7) is infeasible
if 2o cannot be steered to X(vo) = {x |(z,v0) € T} within N
steps. Although increasing N may seem like a suitable workaround,
this solution may be inapplicable in practice since the computational
time required to solve (7) scales unfavorably with V.

In the next section, we describe an add-on unit that expands
the closed-loop region of attraction without extending the prediction
horizon or modifying the MPC formulation.

IV. THE FEASIBILITY GOVERNOR

The MPC feedback policy (12) is stabilizing only if the terminal
set associated with the target equilibrium is [N-step reachable from
the current state. Intuitively, if the target can be manipulated, this
limitation can be overcome by selecting a sequence of intermediate
targets that are pair-wise reachable. This paper formalizes this idea
by redefining the auxiliary reference v as a time-varying signal vy, to
ensure (z,vx) € I'y, Vk € N and G,vi = r for sufficiently large
k € N. The resulting control architecture is displayed in Figure 1.

A. Governor Design

The idea behind the FG is to modify the reference so that the
MPC problem remains feasible. This follows the minimal interference
philosophy of command governors (CGs) where we assume the inner-
loop controller is well-designed and we do not wish to modify it.
Drawing inspiration from the CG literature [11], the action of the
FG can be computed via the following optimization problem.

. 2
min |IG.v — 7|2 (13a)

st.  (z,v) € T'n. (13b)

The FG operates on the same principle as the CG: manipulate the
auxiliary reference to remain within a safe invariant set associated
with an underlying primary controller. In the case of the CG, the
invariant sets are typically slices of O, the maximum constraint
admissible set [4] associated with a linear feedback law such as (9).
In contrast, the FG uses slices of I'xy which are invariant under the
nonlinear MPC feedback (12). Assuming the common choice 7 =
Oco, the set I' v is a superset of O, and grows larger as N increases
[22]. The use of a more permissive constraint set leads to better
performance, as the MPC controller is “aware” of the constraints,
something which is not possible using linear feedback.

Unfortunately, if G, does not have full column rank then (13)
will not have a unique minimizer. This is problematic from a stabil-
ity/robustness perspective; a mechanism for resolving degeneracies is
needed. As such, we extend (13) and define the FG feedback as

g(z,r) = arvger]ljlin {Y(v,r) | (z,v) € Tn} (14)
where . ¢ O i et
o) = {:v Z_vvﬂg'z i)therzv:iss;ljecuve 1)
and the designer can select any v, satisfying
vy €V} = argmin ||G.v — 3. (16)

vEVe

Since 1 is strongly convex, (14) has a unique solution and can
be solved reliably online. The combined action of the FG-MPC is
shown in Algorithm 1.

Algorithm 1 FG-MPC
Measure: =, 7k
1: vk = g(xk, 7K) Where the FG action g is defined in (14).
2: ur = k(zk, vr) where the feedback law « is defined in (12).

B. Properties

When combined with (12) and placed in closed-loop with (1), the
combined FG-MPC feedback policy ensures constraint satisfaction,
renders the point (zy,v;}) = (Ggvy,vy) asymptotically stable, and
exhibits finite time convergence of vy — wv;.. These results are
rigorously formulated and proven in Section V.



Moreover, the addition of the FG expands the region of attraction
of the closed-loop system from Dayrpc = Sz(I'w,v;), the set of
states from which it is possible to reach X(v;) = Sz (T,v;) in
N-steps, to

DFG = U SI(FN7U)7
vEV,

a7

the set of states from which it is possible to reach X (v) for any
v € Ve in N-steps. In particular, the addition of the FG guarantees
safe transitions between any 71,72 € Re.

Remark 1. The FG can be applied to systems with disturbances
by noting that the essential property required by the FG is that
the feasible set I'y of the model predictive controller is forward
invariant for any constant auxiliary reference. We can readily replace
the MPC formulation (7) with any alternative OCP with a forward
invariant feasible set. Some examples include the tube MPC [24,
Algorithm 3.1], or robust MPC [25], which both render the terminal
set positively disturbance invariant [24, Theorem 3.2].

C. Implementation

In our problem setting, I'y and V. are polyhedral and thus (14) is
a strongly convex quadratic program (QP). For example, the lateral
vehicle example in Section VI-A has 1 variable and around 6000
inequality constraints. Dual active-set methods [26] can solve the FG
problems efficiently and reliably; they start from the unconstrained
optimum and only consider a limited number of active constraints at
a given time.

Implementation of the FG also requires a half-space representation
of the feasible set. Two methods for obtaining one via polyhedral
calculus are described below.

1) Block Method: The MPC OCP (7) is a QP and can be written
in the condensed form'

min. %uTHu +utWe (18a)
15

st.  Mp+Lo<b, (18b)

with parameter § = (z,v). The feasible set (10) can therefore be
expressed as I'ny = Ilg{(ps,0) | M+ L6 < b}.

2) Recursive Method: The feasible set I'n is the N-step back-
wards reachable set of 7 and can be computed recursively. Define
the matrices

A 0 B
Ae*{o 1} Bef{o}, and M. = [Ac  Be], (19)
and the set W = {(z,v,u) | Cx + Du € Y}. Then 'y can be
computed via the recursion I';11 = Ilp (Me_ I, ﬁW) starting

from the initial condition I'g = 7.

For both the recursive and block methods, the complexity of com-
puting I'x; is dominated by the projection operation. The projection
is performed offline but can quickly become intractable as all known
projection algorithms suffer from the curse of dimensionality [27].

There are several toolboxes available for performing polyhedral
calculus (e.g., projections, images etc.). We tested both MPT3
[12] and bensolve tools [13] packages, and observed that
bensolve tools was more effective when computing I'y. Fig-
ure 3 illustrates I'y for several values of N for the lateral vehicle
model (Section VI-A). The recursive method is marginally faster
than the block method, we recorded the wall-clock time on a 2019
Macbook Pro (2.8 GHz 19, 32GB RAM) running MATLAB 2019b.
Both methods display exponential scaling in the horizon length, as
expected for polyhedral projection methods.

Expressions for the matrices in (18) are provided in Appendix B.

=)
T

—u— Block - MOLP
- # =Recursive - MOLP

Computation
Time [s]

Number of
Inequalities

4 5 6 7 8 9 10
Horizon Length

Fig. 3. The computational cost of computing I'5r. The recursive method
marginally outperforms the block method.

Our investigations confirm that projection based methods for
computing I'y are tractable only for moderately sized systems. One
strategy for applying the FG to larger systems is to replace I'y with
an easier to compute approximation.

D. Under-approximating the Feasible Set

In some scenarios, it may be advantageous (or necessary) to use
an approximation of the feasible set. Luckily, with some minor
modifications, a set 7 C 'y can be used in place of I'y. In this
case, the FG is re-defined as follows

_Jglz,r) if (z,v) € F
= 2
g(z,v,7) {v else (20a)
where
g(z,r) =argmin {¢(v,7) | (z,v) € F}. (20b)

VEVe

At time k the auxiliary reference is then computed as v, =
g(zk,vk—1,7). The set F and must satisfy the following:

Assumption 7. The set F C 'y is closed, convex, and satisfies
> C Int F.

Note that, as detailed in [28], the set does not need to be
polyhedral. The idea behind (20) is that, while the slices of F are not
invariant like those of I'n, they are strongly returnable [29] under
Assumption 7. That is, if v remains constant, the state trajectories are
guaranteed to eventually return to F due to the properties of the MPC
feedback, so the FG simply holds v constant in the meantime. This
approach preserves the qualitative theoretical properties (convergence,
safety etc.) of the closed-loop system but, unsurprisingly, results in
the smaller region of attraction

Drg = U Sz(F,v) C Dpg.
vEVe

21

An obvious way to generate the under-approximation is to pick
F =T, for 0 <i < N with the limit case F = I'g = 7. The ability
to use under-approximations also provides the flexibility to design F
so as to limit the number of inequalities, for example by picking F as
a box within I'y or as the convex hull of a pre-specified number of
points sampled from the boundary of I'y. Finally, obtaining under-
approximations of I'y through parallelizable approaches, such as
sampling based algorithms, is likely key for enabling the application
of the FG to higher dimensional systems and an important direction
for future work.

V. THEORETICAL ANALYSIS

This section analyzes the properties of the closed-loop system
under the combined FG and MPC feedback policy. We consider the



case from Section IV-D where the under-approximation F is used

in place of I'y. The reference r is assumed constant throughout this

section, we suppress any dependencies on 7 to simplify the notation.
The feasible and invariant sets of the FG are

®=FNR"™ xV), and A=Tn N R"™ x V). (22)
Using these sets, the action of the FG can be expressed as
g )
ola,v) = I8 ()€ 23a)
v (z,v) e A\ ®
g(z) = argmin (v, r), (23b)

vES, (P,x)

where 1) is defined in (15). Then the closed-loop dynamics of (1)
under the combined FG and MPC feedback law are

vk = g(Tk, Vg—1) (24a)
Tht1 = [z, vk), (24b)
Yk = h(zk, vk) (24¢)

where f(z,v) = Az + Bk(z,v), h(z,v) = Cz + Dk(z,v), and &
is the MPC feedback law. The update equations can then be written
compactly as

(@41, ve41) = Tz, v8), (25)

where T(z,v) = (f(x,v), 9(f(z,v),v)).
The continuity properties of (24) are as follows.

Lemma 2. ( [16, Theorem 4]) Given Assumptions 1-5, the functions
f:T~n — R" in (24b) and g : & — V. are Lipschitz continuous.

Proof. The MPC feedback policy « and g are solution mappings of
the strongly convex multi-parametric quadratic programs (18) and
(23b) and are therefore Lipschitz continuous. Lipschitz continuity of
f follows immediately. O

A. Safety and Recursive Feasibility

The following theorem provides sufficient conditions under which
the (FG) achieves the Safety objective and proves that the set A is
forward invariant.

Theorem 2 (Safety & Invariance). Given Assumptions 1-5 and 7,
consider the closed-loop dynamics (24). Suppose xo € I1,®, then
the sequence {(zi,vi)}reo C A is well defined and yi. € Y for all
keN

Proof. The proof is by induction. At time k& = 0 if 2o € II,® then
(23b) is feasible and (zo,vo) € ® C A. Next, assume (zx, vr) € A,
the functions f and g are both defined on A and thus (Tx+1,Ve+1)
is well defined. If (z41,vk) € ® then Sy (P, xp+1) # 0, i.e., (23b)
is feasible, and vg+1 = g(Tk+1,vk) = G(zrt1) € Suo(P, Th+1),
and thus (zx+1,vk+1) € ® C A. Otherwise, if (zgx+1,vk) ¢ P,
(23) yields vg+1 = vk, thus (Tg+1,ve+1) = (Tet1,vk) € A (by
Theorem 1). Therefore, by induction, (zx,vx) € A C I'y for all
k € N which implies that Vk € N y,, € Y (by Theorem 1) and that
the sequence {(zk,vk)}5eg is well-defined. O

B. Convergence and Stability

Having established safety, we now consider convergence and
stability. We begin by introducing the Lyapunov function candidate

V(v) = ¢(v, (26)

with v defined in (15) and the notation Vj, = V' (v) and V* = V (v™)
where v* is defined in (16). The following Lemma addresses how V'
evolves along solutions of (24).

T)Z()?

Lemma 3. Given Assumptions 1-5, define the increment

AV(m, ’l}) = V(g(f(m’ 1}), 1})) - V(’U), (27)
then for all (z,v) € A, there exists 1 > 0 such that
AV (z,v) < =nllg(f(@,v),v) = vl (28)

Proof. Partition the set A into A = A; U Ay where Ay =
{(CC,U) ‘ (f(wvv)vv) € A\(I)} and Ay = {(CE,U) | (f(CC,U),U) € q:'}
If (z,v) € Ay then g(f(z,v),v) = v by (23) and (28) clearly holds.

Next the case (x,v) € As. Recall that V' is a strongly convex
quadratic function. Thus, there exists 7 > 0 such that

V() > V) +VVE) (v—2)+nllv=2]? (29

for all v/, € R™. Letting ™ = f(x,v), we have that by (23),
g(x™,v) = g(a™) for all (z,v) € As. Moreover, recall that opti-
mality conditions associated with g(z 1) = arg mingcg (p.+) V()
are [30]

VV (gt (v —g(z™)) >0, YoeS,(®,zh).

Substituting v' = g(z

(30)

) and (30) into (29), and rearranging, we

obtain that, for all (z,v) € Az
V(g(f(2,v)) = V(v) < =nllg(f(z,v)) = v|* < 0.
Since A = A1 U Ay this completes the proof. O

Corollary 1. Consider (24), under Assumptions 1-7, if xo € 1P
then V (vg41) — V(vk) < 0.

The next Lemma provides a sufficient condition under which the
auxiliary reference changes.

Lemma 4. Given Assumptions 1-7, define
Bs(X) ={(z,v) [ v € Ve, [z — Gav]| < 6}, (€29)

where ¥ = Bo(X) = {(z,v) | £ = Ggv, v € V}. Then, there
exists 6" > 0 such that Bsx(X) C Int F. Moreover, § € [0,6%],
(z,v) € Bs(X), and v # v* implies that g(z,v) # v.

Proof. To show that (z,v) € Bs(X) Av # v = g(z,v) # v
we will construct a point v € S,(®,z) such that V(v') < V(v).
By Assumption 7, ¥ C Int F and thus there exists 6* > 0 such
that B5(X) C Int F for all § € [0, 6"]. Moreover, because Bs(X) C
Int F, for any (z,v) € Bs(X), there exists & = a(d) > 0 such that
Ba(v) C Sy(F, ).

Fix any ¢ € [0,97] and the corresponding @ = (). Then, define
the set Co = Ve N Ba(v), the ray v'(¢t) = v+ t(v* —v) t€[0,1]
and assume v # v*. The first step is to show that ¢t € [0,7] =
’W € (0,1]. To prove this,
recall that V. is convex and v, v* € V. thus v'(t) € V. for t € [0, 1].
"(9) —v|| < ||V (a/]lv—v*||) —v)|| = @ and therefore
vt € [0,7], v'(t) € Ca.

To establish that V' decreases along v'(t), recall that V is convex
and therefore

V(©'(t) = (v) = t[V(v) = V7]

for all v € V. \ v* and ¢ € [0, 1]. Further, using that V* < V(v)
for all v € Ve \ v* and that v € (0, 1] we conclude that V' (v'(v)) <
V(v). Thus we have constructed a point v'(y) € Co C Sy (P, )
satisfying V' (v'(7)) < V(v), this implies that

v'(t) € Co where v = min (1

V((1 =ty + tv*) < V(

Vigle,v) = _min V(s) SVE'M) <V(). (32
Finally, strong convexity of V' combined with V (g(z,v)) < V(v)

implies that g(z,v) # v as claimed. O



The next lemma extends Theorem 1 for varying v.

Lemma 5. Given Assumptions 1-5, and the system Tpy1 =
f(xk,vk), the error signal e, = x, — Gy is input-to-state stable
(ISS) [31] with respect to the input Avy = Vi1 — Uk, i.e., there
exist B € KL and v € K such that

o1 = Guvilla < Bk oo ~ Guvol) + (sup 20,1 )
J1Z

Proof. Under Assumptions 1-5, it is well known, see e.g., [3], that
J the optimal cost function of the MPC feedback law in (7), is
a Lyapunov function for the closed-loop system, i.e., there exist
o, ag, 0y € Koo such that

J(f(z,0),0) = J(z,0) < —a(||lz = Gavl[Q),
a(llz = GavllQ) < J(z,v) < au(llz — GavllQ)

(33)
(34)

for all (z,v) € I'y. Moreover, under our assumptions, J is uniformly
continuous [25, Prop 1] and thus there exists 05,0, € K such that
[J(z',v") — J(z,v)| < oz(||2" — z|) + ou(]|]v" — v]|). Hence, for
any (x,v) € A, 27 = f(z,v) and v" € S, (A, z7), let AJ =
J(zt,vT) = J(x,v) then

AJ = J(xtv) = J(z,v) + J(zt,0T) = J(zT,v) (35)

< —a(llz = Gavlle) + I (=", 0") = J(@T,v)| (36)

< —a(||lz = Gavll@) + ou(|lv* —vl) 37

which demonstrates ISS [31, Lemma 3.5]. O

Corollary 2. Let Assumptions 1-5 hold, and let T : A — A be
the operator defined in (25). Then T : ® — A, the restriction of T
to ®, is continuous and can be expressed explicitly as T(z,v) =

(f(@,v),3(f (z,v))).

Proof. Recall that, by (23), for all (z,v) € & T(z,v) =
(f(z,v),3(f(x,v))) = T(x,v). Since f and g are continuous by

virtue of Lemma 2, 7" is also continuous. O

Having assembled the required components, we are ready to show
asymptotic stability.

Theorem 3 (Asymptotic Stability). Let Assumptions 1-7 hold. The
point (z*,v"), where ©* = GLv", is an asympiotically stable equi-
librium of (24) and zo € lI;® = limp—oo (zk,vk) = (™, 0).

Proof. First, note that, by Theorem 2, xg € 11, P guarantees that the
sequence {(xk, vk) theo C A is well defined. Moreover, the sequence
{Vk}7Zo is non-increasing (Corollary 1) and bounded from below,
hence converging. By virtue of Lemma 3, we have that there exists
n>0 such that ||Uk+1 — ’UkH2 < 7]71|Vk+1 — Vk‘ —0as k —
and thus limy_,  ||Avg|| = 0. Moreover, combining Lemma 5 and
[31, Lemma 3.8], there exists v € IC such that

imsup o - Goonlla < (tmsuplawl )G9
k— o0 k— o0
together with the observability of (A, @), this implies that
lim |lzx — Gkl = 0. (39)
k— o0

Therefore, there exists ¢ > 0 such that ||zx — Gpug|| < 6* for all
k > t and thus (zk,vr) € Bsx(X) for all ¢ > k, where §* and
Bs(X) are defined in Lemma 4.

By virtue of Lemma 4, B;s«(X) C Int F implying that Bs«(X) N
(R" X Vo) C Int FN(R™ x Ve) C @, and thus {(zk, ve) iz, C
Bs-(Z) C ®. Hence, for all k > ¢, (xry1,0k41) = T(Tk, k),
where T is defined in Corollary 2. As T is continuous (Corollary 2),
and V is non-increasing along solutions of (24) (Corollary 1), the

Fig. 4. The bicycle model of the lateral vehicle dynamics.

invariance principle [32, Theorem 6.3] implies that (zg,vk) —
M as k — oo where M C & denotes the largest invariant subset of

Q= {(z,v) € ® | V(g(f(z,v)) = V(v) = 0}. (40)

Moreover, (39) implies that (zy,vx) — X as k — oo and thus
(xk,vr) = MNXE as k — oco.

We claim that MNY = {(z*,v")}; evidently, (z*,v*) € M and
(z*,v*) € 3. Recall that M C Q C @, thus by Lemma 3, (z,v) €
M = §(f(z,v)) = v. Furthermore, by virtue of Theorem 1,
(z,v) € ¥ = z = f(x,v) and thus

(z,v) e MNE = §(f(z,v)) =g(z) =w. 41)

Moreover, by Lemma 4, for all (z,v) € ¥ = Bo(X) we have that
v #v" = g(z) # v and thus

(z,v) X and g(z) =v = v="10". (42)

Taking the logical conjunction of right-hand sides of (41) and (42)
immediately yields the implication (z,v) € MNY = v ="
and thus M NY = {(z,v) | £ = Gov, v =v"} = {(z",v")} as
claimed.

Lyapunov stability of (z*,v™) follows from Corollary 1 and
the ISS stability of the tracking error. Therefore, the sequence
{(zk,v6)}eog € A is well defined, zo € II,® implies that
(k,vk) — (z",v") as k — oo and (z*,v") is a Lyapunov stable
equilibrium point of (24). O

Theorem 4 (Finite-time Convergence). Let Assumptions 1-7 hold
and consider the closed-loop system (24). Then, for all xo € 11, P,
there exists t > O such that v, = v* for all k > t.

Proof. Thanks to Lemma 1 we know that (z*,v*) € ¥ C Int F and
thus z* € Int Sz (F,v"). In addition, the definition of ® implies that
Se(®,v) = Se(F,v) for all v € Ve and thus =™ € Int Sz (P, v™).
Since zr — 2 € Int Sz(P,v") as k — oo (Theorem 3) there
exists a finite ¢ > 0 such that z; € S¢(®,v"). From the definition
(23), it is evident that g(x,v) = g(z) = v* for all x € S(P,v")
and thus v, = g(z¢,ve—1) = v*. Finally, thanks to Theorem 1,
zr € Sz(A,v*) implies that zx11 = f(zk,vk) € Sz(A,v*) and
thus we can consider two cases, corresponding to the partition A =
DU (A\®). If 21 € S(P,v") then vy, = g(xk,v™) = gzk) = v,
and if z € Sz(A\ @,v") then vy = g(zx,v™) = v* and thus
v = v* for all k > t. O

VI. NUMERICAL EXAMPLES
A. Lateral Vehicle Dynamics

This section applies the FG to the lateral dynamics of a car moving
forward at a constant speed of V; = 30m/s. The model is based on
the one in [33] and roughly represents a 2017 BMW 740i sedan.

A diagram of the bicycle model is displayed in Figure 4. The state
of the system is z¥ = [s ¢ B w] where s is the lateral position of
the vehicle, 1 is the yaw angle, 8 = $/V,, is the sideslip angle, and
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Fig. 5. Closed-loop lateral vehicle dynamics responses for the FG with N =
15 vs. an ungoverned MPC controller with N = 76, the shortest NV such that
the initial problem is feasible. The performance (rise-time) of the FG-MPC
combination is only marginally slower than the ungoverned MPC controller
which needs a significantly longer horizon to ensure feasibility.

TABLE I
EXECUTION TIME DATA FOR THE LATERAL VEHICLE DYNAMICS EXAMPLE.
FG(N = 15) | MPC(N = 15) | MPC(N = 75)
TAVE [ms] 14 0.22 11.7
TMAX [ms] 2.7 0.53 54.5

w = 1 is the yaw rate. The control input is the front steering angle
u = & and the system is subject to constraints on y© = [af a, df]
where oy and o, are the front and rear slip angles. The tracking
output is z = s. The continuous-time system matrices are

0 Vi Va 0 0
0 0 0 1 0
A= 2C, Caltr—ty) B=| c, |,

Co(br—L5) Ca (£2402) ol

0 0 e fz2
00 -1 —¢ 1

C=10 0 -1 & |, D=|0},

00 O 0 1

E =[1000], and F = 0, where m = 2041 kg is the mass of
the vehicle, I, = 4964 kg - m? is the moment of inertia about
the yaw axis, £/ = 1.56 m and ¢, = 1.64 m are the moment
arms of the front and rear wheels relative to the center of mass,
and C, = 246994 N/rad is the tire stiffness. The continuous time
system matrices are converted to discrete-time using a zero-order hold
with a sampling time of ¢; = 0.01 seconds. The constraint set is
Y =[-8 8°] x [—8°, 8°] x [-30°, 30°] which represents limits
on the front and rear slip angles (to prevent tire slip and drifting)
and a mechanical limit on the steering angle. The initial condition is
zo = 0, the target position is » = 5 m, and the weighting matrices
are @ = ETE and R = 0.1. The terminal penalty and gain are
computed using the linear quadratic regulator and the terminal set is
T = 0%, computed using the procedure in Appendix A.

Figure 5 compares the combined FG-MPC feedback law for N =
15 with an ungoverned MPC controller with N = N* = 76 where
N* = N*(zo,7,T) = inf; {i | (z0,G;'r) € T;}. The rise and
settling times of the combined feedback law is comparable with that
of the ungoverned MPC controller despite a 94% reduction in worst-
case computation time, see Table I.

Figure 6 compares the response of the closed-loop system for
several values of N and with the CG + LQR. As expected, the
FG-MPC solution provides a faster response than the CG + LQR
solution and the system response becomes faster as IV increases. As
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Fig. 6. Closed-loop lateral vehicle dynamics responses for varying horizon
lengths. The FG outperforms the CG and the system responds more quickly
as IV increases.

N — N~ the filtering effect diminishes until the response of the pure
MPC controller is recovered.

VII. CONCLUSIONS

This paper proposed the Feasibility Governor (FG), an add-on
unit that expands the region of attraction of linear-quadratic model
predictive controllers by minimally manipulating the reference input
passed to the controller. It was shown that the FG is safe, converges
in finite time, and extends the region of attraction of MPC controllers
at a fraction of the computation cost associated with increasing the
prediction horizon. Future work includes extending the FG to nonlin-
ear settings, extending the FG beyond piecewise constant reference
signals, considering inner-loop controllers that achieve offset-free
tracking in the presence of disturbances, and exploring parallelizeable
methods for synthesizing inner-approximation of the feasible set to
enable to application of the FG to large scale systems.

APPENDIX
A. COMPUTING THE TERMINAL SET

Substituting the terminal control law (9) into the open-loop dy-
namics (1) and using that z, = G4v and u, = G,v yields

Thy1 = Akaer
yr = Cxy +Dv ey

(43)
(44)

where A = A—~BK, B=B(KG, +G,),C =C—DK,and D =
D (KG. + G.). This is a standard form in the reference governor
literature, see e.g., [4], [10], [34], which makes use of the maximal
constraint admissible set,

Ouo = {(z,v) | CA* 2+
C(1-A)" (1-A")Bo+Dvey, vk >0} @5)

Since O is maximal, invariant, and constraint admissible under
constant v [34, Theorem 1.1] 7 = O« is the largest possible
terminal set (for a given terminal feedback law). However, if O
can not be finitely determined, we replace it with OS5, = O N OF
where O = {(z,v) | (D+ C(I — A)"'B)v € (1 — €)V}. The set
0%, is guaranteed to be representable by a finite number of linear
inequalities and is still forward invariant and constraint admissible.
Algorithms for computing 0%, are well established and can be found
in [4], [35]; they yield matrices [T, T%] and a vector ¢, such that

0% = {(z,v) | Tox + Tyv < c}. (46)



B. CONDENSED MATRIX DEFINITIONS

Let ® denote the Kronecker product and define

0 P 0]
I B 0O - 0
A2

A A 5 A IN®RYC 0

— — — N

A= || B=| as C=[eve ],

AN : oL
AN-1B ... AB B

D= [WP] i =[N 0] and T, = [4].

Then the matrices in (18) are

M:C'B+15,L:[CA’A Tv],andb:[(lN(@h)T cT] ,

H=B"HB+INn®R, W, =B"HA, W=[W, W,]

Wv = - (WJ:'G.’L' + H (1N ® Gu)) ’
T

where 15 is a column of N ones.

C. PROOF OF LEMMA 1

Depending on which condition of Assumption 6 is satisfied, one of

the
con

following holds: 1) Following from Assumption 5, the terminal
trol law (9) ensures constraint satisfaction V(x,v) € T. Therefore,

it follows from (10) that 7 C I'x. The statement is then proven by
noting X C Int 7 C Int I'n. 2) Since (A, B) is controllable, there
exists a deadbeat gain matrix L such that (A — BL)” = 0 [36].
Thus, given the control law uy = @, — L(xr —Z»), the closed-loop
dynamics of (1) satisfy xx = Z,, Vk > v. Let O denote the
maximum constraint admissible set [4] associated with the deadbeat
dynamics. It follows by definition that (z,v) € Oo ensures yx € Y,
which implies O C I'y due to (10). Since (A — BL) is Schur

[36,

Property 2] and v € V., it follows from [4, Theorem 2.1] that

Y CInt Os C Int I'y.
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