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LOCAL FINITE ELEMENT APPROXIMATION OF SOBOLEV DIFFERENTIAL

FORMS
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Abstract. We address fundamental aspects in the approximation theory of vector-valued finite ele-

ment methods, using finite element exterior calculus as a unifying framework. We generalize the Clément

interpolant and the Scott-Zhang interpolant to finite element differential forms, and we derive a broken

Bramble-Hilbert lemma. Our interpolants require only minimal smoothness assumptions and respect

partial boundary conditions. This permits us to state local error estimates in terms of the mesh size.

Our theoretical results apply to curl-conforming and divergence-conforming finite element methods over

simplicial triangulations.
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1. Introduction

With this article we contribute to an aspect of vector-valued finite element methods which has seen increasing
interest throughout recent years, namely the detailed study of quantitative approximation estimates. More
specifically, we construct and analyse analogues of the Clément interpolant and the Scott-Zhang interpolant for
vector-valued finite element methods over simplicial meshes. We present our results in the framework of finite

element exterior calculus (FEEC).

One of the classical results in finite element theory is the quasi-optimality of the finite element solution: the
Galerkin approximation is just as good as the best approximation, up to a generic constant. This is well-known
for the vector-valued finite element spaces that have enjoyed popularity in numerical electromagnetism long
since. However, not much is known about the quantitative approximation estimates in terms of the mesh size,
in sharp contrast to the scalar-valued setting. Only recently have publications started to address this topic
in the vector-valued setting; see the literature review further down this introduction. For example, the most
classical convergence theorem in the finite element analysis for the Poisson problem asserts that the Galerkin
error vanishes in the 𝐿2 norm like 𝒪(ℎ𝑠), where 𝑠 ≥ 1 denotes the Sobolev smoothness of the true solution.
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Generally speaking, 𝑠 can be arbitrarily close to 1. This classical estimate can be proven with the Clément
interpolant.

As the Clément interpolant (see [12]) is arguably one of the most classical tools in numerical analysis, the
first goal of this article is extending the Clément interpolant to vector-valued finite element spaces. For that
purpose we introduce a biorthogonal system of bases and degrees of freedom. This is a technical tool of interest
on its own. If the finite element space is not subject to boundary conditions, then the generalization from
the scalar-valued case may be regarded as a mere technical note. This might partially explain why previous
publications have not given much attention to this topic.

However, the generalization to finite element differential forms (and thus vector-valued finite elements) is not
quite as trivial as one might think when homogeneous boundary values are imposed. As in the scalar-valued case
of Clément’s original publication, the Clément interpolant is modified by leaving out the corresponding degrees
of freedom along the boundary. But while there are numerous tricks in the literature to derive Bramble-Hilbert-
type error estimates for Lagrange elements with boundary conditions, this is more than a mere technicality in
finite element vector calculus. Our solution is to reformulate the degrees of freedom as momenta over facets of
the triangulation. Thus we extend the degrees of freedom to differential forms with mild regularity assumptions
that allow a meaningful notion of trace: we assume that both the differential form and its exterior derivative are
integrable. That regularity assumption is natural, inasmuch as it allows a definition of homogeneous boundary
traces in a generalized sense, namely via an integration by parts formula.

Incidentally, extending the degrees of freedom to differential forms with rough coefficients allows us to gener-
alize another classical concept to finite element exterior calculus: we construct a Scott-Zhang-type interpolant.
The Scott-Zhang interpolant (see [38]) is a local interpolant onto the finite element space which respects homo-
geneous boundary conditions. We replicate that interpolant in finite element exterior calculus. Apart from
momenta over full-dimensional simplices, the Scott-Zhang-type interpolant also requires integrals along facets.
Hence this interpolant is only well-defined for differential forms that allow traces onto facets.

Additionally, the ideas of the Scott-Zhang interpolant have recently been instrumental in proving a broken
Bramble-Hilbert lemma for Lagrange elements. Using Veeser’s exposition [40] as a primary source, we prove a
broken Bramble-Hilbert lemma for finite element differential forms. Our Scott-Zhang-type interpolant uses only
momenta over full-dimensional cells and facets. Prospective applications of this broken Bramble-Hilbert lemma
include the convergence theory of finite element exterior calculus over surfaces and manifolds. We leave this
for future research. The remainder of this introduction provides further context for our research and a partial
review of the literature.

The Hodge-Laplace equation is the central equation in the calculus of differential forms; its saddle-point
formulation has been studied in numerical analysis because it captures different variations of the Maxwell
system and the Poisson problem in primal and mixed formulation (see Hiptmair [25] and Arnold, Falk, and
Winther [1]). It shows that the analytical properties of these partial differential equations over a domain Ω are
studied best via the Sobolev de Rham complexes

. . .
d

−−−−→ 𝐻Λ𝑘(Ω)
d

−−−−→ 𝐻Λ𝑘+1(Ω)
d

−−−−→ . . . (1.1)

Here, d is the exterior derivative, and a differential 𝑘-form is in 𝐻Λ𝑘(Ω) if its coefficients are square integrable
and its exterior derivative, initially defined in the sense of distributions, has square integrable coefficients as well.
Specifically, the above example of a Sobolev de Rham complex is useful for analysing the Hodge-Laplace equation
with natural boundary conditions. The theory of the Hodge-Laplace equation with essential or mixed boundary
conditions has seen substantial progress only in recent years. For the Hodge-Laplace equation with mixed
boundary conditions we study Sobolev de Rham complexes with partial boundary conditions (see Gol’dshtein,
Mitrea, and Mitrea [22]):

. . .
d

−−−−→ 𝐻Λ𝑘(Ω,Γ)
d

−−−−→ 𝐻Λ𝑘+1(Ω,Γ)
d

−−−−→ . . . (1.2)

Here, partial boundary condition refers to imposing homogeneous boundary conditions along a part Γ ⊆ 𝜕Ω of the
domain boundary. The most important results for the de Rham complex with either no boundary conditions
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(when Γ = ∅) or full boundary conditions (when Γ = 𝜕Ω), such as Rellich embedding theorems, Poincaré-
Friedrichs inequalities, and homology space theory, are still valid for general mixed boundary conditions (see
also Jochmann [28,29] and Jakab, Mitrea, and Mitrea [27]).

In regard to the numerical analysis for the Hodge-Laplace equation, finite element de Rham complexes mimic
Sobolev de Rham complexes as a fundamental structure on a discrete level. We adopt the framework of finite

element exterior calculus (Arnold, Falk, and Winther [1,3]) as a unifying language for the theoretical background
and the formulation of finite element methods. A very general Galerkin theory of Hilbert complexes, which asserts
that Galerkin approximations are quasi-optimal approximations of the solution of the Hodge-Laplace equation,
is at our disposal once we have smoothed projections from Sobolev de Rham complexes onto finite element
de Rham complexes, that is, 𝐿2-bounded projections such that diagrams such as the following commute:

. . .
d

−−−−→ 𝐻Λ𝑘(Ω,Γ)
d

−−−−→ 𝐻Λ𝑘+1(Ω,Γ)
d

−−−−→ . . .

𝜋𝑘

⎮

⎮

⌄ 𝜋𝑘+1

⎮

⎮

⌄

. . .
d

−−−−→ 𝒫−
𝑟 Λ𝑘(𝒯 ,𝒰)

d
−−−−→ 𝒫−

𝑟 Λ𝑘+1(𝒯 ,𝒰)
d

−−−−→ . . .

(1.3)

The widely studied special cases Γ = ∅ and Γ = 𝜕Ω correspond to either imposing no essential boundary
conditions at all or essential boundary conditions along the entire boundary. We remark that the cohomology
spaces of finite element de Rham complexes with partial boundary conditions were addressed first by Licht [32]
via purely algebraic means, and Poincaré-Friedrichs constants have been addressed by Christiansen and Licht [9]
within an algebraic framework.

Notably, the concept of commuting bounded projection from Sobolev de Rham complexes onto finite ele-
ment de Rham complexes has been the dominating focus of the published theoretical research on vector-valued
finite element methods. Numerous techniques and variations are found in the literature. The basic idea, and
its relevance to mixed finite element methods, can at least be traced back to the work of Fortin [21] on mixed
methods for the Poisson problem. Christiansen [8] introduced a bounded projection that commutes with the
exterior derivative up to a controllable error. Arnold, Falk, and Winther [1] developed a commuting 𝐿2-bounded
projection from the de Rham complex without boundary conditions onto a finite element differential complex
assuming quasi-uniform families of triangulations. Christiansen and Winther [11] extended those ideas to the 𝐿2

de Rham complex with boundary conditions and merely shape-regular families of triangulations. Licht described
smoothed projections for 𝐿𝑝 de Rham complexes over weakly Lipschitz domains, first without boundary con-
ditions [31] and subsequently with partial boundary conditions [30]; the existence of such a projection had
been presumed previously by Bonizzoni, Buffa, and Nobile [5]. A commuting bounded local interpolant was
described by Schöberl [36] in vector-analytic language, which was later generalized to partial boundary con-
ditions by Gopalakrishnan and Qiu [24], and to the setting of differential forms by Demlow and Hirani [13].
Christiansen, Munthe-Kaas and Owren [10] discussed a bounded commuting quasi-projection that locally pre-
serves polynomials up to a specified degree. Falk and Winther [19] developed a commuting local projection from
the 𝐿2 de Rham complex without boundary conditions that is bounded in 𝐻Λ norms. Ern and Guermond [17]
described an 𝐿𝑝-bounded commuting projection in the language of vector analysis. One major commonality of
these operators is that they provide quasi-optimal approximations within finite element spaces while featuring
additional properties, such as uniform bounds, commutativity with differential operators, or locality. One of the
most important applications of these operators has been in proving quasi-optimality of Galerkin approximations
in mixed finite element methods [1].

However, this does not quantify the error of the (quasi)-optimal approximation within the finite element
space. For example, such would provide error estimates for the finite element solution in terms of powers of the
mesh size. Hence an additional interpolation error estimate constitutes that last step. Numerous results have
been published, with most of the work addressing scalar-valued finite element methods only. The most widely
known interpolant is due to Clément [12]. The Clément interpolant is local, 𝐿𝑝-bounded and can be modified
to respect homogeneous boundary conditions. Another milestone in the literature on quantitative interpolation
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estimates is the Scott-Zhang interpolant [38]. This operator interpolates also values over the faces (and thus
boundary conditions) and is idempotent. However, it generally requires higher smoothness on the function than
the Clément interpolant. We emphasise that the Clément and Scott-Zhang interpolants, and the interpolants
that we develop in this work, do not necessarily commute with the differential operators and generally are
not projections. Surprisingly, only a few publications study quantitative error estimates for vector-valued finite
element methods. We mention the quasi-optimal interpolant of Ern and Guermond [18] as the apparently first
such construction in the literature. Their projection operator, which generalizes ideas of Oswald [35] to curl- and
divergence-conforming finite element spaces, satisfies similar local error estimates as the Clément interpolant
and can be modified to satisfy homogeneous boundary conditions. It seems their publication was the first to
give quantitative error estimates for curl-conforming and divergence-conforming finite element spaces.

Apart from quasi-interpolation error estimates for vector-valued finite element methods, for which we study
the Clément interpolant and the Scott-Zhang interpolant in finite element exterior calculus, we are interested
in what has been in circulation as broken Bramble-Hilbert lemma in recent years. In the context of finite
element methods, the broken Bramble-Hilbert lemma for scalar-valued functions states that approximation by
continuous piecewise polynomial functions is essentially as good as approximation by discontinuous piecewise
polynomial functions (that is, approximation within a broken finite element space) under the condition that
the function to be approximated satisfies some moderate continuity conditions. Results of that form have been
studied by Veeser [40] using techniques for the Scott-Zhang interpolant; see also Camacho and Demlow [6] for
applications to surface finite element methods and also Bank and Yserentant [4] for relations to a posteriori error
estimation. Whereas the broken Bramble-Hilbert lemma has been used for the approximation of 𝐻1 functions
with piecewise higher smoothness, we discuss the approximation of differential forms with 𝐻Λ regularity with
piecewise higher smoothness. We remark that the projection of Christiansen, Munthe-Kaas and Owren [10]
satisfies a similar result under abstract assumptions. The case of divergence-conforming finite element spaces has
been addressed by Ern, Gudi, Smears, and Vohraĺık [16] with a particular focus on the stability in the polynomial
degree. A similar result for curl-conforming spaces has been shown by Chaumont-Frelet and Vohraĺık [7]. The
aforementioned two contributions, which come closest to this work’s research topic, focus on the Hilbert space
situation and the perspective on Veeser’s original result as the equivalence of global and local approximations in
the 𝐿2 norm. We assume the perspective on Veeser’s result as a broken Bramble-Hilbert lemma as in Camacho
and Demlow’s aforementioned contribution. Like in their case, our result is motivated by the error analysis of
finite element methods over surfaces and manifolds.

The remainder of this article is structured as follows. In Section 2 we review notions of triangulations. In
Section 3 we recapitulate basic results about Sobolev differential forms. In Section 4 we review finite element
spaces of differential forms. Section 5 discusses biorthogonal bases and degrees of freedom. Section 6 introduces
and analyses the Clément interpolant for differential forms. Section 7 discusses another representation of the
degrees of freedom. This is used subsequently in Section 8, where we discuss the Clément interpolant with
boundary conditions, and in Section 9, where discuss the Scott-Zhang interpolant and the broken Bramble-
Hilbert lemma. Finally, Section 10 discusses a few applications in the language of vector analysis.

2. Triangulations

We commence with gathering a few definitions concerning simplices and triangulations.

Recall that a simplex of dimension 𝑑 is the convex closure of 𝑑 + 1 affinely independent points, which are
called the vertices of that simplex. A simplex 𝐹 is a subsimplex of a simplex 𝑇 if all vertices of 𝐹 are vertices
of 𝑇 . For any 𝑑-dimensional simplex 𝑇 we write ℱ(𝑇 ) for the set of its facets, which are the 𝑑 + 1 different
subsimplices of 𝑇 sharing all but one vertex with 𝑇 . More generally, we write ∆𝑑(𝑇 ) for the set of 𝑑-dimensional
simplices of 𝑇 , and we write ∆(𝑇 ) for the set of all subsimplices of 𝑇 .

A simplicial complex is a collection 𝒯 of simplices that is closed under taking subsimplices and for which
the intersection of any two simplices 𝑇, 𝑇 ′ ∈ 𝒯 is either empty or a common subsimplex of 𝑇 and 𝑇 ′. We say
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Figure 1. Face-connected triangulation with 𝑁 = 4: we walk from the initial triangle 𝑇0 to
the final triangle 𝑇 = 𝑇4, crossing over faces of adjacent triangles.

that 𝒯 is 𝑛-dimensional if every simplex 𝑇 ∈ 𝒯 is a subsimplex of an 𝑛-dimensional simplex in 𝒯 . A simplicial

subcomplex of 𝒯 is any simplicial complex 𝒰 ⊆ 𝒯 . We write ∆𝑑(𝒯 ) for the set of 𝑑-dimensional simplices of 𝒯 .
All simplices are assumed to have a fixed orientation. Whenever 𝑇 is a simplex and 𝐹 ∈ ℱ(𝑇 ), then we set

𝑜(𝐹, 𝑇 ) = 1 if the orientation of 𝐹 is induced from 𝑇 and we set 𝑜(𝐹, 𝑇 ) = −1 otherwise.
We introduce another combinatorial condition on the simplicial complex, following the discussion in [40];

see also Figure 1 for an illustration. We call a finite simplicial complex 𝒯 face-connected whenever for all 𝑛-
dimensional simplices 𝑇0, 𝑇 ∈ 𝒯 with non-empty intersection, there exists a sequence 𝑇1, . . . , 𝑇𝑁 of 𝑛-dimensional
simplices of 𝒯 with 𝑇𝑁 = 𝑇 , and such that for all 1 ≤ 𝑖 ≤ 𝑁 we have that 𝐹𝑖 = 𝑇𝑖 ∩ 𝑇𝑖−1 satisfies 𝐹𝑖 ∈
ℱ(𝑇𝑖) ∩ ℱ(𝑇𝑖−1) and 𝑇0 ∩ 𝑇 ⊆ 𝐹𝑖. For example, any simplicial complex that triangulates a domain is face-
connected.

For any simplex 𝑇 of positive dimension 𝑑 we let ℎ𝑇 and vol𝑑(𝑇 ) be its diameter and its 𝑑-dimensional
Hausdorff volume, respectively. We call 𝜇(𝑇 ) = ℎ𝑑𝑇 / vol𝑑(𝑇 ) the shape measure of 𝑇 . The shape measure 𝜇(𝒯 )
of any simplicial complex 𝒯 is the supremum of the shape measures of all its non-vertex simplices. Generally
speaking, a high shape measure indicates degeneracy of simplices. To simplify some technical arguments, we
write ℎ𝑉 for the minimum length of any one-dimensional simplex adjacent to some vertex 𝑉 ∈ 𝒯 .

For any 𝑇 ∈ 𝒯 we introduce the two sets

𝑈𝑇,𝒯 =
⋃︁

𝑇 ′∈Δ𝑛(𝒯 )
𝑇⊆𝑇 ′

𝑇 ′. 𝑈*
𝑇,𝒯 =

⋃︁

𝑇 ′∈Δ𝑛(𝒯 )
𝑇 ′∩𝑇 ̸=∅

𝑇 ′, (2.1)

We call the former the local patch around 𝑇 and the latter the macropatch around 𝑇 ; see also Figure 2 for an
illustration. Note that 𝑈𝑇,𝒯 ⊆ 𝑈*

𝑇,𝒯 . When 𝑆, 𝑇 ∈ 𝒯 with 𝑆 ⊆ 𝑇 , then 𝑈𝑇,𝒯 ⊆ 𝑈𝑆,𝒯 and 𝑈*
𝑆,𝒯 ⊆ 𝑈*

𝑇,𝒯 . We
remark that the ratio of diameters of adjacent simplices as well as the number of simplices entering the unions
in (2.1) can be bounded in terms of the shape measure whenever 𝒯 is the triangulation of some domain.

Remark 2.1. In the analysis of finite element methods, one is commonly interested in results that are valid
for families of algorithmically constructed triangulations. These triangulations typically satisfy uniform bounds
on the mesh constants introduced above.

3. Background in Analysis

In this section we recapitulate notions and results from the analysis of Sobolev spaces and exterior calculus.
Our focus here are the Sobolev-Slobodeckij spaces, sometimes also referred to as fractional Sobolev spaces [14,39],
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Figure 2. Left : the local patch and macropatch around a point are the same. Middle: the
local patch (solid grey) around an edge and the larger macropatch (shaded) around that edge.
Right : the local patch (solid grey) of a triangle, which is only the triangle itself, and the larger
macropatch.

and the calculus of differential forms with coefficients in the aforesaid Sobolev-Slobodeckij spaces [22,26,34,37].
Although we are initially only working over domains, most notions in this section also apply to the analysis on
embedded simplices with little modification. For the remainder of this section, let Ω ⊆ R𝑛 be a domain, that is,
a connected open set.

We use standard notations for function spaces in this article. 𝐶∞(Ω) is the space of smooth functions over Ω
and 𝐶∞(Ω) is the space of restrictions of smooth functions over the Euclidean space onto Ω. We write 𝐶∞

𝑐 (Ω)
for the space of smooth functions with support contained compactly in Ω. Next, 𝐿𝑝(Ω) is the Lebesgue space
over Ω to the integrability exponent 𝑝 ∈ [1,∞], equipped with the norm ‖ · ‖𝐿𝑝(Ω).

Here and in the sequel, 𝐴(𝑛) is the set of all multiindices over {1, . . . , 𝑛}. For any 𝑚 ∈ N0, let 𝑊𝑚,𝑝(Ω) be
the Sobolev space of measurable functions over Ω for which all distributional 𝛼-th derivatives with 𝛼 ∈ 𝐴(𝑛)
and |𝛼| ≤ 𝑚 are functions in 𝐿𝑝(Ω). We define the norms ‖ · ‖𝑊𝑚,𝑝(Ω) and the seminorms | · |𝑊𝑚,𝑝(Ω), whose

definitions for every 𝜔 ∈𝑊𝑚,𝑝(Ω) are

‖𝜔‖𝑊𝑚,𝑝(Ω) :=
∑︁

𝛼∈𝐴(𝑛)
|𝛼|≤𝑚

‖𝜕𝛼𝜔‖𝐿𝑝(Ω), |𝜔|𝑊𝑚,𝑝(Ω) :=
∑︁

𝛼∈𝐴(𝑛)
|𝛼|=𝑚

‖𝜕𝛼𝜔‖𝐿𝑝(Ω). (3.1)

In order to define Sobolev-Slobodeckij spaces, with which one generalizes the idea of the Sobolev space to
positive non-integer order, we let 𝜃 ∈ (0, 1) and define the seminorms

|𝜔|𝑊𝑚+𝜃,𝑝(Ω) :=
∑︁

𝛼∈𝐴(𝑛)
|𝛼|=𝑚

(︂
∫︁

Ω

∫︁

Ω

|𝜕𝛼𝜔(𝑥) − 𝜕𝛼𝜔(𝑦)|𝑝

|𝑥− 𝑦|𝑛+𝑝𝜃
d𝑥d𝑦

)︂
1
𝑝

, 𝜔 ∈𝑊𝑚,𝑝(Ω), 𝑝 <∞,

|𝜔|𝑊𝑚+𝜃,∞(Ω) :=
∑︁

𝛼∈𝐴(𝑛)
|𝛼|=𝑚

esssup
(𝑥,𝑦)∈Ω×Ω

|𝜕𝛼𝜔(𝑥) − 𝜕𝛼𝜔(𝑦)|

|𝑥− 𝑦|𝜃
, 𝜔 ∈𝑊𝑚,𝑝(Ω).

Accordingly, we define the Sobolev-Slobodeckij norms

‖𝜔‖𝑊𝑚+𝜃,𝑝(Ω) := ‖𝜔‖𝑊𝑚,𝑝(Ω) + |𝜔|𝑊𝑚+𝜃,𝑝(Ω). (3.2)

We let 𝑊𝑚+𝜃,𝑝(Ω) denote the Banach space of measurable functions for which ‖ · ‖𝑊𝑚+𝜃,𝑝(Ω) is bounded. This
space is called the Sobolev-Slobodeckij space.

We let 𝐶∞Λ𝑘(Ω) and 𝐶∞Λ𝑘(Ω) be the spaces of differential 𝑘-forms with coefficients in 𝐶∞(Ω) and 𝐶∞(Ω),
respectively. The space of smooth compactly supported differential forms 𝐶∞

𝑐 Λ𝑘(Ω) is defined analogously. The



LOCAL FINITE ELEMENT APPROXIMATION OF SOBOLEV DIFFERENTIAL FORMS 2081

spaces 𝐿𝑝Λ𝑘(Ω) and 𝑊 𝑠,𝑝Λ𝑘(Ω) are defined accordingly for any 𝑝 ∈ [1,∞] and 𝑠 ∈ [0,∞) and one writes
‖ · ‖𝐿𝑝Λ𝑘(Ω), ‖ · ‖𝑊 𝑠,𝑝Λ𝑘(Ω), and | · |𝑊 𝑠,𝑝Λ𝑘(Ω) for the corresponding norms and seminorms.

The exterior product 𝜔∧𝜂 of a 𝑘-form 𝜔 and an 𝑙-form 𝜂 is bilinear in each argument and satisfies the identity
𝜔 ∧ 𝜂 = (−1)𝑘𝑙𝜂 ∧ 𝜔. The exterior derivative is a differential operator between differential forms. One defines

d𝜔 =
𝑛
∑︁

𝑖=1

d𝑥𝑖 ∧ 𝜕𝑖𝜔, 𝜔 ∈ 𝐶∞Λ𝑘(Ω). (3.3)

An important identity is the Leibniz rule

d (𝜔 ∧ 𝜂) = d𝜔 ∧ 𝜂 + (−1)𝑘𝜔 ∧ d𝜂, 𝜔 ∈ 𝐶∞Λ𝑘(Ω), 𝜂 ∈ 𝐶∞Λ𝑙(Ω). (3.4)

The exterior derivative of differential forms with coefficients in Lebesgue spaces is defined a priori in the sense
of distributions. A particular class of differential 𝑘-forms which is of interest in this article is

𝒲𝑝,𝑞Λ𝑘(Ω) :=
{︀

𝜔 ∈ 𝐿𝑝Λ𝑘(Ω)
⃒

⃒ d𝜔 ∈ 𝐿𝑞Λ𝑘+1(Ω)
}︀

, 𝑝, 𝑞 ∈ [1,∞]. (3.5)

Our interest in 𝒲𝑝,𝑞Λ𝑘(Ω) is based on the fact that these differential forms, although they have a very low
regularity, allow a meaningful trace theory. It should be noted that 𝒲2,2Λ𝑘(Ω) is exactly the Hilbert space
𝐻Λ𝑘(Ω), which is the centre of interest of many publications on finite element exterior calculus.

We remark that, if 𝑆 is any simplex in R𝑛 of any dimension 𝑑, one can set up the calculus of differential
forms as well, using the coordinate system of the affine subspace corresponding to 𝑆. We will only need the
space 𝐶∞Λ𝑘(𝑆) and subspaces of it, and leave out the technical details, which are straight-forward. We remark
that the integral

∫︀

𝑆
𝜔 of any integrable 𝑘-form over a 𝑘-dimensional simplex 𝑆 is well-defined. The trace from

any simplex 𝑆 onto any of its subsimplices 𝐹 ∈ ∆(𝑆) is written tr𝑆,𝐹 in this article. We also write tr𝑆 for the
trace onto any simplex 𝑆 whenever this well-defined; there will be no ambiguity in this article regarding this.

We are interested in spaces of differential forms that satisfy homogeneous boundary conditions, in a sufficiently
generalized sense, along some subset Γ ⊆ 𝜕Ω of the domain boundary. We refer to such boundary conditions
as partial boundary conditions. Our definition of such partial boundary conditions builds upon an integration
by parts identity, following Gol’dshtein, Mitrea, and Mitrea (see Definition 3.3 of [22]) and Fernandes and
Gilardi [20],

Formally, when Γ ⊆ 𝜕Ω is a relatively open subset of 𝜕Ω, then the space 𝒲𝑝,𝑞Λ𝑘(Ω,Γ) is defined as the
subspace of 𝒲𝑝,𝑞Λ𝑘(Ω) whose members adhere to the following condition: we have 𝜔 ∈ 𝒲𝑝,𝑞Λ𝑘(Ω,Γ) if and
only if for all 𝑥 ∈ Γ there exists 𝜌 > 0 such that over the open ball 𝐵𝜌(𝑥) ⊆ R𝑛 of radius 𝜌 > 0 around 𝑥 we
have the identity

∫︁

Ω∩𝐵𝜌(𝑥)

𝜔 ∧ d𝜂 = (−1)𝑘+1

∫︁

Ω∩𝐵𝜌(𝑥)

d𝜔 ∧ 𝜂, 𝜂 ∈ 𝐶∞
𝑐 Λ𝑛−𝑘−1 (𝐵𝜌(𝑥)) . (3.6)

One sees immediately that every 𝜔 ∈ 𝐶∞(Ω) that vanishes along Γ satisfies this identity. Formally, this definition
of homogeneous boundary values requires no assumptions on the regularity of 𝜕Ω, and thus we circumvent the
discussion of traces, but of course one has to be careful in which circumstances the general definition above is
mathematically helpful.

One notices that 𝒲𝑝,𝑞Λ𝑘(Ω,Γ) is a closed subspace of 𝒲𝑝,𝑞Λ𝑘(Ω). We also say that 𝜔 ∈ 𝒲𝑝,𝑞Λ𝑘(Ω,Γ) satisfies
partial boundary conditions along Γ. The definition implies that

d𝒲𝑝,𝑞Λ𝑘(Ω,Γ) ⊆ 𝒲𝑞,𝑟Λ𝑘+1(Ω,Γ), 𝑝, 𝑞, 𝑟 ∈ [1,∞]. (3.7)

In other words, if a differential form satisfies partial boundary conditions along Γ, then its exterior derivative
satisfies partial boundary conditions along Γ, too.
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Remark 3.1. Spaces of differential forms constitute differential complexes which are known as de Rham com-

plexes in the literature. For example, writing 𝐻Λ𝑘(Ω,Γ) = 𝒲2,2Λ𝑘(Ω,Γ), consider the differential complex

. . .
d

−−−−→ 𝐻Λ𝑘(Ω,Γ)
d

−−−−→ 𝐻Λ𝑘+1(Ω,Γ)
d

−−−−→ . . . (3.8)

The case Γ = ∅ corresponds to imposing no boundary conditions at all while the case Γ = 𝜕Ω corresponds to
imposing boundary conditions along the whole of the boundary. The space 𝐻Λ𝑘(Ω,Γ) is then more commonly
written either𝐻Λ𝑘(Ω) or𝐻0Λ

𝑘(Ω), respectively. Both cases have been subject to extensive study in the literature
of theoretical and numerical analysis, while results for partial boundary conditions are more recent. For the case
that Ω is a weakly Lipschitz domain and Γ is a boundary part with sufficient regularity, the images of the
exterior derivatives of the de Rham complex (3.8) have closed range and they realize the Betti numbers of Ω
relative to Γ on cohomology. We refer to [22] for the details.

The study of differential complexes such as (3.8) provides the theoretical background of partial differential
equations associated with the exterior derivative. The most widely known one is the Hodge-Laplace equation.
The de Rham complex with partial boundary conditions is the theoretical underpinning for the Hodge-Laplace
equation with mixed boundary conditions (see [30]).

4. Finite Element Spaces over Triangulations

We now turn our attention to the theory of finite element differential forms. We consider the classes of
polynomial differential forms, and the corresponding finite element spaces, that have been elaborated upon by
Hiptmair [25] and Arnold, Falk, and Winther [1, 2],

We let 𝒫𝑟Λ
𝑘(Ω) be the space of differential 𝑘-forms whose coefficients are polynomials of degree at most

𝑟 ≥ 0 over the domain Ω. For 𝑟 ≥ 1, we define 𝒫−
𝑟 Λ𝑘(Ω) by

𝒫−
𝑟 Λ𝑘(Ω) := 𝒫𝑟−1Λ

𝑘(Ω) + 𝜅𝒫𝑟−1Λ
𝑘+1(Ω), (4.1)

where 𝜅 is the Koszul operator (see [1]). These spaces are also defined over simplices: we let 𝒫𝑟Λ
𝑘(𝑆) and

𝒫−
𝑟 Λ𝑘(𝑆) be the pullbacks of the spaces 𝒫𝑟Λ

𝑘(R𝑛) and 𝒫−
𝑟 Λ𝑘(R𝑛) onto any simplex 𝑆, respectively.

We also need to discuss spaces of polynomial differential forms over simplices with boundary conditions. For
any simplex 𝑆 one sets

𝒫𝑟Λ
𝑘(𝑆) :=

{︀

𝜔 ∈ 𝒫𝑟Λ
𝑘(𝑆) | ∀𝐹 ∈ ∆(𝑆), 𝐹 ̸= 𝑆 : tr𝑆,𝐹 𝜔 = 0

}︀

, (4.2)

𝒫−
𝑟 Λ𝑘(𝑆) :=

{︀

𝜔 ∈ 𝒫−
𝑟 Λ𝑘(𝑆)

⃒

⃒ ∀𝐹 ∈ ∆(𝑆), 𝐹 ̸= 𝑆 : tr𝑆,𝐹 𝜔 = 0
}︀

. (4.3)

We define finite element spaces over triangulations by considering piecewise polynomial differential forms satisfy-
ing the necessary continuity conditions so that the exterior derivative exists not just in the sense of distributions.
Formally, assume that 𝒯 is a triangulation of the domain Ω. We set

𝒫𝑟Λ
𝑘(𝒯 ) :=

{︀

𝜔 ∈ 𝒲∞,∞Λ𝑘(Ω)
⃒

⃒ ∀𝑇 ∈ ∆𝑛(𝒯 ) : 𝜔|𝑇 ∈ 𝒫𝑟Λ
𝑘(𝑇 )

}︀

, (4.4)

𝒫−
𝑟 Λ𝑘(𝒯 ) :=

{︀

𝜔 ∈ 𝒲∞,∞Λ𝑘(Ω)
⃒

⃒ ∀𝑇 ∈ ∆𝑛(𝒯 ) : 𝜔|𝑇 ∈ 𝒫−
𝑟 Λ𝑘(𝑇 )

}︀

. (4.5)

The definition of finite element spaces with boundary conditions requires further concepts. For any simplicial
complex 𝒰 ⊆ 𝒯 we define formally

𝒫𝑟Λ
𝑘(𝒯 ,𝒰) :=

{︀

𝑢 ∈ 𝒫𝑟Λ
𝑘(𝒯 ) | ∀𝐹 ∈ 𝒰 : tr𝐹 𝑢 = 0

}︀

, (4.6)

𝒫−
𝑟 Λ𝑘(𝒯 ,𝒰) :=

{︀

𝑢 ∈ 𝒫−
𝑟 Λ𝑘(𝒯 )

⃒

⃒ ∀𝐹 ∈ 𝒰 : tr𝐹 𝑢 = 0
}︀

. (4.7)

In the case where 𝒰 = ∅, we have 𝒫Λ𝑘(𝒯 ,𝒰) = 𝒫Λ𝑘(𝒯 ). Of course, the most interesting case is the setting where
𝒰 triangulates a boundary part of a domain along which we impose homogeneous partial boundary conditions.



LOCAL FINITE ELEMENT APPROXIMATION OF SOBOLEV DIFFERENTIAL FORMS 2083

We recapitulate some simple relations between these finite element spaces, which are easily verifiable from
the literature on finite element differential forms:

𝒫𝑟Λ
𝑘(𝒯 ,𝒰) ⊆ 𝒫−

𝑟+1Λ
𝑘(𝒯 ,𝒰) ⊆ 𝒫𝑟+1Λ

𝑘(𝒯 ,𝒰),

d𝒫𝑟+1Λ
𝑘(𝒯 ,𝒰) = d𝒫−

𝑟+1Λ
𝑘(𝒯 ,𝒰) ⊆ 𝒫𝑟Λ

𝑘+1(𝒯 ,𝒰).

These hold for any 𝑘, 𝑟 ∈ Z with 𝑟 ≥ 0.

Remark 4.1. We highlight a few further facts in relation to boundary conditions. Suppose that Ω ⊆ R𝑛 is
a domain and that Γ ⊆ 𝜕Ω is some part of its boundary with positive surface measure. For the purpose of
illustration, let us assume that 𝜕Ω can locally be written as the graph of a function. Suppose that the simplicial
complex 𝒯 is a triangulation of Ω and that the subcomplex 𝒰 is a triangulation of Γ. One finds

𝒫𝑟Λ
𝑘(𝒯 ,𝒰) = 𝒫𝑟Λ

𝑘(𝒯 ) ∩𝒲∞,∞(Ω,Γ),

𝒫−
𝑟 Λ𝑘(𝒯 ,𝒰) = 𝒫−

𝑟 Λ𝑘(𝒯 ) ∩𝒲∞,∞(Ω,Γ).

The spaces 𝒫𝑟Λ
𝑘(𝒯 ,𝒰) and 𝒫−

𝑟 Λ𝑘(𝒯 ,𝒰) are, in that sense, finite element spaces appropriate for discretizing
Sobolev spaces of differential forms with boundary conditions along Γ.

We discuss the geometric decomposition of finite element spaces. This theoretical framework may be more
abstract than what is usually found in introductory finite element expositions but it has been very useful in
capturing an essential feature of various finite element spaces, namely association of shape functions and degrees
of freedom to cells of the triangulation.

We assume that for each 𝐹 ∈ 𝒯 we have the extension operators

Ext𝑟,𝑘𝐹,𝒯 : 𝒫𝑟Λ
𝑘(𝐹 ) → 𝒫𝑟Λ

𝑘(𝒯 ), Ext𝑟,𝑘,−𝐹,𝒯 : 𝒫−
𝑟 Λ𝑘(𝐹 ) → 𝒫−

𝑟 Λ𝑘(𝒯 ). (4.8)

which have been defined by Arnold, Falk and Winther [2]. The two critical properties of these extension operators
are that they are right-inverses of the traces,

tr𝐹 Ext𝑟,𝑘𝐹,𝒯 = Id, tr𝐹 Ext𝑟,𝑘,−𝐹,𝒯 = Id,

and that for all 𝑆 ∈ 𝒯 with 𝐹 * 𝑆 we have

tr𝑆 Ext𝑟,𝑘𝐹,𝒯 𝒫𝑟Λ
𝑘(𝐹 ) = 0, tr𝑆 Ext𝑟,𝑘,−𝐹,𝒯 𝒫−

𝑟 Λ𝑘(𝐹 ) = 0.

It is then possible to decompose finite element spaces into direct sums

𝒫𝑟Λ
𝑘(𝒯 ,𝒰) =

⨁︁

𝐹∈𝒯
𝐹 /∈𝒰

Ext𝑟,𝑘𝐹,𝒯 𝒫𝑟Λ
𝑘(𝐹 ), 𝒫−

𝑟 Λ𝑘(𝒯 ,𝒰) =
⨁︁

𝐹∈𝒯
𝐹 /∈𝒰

Ext𝑟,𝑘,−𝐹,𝒯 𝒫−
𝑟 Λ𝑘(𝐹 ). (4.9)

This decomposition is an instance of Theorem 4.3 in [2] applied to the finite element spaces 𝒫𝑟Λ
𝑘(𝒯 ) and

𝒫−
𝑟 Λ𝑘(𝒯 ), see also Theorems 7.3 and 8.3 in the aforementioned publication, in the case without boundary

conditions. For the case with boundary conditions, see [33].

Remark 4.2. Informally, (4.9) is a decomposition of the global finite element space into localised “bubble
spaces” associated with the degrees of freedom. For example, if 𝑘 = 0, then we are dealing with the classical
Lagrange elements. The Lagrange space over 𝒯 is spanned by localised piecewise polynomial bubble functions
associated to vertices, to edges, and finally up to bubble functions associated to facets and to full-dimensional
simplices. In case 𝑘 = 𝑛 instead, we are just dealing with piecewise discontinuous functions whose degrees of
freedom are all associated to full-dimensional cells. Another important example is the case 𝑘 = 𝑛− 1, where we
have divergence-conforming finite element spaces. These can be decomposed into “bubbles” associated to either
full-dimensional cells or faces of codimension one.
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We finish this section with a discussion of the degrees of freedom for these finite element spaces. We consider
the following spaces of functionals. When 𝐹 ∈ 𝒯 and 𝑚 = dim(𝐹 ), then we define

𝒞𝑟Λ
𝑘(𝐹 ) :=

{︂

𝜔 ↦→

∫︁

𝐹

𝜂 ∧ tr𝐹 𝜔 ∈ 𝒲∞,∞Λ𝑘(Ω)*
⃒

⃒

⃒

⃒

𝜂 ∈ 𝒫−
𝑟+𝑘−𝑚Λ𝑚−𝑘(𝐹 )

}︂

, (4.10a)

𝒞−
𝑟 Λ𝑘(𝐹 ) :=

{︂

𝜔 ↦→

∫︁

𝐹

𝜂 ∧ tr𝐹 𝜔 ∈ 𝒲∞,∞Λ𝑘(Ω)*
⃒

⃒

⃒

⃒

𝜂 ∈ 𝒫𝑟+𝑘−𝑚−1Λ
𝑚−𝑘(𝐹 )

}︂

. (4.10b)

These spaces are algebraically isomorphic to 𝒫−
𝑟+𝑘−𝑚Λ𝑚−𝑘(𝐹 ) and 𝒫𝑟+𝑘−𝑚−1Λ

𝑚−𝑘(𝐹 ), respectively, see [1].

We define those functionals over 𝒲∞,∞Λ𝑘(Ω) since those differential forms have well-defined traces (see [23])
but this is only of technical relevance. If we restrict the functionals in these sets to 𝒫𝑟Λ

𝑘(𝐹 ) and 𝒫−
𝑟 Λ𝑘(𝐹 ),

respectively, in the obvious sense, then we obtain the full dual spaces of the local finite element spaces with
boundary conditions. With little effort (see [33]) it is possible to show that

𝒫𝑟Λ
𝑘(𝒯 ,𝒰)* =

⨁︁

𝐹∈𝒯
𝐹 /∈𝒰

𝒞𝑟Λ
𝑘(𝐹 ), 𝒫−

𝑟 Λ𝑘(𝒯 ,𝒰)* =
⨁︁

𝐹∈𝒯
𝐹 /∈𝒰

𝒞−
𝑟 Λ𝑘(𝐹 ). (4.11)

Remark 4.3. The finite element spaces discussed in this article can be put together to form finite element
de Rham complexes, for example:

. . .
d

−−−−→ 𝒫−
𝑟 Λ𝑘(𝒯 ,𝒰)

d
−−−−→ 𝒫−

𝑟 Λ𝑘+1(𝒯 ,𝒰)
d

−−−−→ . . . (4.12)

One can construct projections 𝜋𝑘 : 𝒲𝑝,𝑞Λ𝑘(Ω,Γ) → 𝒫−
𝑟 Λ𝑘(𝒯 ,𝒰) from the Sobolev de Rham complex onto the

finite element de Rham complex which commute with the exterior derivative and satisfy 𝐿𝑝 bounds depending
only on the polynomial degree and the mesh quality (see [1, 10,11,17,19,30,31]).

. . .
d

−−−−→ 𝒲𝑝,𝑞Λ𝑘(Ω,Γ)
d

−−−−→ 𝒲𝑞,𝑠Λ𝑘+1(Ω,Γ)
d

−−−−→ . . .

𝜋𝑘

⎮

⎮

⌄ 𝜋𝑘+1

⎮

⎮

⌄

. . .
d

−−−−→ 𝒫−
𝑟 Λ𝑘(𝒯 ,𝒰)

d
−−−−→ 𝒫−

𝑟 Λ𝑘+1(𝒯 ,𝒰)
d

−−−−→ . . .

(4.13)

This smoothed projection is the key to enable the abstract Galerkin theory of Hilbert complexes (see [3]). The
finite element solution of the Hodge-Laplace equation is a quasi-optimal approximation of the true solution
within the finite element space. However, those results do not concretize the approximation estimates. Con-
cretely, we usually want to bound the error in terms of the (local) mesh size and the solution regularity. The
interpolant derived in this article accomplishes that goal.

5. Biorthogonal Bases and Degrees of Freedom

In this section we discuss biorthogonal systems of bases and degrees of freedom for finite element spaces.
This will not only provide helpful tools in the discussion of the Clément interpolant in subsequent sections but
it is also an interesting result in its own right. As a particular feature, the bases and degrees of freedom are
localised. We inductively construct the biorthogonal system in a top-down manner: the induction starts with
cells associated to the highest dimension and progressively works itself down the simplex dimensions.

Assumption 5.1. For the remainder of this article we let 𝒯 be an 𝑛-dimensional simplicial complex, and we

let 𝒰 ⊆ 𝒯 be a simplicial subcomplex. We assume that 𝒯 triangulates a domain Ω ⊆ R𝑛 and that 𝒰 triangulates

a part of the domain boundary Γ ⊆ 𝜕Ω. Moreover, we fix 𝑝 ∈ [1,∞], 𝑘 ∈ N0, a polynomial degree 𝑟 ∈ N, and a
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family of finite element spaces of differential forms. Specifically, we write

𝒫Λ𝑘(𝒯 ) = 𝒫𝑟Λ
𝑘(𝒯 ), 𝒫Λ𝑘(𝒯 ,𝒰) = 𝒫𝑟Λ

𝑘(𝒯 ,𝒰),

and for all 𝑆 ∈ 𝒯 : 𝒫Λ𝑘(𝑆) = 𝒫𝑟Λ
𝑘(𝑆), 𝒫Λ𝑘(𝑆) = 𝒫𝑟Λ

𝑘(𝑆), and 𝒞Λ𝑘(𝑆) = 𝒞𝑟Λ
𝑘(𝑆),

and for all domains 𝑈 ⊆ R𝑛 : 𝒫Λ𝑘(𝑈) = 𝒫𝑟Λ
𝑘(𝑈),

or

𝒫Λ𝑘(𝒯 ) = 𝒫−
𝑟 Λ𝑘(𝒯 ), 𝒫Λ𝑘(𝒯 ,𝒰) = 𝒫−

𝑟 Λ𝑘(𝒯 ,𝒰),

and for all 𝑆 ∈ 𝒯 : 𝒫Λ𝑘(𝑆) = 𝒫−
𝑟 Λ𝑘(𝑆), 𝒫Λ𝑘(𝑆) = 𝒫−

𝑟 Λ𝑘(𝑆), and 𝒞Λ𝑘(𝑆) = 𝒞−
𝑟 Λ𝑘(𝑆),

and for all domains 𝑈 ⊆ R𝑛 : 𝒫Λ𝑘(𝑈) = 𝒫−
𝑟 Λ𝑘(𝑈).

We assume4 that the first option holds if 𝑘 = 0 and that the second option holds if 𝑘 = 𝑛. Furthermore, for

reasons of exposition, we introduce for every 𝑆 ∈ 𝒯 a set of indices

𝐼(𝑆) := {1, . . . ,dim𝒫Λ𝑘(𝑆)}.

We can now state the main result of this section.

Theorem 5.2 (Localised Biorthogonal System). There exist bases
{︀

𝜑*𝑆,𝑖
}︀

𝑖∈𝐼(𝑆)
of 𝒞Λ𝑘(𝑆) for each 𝑆, and a

basis {𝜑𝑆,𝑖}𝑆∈𝒯 ,𝑖∈𝐼(𝑆) of 𝒫Λ𝑘(𝒯 ) such that the following conditions are satisfied for all 𝑆 ∈ 𝒯 :

∀𝑆′ ∈ 𝒯 , 𝑖 ∈ 𝐼(𝑆), 𝑗 ∈ 𝐼(𝑆′) : 𝜑*𝑆,𝑖(𝜑𝑆′,𝑗) =

{︃

1 if 𝑆 = 𝑆′, 𝑖 = 𝑗,

0 otherwise.
(5.1)

∀𝑆′ ∈ 𝒯 : 𝑆 * 𝑆′ =⇒ tr𝑆′ 𝜑𝑆,𝑖 = 0. (5.2)

In addition to that, for all 𝑆, 𝑇 ∈ 𝒯 with 𝑆 ⊆ 𝑇 and dim(𝑇 ) = 𝑛,

‖𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶Aℎ
𝑛
𝑝
−𝑘

𝑆 , (5.3)

‖𝜑*𝑆,𝑖(𝜔)𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶A‖𝜔‖𝐿𝑝Λ𝑘(𝑇 ), 𝜔 ∈ 𝒫𝑟Λ
𝑘(𝑇 ). (5.4)

Here, 𝐶A > 0 is a constant which only depends on 𝑝, 𝑛, the polynomial degree 𝑟, and 𝜇(𝒯 ).

Remark 5.3. The degrees of freedom stated in the theorem are just the same as in (4.10). We will con-
struct a new basis of the finite element space from the geometrically decomposed basis via local modifications.
Equation (5.1) just states what we understand as biorthogonality, and equation (5.2) formalises that the basis
forms are localised: any form associated to the simplex 𝑆 vanishes on simplices that do not contain 𝑆. The
estimates (5.3) and (5.4) follow from scaling arguments.

Proof of Theorem 5.2. First, for every simplex 𝑆 ∈ 𝒯 we fix a basis {𝜑𝑆,𝑖,0}𝑖∈𝐼(𝑆) of the local space 𝒫Λ𝑘(𝑆)

and a basis
{︀

𝜑*𝑆,𝑖
}︀

𝑖∈𝐼(𝑆)
of the space 𝒞Λ𝑘(𝑆) such that

𝜑*𝑆,𝑖(𝜑𝑆,𝑗,0) = 𝛿𝑖𝑗 , 𝑖, 𝑗 ∈ 𝐼(𝑆).

We can also assume that the differential forms 𝜑𝑆,𝑖,0 and the functionals 𝜑*𝑆,𝑖 are defined via pullback from a

reference simplex. Going from there, we inductively build a basis of 𝒫Λ𝑘(𝒯 ) in a top-down fashion.
Let 𝑆 ∈ 𝒯 be a simplex of dimension 𝑛. We define 𝜑𝑆,𝑖 ∈ 𝒫Λ𝑘(𝒯 ) by setting 𝜑𝑆,𝑖|𝑆 := 𝜑𝑆,𝑖,0 over 𝑆 and

𝜑𝑆,𝑖|𝑇 := 0 over all other 𝑛-dimensional simplices 𝑇 ∈ 𝒯 . It then follows that (5.2) and (5.1) hold for all

4Recall that 𝒫𝑟Λ0 = 𝒫−

𝑟 Λ0 and 𝒫𝑟−1Λ𝑛 = 𝒫−

𝑟 Λ𝑛.
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𝑆 ∈ ∆𝑛(𝒯 ). Since we assume that 𝜑𝑆,𝑖 and 𝜑*𝑆,𝑖 are defined via pullback from reference simplices, the two
inequalities (5.3) and (5.4) are valid.

Next, suppose we have defined 𝜑𝑆,𝑖 ∈ 𝒫Λ𝑘(𝒯 ) for all 𝑆 ∈ 𝒯 with dim(𝑆) > 𝑚 and 𝑖 ∈ 𝐼(𝑆) such that (5.2)
and (5.1) hold for all 𝑆 ∈ 𝒯 with dim(𝑆) > 𝑚. For every 𝑆 ∈ 𝒯 with dim(𝑆) = 𝑚 we then set

𝜑𝑆,𝑖 := Ext𝑆,𝒯 𝜑𝑆,𝑖,0 −
∑︁

𝑇∈𝒯
𝑆(𝑇

∑︁

𝑙∈𝐼(𝑇 )

𝜑*𝑇,𝑙(Ext𝑆,𝒯 𝜑𝑆,𝑖,0)𝜑𝑇,𝑙,

where Ext𝑆,𝒯 = Ext𝑟,𝑘𝑆,𝒯 or Ext𝑆,𝒯 = Ext𝑟,𝑘,−𝑆,𝒯 as defined in Section 4, depending on our choice of finite element
space.

To check that (5.2) holds, we let 𝑆′ ∈ 𝒯 with 𝑆 * 𝑆′. Then 𝑇 * 𝑆′ for all 𝑇 ∈ 𝒯 with 𝑆 ⊆ 𝑇 . Therefore the
properties of the extension operators and our induction assumptions lead to

tr𝑆′ 𝜑𝑆,𝑖 = tr𝑆′ Ext𝑆,𝒯 𝜑𝑆,𝑖,0 −
∑︁

𝑇∈𝒯
𝑆(𝑇

∑︁

𝑙∈𝐼(𝑇 )

𝜑*𝑇,𝑙(Ext𝑆,𝒯 𝜑𝑆,𝑖,0) tr𝑆′ 𝜑𝑇,𝑙 = 0.

Next we prove (5.1). We see that for all 𝑖, 𝑗 ∈ 𝐼(𝑆)

𝜑*𝑆,𝑗 (𝜑𝑆,𝑖) = 𝜑*𝑆,𝑗 (Ext𝑆,𝒯 𝜑𝑆,𝑖,0) −
∑︁

𝑇∈𝒯
𝑆(𝑇

∑︁

𝑙∈𝐼(𝑇 )

𝜑*𝑇,𝑙(Ext𝑆,𝒯 𝜑𝑆,𝑖,0)𝜑
*
𝑆,𝑗 (𝜑𝑇,𝑙) = 𝜑*𝑆,𝑗 (Ext𝑆,𝒯 𝜑𝑆,𝑖,0)

= 𝜑*𝑆,𝑗 (𝜑𝑆,𝑖,0) = 𝛿𝑖𝑗 .

Let 𝑖 ∈ 𝐼(𝑆). If 𝑆′ ∈ 𝒯 with 𝑆 ̸= 𝑆′ and 𝑆 * 𝑆′, then we already know that tr𝑆′ 𝜑𝑆,𝑖 = 0, thus 𝜑*𝑆′,𝑗(𝜑𝑆,𝑖) = 0
for all 𝑗 ∈ 𝐼(𝑆′). If instead 𝑆 ( 𝑆′ then for all 𝑗 ∈ 𝐼(𝑆′) one sees

𝜑*𝑆′,𝑗 (𝜑𝑆,𝑖) = 𝜑*𝑆′,𝑗 (Ext𝑆,𝒯 𝜑𝑆,𝑖,0) −
∑︁

𝑇∈𝒯
𝑆(𝑇

∑︁

𝑙∈𝐼(𝑇 )

𝜑*𝑇,𝑙(Ext𝑆,𝒯 𝜑𝑆,𝑖,0)𝜑
*
𝑆′,𝑗 (𝜑𝑇,𝑙)

= 𝜑*𝑆′,𝑗 (Ext𝑆,𝒯 𝜑𝑆,𝑖,0) − 𝜑*𝑆′,𝑗(Ext𝑆,𝒯 𝜑𝑆,𝑖,0)𝜑
*
𝑆′,𝑗 (𝜑𝑆′,𝑗) = 0.

Lastly, we attend to the inequalities (5.4) and (5.3). In what follows, we write 𝐶 for a generic positive constant
which depends on the same quantities as 𝐶A in the statement of the theorem and which may change from line
to line. By the induction assumption, they are true for simplices 𝑇 ∈ 𝒯 with dim(𝑇 ) > dim(𝑆). For any simplex
𝐷 ∈ 𝒯 of dimension 𝑛 with 𝑆 ⊆ 𝐷,

‖𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝐷) ≤ ‖Ext𝑆,𝒯 𝜑𝑆,𝑖,0‖𝐿𝑝Λ𝑘(𝐷) +
∑︁

𝑇∈𝒯
𝑆(𝑇

∑︁

𝑙∈𝐼(𝑇 )

‖𝜑*𝑇,𝑙(Ext𝑆,𝒯 𝜑𝑆,𝑖,0)𝜑𝑇,𝑙‖𝐿𝑝Λ𝑘(𝐷)

≤ ‖Ext𝑆,𝒯 𝜑𝑆,𝑖,0‖𝐿𝑝Λ𝑘(𝐷) + 𝐶
∑︁

𝑇∈𝒯
𝑆(𝑇

∑︁

𝑙∈𝐼(𝑇 )

‖Ext𝑆,𝒯 𝜑𝑆,𝑖,0‖𝐿𝑝Λ𝑘(𝐷).

Our choice of extension operators Ext𝑆,𝒯 can be defined equivalently via transformation from a reference simplex,
and so a scaling argument gives

‖Ext𝑆,𝒯 𝜑𝑆,𝑖,0‖𝐿𝑝Λ𝑘(𝐷) ≤ 𝐶ℎ
𝑛
𝑝
−𝑘

𝑆 .

This shows (5.3). Finally, (5.4) follows from

‖𝜑*𝑆,𝑖(𝜔)𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 ) ≤
⃒

⃒𝜑*𝑆,𝑖(𝜔)
⃒

⃒ ‖𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 )

≤ 𝐶ℎ
𝑛−1−(𝑛−1−𝑘)
𝑆 ‖𝜔‖𝐿∞Λ𝑘(𝑇 ) 𝐶Aℎ

𝑛
𝑝
−𝑘

𝑆

≤ 𝐶ℎ𝑘𝑆 ‖𝜔‖𝐿∞Λ𝑘(𝑇 ) 𝐶Aℎ
𝑛
𝑝
−𝑘

𝑆 ≤ 𝐶ℎ𝑘𝑆ℎ
−𝑛

𝑝

𝑆 ℎ
𝑛
𝑝
−𝑘

𝑆 ‖𝜔‖𝐿𝑝Λ𝑘(𝑇 )
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where we use another scaling argument and an inverse inequality. This completes the induction step, and the
theorem follows. �

It is easy to extend the preceding theorem to the case of finite element spaces with boundary conditions. We
simply use only those shape forms which are not associated with simplices of the respective boundary part.

Theorem 5.4. Let {𝜑𝑆,𝑖}𝑆∈𝒯 ,𝑖∈𝐼(𝑆) be the basis of 𝒫Λ𝑘(𝒯 ) as described in Theorem 5.2. Then the set

{𝜑𝑆,𝑖}𝑆∈𝒯 ∖𝒰,𝑖∈𝐼(𝑆) is a basis of 𝒫Λ𝑘(𝒯 ,𝒰).

Proof. Let 𝜔 ∈ 𝒫Λ𝑘(𝒯 ,𝒰). There exist unique 𝜒𝑆,𝑖 ∈ R for 𝑆 ∈ 𝒯 and 𝑖 ∈ 𝐼(𝑆) with

𝜔 =
∑︁

𝑆∈𝒯

∑︁

𝑖∈𝐼(𝑆)

𝜒𝑆,𝑖𝜑𝑆,𝑖.

It remains to show that 𝜒𝑆,𝑖 = 0 for any 𝑆 ∈ 𝒰 . We use an induction argument. First, if 𝑆 ∈ 𝒰 with dim(𝑆) = 0,
then tr𝑆 𝜔 =

∑︀

𝑖∈𝐼(𝑆) 𝜒𝑆,𝑖 tr𝑆 𝜑𝑆,𝑖. Hence tr𝑆 𝜔 = 0 shows that 𝜒𝑆,𝑖 = 0 for all 𝑖 ∈ 𝐼(𝑆). Next, suppose that

for some 𝑚 > 0 we already know that 𝜒𝑆,𝑖 = 0 for 𝑆 ∈ 𝒯 and 𝑖 ∈ 𝐼(𝑆) with dim(𝑆) < 𝑚. If 𝑆 ∈ 𝒰 with
dim(𝑆) = 𝑚, then property (5.2) yields

0 = tr𝑆 𝜔 =
∑︁

𝐹∈𝒯
𝐹⊆𝑆

∑︁

𝑖∈𝐼(𝐹 )

𝜒𝐹,𝑖 tr𝑆 𝜑𝐹,𝑖 =
∑︁

𝑖∈𝐼(𝑆)

𝜒𝑆,𝑖 tr𝑆 𝜑𝑆,𝑖.

It follows again 𝜒𝑆,𝑖 = 0 for all 𝑖 ∈ 𝐼(𝑆). An induction argument completes the proof. �

6. Clément Interpolation and Local Approximation Theory

In this section we generalize the Clément interpolant without boundary conditions to the setting of differ-
ential forms. Thus we construct a bounded operator from 𝐿𝑝 spaces of differential forms onto finite element
spaces. Our construction follows the main ideas of what is known as the Clément interpolant in the scalar-
valued finite element setting. In his original work, Clément defined the interpolant first taking projections onto
local neighbourhoods of the degrees of freedom and then evaluating each degree of freedom at the associated
projection. The resulting operator is bounded with respect to Lebesgue norms, it is local, and allows for best
approximations in the local neighbourhood around each cell.

First, we fix projections onto polynomial differential forms over simplices and neighbourhoods of simplices.
These will enter the construction of our interpolants. For each simplex 𝑆 ∈ 𝒯 we have an idempotent bounded
linear mapping

𝑃𝑆 : 𝐿𝑝Λ𝑘(Ω) → 𝒫𝑟Λ
𝑘(𝑈𝑆,𝒯 ) ⊂ 𝐿𝑝Λ𝑘(𝑈𝑆,𝒯 )

such that for all 𝜔 ∈𝑊𝑚,𝑝Λ𝑘(Ω) with 𝑚 ∈ [0, 𝑟 + 1] one has

‖𝜔 − 𝑃𝑆𝜔‖𝐿𝑝Λ𝑘(𝑈𝑆,𝒯 ) ≤ 𝐶BHℎ
𝑚
𝑆 |𝜔|𝑊𝑚,𝑝Λ𝑘(𝑈𝑆,𝒯 ), (6.1)

and whenever d𝜔 ∈𝑊 𝑙,𝑝Λ𝑘(Ω) with 𝑙 ∈ [0, 𝑟],

‖d𝜔 − d𝑃𝑆𝜔‖𝐿𝑝Λ𝑘+1(𝑈𝑆,𝒯 ) ≤ 𝐶BHℎ
𝑙
𝑆 |d𝜔|𝑊 𝑙,𝑝Λ𝑘+1(𝑈𝑆,𝒯 ). (6.2)

Here, 𝐶BH > 0 depends only on 𝑛, 𝑝, the polynomial degree 𝑟, and the triangulation regularity. One possible
choice for 𝑃𝑆 is the interpolant introduced by Dupont and Scott [15], which commutes with partial derivatives.
While they discuss that mapping only for scalar functions, it can easily be extended to differential forms by
componentwise application.
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We introduce another family of projections, which will only enter the error analysis of our interpolants. For
each 𝑛-dimensional simplex 𝑇 ∈ 𝒯 there exists a bounded projection

Π𝑇 : 𝐿𝑝Λ𝑘(𝑇 ) → 𝒫Λ𝑘(𝑇 )

which satisfies the inequalities

‖𝜔 − Π𝑇𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶Π inf
𝜓∈𝒫Λ𝑘(𝑇 )

‖𝜔 − 𝜓‖𝐿𝑝Λ𝑘(𝑇 ), 𝜔 ∈ 𝐿𝑝Λ𝑘(𝑇 ), (6.3)

‖d𝜔 − dΠ𝑇𝜔‖𝐿𝑝Λ𝑘+1(𝑇 ) ≤ 𝐶Π inf
𝜓∈𝒫Λ𝑘(𝑇 )

‖d𝜔 − d𝜓‖𝐿𝑝Λ𝑘+1(𝑇 ), 𝜔 ∈ 𝒲𝑝,𝑝Λ𝑘(𝑇 ). (6.4)

Here, 𝐶Π > 0 depends only on 𝑛, 𝑝, the polynomial degree 𝑟, and the triangulation regularity. To see this, we first
define the projection on a reference simplex and then transport it to other simplices via pullback. On a reference
simplex, we simply pick the well-known smoothed projection without boundary conditions (see [1, 11, 30, 31]).
These operators are uniformly bounded, commute with the exterior derivative, and satisfy (6.3) and (6.4) over
the reference simplex. The desired properties then follow via transformation of the reference simplex.

We define our interpolant by

ℐ𝒯 : 𝐿𝑝Λ𝑘(Ω) → 𝒫Λ𝑘(𝒯 ), 𝜔 ↦→
∑︁

𝑆∈𝒯

∑︁

𝑖∈𝐼(𝑆)

𝜑*𝑆,𝑖 (𝑃𝑆𝜔)𝜑𝑆,𝑖. (6.5)

This generalizes the Clément interpolant to the setting of finite element exterior calculus. Next we analyse the
interpolation error.

Theorem 6.1. There exists 𝐶ℐ > 0, depending only on 𝑛, 𝑝, the polynomial degree 𝑟, and the shape measure

of the triangulation, such that the following is true: for all 𝑇 ∈ ∆𝑛(𝒯 ) we have

‖ℐ𝒯 𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶ℐ‖𝜔‖𝐿𝑝Λ𝑘(𝑈*

𝑇,𝒯
), 𝜔 ∈ 𝐿𝑝Λ𝑘(𝑈*

𝑇,𝒯 ),

and for all 𝑇 ∈ ∆𝑛(𝒯 ) we have

‖𝜔 − ℐ𝒯 𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶ℐ‖𝜔 − Π𝑇𝜔‖𝐿𝑝Λ𝑘(𝑇 ) + 𝐶ℐ

∑︁

𝑆⊆𝑇
𝑖∈𝐼(𝑆)

‖𝜔 − 𝑃𝑆𝜔‖𝐿𝑝Λ𝑘(𝑈𝑆,𝒯 ), 𝜔 ∈ 𝐿𝑝Λ𝑘(Ω).

Proof. Let 𝜔 ∈ 𝐿𝑝Λ𝑘(Ω). Let 𝑇 ∈ 𝒯 be any 𝑛-dimensional simplex of the triangulation. We estimate

‖ℐ𝒯 𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

‖𝜑*𝑆,𝑖 (𝑃𝑆𝜔)𝜑𝑆,𝑖|𝑇 ‖𝐿𝑝Λ𝑘(𝑇 )

≤
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

𝐶A‖𝑃𝑆𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

𝐶A(1 + 𝐶BH)‖𝜔‖𝐿𝑝Λ𝑘(𝑈𝑆,𝒯 ).

The first inequality follows from this. Next, one notices that

Π𝑇𝜔 =
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

𝜑*𝑆,𝑖 (Π𝑇𝜔)𝜑𝑆,𝑖|𝑇 .

The difference 𝜔 − ℐ𝒯 𝜔 over the simplex 𝑇 can now be rewritten:

(𝜔 − ℐ𝒯 𝜔)|𝑇 = (𝜔 − Π𝑇𝜔 + Π𝑇𝜔 − ℐ𝒯 𝜔)|𝑇

= (𝜔 − Π𝑇𝜔)|𝑇 +
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

(︀

𝜑*𝑆,𝑖 (Π𝑇𝜔)𝜑𝑆,𝑖 − 𝜑*𝑆,𝑖
(︀

𝑃𝑆𝜔|𝑇

)︀

𝜑𝑆,𝑖
)︀

|𝑇

= (𝜔 − Π𝑇𝜔)|𝑇 +
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

𝜑*𝑆,𝑖
(︀

Π𝑇𝜔 − (𝑃𝑆𝜔)|𝑇
)︀

𝜑𝑆,𝑖|𝑇 .
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Therefore it follows that

‖𝜔 − ℐ𝒯 𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ ‖𝜔 − Π𝑇𝜔‖𝐿𝑝Λ𝑘(𝑇 ) +
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

‖𝜑*𝑆,𝑖
(︀

Π𝑇𝜔 − (𝑃𝑆𝜔)|𝑇
)︀

𝜑𝑆,𝑖|𝑇 ‖𝐿𝑝Λ𝑘(𝑇 ).

From inequality (5.4), we get for each subsimplex 𝑆 ⊆ 𝑇 and index 𝑖 ∈ 𝐼(𝑆) the estimate

‖𝜑*𝑆,𝑖
(︀

Π𝑇𝜔 − (𝑃𝑆𝜔)|𝑇
)︀

𝜑𝑆,𝑖|𝑇 ‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶A‖Π𝑇𝜔 − (𝑃𝑆𝜔)|𝑇 ‖𝐿𝑝Λ𝑘(𝑇 )

≤ 𝐶A‖Π𝑇𝜔 − 𝜔‖𝐿𝑝Λ𝑘(𝑇 ) + 𝐶A‖𝜔 − (𝑃𝑆𝜔)|𝑇 ‖𝐿𝑝Λ𝑘(𝑇 )

≤ 𝐶A‖Π𝑇𝜔 − 𝜔‖𝐿𝑝Λ𝑘(𝑇 ) + 𝐶A‖𝜔 − 𝑃𝑆𝜔‖𝐿𝑝Λ𝑘(𝑈𝑆,𝒯 ).

With some constant 𝐶0 which depends only on 𝑛 and the polynomial degree 𝑟, one can summarize our obser-
vations then with the local estimate

‖𝜔 − ℐ𝒯 𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ (1 + 𝐶0𝐶𝐴)‖𝜔 − Π𝑇𝜔‖𝐿𝑝Λ𝑘(𝑇 ) + 𝐶A

∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

‖𝜔 − 𝑃𝑆𝜔‖𝐿𝑝Λ𝑘(𝑈𝑆,𝒯 ).

The desired theorem follows. �

Corollary 6.2. Let 𝑚 ∈ [0, 𝑟 + 1] if 𝒫Λ𝑘(𝒯 ) = 𝒫𝑟Λ
𝑘(𝒯 ) and let 𝑚 ∈ [0, 𝑟] otherwise. Then for all 𝑇 ∈ ∆𝑛(𝒯 )

we have

‖𝜔 − ℐ𝒯 𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶ℐ,0ℎ
𝑚
𝑇 |𝜔|𝑊𝑚,𝑝Λ𝑘(𝑈*

𝑇,𝒯
), 𝜔 ∈𝑊𝑚,𝑝Λ𝑘(Ω).

Here, 𝐶ℐ,0 > 0 depends only on 𝑛, 𝑝, the polynomial degree 𝑟, and the shape measure of the triangulation.

Proof. The result follows from Theorem 6.1, Inequalities (6.1) and (6.3), together with standard approximation
estimates and the local finiteness of the triangulation. �

This generalizes the Clément interpolant to the setting of finite element exterior calculus. In particular, we
reproduce the order of approximation in the mesh size known from the scalar-valued theory. However, the
reader will notice that we have only covered the case when no boundary conditions are imposed on the finite
element space. The generalization to homogeneous boundary conditions, either along the whole of the boundary
or merely a part of it, is not yet covered by this construction. Indeed, the interpolant of this section does not
preserve homogeneous boundary traces.

The most obvious modification of the interpolant is simply setting all degrees of freedom along the boundary
part to zero, which is also the approach followed in Clément’s original paper [12]. While that straight-forward
modification will eventually provide the desired result, it is not straight-forward how the best approximation
properties can be proven under that modification. The next section will prepare technical tools to accomplish
that target.

7. Extending the Degrees of Freedom

In order to advance our analysis of finite element interpolation, we need to rewrite degrees of freedom in a
manner that defines them over differential forms with minimal smoothness assumptions. The idea is that every
degree of freedom associated to lower-dimensional simplices can be expressed in terms of traces over facets.

Theorem 7.1. For every 𝑆, 𝐹 ∈ 𝒯 with dim(𝐹 ) = 𝑛 − 1 and 𝑆 ⊆ 𝐹 and every 𝑖 ∈ 𝐼(𝑆) there exists �̊�𝐹,𝑆,𝑖 ∈
𝐶∞
𝑐 Λ𝑛−𝑘−1(𝐹 ) such that for every 𝑇 ∈ ∆𝑛(𝒯 ) with 𝐹 ⊆ 𝑇 we have

∫︁

𝐹

�̊�𝐹,𝑆,𝑖 ∧ tr𝐹 𝜔 = 𝜑*𝑆,𝑖(𝜔), 𝜔 ∈ 𝒫𝑟Λ
𝑘(𝑇 ), (7.1)
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and there exists Ξ𝑇,𝐹,𝑆,𝑖 ∈ 𝐶∞Λ𝑛−𝑘−1(𝑇 ) such that tr𝐹 Ξ𝑇,𝐹,𝑆,𝑖 = �̊�𝐹,𝑆,𝑖 and the support of Ξ𝑇,𝐹,𝑆,𝑖 has positive

distance from all facets of 𝑇 except 𝐹 .

Moreover, there exists 𝐶Ξ > 0, depending only on 𝑛, 𝑝 ∈ [1,∞], the polynomial degree 𝑟, and the shape

measure of the triangulation, such that

‖Ξ𝑇,𝐹,𝑆,𝑖‖𝐿𝑝Λ𝑛−𝑘−1(𝑇 ) ≤ 𝐶Ξℎ
𝑛
𝑝
−𝑛+𝑘+1

𝑆 , ‖dΞ𝑇,𝐹,𝑆,𝑖‖𝐿𝑝Λ𝑛−𝑘(𝑇 ) ≤ 𝐶Ξℎ
𝑛
𝑝
−𝑛+𝑘

𝑆 . (7.2)

Proof. As to simplify the exposition, this proof is to be read as an immediate continuation of the proof of
Theorem 5.2, and we tacitly use all notation made in that proof.

For every 𝑆 ∈ ∆(𝐹 ) and 𝑖 ∈ 𝐼(𝑆) we let 𝜑𝐹𝑆,𝑖 := tr𝐹 𝜑𝑆,𝑖. So
{︀

𝜑𝐹𝑆,𝑖
}︀

𝑆∈Δ(𝐹 ),𝑖∈𝐼(𝑆)
is a basis of 𝒫Λ𝑘(𝐹 ). If

𝒫Λ𝑘(𝐹 ) ̸= 𝒫𝑟Λ
𝑘(𝐹 ), we augment to a basis of 𝒫𝑟Λ

𝑘(𝐹 ) by including differential forms that are first defined on
a reference facet and then transported to 𝐹 ; we write 𝒜Λ𝑘(𝐹 ) for the resulting basis of 𝒫𝑟Λ

𝑘(𝐹 ). Note that
𝒜Λ𝑘(𝐹 ) can be defined uniformly via transport from a reference facet.

One can find a set ℬΛ𝑛−𝑘−1(𝐹 ) ⊂ 𝐶∞
𝑐 Λ𝑛−𝑘−1(𝐹 ) whose members represent the dual basis of 𝒜Λ𝑘(𝐹 )

by integration over 𝐹 ; this construction can be done on a reference facet first and then be transported to
𝐹 . Since the degrees of freedom are defined via transport from a reference simplex as well, one can build
�̊�𝐹,𝑆,𝑖 ∈ 𝐶∞

𝑐 Λ𝑛−𝑘−1(𝐹 ) as desired by a linear combination of members of ℬΛ𝑛−𝑘−1(𝐹 ).

Having constructed �̊�𝐹,𝑆,𝑖 ∈ 𝐶∞
𝑐 Λ𝑛−𝑘−1(𝐹 ) satisfying (7.1), one easily constructs Ξ𝑇,𝐹,𝑆,𝑖 ∈ 𝐶∞Λ𝑛−𝑘−1(𝑇 )

satisfying tr𝐹 Ξ𝑇,𝐹,𝑆,𝑖 = �̊�𝐹,𝑆,𝑖 and such that suppΞ𝑇,𝐹,𝑆,𝑖 has positive distance from all facets of 𝑇 except 𝐹 .
The existence of a constant 𝐶Ξ > 0 satisfying (7.2) follows easily from a scaling argument. �

Any simplex 𝑆 ∈ 𝒯 is generally contained in different faces and full-dimensional simplices of the triangulation.
For technical reasons, for any simplex 𝑆 ∈ 𝒯 of dimension at most 𝑛− 1 we fix an arbitrary face 𝐹𝑆 ∈ 𝒯 with
𝑆 ⊆ 𝐹 and a 𝑛-dimensional simplex 𝑇𝑆 ∈ 𝒯 with 𝐹𝑆 ⊆ 𝑇𝑆 . We also introduce the abbreviations

�̊�𝑆,𝑖 := �̊�𝐹𝑆 ,𝑆,𝑖, Ξ𝑆,𝑖 := Ξ𝑇𝑆 ,𝐹𝑆 ,𝑆,𝑖. (7.3)

However, we make one modification if 𝑆 ∈ 𝒰 : in that case, we require additionally that 𝐹𝑆 ∈ 𝒰 :

𝑆 ∈ 𝒰 =⇒ 𝐹𝑆 ∈ 𝒰 . (7.4)

This enforces that degrees of freedom associated to the boundary part Γ depend on values over facets within
that boundary part.

Remark 7.2. We make generous use of the following identity. For any 𝑆, 𝐹, 𝑇 ∈ 𝒯 with 𝑇 ∈ ∆𝑛(𝒯 ), 𝐹 ∈ ℱ(𝑇 ),
𝑆 ⊆ 𝐹 , and all 𝑖 ∈ 𝐼(𝑆), the differential forms Ξ𝑇,𝐹,𝑆,𝑖 and �̊�𝐹,𝑆,𝑖 satisfy

𝑜(𝐹, 𝑇 )

∫︁

𝐹

�̊�𝐹,𝑆,𝑖 ∧ tr𝐹 𝜔 =

∫︁

𝑇

dΞ𝑇,𝐹,𝑆,𝑖 ∧ 𝜔 + (−1)𝑛−𝑘−1Ξ𝑇,𝐹,𝑆,𝑖 ∧ d𝜔, 𝜔 ∈ 𝐶∞Λ𝑘(𝑇 ).

The significance of that formula is the right-hand side substitutes the left-hand side in lieu of a notion of traces
if 𝜔’s coefficients are very rough functions. The right-hand side is well-defined even if, say, 𝜔 ∈ 𝐻Λ𝑘(𝑇 ), or more
generally, 𝜔 ∈ 𝒲𝑝,𝑞Λ𝑘(𝑇 ) for any 𝑝, 𝑞 ∈ [1,∞].

8. Local Approximation Theory with Partial Boundary Conditions

We define the modified Clément interpolant by

ℐ𝒯 ,𝒰 : 𝐿𝑝Λ𝑘(Ω) → 𝒫Λ𝑘(𝒯 ,𝒰), 𝜔 ↦→
∑︁

𝑆∈𝒯
𝑆/∈𝒰

∑︁

𝑖∈𝐼(𝑆)

𝜑*𝑆,𝑖 (𝑃𝑆𝜔)𝜑𝑆,𝑖. (8.1)

It is evident that ℐ𝒯 ,𝒰 takes values in the finite element space 𝒫Λ𝑘(𝒯 ,𝒰) with homogeneous boundary conditions
along the boundary part Γ. With the tools from the preceding section, one can prove error estimates.
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Theorem 8.1. There exists 𝐶ℐ,𝒰 > 0, depending only on 𝑛, 𝑝, the polynomial degree 𝑟, and the shape measure

of the triangulation, such that the following is true: for all 𝑇 ∈ ∆𝑛(𝒯 ),

‖ℐ𝒯 ,𝒰𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶ℐ,𝒰‖𝜔‖𝐿𝑝Λ𝑘(𝑈*

𝑇,𝒯
), 𝜔 ∈ 𝐿𝑝Λ𝑘(Ω),

and for all 𝑇 ∈ ∆𝑛(𝒯 ) one has

‖𝜔 − ℐ𝒯 ,𝒰𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ ‖𝜔 − ℐ𝒯 𝜔‖𝐿𝑝Λ𝑘(𝑇 )

+ 𝐶ℐ,𝒰

∑︁

𝑆⊆𝑇
𝑆∈𝒰

∑︁

𝑖∈𝐼(𝑆)

(︀

‖𝜔 − 𝑃𝑆𝜔‖𝐿𝑝Λ𝑘(𝑈𝑆,𝒯 ) + ℎ𝑆‖d𝜔 − d𝑃𝑆𝜔‖𝐿𝑝Λ𝑘+1(𝑈𝑆,𝒯 )

)︀

whenever 𝜔 ∈ 𝒲𝑝,𝑝Λ𝑘(Ω,Γ).

Proof. Let 𝑇 ∈ 𝒯 be any 𝑛-dimensional simplex. If 𝑇 has no subsimplex in 𝒰 , then

(ℐ𝒯 ,𝒰𝜔)|𝑇 = (ℐ𝒯 𝜔)|𝑇 , 𝜔 ∈ 𝐿𝑝Λ𝑘(Ω),

and one can simply apply Theorem 6.1.

Let us assume instead that 𝑇 ∈ 𝒯 is an 𝑛-dimensional simplex which has a subsimplex contained in 𝒰 .
Then the first inequality follows similarly as in the proof of Theorem 6.1, so we only need to study the second
inequality. Obviously,

𝜔|𝑇 − (ℐ𝒯 ,𝒰𝜔)|𝑇 = 𝜔|𝑇 − (ℐ𝒯 𝜔)|𝑇 +
∑︁

𝑆⊆𝑇
𝑆∈𝒰

∑︁

𝑖∈𝐼(𝑆)

𝜑*𝑆,𝑖
(︀

(𝑃𝑆𝜔)|𝑇
)︀

𝜑𝑆,𝑖|𝑇

Now recall the identity

𝜑*𝑆,𝑖
(︀

(𝑃𝑆𝜔)|𝑇
)︀

=

∫︁

𝐹𝑆

�̊�𝑆,𝑖 ∧ tr𝑇𝑆 ,𝐹𝑆
(𝑃𝑆𝜔)|𝑇𝑆

,

which is valid because (𝑃𝑆𝜔)|𝑇 ∈ 𝒫𝑟Λ
𝑘(𝑇 ). Now,

∫︁

𝐹𝑆

�̊�𝑆,𝑖 ∧ tr𝑇𝑆 ,𝐹𝑆
(𝑃𝑆𝜔)|𝑇𝑆

= 𝑜(𝐹𝑆 , 𝑇𝑆)

∫︁

𝑇𝑆

(︁

dΞ𝑆,𝑖 ∧ (𝑃𝑆𝜔)|𝑇𝑆
+ (−1)𝑛−𝑘−1Ξ𝑆,𝑖 ∧ d(𝑃𝑆𝜔)|𝑇𝑆

)︁

and since 𝜔 satisfies partial boundary conditions along the boundary part Γ and 𝐹𝑆 ⊆ Γ, we get

∫︁

𝑇𝑆

dΞ𝑆,𝑖 ∧ (𝑃𝑆𝜔)|𝑇𝑆
+

∫︁

𝑇𝑆

(−1)𝑛−𝑘−1Ξ𝑆,𝑖 ∧ d(𝑃𝑆𝜔)|𝑇𝑆

=

∫︁

𝑇𝑆

dΞ𝑆,𝑖 ∧
(︀

(𝑃𝑆𝜔)|𝑇𝑆
− 𝜔

)︀

+

∫︁

𝑇𝑆

(−1)𝑛−𝑘−1Ξ𝑆,𝑖 ∧ d
(︀

(𝑃𝑆𝜔)|𝑇𝑆
− 𝜔

)︀

.

Thus, letting 𝑞 = 𝑝/(𝑝− 1) ∈ [1,∞], we use the integration by parts formula and Hölder’s inequality to find

⃒

⃒𝜑*𝑆,𝑖
(︀

(𝑃𝑆𝜔)|𝑇
)︀⃒

⃒ ≤ ‖dΞ𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘(𝑇𝑆)‖𝑃𝑆𝜔 − 𝜔‖𝐿𝑝Λ𝑘(𝑇𝑆) + ‖Ξ𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘−1(𝑇𝑆)‖d𝑃𝑆𝜔 − d𝜔‖𝐿𝑝Λ𝑘+1(𝑇𝑆).
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Hence we find that

‖𝜔 − ℐ𝒯 ,𝒰𝜔‖𝐿𝑝Λ𝑘(𝑇 )

≤ ‖𝜔 − ℐ𝒯 𝜔‖𝐿𝑝Λ𝑘(𝑇 ) +
∑︁

𝑆⊆𝑇
𝑆∈𝒰

∑︁

𝑖∈𝐼(𝑆)

⃒

⃒𝜑*𝑆,𝑖
(︀

(𝑃𝑆𝜔)|𝑇
)︀⃒

⃒ ‖𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 )

≤ ‖𝜔 − ℐ𝒯 𝜔‖𝐿𝑝Λ𝑘(𝑇 )

+
∑︁

𝑆⊆𝑇
𝑆∈𝒰

∑︁

𝑖∈𝐼(𝑆)

‖dΞ𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘(𝑇𝑆)‖𝜔 − 𝑃𝑆𝜔‖𝐿𝑝Λ𝑘(𝑇𝑆)‖𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 )

+
∑︁

𝑆⊆𝑇
𝑆∈𝒰

∑︁

𝑖∈𝐼(𝑆)

‖Ξ𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘−1(𝑇𝑆)‖d𝜔 − d𝑃𝑆𝜔‖𝐿𝑝Λ𝑘+1(𝑇𝑆)‖𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 )

We recall the bounds

‖𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶Aℎ
𝑛
𝑝
−𝑘

𝑆

‖Ξ𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘−1(𝑇𝑆) ≤ 𝐶Ξℎ
𝑛
𝑞
−𝑛+𝑘+1

𝑆 , ‖dΞ𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘(𝑇𝑆) ≤ 𝐶Ξℎ
𝑛
𝑞
−𝑛+𝑘

𝑆 .

Since 1 = 1/𝑝+ 1/𝑞, putting this together produces the desired inequality. �

Corollary 8.2. Let 𝑚 ∈ [0, 𝑟+1] if 𝒫Λ𝑘(𝒯 ) = 𝒫𝑟Λ
𝑘(𝒯 ) and let 𝑚 ∈ [0, 𝑟] otherwise. Write 𝑙 := max(0,𝑚−1).

Then for all 𝑇 ∈ ∆𝑛(𝒯 ) and all 𝜔 ∈ 𝒲𝑝,𝑝Λ𝑘(Ω,Γ) ∩𝑊𝑚,𝑝Λ𝑘(Ω) one has

‖𝜔 − ℐ𝒯 ,𝒰𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶ℐ,𝒰,0

(︁

ℎ𝑚𝑇 |𝜔|𝑊𝑚,𝑝Λ𝑘(𝑈*

𝑇,𝒯
) + ℎ𝑙+1

𝑇 |d𝜔|𝑊 𝑙,𝑝Λ𝑘+1(𝑈*

𝑇,𝒯
)

)︁

.

Here, 𝐶ℐ,𝒰,0 > 0 depends only on 𝑛, 𝑝, the polynomial degree 𝑟, and the shape measure of the triangulation.

Proof. We observe d𝜔 ∈ 𝑊 𝑙,𝑝Λ𝑘+1(Ω) for 𝜔 ∈ 𝒲𝑝,𝑝Λ𝑘(Ω) ∩ 𝑊𝑚,𝑝Λ𝑘(Ω). The result follows by combining
Theorem 8.1, Inequalities (6.1)–(6.4), and standard estimates. �

9. A Scott-Zhang-type Interpolant

The Clément operator, with or without boundary conditions, has only minimal regularity assumptions on its
argument: the operator is bounded over differential forms whose coefficients are in an 𝐿𝑝 space. Approximation
estimates in terms of the mesh size follow from additional regularity of the original differential form.

However, the quantitative estimates for the Clément operator in either variation require smoothness of the
original differential form over patches of cells, across cell boundaries. By contrast, the Scott-Zhang interpolation
for functions in 𝑊 1,2(Ω) overcomes this restriction and yields approximation error estimates of the same order
as the Clément interpolant but merely requiring piecewise higher smoothness. One consequence is that continu-
ous Lagrange elements have approximation capability equivalent to discontinuous Lagrange elements provided
the function has square-integrable first derivatives. Furthermore, the Scott-Zhang interpolant preserves homo-
geneous partial boundary conditions. In this section we generalize the Scott-Zhang interpolant and the error
estimate to the setting of differential forms.

When 𝑆 ∈ 𝒯 with dim(𝑆) = 𝑛, then we introduce the mapping

𝐾𝑆,𝑖 : 𝐿𝑝Λ𝑘(Ω) → R, 𝜔 ↦→ 𝜑*𝑆,𝑖(𝜔).

By the choice of degrees of freedom in Section 4, these functionals are defined via integration against a smooth
differential form over 𝑆, and hence they are well-defined even for merely integrable differential forms.
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If instead 𝑆 ∈ 𝒯 with dim(𝑆) < 𝑛, then we consider the mapping

𝐾𝑆,𝑖 : 𝒲𝑝,𝑝Λ𝑘(Ω) → R, 𝜔 ↦→

∫︁

𝑇𝑆

dΞ𝑇𝑆 ,𝐹𝑆 ,𝑆,𝑖 ∧ 𝜔 + (−1)𝑛−𝑘+1Ξ𝑇𝑆 ,𝐹𝑆 ,𝑆,𝑖 ∧ d𝜔.

We define the Scott-Zhang interpolant

𝒥𝒯 ,𝒰 : 𝒲𝑝,𝑝Λ𝑘(Ω) → 𝒫Λ𝑘(𝒯 ), 𝜔 ↦→
∑︁

𝑆∈𝒯

∑︁

𝑖∈𝐼(𝑆)

𝐾𝑆,𝑖(𝜔)𝜑𝑆,𝑖. (9.1)

This completes the construction of our Scott-Zhang-type interpolant. We observe that 𝜔 ∈ 𝒲𝑝,𝑝Λ𝑘(Ω,Γ) implies
𝐾𝑆,𝑖(𝜔) = 0 whenever 𝑆 ∈ 𝒰 . Therefore we also have a mapping

𝒥𝒯 ,𝒰 : 𝒲𝑝,𝑝Λ𝑘(Ω,Γ) → 𝒫Λ𝑘(𝒯 ,𝒰).

Next we discuss an error estimate for this approximation operator.

Theorem 9.1. There exists 𝐶𝒥 ,𝒰 > 0, depending only on 𝑛, 𝑝, the polynomial degree 𝑟, and the shape measure

of the triangulation, such that the following is true: for all 𝑇 ∈ ∆𝑛(𝒯 ) we have

‖𝒥𝒯 ,𝒰𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶𝒥 ,𝒰

∑︁

𝑇 ′∈Δ𝑛(𝒯 )
𝑇∩𝑇 ′ ̸=∅

‖𝜔‖𝒲𝑝,𝑝Λ𝑘(𝑇 ′), 𝜔 ∈ 𝒲𝑝,𝑝Λ𝑘(Ω),

and for all 𝑇 ∈ ∆𝑛(𝒯 ) we have

‖𝜔 − 𝒥𝒯 ,𝒰𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶𝒥 ,𝒰

∑︁

𝑇 ′∈Δ𝑛(𝒯 )
𝑇∩𝑇 ′ ̸=∅

‖𝜔 − Π𝑇 ′𝜔‖𝐿𝑝Λ𝑘(𝑇 ′) + ℎ𝑇 ′‖d𝜔 − dΠ𝑇 ′𝜔‖𝐿𝑝Λ𝑘+1(𝑇 ′)

whenever 𝜔 ∈ 𝒲𝑝,𝑝Λ𝑘(Ω,Γ).

Proof. The first inequality is easily seen, so we focus on the second inequality. Let 𝑇 ∈ 𝒯 be any 𝑛-dimensional
simplex. We find that

𝜔|𝑇 − (𝒥𝒯 ,𝒰𝜔)|𝑇 = 𝜔|𝑇 − Π𝑇𝜔 + Π𝑇𝜔 −
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

𝐾𝑆,𝑖(𝜔)𝜑𝑆,𝑖|𝑇

= 𝜔|𝑇 − Π𝑇𝜔 +
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

𝜑*𝑆,𝑖(Π𝑇𝜔)𝜑𝑆,𝑖|𝑇 −
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

𝐾𝑆,𝑖(𝜔)𝜑𝑆,𝑖|𝑇 .

Hence

‖𝜔 − 𝒥𝒯 ,𝒰𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ ‖𝜔 − Π𝑇𝜔‖𝐿𝑝Λ𝑘(𝑇 ) +
∑︁

𝑆⊆𝑇

∑︁

𝑖∈𝐼(𝑆)

⃒

⃒𝜑*𝑆,𝑖(Π𝑇𝜔) −𝐾𝑆,𝑖(𝜔)
⃒

⃒ ‖𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 ).

We study the terms in the second sum in closer detail. The functionals 𝜑*𝑇,𝑖 and 𝐾𝑇,𝑖 are the same and thus

𝜑*𝑇,𝑖(Π𝑇𝜔) −𝐾𝑇,𝑖(𝜔) = 𝜑*𝑇,𝑖(Π𝑇𝜔 − 𝜔|𝑇 ).

With Hölder’s inequality, a scaling argument and Theorem 5.2 we thus get the upper bound

⃒

⃒𝜑*𝑇,𝑖(Π𝑇𝜔) −𝐾𝑇,𝑖(𝜔)
⃒

⃒ ‖𝜑𝑇,𝑖‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶ℎ
𝑛(𝑝−1)

𝑝
−𝑛+𝑘

𝑇 ℎ
𝑛
𝑝
−𝑘

𝑇 ‖Π𝑇𝜔 − 𝜔‖𝐿𝑝Λ𝑘(𝑇 ).
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We dedicate our attention to the degrees of freedom that are associated to proper subsimplices 𝑆 of 𝑇 . Here,
the functionals 𝜑*𝑆,𝑖 and 𝐾𝑆,𝑖 generally differ. We recall that for any 𝐹 ∈ ℱ(𝑇 ) with 𝑆 ⊆ 𝐹 we have

𝜑*𝑆,𝑖(Π𝑇𝜔) =

∫︁

𝐹

�̊�𝐹,𝑆,𝑖 ∧ tr𝑇,𝐹 Π𝑇𝜔 =

∫︁

𝑇

dΞ𝑇,𝐹,𝑆,𝑖 ∧ Π𝑇𝜔 + (−1)𝑛−𝑘+1Ξ𝑇,𝐹,𝑆,𝑖 ∧ dΠ𝑇𝜔.

On the other hand,

𝐾𝑆,𝑖(𝜔) =

∫︁

𝑇𝑆

dΞ𝑇𝑆 ,𝐹𝑆 ,𝑆,𝑖 ∧ 𝜔𝑇 + (−1)𝑛−𝑘+1Ξ𝑇𝑆 ,𝐹𝑆 ,𝑆,𝑖 ∧ d𝜔𝑇 .

The simplicial complex 𝒯 is face-connected since it triangulates a domain. Therefore there exists a sequence
𝑇0, 𝑇1, . . . , 𝑇𝑁 of 𝑛-dimensional simplices of 𝒯 without repetitions such that 𝑇0 = 𝑇𝑆 and 𝑇𝑁 = 𝑇 and such
that for all 1 ≤ 𝑗 ≤ 𝑁 there exist facets 𝐹𝑗 := 𝑇𝑗 ∩ 𝑇𝑗−1 for which 𝑆 ⊆ 𝐹𝑗 . Write 𝐹0 := 𝐹𝑆 and 𝐹𝑁+1 := 𝐹 . We
utilize the technique of telescope sum and find

𝜑*𝑆,𝑖(Π𝑇𝜔) −𝐾𝑆,𝑖(𝜔)

=

∫︁

𝐹

�̊�𝐹,𝑆,𝑖 ∧ tr𝑇,𝐹 Π𝑇𝜔 −𝐾𝑆,𝑖(𝜔)

=

∫︁

𝐹𝑁+1

�̊�𝐹𝑁+1,𝑆,𝑖 ∧ tr𝑇𝑁 ,𝐹𝑁+1
Π𝑇𝑁

𝜔 +

𝑁
∑︁

𝑗=0

(︁

𝜑*𝑆,𝑖(Π𝑇𝑗
𝜔) − 𝜑*𝑆,𝑖(Π𝑇𝑗

𝜔)
)︁

−𝐾𝑆,𝑖(𝜔)

=

∫︁

𝐹𝑁+1

�̊�𝐹𝑁+1,𝑆,𝑖 ∧ tr𝑇𝑁 ,𝐹𝑁+1
Π𝑇𝑁

𝜔 −
𝑁
∑︁

𝑗=0

∫︁

𝐹𝑗+1

�̊�𝐹𝑗+1,𝑆,𝑖 ∧ tr𝑇𝑗 ,𝐹𝑗+1 Π𝑇𝑗
𝜔

+
𝑁
∑︁

𝑗=0

∫︁

𝐹𝑗

�̊�𝐹𝑗 ,𝑆,𝑖 ∧ tr𝑇𝑗 ,𝐹𝑗
Π𝑇𝑗

𝜔 −𝐾𝑆,𝑖(𝜔)

=
𝑁
∑︁

𝑗=1

(︃

∫︁

𝐹𝑗

�̊�𝐹𝑗 ,𝑆,𝑖 ∧ tr𝑇𝑗 ,𝐹𝑗
Π𝑇𝑗

𝜔 −

∫︁

𝐹𝑗

�̊�𝐹𝑗 ,𝑆,𝑖 ∧ tr𝑇𝑗−1,𝐹𝑗
Π𝑇𝑗−1

𝜔

)︃

+

∫︁

𝐹0

�̊�𝐹0,𝑆,𝑖 ∧ tr𝑇0,𝐹0 Π𝑇0𝜔 −𝐾𝑆,𝑖(𝜔).

From the definition of 𝐾𝑆,𝑗 we get

𝐾𝑆,𝑖(𝜔) =

∫︁

𝑇0

dΞ𝑇0,𝐹0,𝑆,𝑖 ∧ 𝜔 + (−1)𝑛−𝑘+1Ξ𝑇0,𝐹0,𝑆,𝑖 ∧ d𝜔.

Aside from that, we know

∫︁

𝐹0

�̊�𝐹0,𝑆,𝑖 ∧ tr𝑇0,𝐹0
Π𝑇0

𝜔 =

∫︁

𝑇0

dΞ𝑇0,𝐹0,𝑆,𝑖 ∧ Π𝑇0
𝜔 + (−1)𝑛−𝑘+1Ξ𝑇0,𝐹0,𝑆,𝑖 ∧ dΠ𝑇0

𝜔.

Thus it becomes apparent that

∫︁

𝐹0

�̊�𝐹0,𝑆,𝑖 ∧ tr𝑇0,𝐹0 Π𝑇0𝜔 −𝐾𝑆,𝑖(𝜔)

=

∫︁

𝑇0

dΞ𝑇0,𝐹0,𝑆,𝑖 ∧ (Π𝑇0𝜔 − 𝜔) + (−1)𝑛−𝑘+1Ξ𝑇0,𝐹0,𝑆,𝑖 ∧ d (Π𝑇0𝜔 − 𝜔) .
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Therefore, writing 𝑞 := 𝑝/(𝑝− 1),

|𝜑*𝑆,𝑖(Π𝑇0
𝜔) −𝐾𝑆,𝑖(𝜔)|

≤ ‖dΞ𝑇0,𝐹0,𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘(𝑇0)‖𝜔 − Π𝑇0𝜔‖𝐿𝑝Λ𝑘(𝑇0) + ‖Ξ𝑇0,𝐹0,𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘−1(𝑇0)‖d𝜔 − dΠ𝑇0𝜔‖𝐿𝑝Λ𝑘+1(𝑇0)

≤ 𝐶Ξℎ
𝑛(𝑝−1)

𝑝
−𝑛+𝑘

𝑆 ‖𝜔 − Π𝑇0𝜔‖𝐿𝑝Λ𝑘(𝑇0) + 𝐶Ξℎ
𝑛(𝑝−1)

𝑝
−𝑛+𝑘+1

𝑆 ‖d𝜔 − dΠ𝑇0𝜔‖𝐿𝑝Λ𝑘+1(𝑇0).

Now consider any 1 ≤ 𝑗 ≤ 𝑁 . By the equivalence of the boundary integrals with an integration by parts formula
we find

∫︁

𝐹𝑗

�̊�𝐹𝑗 ,𝑆,𝑖 ∧ tr𝑇𝑗 ,𝐹𝑗
Π𝑇𝑗

𝜔 −

∫︁

𝐹𝑗

�̊�𝐹𝑗 ,𝑆,𝑖 ∧ tr𝑇𝑗−1,𝐹𝑗
Π𝑇𝑗−1

𝜔

= 𝑜(𝐹𝑗 , 𝑇𝑗)

∫︁

𝑇𝑗

dΞ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖 ∧ Π𝑇𝑗
𝜔 + (−1)𝑛−𝑘+1Ξ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖 ∧ dΠ𝑇𝑗

𝜔

− 𝑜(𝐹𝑗 , 𝑇𝑗−1)

∫︁

𝑇𝑗−1

dΞ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖 ∧ Π𝑇𝑗−1
𝜔 + (−1)𝑛−𝑘+1Ξ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖 ∧ dΠ𝑇𝑗−1

𝜔.

Let Ξ𝐹𝑗 ,𝑆,𝑖 ∈ 𝐿∞Λ𝑛−𝑘−1(Ω) with Ξ𝐹𝑗 ,𝑆,𝑖|𝑇𝑗
= Ξ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖 and Ξ𝐹𝑗 ,𝑆,𝑖|𝑇𝑗−1

= Ξ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖 and vanishing on all other

𝑛-simplices of 𝒯 . One sees that Ξ𝐹𝑗 ,𝑆,𝑖 ∈ 𝒲∞,∞Λ𝑛−𝑘−1(Ω) with support in the interior of 𝑇𝑗 ∪ 𝑇𝑗−1. So an
integration by parts reveals that

∫︁

𝑇𝑗∪𝑇𝑗−1

dΞ𝐹𝑗 ,𝑆,𝑖 ∧ 𝜔 + (−1)𝑛−𝑘+1Ξ𝐹𝑗 ,𝑆,𝑖 ∧ d𝜔 = 0.

Consequently

∫︁

𝑇𝑗

dΞ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖 ∧ 𝜔 + (−1)𝑛−𝑘+1Ξ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖 ∧ d𝜔

+

∫︁

𝑇𝑗−1

dΞ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖 ∧ 𝜔 + (−1)𝑛−𝑘+1Ξ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖 ∧ d𝜔 = 0.

Moreover, 𝑜(𝐹𝑗 , 𝑇𝑗−1) = −𝑜(𝐹𝑗 , 𝑇𝑗), because the two 𝑛-simplices induce opposing orientations on 𝐹 . One derives

𝑜(𝐹𝑗 , 𝑇𝑗)

∫︁

𝑇𝑗

dΞ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖 ∧ 𝜔 + (−1)𝑛−𝑘+1Ξ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖 ∧ d𝜔

− 𝑜(𝐹𝑗 , 𝑇𝑗−1)

∫︁

𝑇𝑗−1

dΞ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖 ∧ 𝜔 + (−1)𝑛−𝑘+1Ξ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖 ∧ d𝜔 = 0.

We combine our calculations and obtain

∫︁

𝐹𝑗

�̊�𝐹𝑗 ,𝑆,𝑖 ∧ tr𝑇𝑗 ,𝐹𝑗
Π𝑇𝑗

𝜔 −

∫︁

𝐹𝑗

�̊�𝐹𝑗 ,𝑆,𝑖 ∧ tr𝑇𝑗−1,𝐹𝑗
Π𝑇𝑗−1𝜔

= 𝑜(𝐹𝑗 , 𝑇𝑗)

∫︁

𝑇𝑗

dΞ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖 ∧
(︀

Π𝑇𝑗
𝜔 − 𝜔

)︀

+ (−1)𝑛−𝑘+1Ξ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖 ∧ d
(︀

Π𝑇𝑗
𝜔 − 𝜔

)︀

− 𝑜(𝐹𝑗 , 𝑇𝑗−1)

∫︁

𝑇𝑗−1

dΞ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖 ∧
(︀

Π𝑇𝑗−1
𝜔 − 𝜔

)︀

+ (−1)𝑛−𝑘+1Ξ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖 ∧ d
(︀

Π𝑇𝑗−1
𝜔 − 𝜔

)︀

.
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We use Hölder’s inequality again and can summarize
⃒

⃒

⃒

⃒

⃒

∫︁

𝐹𝑗

�̊�𝐹𝑗 ,𝑆,𝑖 ∧ tr𝑇𝑗 ,𝐹𝑗
Π𝑇𝑗

𝜔 −

∫︁

𝐹𝑗

�̊�𝐹𝑗 ,𝑆,𝑖 ∧ tr𝑇𝑗−1,𝐹𝑗
Π𝑇𝑗−1𝜔

⃒

⃒

⃒

⃒

⃒

≤ ‖dΞ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘(𝑇𝑗)‖𝜔 − Π𝑇𝑗
𝜔‖𝐿𝑝Λ𝑘(𝑇𝑗)

+ ‖Ξ𝑇𝑗 ,𝐹𝑗 ,𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘−1(𝑇𝑗)‖d𝜔 − dΠ𝑇𝑗
𝜔‖𝐿𝑝Λ𝑘+1(𝑇𝑗)

+ ‖dΞ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘(𝑇𝑗−1)‖𝜔 − Π𝑇𝑗−1
𝜔‖𝐿𝑝Λ𝑘(𝑇𝑗−1)

+ ‖Ξ𝑇𝑗−1,𝐹𝑗 ,𝑆,𝑖‖𝐿𝑞Λ𝑛−𝑘−1(𝑇𝑗−1)‖d𝜔 − dΠ𝑇𝑗−1
𝜔‖𝐿𝑝Λ𝑘+1(𝑇𝑗−1)

≤ 𝐶Ξ

(︂

ℎ
𝑛
𝑞
−𝑛+𝑘

𝑆 ‖𝜔 − Π𝑇𝑗
𝜔‖𝐿𝑝Λ𝑘(𝑇𝑗) + ℎ

𝑛
𝑞
−𝑛+𝑘+1

𝑆 ‖d𝜔 − dΠ𝑇𝑗
𝜔‖𝐿𝑝Λ𝑘+1(𝑇𝑗)

+ ℎ
𝑛
𝑞
−𝑛+𝑘

𝑆 ‖𝜔 − Π𝑇𝑗−1
𝜔‖𝐿𝑝Λ𝑘(𝑇𝑗−1) + ℎ

𝑛
𝑞
−𝑛+𝑘+1

𝑆 ‖d𝜔 − dΠ𝑇𝑗−1
𝜔‖𝐿𝑝Λ𝑘+1(𝑇𝑗−1)

)︂

.

With those estimates in place, we recall from Theorem 5.2 that

‖𝜑𝑆,𝑖‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶Aℎ
𝑛
𝑝
−𝑘

𝑆 .

The desired estimate now follows. �

Corollary 9.2. Let 𝑚 ∈ [0, 𝑟+1] if 𝒫Λ𝑘(𝒯 ) = 𝒫𝑟Λ
𝑘(𝒯 ) and let 𝑚 ∈ [0, 𝑟] otherwise. Write 𝑙 := max(0,𝑚−1).

Then for all 𝑇 ∈ ∆𝑛(𝒯 ) we have

‖𝜔 − 𝒥𝒯 ,𝒰𝜔‖𝐿𝑝Λ𝑘(𝑇 ) ≤ 𝐶𝒥 ,𝒰,0

∑︁

𝑇 ′∈Δ𝑛(𝒯 )
𝑇 ′∩𝑇 ̸=∅

(︀

ℎ𝑚𝑇 ′ |𝜔|𝑊𝑚,𝑝Λ𝑘(𝑇 ′) + ℎ𝑙+1
𝑇 ′ |d𝜔|𝑊 𝑙,𝑝Λ𝑘+1(𝑇 ′)

)︀

whenever

𝜔 ∈ 𝒲𝑝,𝑝Λ𝑘(Ω) ∩
⨁︁

𝑇∈Δ𝑛(𝒯 )

𝑊𝑚,𝑝Λ𝑘(𝑇 ).

Here, 𝐶𝒥 ,𝒰,0 > 0 depends only on 𝑛, 𝑝, the polynomial degree 𝑟, and the shape measure of the triangulation.

Proof. We observe d𝜔|𝑇 ∈ 𝑊 𝑙,𝑝Λ𝑘+1(𝑇 ) for 𝜔 ∈ 𝒲𝑝,𝑝Λ𝑘(Ω) and 𝜔|𝑇 ∈ 𝑊𝑚,𝑝Λ𝑘(𝑇 ) with 𝑇 ∈ ∆𝑛(𝒯 ). The
results follows by combining Theorem 9.1, Inequalities (6.1)–(6.4), and standard estimates as in previous
corollaries. �

Remark 9.3. The original Scott-Zhang interpolant was only defined for scalar functions in the Sobolev spaces
𝑊 𝑠,𝑝(Ω) for 𝑝 > 1 and 𝑠 > 1

𝑝 . Under those conditions on the parameters 𝑠 and 𝑝, traces onto facets are well-

defined. With regard to scalar functions, we instead constrain ourselves to the case 𝑊 𝑠,𝑝(Ω) with 𝑠 ≥ 1, as
we approach boundary traces only indirectly via an integration by parts formula. That approach generalizes
naturally to differential forms. We do not attempt to generalize the lower regularity setting to differential forms.

10. Applications

In this section, we illustrate our results in the setting of three-dimensional vector analysis. We focus on the
Scott-Zhang interpolant and 𝐿2 theory. Let Ω ⊆ R3 be a Lipschitz domain triangulated by a triangulation 𝒯 .
Let Γ ⊆ 𝜕Ω be a two-dimensional submanifold of the boundary triangulated by a subtriangulation 𝒰 ⊂ 𝒯 .

We let L2(Ω) be the space of square-integrable vector fields over Ω, and we let H𝑚(Ω) be the space of vector
fields with coefficients in 𝑊𝑚,2(Ω). We write

H(curl) :=
{︀

u ∈ L2(Ω) | curlu ∈ L2(Ω)
}︀

, H(div) :=
{︀

u ∈ L2(Ω) | div u ∈ 𝐿2(Ω)
}︀

.
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We introduce spaces with boundary conditions along Γ. We write u ∈ H(curl,Γ) if u ∈ H(curl) satisfies
∫︁

Ω

⟨curlu, 𝜑⟩d𝑥 =

∫︁

Ω

⟨u, curl𝜑⟩d𝑥

for all vector fields 𝜑 ∈ 𝐶∞(Ω)3 vanishing near 𝜕Ω ∖ Γ. Similarly, we write u ∈ H(div,Γ) if u ∈ H(div) satisfies
∫︁

Ω

(div u)𝜑 d𝑥 = −

∫︁

Ω

⟨u, grad𝜑⟩d𝑥

for all functions 𝜑 ∈ 𝐶∞(Ω) vanishing near 𝜕Ω ∖ Γ. Above, ⟨·, ·⟩ denotes the Euclidean inner product of 3-
dimensional vectors.

We let Nedfst
𝑟 (𝒯 ) and Nedsnd

𝑟 (𝒯 ) be the curl-conforming Nédélec spaces of first and second kind, respec-
tively, and BDM𝑟(𝒯 ) and RT𝑟(𝒯 ) be the divergence-conforming Brezzi-Douglas-Marini space and the Raviart-
Thomas space, respectively, of degree 𝑟 over 𝒯 . These finite element spaces contain the polynomial vector fields
up to degree 𝑟. We set

Nedfst
𝑟 (𝒯 ,𝒰) := H(curl,Γ) ∩ Nedfst

𝑟 (𝒯 ), Nedsnd
𝑟 (𝒯 ,𝒰) := H(curl,Γ) ∩ Nedsnd

𝑟 (𝒯 ),

BDM𝑟(𝒯 ,𝒰) := H(div,Γ) ∩ BDM𝑟(𝒯 ), RT𝑟(𝒯 ,𝒰) := H(div,Γ) ∩ RT𝑟(𝒯 ).

These are the finite element spaces with boundary conditions along Γ. We can equally define them by setting
the degrees of freedom associated to simplices in 𝒰 to zero.

The results in this article include the following theorems as a special case.

Theorem 10.1. There exist linear mappings

𝒥BDM𝑟(𝒯 ,𝒰) : H(div) → BDM𝑟(𝒯 ),

such that for 𝑚 ∈ [0, 𝑟 + 1], 𝑙 ∈ [0, 𝑟], all tetrahedra 𝑇 ∈ 𝒯 , and all u ∈ H(div,Γ) we have

𝒥BDM𝑟(𝒯 ,𝒰)𝑢 ∈ BDM𝑟(𝒯 ,𝒰),

‖u − 𝒥BDM𝑟(𝒯 ,𝒰)u‖L2(𝑇 ) ≤ 𝐶
∑︁

𝑇 ′∈𝒯
dim(𝑇 ′)=3
𝑇 ′∩𝑇 ̸=∅

ℎ𝑚𝑇 ′‖u‖H𝑚(𝑇 ′) + ℎ𝑙+1
𝑇 ′ ‖div u‖𝑊 𝑙,2(𝑇 ′)

whenever the right-hand side is well-defined. Here, the constant 𝐶 > 0 depends only on the polynomial degree 𝑟
and the shape measure of 𝒯 .

Theorem 10.2. There exist linear mappings

𝒥RT𝑟(𝒯 ,𝒰) : H(div) → RT𝑟(𝒯 ),

such that for 𝑚 ∈ [0, 𝑟 + 1], 𝑙 ∈ [0, 𝑟 + 1], all tetrahedra 𝑇 ∈ 𝒯 ,and all u ∈ H(div,Γ) we have

𝒥RT𝑟(𝒯 ,𝒰)𝑢 ∈ RT𝑟(𝒯 ,𝒰),

‖u − 𝒥RT𝑟(𝒯 ,𝒰)u‖L2(𝑇 ) ≤ 𝐶
∑︁

𝑇 ′∈𝒯
dim(𝑇 ′)=3
𝑇 ′∩𝑇 ̸=∅

ℎ𝑚𝑇 ′‖u‖H𝑚(𝑇 ′) + ℎ𝑙+1
𝑇 ′ ‖div u‖𝑊 𝑙,2(𝑇 ′)

whenever the right-hand side is well-defined. Here, the constant 𝐶 > 0 depends only on the polynomial degree 𝑟
and the shape measure of 𝒯 .

Theorem 10.3. There exist linear mappings

𝒥Nedfst
𝑟 (𝒯 ,𝒰) : H(curl) → Nedfst

𝑟 (𝒯 ),
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such that for 𝑚 ∈ [0, 𝑟 + 1], 𝑙 ∈ [0, 𝑟 + 1], all tetrahedra 𝑇 ∈ 𝒯 , and all u ∈ H(curl,Γ) we have

𝒥Nedfst
𝑟 (𝒯 ,𝒰)𝑢 ∈ Nedfst

𝑟 (𝒯 ,𝒰),

‖u − 𝒥Nedfst
𝑟 (𝒯 ,𝒰)u‖L2(𝑇 ) ≤ 𝐶

∑︁

𝑇 ′∈𝒯
dim(𝑇 ′)=3
𝑇 ′∩𝑇 ̸=∅

ℎ𝑚𝑇 ′‖u‖H𝑚(𝑇 ′) + ℎ𝑙+1
𝑇 ′ ‖ curlu‖H𝑙(𝑇 ′)

whenever the right-hand side is well-defined. Here, the constant 𝐶 > 0 depends only on the polynomial degree 𝑟
and the shape measure of 𝒯 .

Theorem 10.4. There exist linear mappings

𝒥Nedsnd
𝑟 (𝒯 ,𝒰) : H(curl) → Nedsnd

𝑟 (𝒯 ),

such that for 𝑚 ∈ [0, 𝑟 + 1], 𝑙 ∈ [0, 𝑟], all tetrahedra 𝑇 ∈ 𝒯 , and all u ∈ H(curl,Γ) we have

𝒥Nedsnd
𝑟 (𝒯 ,𝒰)𝑢 ∈ Nedsnd

𝑟 (𝒯 ,𝒰),

‖u − 𝒥Nedsnd
𝑟 (𝒯 ,𝒰)u‖L2(𝑇 ) ≤ 𝐶

∑︁

𝑇 ′∈𝒯
dim(𝑇 ′)=3
𝑇 ′∩𝑇 ̸=∅

ℎ𝑚𝑇 ′‖u‖H𝑚(𝑇 ′) + ℎ𝑙+1
𝑇 ′ ‖ curlu‖H𝑙(𝑇 ′)

whenever the right-hand side is well-defined. Here, the constant 𝐶 > 0 depends only on the polynomial degree 𝑟
and the shape measure of 𝒯 .
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