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Abstract

A landmark result from rational approximation theory states that x'/? on [0,1] can be
approximated by a type-(n,n) rational function with root-exponential accuracy. Motivated
by the recursive optimality property of Zolotarev functions (for the square root and sign
functions), we investigate approximating #'/? by composite rational functions of the form
rr(x, 1 (x, rp—2(- - (z,71(x,1))))). While this class of rational functions ceases to contain
the minimax (best) approximant for p > 3, we show that it achieves approximately pth-root
exponential convergence with respect to the degree. Moreover, crucially, the convergence
is doubly exponential with respect to the number of degrees of freedom, suggesting that
composite rational functions are able to approximate x'/? and related functions (such as |z|
and the sector function) with exceptional efficiency.
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1. Introduction

(Classical results in polynomial and rational approximation theory concern the conver-
gence of an approximant to a given function f as the degree of the approximant grows.
In this paper we focus on approximants to the pth root function z'/? that take a compos-
ite form. Composing rational functions is an efficient way of generating a rational function
r(z) = ri(---ro(ri(z))) of high degree: if each r; is of type (m, m), then r is of type (mF, mF),
even though it is expressed by a small number O(mk) of degrees of freedom. By choosing
each r; appropriately, one can often obtain a function r that approximates a desired function
in a wide domain of interest.

There is no reason to expect—and it is generally not true—that ry(---ro(ri(x))) can
express the minimax rational approximant of a given type, say (m* m*), to a given func-
tion. However, there is a remarkable property of the minimax rational approximants to the

function sign(x) = z/|x| on [-1,—0] U [§,1] for 0 < 6 < 1 (called Zolotarev functions):
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appropriately composing Zolotarev functions gives another Zolotarev function of higher de-
gree. In other words, the class of composite rational functions r(z) = ri(---ra(ri(z))),
with each r; of type (m,m), contains the type-(m*, m*) minimax approximant to the sign
function [19, 15, 4, 14]. Moreover, for a fixed ¢, the convergence of Zolotarev functions is
exponential in the degree. Since the degree is m*, and the number of parameters necessary
to express 7 is d ~ 2km, it follows that the convergence is exp(—m*) = exp(—exp(Cd)), a
double-exponential convergence rate. This paper is about approximating the pth root x'/?,
for which the above minimax optimality under composition does not hold. Nonetheless,
our main result constructs composite rational approximants to x'/?, which are linked to
Zolotarev functions and inherit some of their properties [8].

Functions related to the sign function, such as |z| (via |z| = z/sign(z)) and /z (via
|z| ~ p(2?)/q(2?) then /7 ~ p(z)/q(x)) can similarly be approximated by composite rational
functions. Gawlik [7] does this for the square root and shows that a composite rational
function yields the minimax rational approximant (in the relative sense) on intervals [J, 1] C
(0,1], and that the approximation extends far into the complex plane. This observation
generalizes earlier work on rational approximation of the square root with optimally scaled
Newton iterations [2, 15, 19, 23]. Moreover, an extension was derived in [8], which shows
that the pth root can be approximated efficiently on intervals [, 1] C (0, 1], although not
with minimax quality.

Clearly, in the above papers the origin is excluded from the domain, as the functions have
a singularity at z = 0. However, a landmark result from rational approximation theory [9, 21]
states that 2° (for any real 8 > 0) on [0, 1] can be approximated (in the absolute sense) by
a type-(n,n) rational function with root-exponential accuracy. One might wonder, can this
be done with a composite rational function? This is the question we address in this paper.
We focus on the case in which = 1/p with p > 2 an integer.

We show that a rational function of the form r(x) = ri(z, ri—1 (2, 7p—2(- - - (x,71(2, 1)))))
can approximate z'/? on [0, 1] with superalgebraic accuracy, with close to pth root-exponential
convergence. Moreover—and crucially—the convergence is doubly exponential with respect
to the number of degrees of freedom. That is, the error is O(exp(—c; exp(cad))) for some
constants c¢1,cs > 0, where d is the number of parameters needed to express the rational
function. By “number of parameters” we mean d = Zle m; + ¢; + 1 if r; has type (my, £;)
forv=1,2,...,k, so that d reflects the cost of evaluating r at a matrix argument.

Clearly, our result implies that any rational power of x can be approximated by a compos-
ite rational function. Moreover, since |r(z) —z'/?| < € on [0, 1] implies |r(z/s) — (z/s)/?| < ¢
on [0, s] for any s > 0, hence |s'/Pr(z/s) — x'/?| < s'/P¢, our results also show that any ra-
tional power can be approximated efficiently on [0, s| by a composite rational function. In
addition, our approximants to z'/? immediately lead to approximants to the p-sector function
sect,(2) = 2/(2P)'/P, which takes the value z/|z| on the p line segments exp(27ij/p)[0, c0),
7 =20,1,...,p — 1. Such approximants lead to algorithms for the matrix sector function,
which has been used in systems theory [20]. They can also form the basis of a spectral
divide-and-conquer method for computing a matrix eigenvalue decomposition, generalizing
the algorithm in [14] for matrices with nonreal eigenvalues.



Summary of Results. To summarize our results, let us introduce some terminology. We
say that a univariate rational function r(x) = p(x)/q(x) is of type (m,¥) if p and ¢ are
polynomials of degrees at most m and /¢, respectively. We denote the set of all such rational
functions by R,,,. We say that a bivariate rational function r(x,y) is of type (m, ¢) if r(x, x)
is of type (m, ¢). We say that a univariate rational function r is (k, m, ¢)-composite if r is a
composition of k rational functions r;(x,y), i = 1,2,..., k, each of type (m,):

r(@) = re(e, rpaa (2, rea (- (2,m(2,1))))). (1)

In this paper we only deal with two cases, (m,?) = (p,p— 1) and (m,¢) = (1,p). Here is
the main result of this paper.

Theorem 1.1. Let p > 2 be an integer. There exists a positive constant N depending on p
such that for every integer n > N, there exists a (|log,n] + 1,p,p — 1)-composite rational
function r of type (n,n — 1) such that

max |r(z) — 2P| < 2exp(—bn®), (2)
z€[0,1]

where b = i and

log <#) log 2
c= ” . (3)
log <ﬁ> log p

Note that when p =2, ¢ = %, and as p — o0, ¢ ~

1
logp*

Let us comment on the theorem. The bound (2) shgwipthat by using a ([log, n|+1,p,p—
1)-composite rational function we can approximate the pth root with “1/cth root”-(nearly
pth root) exponential accuracy with respect to the degree, which is suboptimal unless p = 2
(in which case a composite rational function on [4, 1] is optimal in the relative sense).

However, the result is still striking in the following sense: the number of degrees of
freedom used to express 7 is just O(pk) for n ~ p* (see (13)-(14)), and therefore with respect
to the degrees of freedom d, the convergence is

max [r(z) — #!/?| < 2exp(~bp™), (4)
z€[0,1]
indicating a double-exponential convergence with respect to d.

As a byproduct of our analysis, we will obtain analogous results for composite rational

approximation of the p-sector function sect,(z) = z/(z?)*/? on the set S, C C given by

Sy = {we®™ " |z €[0,1], j € {1,2,...,p}}. (5)
We will also consider the subset S, , of S, excluding the origin
Spa = {ae®™ " |z € fa,1], j € {1,2,... . p}}. (6)

We say that a (k,m, {)-composite rational function (1) is pure if the functions r;(z,y)
appearing in (1) are univariate:

r(@) = ri(ri-a (- (r(2))))-
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Corollary 1.1. Let p > 2 be an integer and o € (0,1). There exists a positive constant N
depending on p such that for every integer n > N, there exist pure (|log,n], 1, p)-composite
rational functions r and q of type (n — p + 1,n) such that

max |z (r(z) — secty(2))] < 2exp(—bn°), (7)

where b and ¢ are as in Theorem 1.1, and

max |q(z) — sect,(2)| < /dexp(—gng)a (8)
2€8p,a
~ log —2-\ 1 -
where a4 = ﬁ’ b=log?2 < 1ogp;> -1 gnd ¢ = i’gi.

It is worth noting that the two rational functions r, q are generally different—they coin-
cide for a particular value of a. The error in (7) is measured in a weighted norm, which is
natural in view of the fact that sect,(z) is discontinuous at z = 0. When p = 2 and z € Sy,
zsect,(z) = |z| and ¢ = 3, so (7) recovers the root-exponential convergence of rational ap-
proximants to |z] on [—1, 1] [22, Ch. 25]. By contrast, (8) shows that a better bound holds
for the absolute error if one excludes the neighborhood of the origin. When p =2, ¢ =1
and (8) recovers the exponential convergence of Zolotarev functions to the sign function on

-1, —a| U |a, 1] |1, 3|. Note that b decays like a negative power of lo Lasa—0.
[—1, —a] Ula, 1] [1, 3] y g p g~

Organization. This paper is organized as follows. In Section 2, we review some theory
from [8] concerning composite rational approximants of the pth root on positive real intervals.
In Section 3, we study the behavior of these approximants near the origin. We then prove
Theorem 1.1 and Corollary 1.1 in Section 4, and we illustrate our results numerically in
Section 5.

2. Composite rational approximation of the pth root

To approximate x'/? on an interval [a?, 1] C (0, 1], Gawlik [8] considers the recursively
defined rational function

Jrr1(@) = fio(@) P <—p,04k, \7_) , folz) =1, (9)

fr()
(6773

Ahe1 = rAm,é (Oéi, g, \]7_) ,

where 7, o(x,a, v/ - ) is (a rescaling of) the relative minimax rational approximant of type
(m,¢) € Ng x Ny \ {(0,0)} on the interval [o®, 1]:

ap = a, (10)

R 1+«
Tm,g(x,Oé, \7_> = ( 2% > Tm,Z<x70‘7 %)7



where
r(z) —2'/P

pyr (11)

Tme( - 0,/ - ) =argmin max
T‘ERmJ :L‘E[ap,l]

Note that fi is a composite rational function of the form (1). Gawlik shows that fi(x) is a
rapidly convergent approximant to the pth root on [a?,1]. With k recursions, the maximum
relative error | fi(z) — 2'/?|/|2'/?| on [a®,1] decays double exponentially in k: it is bounded
above by ¢ exp(—ca(m~+£+1)) for some ¢, ¢y > 0 depending on m, £, p, and «. Importantly,
these constants depend very weakly on «; the analysis below will implicitly show that when
(m,£) = (1,0), ¢; is independent of o and ¢y decays like a negative power of logé as a — 0,
just like b in (8).

Given that (9) is an approximant on [a?, 1], which is an interval that excludes the singular-
ity at = 0, a natural question arises: can we approximate on [0, 1]? Intuitively, the function
is still continuous at = 0 (unlike e.g. the sign or sector function) with 0'/? = 0, and hence
it is possible to approximate z'/? on the whole interval [0, 1]. Indeed Stahl [21] shows that
2'/? on [0, 1] can be approximated by a type-(n,n) rational function with root-exponential
accuracy (we refer to [6, 16] for general results on classical rational approximation theory).
Can a highly efficient rational approximant be constructed based on recursion as in (9)? It
is important to note that we will necessarily switch to the (more natural) metric of absolute
error |r(z) — x/?| rather than the relative error |r(z) — x/?|/|2'/?| for this purpose.

It turns out that the rational function (9) does a good job approximating on [0, 1], when
« is chosen carefully: when it is too small, the error is large on [o®, 1] (in fact it is maximal
at © = 1 [8]). Conversely if « is too large, the error is large on [0,a”] (in fact it is O(«)
at © = 0, as we show below). A major task undertaken in what follows is to choose « so
that the convergence is optimized, in that the error on [0, a?] and [a®, 1] are balanced to be
approximately the same.

Our analysis will focus on the lowest-order version of the iteration (9-10), obtained by
choosing (m,¢) = (1,0). It is shown in [8, Proposition 5] (and elsewhere [11, 13]) that for
this choice of m and /,

am%mywzl(@—nmw+—iéﬁ, mwz(@fgﬁi@)w- (12)

p(a)r=!

Thus, when (m, £) = (1,0), the iteration (9-10) reads

1 x
) =3 (0= Duan o) + —fe ) Bl =1 (9

yyes”
p— Dplag) + plax)—ray’

Qpp1 = ( ap = a. (14)

Note that f; is (k,p,p — 1)-composite since it is of the form (1) with

1 ((p — Dplay—1)Py” + l’)

ri(r,y) = —
i{@9) p pu(evj1)P~tyrt




for each j. It follows from this observation and an inductive argument that f; has type
(p*~t, p*=t — 1) for each k > 1.

We rely heavily on this explicit expression for the particular case (m,¢) = (1,0), as it lets
us analyze the functions in detail, which leads to a constructive proof for Theorem 1.1. The
iteration (13-14) can be regarded as a scaled version of Newton’s iteration [11, 13], which is
commonly employed for matrix square roots [2],[10, Ch. 6]. We note that using larger values
of (m, ) may result in faster convergence, in particular a larger exponent ¢ than (3). In view
of (4), the convergence is still doubly exponential, with an improved constant ¢. However,
we do not expect the improvement would be significant.

Moreover, composing low-degree rational functions is an extremely efficient way to con-
struct high-degree rational functions of matrices, and we suspect that our choice (m,¢) =
(1,0) would give the fastest convergence in terms of the number of matrix operations needed
to evaluate r at a matrix argument.

3. Bounding the error on [0, a”]

In this section, we analyze the absolute error committed by the function f; defined
by (13)—(14) on the interval [0, a”]. It will be convenient to consider not f; but the scaled

function
2c k

fi - 15
fi(x) 1 +akfk($), (15)
which has the property that [8, Theorem 2]
filw) — al/? R a1y
= = 1). 1
acg[lo?;’),(l] xl/p $,£r[2£u xl/p 1+ ay, S (07 ) ( 6)

We will prove the following estimate.

Theorem 3.1. Let o € (0,1). The function f, defined by (13)~(14) and (15) satisfies

max |fi(z) — /7| < 20 (17)
z€[0,aP]

for every k > 0.

Experiments suggest that the bound (17) could be improved to < « for k large enough,
but this does not affect what follows in any significant way.
We will prove Theorem 3.1 by a series of lemmas. Let

Note that go(z) = x and

x _ gr()
Fol@P)i1 o (%, ., \7—> 71,0(9k ()P, o,

Grs1(T) =

7 $(gr(), o), (18)



where
x px

ro(er o) (0= Dple) + ple)tPar”

= pa
(p — Du(a) + ple)t—rar’

Also let

so that apy1 = H (o).
Lemma 3.1. For every a € (0,1) and every x € [0, o,

0 <8 (x,a) <§(x,a) < H(a),
where the prime denotes differentiation with respect to x.
Proof. A short calculation shows that

28 (z, ) = w(z)s(z, a),

b0 (1 ()
(p—1)+ (ﬁ)p

Since 0 < w(x) < 1 for every x € [0, u(«)], it follows that

where

w(z) =

0 <z (z,a) <3(z,a), z€]|0,u(a).

In particular, the above inequalities hold on [0, ] C [0, u(«)], and §(z, ) is nondecreasing
on [0, ). Thus,
S(z,a) < §(a,a) = H(a), z€]0,q].

Now let a € (0, 1) be fixed.
Lemma 3.2. For every x € [0,a] and every k > 0,
0 < zgy(w) < grl(z) < .

Proof. Since go(x) = x and ay = «, the above inequalities hold when k£ = 0. Assume that
they hold for some k£ > 0. Observe that

TG 11(7) = 2g;,(1)5 (gr(2), ).

Since gx(z) € [0,ax) for = € [0,a], Lemma 3.1 implies that §'(gx(x),ar) > 0. It follows
from this and our inductive hypothesis that zg;,(x) > 0 for € [0,a]. In addition, since
rgy () < gi(x) and g (2)8' (g(2), ) < 5(gi(x), an),

$92+1($) < 3(gr(w), ) = grgr ().

Finally, since §(gx(z), ax) < H(ag) = agy1, it follows that gp1(z) < agyq. O
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Lemma 3.3. For every x € [0,a”] and every k > 0,
. 1-— (675
- 1 —|— (073 '

Proof. We first note that f is positive and nondecreasing on [0, o?]. Indeed, differentiating
the relation

0< fk(l’) < Oé(l + 5k;); €k

fi(2?) =

gr(x)
gives

- gr(x) — zg;.(2)
paP Ler( P =
Sila) gr(z)?
so Lemma 3.2 implies that f,(a?) > 0 for every z € [0, . Evaluating the recursion (13) at
r = 0 gives

) = 0) () e, fo0) =1

so f(0) > 0 for every k. Since fr(z) is a positive multiple of fr(z), it follows that 0 < frlz) <
fr(aP) for every = € [0, a”]. Finally, taking x = o® in (16) gives fr(a?) < a(l + &). O

By the lemma above,
| fe(@) — 27| < max{|fr(z)], |"/?]} < max{a(l+¢x),a} = a(l +&;) <20, x € [0,07],

SO

max |fi(z) — 27| < 20,
z€[0,aP]

This completes the proof of Theorem 3.1.

An estimate for the absolute error on [0,1] is now immediate: Combining the above
theorem, (16), and the fact that 2'/? < 1 for x € [0, 1], we see that

~ o 1/p 1-— (077
;2[%7)1(] | fr(x) — 27/P| < max {204, T ak} : (19)
3.1. Sector function approrimation

We note that the function g in (18) approximates the p-sector function sect,(z) =
z/(2)/P (this observation appeared in [8, Sec. 4]), and g, is a pure composite rational
function of the form gi(z) = rk(rx—1(- - - 72(r1(2)))). In fact it is (k, 1, p)-composite, and an
inductive argument shows that it has type (p* — p + 1,p*). In the p = 2 case, this reduces
to Zolotarev’s best rational approximant to the sign function of type (2% — 1,2%). That is,
as in the square root approximation, the minimax rational approximant is contained in the
class of (here purely) composite rational functions.

Below we derive estimates for the maximum weighted error |z(gx(z) — sect,(z))| on the
sets Sy, Spa C C defined in (5) and (6). As before, it will be convenient to work not with
gr(z) but with the rescaled function

- 2 4o z
ge(2) = .

A (NS AET)




gk (z)—sectp(2)
sectp(2z)

each line segment {z € C | e72"/Pz € [, 1]}, j = 0,1,...,p— 1. Note that here the relative
and absolute errors are the same in modulus. The asymptotic convergence rate on S, , was
analyzed in [8]. Here we quantify the non-asymptotic convergence on S,.

As shown in [8, Sec. 4], the relative error is real-valued and equioscillates on

Lemma 3.4. For every k > 0,

_ 1 -
gé%f |2(gr(2) — secty(2))| < max {a, T Z::} , (20)
and 1
~ — O
— sect < . 21
max [gi(2) — secty(2)] < 7 (21)

Proof. Let z = xY/Pe?™i/P with x € [0,1] and j € {1,...,p}. Since gp(z) = e2™/Pg, (x1/P)
and sect,(z) = e>™/P we have

|2k (2) = secty(2))] = |27 (G(2"7) = D).
If # € [0,a?], then Lemma 3.2 implies that 0 < g (z'/?) < % <1, so
122 (Ge(z'P) = 1) < 2P <, x€[0,0"].

On the other hand, if z € [o?, 1], then

4o zt/P
Up (g (£1/P) _ T(2Py 1| = k _
P (gr(x )| < |gx(x 1| = = 1]. 22
|27 (ge(27?) = D] < |g(x™?) = 1 T+ o) 7o) (22)
By (16),
fr(z) 1—a 1— 25 2
xl/p < 14+ap/)’ + 14 ay 1+, 14+ag|’ v € [o" 1],
S0 y
p 1
T ¢ +ak,1+ak . x€la? 1],
and hence y
4 p 1-— 1-
T e [— L O"“], z € [, 1]. (23)
(1+ ay)? fr(z) 1+ar 1+ o
It follows that )
- -«
27 (G2 7) ~ 1) < 5 +a:, r € [a? 1],
For (21), we simply start from the second expression in (22) and use (23). O



4. Proof of Theorem 1.1 and Corollary 1.1

To examine the convergence of the recursion (13)-(14) on [0, 1], we first ask the question:
given € > 0, what values of k and a are needed to get an error bounded by €? In view of (19),
we must choose a < €/2 and k large enough so that <e.

To determine k, it is convenient to define

() ()

Lemma 4.1. For every k > 0,

1—oay
14ag

I —ayg p
< Ok
l+a, (p—12"
Proof. The function ¢(a) = ﬁ ((i)l_l/p - 1> - ;—3 satisfies ¢(1) = 0 and ¢'(a) =

(1+2a)2 — 2a2£1/p < 0 for a € (0,1), so g(a) > 0 for a € (0,1). In particular, g(ayx) > 0. ]

The above lemma shows that we can ensure }IZ: < € by enforcing &, < (p—1)%¢/p. Let
us do so by selecting a scalar §* € (0, 1) and splitting the convergence of 0, — 0 into two

stages:

1. Find k; such that d, < 0™
2. Find ky such that 0,4, < (p — 1)%¢/p.

Stage 1. We begin our analysis of the first stage with a lemma.

Lemma 4.2. For every a € (0,1),
H(a) > ol1/P,

Proof. We have

H(a) = pap(e)’™  pop(a)’t  pop(a)’ (1 —a)
S (p—Dpla)p+ar =2 par a — artl
_ @ (=) g(e)T
1—ar h(a)

where




Since 0 < h(a) < g(a) < 1 for every a € (0, 1), it follows that
g(@)'"V" _ g(a)

> > 1.
h(a) h(a)
]
Lemma 4.2 implies
appr > ap P (24)
for every k, so
p/(p—1)
Thus, we will have d;, < §* if =1/ > (%) , which means
log log = —loglog E=—=- 1+25
k> —1. (25)

log £ -
Stage 2. Next we determine ky such that &, 11, < (p — 1)%¢/p.
Lemma 4.3. For anyt > 1,

-1 11 -1
P 1<
p ptrt
Proof. The function ¢(t) = &= 115 + Etp — 1 — 22(t — 1)? satisfies ¢(1) = ¢/(1) = 0 and
) =pP-D@tPt-1)<0 for ¢ > 1,50 q(t) <0 for t > 1. O
Lemma 4.4. For every k > 0,
Spp1 < 67

Proof. The recursion (14) can be written as

1 —1 11 0"
_p tk+_p_1> tk:M( k)
Opy1 p ptk Qg

A\ 1/p
Using Lemma 4.3 and the observation that u(ay) = (p DI ng> < ai/l’ = t <
(1/ay) /P, we see that

1 1-1/p 1
Opy1 Oy

Multiplying by (p — 1)/2 yields ;41 < 87 O

11



By the results above, we will have 64,1, < (p — 1)2%¢/p if (6%)2* < (p — 1)%¢/p, which
means

- log log (p_"ﬁ — loglog 5%
2 = :
log 2
Finally, by taking o = €/2 we ensure that the error on [0, o] is bounded by € (recall (19)),
so the error on [0, 1] is bounded by e.
We illustrate the process in Figure 1, where we fix integers' p and k, and numerically

find the value of o« € (0,1) and accordingly e = =% = 2q such that with the (k,p,p — 1)-

N 14+ ~
composite rational approximant fi the error is max,er 1) |27 — fi(x)| < €, achieved at
x = 1, and the error on [0,a”] is bounded by e. Observe that the maximum errors on

[0, a®] and [a®, 1] are not equal but of the same order, suggesting the near optimality of our
composite rational approximants.

3
o5 x10
ol
p=3, k=5
15}
€ ~ 0.0022
il
|
05Ff !
|
0r |
|
05 }
|
A |
|
15} i
ol ;
|
|
25 I I ! 5 I I I
10718 10710 ¥ 107 10° 10760 10740 10720 10°

Figure 1: Error curves fi(z) — 21/P. Note that the error on [0, a?] is bounded by that on [aP, 1], which is
€ = 2a in both cases.

Putting the above inequalities together, we conclude that

L loglog 2 loglog s

k 26
logﬁ log 2 i (26)
recursions are enough to yield accuracy €, where kg satisfies
].O 10 Iﬂ 1 l L
L S 1 (27)
IOg Iﬁ log 2

Since k recursions translate into a rational function fk of type (pF~1, pF~1 —1), it follows that
the degree n of the rational function f; achieving accuracy e is

log lo P

log 2

R s +ho—1
n=mpe*nr )

Ip = 31 is a somewhat arbitrary prime number, chosen in view of the number of days per month.
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We rewrite this to express the error with respect to the degree n. Taking the logarithm and
setting kg = kg — 1, we get

loglog2 loglog -~ loglog?2 loglog2 ~
logn:<0g 0g€+ =) + ko | logp < 08 oge_i_og Og&—i—ko logp. (28)

log z% log 2 log z% log 2

Hence, B
logn — ko logp

2
loglog — > i
€ logp(@ + 1og3)

Thus, defining
1 log 2 log 1%

_ - : (29)
log iz + iggz)  logplog ;2

we have

and therefore, writing b=1 / pCEO, we arrive at
e < 2exp(—bn°).

This bound holds when n is a sufficiently large power of p. To handle the case in which
n € N is not a power of p, we note that |log,n] + 1 recursions yield a rational function of

type (pt°gml plegsnl — 1) and for n large enough this function has error bounded above by
2exp(—b(p!# ™)) < 2exp(—bp~n°).
We will complete the proof of Theorem 1.1 by finding a lower bound for b.

Lemma 4.5. If §* = %, then

-1
bz .

Proof. Tt suffices to show that cky < 1 — ¢. When §* = %, we see from (27) that

~ log plog 22 + log -2~ loglog 2 + log 2 log log -2
1—ckog=1—c(ky—1) > p-1 p-1 p-1

+ c.
log plog }%

The denominator in the fraction above is positive, and the numerator satisfies

2
log plog P + log P log log 2 + log 2 log log
p—1 p—1

= (log p + loglog 2) log b 7 + <logp+loglog b 1) log 2.
D—

The first term above is manifestly positive for p > 2. The second term is also positive since

log ﬁ = ;:1 % dx > ]lo for p > 2. It follows that 1 — ckq > c. O

13



Remark. The lower bound on b can be slightly improved by choosing 0* to minimize EO in
the above lemma. Although the minimizer of ko cannot be solved for explicitly, numerical
evidence suggests that the approximation ¢* = (p%l)2 can improve the bound to b > F(p)

for some function F'(p) asymptotic to pf,c.

It is easy to see by comparing (20) with (19) that the same analysis, this time choosing
a = € rather than a = ¢/2, also yields (7) in Corollary 1.1.

It remains to establish (8). For this, we take a fixed and use a similar argument. In this

case ky can be regarded as a constant independent of ¢, since the error in the interval [0, a?]

~ 1 ~
is irrelevant. Therefore we write k := iggl# + ko, and in place of (28), the lowest degree
p—1

log log (p_ﬁ

log 2

n required for € accuracy on S, , satisfies logn < </15+ ) logp. Thus defining

aZ: ﬁ and

Q)

log 2

we have log % > (1%)6, and so setting b=1 / pEE we obtain € < @exp(—bnf), as required. Like
before, this upper bound weakens to

~ o 1~ &
aexp(—bp~°n°) = aexp (—ibnc)

when n is not a power of p. R
We will complete the proof of (8) by finding a lower bound for b.

Lemma 4.6. If 0" = %, then

Proof. Substituting 6* = 3 into (27) gives

o~ log2 [ loglog é
c(k+1):10 o0 2 + ko
&P \ 108,75
< log2 ( log logé B log log 2 B log log p%l
“logp \ log 1% log 2 log 1%
lo Jog g
~ log2 glogﬁ B log log 2
log p log ﬁ log p

Thus,

log 2

~ 1 2 log ~E5 \ e T
b=—=——2>2log2 p11 ’ .
P D) log L
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5. Examples

In Figure 2 we illustrate our main result (2) on approximation of x'/P. For integers
k=1,2, ..., we compute the error € of the composite rational approximants as in Figure 1,
and plot the errors against p*(~ n¢) for p € {2, 5,31} in log-scale. The plots also show least-
squares affine fits to the convergence data for each p. The fact that the affine fits closely
trace the data suggests the exponent ¢ in (29) is sharp, especially for small values of p. For
the p = 31 plot, which ends early because computing further data was infeasible (note e.g.
that a? < 1077 for k > 15), there is a slight bend in the convergence, which suggests that
our ¢ in (3) might be a slight underestimate for large p.

10° ‘
107 \&.?\
AN
) 4 \\\
102} 3
S N
o DN
10-37 \i\
Qe
NG
NN
4 26~
10 \\%\ ~ ?\\
2
10 : :
1 2 3 4 5 6
pck

Figure 2: Error history max,eo,1) |fk(9c) — 2'/P| for varying k for p € {2,5,31}, along with linear fits shown
as dashed lines.

Finally, Figure 3 shows the error of the approximant gi(z) to sect,(z), which clearly
exhibits equioscillation. Note how increasing k results in progressively smaller error (in log-
scale), reflecting the double-exponential convergence. The error curves |gx(z) —sect,(2)| look
identical on each of the segments [a, 1] exp(27ij/p) for j =0,...,p— 1.

6. Discussion

We have seen that a large number of well-known functions can be approximated by
composite rational functions. This is perhaps counterintuitive given that composite functions
form a small subclass of functions of the same degree, as investigated in Ritt’s classical
work [18] for polynomials (see also a more recent work by Rickards [17]), and Bogatyrev [4]
for rational functions®. More generally, we think composite (rational) functions are a non-
standard but powerful tool in approximation theory, and we regard this as a contribution

It is worth noting that these papers study pure composite functions, and our definition (1) is more
general.
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Figure 3: Error |gx(2z) —sect,(z)| on [a, 1] for o« = 0.1, p = 3 (left) and p = 31 (right). The fact that the plots
do not appear to go down to 0 between equioscillation points is simply an artifact of the plotting scheme,
which is based on 10* equispaced sample points.

towards demonstrating their effectiveness and practicality. Indeed, one might say they are
already used extensively in scientific computing:

1. Composite rational functions are implicitly employed in most algorithms for computing

matrix functions [10], in which approximating a function on the spectrum of the matrix
is required. This includes the all-important matrix exponential [10]. For the pth
root, a standard algorithm [10, Ch. 7] employs Newton’s method, which ultimately
approximates A'/? with a sequence of rational functions f, of A given recursively by
frri(z) = %((p — D fi(x) + 2/ fe(x)PY), fo(x) = 1. The function f; is composite
rational and similar to the approximants we use, but not the same (it is unscaled), and
it exhibits exponential rather than double-exponential convergence on [0, 1], which can
be easily verified by examining the convergence at © = 0. Generally speaking, Newton’s
method for computing a matrix function f(A) (or more generally for various nonlinear
problems, e.g. rootfinding) can often be interpreted as approximating f(A) (or the
solution) by a composite rational function of A. We also note that for evaluating matrix
functions, the composite structure can be beneficial in terms of numerical stability in
addition to efficiency; this is because the composite structure can avoid involving very
small coefficients, and hence ill-conditioning [14].

The rapidly growing subject of deep learning is based on composing a large number
of nonlinear activation functions [12]. A recent work [5] builds upon this observation
to propose a network based on rational activation functions, leading to a high-degree
composite rational function to approximate the input-output map. It is shown to often
outperform popular networks based on ReLLU activation functions.

For these reasons we believe that understanding the power and limitations of composite
(rational) functions may have important ramifications in scientific computing. Future work
includes identifying the class of functions that can (and equally interestingly, cannot) be
approximated efficiently by composite rational functions.
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