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Abstract

A landmark result from rational approximation theory states that x1/p on [0, 1] can be
approximated by a type-(n, n) rational function with root-exponential accuracy. Motivated
by the recursive optimality property of Zolotarev functions (for the square root and sign
functions), we investigate approximating x1/p by composite rational functions of the form
rk(x, rk−1(x, rk−2(· · · (x, r1(x, 1))))). While this class of rational functions ceases to contain
the minimax (best) approximant for p ≥ 3, we show that it achieves approximately pth-root
exponential convergence with respect to the degree. Moreover, crucially, the convergence
is doubly exponential with respect to the number of degrees of freedom, suggesting that
composite rational functions are able to approximate x1/p and related functions (such as |x|
and the sector function) with exceptional efficiency.
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1. Introduction

Classical results in polynomial and rational approximation theory concern the conver-
gence of an approximant to a given function f as the degree of the approximant grows.
In this paper we focus on approximants to the pth root function x1/p that take a compos-
ite form. Composing rational functions is an efficient way of generating a rational function
r(x) = rk(· · · r2(r1(x))) of high degree: if each ri is of type (m,m), then r is of type (mk,mk),
even though it is expressed by a small number O(mk) of degrees of freedom. By choosing
each ri appropriately, one can often obtain a function r that approximates a desired function
in a wide domain of interest.

There is no reason to expect—and it is generally not true—that rk(· · · r2(r1(x))) can
express the minimax rational approximant of a given type, say (mk,mk), to a given func-
tion. However, there is a remarkable property of the minimax rational approximants to the
function sign(x) = x/|x| on [−1,−δ] ∪ [δ, 1] for 0 < δ < 1 (called Zolotarev functions):
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appropriately composing Zolotarev functions gives another Zolotarev function of higher de-
gree. In other words, the class of composite rational functions r(x) = rk(· · · r2(r1(x))),
with each ri of type (m,m), contains the type-(mk,mk) minimax approximant to the sign
function [19, 15, 4, 14]. Moreover, for a fixed δ, the convergence of Zolotarev functions is
exponential in the degree. Since the degree is mk, and the number of parameters necessary
to express r is d ≈ 2km, it follows that the convergence is exp(−mk) = exp(− exp(Cd)), a
double-exponential convergence rate. This paper is about approximating the pth root x1/p,
for which the above minimax optimality under composition does not hold. Nonetheless,
our main result constructs composite rational approximants to x1/p, which are linked to
Zolotarev functions and inherit some of their properties [8].

Functions related to the sign function, such as |x| (via |x| = x/sign(x)) and
√
x (via

|x| ≈ p(x2)/q(x2) then
√
x ≈ p(x)/q(x)) can similarly be approximated by composite rational

functions. Gawlik [7] does this for the square root and shows that a composite rational
function yields the minimax rational approximant (in the relative sense) on intervals [δ, 1] ⊂
(0, 1], and that the approximation extends far into the complex plane. This observation
generalizes earlier work on rational approximation of the square root with optimally scaled
Newton iterations [2, 15, 19, 23]. Moreover, an extension was derived in [8], which shows
that the pth root can be approximated efficiently on intervals [δ, 1] ⊂ (0, 1], although not
with minimax quality.

Clearly, in the above papers the origin is excluded from the domain, as the functions have
a singularity at x = 0. However, a landmark result from rational approximation theory [9, 21]
states that xβ (for any real β > 0) on [0, 1] can be approximated (in the absolute sense) by
a type-(n, n) rational function with root-exponential accuracy. One might wonder, can this
be done with a composite rational function? This is the question we address in this paper.
We focus on the case in which β = 1/p with p ≥ 2 an integer.

We show that a rational function of the form r(x) = rk(x, rk−1(x, rk−2(· · · (x, r1(x, 1)))))
can approximate x1/p on [0, 1] with superalgebraic accuracy, with close to pth root-exponential
convergence. Moreover—and crucially—the convergence is doubly exponential with respect
to the number of degrees of freedom. That is, the error is O(exp(−c1 exp(c2d))) for some
constants c1, c2 > 0, where d is the number of parameters needed to express the rational
function. By “number of parameters” we mean d =

∑k
i=1 mi + `i + 1 if ri has type (mi, `i)

for i = 1, 2, . . . , k, so that d reflects the cost of evaluating r at a matrix argument.
Clearly, our result implies that any rational power of x can be approximated by a compos-

ite rational function. Moreover, since |r(x)−x1/p| ≤ ε on [0, 1] implies |r(x/s)−(x/s)1/p| ≤ ε
on [0, s] for any s > 0, hence |s1/pr(x/s) − x1/p| ≤ s1/pε, our results also show that any ra-
tional power can be approximated efficiently on [0, s] by a composite rational function. In
addition, our approximants to x1/p immediately lead to approximants to the p-sector function
sectp(z) = z/(zp)1/p, which takes the value z/|z| on the p line segments exp(2πij/p)[0,∞),
j = 0, 1, . . . , p − 1. Such approximants lead to algorithms for the matrix sector function,
which has been used in systems theory [20]. They can also form the basis of a spectral
divide-and-conquer method for computing a matrix eigenvalue decomposition, generalizing
the algorithm in [14] for matrices with nonreal eigenvalues.
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Summary of Results. To summarize our results, let us introduce some terminology. We
say that a univariate rational function r(x) = p(x)/q(x) is of type (m, `) if p and q are
polynomials of degrees at most m and `, respectively. We denote the set of all such rational
functions by Rm,`. We say that a bivariate rational function r(x, y) is of type (m, `) if r(x, x)
is of type (m, `). We say that a univariate rational function r is (k,m, `)-composite if r is a
composition of k rational functions ri(x, y), i = 1, 2, . . . , k, each of type (m, `):

r(x) = rk(x, rk−1(x, rk−2(· · · (x, r1(x, 1))))). (1)

In this paper we only deal with two cases, (m, `) = (p, p− 1) and (m, `) = (1, p). Here is
the main result of this paper.

Theorem 1.1. Let p ≥ 2 be an integer. There exists a positive constant N depending on p
such that for every integer n ≥ N , there exists a (blogp nc + 1, p, p − 1)-composite rational
function r of type (n, n− 1) such that

max
x∈[0,1]

|r(x)− x1/p| ≤ 2 exp(−bnc), (2)

where b = 1
p
and

c =
log
(

p
p−1

)
log 2

log
(

2p
p−1

)
log p

. (3)

Note that when p = 2, c = 1
2
, and as p → ∞, c ∼ 1

p log p
.

Let us comment on the theorem. The bound (2) shows that by using a (blogp nc+1, p, p−
1)-composite rational function we can approximate the pth root with “1/cth root”-(nearly
pth root) exponential accuracy with respect to the degree, which is suboptimal unless p = 2
(in which case a composite rational function on [δ, 1] is optimal in the relative sense).

However, the result is still striking in the following sense: the number of degrees of
freedom used to express r is just O(pk) for n ≈ pk (see (13)-(14)), and therefore with respect
to the degrees of freedom d, the convergence is

max
x∈[0,1]

|r(x)− x1/p| ≤ 2 exp(−bpc̃d), (4)

indicating a double-exponential convergence with respect to d.
As a byproduct of our analysis, we will obtain analogous results for composite rational

approximation of the p-sector function sectp(z) = z/(zp)1/p on the set Sp ⊂ C given by

Sp = {xe2πij/p | x ∈ [0, 1], j ∈ {1, 2, . . . , p}}. (5)

We will also consider the subset Sp,α of Sp excluding the origin

Sp,α = {xe2πij/p | x ∈ [α, 1], j ∈ {1, 2, . . . , p}}. (6)

We say that a (k,m, `)-composite rational function (1) is pure if the functions rj(x, y)
appearing in (1) are univariate:

r(x) = rk(rk−1(· · · (r1(x)))).
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Corollary 1.1. Let p ≥ 2 be an integer and α ∈ (0, 1). There exists a positive constant N
depending on p such that for every integer n ≥ N , there exist pure (blogp nc, 1, p)-composite
rational functions r and q of type (n− p+ 1, n) such that

max
z∈Sp

|z (r(z)− sectp(z))| ≤ 2 exp(−bnc), (7)

where b and c are as in Theorem 1.1, and

max
z∈Sp,α

|q(z)− sectp(z)| ≤ â exp(−b̂nĉ), (8)

where â = p
(p−1)2

, b̂ = log 2
(

log p
p−1

log 1
α

) log 2

log
p

p−1 and ĉ = log 2
log p

.

It is worth noting that the two rational functions r, q are generally different—they coin-
cide for a particular value of α. The error in (7) is measured in a weighted norm, which is
natural in view of the fact that sectp(z) is discontinuous at z = 0. When p = 2 and z ∈ S2,
z sectp(z) = |z| and c = 1

2
, so (7) recovers the root-exponential convergence of rational ap-

proximants to |x| on [−1, 1] [22, Ch. 25]. By contrast, (8) shows that a better bound holds
for the absolute error if one excludes the neighborhood of the origin. When p = 2, ĉ = 1
and (8) recovers the exponential convergence of Zolotarev functions to the sign function on

[−1,−α] ∪ [α, 1] [1, 3]. Note that b̂ decays like a negative power of log 1
α
as α → 0.

Organization. This paper is organized as follows. In Section 2, we review some theory
from [8] concerning composite rational approximants of the pth root on positive real intervals.
In Section 3, we study the behavior of these approximants near the origin. We then prove
Theorem 1.1 and Corollary 1.1 in Section 4, and we illustrate our results numerically in
Section 5.

2. Composite rational approximation of the pth root

To approximate x1/p on an interval [αp, 1] ⊂ (0, 1], Gawlik [8] considers the recursively
defined rational function

fk+1(x) = fk(x)r̂m,`

(
x

fk(x)p
, αk,

p
√

·
)
, f0(x) = 1, (9)

αk+1 =
αk

r̂m,`

(
αp
k, αk,

p
√ ·

) , α0 = α, (10)

where r̂m,`(x, α,
p
√ · ) is (a rescaling of) the relative minimax rational approximant of type

(m, `) ∈ N0 × N0 \ {(0, 0)} on the interval [αp, 1]:

r̂m,`(x, α,
p
√

· ) =
(
1 + α

2α

)
rm,`(x, α,

p
√

· ),
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where

rm,`( · , α, p
√

· ) = argmin
r∈Rm,`

max
x∈[αp,1]

∣∣∣∣
r(x)− x1/p

x1/p

∣∣∣∣ . (11)

Note that fk is a composite rational function of the form (1). Gawlik shows that fk(x) is a
rapidly convergent approximant to the pth root on [αp, 1]. With k recursions, the maximum
relative error |fk(x)− x1/p|/|x1/p| on [αp, 1] decays double exponentially in k: it is bounded
above by c1 exp(−c2(m+`+1)k) for some c1, c2 > 0 depending onm, `, p, and α. Importantly,
these constants depend very weakly on α; the analysis below will implicitly show that when
(m, `) = (1, 0), c1 is independent of α and c2 decays like a negative power of log 1

α
as α → 0,

just like b̂ in (8).
Given that (9) is an approximant on [αp, 1], which is an interval that excludes the singular-

ity at x = 0, a natural question arises: can we approximate on [0, 1]? Intuitively, the function
is still continuous at x = 0 (unlike e.g. the sign or sector function) with 01/p = 0, and hence
it is possible to approximate x1/p on the whole interval [0, 1]. Indeed Stahl [21] shows that
x1/p on [0, 1] can be approximated by a type-(n, n) rational function with root-exponential
accuracy (we refer to [6, 16] for general results on classical rational approximation theory).
Can a highly efficient rational approximant be constructed based on recursion as in (9)? It
is important to note that we will necessarily switch to the (more natural) metric of absolute
error |r(x)− x1/p| rather than the relative error |r(x)− x1/p|/|x1/p| for this purpose.

It turns out that the rational function (9) does a good job approximating on [0, 1], when
α is chosen carefully: when it is too small, the error is large on [αp, 1] (in fact it is maximal
at x = 1 [8]). Conversely if α is too large, the error is large on [0, αp] (in fact it is O(α)
at x = 0, as we show below). A major task undertaken in what follows is to choose α so
that the convergence is optimized, in that the error on [0, αp] and [αp, 1] are balanced to be
approximately the same.

Our analysis will focus on the lowest-order version of the iteration (9-10), obtained by
choosing (m, `) = (1, 0). It is shown in [8, Proposition 5] (and elsewhere [11, 13]) that for
this choice of m and `,

r̂1,0(x, α,
p
√

· ) = 1

p

(
(p− 1)µ(α) +

x

µ(α)p−1

)
, µ(α) =

(
α− αp

(p− 1)(1− α)

)1/p

. (12)

Thus, when (m, `) = (1, 0), the iteration (9-10) reads

fk+1(x) =
1

p

(
(p− 1)µ(αk)fk(x) +

x

µ(αk)p−1fk(x)p−1

)
, f0(x) = 1, (13)

αk+1 =
pαk

(p− 1)µ(αk) + µ(αk)1−pαp
k

, α0 = α. (14)

Note that fk is (k, p, p− 1)-composite since it is of the form (1) with

rj(x, y) =
1

p

(
(p− 1)µ(αj−1)

pyp + x

µ(αj−1)p−1yp−1

)
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for each j. It follows from this observation and an inductive argument that fk has type
(pk−1, pk−1 − 1) for each k ≥ 1.

We rely heavily on this explicit expression for the particular case (m, `) = (1, 0), as it lets
us analyze the functions in detail, which leads to a constructive proof for Theorem 1.1. The
iteration (13-14) can be regarded as a scaled version of Newton’s iteration [11, 13], which is
commonly employed for matrix square roots [2],[10, Ch. 6]. We note that using larger values
of (m, `) may result in faster convergence, in particular a larger exponent c than (3). In view
of (4), the convergence is still doubly exponential, with an improved constant c̃. However,
we do not expect the improvement would be significant.

Moreover, composing low-degree rational functions is an extremely efficient way to con-
struct high-degree rational functions of matrices, and we suspect that our choice (m, `) =
(1, 0) would give the fastest convergence in terms of the number of matrix operations needed
to evaluate r at a matrix argument.

3. Bounding the error on [0, αp]

In this section, we analyze the absolute error committed by the function fk defined
by (13)–(14) on the interval [0, αp]. It will be convenient to consider not fk but the scaled
function

f̃k(x) =
2αk

1 + αk

fk(x), (15)

which has the property that [8, Theorem 2]

max
x∈[αp,1]

f̃k(x)− x1/p

x1/p
= − min

x∈[αp,1]

f̃k(x)− x1/p

x1/p
=

1− αk

1 + αk

∈ (0, 1). (16)

We will prove the following estimate.

Theorem 3.1. Let α ∈ (0, 1). The function f̃k defined by (13)–(14) and (15) satisfies

max
x∈[0,αp]

|f̃k(x)− x1/p| ≤ 2α (17)

for every k ≥ 0.

Experiments suggest that the bound (17) could be improved to < α for k large enough,
but this does not affect what follows in any significant way.

We will prove Theorem 3.1 by a series of lemmas. Let

gk(x) =
x

fk(xp)
.

Note that g0(x) = x and

gk+1(x) =
x

fk(xp)r̂1,0

(
xp

fk(xp)p
, αk,

p
√ ·

) =
gk(x)

r̂1,0(gk(x)p, αk,
p
√ · ) = ŝ(gk(x), αk), (18)
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where
ŝ(x, α) =

x

r̂1,0(xp, α, p
√ · ) =

px

(p− 1)µ(α) + µ(α)1−pxp
.

Also let
H(α) = ŝ(α, α) =

pα

(p− 1)µ(α) + µ(α)1−pαp
,

so that αk+1 = H(αk).

Lemma 3.1. For every α ∈ (0, 1) and every x ∈ [0, α],

0 ≤ xŝ′(x, α) ≤ ŝ(x, α) ≤ H(α),

where the prime denotes differentiation with respect to x.

Proof. A short calculation shows that

xŝ′(x, α) = w(x)ŝ(x, α),

where

w(x) =
(p− 1)

(
1−

(
x

µ(α)

)p)

(p− 1) +
(

x
µ(α)

)p .

Since 0 ≤ w(x) ≤ 1 for every x ∈ [0, µ(α)], it follows that

0 ≤ xŝ′(x, α) ≤ ŝ(x, α), x ∈ [0, µ(α)].

In particular, the above inequalities hold on [0, α] ⊂ [0, µ(α)], and ŝ(x, α) is nondecreasing
on [0, α]. Thus,

ŝ(x, α) ≤ ŝ(α, α) = H(α), x ∈ [0, α].

Now let α ∈ (0, 1) be fixed.

Lemma 3.2. For every x ∈ [0, α] and every k ≥ 0,

0 ≤ xg′k(x) ≤ gk(x) ≤ αk.

Proof. Since g0(x) = x and α0 = α, the above inequalities hold when k = 0. Assume that
they hold for some k ≥ 0. Observe that

xg′k+1(x) = xg′k(x)ŝ
′(gk(x), αk).

Since gk(x) ∈ [0, αk] for x ∈ [0, α], Lemma 3.1 implies that ŝ′(gk(x), αk) ≥ 0. It follows
from this and our inductive hypothesis that xg′k+1(x) ≥ 0 for x ∈ [0, α]. In addition, since
xg′k(x) ≤ gk(x) and gk(x)ŝ

′(gk(x), αk) ≤ ŝ(gk(x), αk),

xg′k+1(x) ≤ ŝ(gk(x), αk) = gk+1(x).

Finally, since ŝ(gk(x), αk) ≤ H(αk) = αk+1, it follows that gk+1(x) ≤ αk+1.
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Lemma 3.3. For every x ∈ [0, αp] and every k ≥ 0,

0 < f̃k(x) ≤ α(1 + εk), εk =
1− αk

1 + αk

.

Proof. We first note that fk is positive and nondecreasing on [0, αp]. Indeed, differentiating
the relation

fk(x
p) =

x

gk(x)

gives

pxp−1f ′
k(x

p) =
gk(x)− xg′k(x)

gk(x)2
,

so Lemma 3.2 implies that f ′
k(x

p) ≥ 0 for every x ∈ [0, α]. Evaluating the recursion (13) at
x = 0 gives

fk+1(0) = fk(0)

(
p− 1

p

)
µ(αk), f0(0) = 1,

so fk(0) > 0 for every k. Since f̃k(x) is a positive multiple of fk(x), it follows that 0 < f̃k(x) ≤
f̃k(α

p) for every x ∈ [0, αp]. Finally, taking x = αp in (16) gives f̃k(α
p) ≤ α(1 + εk).

By the lemma above,

|f̃k(x)− x1/p| ≤ max{|f̃k(x)|, |x1/p|} ≤ max{α(1 + εk), α} = α(1 + εk) ≤ 2α, x ∈ [0, αp],

so
max

x∈[0,αp]
|f̃k(x)− x1/p| ≤ 2α.

This completes the proof of Theorem 3.1.
An estimate for the absolute error on [0, 1] is now immediate: Combining the above

theorem, (16), and the fact that x1/p ≤ 1 for x ∈ [0, 1], we see that

max
x∈[0,1]

|f̃k(x)− x1/p| ≤ max

{
2α,

1− αk

1 + αk

}
. (19)

3.1. Sector function approximation

We note that the function gk in (18) approximates the p-sector function sectp(z) =
z/(zp)1/p (this observation appeared in [8, Sec. 4]), and gk is a pure composite rational
function of the form gk(z) = rk(rk−1(· · · r2(r1(z)))). In fact it is (k, 1, p)-composite, and an
inductive argument shows that it has type (pk − p + 1, pk). In the p = 2 case, this reduces
to Zolotarev’s best rational approximant to the sign function of type (2k − 1, 2k). That is,
as in the square root approximation, the minimax rational approximant is contained in the
class of (here purely) composite rational functions.

Below we derive estimates for the maximum weighted error |z(gk(z) − sectp(z))| on the
sets Sp, Sp,α ⊂ C defined in (5) and (6). As before, it will be convenient to work not with
gk(z) but with the rescaled function

g̃k(z) =
2

1 + αk

gk(z) =
4αk

(1 + αk)2
z

f̃k(zp)
.
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As shown in [8, Sec. 4], the relative error g̃k(z)−sectp(z)

sectp(z)
is real-valued and equioscillates on

each line segment {z ∈ C | e−2πij/pz ∈ [α, 1]}, j = 0, 1, . . . , p− 1. Note that here the relative
and absolute errors are the same in modulus. The asymptotic convergence rate on Sp,α was
analyzed in [8]. Here we quantify the non-asymptotic convergence on Sp.

Lemma 3.4. For every k ≥ 0,

max
z∈Sp

|z(g̃k(z)− sectp(z))| ≤ max

{
α,

1− αk

1 + αk

}
, (20)

and

max
z∈Sp,α

|g̃k(z)− sectp(z)| ≤
1− αk

1 + αk

. (21)

Proof. Let z = x1/pe2πij/p with x ∈ [0, 1] and j ∈ {1, . . . , p}. Since g̃k(z) = e2πij/pg̃k(x
1/p)

and sectp(z) = e2πij/p, we have

|z(g̃k(z)− sectp(z))| = |x1/p(g̃k(x
1/p)− 1)|.

If x ∈ [0, αp], then Lemma 3.2 implies that 0 ≤ g̃k(x
1/p) ≤ 2αk

1+αk
< 1, so

|x1/p(g̃k(x
1/p)− 1)| ≤ x1/p ≤ α, x ∈ [0, αp].

On the other hand, if x ∈ [αp, 1], then

|x1/p(g̃k(x
1/p)− 1)| ≤ |g̃k(x1/p)− 1| =

∣∣∣∣∣
4αk

(1 + αk)2
x1/p

f̃k(x)
− 1

∣∣∣∣∣ . (22)

By (16),

f̃k(x)

x1/p
∈
[
1−

(
1− αk

1 + αk

)
, 1 +

(
1− αk

1 + αk

)]
=

[
2αk

1 + αk

,
2

1 + αk

]
, x ∈ [αp, 1],

so
x1/p

f̃k(x)
∈
[
1 + αk

2
,
1 + αk

2αk

]
, x ∈ [αp, 1],

and hence
4αk

(1 + αk)2
x1/p

f̃k(x)
− 1 ∈

[
−1− αk

1 + αk

,
1− αk

1 + αk

]
, x ∈ [αp, 1]. (23)

It follows that

|x1/p(g̃k(x
1/p)− 1)| ≤ 1− αk

1 + αk

, x ∈ [αp, 1].

For (21), we simply start from the second expression in (22) and use (23).
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4. Proof of Theorem 1.1 and Corollary 1.1

To examine the convergence of the recursion (13)-(14) on [0, 1], we first ask the question:
given ε > 0, what values of k and α are needed to get an error bounded by ε? In view of (19),
we must choose α ≤ ε/2 and k large enough so that 1−αk

1+αk
≤ ε.

To determine k, it is convenient to define

δk =

(
p− 1

2

)((
1

αk

)1−1/p

− 1

)
.

Lemma 4.1. For every k ≥ 0,

1− αk

1 + αk

<
p

(p− 1)2
δk.

Proof. The function q(α) = p
2(p−1)

((
1
α

)1−1/p − 1
)
− 1−α

1+α
satisfies q(1) = 0 and q′(α) =

2
(1+α)2

− 1
2α2−1/p < 0 for α ∈ (0, 1), so q(α) > 0 for α ∈ (0, 1). In particular, q(αk) > 0.

The above lemma shows that we can ensure 1−αk

1+αk
≤ ε by enforcing δk ≤ (p− 1)2ε/p. Let

us do so by selecting a scalar δ∗ ∈ (0, 1) and splitting the convergence of δk → 0 into two
stages:

1. Find k1 such that δk1 ≤ δ∗.

2. Find k2 such that δk1+k2 ≤ (p− 1)2ε/p.

Stage 1. We begin our analysis of the first stage with a lemma.

Lemma 4.2. For every α ∈ (0, 1),

H(α) > α1−1/p.

Proof. We have

H(α) =
pαµ(α)p−1

(p− 1)µ(α)p + αp
=

pαµ(α)p−1

α−αp

1−α
+ αp

=
pαµ(α)p−1(1− α)

α− αp+1

=
pµ(α)p−1(1− α)

1− αp
= α1−1/p g(α)

1−1/p

h(α)
,

where

g(α) =
1− αp−1

(p− 1)(1− α)
=

1

p− 1

p−2∑

j=0

αj,

h(α) =
1− αp

p(1− α)
=

1

p

p−1∑

j=0

αj.

10



Since 0 < h(α) < g(α) < 1 for every α ∈ (0, 1), it follows that

g(α)1−1/p

h(α)
>

g(α)

h(α)
> 1.

Lemma 4.2 implies
αk+1 ≥ α

1−1/p
k (24)

for every k, so
αk ≥ α(1−1/p)k .

Thus, we will have δk1 ≤ δ∗ if α(1−1/p)k1 ≥
(

p−1
p−1+2δ∗

)p/(p−1)

, which means

k1 ≥
log log 1

α
− log log p−1+2δ∗

p−1

log p
p−1

− 1. (25)

Stage 2. Next we determine k2 such that δk1+k2 ≤ (p− 1)2ε/p.

Lemma 4.3. For any t ≥ 1,

p− 1

p
t+

1

p

1

tp−1
− 1 ≤ p− 1

2
(t− 1)2.

Proof. The function q(t) = p−1
p
t + 1

p
1

tp−1 − 1 − p−1
2
(t − 1)2 satisfies q(1) = q′(1) = 0 and

q′′(t) = (p− 1)(t−p−1 − 1) < 0 for t > 1, so q(t) ≤ 0 for t ≥ 1.

Lemma 4.4. For every k ≥ 0,
δk+1 ≤ δ2k.

Proof. The recursion (14) can be written as

1

αk+1

=
p− 1

p
tk +

1

p

1

tp−1
k

, tk =
µ(αk)

αk

.

Using Lemma 4.3 and the observation that µ(αk) =
(

1
p−1

∑p−1
j=1 α

j
k

)1/p
≤ α

1/p
k =⇒ tk ≤

(1/αk)
1−1/p, we see that

(
1

αk+1

)1−1/p

− 1 ≤ 1

αk+1

− 1

=
p− 1

p
tk +

1

p

1

tp−1
k

− 1

≤ p− 1

2
(tk − 1)2

≤ p− 1

2

((
1

αk

)1−1/p

− 1

)2

.

Multiplying by (p− 1)/2 yields δk+1 ≤ δ2k.

11



By the results above, we will have δk1+k2 ≤ (p − 1)2ε/p if (δ∗)2
k2 ≤ (p − 1)2ε/p, which

means

k2 ≥
log log p

(p−1)2ε
− log log 1

δ∗

log 2
.

Finally, by taking α = ε/2 we ensure that the error on [0, αp] is bounded by ε (recall (19)),
so the error on [0, 1] is bounded by ε.

We illustrate the process in Figure 1, where we fix integers1 p and k, and numerically
find the value of α ∈ (0, 1) and accordingly ε = 1−αk

1+αk
= 2α such that with the (k, p, p − 1)-

composite rational approximant f̃k the error is maxx∈[αp,1] |x1/p − f̃k(x)| ≤ ε, achieved at
x = 1, and the error on [0, αp] is bounded by ε. Observe that the maximum errors on
[0, αp] and [αp, 1] are not equal but of the same order, suggesting the near optimality of our
composite rational approximants.
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Figure 1: Error curves f̃k(x) − x1/p. Note that the error on [0, αp] is bounded by that on [αp, 1], which is
ε = 2α in both cases.

Putting the above inequalities together, we conclude that

k =
log log 2

ε

log p
p−1

+
log log p

(p−1)2ε

log 2
+ k0 (26)

recursions are enough to yield accuracy ε, where k0 satisfies

k0 ≤ −
log log p−1+2δ∗

p−1

log p
p−1

− log log 1
δ∗

log 2
. (27)

Since k recursions translate into a rational function f̃k of type (p
k−1, pk−1−1), it follows that

the degree n of the rational function f̃k achieving accuracy ε is

n = p
log log 2

ε
log

p
p−1

+
log log

p

(p−1)2ε
log 2

+k0−1
.

1p = 31 is a somewhat arbitrary prime number, chosen in view of the number of days per month.
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We rewrite this to express the error with respect to the degree n. Taking the logarithm and
setting k̃0 = k0 − 1, we get

log n =

(
log log 2

ε

log p
p−1

+
log log p

(p−1)2ε

log 2
+ k̃0

)
log p ≤

(
log log 2

ε

log p
p−1

+
log log 2

ε

log 2
+ k̃0

)
log p. (28)

Hence,

log log
2

ε
≥ log n− k̃0 log p

log p( 1
log p

p−1
+ 1

log 2
)
.

Thus, defining

c :=
1

log p( 1
log p

p−1
+ 1

log 2
)
=

log 2 log p
p−1

log p log 2p
p−1

, (29)

we have

log
2

ε
≥
(

n

pk̃0

)c

,

and therefore, writing b̃ = 1/pck̃0 , we arrive at

ε ≤ 2 exp(−b̃nc).

This bound holds when n is a sufficiently large power of p. To handle the case in which
n ∈ N is not a power of p, we note that blogp nc + 1 recursions yield a rational function of

type (pblogp nc, pblogp nc − 1), and for n large enough this function has error bounded above by

2 exp(−b̃(pblogp nc)c) ≤ 2 exp(−b̃p−cnc).

We will complete the proof of Theorem 1.1 by finding a lower bound for b̃.

Lemma 4.5. If δ∗ = 1
2
, then

b̃ ≥ 1

p1−c
.

Proof. It suffices to show that ck̃0 ≤ 1− c. When δ∗ = 1
2
, we see from (27) that

1− ck̃0 = 1− c(k0 − 1) ≥
log p log 2p

p−1
+ log p

p−1
log log 2 + log 2 log log p

p−1

log p log 2p
p−1

+ c.

The denominator in the fraction above is positive, and the numerator satisfies

log p log
2p

p− 1
+ log

p

p− 1
log log 2 + log 2 log log

p

p− 1

= (log p+ log log 2) log
p

p− 1
+

(
log p+ log log

p

p− 1

)
log 2.

The first term above is manifestly positive for p ≥ 2. The second term is also positive since
log p

p−1
=
∫ p

p−1
1
x
dx > 1

p
for p ≥ 2. It follows that 1− ck̃0 ≥ c.

13



Remark. The lower bound on b̃ can be slightly improved by choosing δ∗ to minimize k̃0 in
the above lemma. Although the minimizer of k̃0 cannot be solved for explicitly, numerical

evidence suggests that the approximation δ∗ =
(

p
p−1

)2
can improve the bound to b̃ ≥ F (p)

for some function F (p) asymptotic to 2
p1−c .

It is easy to see by comparing (20) with (19) that the same analysis, this time choosing
α = ε rather than α = ε/2, also yields (7) in Corollary 1.1.

It remains to establish (8). For this, we take α fixed and use a similar argument. In this
case k1 can be regarded as a constant independent of ε, since the error in the interval [0, αp]

is irrelevant. Therefore we write k̂ :=
log log 1

α

log p
p−1

+ k̃0, and in place of (28), the lowest degree

n required for ε accuracy on Sp,α satisfies log n ≤
(
k̂ +

log log p

(p−1)2ε

log 2

)
log p. Thus defining

â := p
(p−1)2

and

ĉ :=
log 2

log p
(> c), (30)

we have log â
ε
≥
(

n

pk̂

)ĉ
, and so setting b̂ = 1/pĉk̂ we obtain ε ≤ â exp(−b̂nĉ), as required. Like

before, this upper bound weakens to

â exp(−b̂p−ĉnĉ) = â exp

(
−1

2
b̂nĉ

)

when n is not a power of p.
We will complete the proof of (8) by finding a lower bound for b̂.

Lemma 4.6. If δ∗ = 1
2
, then

b̂ ≥ 2 log 2

(
log p

p−1

log 1
α

) log 2

log
p

p−1

.

Proof. Substituting δ∗ = 1
2
into (27) gives

ĉ(k̂ + 1) =
log 2

log p

(
log log 1

α

log p
p−1

+ k0

)

≤ log 2

log p

(
log log 1

α

log p
p−1

− log log 2

log 2
−

log log p
p−1

log p
p−1

)

=
log 2

log p



log

log 1
α

log p
p−1

log p
p−1


− log log 2

log p
.

Thus,

b̂ =
1

pĉk̂
=

2

pĉ(k̂+1)
≥ 2 log 2

(
log p

p−1

log 1
α

) log 2

log
p

p−1

.
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5. Examples

In Figure 2 we illustrate our main result (2) on approximation of x1/p. For integers
k = 1, 2, . . ., we compute the error ε of the composite rational approximants as in Figure 1,
and plot the errors against pck(≈ nc) for p ∈ {2, 5, 31} in log-scale. The plots also show least-
squares affine fits to the convergence data for each p. The fact that the affine fits closely
trace the data suggests the exponent c in (29) is sharp, especially for small values of p. For
the p = 31 plot, which ends early because computing further data was infeasible (note e.g.
that αp < 10−70 for k ≥ 15), there is a slight bend in the convergence, which suggests that
our c in (3) might be a slight underestimate for large p.
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Figure 2: Error history maxx∈[0,1] |f̃k(x)− x1/p| for varying k for p ∈ {2, 5, 31}, along with linear fits shown
as dashed lines.

Finally, Figure 3 shows the error of the approximant g̃k(z) to sectp(z), which clearly
exhibits equioscillation. Note how increasing k results in progressively smaller error (in log-
scale), reflecting the double-exponential convergence. The error curves |g̃k(z)−sectp(z)| look
identical on each of the segments [α, 1] exp(2πij/p) for j = 0, . . . , p− 1.

6. Discussion

We have seen that a large number of well-known functions can be approximated by
composite rational functions. This is perhaps counterintuitive given that composite functions
form a small subclass of functions of the same degree, as investigated in Ritt’s classical
work [18] for polynomials (see also a more recent work by Rickards [17]), and Bogatyrev [4]
for rational functions2. More generally, we think composite (rational) functions are a non-
standard but powerful tool in approximation theory, and we regard this as a contribution

2It is worth noting that these papers study pure composite functions, and our definition (1) is more
general.

15



0.2 0.4 0.6 0.8 1

10
-15

10
-10

10
-5

10
0

0.2 0.4 0.6 0.8 1
10

-3

10
-2

10
-1

10
0

Figure 3: Error |g̃k(z)−sectp(z)| on [α, 1] for α = 0.1, p = 3 (left) and p = 31 (right). The fact that the plots
do not appear to go down to 0 between equioscillation points is simply an artifact of the plotting scheme,
which is based on 104 equispaced sample points.

towards demonstrating their effectiveness and practicality. Indeed, one might say they are
already used extensively in scientific computing:

1. Composite rational functions are implicitly employed in most algorithms for computing
matrix functions [10], in which approximating a function on the spectrum of the matrix
is required. This includes the all-important matrix exponential [10]. For the pth
root, a standard algorithm [10, Ch. 7] employs Newton’s method, which ultimately
approximates A1/p with a sequence of rational functions fk of A given recursively by
fk+1(x) = 1

p
((p − 1)fk(x) + x/fk(x)

p−1), f0(x) = 1. The function fk is composite

rational and similar to the approximants we use, but not the same (it is unscaled), and
it exhibits exponential rather than double-exponential convergence on [0, 1], which can
be easily verified by examining the convergence at x = 0. Generally speaking, Newton’s
method for computing a matrix function f(A) (or more generally for various nonlinear
problems, e.g. rootfinding) can often be interpreted as approximating f(A) (or the
solution) by a composite rational function of A. We also note that for evaluating matrix
functions, the composite structure can be beneficial in terms of numerical stability in
addition to efficiency; this is because the composite structure can avoid involving very
small coefficients, and hence ill-conditioning [14].

2. The rapidly growing subject of deep learning is based on composing a large number
of nonlinear activation functions [12]. A recent work [5] builds upon this observation
to propose a network based on rational activation functions, leading to a high-degree
composite rational function to approximate the input-output map. It is shown to often
outperform popular networks based on ReLU activation functions.

For these reasons we believe that understanding the power and limitations of composite
(rational) functions may have important ramifications in scientific computing. Future work
includes identifying the class of functions that can (and equally interestingly, cannot) be
approximated efficiently by composite rational functions.
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