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We construct a structure-preserving finite element method and time-stepping scheme for
compressible barotropic magnetohydrodynamics (MHD) both in the ideal and resistive
cases, and in the presence of viscosity. The method is deduced from the geometric
variational formulation of the equations. It preserves the balance laws governing the
evolution of total energy and magnetic helicity, and preserves mass and the constraint
div B = 0 to machine precision, both at the spatially and temporally discrete levels. In
particular, conservation of energy and magnetic helicity hold at the discrete levels in the
ideal case. It is observed that cross helicity is well conserved in our simulation in the
ideal case.

1. Introduction

In this paper we develop a structure-preserving finite element method for the com-
pressible barotropic MHD equations with viscosity and resistivity on a bounded domain
2 c R% d € {2,3}. These equations seek a velocity field u, density p, and magnetic field
B such that

p(Ou+u-Vu) —curl Bx B=—-Vp+ pAu+ (A + p)Vdivu, in 2x(0,7), (1.1)
OB — curl(u x B) = —vcurlcurl B, in 2x(0,7), (1.2)

Owp + div(pu) =0, in 2x(0,7), (1.3)

divB =0, in 2x(0,7), (1.4)

u=B-n=curl Bxn=0, on 02 x (0,T), (1.5)

u(0) = o, B(0) = Bo, pl0) = po. in 2, (1.6)

where p = p(p) is the pressure, 1 and X are the fluid viscosity coefficients satisfying u > 0
and 2pu + 3\ > 0, and v > 0 is the resistivity coefficient.

The case p = A = v = 0 corresponds to ideal non-viscous barotropic MHD, for which
the boundary conditions (1.5) are replaced by u - nlgn = B - nlsgn = 0.

Much of the literature on structure-preserving methods in MHD simulation has focused
on the incompressible and ideal case, with constant density Gawlik et al. (2011); Hiptmair
et al. (2018); Hu et al. (2021, 2017); Kraus & Maj (2017); Liu & Wang (2001); Hu
& Xu (2019) and with variable density Gawlik & Gay-Balmaz (2021). These methods
have succeeded in preserving at the discrete levels several invariants and constraints of
the continuous system. For instance, in Gawlik & Gay-Balmaz (2021) a finite element
method was proposed which preserves energy, cross-helicity (when the fluid density is
constant), magnetic helicity, mass, total squared density, pointwise incompressibility,
and the constraint div B = 0 to machine precision, both at the spatially and temporally
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discrete levels. Little attention has been paid to the development of structure-preserving
methods for MHD in the compressible ideal or resistive case. For instance, in the resistive
case, energy, magnetic helicity, and cross-helicity are not preserved and their evolution is
governed by balance laws showing the impact of resistivity on the dynamics of these
quantities. In order to accurately simulate the effect of resistivity in simulations of
compressible MHD, it is highly desirable to exactly reproduce these laws at the discrete
level. The discrete conservation laws for these quantities are then automatically satisfied
in the ideal case, which extend similar properties obtained earlier in the incompressible
setting.

In this paper, we construct a structure-preserving finite element method and time-
stepping scheme for the compressible MHD system (1.1)—(1.6). The method is deduced
from the geometric variational formulation of the equations arising from the Hamilton
principle on the diffeomorphism group of fluid motion. It preserves the balance laws
governing the evolution of total energy and magnetic helicity, and preserves mass and
the constraint div B = 0 to machine precision, both at the spatially and temporally
discrete levels. In particular, conservation of energy and magnetic helicity hold at the
discrete levels in the ideal case.

The approach we develop in this paper is built on our earlier work on conservative
methods for compressible fluids Gawlik & Gay-Balmaz (2020b) and for incompressible
MHD with variable density in Gawlik & Gay-Balmaz (2020a, 2021). Two notable differ-
ences that arise in the viscous, resistive, compressible setting are the change in boundary
conditions for the velocity and magnetic fields, and the fact that the magnetic field is
not advected as a vector field when the fluid is compressible; that is, curl(B x u) does
not coincide with the Lie derivative of the vector field B along u when divu # 0.

2. Geometric variational formulation for MHD

In this section we review the Hamilton principle for ideal MHD as well as the associated
FEuler-Poincaré variational formulation. We then extend the resulting form of equations
to include viscosity and resistivity and examine how the balance of energy, magnetic
helicity, and cross-helicity emerge from this formulation.

2.1. Lagrangian variational formulation for ideal MHD

Assume that the fluid moves in a compact domain 2 C R? with smooth boundary. We
denote by Diff (£2) the group of diffeomorphisms of {2 and by ¢ : [0,7] — Diff(£2) the
fluid flow. The associated motion of a fluid particle with label X € 2 is x = ¢(t, X).

When v = 0, the equation for the magnetic field reduces to 9;B — curl(u x B) = 0,
which can be equivalently rewritten in geometric terms as 9y(B - ds) + £,(B -ds) =0
with £,(B - ds) the Lie derivative of the closed 2-form B - ds. Consequently, from the
properties of Lie derivatives, the time evolution of the magnetic field is given by the
push-forward operation on 2-forms as

B(t) - ds = ¢(t).(By - dS), (2.1)

for some time independent reference magnetic field By(X). This describes the fact that the
magnetic field is frozen in the flow. Similarly, from the continuity equation 9;p+div(pu) =
0, the evolution of the mass density is given by the push-forward operation on 3-forms
as

p(t)d’z = p(t).(0d*X),
for some time independent reference mass density go(X). This discussion, as well as the
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developments below, are easily adapted to the 2D case £2 C R? by considering, instead
of B -ds, the closed 1-form B -dx with B parallel to the plane.

From these considerations, if follows that the ideal MHD motion is completely char-
acterized by the fluid flow ¢(¢) € Diff(£2) and the given reference fields g and By. The
Hamilton principle for this system reads

T
6/ L(<)07 at@v 00, Bo)dt = 0’ (22)
0

with respect to variations d¢ vanishing at ¢ = 0,7, and yields the equations of motion in
Lagrangian coordinates. In (2.2) the Lagrangian function L depends on the fluid flow ¢(t)
and its time derivative 0y (t) forming an element (¢, 9;¢) in the tangent bundle T Diff (£2)
to Diff (£2), and also parametrically on the given gg, By. From the relabelling symmetries,
L must be invariant under the subgroup Diff (£2),, g, C Diff (£2) of diffeomorphisms that
preserve gg and By, i.e., diffeomorphisms ¢ € Diff (2) such that

V*(00d*X) = 0od®X and ¢*(By - dS) = By - dS,
i.e., we have
L(p o, 0(¢ o), 00,Bo) = L(w, Orp, 00, Bo), V1 € Diff(£2),,.8, C Diff(£2). (2.3)
From this invariance, L can be written in terms of Eulerian variables as
L(p, 0, 00, Bo) = £(u, p, B), (2.4)
(see Remark 2.1) where
u=dpopt,  pd’r=p.(e0d’X), B ds = ¢.(By - dS), (2.5)

thereby yielding the symmetry reduced Lagrangian ¢(u, p, B) in the Eulerian description.
In terms of ¢, Hamilton’s principle (2.2) reads

T
5/ L(u, p, B)dt = 0, (2.6)
0
with respect to variations of the form
du = 0w + £y, op = —div(pv), 0B = curl(v x B), (2.7)

where v : [0,T] — X(£2) is an arbitrary time dependent vector field with v(0) = v(T) =0
and £,v = [u,v] is the Lie derivative of vector fields. Here X({2) denotes the space of
vector fields w on 2 with u-n = 0 on 942, viewed as the Lie algebra of Diff (£2). We recall
that B -n = 0 on 92, a condition that is preserved by the evolution (2.1). The passing
from (2.2) to (2.6) is a special instance of the process of Euler-Poincaré reduction for
invariant systems on Lie groups, see Holm et al. (1998). The expressions for the variations
in (2.7) follow by taking the variation of the relations (2.5) with respect to a path ¢ of
time dependent diffeomorphisms with fixed endpoints at ¢ = 0,T. For instance for the
second relation, writing p® d3z = ¢Z(0od®X), one has

d

pEde: Bl

d
spdPz = —
pe de

de

Qoi (QOdSX) = _"61) (SO* (QOd3X))
0

e=0 e=

d
= —£,(pd®z) = —div(pv)d®z, with v= — ot
de|._,

where we used the definition of the Lie derivative £,. A direct application of (2.6)—(2.7)
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yields the fluid momentum equations in the form

5t 5t 5t 5t
<at6u,’l)>+a(6u7ua’l)>+b<5p7pvv>+c<6Bvav) _07 (28)

for all v with v -n = 0, with the trilinear forms

a(w,u,v) = —/ w - [u,v] de,
o
b(o, p,v) = —/ pVo -vdz,
o
e(C,B,v) = / C - curl(B x v) dz.
2

The equations for p and B follow from their definition in (2.5), which are expressed in
terms of b and c as

<atp7 U> + b(Uv Ps u) = 07 Vo (29)
(OB,C) 4+ ¢(C,B,u) =0, VC, C-nlpg=0. (2.10)

Equation (2.8) yields the general Euler-Poincaré form of the equations for arbitrary
Lagrangian £(u, p, B) as
ol Y4 Y4

Y4
—_— —_— —_— . 1
8t5u+£u5u pV(;p—i—Bxcurl(sB, (2.11)

where in the second term we employed the notation £,m = curl mxu+V (u-m)+mdivu.

The Lagrangian for barotropic MHD is

1 1
tGu.p.B) = [ [5oluP = o)~ 5IBF] dx, (212)
Q
with €(p) the energy density. Using
ol o0 1, 4, Oe ol
_— = . R — —_ = _B
A 7 L P 72 ’

in (2.11) yields the barotropic MHD equations (1.1) with 4 =X =0.

Extension to full compressible ideal MHD subject to gravitational and Coriolis forces
is easily achieved by including the entropy density s in the variational formulation and
considering the Lagrangian function

1 1
ups.B) = [ [GoluP+pRou=clpos) = po—3lBF|dn,  (213)

with ¢ the gravitational potential and a vector field R such that curl R = 2w with w the
angular velocity of the fluid domain.

REMARK 2.1 (LAGRANGIAN REDUCTION). From the point of view of Lagrangian
reduction by symmetry, the passing from L to { is justified as follows. Given gy and
By, the Lagrangian L(-,-, 00,Bo) : T Diff(2) — R s Diff (£2),, B, -invariant, hence it
induces a function ¢ : T Diff (2)/ Diff (£2) 0.8, — R, the symmetry reduced Lagrangian,
on the quotient of T Diff(£2) by the symmetry group Diff(£2),,.8,- This quotient space
can be identified with the space X(£2) x Oy 5, where Oy 5, = {px(00d>X), p.(Bo - dS) |
o € Diff(£2)} is the orbit of (0o, Bo) under the action of Diff(£2). The identification is
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given by
[gp,(%(p} € T Diff (£2)/ Dift (£2) o8, — (u, p, B) € X(£2) x O, .5,

where [¢, Oyp] denotes the equivalence class and (u, p, B) are defined as in (2.5). Thanks
to this identification, the reduced Lagrangian { : X(12) x Oy 5, — R is related to L as
written in (2.4). The following diagram illustrates the reduction process.

T Diff(£2) 3 (p,v)
\
/R
T Diff (£2)/ Diff (£2) g8, == X(£2) X Oyy.8, 2 (u, p, B)

2.2. Viscous and resistive MHD

Viscosity and resistivity are included in the formulation (2.8)—(2.10) by defining the
symmetric bilinear forms

d(u,v) = —/ [,uVu Vo 4+ (A4 p) divudivv] dz,
@ (2.14)

e(B,C) = —1// curl B - curl C dz,
e

and considering the no slip boundary condition ulg, = 0 for the velocity. This cor-
responds in the Lagrangian description to the choice of the subgroup Diff(£2) of dif-
feomorphisms fixing the boundary pointwise. The viscous and resistive barotropic MHD
equations with Lagrangian £(u, p, B) can be written as follows: seek u, p, B with u|sp = 0
and B - nlgn = 0 such that

téu’v a 5u,u,v

Y4 Y4
+b (5[77p7 v) +c ((SB,B,U> = d(u,v), Yo, v|lgnp =0 (2.15)
<atp70> + b(07 Py u) = 07 Vo (216)
(0B, C) +¢(C,B,u) = e(B, (), VC, C-nlapp=0. (2.17)

The boundary condition curl B X n|gn, = 0 emerges from the last equation, while the
condition div B(¢) = 0 holds if it holds at initial time. For the Lagrangian (2.12), the
system (1.1)—(1.5) is recovered. While the system (2.15)—(2.17) is obtained by simply
appending the bilinear forms d and e to the Euler-Poincaré equations, this system can
also be obtained by a variational formulation of Lagrange-d’Alembert type, which extends
the Euler-Poincaré formulation (2.6)—(2.7), see Appendix A.
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2.3. Balance laws for important quantities

In the Euler-Poincaré formulation (2.15)—(2.17), the balance of total energy & =
<%, u) — £(u, p, B) associated to a given Lagrangian ¢ is computed as

fe-(n) () ()
o () o (Eop) (2, .0) st
+0b ((?ﬁ,p,u) +c (%,B,u) —e (B,;é)
=d(u,u) — e (B, (?é)

and follows from the property
a(w,u,v) = —a(w,v,u), Vu,v,w

of the trilinear form a.
The conservation of total mass |, o pdz follows from the property

b(l,p,v) =0, Vp,v. (2.18)

If A is any vector field satisfying curl A = B and A x n|s = 0, the balance of magnetic
helicity [, A - Bdz is found as follows:

4 / A-Bdz = (9,A, B) + (A, 5,B)

dt /.,
= (01 A, curl A) + (A, 0;B)
= (curl 0, A, A) + (A, 0, B)
=2(0;B, A)
= —2c(A, B,u) + 2e(B, A)
= 2¢(B, A),

where in the third equality we used A x n|gn = 0 and the following instance of Stokes’
theorem:

(curl C, D) = (C, curl D) +/ (C x D) -nds
on

for vector fields C,D on (2. In the fifth equality we used (2.17) (which holds even if
C -n #0), and in the last one we used the following property of c:

¢(A,B,u) =0if B =curl A and ulgp = 0. (2.19)
In absence of viscosity, u|s = 0 does not hold and one uses

¢(A,B,u) =01if B=curl A and v - nlgno = B - nlgn = 0.
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3. Spatial variational discretization

We will now construct a spatial discretization of (1.1-1.6) using finite elements. We
make use of the following function spaces:

HY(9) = {f € () | T/ € 1(2), f =0 on 002},
L2(0)? - L2(02 —uyng = 0}, ifd=2
Ho(curl, ) = {u € L*(£2)? | Oyuy — Oyuy € L*(02), ugny — uyn, = 0 on 042}, 1 d=2,
{u e L*(2)3 | curlu € L?(2)3, u x n =0 on 902}, ifd=3,
Hy(div, 2) = {u € L*(2)% | divu € L*(22), u-n = 0 on 902}.

Let T, be a triangulation of 2. We regard Tj, as a member of a family of triangulations
parametrized by h = maxgerT, hx, where hxg = diam K denotes the diameter of
a simplex K. We assume that this family is shape-regular, meaning that the ratio
maxgeT;, hi/pk is bounded above by a positive constant for all h > 0. Here, px denotes
the inradius of K.

When r > 0 is an integer and K is a simplex, we write P.(K) to denote the space of
polynomials on K of degree at most r.

Let r,s > 0 be fixed integers. To discretize the velocity u, we use the continuous
Galerkin space

UE™ = OGoy 1 (Th) = {u € HY(2)? | |y € Pry1(K)?, VK € Tp}.
To discretize the magnetic field B, we use the Raviart-Thomas space
UM = RT,(Ty) := {u € Ho(div, Q) | u|y € P.(K)* +2P.(K), VK € Tp,}.
To discretize the density p, we use the discontinuous Galerkin space
F, = DGy(Ty) = {f € L*(2) | flx € Ps(K), VK € Tp,}.

Our method will also make use of an auxiliary space, the Nedelec finite element space of
the first kind,

Ucurl NED (771)

~ J{ue Hyo(curl, 2) | u|x € P(K)* + (22, —21) P (K), VK € Ty}, if d =2,
-\ {u € Ho(curl, Q) | ul, € P.(K)® + 2 x P(K)3 VYK € T}, if d =3,

which satisfies curl Uf™! C UG,

We will need consistent discretizations of the trilinear forms a,b,c and the bilinear
forms d, e. To construct these, we introduce some notation (and we caution the reader
that we abuse the letters d and e in what follows). Let &£, denote the set of interior
(d — 1)-dimensional faces in Tp. On a face e = K; N Ky € &, we denote the jump and
average of a piecewise smooth scalar function f by

f1+f2

If] = fina + fono, {f} =

where f; = f| &,» M1 1s the normal vector to e pointing from K to K», and similarly
for mo. From now on we focus on dimension d = 3, as the 2D case follows from trivial
modifications, see §4.1.1. We let 78 : L2(02)? — Ug]raLd eurl . 72(02)3 — U, miliv
L3(2)3 — UYY and 7, : L3(2) — F), denote the L2 orthogonal projectors onto U}gLMd7
U fi‘"l wa and Fj,, respectively. We define curly, : U,fi" — Uy curl By

(curly u,v) = (u,curlv), VYo e U™
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We define trilinear forms by, : F, x F, x UV — R, ¢, : L2(02)3 x UAY x U}frad — R,
and a bilinear form ey : Uy div x Uy div 3 R by

dhgw ==Y [ @ Vngde+ 3 [u-Ifla)ds

KeTn ec&p
cn(C, B,v) = (C, curl m{" (75" B x w§urly)),

en(B,C) = —v(curly B, curl, C).

Note that by, trivially satisfies the property (2.18) ensuring mass conservation. Our choice
of ¢j is motivated in part by the following lemma which shows that ¢, satisfies the
property (2.19) of c.

LEMMA 3.1. The trilinear form cp, satisfies

en(w,u,v) =0 if curlw = u. (3.1)
Proof. If curlw = wu, then we can integrate c; by parts and use the fact that
n x s (reurly, x ﬂﬁ“rlv |8Q = 0 to obtain

Ch(w? u,’l}) <w Curl ﬂ-curl(ﬂ}CLurlu X ﬂ_;:Lur]’U)>
= (curlw, 7™ (78" x 75 y))

< curl( curlu % 7T;:Lurlv»
<,n_zur1u ,ﬂ_iurlu % qurl’l}>

=0.
U]

In the spatially discrete, temporally continuous setting, our method seeks u : [0, T] —
U p:[0,T) — Fy, and B : [0,T] — U™ such that
<Ua atp> = _bh(ov Ps ’LL), Vo € Fy,
(C,0:B) = —cp,(C, B, u), vC e URv,

T
5/ L(u, p, B)dt =0,
0

for all variations du : [0, 7] — U™ 6p: [0, T] = Fy, and 6B : [0,T] — U satisfying

and

(w, du) = (w, dQv) — a(w, u,v), Yw € U,%rad, (3.4)
<Ja 5p> = _bh(aa P, 'U)’ Vo € Fp, (35)
(C,6B) = —cp,(C, B,v), vC € UV, (3.6)

where v : [0, 7] — U™ is an arbitrary vector field satisfying v(0) = v(T) = 0.
Note that (3.2-3.3) and (3.4-3.6) are discrete counterparts of the advection laws

Op = —div(pu), 0B = curl(u x B),
and the constraints

ou= 0w + [u,v], dp=—div(pv), B = curl(v x B),
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on the variations.

As shown in Gawlik & Gay-Balmaz (2020b), in the absence of B this variational
principle follows from the Hamilton principle on a discrete diffeomorphism group G, C
GL(Fy) by applying Euler-Poincaré reduction. In particular, the discrete version of
a emerging from the Euler-Poincaré variational formulation in Gawlik & Gay-Balmaz
(20200) coincides with a on the finite element space U™ used here for the velocity.

Thedyariational principle above yields the following equations for v € U }%rad, p € Fy,
B e U;™:

Y4 grad 04
<6t6u,v> +a (ﬂ'h 5u,u,v>
+by, (ﬂ'hgi,p, v) +ep (wgi";é,B,v) =0, Yo € U}%rad, (3.7)
(Orp, o) + bp (o, p,u) =0, Vo € Fy, (3.8)
(0B, C) + cp(C,B,u) =0 vC € UiV, (3.9)

We introduce viscosity and resistivity by adding d(u,v) and ep(B,C) to the right-hand
sides of (3.7) and (3.9). The resulting equations read

Y4 grad 0¢
<8t6u,v> +a (ﬂ'h M,u,v)
ol iv Y4 rad
+bp, <7rh6p,p,v) +cn (wg (SB’Bw) = d(u,v), Yo e UF™ (3.10)
(Orp, o) + bp (o, p,u) =0, Yo € Fp, (3.11)
(0,B,C) + ¢, (C,B,u) = ey(B,C), VC UM, (3.12)

These equations are not implementable in their present form, since the terms involving
cp, and ey, contain projections of the test functions v and C'. To handle these terms, we
use the following lemma.

LEMMA 3.2. Let u, B € U,‘liiv be arbitrary, and let J, H,U,E, o, j € U,‘;‘”l be defined by
the relations

(JK) = — <§é cur1K> , VK € UP™, (3.13)
(H,G) = (B,G), VG e U, (3.14)
U, V)= V), vV e U, (3.15)
(E,F)=—(U x H,F), VF ¢ Uf™, (3.16)
(a, B) = —(J x H, ), VB e UM, (3.17)
(j, k) = (B, curl k), vk € U, (3.18)
Then, for every C € UV and every v € U,gl;rad, we have
en(C, B,u) = (curl E, C), (3.19)
o 00
div Y™ B — 92
Ch (ﬂ-h 5B’ U) <C¥, U>7 (3 O)

en(B,C) = —v{curlyj, C). (3.21)
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Proof. We have H = 7§"!B and U = 7{"u by definition. Thus, (3.16) implies that
E = —m$ul (U x H) = —a¢ul (rsutly » goul By,
It follows that
(curl B, C) = —(curl 7§ (7§ x 78" B), C) = ¢;,(C, B, u).
To prove (3.20), we use the fact that curl Us"™ C U™ to write
{a,v) = (o, m50)
(T x mSu B ety
—(J, 7B x wfurly)

_<J7 7_[_Zurl(ﬂ_zurlB % ﬂ_zurlv»
Y4
<6B curl 7_{_Curl( ZurlB % ﬂ,zurlv)>

0
_ <ﬂ_21v ,curl 7_rzurl( curlB % 7_l,curl )

Finally, (3.21) follows from the fact that j = curly, B by definition, so
—v{curly, C) = —v(j,curly, C) = en (B, C).
L]
The preceding lemma shows that (3.10-3.12) can be rewritten in the following equiv-

alent way. We seek u,w € U}frad, B e UM, p,§ € Fy, and J, H,U,E,«,j € U™ such
that

<at((;’i,’v> +a(w,u,v) +bp(0, p,v) + (a,v) = d(u,v), Vv e U}gLradv (3.22)
(Orp, o) + by (o, p,u) =0, Yo € Fp, (3.23)

(0B, C) + (curl E,C) = —v{curlj,C), VC e UMY, (3.24)

(w,z) = <§i,Z> ; Vz e US™, (3.25)

0,7) = <§i,7’>, VT € F, (3.26)

8¢
(J,K) = — <6B cur1K> VK € U™ (3.27)

(H,G) = (B,G), VG € U™, (3.28)
(U V) = (u, V), YV e Ug™, (3.29)
(E,F)=—(U x H,F), VYF e U™, (3.30)
(o, B) = —(J x H, B), VB e U™l (3.31)

(j, k) = (B, curl k), VE e U™, (3.32)

REMARK 3.1. For Lagrangians that satisfy (% = —B, we have j = J, so (3.32) can
be omitted.
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REMARK 3.2. The above discretization has several commonalities with the one pro-
posed in Hu & Xu (2019) for a stationary MHD problem. The finite element spaces
we use for u and B match the ones used there, and our discretization of the term
—v{curl B, curl C) matches the one used in Equation 4.3(b-c) of Hu & Xu (2019).

REMARK 3.3. The finite element spaces we use also have a few commonalities with the
ones used in Ding & Mao (2020), where a stable finite element method for compressible
MHD is proposed and proved to be convergent. There, the space CGa(T)? is used for
u and DGy(Tp) is used for p. These choices coincide with ours when r =1 and s = 0.
However, the authors of Ding & Mao (2020) use NEDy(Ty) rather than RT,.(Ty,) for B
and treat the boundary condition B x n|,, = 0 rather than B -n|,, = curl B X n|y, =
0.

ProPOSITION 3.3. If B(0) is exactly divergence-free, then the solution to (3.22-3.32)
satisfies

div B(t) = 0, (3.33)
d

- dz = .34

% [ oo, (3.34)

d div ¢

£5 =d(u,u) — ep <B,7Th 53) , (3.35)

i/ A-Bdz = 2e,(B, mv A), (3.36)
dt J,

for all t. Here, £ = (24 u) — (u, p, B) denotes the total energy of the system, and A

Su’

denotes any vector field satisfying curl A = B and A x nly, = 0.

Proof. Since curlUf™! UV, the magnetic field equation (3.24) implies that the
relation
0yB + curl E = —vcurl j
holds pointwise. Taking the divergence of both sides shows that 9; div B = 0, so B(t) is

divergence-free for all t.
Taking o = 1 in the density equation (3.23) shows that

d
7 pdx = (Op, 1) = —bp(1, p,u) = 0.
tJo
To compute the rate of change of the energy, we take v = u in (3.10), 0 = —Whg—ﬁ

in (3.11), and C = fwgiv% in (3.12). Adding the three equations yields

oL ol div ol _ divﬁ
<8t6u7u><atp77rh6p><atB77Th (SB> 7d(u?u) €h (B’Trh 63) .

Since 9;p € F, and 9, B € U, this simplifies to

50 Y4 AN div 00
(o05) (o055~ (00m. 5 ) = tw e (.71 ).

which is equivalent to

d YA _ divﬁ
% <<§uau> _é(u7p7B)> - d(u’u) ~Ch <B77Th (SB) ’
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For the magnetic helicity, we compute

d

G | A Bde= (01A, B) + (A, 0,B)
= <8tA7 Curl A> + <A7 atB>
= <CL1I‘1 81514, A> + <Aa 8tB>
=2(0;B, A)

= 2(0: B, TV A)

= —2c, (T A, B,u) + 2en (B, T3V A).
Since curl Uf™! € UV, we have

Ch(’/TgivA, B,u) < 1VA curl 7Tcurl( curlB % 7Tcurl )>

<A curl 7Tcurl( curlB % 7Tcurl )>

- h(Aa Ba U).
Thus,
d div
dt A de_—QCh(A B U)+2€h(B T A)
The first term vanishes by Lemma 3.1, yielding (3.36). UJ

REMARK 3.4. The proposition above continues to hold if we omit the projection of %
onto U;cfrad in (3.25). We find it advantageous to omit this projection for efficiency. As
an illustration, let us consider the setting where ((u, p, B) = [, [3p|ul* —€(p) — 3| B|*] d=.
If we omit (3.25) and invoke Remark 3.1, then the method seeks u € Ufglrad, B e Uy,
p,0e€Fy, and J HU FE o€ U}‘i“rl such that

(@(pu), v) + a (pu,u,v) + by (6, p,v) + (o, v) = d(u,v), Vo € UF™, (3.37)
(Op, o) + by (o, p,u) =0, Yo € Fp, (3.38)

(0B, C) + (curl E, C) = —v({curl J, c> YC € UV, (3.39)

<2 ul? — > , VT E€F,,  (3.40)

(J,K) = (B ,curlK> VK € UM, (3.41)

(H,G) = (B, G), VG € U™, (3.42)

(U, V) = (u,V), YV e UP™M, (3.43)

(E,F)=—(U x H,F), VF € U™, (3.44)

(o, B) = —(J x H,B), VB e UF™l (3.45)

In this setting, the energy identity (3.35) becomnes

d

1 2 1 2
—_ —pP|u + 14 + = B dﬂ = d w,u) + B, B).
It |:2 | | 6( ) 2| | ] ( ) ) eh( ) )



A structure-preserving finite element method for compressible MHD 13

4. Temporal discretization

In this section, we design a temporal discretization of (3.37-3.45) for Lagrangians of
the form

1 1
l(u, p, B :/ —plul® — €(p) — =|BJ?
(wp.B)= | |golul ~ (o) = 51B]

Our temporal discretization will retain all of the structure-preserving properties of our
spatial discretization: energy balance, magnetic helicity balance, total mass conservation,
and div B = 0.

We adopt the following notation. For a fixed time step At > 0, we denote t; = kEAtL.
The value of the approximate solution u € U,%md at time ¢, is denoted uy, and likewise
for p and B. The auxiliary variables 8 € Fy, and J H U, FE,a € Uﬁ““ will play a role
in our calculations, but, to reduce notational clutter, we do not index them with a
subscript k. We write ug 1/ = M7 Prt1/2 = % %, and
(PWis1/2 = 7pkuk+p§“uk“~

Given uyg, px, Bi, our method steps from time ¢ to tx41 by solving

) Bk+l/2 =

Pk4+1Uk+1 — PEUE
< - Zt ,U> +a ((Pu)k+1/27uk+1/2,v)

+0n(0, pr1/2,v) + (0, v) = d(ugy1/2,v), Vv e U}%rad, (4.1)

<pk+1At_pkao-> + b}L(Uv Pk+1/27uk+1/2) = 07 Vo € Fha (42)

Bji1—B .
<’€“At’“,c> + (curl E,C) = —v{curl J,C), VC € UMY, (4.3)

for ug41, pr+1, Brt1. Here, 0, a, E, and J (as well as H and U) are defined by

1
(0,7) = <2uk U1 — 5(Pk,pk+1),r> , Vr € F, (4.4)
(J,K) = (Bpy1/2, cul K) , VK € U™, (4.5)
(H,G) = (By11/2, G), VG e Ug (4.6)
(U, V) = (12, V), vV e g, (4.7)
(E,F) = —(U x H,F), VF e U™, (4.8)
(a,8) = —=(J x H,B), V3 € Ug™. (4.9)
In (4.4) we introduced the bivariate function
€ — €E\X
o(z,y) = dy) — elo) )7
y—x

see formula (4.10) below for the justification.
Notice that we used the midpoint rule everywhere above except in the definition of 6,
where we used

1
Uk " Ukt — S(Pks Pr+1)
instead of
sl — o
k+1/2 o

P=Pr+1/2
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to discretize 1 |u|? — g—;. This will allow us to take advantage of the identity

1 1 1
5 /| [+ o) = gorduf = (o)) o

Ph4+1UE+1 — PRUE Uk + Ukl Pr+1—pr 1
= _ —_— _— . _ 6
< Al ) B > < Al ) 2% Uk+1 (Pk,pk+1)>

(4.10)

when we prove energy conservation below.

PROPOSITION 4.1. If By is exactly divergence-free, then the solution to (4.1-4.9)
satisfies

div By, = 0, (4.11)
/ Pra1dx :/ pr dz, (4.12)
Q Q

Exp1—E

A - d(Upt1/2, Uk+1/2) + €n(Brt1/2, Brtiy2), (4.13)
1 .
A [/Ak+1'3k+1 dz — /Ak'Bk dx} = 2¢(Biot1y2, T Ajy1/2), (4.14)
Q Q

for all k. Here, &, = ((;i—i,uw — l(ug, px, B) denotes the total energy of the system, and

Ay, denotes any vector field satisfying curl Ay, = By, and Ay X nly, = 0.

Proof. The magnetic field equation (4.3) implies that the relation

B - B
% +curl £ = —vcurl J

holds pointwise, so taking the divergence of both sides proves (4.11). Conservation of
total mass (i.e. (4.12)) is proved by taking o = 1 in the density equation (4.2).

To prove (4.13-4.14), we introduce some notation. Let Day(pu) = ZAHZEE PRtk
DB = W, etc. To reduce notational clutter, we will suppress the subscript

k + 1/2 on quantities evaluated at tg41/2- Thus, we abbreviate ugi1/2, Bry1/2, Prt1/2s
and (pu)kH/Q as u, B, p, and pu, respectively. Using Lemma 3.2, equations (4.1-4.9) can
be rewritten in the form

(Dai(pu), v) + a(pu,u,v) + by (6, p,v) = cn (B, B,v) = d(u,v), Vo€ U™, (4.15)
(Datp, o) + bp(o, p,u) =0, Vo € Fy, (4.16)
(DA¢B,C) + ¢,(C, B,u) = en(B,C), YC € UM, (4.17)
where
1
0 =mn <2Uk U1 — 5(pk7pk+1)> .
Taking v = u, 0 = =6, and C = B in (4.15-4.17) and adding the three equations gives
(Dat(pu),u) — (Daep,0) + (DaB, B) = d(u,u) + en(B, B).
Written in full detail, this reads

Ph+1Uk41 — PrUE Uk + Ugy1 Pk+1 — Pk 1
_ - =5
< At ’ 2 > < At T (2uk Ukt (pk’pk+l))>

n <Bk+1 — By B+ Brqa

AL 5 > = d(up11/2, Ugy1/2) + €n(Bry1/2, Beyiy2)-
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Since € Fj, we can remove 7, from the second term above and use the
identity (4.10) to rewrite the equation above as

Pk+1—Pk
At

1 1 1
i [ (st + toun) = ontunf = o)) aa

1 1 1
+ Zt/ (2|Bk+1|2 _ 2|Bk|2) dz = d(uk+1/2,uk+1/2) + eh(Bk+1/27Bk+1/2).

This proves (4.13).
To prove (4.14), we revert to our abbreviated notation and compute

o (ke Bis) = (A, B) = (DavA, B) + (A, D)
= (DatA,curl A) + (A, DA B)
= (curl DA, A) + (A, Do, B)
=2(D;B, A)
=2(DxB, v A)
= —2¢;, (7Y A, B, u) + 2ep,(B, w8V A)
= —2cn(A, B,u) + 2ep,(B, m¥ A).

The first term vanishes by Lemma 3.1, yielding (4.14). ]

4.1. Enhancements and Extensions

Below we discuss several enhancements and extensions of the numerical method (4.1-
4.9).

4.1.1. Two dimensions

The two-dimensional setting can be treated exactly as above, except one must distin-
guish between vector fields in the plane (u, B, H, U, and «) and those orthogonal to it
(J and FE). We thus identify J and E (as well as the test functions K and F appearing
n (4.5) and (4.8)) with scalar fields, and we use the continuous Galerkin space

{ue HY(Q) | ulg € Pria(K), VK € Th}

to discretize them. We also choose the magnetic potential A to be orthogonal to the
plane. This ensures that magnetic helicity is trivially conserved in two dimensions, since
both sides of (4.14) vanish when A is orthogonal to the plane.

4.1.2. Upwinding

To help reduce artificial oscillations in discretizations of scalar advection laws like (4.2),
it is customary to incorporate upwinding. As discussed in Gawlik & Gay-Balmaz (2021),
this can be accomplished without interfering with any balance laws by introducing a
u-dependent trilinear form

(U'fag7 )_bhfaga +Z/Be

e€éy,

[[fﬂ [9] ds,

where {B.(u)}ecs, are nonnegative scalars. One then replaces every appearance of
bu(-,-,+) in (4.1-4.2) by bp(upy1/2; -+, -). It is not hard to see that this enhancement
has no effect on the balance laws (4.11-4.14). That is, Proposition 4.1 continues to hold.
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We used this upwinding strategy with

1 U-n 1
Be(u) 7T(u n) arctan 0.0 2|u n|
in all of the numerical experiments that appear in Section 5.

4.1.3. Zero wiscosity

When the fluid viscosity coefficients p and A vanish, the boundary condition u|,, =0
changes to u - nl,, = 0, and the term d(u,v) on the right-hand side of (2.15) vanishes.
To handle this setting, we modify the scheme (4.1-4.9) as follows. We use the space U™
instead of U,’f’rad to discretize u (as well as the test function v appearing on the right-hand
side of (4.1)), and we replace the term a((pu)p41/2, Ukt1/2,v) by

Gh(uk+1/2; (l)u)k+1/27 Uk+1/25 v),

where ap,(U; -, -, ) denotes the U-dependent trilinear form
ap(Usw,u,v) = Z / w-(v-Vu—u-Vov)de
KeT, 'K

+ ) /n x ({w} 4 ae(U)[w]) - [u x v] ds.

ec&, V€

Here, Jw] and {w} denote the jump and average, respectively, of w across the edge e,
and {ae(U)}ece, are nonnegative scalars. We took a.(U) = B.(U)/(U - n), which is a
way of incorporating upwinding in the momentum advection; see Gawlik & Gay-Balmaz
(2020b). Note that ap(U;w,u,v) reduces to a(w,u,v) when u,v € U,%md since the term
[u x v] vanishes. Here also, Proposition 4.1 continues to hold (with b, or by), where we
now have d = 0 in (4.13). If additionally v = 0, i.e. resistivity is absent, then we have
ep, =0 in (4.13-4.14) as well.

4.1.4. Entropy and gravitational forces

The extension of our scheme to full compressible ideal MHD subject to gravitational
and Coriolis forces is straightforward. Here we describe the incorporation of the entropy
density s and the gravitational potential ¢, omitting Coriolis forces for simplicity. The
Lagrangian (2.13) is thus

L(u, p, s, B) :/

1 1
[gp\ulz —elp,s) = po — 5| BI?| dz,
0
and s is treated as an advected parameter: d;s + div(su) = 0.
In the discrete setting, this leads to the following modifications of our basic scheme.
We introduce an additional unknown s € Fj, the discrete entropy density, which is

advected according to

S — S ~
<k+1Atk70> + bn (U123 0, Sk1 /2, Ukt1/2) = 0, Vo € Fy,. (4.18)

In place of (4.4), we define two auxiliary variables 61,6, € F}, by

1 ) §
(00, 7) = <2uk gyt — & — 1(Pks Prt1s Sk) +2 1(Pks P15 Sk41)

5 5
(62,7) = <— 2k Skt 1) - 2(8‘“’8’“+1’p“1),7> , ¥r € Fy, (4.20)

,T> , VT € Fy, (4.19)
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where
€p/a5 —€p,S
51(;0’10/75): ( ), ( )a
p—p
elp,s') —elp,s
52(575/7p) = %

Then we replace the term

br (0, prs1/2,v)
in (4.1) by

O (s 1/2, 01, iy /2, 0) + b (Wit 2, 02, Sp41/2, ).

The resulting scheme satisfies all of the balance laws (4.11-4.14), this time with

Y4
& = <6uk’uk> — U(u, pi, B, sk)

1 1
= / [§pkluk\2 + §|Bk|2 + €(pr, sk) + Pk¢} dz.
1%

Note that this scheme is especially relevant in the absence of viscosity and resistivity, i.e.
d(u,v) = ep(B,C) = 0, since the entropy density s is treated as an advected parameter
above. Nevertheless, we have found it advantageous in some of our numerical experiments
to continue to include the terms d(u,v) and ey (B, C) to promote stability.

5. Numerical examples
To illustrate the structure-preserving properties of our numerical method, we solved

the compressible barotropic MHD equations (1.1-1.6) with = v = A = 0 and ¢(p) = p°/3
on a three-dimensional domain 2 = [—1,1] with initial conditions

u(z,y, z,0) = (sin(mx) cos(my) cos(nz), cos(mx) sin(mwy) cos(wz), cos(mz) cos(my) sin(wz)),
B(z,y,7,0) = curl (1 —2*)(1 — y*)(1 — z*)v) ,
p(z,y,2,0) = 2 + sin(nz) sin(ry) sin(nz),

where v = 5(sinmz,sin7y,sinTz). We used a uniform triangulation 7, of 2 with

maximum element diameter h = v/3/2, and we used the finite element spaces specified
in Section 3 of order r = s = 0. We used a time step At = 0.005. Figure 1 shows that the
scheme preserves energy, magnetic helicity, mass, and div B = 0 to machine precision,
while cross helicity drifts slightly.

Next, we simulated a magnetic Rayleigh-Taylor instability on the domain (2 = [0, L] x
[0,4L] with L = . We chose

c(p,s) = Ke*/ (o0 p

witth:Kzland'y:%,andweset,uzz/:/\:0.0landqﬁ:fy,which
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10° T T

|F(t) = F(0)]

10—15 -

s '\\\\*/4('\/‘1\¢

ERIVISZARS A
\ ’\

Foy o

—20 \ | | | | |
10 0 0.1 0.2 0.3 0.4 0.5

Ju-Bdz --- ||divBl|p2o) --- [A-Bdz

|— Jode — [L3olul® + §IBI + c(p)) do

FIGURE 1. Evolution of mass, energy, cross-helicity, || div B||2(5), and magnetic helicity during
a simulation in three dimensions. The absolute deviations |F'(t) — F/(0)| are plotted for each such
quantity F(t).

corresponds to an upward gravitational force. As initial conditions, we took

y—0.5
=1.5—0.5tanh
p(,,0) = 15— 0.5 tan ( - )

_ p(,y) (y —0.5)2
u(z,y,0) = (0, —0.025 m cos(8mx) exp <009)> ,
p(z,y) )

(v =1 Kp(z,y,0)7

s(z,y,0) = Cyp(z,y,0)log (

B(z,y,0) = (By,0),

where
y—0.5
p(z,y) = 1.5y + 1.25 + (0.25 — 0.5y) tanh 002 )
This system is known to exhibit instability when By < B. = +/(pn — p1)gL, where here

on=2,p =1,g=1, L =1/4, Chandrasekhar (1961).

We imposed boundary conditions v = (B — (By,0)) -n = curl B x n = 0 on 0f2.
We triangulated {2 with a uniform triangulation 7 having maximum element diameter
h =277, and we used the finite element spaces specified in Section 3 of order » = s = 0.
We ran simulations from ¢ = 0 to ¢ = 5 using a time step At = 0.005. Plots of the
computed mass density for various choices of By are shown in Figures 2-5. The figures
indicate that the scheme correctly predicts instability for By < B, = 0.5 (Figures 2-3)
and stability for By > B, = 0.5 (Figures 4-5).

The evolution of energy, cross-helicity, mass, and || div B|| 12(0) during these simu-
lations is plotted in Figure 6. (Magnetic helicity is not plotted since it is trivially
preserved in two dimensions if we take A to be orthogonal to the plane.) As predicted
by Proposition 4.1, Figure 6 shows that energy decayed monotonically, while mass and
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Fi1GURE 2. Contours of the mass density at t = 0,1,2,3,4,5 when By = 0.2.

Fi1cURrE 3. Contours of the mass density at t = 0,1,2,3,4,5 when By = 0.4.

div B = 0 were preserved to machine precision. Interestingly, the cross-helicity drifted by
less than 2.5 x 1074 in these experiments.

Appendix A. Lagrange-d’Alembert formulation of resistive MHD

In this appendix we explain how viscosity and resistivity can be included in the
Lagrangian variational formulation by using the Lagrange-d’Alembert principle for forced
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F1GURE 4. Contours of the mass density at t = 0, 1,2, 3,4,5 when By = 0.6.

Fi1GURE 5. Contours of the mass density at t = 0,1, 2,3,4,5 when By = 0.8.

systems. While viscosity can be quite easily included in the variational formulation by
adding the corresponding virtual force term to the Euler-Poincaré principle, resistivity
breaks the transport equation (2.1) hence the previous Euler-Poincaré approach for B
must be appropriately modified.

We first observe that in absence of viscosity and resistivity, equation (2.11) can also be
obtained from a variational formulation in which the variations 6 B are unconstrained. It
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By =0.2 By =0.4
T T T T T T T T T T T T
1072 1 107 8
=
T 107% ) 1 1078 8
|
E 10714 | N 10714 | N
—20 | | | | | | —20 | | | | | |
10 o 1 2 3 4 5 10 o 1 2 3 4 5
By =06 By =038
T T T T
1072 | a 1072 | A
R r’
=
T 107 1 107 :
|
E 10~ | N 10-4 | N
—20 | | | | | | —20 | | | | | |
10 o 1 2 3 4 5 10 o 1 2 3 4 5
t t
’— [pdz — [[iplul® + 3|BI> +€(p,s) + pplde —— [u-Bdz --- | divB| 2

FIGURE 6. Evolution of mass, energy, cross-helicity, and || div B||2(p) during simulations of
the magnetic Rayleigh-Taylor instability with Bo = 0.2,0.4,0.6,0.8. The absolute deviations
|F(t) — F(0)| are plotted for each such quantity F(t).

suffices to consider, instead of (2.2), the variational principle

5/0T [L(Lp,atgo, 00, B) — <at8,c>}dt —0, (A1)

with respect to arbitrary variations dp, 0B, 6C with dp and JB vanishing at t = 0,7
The second term in the action functional imposes ;B = 0, i.e., B(t) = By. In Eulerian
form, we get

T
5/ [e(u,p, B) — (8,B — curl(u x B), C>]dt =0 (A2)
0
with constrained variations du = 0w + £L,v, dp = —div(pv) and free variations 6B,

0C' with v, § B vanishing at ¢ = 0,7. In (A 2), the magnetic field equation appears as a
constraint with Lagrange multiplier C. The variational principle (A 2) yields the three
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equations
at ﬁ+BxcurIC +£u %+BXCUI'1C :pv% (A3)
Su ou dp
8,B — curl(u x B) =0 (A4)
Y4
1 — = A
6tC+curC><u+6B 0 (A5)

which correspond to the variations associated to v, § B, and §C, respectively. Using the
formula

£4(B x curl C) = B x curl(curl C' x u) + curl(B x u) x curl C
and (A 4)—(A5) in the equations (A 3) does yield (2.11).

Using the Lagrange-d’Alembert approach, the variational principle (A 1) can be mod-
ified as

5 /O ! [Lie.91p.00.B) — (0.8.¢) |t + /0 ! [D(g.dhp.50) + B, B.6C) |t = 0, (A6)

for some expressions D and FE, bilinear in their last two arguments and invariant under
the right action of Diff (2). In the Eulerian form, one gets

§/OT [é(u,p,B) - <T<9tB — curl(u x B),C)]dt a7
+ /0 {d(u,v) +e(B,6C + curl C x v)}dt =0,

with e and f given by the expressions of E and F evaluated at ¢ = id. To model
viscosity and resistivity we choose (2.14) and change the boundary condition of velocity
to ulgpnp = 0. This boundary condition corresponds in the Lagrangian description to
the choice of the subgroup Diffo(£2) of diffeomorphisms fixing the boundary pointwise.
Application of (A7) yields the viscous and resistive barotropic MHD equations in the

form
Y4 Y4 Y4 Y4
<8t5u7v> +a (cSu’u’U) +b (5,0"0’ v) +c (5B’B’U> = d(u,v) (A8)
(Orp, o) + b(o, p,u) =0 (A9)
(0tB,C) 4+ ¢(C, B,u) = e(B,C). (A 10)
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