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diffeomorphism ϕ, and e is the specific internal energy of
the fluid.

2.2 Eulerian variational formulation

The Lagrangian (2) is invariant under the action of the
subgroup Diff(Ω)�0

⊂ Diff(Ω) of diffeomorphisms that
preserve �0. As a consequence of this symmetry, one can
write L in terms of the Eulerian velocity u = ∂tϕ ◦ ϕ−1

and mass density ρ = (�0◦ϕ
−1)Jϕ−1 in the standard form

�(u, ρ) =

ˆ

Ω

[1

2
ρ|u|2 − ρe(ρ)

]

dx. (3)

The Hamilton principle (1) induces the Euler-Poincaré
variational principle

δ

ˆ T

0

�(u, ρ) dt = 0, (4)

with respect to variations δu and δρ of the form

δu = ∂tv +£uv, δρ = − div(ρv), (5)

with v : [0, T ] → X(Ω) and v(0) = v(T ) = 0. Here X(Ω)
denotes the Lie algebra of Diff(Ω), which consists of vector
fields on Ω, with vanishing normal component on ∂Ω. The
conditions for criticality in (4) yield the balance of fluid
momentum

ρ(∂tu+ u · ∇u) = −∇p, with p = ρ2
∂e

∂ρ
(6)

while ρ = (�0 ◦ ϕ
−1)Jϕ−1 yields the continuity equation

∂tρ+ div(ρu) = 0.

2.3 Incompressible fluid with variable density

For the incompressible fluid, one considers the Hamilton
principle (1) on the group

Diffvol(Ω) = {ϕ ∈ Diff(Ω) | Jϕ = 1}

of volume preserving diffeomorphisms. The Lagrangian is
given by the kinetic energy

L(ϕ, ∂tϕ) =

ˆ

Ω

1

2
�0|∂tϕ|

2 dX,

and is invariant under the action of the subgroup
Diffvol(Ω)�0

⊂ Diffvol(Ω) of volume preserving diffeomor-
phisms that preserve �0. Similarly as before, L can be
written in terms of the Eulerian velocity u = ∂tϕ ◦ ϕ−1 ∈
Xvol(Ω) and mass density ρ = �0 ◦ ϕ−1 in the standard
form

�(u, ρ) =

ˆ

Ω

1

2
ρ|u|2dx. (7)

Here Xvol(Ω) is the Lie algebra of Diffvol(Ω), which con-
sists of divergence free vector fields on Ω with vanishing
normal component on ∂Ω. The Euler-Poincaré variational
principle (4)–(5), where now v : [0, T ] → Xvol(Ω), v(0) =
v(T ) = 0, yields the balance of fluid momentum

ρ(∂tu+ u · ∇u) = −∇p, with div u = 0, (8)

where the pressure p is found from the incompressibility
condition.

3. SEMIDISCRETE VARIATIONAL FORMULATION

In this section we describe a semidiscrete setting appro-
priate for the derivation of a finite element variational
integrator for compressible fluids, see Gawlik and Gay-
Balmaz (2020b).

3.1 Discrete diffeomorphism groups

The starting point is the use of a finite dimensional Lie
group approximation of Diff(Ω), given by

Gh = {q ∈ GL(Vh) | q1 = 1}, (9)

for some finite element space Vh ⊂ L2(Ω) associated to a
triangulation Th of Ω, where GL(Vh) is the group of invert-
ible linear maps Vh → Vh and 1 is the constant function
1. The condition q1 = 1 encodes the fact that constant
functions are preserved by the action of a diffeomorphism.
Elements in the Lie algebra

gh = {A ∈ L(Vh, Vh) | A1 = 0}, (10)

with L(Vh, Vh) the space of linear maps Vh → Vh, are
potential candidates to be discrete vector fields. As linear
maps in gh these discrete vector fields act as discrete
derivations on Vh. It is thus natural to choose them as
distributional directional derivatives.

3.2 Distributional directional derivative

We use the standard notation H(div,Ω) = {u ∈ L2(Ω)n |
div u ∈ L2(Ω)}. For r ≥ 0 an integer, we consider the
subspace of L2(Ω) given by

V r
h = {f ∈ L2(Ω) | f |K ∈ Pr(K), ∀K ∈ Th}, (11)

where Pr(K) denotes the space of polynomials of degree
≤ r on a simplex K. We denote by E0

h the set of (n − 1)-
simplices in Th not contained in ∂Ω, and H0(div,Ω) =
{u ∈ H(div,Ω) | u · n = 0 on ∂Ω}.

Definition 3.1. Given u ∈ H(div,Ω), the distributional

derivative in the direction u is the linear map ∇dist
u :

L2(Ω) → C∞
0 (Ω)′ defined by

ˆ

Ω

(∇dist

u f)g dx = −

ˆ

Ω

f div(gu) dx, ∀g ∈ C∞
0 (Ω), (12)

with C∞
0 (Ω) the space of smooth functions with compact

support in the interior of Ω.

We give now a consistent approximation of the distribu-
tional derivative, which plays a fundamental role in our
approach.

Proposition 3.1. Given u ∈ H0(div,Ω) ∩ Lp(Ω)n, p > 2,
and r ≥ 0 an integer, a consistent approximation of ∇dist

u

in V r
h is obtained by setting A = Au ∈ L(V r

h , V
r
h ) defined

by

〈Auf, g〉

:=
∑

K∈Th

ˆ

K

(∇uf)g dx−
∑

e∈E0

h

ˆ

e

u · [[f ]]{g} ds, (13)

∀ f, g ∈ V r
h , where [[f ]] := f1n1+f2n2 and {g} := 1

2
(g1+g2)

on e = K1 ∩K2, and ni is the outward unit normal to Ki.

Thanks to the following proposition, it follows that to each
vector field u ∈ H0(div,Ω) we can associate an element in
the Lie algebra grh of the discrete diffeomorphism group.

Proposition 3.2. For all u ∈ H0(div,Ω) ∩ Lp(Ω), p > 2,
we have

Au1 = 0 and 〈Auf, g〉+ 〈f,Aug〉+ 〈f, (div u)g〉 = 0 (14)

for all f, g ∈ V r
h .
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From the previous result, we get a well-defined linear map

A : H0(div,Ω) ∩ Lp(Ω)n → g
r
h ⊂ L(V r

h , V
r
h ),

u �→ A(u) = Au, p > 2,
(15)

with values in the Lie algebra g
r
h = {A ∈ L(V r

h , V
r
h ) |

A1 = 0} of Gr
h = {q ∈ GL(V r

h ) | q1 = 1}.

3.3 Relation with Raviart-Thomas finite element spaces

We define below the subspace Sr
h of grh consisting of all

Lie algebra elements that represent a vector field u ∈
H0(div,Ω).

Definition 3.2. For r ≥ 0 an integer, we define the sub-
space Sr

h ⊂ g
r
h ⊂ L(V r

h , V
r
h ) as

Sr
h := ImA = {Au ∈ L(V r

h , V
r
h ) | u ∈ H0(div,Ω)}.

The next result identifies a subspace of H0(div,Ω) isomor-
phic to Sr

h. This result is a key step in the development of
our variational finite element approach.

Proposition 3.3. Let r ≥ 0 be an integer. The space Sr
h ⊂

g
r
h is isomorphic to the Raviart-Thomas space of order 2r

RT2r(Th) = {u ∈ H0(div,Ω) |

u|K ∈ (P2r(K))n + xP2r(K), ∀K ∈ Th} .

An isomorphism is given by u ∈ RT2r(Th) �→ Au ∈ Sr
h.

Note that only the Lie algebra elements in the subspace
Sr
h ⊂ g

r
h correspond to discrete vector fields, and note

also that Sr
h is not a Lie subalgebra of grh. As we will see

below, Sr
h is treated as a nonholonomic constraint in the

semidiscrete variational principle.

3.4 The Lie algebra-to-vector fields map

We define a Lie algebra-to-vector fields map that associates
to a matrix A ∈ L(V r

h , V
r
h ) a vector field on Ω. Such a

map is needed to define in a general way the semidiscrete
Lagrangian associated to a given continuous Lagrangian.

Since any A ∈ Sr
h is associated to a unique vector field

u ∈ RT2r(Th), one could think that the correspondence
Au ∈ Sh

r → u ∈ RT2r(Th) can be used as a Lie algebra-
to-vector fields map. However, to apply the variational
principle with a nonholonomic constraint the Lagrangian
must be defined on a larger space than the constraint space
Sr
h, namely, at least on Sr

h + [Sr
h, S

r
h]. This is why such a

Lie algebra-to-vector fields map is needed.

Definition 3.3. For r ≥ 0 an integer, we consider the Lie
algebra-to-vector field map ̂ : L(V r

h , V
r
h ) → [V r

h ]
n

defined by

Â :=

n∑

k=1

A(Irh(x
k))ek, (16)

where Irh : L2(Ω) → V r
h is the L2-orthogonal projector

onto V r
h , x

k : Ω → R are the coordinate maps, and ek the
canonical basis for Rn.

The idea leading to the definition (16) is the following.
On one hand the component uk of a general vector field
u =

∑
k u

kek, can be understood as the derivative of
the coordinate function xk in the direction u, i.e. uk =
∇ux

k. On the other hand, from the definition of the

discrete diffeomorphism group, the linear map f �→ Af
for f ∈ V r

h is understood as a derivation, hence (16) is
a natural candidate for a Lie algebra-to-vector field map.
The following result is needed to describe the finite element
scheme, as it describes explicitly the Lie bracket of two
elements in Sr

h, in terms of vector fields in H0(div,Ω).

Proposition 3.4. For all u, v ∈ H0(div,Ω) ∩ Lp(Ω), p > 2,
and r ≥ 1, we have

〈 ̂[Au, Av]
k

, g〉 =
∑

K

ˆ

K

(∇v̄k · u−∇ūk · v)gdx

−
∑

e∈E0

h

ˆ

e

(
u · n[v̄k]− v · n[ūk]

)
{g}ds,

for k = 1, ..., n, for all g ∈ V r
h , where ūk = Irh(u

k) ∈ V r
h

and v̄k = Irh(v
k) ∈ V r

h . The convention is such that if n is

pointing from K− to K+, then [v̄k] = v̄k− − v̄k+.

4. FINITE ELEMENT VARIATIONAL INTEGRATOR

4.1 Semidiscrete Euler-Poincaré equations

Given a continuous Lagrangian �(u, ρ), the associated
discrete Lagrangian �d : g

r
h × V r

h → R is defined with
the help of the Lie algebra-to-vector fields map as

�d(A, ρh) := �(Â, ρh), (17)

where ρh ∈ V r
h is the discrete density. Exactly as in the

continuous case, the right action ofGr
h on discrete densities

is defined by duality as

〈ρh · q, σh〉 = 〈ρh, qσh〉, ∀σh ∈ V r
h . (18)

The corresponding action of grh on ρh is given by

〈ρh ·B, σh〉 = 〈ρh, Bσh〉, ∀σh ∈ V r
h . (19)

The semidiscrete equations are derived by mimicking the
variational formulation of the continuous equations in §2,
namely, by using the Euler-Poincaré principle applied to
�d. As we have explained earlier, only the Lie algebra
elements in ImA = Sr

h actually represent a discretization
of continuous vector fields. This condition is included in
the Euler-Poincaré principle by imposing Sr

h as a nonholo-
nomic constraint, and hence applying the Euler-Poincaré-
d’Alembert principle. As we will see later, one needs to
further restrict the constraint Sr

h to a subspace ∆R
h ⊂ Sr

h.

For a given constraint ∆R
h ⊂ g

r
h, a given Lagrangian

�d, and a given duality pairing 〈〈K,A〉〉 between elements
K ∈ (grh)

∗ and A ∈ g
r
h, the Euler-Poincaré-d’Alembert

principle seeks A(t) ∈ ∆R
h and ρh(t) ∈ V r

h such that

δ

ˆ T

0

�d(A, ρh)dt = 0,

for
δA = ∂tB + [B,A] and δρh = −ρh ·B,

for all B(t) ∈ ∆R
h with B(0) = B(T ) = 0. The expressions

for δA and δρh are deduced from the relations A(t) =
q̇(t)q(t)−1 and ρh(t) = �h0 · q(t)−1, with �h0 the initial
value of the density, as in the continuous case in (4)–(5).

The critical condition associated to this principle is
〈〈
∂t

δ�d

δA
,B

〉〉
+
〈〈δ�d

δA
, [A,B]

〉〉
+
〈 δ�d

δρh
, ρh ·B

〉
= 0, (20)
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for all t ∈ (0, T ), for all B ∈ ∆R
h
. The differential equation

for ρh follows from differentiating ρh(t) = �h0 · q(t)
−1 to

obtain ∂tρh = −ρh ·A, or, equivalently,

〈∂tρh, σh〉+〈ρh, Aσh〉 = 0, ∀t ∈ (0, T ), ∀ σh ∈ V r
h . (21)

A sufficient condition for (20) to be a solvable system for
T small enough is that the map

∆R
h � A �→

δ�d
δA

(A, ρh) ∈ (grh)
∗/(∆R

h )
◦ (22)

is a diffeomorphism for all ρh ∈ V r
h
strictly positive.

4.2 The compressible fluid

From (17), the discrete Lagrangian associated to (3) is

�d(A, ρh) := �(Â, ρh) =

ˆ

Ω

[1
2
ρh|Â|

2 − ρhe(ρh)
]
dx. (23)

We have
δ�d
δA

= Irh(ρhÂ)
�, (24)

where the linear map 
 : ([V r
h
]n)∗ = [V r

h
]n → (gr

h
)∗ is

defined as the dual map to ̂ : g
r
h

→ [V r
h
]n. Denote by

Rh the subspace of RT2r(Th) corresponding to ∆R
h

via
the isomorphism RT2r(Th) � u �→ Au ∈ Sr

h
shown in

Proposition 3.3. We have the following result.

Proposition 4.1. The kernel of (22) is zero if and only if
Rh is a subspace of [V r

h
]n ∩H0(div,Ω) = BDMr(Th), the

Brezzi-Douglas-Marini finite element space of order r.

The diagram below illustrates the situation that we con-
sider.

H0(div,Ω)
1

2

A
�� Sr

h

1

2

� �
�� gr

h

̂
�� [V r

h
]n

RT2r(Th)
1

2

��

��

��

��

∆R
h

1

2

��

��

Rh
1

2

��

��

��

��

Using the expressions of the functional derivatives of (23),
the Euler-Poincaré equations (20) are equivalent to〈

∂t(ρhÂ), B̂
〉
+
〈
ρhÂ, [̂A,B]

〉

+
〈
Irh

(1
2
|Â|2 − e(ρh)− ρh

∂e

∂ρh

)
, ρh ·B

〉
= 0,

(25)

for all t ∈ (0, T ), for all B ∈ ∆R
h
.

To relate (25) and (21) to more traditional finite element

notation, let us denote uh = −Â and vh = −B̂. Then,

using Proposition 3.4, the identities Âuh
= −Â and Âvh

=

−B̂, and the definition (13) of Au, we see that (25) and
(21) are equivalent to seeking uh ∈ Rh and ρh ∈ V r

h
such

that{
〈∂t(ρhuh), vh〉+ ah(wh, uh, vh)− bh(vh, fh, ρh) = 0

〈∂tρh, σh〉 − bh(uh, σh, ρh) = 0,

for all vh ∈ Rh and for all σh ∈ V r
h
, where

wh = Irh(ρhuh), fh = Irh

(1
2
|uh|

2 − e(ρh)− ρh
∂e

∂ρh

)
,

ah(w, u, v) =
∑

K∈Th

ˆ

K

w · (v · ∇u− u · ∇v) dx

+
∑

e∈E0

h

ˆ

e

(v · n[u]− u · n[v]) · {w} ds,

bh(w, f, g) =
∑

K∈Th

ˆ

K

(w · ∇f)g dx−
∑

e∈E0

h

w · [[f ]]{g} ds.

4.3 The incompressible fluid with variable density

In the incompressible case, the same developments as
before can be carried out with the finite dimensional Lie
group approximation of Diffvol(Ω) given by

Gh = {q ∈ GL(Vh) | q1 = 1, 〈qf, qg〉 = 〈f, g〉 , ∀f, g ∈ Vh},

with Lie algebra

gh = {A ∈ L(Vh, Vh) | A1 = 0,

〈Af, g〉+ 〈f,Ag〉 = 0, ∀f, g ∈ Vh}.

The variational setting yields, withRh chosen asBDMr(Th),
the following scheme: seek uh ∈ BDMr(Th), ρh ∈ V r

h
,

ph ∈ V r−1

h
∩ L2́

=0
(Ω), such that





〈∂t(ρhuh), vh〉+ ah(wh, uh, vh)

−bh(vh, fh, ρh) = 〈ph, div vh〉

〈∂tρh, σh〉 − bh(uh, σh, ρh) = 0

〈div uh, qh〉 = 0,

(26)

for all vh ∈ BDMr(Th), σh ∈ V r
h
, and qh ∈ V r−1

h
∩

L2́

=0
(Ω), where L2́

=0
(Ω) = {p ∈ L2(Ω) |

´

Ω
p dx = 0},

wh = Irh(ρhuh), and fh = Irh

(1
2
|uh|

2

)
.

The geometric finite element scheme has the following
conservative properties.

Proposition 4.2. For every t, the solution of the scheme
satisfies div uh = 0 and

d

dt

ˆ

Ω

ρh dx = 0,
d

dt

ˆ

Ω

ρ2h dx = 0,
d

dt

ˆ

Ω

1

2
ρh|uh|

2 dx = 0.

4.4 Temporal discretization

The variational character of compressible fluid equations
can be exploited also at the temporal level, by deriving the
temporal scheme via a discretization in time of the Euler-
Poincaré variational principle. Alternatively, it also admits
a time discretization that exactly preserves the total
energy. Both approaches are described in details in Gawlik
and Gay-Balmaz (2020b). Regarding the incompressible
fluid with variable density, a time discretization can be
developed that allows to preserve all the quantities in
Proposition 4.2.

Proposition 4.3. Consider the following temporal discretiza-
tion of (26): seek uk ∈ BDMr(Th), ρk ∈ V r

h
, pk ∈ V r−1

h
∩

L2́

=0
(Ω) such that
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





































〈ρk+1uk+1 − ρkuk

∆t
, v
〉

+ ah
(

(ρu)k+1/2, uk+1/2, v
)

−bh
(

v, Irh(
1

2
uk · uk+1), ρk+1/2

)

= 〈pk+1, div v〉

〈ρk+1 − ρk
∆t

, σ
〉

− bh
(

uk+1/2, σ, ρk+1/2

)

= 0

〈div uk+1, q〉 = 0,

for all v ∈ BDMr(Th), σ ∈ V r
h , and q ∈ V r−1

h ∩ L2́

=0
(Ω),

with

uk+1/2 =
uk + uk+1

2
, ρk+1/2 =

ρk + ρk+1

2

(ρu)k+1/2 =
ρkuk + ρk+1uk+1

2
.

Then, the solution satisfies, for all k, the conservative
properties
ˆ

Ω

ρk+1dx =

ˆ

Ω

ρkdx,

ˆ

Ω

ρ2k+1dx =

ˆ

Ω

ρ2kdx,

ˆ

Ω

1

2
ρk+1|uk+1|

2dx =

ˆ

Ω

1

2
ρk|uk|

2dx, div uk = 0.

5. RAYLEIGH-TAYLOR INSTABILITY

For this test, we consider a fully (or baroclinic) compress-
ible fluid, whose energy depends on both the mass density
ρ and the entropy density s. The Lagrangian is

�(u, ρ, s) =

ˆ

Ω

[1

2
ρ|u|2 − ρe(ρ, η)− ρφ

]

dx, (27)

where η = s
ρ is the specific entropy. We take e equal to the

internal energy for a perfect gas e(ρ, η) = Keη/Cvργ−1,
where γ = 5/3 and K = Cv = 1, and we use a
gravitational potential φ = −y, which corresponds to an
upward gravitational force. The developments recalled in
§4 can be adapted to this case by including the entropy
density as an additional advected quantity. We initialize

ρ(x, y, 0) = 1.5− 0.5 tanh
(y − 0.5

0.02

)

,

u(x, y, 0) =
(

0,−
1

40

√

γp(x, y)

ρ(x, y, 0)
cos(8πx)e−

(y−0.5)2

0.09

)

,

s(x, y, 0) = Cvρ(x, y, 0) log
( p(x, y)

(γ − 1)Kρ(x, y, 0)γ

)

,

where

p(x, y) = 1.5y + 1.25 + (0.25− 0.5y) tanh
(y − 0.5

0.02

)

.

We implemented our variational finite element scheme
with ∆t = 0.01 and with the finite element spaces Rh =
RT0(Th) and V 1

h on a uniform triangulation Th of Ω =
(0, 1/4) × (0, 1) with maximum element diameter h =
2−8. We incorporated upwinding by using the strategy
detailed in Gawlik and Gay-Balmaz (2020b), which retains
the scheme’s energy-preserving property. We programmed
the scheme using the finite element software package
FEniCS, Alnaes et al. (2015). Plots of the computed mass
density at various times t are shown in Fig. 1, which
shows that all the typical characteristics of the Rayleigh-
Taylor instability are faithfully represented. Total energy
was checked to be preserved exactly up to roundoff errors
during the whole instability test.

Fig. 1. Contours of the mass density at t =
1.0, 1.2, 1.4, 1.6, 1.8, 2.0 in the Rayleigh-Taylor insta-
bility simulation.

REFERENCES

M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet,
A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G.
N. Wells. The FEniCS Project Version 1.5. Archive of
Numerical Software, 3, 2015.

W. Bauer and F. Gay-Balmaz. Towards a geometric varia-
tional discretization of compressible fluids: the rotating
shallow water equations. J. Comp. Dyn., 16(1), 1–37,
2019

E. S. Gawlik and F. Gay-Balmaz. A conservative finite
element method for the incompressible Euler equations
with variable density. J. Comp. Phys. 412, 109439, 2020.

E. S. Gawlik and F. Gay-Balmaz. A variational finite
element discretization of compressible flow. Found.
Comput. Math., 2020.

J. Guzman, C. W. Shu, and A. Sequeira. H(div) con-
forming and DG methods for incompressible Euler’s
equations. IMA J. Num. Anal., 37(4), 1733–71, 2016.

E. Hairer, C. Lubich, and G. Wanner. Geometric Numeri-
cal Integration: Structure-Preserving Algorithms for Or-
dinary Differential Equations. Springer Series in Com-
putational Mathematics, 31, Springer-Verlag, 2006.

B. Liu, G. Mason, J. Hodgson, Y. Tong and M. Desbrun.
Model-reduced variational fluid simulation. ACM Trans.
Graph. (SIG Asia), 34, Art. 244, 2015.

J. E. Marsden and M. West. Discrete mechanics and
variational integrators. Acta Numer., 10, 357–514, 2001.

A. Natale and C. Cotter. A variational H(div) finite-
element discretization approach for perfect incompress-
ible fluids, IMA J. Num. Anal., 38(2), 1084, 2018.

D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden
and M. Desbrun. Structure-preserving discretization of
incompressible fluids. Physica D, 240, 443–458, 2010.


