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Abstract: This study summarizes the recent progress in thermoplastic drawing of bulk metallic glasses.
The integration of drawing with templated embossing enables the fabrication of arrays of high-aspect-
ratio nanostructures whereas the earlier drawing methodologies are limited to a single fiber. The
two-step drawing can produce metallic glass structures such as, vertically aligned nanowires on
substrates, nanoscale tensile specimens, hollow microneedles, helical shafts, and micro-yarns, which
are challenging to fabricate with other thermoplastic forming operations. These geometries will open
new applications for bulk metallic glasses in the areas of sensors, optical absorption, transdermal
drug-delivery, and high-throughput characterization of size-effects. In this article, we review the
emergence of template-based thermoplastic drawing in bulk metallic glasses. The review focuses on
the development of experimental set-up, the quantitative description of drawing process, and the
versatility of drawing methodology.

Keywords: bulk metallic glass; thermoplastic forming; fiber drawing; size-effects; drug-delivery

1. Introduction

Bulk metallic glasses (BMGs) are metal-based alloys prepared in an amorphous state
by rapid cooling or other non-equilibrium processing techniques [1–5]. The glass forming
compositions are designed based on the atomic size, the phase diagrams, and the thermo-
dynamic data to suppress the crystal formation [2,3,6–12]. New alloys with improved glass
forming ability and properties are continuously being discovered using advanced experi-
mental and computational methodologies [13–18]. Amorphous structure endows BMGs
with unique mechanical, thermal, and chemical properties. BMGs display high strength
and elastic strain limit due to the absence of crystal defects but fail along localized shear
bands with little global plasticity [19–25]. The noncrystalline structure also improves wear
and corrosion resistance and lowers friction in BMGs [26–31]. Several BMGs are tailored
for specific functional properties such as biocompatibility [32–36], biodegradability [37–39],
catalytic activity [40–45], and ferromagnetism [46–49].

The industrial applications of BMGs have remained limited despite spanning a wide
range of compositions and properties. High material cost, limited plasticity, and incompati-
bility with conventional machining operations are the main factors that prevent commer-
cialization of BMGs. To overcome these issues, the research efforts have been redirected to-
wards small-scale applications that require less material and can benefit from the enhanced
plasticity of BMGs with decreasing sample size [50–56]. However, the manufacturing chal-
lenges are exacerbated at these length scales. High hardness and lack of plasticity impede
the machining of precise microparts from as-cast BMG feedstocks [53]. The direct casting of
net-shaped BMG components requires concomitant filling of mold cavities and fast cooling
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to avoid crystallization [57,58]. This process is reliable only for simple geometries such as
plates or rods. Therefore, alternative manufacturing routes are desired to make BMG micro
and nanostructures.

One of the processing techniques that shows great potential for BMGs is inspired by
thermoplastic polymers. BMGs soften into a metastable supercooled liquid state above
the glass transition temperature (Tg) before devitrification into the stable crystalline state.
The BMG compositions are specifically designed to resist crystallization and retain the
metastable liquid state over a wide temperature range [2]. Controllable viscosities in the
range 1010–106 Pa·s can be accessed for several minutes at moderate temperatures in many
BMG supercooled liquids [59–64]. Owing to these unique characteristics, the viscous state of
BMGs has attracted increasing attention for thermoplastic forming operations [52,57,65–79].
Rapid cooling is not required to prevent crystallization after thermoplastic forming which
makes this processing route particularly attractive compared to direct casting of BMG parts
from the liquid state. A plethora of thermoplastic fabrication techniques such as extru-
sion [65,70], rolling [69], joining [75,80,81], blow-molding [73,82], and embossing [52,57,66]
have been developed to produce diverse BMG parts. The common feature of all these
methods is heating the BMG above its Tg and applying the pressure. Embossing against
predefined templates can generate micro and nanoscale features on BMG surfaces with
high precision [68,71,74,76]. The ability to form metal nanostructures by embossing has
opened a broad range of applications for BMGs such as fuel-cell catalysts [42–44], sen-
sors [83], optical absorption [68,84–86], and hydrophobic surfaces [76,87–90]. However,
thermoplastic embossing of BMGs faces some inherent challenges that can be overcome by
thermoplastic drawing as discussed in the following section.

The concept of fiber drawing is well-known in oxide and polymeric glasses and has
been applied to BMGs. Kawamura et al. performed a series of high-temperature tensile tests
on Pd-based and La-based BMGs and observed large elongations [91,92]. Subsequently,
many other groups reported strain-rate dependent Newtonian flow and superplasticity
in BMG supercooled liquids [93–97]. Inoue et al. [98] and Nieh et al. [99] used the high-
temperature viscous flow of BMGs to fabricate long microwires by stretching the cylindrical
rods by more than 15,000%. The potential of wire drawing remained largely unexplored
in BMGs until Yi et al. demonstrated the formation of nanoscale fibers by pulling the
metallic glass forming liquid at very high temperatures [100]. They used an induction
heating of BMG feedstock while applying a tensile load by hanging a weight. A long
wire is drawn under the tensile load when the viscosity of BMG supercooled liquid drops
to a sufficiently low value. The technique has been used to fabricate very high-aspect-
ratio BMG micro and nanofibers [100]. The formation of nanoscale structures without
focused-ion-beam has generated significant interest in characterization of size-effects in
mechanical properties of BMGs [101–103]. Two excellent reviews on drawing of BMG
fibers and their properties and applications have been published [104,105]. Although,
the previous drawing methodologies can generate BMG nanofibers, they are limited to
a single fiber per experiment. Many potential applications such as, catalysts, sensors,
and composites require large quantities of dispersed metal nanostructures. The use of
templates in thermoplastic drawing described in this review offers a unique advantage
in high-throughput manufacturing of arrays of nanostructures. In addition, the BMG
nanofibers drawn from a template are vertically aligned on a substrate, and therefore are
directly suitable for integration in devices.

2. Thermoplastic Drawing versus Embossing

Figure 1 illustrates the thermoplastic embossing and drawing processes used for the
manufacturing of BMG micro and nanostructures. A rigid mold made from materials
such as silicon, alumina, metals, or glass is used to withstand the embossing pressure and
temperature (above Tg). The mold is placed on a heating plate and a piece of BMG is
pressed between the mold and another heating plate (Figure 1).
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Figure 1. Schematic illustration of thermoplastic embossing and drawing of BMGs. The BMG is
pressed against a mold at temperature above Tg. The mold is etched out after cooling to release
the BMG in conventional approach. In drawing, the BMG is pulled apart from the mold above
Tg. Depending on the pulling speed a complete demolding or elongation of BMG features can
be achieved.

The BMG supercooled liquid conforms to the mold cavities under pressure. In emboss-
ing studies, the mold and the BMG are cooled to room temperature after pressing [52,57,66].
The mold is dissolved in chemicals to release the BMG structures and a new mold is re-
quired for every operation. However, in thermoplastic drawing the BMG and the mold are
mechanically pulled apart after pressing while maintaining the temperature above Tg [106].
Depending on the pulling velocity and the processing temperature, either complete de-
molding or elongation of BMG structures is observed [106–108]. The demolding allows
reusability of the mold whereas elongation can be harnessed in making the structures
that are challenging to fabricate by embossing. The majority of previous thermoplastic
processing studies on BMGs have been focused on embossing because of its ease of imple-
mentation [52,57,66]. The main limitations of embossing are the use of sacrificial molds
and the inability to produce high-aspect-ratio nanostructures. The mold cost increases
with decreasing size or increasing aspect-ratio of features. Therefore, sacrificial molds are
not practical for the fabrication of nanoscale BMG structures by thermoplastic embossing.
Furthermore, the embossing pressure scales with the square of the aspect-ratio, limiting
the length of BMG nanowires or nanotubes made by embossing [56,58]. These challenges
are alleviated in thermoplastic drawing which relies on downsizing of large structures by
applying a small tensile force [106,108].

Thermoplastic embossing set-up is relatively simple consisting of two flat heating
plates mounted on a universal testing system (UTS). The UTS allows control over the
compressive force and the rate of displacement which is critical for reproducible embossing.
However, the template-based thermoplastic drawing is a two-step process, which involves
pressing and pulling. Implementation of pulling requires modification to the heating plates
used for embossing. The plates should be capable of gripping the mold and the BMG in
order to apply a pulling force after pressing. This becomes particularly challenging as the
BMG flattens into a thin disc during the pressing stage. We designed two detachable fixtures
for the heating plates to secure the BMG and the mold for tensile loading (Figure 2). The top
fixture consists of a plunger and the bottom fixture contains a recessed cavity (Figure 2a).
A commercially available metal mesh was wrapped around the plunger (Figure 2b) while
the mold was firmly secured in the lower fixture cavity (Figure 2c). These custom-made
fixtures allow the application of compressive and tensile loads to the BMGs heated in the
supercooled liquid state. The top side of BMG flows into the metal mesh while the lower
side fills the mold cavities during embossing. The BMG disc strongly attaches to the metal
mesh and moves with the plunger during subsequent pulling. Depending upon the pulling
velocity and the processing temperature, either elongation of BMG structures or complete
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separation from the mold can be observed. It should be noted that the BMG disc may
stick to the mold if the anchoring with the metal mesh is weak. The following sections
assume that the BMG disc strongly attaches to the mesh-plunger system and the pulling
only affects the BMG mold interface.

Metals 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

weak. The following sections assume that the BMG disc strongly attaches to the mesh-

plunger system and the pulling only affects the BMG mold interface. 

 

Figure 2. Experimental setup used for BMG thermoplastic drawing. (a) Top and bottom plates 

heated through resistive cartridges. (b) Closer view of top plunger wrapped in metal mesh showing 

an array of drawn BMG wires. (c) The metal fixture used to secure the mold on the bottom heating 

plate. 

3. Fiber Drawing Kinetics 

The outcome of BMG thermoplastic drawing is governed by the processing temper-

ature and the pulling velocity which affect the viscosity and the strain-rate, respectively. 

As illustrated in Figure 3a, stable fiber drawing requires an optimal combination of tem-

perature and pulling velocity. At low temperature (or high pulling velocity), the BMG 

demolds from the mold cavity because its flow stress exceeds the adhesive strength with 

the mold [107]. With increasing temperature (or decreasing pulling velocity), the BMG 

adheres to the mold surface and results in drawing of a viscous filament from BMG res-

ervoir (Figure 3a). At a very high temperature (or slow pulling velocity), the liquid fila-

ment rapidly thins and breaks due to capillary stress. This results in the formation of short 

BMG fibers with sharp tips. The length of BMG fibers can be increased by decreasing the 

processing temperature and/or by increasing the pulling velocity while still preventing 

demolding. A long and uniform BMG fiber can be drawn by optimizing the drawing con-

ditions. Furthermore, the drawing can be stopped prior to breakup to control the length 

and the diameter of the drawn fiber. 

The effects of drawing temperature and velocity on BMG fiber can be described by 

comparing the viscous and the capillary stresses acting on the liquid filament. These ef-

fects can be quantified by using dimensionless capillary number (Ca): 

𝐶𝑎 =
𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑠𝑡𝑟𝑒𝑠𝑠

𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑠𝑡𝑟𝑒𝑠𝑠
=
𝑣/𝐿

𝛾/𝐷
 (1) 

where η is the BMG viscosity, v is the pulling velocity, L is the instantaneous length of 

BMG fiber, γ is the BMG surface tension, and D is the smallest fiber diameter. The viscous 

resistance counters the thinning induced by the surface tension. Therefore, higher Ca fa-

vors the formation of long and uniform fiber whereas lower Ca results in necking and 

early breakup. The Ca decreases during drawing and the BMG fiber breaks up below a 

critical Ca of about 0.1 [108]. The final breakup of elongating BMG fiber in the supercooled 

liquid state is always caused by the capillary induced necking. The data from the temper-

ature and the velocity experiments can be combined to construct a drawing map as shown 

in Figure 3b. The decrease in processing temperature or increase in drawing velocity has 

the same effect on the length of BMG fiber. Both promote the formation of long BMG fibers 

by delaying the necking instability and rupture. 

Figure 2. Experimental setup used for BMG thermoplastic drawing. (a) Top and bottom plates heated
through resistive cartridges. (b) Closer view of top plunger wrapped in metal mesh showing an array
of drawn BMG wires. (c) The metal fixture used to secure the mold on the bottom heating plate.

3. Fiber Drawing Kinetics

The outcome of BMG thermoplastic drawing is governed by the processing temper-
ature and the pulling velocity which affect the viscosity and the strain-rate, respectively.
As illustrated in Figure 3a, stable fiber drawing requires an optimal combination of tem-
perature and pulling velocity. At low temperature (or high pulling velocity), the BMG
demolds from the mold cavity because its flow stress exceeds the adhesive strength with
the mold [107]. With increasing temperature (or decreasing pulling velocity), the BMG
adheres to the mold surface and results in drawing of a viscous filament from BMG reser-
voir (Figure 3a). At a very high temperature (or slow pulling velocity), the liquid filament
rapidly thins and breaks due to capillary stress. This results in the formation of short
BMG fibers with sharp tips. The length of BMG fibers can be increased by decreasing the
processing temperature and/or by increasing the pulling velocity while still preventing
demolding. A long and uniform BMG fiber can be drawn by optimizing the drawing
conditions. Furthermore, the drawing can be stopped prior to breakup to control the length
and the diameter of the drawn fiber.

The effects of drawing temperature and velocity on BMG fiber can be described by
comparing the viscous and the capillary stresses acting on the liquid filament. These effects
can be quantified by using dimensionless capillary number (Ca):

Ca =
viscous stress

capillary stress
=

ηv/L
γ/D

(1)

where η is the BMG viscosity, v is the pulling velocity, L is the instantaneous length of
BMG fiber, γ is the BMG surface tension, and D is the smallest fiber diameter. The viscous
resistance counters the thinning induced by the surface tension. Therefore, higher Ca favors
the formation of long and uniform fiber whereas lower Ca results in necking and early
breakup. The Ca decreases during drawing and the BMG fiber breaks up below a critical
Ca of about 0.1 [108]. The final breakup of elongating BMG fiber in the supercooled liquid
state is always caused by the capillary induced necking. The data from the temperature
and the velocity experiments can be combined to construct a drawing map as shown in
Figure 3b. The decrease in processing temperature or increase in drawing velocity has the
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same effect on the length of BMG fiber. Both promote the formation of long BMG fibers by
delaying the necking instability and rupture.
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Figure 3. Effects of temperature and pulling velocity on BMG fiber drawing. (a) Change in morphol-
ogy of BMG fiber drawn under different conditions. (b) Fiber drawing map in the supercooled liquid
temperature range of a BMG.

It is important to quantify the BMG fiber evolution to make the thermoplastic drawing
a reproducible process. Besides temperature and pulling velocity, the vertical displacement
and the mold dimensions also affect the drawn BMG fiber. To determine the minimum fiber
diameter (Dmin), the drawing length (L) and the diameter of the cylindrical mold cavity
(Do) were independently varied in drawing experiments using Pt-BMG (Figure 4). The
temperature and the pulling velocity were kept constant and the drawing was stopped
before the fiber breakup. Figure 4a,b show the effects of varying L and Do, respectively.
The SEM images of representative specimens show the formation of uniform and smooth
BMG fibers. The minimum diameter Dmin decreases with increasing L or decreasing Do.
The results demonstrate that the BMG fibers with nanoscale diameters can be drawn
without using expensive lithographic molds. The smaller mold diameter is more effective
in drawing nanoscale BMG fibers compared to increasing the length because of different
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fluid volumes. We also observed that higher temperature and lower drawing velocity
promote large reduction in BMG fiber diameter by decreasing the active fluid volume [108].
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Figure 4. Dependence of minimum fiber diameter (Dmin) on elongation (L) and cavity diameter (Do)
during thermoplastic drawing. (a) Dmin /Do as a function of L and (b) Dmin /Do as a function of
Do for Pt-based BMG drawn at 270 ◦C and velocity of 10 mm/min. The experimental values are
compared with the theoretical predictions based on Equation (2). SEM images of selected samples for
variable L and Do are also shown.

The evolution of fiber diameter can be quantitatively described using a numerical so-
lution of lubrication problem involving the viscous and the capillary stresses. Alternatively,
an approximate analytical expression can be used to predict Dmin:

Dmin
Do

∝

(
π

αL
Do

+ 2

)(
1 − L

LB

)
(2)

This approximation is obtained by combining the results of a purely viscous lubrication
analysis with the similarity solution to account for the capillary effect [108]. Here, α is a
fitting parameter and LB is the fiber length at capillary induced breakup. As shown in
Figure 4, Equation (2) describes the variation in Dmin as a function of L and Do reasonably
well. The quantitative correlation makes the thermoplastic drawing-based manufacturing
of BMGs more controllable and reproducible.

4. High-Aspect-Ratio Structures

Long metal structures are desired to enhance the surface area and to characterize
the properties such as mechanical, thermal, and electrical. BMG structures with aspect
ratio (length/diameter) higher than 10 require impractically high embossing force which
is not applicable to fragile molds made by lithography. In contrast, thermoplastic draw-
ing requires only small tensile force which decreases with increasing length because of
reduction in cross-sectional area. Therefore, BMG structures of any length can be drawn by
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preventing the fracture. As discussed in the preceding section, the fracture of elongating
viscous BMG is caused by the surface tension induced capillary stress. The fracture can be
delayed by decreasing the processing temperature and by increasing the pulling velocity
as predicted by Equation (1) and illustrated in the deformation map (Figure 3b). Figure 5
shows the SEM images of very long Pt-BMG microfibers made by lowering the processing
temperature and increasing the pulling velocity. An array of BMG fibers with diameters
in the range of 10–20 µm and aspect-ratios exceeding 200 could be reproducibly drawn
using perforated steel mesh with 200 µm holes as a mold (Figure 5a,b). The processing
temperature was lowered from 270 ◦C to 265 ◦C and the pulling velocity was increased
from 10 mm/min to 20 mm/min. The drawing was continued until the fiber fractured by
necking. The variation in the length of BMG fibers is less than 20% despite the stochastic
nature of the final breakup. Figure 5c shows a single BMG microwire with a uniform diam-
eter of about 4 µm drawn from a cavity machined in an aluminum mold. Such uniform
structures are directly suitable for the measurement of stress–strain behavior or electrical
transport properties. The experimental results clearly show that thermoplastic drawing is
capable of producing high aspect-ratio BMG structures.
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Figure 5. High-aspect ratio Pt-BMG microfibers drawn at 265 ◦C and pulling velocity of 20 mm/min.
(a,b) Arrays of microfibers drawn from a 200 µm steel mesh. (c) A very high-aspect ratio uniform
microwire drawn from single cavity machined in aluminum.

Applications such as sensors and catalysts require further enhancement in metal
surface area which is attainable only in nanowires and nanotubes. As discussed in Section 3,
BMG structures can be downsized to nanoscale by choosing an optimal combination of
mold size and pulling length (Figure 4). The 200 µm diameter structure requires pulling
length of about 20 mm whereas 100 µm diameter structure reduces to sub-micron scale
only after pulling length of 3 mm (Figure 4). These observations suggest that smaller mold
cavities should be used to achieve the smallest size in drawn BMGs. Figure 6 shows the
use of lithographically fabricated Si molds with microscale cavities to form an array of
high-aspect-ratio Pt-BMG nanostructures.

Nanowires (NWs) with diameters in the range of 100 nm were drawn from 20 µm
diameter holes (Figure 6a). BMG nanotubes (NTs) can be drawn by using Si mold with
tubular cavities (Figure 6b). A hollow cross-section is retained during elongation. BMG
NWs and NTs with aspect-ratios exceeding 500 can be readily fabricated by drawing.
Two sets of nanostructures are formed after fracture, one remains attached to the BMG
disc and the second is anchored to the Si mold. The density and layout of BMG NWs and
NTs can be controlled by changing the Si mold. Similar nanostructures are not feasible by
thermoplastic embossing because of high pressure requirements.
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5. Microneedles for Drug-Delivery

Solid and hollow microneedles (MNs) are envisioned as an alternative to hypodermic
injections for painless delivery of pharmaceuticals, particularly the compounds which
are not suitable for oral consumption [109,110]. The transdermal MNs should be able to
withstand the skin insertion force without mechanical failure and should be made from
non-toxic materials. Metals are good candidates for MNs because of their high resistance to
elastic buckling and plastic deformation. However, fabrication techniques for metal MNs
are often complex and sequential, particularly for hollow MNs. These challenges can be
overcome by using BMG MNs made by thermoplastic drawing [111]. BMGs exhibit high
strength and stiffness, and their composition can be tailored for biocompatibility [32]. Ther-
moplastic drawing conditions can be optimized to control the geometry and dimensions of
BMG microfibers suitable for MNs. Figure 7 illustrates the concept of using BMG MNs for
transdermal drug-delivery applications.
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Figure 7. Fabrication of Pt-BMG microneedles (MNs) by thermoplastic drawing and their use in
transdermal drug delivery. Solid BMG MNs are coated with drug and inserted in skin. Hollow BMG
MNs inject the drug through pressure driven flow. The images of porcine skin show the capability of
solid and hollow BMG MNs in drug delivery.
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Solid or hollow BMG MNs can be drawn by selecting a suitable mold, i.e., cylindrical
or tubular. Alternatively, both solid and hollow MNs can also be drawn from the same
cylindrical mold by controlling the thickness of BMG [112]. The SEM images show examples
of solid and hollow Pt-BMG MNs produced by thermoplastic drawings (Figure 7). The
images of porcine skin after insertion (Figure 7) show the capability of Pt-BMG to deliver
a model drug (sulforhodamine fluorescent dye). The solid BMG MNs were coated with
the drug by dip-coating whereas the hollow BMG MNs were filled with the drug solution.
The BMG MNs remained mechanically intact after insertion owing to their high elastic
modulus and tapered profile. Furthermore, the tip shape of drawn BMG structures can also
be varied between conical or bevel to mimic the conventional MNs used for drug delivery.
Besides drug delivery, metal MNs are also desirable for other biomedical applications such
as cosmetics, fluid extraction, and neural electrodes. These applications can significantly
benefit from the thermoplastic drawing of BMG micro and nanofibers.

6. Nanoscale Tensile Specimens

Size-effects in the mechanical behavior of BMGs have gained increasing interest due
to their potential in improving ductility [113–117]. Nanoscale BMGs have been reported
to exhibit enhanced ductility compared to the macroscopic counterparts which fail catas-
trophically by forming localized shear bands. Numerous studies have been focused on
small-scale BMGs but the existence and the mechanism of size-dependent ductility remain
controversial [102,113–123]. The main causes of discrepancy in reported data are the irradi-
ation damage due to the use of focused-ion-beam (FIB) in sample preparation and a limited
number of mechanical tests owing to complex in situ testing [102,121,123]. Thermoplastic
drawing of BMGs can eliminate these concerns by enabling high-throughput fabrication
and mechanical testing of specimens without FIB (Figure 8). During drawing, the BMG
filament inherently transforms into dog-bone shaped geometry which can be preserved by
cooling below Tg for subsequent tensile testing [108,124]. The sample diameter is tunable
by changing the drawing length and the mold size. The samples with varying diameters
can be simultaneously drawn by using a mold with different sized cavities as illustrated in
Figure 8.
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Figure 8. Application of thermoplastic drawing in characterization of size-effects in deformation
of BMGs. Nanoscale tensile samples are formed by interrupting the drawing before rupture. The
samples are cooled and fractured at different temperatures. Images show Pt-BMG nanoscale samples
before and after fracture. The ductile-to-brittle transition shifted large to diameters with decreasing
testing temperature.

This approach produces irradiation-free samples and minimizes the variation in the
glassy state among samples of different diameters. The drawn samples are anchored be-
tween the mold and the BMG disc that can serve as tensile grips for loading. Multiple
samples of each diameter can be fabricated and tested to yield statistically reliable experi-
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mental data. The tensile test can also be performed at different temperatures by cooling
the drawn samples to the desired temperature (Figure 8). This can provide additional
valuable information to test the existing hypotheses. For example, we observed that the
size-dependent transition from brittle to ductile tensile failure in Pt-BMG specimens shifts
to a larger size with decreasing testing temperatures (Figure 8). These findings strongly
hint towards a thermally driven shear banding process in BMGs [124]. To obtain compa-
rable information from individual in situ nanomechanical tests is expensive and prone
to significant errors. Therefore, the combination of damage-free fabrication, testing of
multiple samples, and incorporation of temperature effect can facilitate understanding the
mechanism of intrinsic size-effects in the mechanical behavior of BMGs.

7. Hybrid Drawing

The results from the uniaxial thermoplastic drawing of BMGs demonstrate that such a
process is controllable and scalable to multiple fibers. The shape and size of drawn fibers
can be predicted using the analytical model based on the properties of BMG supercooled
liquid and the drawing parameters. The drawing technique is not limited to uniaxial pulling
but many other variants are feasible to advance a more versatile BMG manufacturing. Here,
we show results from two such modifications to enable the fabrication of challenging
BMG geometries. A constant pulling velocity can only produce a certain combination
of fiber shape and size. This restriction can be overcome by applying a variable pulling
velocity. Figure 9 shows an example of Pt-BMG subjected to step change (up and down) in
pulling velocity. In the first case, the pulling velocity was increased from 1 to 60 mm/min
which generated a very high aspect ratio (>1000) BMG nanowire (Figure 9a). Initial
slow drawing caused rapid thinning under increasing capillary stress. Subsequently,
the process transitioned to uniform drawing due to increase in capillary number caused
by higher pulling velocity. Similarly, a sudden decrease in pulling velocity from 60 to
1 mm/min resulted in the formation of BMG microwire with nanoscale tip (Figure 9b). The
uniform microwire was necked and ruptured by a decrease in capillary number. Similarly,
the processing temperature can be changed during the drawing to generate structurally
gradient BMG fibers.
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Figure 9. Effect of variable drawing velocity on the shape of Pt-BMG fiber. (a) Increase in draw-
ing velocity from 1 to 60 mm/min results in formation of long nanowire (diameter ~150 nm,
length > 200 µm). (b) A microfiber with nanotip (~75 nm) is formed upon decreasing the draw-
ing velocity from 60 to 1 mm/min.
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In another variant, rotational and axial motions were superimposed during the ther-
moplastic drawing to create helical BMG fibers (Figure 10). A combination of rotation and
drawing yields twisted BMG microfiber with a periodic thread (Figure 10a). The spinning
and drawing velocities can be independently controlled to tailor the thread spacing and
the fiber diameter. Similarly, threaded metal shafts with sub-10-micron diameters are
challenging to fabricate by conventional machining processes. The spinning and drawing
methodology can also be applied to multiple fibers to create a rope-like BMG structure
as shown in Figure 10b. Three Pt-BMG fibers were drawn and spun to produce BMG
micro-yarn. It is of particular interest to evaluate if nanoscale and microscale fibers can be
combined to harness the size-effects in ductility and strength.
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Figure 10. Fabrication of helical BMG fibers by thermoplastic drawing. (a) A single helical structure is
formed by spinning the BMG fiber during drawing. The SEM image shows Pt-BMG helical microfiber
formed by this approach. (b) BMG rope is formed by drawing and spinning multiple fibers. The SEM
image shows Pt-BMG rope formed by drawing and spinning of three microfibers.

8. Drawing of Oxidizing BMGs

The thermoplastic drawing results shown so far are all from Pt-BMG which is relatively
inert. However, many BMGs such as Pd-BMG, Zr-BMG and Mg-BMG readily oxidize when
heated in the supercooled liquid temperature range in air [63]. The formation of an oxide
layer as thick as 10–150 nm has been reported for Zr-BMG during exposure of 15–240 s
above Tg [125]. The rigid oxide layer blocks the flow of BMG supercooled liquid into
mold cavities and excessive pressure is required to rupture the oxide skin for thermoplastic
embossing. Oxidation of BMGs becomes a major issue in the embossing of nanoscale
features because the oxide layer can entirely clog the mold cavities. Different strategies
such as vacuum environment or protective oil have been proposed to emboss oxidizing
BMGs with limited success [125]. The effect of oxidation is less detrimental in thermoplastic
drawing compared to embossing. As shown in Figure 11, oxidation mainly affects the
surface finish but does not hinder the diameter reduction. The surfaces of fibers drawn from
the oxidizing BMGs are rougher compared to the inert Pt-BMG (Figure 11). The roughness
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is created by dynamic rupturing and reformation of the oxide layer during the drawing
process. It is interesting to note that despite roughness fibers with sub-micron diameters
can be drawn from oxidizing BMGs without any modification. The oxide layer may be
beneficial to counter necking instability and prevent premature failure. A similar approach
has been used in the fabrication of liquid metal filaments by encapsulating them in an
elastic shell to prevent surface tension induced breakup [126]. It is possible to minimize the
oxidation by controlling the oxidation kinetics and the drawing process. We have shown in
previous work that smooth fibers from Zr-BMG and Pd-BMG can be fabricated by lowering
the drawing temperature and increasing the drawing velocity [106]. A lower temperature
reduces the rate of oxidation and higher velocity quickly exposes the fresh material from
the bulk. This combination of drawing parameters minimizes the oxidation and results in
formation of smooth BMG structures. The oxidation can be further prevented by drawing
under vacuum or inert atmosphere.
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Figure 11. Examples of thermoplastically drawn structures from inert and oxidizing BMGs.
(a) Pt-BMG, (b) Pd-BMG, (c) Zr-BMG and (d) Mg-BMG. The surface roughness due to oxide layer is
visible in the oxidizing BMGs.

9. Conclusions and Outlook

Thermoplastic drawing of BMGs in their supercooled liquid state is an emerging
fabrication technique for high-aspect-ratio nanostructures. Previous studies were focused
on elongation of single BMG fiber whereas the recent use of molds in drawing has enabled
high-throughput manufacturing of vertically aligned nanostructures. This article provides



Metals 2022, 12, 518 13 of 17

a comprehensive review of development of mold-based thermoplastic drawing and the
range of BMG geometries that can be generated. The components required for mold-based
thermoplastic drawing setup were discussed in detail. We showed that drawing can be
implemented by modifying the embossing hardware with custom made fixtures to secure
the BMG and the mold with the heating platens.

The outcome of mold-based drawing was strongly affected by the temperature and
the drawing velocity which agrees with the results from high-temperature tensile studies
of BMGs. Increase in temperature induced necking and early breakup whereas the faster
drawing resulted in formation of long uniform fibers. The effects of drawing temperature
and velocity were combined into dimensionless capillary number that can be used to
predict the shape of drawn BMG fibers. A quantitative model was developed to predict
the size of drawn fibers using the rheological properties of the supercooled liquid. The
model predictions showed a good agreement with the experimental results, which makes
the BMG drawing process highly controllable.

Mold-based drawing can produce nanostructures from oxidation prone metallic glass
formers whereas nanoscale embossing is limited to inert compositions. Many variants can
also be integrated in drawing to fabricate challenging BMG geometries such as dog-bone
shaped specimens, helical fibers, weaved yarns, microneedles, and tubular structures.
A slight modification in the drawing scheme can allow fabrication and testing of dog-
bone-shaped tensile samples without focused-ion-beam. In summary, the mold-based
thermoplastic drawing is a versatile manufacturing toolbox for BMG nanostructures.

The future studies are needed on characterization and applications of drawn BMG
nanostructures. The large number of BMG nanostructures with same thermal history are
ideal for statistical analysis of properties which show significant scatter at nanoscale. Fur-
thermore, it is intriguing to understand if the tensile strain applied in the supercooled liquid
state can be used to enhance the room temperature plasticity in BMGs. On the application
front, the vertically aligned BMG nanostructures on silicon should be integrated in devices
such as sensors and microfluidic channels. We envisage the mold-based thermoplastic
drawing has potential to advance the fundamental understanding and technological use
of BMGs.
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