
It’s Not What It Looks Like: Manipulating Perceptual Hashing
based Applications

Qingying Hao, Licheng Luo, Steve T.K. Jan, Gang Wang
University of Illinois at Urbana-Champaign

Urbana, IL, USA
{qhao2,ll6}@illinois.edu,stevetkjan@gmail.com,gangw@illinois.edu

ABSTRACT

Perceptual hashing is widely used to search or match similar im-

ages for digital forensics and cybercrime study. Unfortunately, the

robustness of perceptual hashing algorithms is not well under-

stood in these contexts. In this paper, we examine the robustness

of perceptual hashing and its dependent security applications both

experimentally and empirically. We first develop a series of attack

algorithms to subvert perceptual hashing based image search. This

is done by generating attack images that effectively enlarge the hash

distance to the original image while introducing minimal visual

changes. To make the attack practical, we design the attack algo-

rithms under a black-box setting, augmented with novel designs

(e.g., grayscale initialization) to improve the attack efficiency and

transferability. We then evaluate our attack against the standard

pHash as well as its robust variant using three different datasets.

After confirming the attack effectiveness experimentally, we then

empirically test against real-world reverse image search engines

including TinEye, Google, Microsoft Bing, and Yandex. We find that

our attack is highly successful on TinEye and Bing, and is moder-

ately successful on Google and Yandex. Based on our findings, we

discuss possible countermeasures and recommendations.

CCS CONCEPTS

· Computing methodologies→Machine learning; · Security

and privacy→ Web application security; Social aspects of security

and privacy.

KEYWORDS

Perceptual Hashing; Adversarial Machine Learning; Black-box At-

tacks; Image Search Engine

ACM Reference Format:

Qingying Hao, Licheng Luo, Steve T.K. Jan, Gang Wang. 2021. It’s Not What

It Looks Like: Manipulating Perceptual Hashing based Applications. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS ’21), November 15ś19, 2021, Virtual Event, Republic of

Korea. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3460120.

3484559

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’21, November 15ś19, 2021, Virtual Event, Republic of Korea.

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484559

Original Image Edited Image Attack Image

xo xm xaSemantic

Altering

PHash

Attack

Figure 1: Example attack against perceptual hashing based image

search. The results are obtained from Google’s reverse image search.

1 INTRODUCTION

Perceptual hashing [29] is widely used by researchers and indus-

try practitioners to match similar images for digital forensics and

cybercrime studies [16, 26, 28, 44, 50, 55ś57, 71, 72, 85, 87]. At the

high level, perceptual hashing algorithms generate a fingerprint

for each image so that similar-looking images will be mapped to

the same or similar hash code. Unlike conventional cryptographic

hashing algorithms (e.g., MD5, SHA) that generate distinct hash

values for slightly changed inputs, perceptual hashing is designed

to tolerate small perturbations so that slightly changed content still

produces similar hash values.

Researchers have applied perceptual hashing in various applica-

tions for online abuse detection and analysis. For example, it has

been used to detect malicious websites based on webpage screen-

shots [71], and detect counterfeit apps using app graphical UIs [55].

More recently, researchers used perceptual hashing to analyze ma-

nipulated images inmisinformation campaigns [87], flag child abuse

content shared online [9], and detect identity impersonation in on-

line social networks [16]. Perceptual hashing is also heavily used

in real-world reverse image search engines such as Google [18],

Yandex [83], Microsoft Bing [5], and TinEye [69].

Despite the wide adoption of perceptual hashing, the robust-

ness of the algorithms is not well understood in the context of

online abuse detection and analysis. In practice, adversaries may

exploit the weaknesses of perceptual hashing algorithms to influ-

ence dependent applications. Figure 1 illustrates an example: 𝒙𝑜

presents the original photo of activist Linda Sarsour (left) and Stacey

Abrams (right) who was the Georgia governor candidate at that

time. A few months later, an edited version of the photo 𝒙𝑚 was

posted on Facebook where the word łCommunistž and the hash-

tag łMuslimBrotherhoodž were added to the campaign sign. This

manipulated image 𝒙𝑚 went viral across the Internet shortly after

posting. While the image has been cropped, resized, and altered

semantically, searching 𝒙𝑚 via Google’s reverse image search still

allows users to find the original image 𝒙𝑜 to spot the manipulation.

However, motivated adversaries can make it significantly harder

for users to reverse search the edited image to find the original

photo. For example, attackers can generate an attack image 𝒙𝑎 ,

such that 𝒙𝑎 has a large perceptual hash distance to 𝒙𝑜 without

major visual changes. As shown in Figure 1, the original photo is

no longer included in the top-ranked search results of 𝒙𝑎 .

This Paper. In this paper, we propose to examine the robust-

ness of perceptual hashing and its dependent security applications,

both experimentally and empirically. We propose a series of attack

algorithms that generate attack images such that (1) the original im-

age and the attack image are still visually similar, but (2) the attack

image has a very different perceptual hash code from that of the

original image. In practice, this attack can be used to target reverse

image search engines and analytic tools used in cybercrime studies

and online abuse analysis (like the example shown in Figure 1). To

make the attack practical, we assume the attacker only has black-

box access to the perceptual hashing algorithm used in the target

application (i.e., without knowledge of its implementation details

or parameters).

We design our attack algorithm based on a high-level obser-

vation. Fundamentally, a perceptual hashing function is a com-

pression function to map high-dimensional data (an image) to a

low-dimensional representation (hash code) to approximate human

perception. However, mainstream perceptual hashing algorithms

often prioritize efficiency and cannot perfectly mimic human per-

ception. This is understandable considering real-world applications

(e.g., a search engine) need to efficiently run image matching over

billions of indexed images. To these ends, it is possible for attackers

to use more sophisticated (computationally expensive) perceptual

metrics to guide the optimization of adversarial noises to enlarge

the hash distance without introducing significant visual changes.

We design a series of attack algorithms based on this high-level idea.

We also augment the attacks with additional novel designs such as

grayscale initialization and image transformations to improve the

attack efficiency and transferability.

Evaluation and Real-world Tests. We evaluate our attacks

using both controlled experiments and empirical tests (on real-

world image search engines). For controlled experiments, we fo-

cus on a standard perceptual hashing algorithm (pHash) which is

widely used by security researchers. We also use a robust variant of

pHash (called Blockhash) for comparison. Our experiments involve

three image datasets, including ImageNet [58], a dataset of human

faces [27], and a dataset of manipulated images (for misinforma-

tion dissemination) [45]. Our experiments have demonstrated the

benefits of our design choices and confirmed the effectiveness of

the attack against different perceptual hashing algorithms.

We then evaluate the attack against real-world reverse image

search engines, including TinEye, Google, Microsoft Bing, and Yan-

dex. We conduct a two-step experiment to (1) first compare different

attack algorithms, and (2) then select the best-performing attack

algorithm to test a variety of images. By manually validating the

search results, we show that our attack is highly successful on Tin-

Eye and Microsoft Bing (with a 100% success rate) by completely

eliminating relevant images and their websites from the first page

of the search results. Yandex has a different reaction as the attack

introduces significantly more false positives (to 90%). The attack

is also moderately effective on Google: it succeeds on 64% of the

target images while pushing the false positive rate to 66%.

Contributions. We have three key contributions:

• First, we formulate and design new attacks against perceptual

hashing based applications in a black-box manner.

• Second, we evaluate our attack against the standard percep-

tual hashing algorithm used by security researchers as well

as its robust variant on three different datasets.

• Third, we empirically test our attack using real-world image

search engines (including TinEye, Google, Bing, and Yandex)

to confirm its effectiveness.

We hope our work can lead to more research efforts to robustify

perceptual hashing algorithms used by security researchers and real-

world services. At the end of the paper, we have discussed possible

countermeasures at both the server side and the user client side.

To facilitate future works, we release our code and the annotated

dataset to the research community1.

2 BACKGROUND: PERCEPTUAL HASHING

We begin by introducing the background of perceptual hashing,

followed by a literature survey on its security applications.

2.1 Perceptual Hashing and Applications

PerceptualHashing Function. Perceptual hashing algorithms

generate a fingerprint for multimedia data (e.g., images) so that

similar-looking content will be mapped to the same or similar hash

values. More formally, we use 𝐻 to denote a perceptual hashing

function. Given an input image 𝒙 , the function produces a binary

string as the hash code: ℎ = 𝐻 (𝒙), ℎ ∈ {0/1}𝑙 . Here, {0/1}𝑙 rep-

resents a binary string of length 𝑙 . We denote a slightly modified

version of 𝒙 as 𝒙̂ (the two images are visually similar), and denote

𝒚 as a visually different image from 𝒙 . 𝐻 is expected to meet the

following requirements [88]: (1) unpredictability of hash values:

𝑃 (𝐻 (𝒙) = ℎ) ≈ 1

2𝑙
,∀ℎ ∈ {0/1}𝑙 ; (2) independence of input images:

𝑃 (𝐻 (𝒙) = ℎ1 |𝐻 (𝒚) = ℎ2) ≈ 𝑃 (𝐻 (𝒙) = ℎ1),∀ℎ1, ℎ2 ∈ {0/1}𝑙 ; (3)

producing the similar hash values for perceptually similar images:

𝑃 (𝐻 (𝒙) = 𝐻 (𝒙̂)) ≈ 1; and (4) producing distinct values for different

images: 𝑃 (𝐻 (𝒙) = 𝐻 (𝒚)) ≈ 0.

Given an input image, it typically takes three steps to compute a

perceptual hash code: transformation, feature extraction, and quan-

tization. Here, we briefly describe the high-level idea of these steps,

and provide more details for popular perceptual hashing functions

in Appendix A. First, the transformation step is to apply various

1https://gangw.cs.illinois.edu/hash.html

transformations (e.g., smoothing, color transformations, frequency

transformations) to the image. The goal is to augment the image

data for feature extraction. Second, the feature extraction step takes

the transformed images (of size 𝑀 × 𝑁) to extract a feature vec-

tor of length 𝐿 (𝐿 ≪ 𝑀 × 𝑁), and/or select the most pertinent 𝐾

features (𝐾 ≪ 𝐿). Each feature in the vector is represented by 𝑝

elements of type float. The feature extraction step selects global

features that are resilient against normal image transformations

(e.g., adding background noises). Third, the quantization step quan-

tizes the continuous intermediate hash values to discrete values to

further improve the algorithm’s robustness.

Perceptual Hashing Usage in Academic Research. Percep-

tual hashing (e.g., pHash [29]) is frequently used by researchers to

detect similar media content. We have surveyed security papers in

the past 5 years to summarize key usage cases.

The most common application is to use perceptual hashing to

analyze website screenshots and pair visually similar websites. This

approach has been used to detect malicious (phishing) websites un-

der domain squatting [2, 28], online survey scams [26, 71], website

defacements [6], technical support scams [40], and black-hat search

engine optimization (SEO) [72]. Another popular use case is to ana-

lyze displayed ads to detect fraudulent services [44, 54] or to build

perceptual ad-blockers [70]. In addition, it is also used to analyze

the graphical user interface (UI) of mobile apps to detect counter-

feit apps [55] and detect app vulnerabilities [4, 62]. More recently,

perceptual hashing is applied to analyze the images and memes dis-

tributed inmisinformation campaigns [1, 38, 41, 56, 57, 64, 77, 86, 87]

and detect pornography content [50, 85]. Finally, perceptual hash-

ing has been used to match duplicated profile photos to flag identity

impersonation in online social networks [16].

When using a perceptual hashing algorithm, researchers do not

simply rely on hash collision to detect similar images (which can

easily produce false negatives). Instead, a certain threshold is set on

the normalized Hamming Distance [19] between two hash strings

for accurate image matching. Normalized Hamming Distance mea-

sures the number of different bits between the two hash strings

divided by the length of the hash string. The threshold for normal-

ized Hamming distance varies for different applications but mostly

falls between 0.1 and 0.4 [26, 54, 63, 77, 85, 86].

PerceptualHashing basedOnline Services. Perceptual hash-

ing is also widely used to build reverse image search engines, such as

those from Google [18], Yandex [83], and Bing [5], and TinEye [69].

These reverse image search engines have been used to support appli-

cations such as catfishing detection (for online dating services) [15]

and photo infringement detection [24, 52].

Relevant Existing Attacks. Researchers have explored poten-

tial attacks against perceptual hashing in the past. However, these

attacks are not designed to manipulate reverse image search. Instead,

they are mostly targeting image authentication applications. More

specifically, the goal is to introduce image distortions to alter the

semantic meaning of the images without changing the image’s hash

value. In this way, the perceptual hashing algorithm would not be

able to detect the distortion, and falsely treat the modified image

as the same as the original. For example, authors in [80] applied

distortions (e.g., by changing the plate number of a car or inserting

a small flag into the image) without changing the image’s hash

value. In [79], the authors tested both malicious modifications (e.g.,

adding/removing objects to/from the image) and benign modifi-

cations (e.g., rotation, cropping, JPEG compression, and additive

Gaussian noises) to show that perceptual hashing algorithms can-

not detect łmaliciousž changes effectively. Most existing attacks

are manually crafted based on heuristics and cannot be applied

automatically to arbitrary images.

2.2 Our Goals

In this paper, we explore attacks that aim to manipulate reverse

image search based applications. Our attack goal is the opposite of

existing attacks [79, 80] described above. More specifically, existing

attacks [79, 80] aim to introduce visible distortions to that image

that do not change the image hash value (to bypass image authen-

tication systems). Our goal is the opposite: we want to introduce

small/imperceptible distortions that significantly change the hash

value of the image. With a highly different hash value, it would

become difficult for the search engine to link the modified image

to the original source. In addition, we aim to generate the attack

images automatically without manual efforts.

Our goal is related to that of adversarial attacks against machine

learning classifiers [11, 17, 37, 47, 48, 65] but has some differences.

For example, adversarial examples aim to fool a classifier to assign

a (targeted) wrong label, whereas our goal is to manipulate the

similarity metric defined by a perceptual hashing function between

a pair of specific images. Further discussion of our relationship with

adversarial examples is in Section 9.

3 THREAT MODEL

Given an input image, the attacker’s goal is to generate an attack

image such that (1) the original image and the attack image are still

visually similar, and (2) the attack image has a different perceptual

hash code from that of the original image.

In practice, the attack targets reverse image search engines and

security applications that depend on image matching. For example,

for search engines, searching the attack image will no longer return

the real sources (or the real sources are no longer ranked at the top

of the returned results). For security applications (e.g., malicious

website detection, misinformation campaign detection), the attack

image can no longer be linked to (or grouped with) other relevant

images, which subverts the effectiveness of these applications.

By default, we assume the attacker only has a black-box access

to the perceptual hashing algorithm used in the target application.

This means the attacker has no knowledge about the implementa-

tion details of the perceptual hashing algorithm or its configurations.

We assume the attacker can query the target hashing algorithm to

obtain the hash code for an image.

Later in this paper, we also explore the scenario where the at-

tacker does not even have the query ability (e.g., when attacking a

real-world search engine). In this case, the attacker will generate

the attack image based on a local perceptual hashing algorithm to

attack the target application.

4 METHODOLOGY

In this section, we describe our attack methodology. We begin

with a basic attack against perceptual hashing algorithms. Then,

with real-world applications in mind, we develop advanced attack

methods to enhance the basic attack algorithm.

4.1 Basic Attack

Given an input image 𝒙𝑜 and a perceptual hashing algorithm 𝐻 (),

we want to create an attack image 𝒙𝑎 to meet two requirements: (1)

attack effect: the hash code of the attack image ℎ𝑎 = 𝐻 (𝒙𝑎) should

have a large Hamming Distance to the hash code of the original

image ℎ𝑜 = 𝐻 (𝒙𝑜); and (2) stealth and semantic consistency: the

attack image 𝒙𝑎 should be visually similar to the original image 𝒙𝑜 .

Note that the problem formulation here is slightly different from

the example described in Figure 1 as this formulation does not

explicitly define 𝒙𝑚 (the manually altered image). Among different

perceptual hashing applications, some applications have an 𝒙𝑚
(e.g., disinformation), but many do not have an 𝒙𝑚 in their threat

models such as counterfeit app detection [55] and social network

impersonation detection [16]. As such, we choose this clean and

yet generic formulation by only focusing on two images (denoted

as 𝒙𝑜 and 𝒙𝑎). This formulation directly works for applications that

do not have an 𝒙𝑚 . For applications with an 𝒙𝑚 , we can simply

use 𝒙𝑚 as the reference image (instead of 𝒙𝑜) such that the attack

image 𝒙𝑎 will be semantically/visually similar to 𝒙𝑚 . Since 𝒙𝑜 and

𝒙𝑚 have a small hash distance in the first place, optimizing the hash

distance to 𝒙𝑚 is reasonable. Later in Section 5.6 and Section 6.4,

we will provide concrete evaluation and examples.

Based on the above problem formulation, we have the following

loss function:

minimize
𝒙𝑎

D(𝒙𝑎, 𝒙𝑜) + 𝑐 · 𝑓 (𝒙𝑎, 𝒙𝑜)

subject to 𝒙𝑎 ∈ [0, 1]𝑝 .
(1)

𝐷 (𝒙𝑎, 𝒙𝑜) denotes the function to measure the visual difference

between the original image and the attack image. 𝑓 (𝒙𝑎, 𝒙𝑜) denotes

the similarity between 𝒙𝑎 and 𝒙𝑜 in the hash space. The key chal-

lenge is to construct a differentiable function 𝑓 () that allows us

to run optimization. 𝑐 is a scaling factor to balance the weights of

the two loss terms, which is a tunable hyperparameter. 𝑝 is the

dimension of the input feature vectors.

Design of Hash Similarity Loss 𝑓 (). Recall that 𝑓 () needs to

be differentiable and reflects the similarity of the hash strings of

two images. We construct a hinge-loss function that transfers the

Hamming Distance of two hash strings into probabilities:

𝑓 (𝒙𝑎, 𝒙𝑜) = max{tanh(1 − |𝐻 (𝒙𝒂) − 𝐻 (𝒙𝑜) |/𝑑𝑡), 0}, (2)

where |𝐻 (𝒙𝑎) −𝐻 (𝒙𝑜) | denotes the normalized Hamming Distance

of the two hash strings. 𝑑𝑡 is a parameter that denotes the target

normalizedHamming distance that the attack image aims to achieve.

For example, given a 64-bit hash string, if the attacker aims to

cause a 20-bit difference on the hash string for the attack image,

𝑑𝑡 should be set to 20/64 = 0.3125. Here, we choose tanh() for

𝑓 because it makes the loss function get steeper when the hash

distance approaches the target 𝑑𝑡 , which encourages the attack

image to reach and even go beyond the target distance.

Choice of Visual Distance𝐷 (). Recall that𝐷 () is used to mea-

sure the visual similarity of two images. In traditional adversarial

attacks against classifiers, researchers have used 𝐿2 distance [11].

Here, we only consider 𝐿2 as a backup option while prioritizing

more sophisticated perceptual similarity metrics. This is because

𝐿2 distance has key limitations in describing visual differences. For

example, a slightly rotated image may look the same, but the minor

rotation could lead to a large 𝐿2 change. For our attack, we primar-

ily choose a Learned Perceptual Image Patch Similarity (LPIPS) to

construct 𝐷 (), which is shown to better mimic human perception

compared to traditional metrics such as Structural Similarity In-

dex Measure (SSIM) and 𝐿2 [89]. Later in Section 5.2, we will use

experiments to further justify our design choices.

Grayscale Initialization. Given an input image 𝒙𝑜 , a naive

approach is to directly optimize the loss function on the colored

image for all three RGB channels. However, our empirical exper-

iments show that this naive approach is highly inefficient. To ad-

dress the efficiency problem, we propose an enhancement method,

called grayscale initialization. First, we convert the image 𝒙𝑜 to its

grayscale version 𝒙 ′𝑜 . Second, we run the attack on the grayscale

image to generate the attack noise. The grayscale images can sig-

nificantly reduce the search space, and thus improve efficiency.

Third, we use the noise learned on the grayscale image 𝒙 ′𝑜 as the

initialization values for the RGB channel noises, and run the above

optimization again on the three RGB channels for 𝒙𝑜 . In this way,

we can significantly improve the efficiency of the attack (experi-

mental validation is shown in Section 5.2).

Implementation Details. We implement the black-box attack

described above using the Zeroth Order Optimization method de-

scribed in [12]. As a derivative-free optimization method, it only

needs the zeroth order oracle (i.e., the objective function in Eq. 1). By

comparing the objective function values at two very close points

L(𝑥 + 𝛿𝑣) and L(𝑥 − 𝛿𝑣) (with a small 𝛿), we can estimate the

gradient along the direction 𝑣 . Under a black-box setting, back-

propagation is not possible. As a result, it could take a long time

to calculate the full gradient for a single image. To speed up the

optimization, we apply attack-space dimension reduction [12]. The

idea is to optimize the adversarial noise at a lower dimension (e.g.,

32×32), and then use an interpolation method to upscale the noise

to the original image size. We use ADAM’s coordinate gradient

descend to update a small batch of coordinates for each iteration.

We set the learning rate to 0.01 to balance the convergence time

and image quality.

4.2 Advanced Attack

While most researchers have been using the standard perceptual

hashing algorithm (called pHash) in their work [2, 16, 26, 28, 44,

50, 54ś57, 71, 72, 85, 87], online services such as TinEye may have

adopted additional methods to enhance perceptual hashing to bet-

ter tolerate image modifications such as cropping and resizing.

For example, search engines can divide an image into smaller

blocks before extracting features [59]. They can also use robust fea-

ture extraction methods such as Scale-invariant Feature Transform

(SIFT) [20, 35, 81] and those based on wavelet transform (DWT)

and discrete cosine transform (DCT) [14, 30, 74].

To enhance our basic attack, we introduce two additional meth-

ods. Our designs are not to target a specific perceptual hashing

implementation (as we assume the target application is a black box).

Instead, these designs intend to improve the transferability of the

attack images across perceptual hashing algorithms.

Attack over Input Ensemble (AoE). The first method is to

optimize the attack image 𝒙𝑎 such that its hash value not only differs

from that of the original image 𝒙𝑜 , but also differs from those of

slightly transformed images from 𝒙𝑜 . By simultaneously attacking

a series of similar-looking images (i.e., an ensemble), we want to

improve the robustness of the attack image. The idea is inspired by

a method called Expectation over Transformation (EoT) [3], which

was used to improve the robustness of adversarial examples against

classifiers. Here, we adapt the method to attack perceptual hashing

with a new loss function. The loss function is modified from our

Eq. 1 as following:

minimize
𝒙𝑎

D(𝒙𝑎, 𝒙𝑜) + 𝑐 · (𝑓 (𝒙𝑎, 𝒙𝑜) +
∑

𝑡 ∈𝑇

𝑓 (𝒙𝑎, 𝑡 (𝒙𝑜)))

subject to 𝒙𝑎 ∈ [0, 1]𝑝 .

(3)

𝑇 represents a set of transformations that can be applied to 𝒙𝑜 . 𝑇

can include any standard image transformations such as rotation,

scaling, cropping, and brightness and contrast variations, as long

as the visual changes are small. We will introduce the details for

our choices of𝑇 later in Section 5. Compared with the existing EoT

method [3], a key difference is that we apply the transformation

𝑡 to the original image 𝒙𝑜 instead of the attack image 𝒙𝑎 . This is

for attacking search engines that have stored multiple copies (and

hash values) for each of their internally indexed images.

Attack over InputTransformation (AoT). The secondmethod

also uses image transformations, but in a different way. Given an

original image 𝒙𝑜 , we pick one transformation function 𝑡 ∈ 𝑇

(where 𝑇 is a set of transformations that introduce imperceptible

changes to the image). Then we treat 𝑡 (𝒙𝑜) as the target to perform

the basic attack. The attack image 𝒙𝑎 is optimized to be further

away from 𝑡 (𝒙𝑜) in the hash value space. The new loss function is

the following:

minimize
𝒙𝑎

D(𝒙𝑎, 𝑡 (𝒙𝑜)) + 𝑐 · 𝑓 (𝒙𝑎, 𝑡 (𝒙𝑜))

subject to 𝒙𝑎 ∈ [0, 1]𝑝 .
(4)

Compared with the above AoE method, a key difference is that this

AoT method uses 𝑡 (𝒙𝑜) as the comparison target for both 𝐷 () and

𝑓 (). The intuition is that the image transformation 𝑡 first moves

the attack image slightly away from the original image, and then

optimizes the attack noise to further enlarge the hash distance. For

AoT, it is possible that the choice of 𝑡 will affect the attack results

(which will be studied in Section 5).

5 EVALUATION

In this section, we evaluate the proposed attacks with controlled

experiments. We will further evaluate the attacks against real-world

image search engines later in Section 6.

5.1 Experiment Setups

We select two popular perceptual hashing algorithms that are

widely used by researchers and industry practitioners.

• Standard pHash. pHash is a widely used perceptual hash-

ing algorithm.We choose an open-source implementation [8]

that is used by many prior works [2, 16, 26, 28, 44, 50, 54, 55,

57, 72, 85, 87].

• Blockhash. Blockhash (block mean value based hash) [84]

is a robust perceptual hashing algorithm. It first slices an

image into smaller blocks where the number of blocks is

equal to the length of the hash string. Each hash bit is com-

puted based on one block. The bit value is determined by

comparing the given block with the median of this block’s

neighboring blocks. We choose an open-source implementa-

tion of Blockhash [36] for our experiments.

We set pHash and Blockhash with their recommended param-

eters. The pHash hash string has 64 bits, and the Blockhash hash

string has 256 bits. To measure the differences between hash strings,

we use normalized Hamming distance, which is the number of dif-

ferent bits between two hashes divided by the length of the hash.

Normalized Hamming distance has a range of [0, 1].

Datasets. For our evaluation, we use three different image

datasets, which will be used for different purposes.

• ImageNet.Wewill use ImageNet [58] as the primary dataset

for its scale and diversity. The training dataset contains

1,280,000 images from 1,000 categories. These images are

mostly collected from the Internet and can be used to emulate

a reverse image search engine.

• Face Images.We use the images of human faces from the

łReal and Fake Face Detection Challengež [27]. We only con-

sider the real face images (1,081 in total). This dataset allows

us to study related applications such as catfishing and social

network impersonation detection [16].

• Image Manipulation Dataset (IMD). This dataset con-

tains images collected by researchers to study image ma-

nipulations and misinformation campaigns [45]. The dataset

contains łreal-lifež manipulated images created by real peo-

ple on the Internet (also called fauxtography [77]). There are

414 original images and 2,010 manipulated images.

Experiment Methodology & Evaluation Metrics. Our ex-

periment emulates an image searching process. Given a perceptual

hashing algorithm 𝐻 , we generate the hash code for each image

and store them in a backend database. Then we randomly pick a set

of query images {𝒙} to perform a reverse image search. For a query

image 𝒙 , we first compute its hash string 𝒉 = 𝐻 (𝒙). The search

function will return relevant images whose normalized Hamming

distance to 𝒉 is below a threshold 𝜏 .

The returned images are sorted based on their distance to 𝒉. If

𝒙 has a copy stored in the backend database, ideally, the search

engine should return 𝒙’s copy and rank it at the top. Otherwise,

no result should be returned. Any irrelevant returned images (i.e.,

images that are not the copy of 𝒙) will be treated as false positives.

We consider the following evaluation metrics: (1) Average false

positives (FP): the average number of irrelevant images in the re-

turned results; (2) Top-K Hit Rate (Top-K HR): the ratio of queries

Dataset Target hash distance 𝑑𝑡=0.15 Target hash distance 𝑑𝑡=0.31 Target hash distance 𝑑𝑡=0.47

Hash Dist Pdist # FP Top-5 HR FQR Hash Dist Pdist # FP Top-5 HR FQR Hash Dist Pdist # FP Top-5 HR FQR

ImageNet 0.156 0.005 6.72 96% 0% 0.310 0.034 3.38 0% 100% 0.441 0.120 1.68 0% 100%

Face 0.156 0.009 4.76 100% 0% 0.293 0.050 3.32 6% 94% 0.383 0.145 2.90 4% 96%

Table 3: Basic attack against pHash (the search engine distance threshold 𝜏 is set to 0.2).

and then another 1.52 iterations to generate the colored images. On

average, the grayscale initialization saves 87% of the iterations.

The grayscale initialization speeds up the attack algorithm by

significantly reducing the search space. In addition, perceptual

hashing algorithms typically use the grayscale version of the image

to compute the hashes. Noises learned from the grayscale image

are likely to cause effective changes in the hash space.

Impact on the Image Searching. We next examine the attack

impact on the image search results. We perform the attack with

three different target hash distances: 0.15, 0.31, and 0.47 (corre-

sponding to causing a 10-, 20-, and 30-bit difference in a 64-bit

hash). According to Figure 2, we set the backend search function to

use 𝜏 = 0.2 to return matched images.

As shown in Table 3, when the target hash distance 𝑑𝑡 is 0.15

and 0.31, most of the attack images can achieve the target distance.

When the target distance is 0.47, the attack images on average

can only get near but do not reach this target. This is not too

surprising given that 𝑑𝑡 = 0.47 is an extremely aggressive threshold.

As shown in Figure 2, a distance of 0.47 for pHash is already far from

a reasonable range (the median false positives reach 100,000). In our

experiment, the search engine uses a threshold 𝜏 = 0.2 to limit the

number of false positives. Overall, we confirm that the basic attack

can successfully generate effective attack images (when 𝑑𝑡 =0.3

and 0.47). In these cases, the original copy of the query image is

mostly hidden from the returned results, leading to a near 100%

failed query rate (FQR). The top-5 hit rate (HR) is no more than 6%

for all the query images.

Table 3 shows that the perceptual distance (denoted as łPdistž,

measured by LPIPS) is increasing as we aim for a higher 𝑑𝑡 , as we

need to introduce more perturbations. Note that LPIPS (Pdist) has

the value range of [0,1]. A pair of images are still visually similar

even when LPIPS is around 0.1. Figure 3 shows example images

under different target hash distances. We intentionally pick two

images from two extremes in terms of the visual changes. For exam-

ple, the łmushroomž image (Agaric) has almost no visible changes

even when getting to hash distance of 0.47 (LPIPS = 0.030). The

łbirdž image (Robin) has more visible changes but the changes are

acceptable even at 0.31 (LPIPS = 0.097). Overall, our results confirm

that the basic attack can successfully generate attack images to

manipulate the reverse image search.

5.4 Attacking Blockhash

After experimenting with the standard pHash, we next attack the

Blockhash algorithm which is a more robust variant of pHash. In

this experiment, we start with the basic attack. Considering that

Blockhash is more likely to produce false positives (see Figure 2),

we set slightly smaller target thresholds for 𝑑𝑡 (0.15 and 0.31).

As shown in Table 4, the basic attack can successfully generate

attack images that reach the target hash distance and effectively

avoid the original copies being returned. When the target hash

Clean LPIPS=0.0004 LPIPS=0.004 LPIPS=0.030

Clean LPIPS=0.015

𝑑𝑡=0.15

LPIPS=0.097

𝑑𝑡=0.31

LPIPS=0.185

𝑑𝑡=0.47

Figure 3: Example images for the basic attack against pHash.

Clean 𝑑𝑡=0.15 𝑑𝑡=0.31
Figure 4: Example images for the basic attack against Block-

hash with different target distance 𝑑𝑡 to the original image.

distance 𝑑𝑡 is set to 0.31, ImageNet and Face images can reach an

average hash distance of 0.314 and 0.313 respectively. Across all the

attack settings, we can completely hide the original copies from

returned results, with a 100% FQR and a 0% top-5 hit rate (𝜏 = 0.14,

as configured in Section 5.2). Compared with attacking the standard

pHash (see Table 3), attacking Blockhash indeed requires larger

visual changes, i.e., leading to higher perceptual changes in the

attack images (a higher Pdist). We show the example attack images

for the Blockhash attack in Figure 4. Overall, the attack images are

still visually similar to the original images (the Pdist is still at the

0.1 level). These results confirm that our attack is effective on the

more robust Blockhash algorithm too.

5.5 Transferability Evaluation

So far, we have experimented with the attack setting where we

query the target hash function to generate the attack images. In

practice, this query ability is often unavailable, and we will need to

rely on transferability to generate attack images based on a local

hash function. Next, we run experiments to compare the basic attack

and the advanced attacks in terms of attack transferability.

Dataset Target hash dist 𝑑𝑡=0.15 Target hash dist 𝑑𝑡=0.31

Hash Dist Pdist # FP Top-5 HR FQR Hash Dist Pdist # FP Top-5 HR FQR

ImageNet 0.149 0.016 0.02 0% 100% 0.314 0.049 0 0% 100%

Face 0.149 0.038 4.08 0% 100% 0.313 0.119 0 0% 100%

Table 4: Basic attack against Blockhash (the search engine distance threshold 𝜏 is set to 0.14).

Attack pHash, Target 𝑑𝑡=0.31 Blockhash, Target 𝑑𝑡=0.15

Method Hash Dist Pdist Hash Dist Pdist

AoE 0.283 0.082 0.150 0.049

AoT1 0.239 0.123 0.150 0.122

AoT2 0.239 0.157 0.160 0.164

AoT3 0.244 0.131 0.155 0.122

Table 5: Advanced attacks against pHash and BlockHash us-

ing Face dataset (AoT1: cropping, AoT2: rotation, AoT3: dis-

proportionate scaling).

Transformation Functions used in Advanced Attacks. We

first introduce the transformation functions 𝑇 = {𝑡} to be used in

advanced methods. At the high level, any standard image trans-

formation, as long as it does not significantly temper with the

semantics of the image, can be used. For this experiment, we design

three transformations that can largely preserve image semantics:

• Cropping (t1): remove 2.5% at the edge of an image.

• Rotation (t2): rotate an image by a small angle (0.02×360 =

7.2 degree), and crop 5% of the image to remove the black

edges introduced by the rotation.

• Disproportionate Scaling (t3): slightly stretch an image

by increasing the image width to 1.1 times of the original

width. Then we crop the image back to its original size by

removing excessive width at the edge.

For advanced method AoE, all three transformations are used.

For AoT, it can choose any of the three transformations to per-

form the attack. We call the three AoT attacks as AoT1, AoT2, and

AoT3, respectively. We have confirmed that these transformations,

when applied alone (without running our attack), cannot effectively

create meaningful hash distance for the images. For example, un-

der pHash, the average pHash distance caused by the above three

transformations is 0.095 with a standard deviation of 0.039 on the

ImageNet testing set. These transformations alone are far from

achieving the desired attack impact (e.g., 𝑑𝑡=0.31).

Running Advanced Attacks. We first run the advanced at-

tacks against pHash and Blockhash to establish a baseline. The

results are shown in Table 5. In general, the advanced attacks can

successfully reach the target hash distances. The result is slightly

worse for pHash when 𝑑𝑡 = 0.31 (the resulting hash distance is

within 0.239ś0.283). In the meantime, the produced attack images

also have larger visual changes (Pdist is at the 0.1 level). The exam-

ple images of the advanced attacks are shown in Figure 5.

Transferability Experiment. To explore transferability, we

run the basic and the advanced attacks against pHash, and then

examine the resulting hash distance of the attack images under

different hashing functions, including pHash, Blockhash as well as

other generic hashing algorithms: aHash (average hash), wHash

(wavelet hash), and dHash (difference hash). At the high-level,

Clean AoE AoT1 AoT2 AoT3
Figure 5: Example images for the advanced attacks against

Blockhash with target hash distance 𝑑𝑡=0.15.

Attack Transferred Distance (target hash dist 𝑑𝑡 = 0.31)

Method pHash Blockhash aHash dHash wHash

pHash Basic 0.313 0.122 0.073 0.164 0.081

pHash AoE 0.324 0.158 0.105 0.215 0.109

pHash AoT3 0.246 0.163 0.100 0.200 0.103

Attack Transferred # FP (target hash dist 𝑑𝑡 = 0.31)

Method pHash Blockhash aHash dHash wHash

pHash Basic 3.38 2.6 74.12 15.34 22.66

pHash AoE 2.64 1.82 80.74 9.28 12.44

pHash AoT3 3.2 1.48 130.54 12.4 14.08

Attack Transferred Top-5 HR (target hash dist 𝑑𝑡 = 0.31)

Method pHash Blockhash aHash dHash wHash

pHash Basic 0% 68% 36% 46% 30%

pHash AoE 0% 36% 20% 24% 8%

pHash AoT3 10% 28% 16% 24% 12%

Attack Transferred FQR (target hash dist 𝑑𝑡 = 0.31)

Method pHash Blockhash aHash dHash wHash

pHash Basic 100% 32% 58% 54% 66%

pHash AoE 100% 64% 78% 76% 90%

pHash AoT3 88% 72% 78% 74% 84%

Table 6: Transferring the attack image optimized for pHash

to other hash functions (ImageNet). We show average hash

distance, average number of false positives (FP), top-5 hit

rate and failed query rate (FQR) under each hash function.

aHash computes the average of image pixel values; wHash uses

Discrete Wavelet Transformation (DWT) to extract features to com-

pute the hash code; dHash computes hashes by comparing adjacent

pixels. We include more detailed descriptions of these hashing al-

gorithms in Appendix A.

To fairly compare the searching results for different hashing

algorithms, we need to determine their own distance threshold 𝜏

for the backend database. Like before, we control the false positives,

and choose the thresholds for different hash algorithms so that their

95-percentile false positives are all under 100. Following the same

methodology of Section 5.2, we set 𝜏 for aHash, dHash and wHash

as 0.05, 0.16 and 0.05, respectively. We notice that these thresholds

are lower than that of pHash (𝜏=0.2) because aHash, dHash and

wHash are more likely to produce false positives.

The results are presented in Table 6 for ImageNet. For AoT, since

we did not observe major differences between the three variants, we

only show the results for AoT3 (disproportionate scaling) for brevity.

Attack Target Hash Dist 𝑑𝑡=0.31

Method Hash Dist Pdist

pHash Basic 0.30 0.027

pHash AoT3 0.244 0.146

Table 7: Basic attack and AoT3 attack on IMD dataset.

Clean Manipulated Basic AoT3

Figure 6: IMD pHash attack example. The manipulated im-

age is created by vandalizing a flag in the original image and

adding a new flag (it differs from the clean image by 0.125).

After our attack, the resulting hash distance reached 0.31 for

the basic attack and 0.25 for the AoT3 attack.

As shown in Table 6, when the attacker uses a local pHash to run

the attack, the resulting attack images perform well with respect to

pHash distance (getting close to 0.31) and can effectively hide the

original copies from searching results (0%ś10% Top-5 hit rate and

88%ś100% FQR).When using the image to attack the searching func-

tion built on other hashing algorithms (namely, Blockhash, aHash,

dHash, and wHash), the łtransferredž attack impact is reduced.

Comparing different attack algorithms, Table 6 confirms that

advanced attacks (AoE and AoT3) are indeed more transferable than

the basic attack. As shown in Table 6, AoT3 obtains a 88% FQR on

pHash (indicating the attack successfully hides the true matching

images for 88% of the query images). Under a transferring attack

against other hashes, the FQR is still maintained at a high level

(74%ś84%). In comparison, the transferability of the basic attack

is weaker with a lower FQR (30%ś68%). A similar trend can be

observed for the top-5 HR metrics. We also find the performance of

AoT3 and AoE are comparable across different hashing algorithms.

Note that AoE is three times slower than AoT3 (with |𝑇 | = 3). As

such, AoT3 is a better choice.

Overall, these results suggest that the transferred attack is still

effective using advanced attack methods.

In practice, attackersmay jointly optimize the attack noise against

multiple hashing algorithms simultaneously. This idea has been

explored in ensemble-based adversarial examples in the classifier

setting [34]. Further discussions are presented in Section 7.1.

5.6 Evaluation with IMD Dataset

Finally, we perform a quick evaluation with the ImageManipulation

Dataset (IMD), as a case study. Recall that IMD contains manually

manipulated images collected from the Internet. In total, the dataset

contains 2,010 image pairs where each pair contains one original

image and one manipulated image. By comparing the pHash and

Blockhash distances of such image pairs, we find that over 50%

image pairs have a distance below 0.2. For these image pairs, a

reverse image search engine can easily find the original image by

searching the manipulated one. Image pairs that already have a

large hash distance (e.g., > 0.2) typically involve drastic changes

(e.g., cropping 90% of the original images). An example image is

shown in Appendix C.

For the rest of the image pairs with a pHash distance below 0.2,

we run our attack to further enlarge their hash distance. This will

help to eliminate the original images from the search results. As

a quick experiment, we run the basic attack and the AoT3 attack

against pHash. Given a pair of original and manipulated images

(𝒙𝑜 , 𝒙𝑚), we aim to generate an attack image 𝒙𝑎 such that it looks

similar to the manipulated image 𝒙𝑚 while enlarging the pHash

distance (from 𝒙𝑚) to reach 0.31. Table 7 shows that the attack

is successful. The attack images (especially the basic attack) can

successfully reach the target hash distancewith imperceptible visual

changes. An example image is shown in Figure 6.

6 REAL-WORLD EXPERIMENTS

So far, we have demonstrated the attack effectiveness using con-

trolled experiments. In this section, we further run empirical tests

with real-world reverse image search engines.

6.1 Methodology Overview

Challenges and Approaches. The key challenge of the real-

world experiment is that it cannot be fully automated. First, unlike

the controlled experiment where there is only one copy of the

query image in the database, real-world search engines often re-

turn multiple websites that have indexed the query image or its

legitimate variants (e.g., resized or cropped versions). To determine

true positives and false positives (i.e., irrelevant images), we need

to manually validate the search results. Here, we cannot use any

perceptual metrics to determine true/false positives automatically,

precisely because perceptual hashing is our attack target.

The needs for manual inspection limit the scale of our experi-

ment. To cover a wide range of attack algorithms and target images

(with reasonable manual efforts), we divide the experiment into two

stages. First, we use a small set of target images to compare a large

number of attack algorithms. Second, we select the most effective

algorithm from stage-1 and apply it to a larger set of target images.

We use the Face dataset [27] for this experiment. This dataset con-

tains face images of models (e.g., used for online advertising and

promotions), and thus the images are already indexed by different

websites in various forms. For example, we searched the 50 clean

face images used in Section 5 with Google search, and the average

number of returned entries is 108.5 (the first quartile is 26 and the

third quartile is 178). The results confirm that the Face images are

already heavily indexed.

Search Engines. We select four popular reverse image search

engines, including three free services (Google, Microsoft Bing, and

Yandex) and one commercial service (TinEye). For TinEye, we pur-

chased its search API access for our experiment. Given a query

image, the search engines would return a list of entries where each

entry contains a matched image and the website (URL) that hosts

the image. For example, Google has a section called łPages that

include matching imagesž to display the search results (as shown

in Figure 1). Other search engines have similar sections. Note that

social medial platforms such as Flicker and Pinterest also have im-

age search functions, but their search engines are more limited. For

example, their search functions are focused on łrelevant imagesž

(images that contain similar types of objects) instead of finding the

TinEye Google

Evaluation Metric Original Blockhash pHash Original Blockhash pHash

AoT3 AoE Basic AoT3 AoE Basic AoT3 AoE Basic AoT3 AoE Basic

Avg. Reduction Rate N/A 60% 20% 24% 65% 30% 5% N/A 62% 45% 40% 70% 64% 50%

Top1 Hit Rate 100% 60% 80% 80% 60% 80% 100% 100% 60% 100% 100% 80% 80% 80%

Top10 Hit Rate 100% 60% 80% 80% 60% 80% 100% 100% 80% 100% 100% 100% 100% 100%

False Positive Rate 0% 40% 20% 20% 40% 20% 0% 2% 33% 7% 11% 13% 13% 12%

Bing Yandex

Evaluation Metric Original Blockhash pHash Original Blockhash pHash

AoT3 AoE Basic AoT3 AoE Basic AoT3 AoE Basic AoT3 AoE Basic

Avg. Reduction Rate N/A 100% 100% 100% 100% 100% 100% N/A -611% -871% -756% -813% -1086% -1014%

Top1 Hit Rate 80% 0% 0% 0% 0% 0% 0% 100% 80% 80% 80% 40% 80% 100%

Top10 Hit Rate 80% 0% 0% 0% 0% 0% 0% 100% 80% 80% 80% 40% 80% 100%

False Positive Rate 20% 100% 100% 100% 100% 100% 100% 0% 39% 56% 58% 76% 92% 72%

Table 8: Real-world experiments with attack images optimized for pHash (𝑑𝑡 = 0.31) and Blockhash (𝑑𝑡 = 0.15) using different

attack algorithms. łAvg. Reduction Ratež shows the average rate of search result reduction caused by the attack image (in

comparison with the original image).

modified copies of the query image. Also, they only index images

of their users. For these reasons, we did not consider Flicker or

Pinterest in this experiment.

Ethical Considerations. Testing cloud APIs with adversarial

images has been a common approach adopted by researchers [7, 13,

22, 47, 48, 60, 82, 85] and our experiments follow a similar setup. We

have carefully controlled the number of queries and the query rate

to avoid overwhelming the search engines. In addition, after the

experiments, we manually checked the searching results again to

make sure that none of the attack images were indexed by the search

engines. More specifically, after the experiment at a given search

engine, we searched each 𝒙𝑜 again andmade sure the corresponding

attack images 𝑥𝑎 were not in the returned results. Then, we directly

searched 𝑥𝑎 , and also did not find any archived copy of 𝑥𝑎 . If 𝑥𝑎
were indexed by the search engine, directly searching 𝑥𝑎 should

find it out. We performed another sanity check (by repeating the

above searches) three months after the experiment and confirmed

the attack images were not indexed.

6.2 Small Experiments on Search Engines

As the first step, we use a small set of images to test a large number

of attack algorithms. We select 5 random images from the Face set.

For each image, we run six attack algorithms including the Basic,

AoE, and AoT3 attacks optimized against pHash, and the Basic,

AoE, and AoT3 attacks optimized against Blockhash. Although the

number of the target images is small, the experiment still involves

significant manual efforts to validate all the searching results. For

each query, we manually annotated the top-50 returned entries

from four search engines (1,236 returned entries in total).

Comparing Attack Algorithms. As shown in Table 8, we

report the top-1 and top-10 hit rate, and the average false positive

rate. Since we only manually validate the top-50 returned entries,

Failed Query Rate (FQR) is not applicable here. We introduce a

new metric called average reduction rate, which measures the rate

of search result reduction caused by the attack image. Suppose a

search engine returns𝑛𝑜 images for the łoriginal imagež and returns

𝑛𝑎 images for the łattack imagež, the reduction rate is (𝑛𝑜 −𝑛𝑎)/𝑛𝑜 .

We then average the reduction rate across query images.

Overall, Table 8 shows our attack is still effective on most search

engines, but the attack impact is reduced compared to that of the

controlled experiments (Section 5). To better explain the results, we

use TinEye as a walk-through example. First, the łoriginalž column

shows that TinEye’s search results are highly accurate for non-

attack images. Both top-1 and top-10 hit rates are 100% with a 0%

false positive rate. This indicates that all the returned results from

TinEye are correctly matched with the query images.

Second, under the attack images, TinEye’s top-1 and top-10 hit

rates are all dropped. For example, the top-10 hit rate for AoT3 is

60%, meaning that for 40% of the query images, the true matching

images are pushed out of the top-10 entries (i.e., first page). Given

users usually do not click on the search results beyond the first

page [25], we consider the attack is effective. Third, TinEye’s false

positive rates go up to 20%ś40% (from 0%). This means the attack

not only decreases the rankings of the true matching images, but

also introduces more irrelevant images to distract users. Fourth, the

average reduction rates for attack images are within the range of

5%ś65%. This confirms our attack also reduces the overall number

of returned results in TinEye.

Comparing the six attack algorithms, AoT3 achieves better re-

sults (AoT3-pHash and AoT3-Blockhash are comparable). This is

consistent with Section 5.5 (where we show AoT3 has a better

transferability). This conclusion is true for all four search engines.

Comparing Search Engines. The attack works differently on

the four search engines. For Google and TinEye, our attack works

on certain images but not all of them. We have manually examined

the failed cases but did not find common patterns among those

images (see Appendix E). Later in Section 6.3, we will slightly tune

up the attack magnitude to run the experiments again with a larger

set of images. On Bing, our attack is very successful. Bing could

not find any true matching images for the attack images. Both the

top-1 and top-10 hit rates are 0%, and the false positive rates are

100%. Yandex has a unique reaction to our attack where the average

reduction rate is negative (ranging from -600% to -1000%). It turns

out our attack has increased the number of returned entries by 4ś10

times, by introducing major false positives to distract users. For

example, for AoE-pHash, the false positive rate gets to 92%.

Evaluation Metrics TinEye Google Bing Yandex

Avg. Reduction Rate 100% 88% 100% -1364%

Top1 Hit Rate 100%�0% 88%�36% 34%�0% 82%�58%

Top10 Hit Rate 100%�0% 96%�36% 34%�0% 86%�58%

False Positive Rate 0%�100% 11%�66% 66%�100% 21%�90%

Table 9: Real-world experiments with attack images opti-

mized for pHash (𝑑𝑡 = 0.34). We show results in the format

of łoriginal� attackž.

filling out ballots rather than counting them”

(a) Original Image (b) Cropped Image to Spread Misinfo

Google: 160 matched

TinEye: 4 matched

(c) Attack Image

Google: 11 matched

TinEye: 0 matched

“A Pennsylvania elections worker actually

(d) Attack Image

Google: 0 matched

TinEye: 0 matched

Figure 7: Example of a voting fraud image.

6.3 Increasing the Experiment Scale

As the second step of the experiment, we now focus on the best

attack algorithm (AoT3-pHash) and test more images (50 random

images from the Face set). Recall that Table 8 shows that directly

testing the attack images from the controlled experiments is not as

strong as before (possibly due to the search engines’ countermea-

sures). Realizing this, in this experiment, we slightly tune up the

attack thresholds for AoT3-pHash. We increase the target hash dis-

tance 𝑑𝑡 from 0.31 to 0.34 (the quality of images is still acceptable)

and increase the disproportionate scaling factor from 1.10 to 1.24.

We again manually validate the top-50 returned entries for each

query from four search engines (2,578 returned entries in total).

Table 9 shows that after slightly tuning up the attack magnitude,

the attack becomes highly effective. More specifically, on TinEye

and Bing, the attack has successfully eliminated all of the true

positives (true matching images) from the returned results. Their

top-1/top-10 hit rates are reduced to 0% and the false positives

reach 100%. This means all the returned results are irrelevant. On

Yandex, the attack introduces 1364% more returned images and 90%

of them are false positives (i.e., distracting users from spotting the

true matching images).

The attack is also more successful on Google than before. The

top-10 hit rate is 36%, which means the attack is successful on 64%

of the query images, hiding their true matching images away from

the first page (top-10). In the meantime, the false positive rates

are increased from 11% to 66% by the attack images. Finally, the

average reduction rate is 88%, suggesting that 88% of the previously

returned results are now eliminated.

6.4 Case Study

Finally, we demonstrate a case study to show the real-world implica-

tion of the attack. Due to space limit, we focus on one recent event

as an example. On November 6th, 2020 (two days after the 2020

U.S. presidential election), a tweet shared on social media claimed

that the ballot counters in Pennsylvania were seen in the act of

committing voter fraud. Figure 7-(b) (which is a screen capture of a

video) went viral on social media with the tweet. The caption of

the image suggested that ła Pennsylvania elections worker actually

filling out ballots rather than counting themž.

This turned out to be a false claim. According to Inquirer’s re-

port [73], the ballot counter in the image was transcribing ballots

that had been damaged and were unable to be fed into the counting

machines. The ballot counter was following the required proce-

dure to perform this task. More importantly, in the original video

footage, the ballot counter was being observed by poll watchers

from both political parties (Figure 7-(a)). To push the false narra-

tive, the image/video was manipulated by cropping out the poll

observers nearby (i.e., creating a łzoomed-inž version).

Through reverse image search, an Internet user can easily find

the sources of the modified image and the related łfact-checkingž

information. For example, searching the top-right image on Google

and TinEye returned 160 and 4 entries respectively (both results

include the Inquirer report [73]). To emulate a potential adversary

who wanted to make it harder for users to find the original source

of this image, we apply the attack algorithms to generate attack

images (which could have been used to spread misinformation).

Attack image Figure 7-(c) is generated by AoT3-pHash (𝑑𝑡=0.28,

scaling factor=1.2). We find that it is already effective on TinEye (by

hiding all the matched images). In the meantime, this image reduced

Google’s returned entries from 160 to 11. For attack image Figure 7-

(d), we tune up the attack using AoT3-Blockhash (𝑑𝑡=0.22, scaling

factor=1.3), and the attack image successfully reduced the number

of returned entries to 0 for Google too. In this way, it becomes

harder for users to find relevant łfact-checkingž information by

reverse image searching.

7 DISCUSSION OF POTENTIAL DEFENSES

So far, we have demonstrated the effectiveness of our attack in both

controlled experiments and empirical tests. Before discussing coun-

termeasures, we want to first dive deeper to reason why the attack

works. If we revisit the primary loss function in Eq. 1, we can see

the attack is essentially exploiting the misalignment between 𝐷 ()

(human perceptual difference) and the 𝑓 () (an approximated hash

similarity). In other words, the hash value similarity is not perfectly

aligned with human perceptual similarity for images. In our attack,

we use the LPIPS for 𝐷 () to approximate human perception, which

is a recently proposed perceptual metric that outperforms existing

metrics [89]. Unlike computing a perceptual hash (which can be

done directly), LPIPS incurs significantly higher costs (in terms of

time and image datasets) because LPIPS requires a training stage.

Even if we exclude the training cost, LPIPS is still slower to compute

in runtime. We argue that the attacker has the luxury to use an

expensive perceptual metric to optimize the attack noise because

they only focus on certain images of interest. As a comparison,

image search engines are mostly dealing with normal search queries

against billions of indexed images [69]. Search engines need to

balance efficiency (query latency) with searching robustness. From

this perspective, there is a power imbalance between attackers and

defenders.

Dataset Hash Distance Pdist Searching Results

pHash Blockhash aHash dHash wHash #FP Top-5 HR FQR

ImageNet 0.368 0.327 0.366 0.438 0.386 0.109 2.88 0% 100%

Face 0.371 0.317 0.354 0.421 0.375 0.146 3.38 0% 100%

Table 10: Adaptive attacks against an ensemble of hashes (𝑑𝑡=0.31) on ImageNet and Face datasets.

Experiment Setup and Results. We again use the ImageNet

and Face datasets for this experiment. We set the target hash dis-

tance 𝑑𝑡=0.31 for the adaptive attacker.

7.1 Server-side Robust pHash

Regarding countermeasures, one direction is to developmore robust

perceptual hashing algorithms for the server-side image searching.

For example, one possible direction is to improve robustness by

adding redundancy. The server side may consider an ensemble of

a diverse set of hashing algorithms to robustify the reverse image

search. However, attackers can also jointly optimize their attacks

against an ensemble of hashing algorithms (which turns this into a

cat-mouse game).

Another challenge for the server-side solution is to maintain the

high efficiency of searching and the high quality returned results

for normal (non-attack) queries. Considering normal queries are

likely the majority, one idea to make the trade-off is to allow users

to enable/disable a robust search feature on demand. For example,

if a user is trying to investigate a suspicious image in the news,

they can turn on the robust feature, allowing the search engine

to be more permissive on the returned results. In this case, users

can tolerate more false positives in order to locate the original

images. During normal searches, users can turn the robust feature

off to receive highly relevant returned results. This could enable

the server-side to adopt more aggressive/robust countermeasures.

We leave further exploration of this idea to further works.

As a preliminary exploration, we perform a quick experiment

to examine the server-side defense idea. More specifically, we first

construct a searching database using an ensemble of hashing al-

gorithms at the server side. Then we explore the capability of an

adaptive attack.

Server-side Hash Ensemble. Suppose the server-side use mul-

tiple hashing algorithms to robustify the search. For each image, the

server computes multiple hash codes for this image in the backend

database. For this experiment, we assume the server uses pHash,

Blockhash, aHash, dHash, and wHash.

When receiving an incoming search query, the server first inde-

pendently uses each hashing function to produce a list of matched

entries. The distance threshold 𝜏 for each hashing algorithm is set

the same way as in Section 5. Once the server gets the five lists of

returned entries, we perform a simple round-robin arbitration to

merge the five lists into a single ranked list. The idea is to iteratively

take the top-ranked item from each list and add it to the merged

list (as long as the item is not already on the merged list).

Co-optimizing Attack Noises. The adaptive attacker co-

optimizes the attack noises against pHash, Blockhash, aHash, dHash,

and wHash simultaneously. Given an input image 𝒙𝑜 , the attacker

aim to produce an attack image 𝒙𝑎 such that 𝒙𝑎 differs from 𝒙𝑜
under each of the 5 hashing functions for at least 𝑑𝑡 . The new loss

function for the adaptive attacker is the following:

minimize
𝒙𝑎

D(𝒙𝑎, 𝒙𝑜) + 𝑐 ·
∑

𝑓 ∈𝐹

𝑓 (𝒙𝑎, 𝒙𝑜))

subject to 𝒙𝑎 ∈ [0, 1]𝑝 .

(5)

where 𝐹 denotes the set of hashing algorithms considered by the

attacker.

Table 10 shows the experiment results. We find that after co-

optimizing the noises, the produced attack images achieve the de-

sired hashing distances under all five hash functions. Interestingly,

even though 𝑑𝑡 is set to 0.31, the resulting hash distances under

dHash, wHash, aHash and pHash are significantly higher than 0.31.

This is likely due to the need for achieving the desired distance

for Blockhash simultaneously (which is a more robust hashing al-

gorithm). The visual differences introduced by noises are slightly

higher compared with attacking a single hash (see Section 5). Even

so, the Pdist is still at the 0.1 level, and the attack images are of

good quality. Finally, we search the attack images at the server-end

with multiple hashing algorithms. We observe the co-optimized at-

tack images are highly successful, producing 0% top-5 hit rates and

100% FQR. The result indicates that a simple ensemble of multiple

hashing algorithms at the server side is insufficient against adaptive

attacks. Further research is needed to robustify the searching at the

server end.

7.2 User-side Robust Search

Another direction is to develop user-end solutions, considering that

not all the search engines arewilling to (or able to) implement robust

server-side solutions in the short term. In comparison, a client-side

solution can be immediately implemented as a browser extension

to benefit users. Our idea is help users to pre-process images before

searching them. Given an image 𝒙 , we can automatically generate

a small set of transformed images {𝒙 ′} that are visually similar

to the original image. The set of images {𝒙 ′} are generated with

randomized parameters for each given image (and for each user

client) such that adversaries cannot pre-optimize an attack image

that is universally effective against all the users on the Internet. For

each image 𝒙 that a user wants to search, the browser extension

issues multiple search queries for {𝒙 ′} to obtain the parallel (or

fused) search results.

Due to space limit, we put our preliminary experiment with this

idea in Appendix D. As a short summary, we implemented a simple

version of this idea and tested it on the attack images generated

from Section 6.3 (i.e., the strongest attack images). We perform the

searches on Google and show that the defense method can improve

the top-1 and top-10 hit rates while reducing false positives. Our

experiments are still preliminary Ð future works will be focusing

on designing more effective methods to generate the search image

set {𝒙 ′}, and better fusion methods to consolidate multiple lists of

returned results.

8 LIMITATIONS AND FUTURE DIRECTIONS

Our paper has a few limitations. First, our attack method can be

potentially improved further by using more sophisticated optimiza-

tion functions for gradient estimation. We leave such exploration

to future works given the current method is sufficiently effective

to achieve the attack goals. Second, our evaluation scale, especially

for the real-world experiments, is not very high. The scale of the

real-world experiments is limited by the needs for manual inspec-

tion of all the search results. Given the consistency of results across

experimental settings, we believe the evaluation is sufficient to

support our conclusions. Third, we have experimented with three

datasets (of different sizes and image types) to show our attack is

generally applicable. Future works may extend the evaluation to

include more datasets (especially those used in cybercrime studies).

Finally, our experiments on the defense part are limited (as it is

not the main focus of this paper). We plan to systematically study

countermeasure strategies in future works.

9 RELATED WORK

We discuss other related works to our paper. Those that are already

described in Section 2 will not be repeated.

AdversarialMachine Learning. Our attack is related to adver-

sarial machine learning attacks [11, 12, 17, 21, 43, 46ś49, 51, 61, 67],

with some noticeable differences. At the high level, adversarial ex-

amples construct the loss over labels (i.e., classes of samples) [23],

whereas we construct the loss based on the perceptual hash dis-

tances between two specific images. Fundamentally, both attacks

rely on running optimization over the defined losses. In this paper,

we apply this idea to attack perceptual hashing applications and

address application-specific challenges. First, perceptual hashing

function is not differentiable and thus needs approximation; second,

to speed up the black-box optimization, we introduce gray-scale

initialization which exploits the gray-scale transformation step in

perceptual hashing; third, we introduce various enhancements to

attack real-world services.

We briefly discuss a few papers on adversarial machine learning

that are related to our work. A recent study [70] illustrates vari-

ous evasion attacks against perceptual ad-blocker (i.e., a classifier).

The idea is to add noises to visual ads images so that a perceptual

ad-blocker will classify them as łnon-adž. Fawkes [60] applies ad-

versarial machine learning to protect user privacy against facial

recognition systems. The idea is to run poisoning attacks on the

training process of facial recognition models, so that a user’s face

can no longer be correctly identified from the images. Our attack

shares some similarity, in the sense that we can hide a face image

from reverse image search. However, the methodology is fundamen-

tally different, i.e., Fawkes requires poisoning the model training

process. Another related work is the image-scaling attack [53, 82],

which achieves adversarial evasion without directly manipulating

a machine learning model. Instead, this attack manipulates the pre-

processing step where images are re-scaled before they are sent to

the machine learning pipeline. This attack is orthogonal to ours

Ð it is possible we could combine image-scaling attack with our

method to amplifies the attack impact against perceptual hashing.

Robustifying Perceptual Hashing. Researchers have worked

to robustify perceptual hashing algorithms, but with a different

threat model in mind. As we briefly discussed in Section 2, exist-

ing robust methods focus on threats against image authentication.

Their goal is to accurately recognize malicious modifications (e.g.,

adding/removing an object in an image) by producing a different

hash value [35, 42, 66, 68, 76, 81]. In the meantime, the robust

method should produce the same hash value in the presence of

normal image transformations such as scaling and rotation [39].

In our context (reverse image search), the goal is the opposite Ð

a robust method should be more łtoleratingž for modifications so

that the search engine can successfully retrieve the source images

(without introducing excessive false positives).

Recently, researchers also explored using deep neural networks

(DNN) to augment existing hashing algorithms. The idea is to use

DNNs to extract features that can better represent the neighborhood

relationships [33, 75, 78]. Such DNNs can be unsupervised, but

also can be supervised (by pairwise similarity labels) [10, 31, 32].

Unfortunately, DNN based hashing algorithms are extremely costly

to train (at a large scale). In this paper, we focus on perceptual

hashes that are widely used by current online services and security

researchers. We defer the study of attacking DNN-based hashing

algorithms to future work.

10 CONCLUSION

In this paper, we developed novel attack methods against perceptual

hashing algorithms in the context of reverse image search. The

attack challenges the validity of abuse detection and analysis tools

that are built on perceptual hashing. We validated the impact of

our attack using both controlled experiments and empirical tests

on 4 real-world image search engines (TinEye, Google, Bing, and

Yandex). Finally, we discussed (and briefly experimented with) a

defense method that can be implemented on user clients.

ACKNOWLEDGMENT

We thank our shepherd Veelasha Moonsamy and the anonymous

reviewers for their constructive comments and suggestions. This

work was supported in part by NSF grants CNS-2030521 and CNS-

2055233, and Amazon Research Award. Any opinions, findings,

conclusions, or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of any

funding agencies.

REFERENCES
[1] Pushkal Agarwal, Kiran Garimella, Sagar Joglekar, Nishanth Sastry, and Gareth

Tyson. 2020. Characterising User Content on a Multi-lingual Social Network. In
Proc. of ICWSM.

[2] Pieter Agten, Wouter Joosen, Frank Piessens, and Nick Nikiforakis. 2015. Seven
months’ worth of mistakes: A longitudinal study of typosquatting abuse. In Proc.
of NDSS.

[3] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. 2018. Synthe-
sizing Robust Adversarial Examples. In Proc. of ICML.

[4] Antonio Bianchi, Eric Gustafson, Yanick Fratantonio, Christopher Kruegel, and
Giovanni Vigna. 2017. Exploitation and mitigation of authentication schemes
based on device-public information. In Proc. of AsiaCCS.

[5] Microsoft Bing. 2021. Microsoft Bing Images. https://www.bing.com/images/
trending.

[6] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. 2015. Meerkat: De-
tecting website defacements through image-based object recognition. In Proc. of
USENIX Security.

[7] Thomas Brunner, Frederik Diehl, Michael Truong Le, and Alois Knoll. 2019.
Guessing Smart: Biased Sampling for Efficient Black-Box Adversarial Attacks. In
Proc. of ICCV.

[8] Johannes Buchner. 2021. ImageHash. https://github.com/JohannesBuchner/
imagehash.

[9] Elie Bursztein, Einat Clarke, Michelle DeLaune, David M. Elifff, Nick Hsu, Lindsey
Olson, John Shehan, Madhukar Thakur, Kurt Thomas, and Travis Bright. 2019.
Rethinking the Detection of Child Sexual Abuse Imagery on the Internet. In Proc.
of WWW.

[10] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip Yu. 2017. HashNet:
Deep Learning to Hash by Continuation. In Proc. of ICCV.

[11] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of
Neural Networks. In Proc. of IEEE SP.

[12] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
ZOO: Zeroth Order Optimization Based Black-Box Attacks to Deep Neural Net-
works without Training Substitute Models. In Proc. of AISec.

[13] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue Zhao, Shengzhi Zhang, Kai
Chen, and XiaoFeng Wang. 2020. Devil’s Whisper: A General Approach for
Physical Adversarial Attacks against Commercial Black-box Speech Recognition
Devices. In Proc. of USENIX Security.

[14] Jiri Fridrich and Miroslav Goljan. 2000. Robust Hash Functions for Digital
Watermarking. IEEE Int Conf Information Technology: Coding Computing (2000).

[15] Robert Frischholz. 2021. Reverse Image Search Ð Searching People by Photos.
https://facedetection.com/online-reverse-image-search/.

[16] Oana Goga, Giridhari Venkatadri, and Krishna P Gummadi. 2015. The doppel-
gänger bot attack: Exploring identity impersonation in online social networks.
In Proc. of IMC.

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
Harnessing Adversarial Examples. arXiv preprint arXiv:1412.6572 (2014).

[18] Google. 2021. Google Image Search. https://www.google.com/imghp.
[19] Azhar Hadmi, William Puech, Brahim Said, and Abdellah Ouahman. 2013. A ro-

bust and secure perceptual hashing system based on a quantization step analysis.
Signal Processing: Image Communication 28 (2013), 929ś948.

[20] Chao-Yung Hsu, Chun-Shien Lu, and Soo-Chang Pei. 2009. Secure and robust
SIFT. In Proc. of Multimedia.

[21] Weiwei Hu and Ying Tan. 2017. Generating Adversarial Malware Examples for
Black-Box Attacks Based on GAN. arXiv preprint arXiv:1702.05983 (2017).

[22] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. 2018. Black-
box Adversarial Attacks with Limited Queries and Information. arXiv preprint
arXiv:1804.08598 (2018).

[23] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. 2019. Adversarial Examples Are Not Bugs, They
Are Features. In Proc. of NeurIPS.

[24] Infringement-Report. 2021. ImageRaider. https://infringement.report/api/raider-
reverse-image-search/.

[25] Diane Kelly and Leif Azzopardi. 2015. How Many Results per Page? A Study of
SERP Size, Search Behavior and User Experience. In Proc. of SIGIR.

[26] Amin Kharraz, William Robertson, and Engin Kirda. 2018. Surveylance: Auto-
matically detecting online survey scams. In Proc. of IEEE SP.

[27] Seon Joo Kim. 2021. Real and Fake Face Detection: Discriminate Real and Fake
Face Images. https://www.kaggle.com/ciplab/real-and-fake-face-detection.

[28] Panagiotis Kintis, Najmeh Miramirkhani, Charles Lever, Yizheng Chen, Rosa
Romero-Gómez, Nikolaos Pitropakis, Nick Nikiforakis, and Manos Antonakakis.
2017. Hiding in plain sight: A longitudinal study of combosquatting abuse. In
Proc. of CCS.

[29] Evan Klinger and David Starkweather. 2021. pHash: The open source perceptual
hash library. https://www.phash.org/docs/.

[30] Ching-Yung Lin and Shih-Fu Chang. 2001. A robust image authentication system
distinguishing JPEG compression frommalicious manipulation. IEEE Transactions
on Circuits and Systems for Video Technology 11 (2001).

[31] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2016. Deep Super-
vised Hashing for Fast Image Retrieval. In Proc. of CVPR.

[32] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and S. Chang. 2012. Supervised
Hashing with Kernels. In Proc. of CVPR.

[33] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. 2011. Hashing with
Graphs. In Proc. of ICML.

[34] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2017. Delving into
Transferable Adversarial Examples and Black-box Attacks. In Proc. of ICLR.

[35] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
Int. J. Comput. Vision 60, 2 (2004).

[36] Commons Machinery. 2021. Blockhash. http://blockhash.io/.
[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. In Proc. of ICLR.

[38] Philipe Melo, Johnnatan Messias, Gustavo Resende, Kiran Garimella, Jussara
Almeida, and Fabrício Benevenuto. 2019. Whatsapp monitor: A fact-checking
system for whatsapp. In Proc. of ICWSM.

[39] M. Kıvanç Mıhçak and Ramarathnam Venkatesan. 2002. New Iterative Geometric
Methods for Robust Perceptual Image Hashing. In Proc. of ACM Workshop on
Security and Privacy in Digital Rights Management.

[40] Najmeh Miramirkhani, Oleksii Starov, and Nick Nikiforakis. 2016. Dial one for
scam: Analyzing and detecting technical support scams. In Proc. of NDSS.

[41] Alexandros Mittos, Savvas Zannettou, Jeremy Blackburn, and Emiliano De Cristo-
faro. 2020. łAnd We Will Fight for Our Race!ž A Measurement Study of Genetic
Testing Conversations on Reddit and 4chan. In Proc. of ICWSM.

[42] Vishal Monga and Brian L. Evans. 2004. Robust perceptual image hashing using
feature points. In Proc. of ICIP.

[43] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In
Proc. of CVPR.

[44] Nick Nikiforakis, Federico Maggi, Gianluca Stringhini, M Zubair Rafique, Wouter
Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna, and Stefano Zanero.
2014. Stranger danger: exploring the ecosystem of ad-based url shortening
services. In Proc. of WWW.

[45] Adam Novozámský, Babak Mahdian, and Stanislav Saic. 2020. IMD2020: A Large-
Scale Annotated Dataset Tailored for Detecting Manipulated Images. In Proc. of
IEEE Winter Applications of Computer Vision Workshops.

[46] Thomas Kobber Panum, Kaspar Hageman, René Rydhof Hansen, and Jens Myrup
Pedersen. 2020. Towards Adversarial Phishing Detection. In Proc. of CSET.

[47] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. 2016. Transferability
in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial
Samples. arXiv preprint arXiv:1605.07277 (2016).

[48] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. 2017. Practical Black-Box Attacks against Machine
Learning. In Proc. of AsiaCCS.

[49] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In Proc. of IEEE SP.

[50] Sergio Pastrana, Alice Hutchings, Daniel Thomas, and Juan Tapiador. 2019. Mea-
suring EWhoring. In Proc. of IMC.

[51] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proc. of SOSP.

[52] Pixsy. 2021. Pixsy. https://www.pixsy.com/.
[53] Erwin Quiring, David Klein, Daniel Arp, Martin Johns, and Konrad Rieck. 2020.

Adversarial Preprocessing: Understanding and Preventing Image-Scaling Attacks
in Machine Learning. In Proc. of USENIX Security.

[54] M. Zubair Rafique, Tom Van Goethem, Wouter Joosen, Christophe Huygens, and
Nick Nikiforakis. 2017. It’s Free for a Reason: Exploring the Ecosystem of Free
Live Streaming Services. In Proc. of NDSS.

[55] Jathushan Rajasegaran, Naveen Karunanayake, Ashanie Gunathillake, Suranga
Seneviratne, and Guillaume Jourjon. 2019. A multi-modal neural embeddings
approach for detecting mobile counterfeit apps. In Proc. of WWW.

[56] Julio C.S. Reis, Philipe Melo, Kiran Garimella, Jussara M Almeida, Dean Eckles,
and Fabrício Benevenuto. 2020. A Dataset of Fact-Checked Images Shared on
WhatsApp During the Brazilian and Indian Elections. In Proc. of ICWSM.

[57] Gustavo Resende, Philipe Melo, Hugo Sousa, Johnnatan Messias, Marisa Vas-
concelos, Jussara Almeida, and Fabrício Benevenuto. 2019. (Mis) Information
Dissemination in WhatsApp: Gathering, Analyzing and Countermeasures. In
Proc. of WWW.

[58] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
In Proc. of IJCV.

[59] Marc Schneider and Shih-Fu Chang. 1996. A robust content based digital signature
for image authentication. In Proc. of ICIP.

[60] Shawn Shan, Emily Wenger, Jiayun Zhang, Huiying Li, Haitao Zheng, and Ben
Zhao. 2020. Fawkes: Protecting Personal Privacy against Unauthorized Deep
Learning Models. In Proc. of USENIX Security.

[61] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. 2016. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proc. of CCS.

[62] Shangcheng Shi, Xianbo Wang, and Wing Cheong Lau. 2019. MoSSOT: An Auto-
mated Blackbox Tester for Single Sign-On Vulnerabilities in Mobile Applications.
In Proc. of AsiaCCS.

[63] Rachee Singh, Rishab Nithyanand, Sadia Afroz, Paul Pearce, Michael Carl
Tschantz, Phillipa Gill, and Vern Paxson. 2017. Characterizing the nature and
dynamics of Tor exit blocking. In Proc. of USENIX Security.

[64] Kate Starbird, Ahmer Arif, and Tom Wilson. 2019. Disinformation as Collabora-
tiveWork: Surfacing the Participatory Nature of Strategic Information Operations.
CSCW 3 (2019).

[65] Fnu Suya, Jianfeng Chi, David Evans, and Yuan Tian. 2020. Hybrid Batch Attacks:
Finding Black-box Adversarial Examples with Limited Queries. In Proc. of USENIX

Security.
[66] Ashiwin Swaminathan, Yinian Mao, and Min Wu. 2006. Robust and secure image

hashing. IEEE Transactions on Information Forensics and Security 1, 2 (2006),
215ś230.

[67] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[68] Zhenjun Tang, Xianquan Zhang, and Shichao Zhang. 2014. Robust Perceptual
Image Hashing Based on Ring Partition and NMF. ITKDE 26, 3 (2014), 711ś724.

[69] TinEye. 2021. TinEye. https://tineye.com/.
[70] Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan Boneh.

2019. AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning.
In Proc. of CCS.

[71] Phani Vadrevu and Roberto Perdisci. 2019. What You See is NOT What You Get:
Discovering and Tracking Social Engineering Attack Campaigns. In Proc. of IMC.

[72] Tom Van Goethem, Najmeh Miramirkhani, Wouter Joosen, and Nick Nikiforakis.
2019. Purchased Fame: Exploring the Ecosystem of Private Blog Networks. In
Proc. of AsiaCCS.

[73] Vinny Vella. 2020. Video of Delaware County poll workers filling out ballots was
manipulated and lacked context, officials say. Inquirer. (6 November 2020).

[74] Ramarathnam Venkatesan, S.-M Koon, Mariusz Jakubowski, and Pierre Moulin.
2000. Robust image hashing. In Proc. of ICIP.

[75] J. Wang, S. Kumar, and S. Chang. 2012. Semi-Supervised Hashing for Large-Scale
Search. IEEE Transactions on Pattern Analysis and Machine Intelligence (2012).

[76] Xiaofeng Wang, Kemu Pang, Xiaorui Zhou, Yang Zhou, Lu Li, and Jianru Xue.
2015. A Visual Model-Based Perceptual Image Hash for Content Authentication.
IEEE Transactions on Information Forensics and Security 10, 7 (2015), 1336ś1349.

[77] Yuping Wang, Fatemeh Tahmasbi, Jeremy Blackburn, Barry Bradlyn, Emiliano
De Cristofaro, DavidMagerman, Savvas Zannettou, and Gianluca Stringhini. 2021.
Understanding the Use of Fauxtography on Social Media. In Proc. of ICWSM.

[78] Yair Weiss, Antonio Torralba, and Rob Fergus. 2009. Spectral Hashing. In Proc. of
NeurIPS.

[79] Li Weng and Bart Preneel. 2007. Attacking Some Perceptual Image Hash Algo-
rithms. In Proc. of ICME.

[80] Li Weng and Bart Preneel. 2011. A Secure Perceptual Hash Algorithm for Image
Content Authentication. In Proc. of CMS.

[81] Zhong Wu, Qifa Ke, Michael Isard, and Jian Sun. 2009. Bundling Features for
Large Scale Partial-Duplicate Web Image Search. In Proc. of CVPR.

[82] Qixue Xiao, Yufei Chen, Chao Shen, Yu Chen, and Kang Li. 2019. Seeing is Not
Believing: Camouflage Attacks on Image Scaling Algorithms. In Proc. of USENIX
Security.

[83] Yandex. 2021. Yandex Image Search. https://yandex.com/images/.
[84] Bian Yang, Fan Gu, and Xiamu Niu. 2006. Block Mean Value Based Image

Perceptual Hashing. In Proc. of IIHMSP.
[85] Kan Yuan, Di Tang, Xiaojing Liao, XiaoFengWang, Xuan Feng, Yi Chen, Menghan

Sun, Haoran Lu, and Kehuan Zhang. 2019. Stealthy porn: Understanding real-
world adversarial images for illicit online promotion. In Proc. of IEEE SP.

[86] Savvas Zannettou, Tristan Caulfield, Jeremy Blackburn, Emiliano De Cristofaro,
Michael Sirivianos, Gianluca Stringhini, and Guillermo Suarez-Tangil. 2018. On
the Origins of Memes by Means of Fringe Web Communities. In Proc. of IMC.

[87] Savvas Zannettou, Tristan Caulfield, Barry Bradlyn, Emiliano De Cristofaro,
Gianluca Stringhini, and Jeremy Blackburn. 2020. Characterizing the Use of
Images in State-Sponsored Information Warfare Operations by Russian Trolls on
Twitter. In Proc. of ICWSM.

[88] Christoph Zauner. 2010. Implementation and Benchmarking of Perceptual Image
Hash Functions. Master’s thesis, Upper Austria University of Applied Sciences,
Hagenberg Campus. (2010).

[89] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.
In Proc. of CVPR.

A PERCEPTUAL HASHING

In this section, we provide more details for the perceptual hashing

algorithms used in our paper.

pHash. pHash first down-scales the image to 32 × 32 = 1024

pixels, and converts it into the grayscale. Then it applies Discrete

Cosine Transform (DCT) to the image and computes a DCT hash

using the low DCT coefficients (i.e., the top 8×8=64 low frequency

part). It then calculates the median of the DCT coefficients. The bi-

nary hash string is generated depending on if each DCT frequency

is below or above the median. The final hash string is constructed

by converting the binary hash string into a hex string. pHash al-

ready considers robustness in its design as it describes the relative

frequency with respect to the median. It is designed to tolerate

image modifications as long as the main structure of the image

stays the same.

Blockhash. Blockhash slices the RGB image into blocks (i.e.,

the default number is 16×16=256 blocks). If the image is dividable

by the required number of blocks, it will trigger a quick version

for hash computation. Otherwise, a slow version (with additional

processing) will be triggered. We pre-process our images such that

the images are dividable by the number of blocks. After the image is

divided into 256 blocks, the algorithm then assigns a value to each

block (which is the sum of all the pixels’ RGB values in this block).

After that, the algorithm divides these 256 blocks into 4 groups

(64 blocks per group). For each group, it computes the median of

the block values. To compute the binary string (256-bit), each bit is

calculated based on one block. The bit value is based on whether

this block’s value is above or below the median of the block’s

corresponding group. Finally, the binary string is converted to a

hex string. Unlike pHash which calculates the hash string based on

the frequency domain information, Blockhash relies on the color

domain information of different blocks.

aHash. aHash is short for Average Hash. It reduces the image

into a fixed smaller size (i.e., 8×8=64 pixels) and then converts the

image into grayscale. Then it calculates the mean value of the 64

pixel/color values. The binary hash string is calculated based on

whether each pixel value is above or below the mean. Finally, aHash

converts the binary string into a hex string. aHash is fast but it

easily generates false positives as it tolerates more differences.

dHash. dHash is short for Difference Hash. dHash computes

the hash string based on the differences between adjacent columns.

dHash down-scales the image into a smaller dimension (i.e., 9×8=72

pixels) and converts it into grayscale. Then dHash calculates the

binary string based on adjacent pixels. The 9 pixels in each row will

generate 8 values for the differences between the adjacent pixels (64

bits in total combining the 8 rows). dHash is comparable to aHash

in terms of efficiency, but dHash is more precise in image matching.

wHash. wHash stands for Wavelet Hash. wHash first re-scales

the image to a smaller size (i.e., 8×8=64 pixels) and converts it

into grayscale. Then wHash uses Discrete Wavelet Transformation

(haar transformation to be more precise) to extract features from

the frequency domain to compute the hash string. Note that wHash

excludes the lowest frequency part. The lowest frequency consists

of only one data point that represents the contrast of the image

(which is not useful).

B HASH DISTANCE OF IMAGES

Below, we provide some reference points for hashing distance.

Given an image dataset, we examine the normalized Hamming

distance between the hash codes of a random pair of images. The

results are shown in Figure 8. For ImageNet, we randomly sample

100 classes and then randomly sample 100 images from each class.

We examine the distance of all image pairs. We break down the

results for image pairs from the same classes and those from two

different classes. We find that the inter-class distance and intra-class

images and manually inspected their search results. We did not

find clear patterns among these failed cases in comparison with

the successful ones. For example, the number of indexed copies

of the query image is not a clear predictor of success. In other

words, the attack is not necessarily more successful on query images

that are heavily/rarely indexed by the target search engine. In

addition, we do not think the attack image’s quality is a strong

predictor of success, i.e., attack images with more visible noises are

not necessarily more successful. Based on manual inspections, we

cannot conclusively determine the root causes (given we do not

have any knowledge of Google’s internal searching algorithms and

potential robustification methods).

	Abstract
	1 Introduction
	2 Background: Perceptual Hashing
	2.1 Perceptual Hashing and Applications
	2.2 Our Goals

	3 Threat Model
	4 Methodology
	4.1 Basic Attack
	4.2 Advanced Attack

	5 Evaluation
	5.1 Experiment Setups
	5.2 Establishing Distance Threshold
	5.3 Attacking Standard pHash
	5.4 Attacking Blockhash
	5.5 Transferability Evaluation
	5.6 Evaluation with IMD Dataset

	6 Real-world Experiments
	6.1 Methodology Overview
	6.2 Small Experiments on Search Engines
	6.3 Increasing the Experiment Scale
	6.4 Case Study

	7 Discussion of Potential Defenses
	7.1 Server-side Robust pHash
	7.2 User-side Robust Search

	8 Limitations and Future Directions
	9 Related Work
	10 Conclusion
	References
	A Perceptual Hashing
	B Hash Distance of Images
	C Examples for IMD Dataset
	D Client-Side Defense Experiment
	E Failed Case Analysis

