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ABSTRACT

Perceptual hashing is widely used to search or match similar im-
ages for digital forensics and cybercrime study. Unfortunately, the
robustness of perceptual hashing algorithms is not well under-
stood in these contexts. In this paper, we examine the robustness
of perceptual hashing and its dependent security applications both
experimentally and empirically. We first develop a series of attack
algorithms to subvert perceptual hashing based image search. This
is done by generating attack images that effectively enlarge the hash
distance to the original image while introducing minimal visual
changes. To make the attack practical, we design the attack algo-
rithms under a black-box setting, augmented with novel designs
(e.g., grayscale initialization) to improve the attack efficiency and
transferability. We then evaluate our attack against the standard
pHash as well as its robust variant using three different datasets.
After confirming the attack effectiveness experimentally, we then
empirically test against real-world reverse image search engines
including TinEye, Google, Microsoft Bing, and Yandex. We find that
our attack is highly successful on TinEye and Bing, and is moder-
ately successful on Google and Yandex. Based on our findings, we
discuss possible countermeasures and recommendations.
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Figure 1: Example attack against perceptual hashing based image

search. The results are obtained from Google’s reverse image search.

1 INTRODUCTION

Perceptual hashing [29] is widely used by researchers and indus-
try practitioners to match similar images for digital forensics and
cybercrime studies [16, 26, 28, 44, 50, 55-57, 71, 72, 85, 87]. At the
high level, perceptual hashing algorithms generate a fingerprint
for each image so that similar-looking images will be mapped to
the same or similar hash code. Unlike conventional cryptographic
hashing algorithms (e.g., MD5, SHA) that generate distinct hash
values for slightly changed inputs, perceptual hashing is designed
to tolerate small perturbations so that slightly changed content still
produces similar hash values.

Researchers have applied perceptual hashing in various applica-
tions for online abuse detection and analysis. For example, it has
been used to detect malicious websites based on webpage screen-
shots [71], and detect counterfeit apps using app graphical Uls [55].
More recently, researchers used perceptual hashing to analyze ma-
nipulated images in misinformation campaigns [87], flag child abuse
content shared online [9], and detect identity impersonation in on-
line social networks [16]. Perceptual hashing is also heavily used
in real-world reverse image search engines such as Google [18],
Yandex [83], Microsoft Bing [5], and TinEye [69].

Despite the wide adoption of perceptual hashing, the robust-
ness of the algorithms is not well understood in the context of
online abuse detection and analysis. In practice, adversaries may
exploit the weaknesses of perceptual hashing algorithms to influ-
ence dependent applications. Figure 1 illustrates an example: x,



presents the original photo of activist Linda Sarsour (left) and Stacey
Abrams (right) who was the Georgia governor candidate at that
time. A few months later, an edited version of the photo x,, was
posted on Facebook where the word “Communist” and the hash-
tag “MuslimBrotherhood” were added to the campaign sign. This
manipulated image x,, went viral across the Internet shortly after
posting. While the image has been cropped, resized, and altered
semantically, searching x,, via Google’s reverse image search still
allows users to find the original image x, to spot the manipulation.
However, motivated adversaries can make it significantly harder
for users to reverse search the edited image to find the original
photo. For example, attackers can generate an attack image x,,
such that x, has a large perceptual hash distance to x, without
major visual changes. As shown in Figure 1, the original photo is
no longer included in the top-ranked search results of x,.

This Paper.  In this paper, we propose to examine the robust-
ness of perceptual hashing and its dependent security applications,
both experimentally and empirically. We propose a series of attack
algorithms that generate attack images such that (1) the original im-
age and the attack image are still visually similar, but (2) the attack
image has a very different perceptual hash code from that of the
original image. In practice, this attack can be used to target reverse
image search engines and analytic tools used in cybercrime studies
and online abuse analysis (like the example shown in Figure 1). To
make the attack practical, we assume the attacker only has black-
box access to the perceptual hashing algorithm used in the target
application (i.e., without knowledge of its implementation details
or parameters).

We design our attack algorithm based on a high-level obser-
vation. Fundamentally, a perceptual hashing function is a com-
pression function to map high-dimensional data (an image) to a
low-dimensional representation (hash code) to approximate human
perception. However, mainstream perceptual hashing algorithms
often prioritize efficiency and cannot perfectly mimic human per-
ception. This is understandable considering real-world applications
(e.g., a search engine) need to efficiently run image matching over
billions of indexed images. To these ends, it is possible for attackers
to use more sophisticated (computationally expensive) perceptual
metrics to guide the optimization of adversarial noises to enlarge
the hash distance without introducing significant visual changes.
We design a series of attack algorithms based on this high-level idea.
We also augment the attacks with additional novel designs such as
grayscale initialization and image transformations to improve the
attack efficiency and transferability.

Evaluation and Real-world Tests. =~ We evaluate our attacks
using both controlled experiments and empirical tests (on real-
world image search engines). For controlled experiments, we fo-
cus on a standard perceptual hashing algorithm (pHash) which is
widely used by security researchers. We also use a robust variant of
pHash (called Blockhash) for comparison. Our experiments involve
three image datasets, including ImageNet [58], a dataset of human
faces [27], and a dataset of manipulated images (for misinforma-
tion dissemination) [45]. Our experiments have demonstrated the
benefits of our design choices and confirmed the effectiveness of
the attack against different perceptual hashing algorithms.

We then evaluate the attack against real-world reverse image
search engines, including TinEye, Google, Microsoft Bing, and Yan-
dex. We conduct a two-step experiment to (1) first compare different
attack algorithms, and (2) then select the best-performing attack
algorithm to test a variety of images. By manually validating the
search results, we show that our attack is highly successful on Tin-
Eye and Microsoft Bing (with a 100% success rate) by completely
eliminating relevant images and their websites from the first page
of the search results. Yandex has a different reaction as the attack
introduces significantly more false positives (to 90%). The attack
is also moderately effective on Google: it succeeds on 64% of the
target images while pushing the false positive rate to 66%.

Contributions. = We have three key contributions:

e First, we formulate and design new attacks against perceptual
hashing based applications in a black-box manner.

e Second, we evaluate our attack against the standard percep-
tual hashing algorithm used by security researchers as well
as its robust variant on three different datasets.

o Third, we empirically test our attack using real-world image
search engines (including TinEye, Google, Bing, and Yandex)
to confirm its effectiveness.

We hope our work can lead to more research efforts to robustify
perceptual hashing algorithms used by security researchers and real-
world services. At the end of the paper, we have discussed possible
countermeasures at both the server side and the user client side.
To facilitate future works, we release our code and the annotated
dataset to the research community?.

2 BACKGROUND: PERCEPTUAL HASHING

We begin by introducing the background of perceptual hashing,
followed by a literature survey on its security applications.

2.1 Perceptual Hashing and Applications

Perceptual Hashing Function.  Perceptual hashing algorithms
generate a fingerprint for multimedia data (e.g., images) so that
similar-looking content will be mapped to the same or similar hash
values. More formally, we use H to denote a perceptual hashing
function. Given an input image x, the function produces a binary
string as the hash code: h = H(x), h € {0/1}!. Here, {0/1}l rep-
resents a binary string of length I. We denote a slightly modified
version of x as % (the two images are visually similar), and denote
y as a visually different image from x. H is expected to meet the
following requirements [88]: (1) unpredictability of hash values:
P(H(x) =h) = %,Vh e {o/1}5 (2 independence of input images:
P(H(x) = h|H(y) = hz) ~ P(H(x) = hy),Yhi,hy € {0/1}}; (3)
producing the similar hash values for perceptually similar images:
P(H(x) = H(x)) = 1; and (4) producing distinct values for different
images: P(H(x) = H(y)) = 0.

Given an input image, it typically takes three steps to compute a
perceptual hash code: transformation, feature extraction, and quan-
tization. Here, we briefly describe the high-level idea of these steps,
and provide more details for popular perceptual hashing functions
in Appendix A. First, the transformation step is to apply various

!https://gangw.cs.illinois.edu/hash.html



transformations (e.g., smoothing, color transformations, frequency
transformations) to the image. The goal is to augment the image
data for feature extraction. Second, the feature extraction step takes
the transformed images (of size M X N) to extract a feature vec-
tor of length L (L < M X N), and/or select the most pertinent K
features (K < L). Each feature in the vector is represented by p
elements of type float. The feature extraction step selects global
features that are resilient against normal image transformations
(e.g., adding background noises). Third, the quantization step quan-
tizes the continuous intermediate hash values to discrete values to
further improve the algorithm’s robustness.

Perceptual Hashing Usage in Academic Research.  Percep-
tual hashing (e.g., pHash [29]) is frequently used by researchers to
detect similar media content. We have surveyed security papers in
the past 5 years to summarize key usage cases.

The most common application is to use perceptual hashing to
analyze website screenshots and pair visually similar websites. This
approach has been used to detect malicious (phishing) websites un-
der domain squatting [2, 28], online survey scams [26, 71], website
defacements [6], technical support scams [40], and black-hat search
engine optimization (SEO) [72]. Another popular use case is to ana-
lyze displayed ads to detect fraudulent services [44, 54] or to build
perceptual ad-blockers [70]. In addition, it is also used to analyze
the graphical user interface (UI) of mobile apps to detect counter-
feit apps [55] and detect app vulnerabilities [4, 62]. More recently,
perceptual hashing is applied to analyze the images and memes dis-
tributed in misinformation campaigns [1, 38, 41, 56, 57, 64, 77, 86, 87]
and detect pornography content [50, 85]. Finally, perceptual hash-
ing has been used to match duplicated profile photos to flag identity
impersonation in online social networks [16].

When using a perceptual hashing algorithm, researchers do not
simply rely on hash collision to detect similar images (which can
easily produce false negatives). Instead, a certain threshold is set on
the normalized Hamming Distance [19] between two hash strings
for accurate image matching. Normalized Hamming Distance mea-
sures the number of different bits between the two hash strings
divided by the length of the hash string. The threshold for normal-
ized Hamming distance varies for different applications but mostly
falls between 0.1 and 0.4 [26, 54, 63, 77, 85, 86].

Perceptual Hashing based Online Services.  Perceptual hash-
ing is also widely used to build reverse image search engines, such as
those from Google [18], Yandex [83], and Bing [5], and TinEye [69].
These reverse image search engines have been used to support appli-
cations such as catfishing detection (for online dating services) [15]
and photo infringement detection [24, 52].

Relevant Existing Attacks.  Researchers have explored poten-
tial attacks against perceptual hashing in the past. However, these
attacks are not designed to manipulate reverse image search. Instead,
they are mostly targeting image authentication applications. More
specifically, the goal is to introduce image distortions to alter the
semantic meaning of the images without changing the image’s hash
value. In this way, the perceptual hashing algorithm would not be
able to detect the distortion, and falsely treat the modified image
as the same as the original. For example, authors in [80] applied
distortions (e.g., by changing the plate number of a car or inserting

a small flag into the image) without changing the image’s hash
value. In [79], the authors tested both malicious modifications (e.g.,
adding/removing objects to/from the image) and benign modifi-
cations (e.g., rotation, cropping, JPEG compression, and additive
Gaussian noises) to show that perceptual hashing algorithms can-
not detect “malicious” changes effectively. Most existing attacks
are manually crafted based on heuristics and cannot be applied
automatically to arbitrary images.

2.2 Our Goals

In this paper, we explore attacks that aim to manipulate reverse
image search based applications. Our attack goal is the opposite of
existing attacks [79, 80] described above. More specifically, existing
attacks [79, 80] aim to introduce visible distortions to that image
that do not change the image hash value (to bypass image authen-
tication systems). Our goal is the opposite: we want to introduce
small/imperceptible distortions that significantly change the hash
value of the image. With a highly different hash value, it would
become difficult for the search engine to link the modified image
to the original source. In addition, we aim to generate the attack
images automatically without manual efforts.

Our goal is related to that of adversarial attacks against machine
learning classifiers [11, 17, 37, 47, 48, 65] but has some differences.
For example, adversarial examples aim to fool a classifier to assign
a (targeted) wrong label, whereas our goal is to manipulate the
similarity metric defined by a perceptual hashing function between
a pair of specific images. Further discussion of our relationship with
adversarial examples is in Section 9.

3 THREAT MODEL

Given an input image, the attacker’s goal is to generate an attack
image such that (1) the original image and the attack image are still
visually similar, and (2) the attack image has a different perceptual
hash code from that of the original image.

In practice, the attack targets reverse image search engines and
security applications that depend on image matching. For example,
for search engines, searching the attack image will no longer return
the real sources (or the real sources are no longer ranked at the top
of the returned results). For security applications (e.g., malicious
website detection, misinformation campaign detection), the attack
image can no longer be linked to (or grouped with) other relevant
images, which subverts the effectiveness of these applications.

By default, we assume the attacker only has a black-box access
to the perceptual hashing algorithm used in the target application.
This means the attacker has no knowledge about the implementa-
tion details of the perceptual hashing algorithm or its configurations.
We assume the attacker can query the target hashing algorithm to
obtain the hash code for an image.

Later in this paper, we also explore the scenario where the at-
tacker does not even have the query ability (e.g., when attacking a
real-world search engine). In this case, the attacker will generate
the attack image based on a local perceptual hashing algorithm to
attack the target application.



4 METHODOLOGY

In this section, we describe our attack methodology. We begin
with a basic attack against perceptual hashing algorithms. Then,
with real-world applications in mind, we develop advanced attack
methods to enhance the basic attack algorithm.

4.1 Basic Attack

Given an input image x, and a perceptual hashing algorithm H(),
we want to create an attack image x, to meet two requirements: (1)
attack effect: the hash code of the attack image h,; = H(x,) should
have a large Hamming Distance to the hash code of the original
image h, = H(x,); and (2) stealth and semantic consistency: the
attack image x, should be visually similar to the original image x,.

Note that the problem formulation here is slightly different from
the example described in Figure 1 as this formulation does not
explicitly define x, (the manually altered image). Among different
perceptual hashing applications, some applications have an x,
(e.g., disinformation), but many do not have an xy, in their threat
models such as counterfeit app detection [55] and social network
impersonation detection [16]. As such, we choose this clean and
yet generic formulation by only focusing on two images (denoted
as x, and x,). This formulation directly works for applications that
do not have an xy,. For applications with an x,;, we can simply
use X, as the reference image (instead of x,) such that the attack
image x, will be semantically/visually similar to x,. Since x, and
Xm have a small hash distance in the first place, optimizing the hash
distance to x;, is reasonable. Later in Section 5.6 and Section 6.4,
we will provide concrete evaluation and examples.

Based on the above problem formulation, we have the following
loss function:

minimize D(xg,x0) + ¢ f(xq,x0)
e 1)
subjectto x4 € [0,1]7.
D(xg, x0) denotes the function to measure the visual difference
between the original image and the attack image. f (x4, x,) denotes
the similarity between x, and x, in the hash space. The key chal-
lenge is to construct a differentiable function f() that allows us
to run optimization. c is a scaling factor to balance the weights of
the two loss terms, which is a tunable hyperparameter. p is the
dimension of the input feature vectors.

Design of Hash Similarity Loss f().  Recall that f() needs to
be differentiable and reflects the similarity of the hash strings of
two images. We construct a hinge-loss function that transfers the
Hamming Distance of two hash strings into probabilities:

f(xa,x0) = max{tanh(1 - |H(x4) - H(x0)|/d;), 0}, )

where |H(x,) — H(x,)| denotes the normalized Hamming Distance
of the two hash strings. d; is a parameter that denotes the target
normalized Hamming distance that the attack image aims to achieve.
For example, given a 64-bit hash string, if the attacker aims to
cause a 20-bit difference on the hash string for the attack image,
d; should be set to 20/64 = 0.3125. Here, we choose tanh() for
f because it makes the loss function get steeper when the hash
distance approaches the target d;, which encourages the attack
image to reach and even go beyond the target distance.

Choice of Visual Distance D().  Recall that D() is used to mea-
sure the visual similarity of two images. In traditional adversarial
attacks against classifiers, researchers have used Ly distance [11].
Here, we only consider Ly as a backup option while prioritizing
more sophisticated perceptual similarity metrics. This is because
L, distance has key limitations in describing visual differences. For
example, a slightly rotated image may look the same, but the minor
rotation could lead to a large Ly change. For our attack, we primar-
ily choose a Learned Perceptual Image Patch Similarity (LPIPS) to
construct D(), which is shown to better mimic human perception
compared to traditional metrics such as Structural Similarity In-
dex Measure (SSIM) and Ly [89]. Later in Section 5.2, we will use
experiments to further justify our design choices.

Grayscale Initialization. Given an input image x,, a naive
approach is to directly optimize the loss function on the colored
image for all three RGB channels. However, our empirical exper-
iments show that this naive approach is highly inefficient. To ad-
dress the efficiency problem, we propose an enhancement method,
called grayscale initialization. First, we convert the image x, to its
grayscale version x;,. Second, we run the attack on the grayscale
image to generate the attack noise. The grayscale images can sig-
nificantly reduce the search space, and thus improve efficiency.
Third, we use the noise learned on the grayscale image x/, as the
initialization values for the RGB channel noises, and run the above
optimization again on the three RGB channels for x,. In this way,
we can significantly improve the efficiency of the attack (experi-
mental validation is shown in Section 5.2).

Implementation Details. =~ We implement the black-box attack
described above using the Zeroth Order Optimization method de-
scribed in [12]. As a derivative-free optimization method, it only
needs the zeroth order oracle (i.e., the objective function in Eq. 1). By
comparing the objective function values at two very close points
L(x + 6v) and L(x — dv) (with a small §), we can estimate the
gradient along the direction v. Under a black-box setting, back-
propagation is not possible. As a result, it could take a long time
to calculate the full gradient for a single image. To speed up the
optimization, we apply attack-space dimension reduction [12]. The
idea is to optimize the adversarial noise at a lower dimension (e.g.,
32%32), and then use an interpolation method to upscale the noise
to the original image size. We use ADAM’s coordinate gradient
descend to update a small batch of coordinates for each iteration.
We set the learning rate to 0.01 to balance the convergence time
and image quality.

4.2 Advanced Attack

While most researchers have been using the standard perceptual
hashing algorithm (called pHash) in their work [2, 16, 26, 28, 44,
50, 54-57, 71, 72, 85, 87], online services such as TinEye may have
adopted additional methods to enhance perceptual hashing to bet-
ter tolerate image modifications such as cropping and resizing.
For example, search engines can divide an image into smaller
blocks before extracting features [59]. They can also use robust fea-
ture extraction methods such as Scale-invariant Feature Transform
(SIFT) [20, 35, 81] and those based on wavelet transform (DWT)
and discrete cosine transform (DCT) [14, 30, 74].



To enhance our basic attack, we introduce two additional meth-
ods. Our designs are not to target a specific perceptual hashing
implementation (as we assume the target application is a black box).
Instead, these designs intend to improve the transferability of the
attack images across perceptual hashing algorithms.

Attack over Input Ensemble (AoE).  The first method is to
optimize the attack image x, such that its hash value not only differs
from that of the original image x,, but also differs from those of
slightly transformed images from x,. By simultaneously attacking
a series of similar-looking images (i.e., an ensemble), we want to
improve the robustness of the attack image. The idea is inspired by
a method called Expectation over Transformation (EoT) [3], which
was used to improve the robustness of adversarial examples against
classifiers. Here, we adapt the method to attack perceptual hashing
with a new loss function. The loss function is modified from our
Eq. 1 as following:

minimize  D(xa Xo) + ¢+ (f(xa %) + ), f(xa: 1(x0)))
“ teT

subjectto  x, € [0,1]7.

T represents a set of transformations that can be applied to x,. T
can include any standard image transformations such as rotation,
scaling, cropping, and brightness and contrast variations, as long
as the visual changes are small. We will introduce the details for
our choices of T later in Section 5. Compared with the existing EoT
method [3], a key difference is that we apply the transformation
t to the original image x, instead of the attack image x,. This is
for attacking search engines that have stored multiple copies (and
hash values) for each of their internally indexed images.

Attack over Input Transformation (AoT).  The second method
also uses image transformations, but in a different way. Given an
original image x,, we pick one transformation function t € T
(where T is a set of transformations that introduce imperceptible
changes to the image). Then we treat ¢(x,) as the target to perform
the basic attack. The attack image x, is optimized to be further
away from t(x,) in the hash value space. The new loss function is
the following:

min)icmize D(xg, t(x0)) + ¢ - f(xq, t(x0))

xq € [0,1]P. @

subject to
Compared with the above AoE method, a key difference is that this
AoT method uses ¢(x,) as the comparison target for both D() and
f(). The intuition is that the image transformation ¢ first moves
the attack image slightly away from the original image, and then
optimizes the attack noise to further enlarge the hash distance. For
AO0T, it is possible that the choice of ¢ will affect the attack results
(which will be studied in Section 5).

5 EVALUATION

In this section, we evaluate the proposed attacks with controlled
experiments. We will further evaluate the attacks against real-world
image search engines later in Section 6.

5.1 Experiment Setups

We select two popular perceptual hashing algorithms that are
widely used by researchers and industry practitioners.

o Standard pHash. pHash is a widely used perceptual hash-
ing algorithm. We choose an open-source implementation [8]
that is used by many prior works [2, 16, 26, 28, 44, 50, 54, 55,
57, 72, 85, 87].

e Blockhash. Blockhash (block mean value based hash) [84]
is a robust perceptual hashing algorithm. It first slices an
image into smaller blocks where the number of blocks is
equal to the length of the hash string. Each hash bit is com-
puted based on one block. The bit value is determined by
comparing the given block with the median of this block’s
neighboring blocks. We choose an open-source implementa-
tion of Blockhash [36] for our experiments.

We set pHash and Blockhash with their recommended param-
eters. The pHash hash string has 64 bits, and the Blockhash hash
string has 256 bits. To measure the differences between hash strings,
we use normalized Hamming distance, which is the number of dif-
ferent bits between two hashes divided by the length of the hash.
Normalized Hamming distance has a range of [0, 1].

Datasets. For our evaluation, we use three different image
datasets, which will be used for different purposes.

e ImageNet. We will use ImageNet [58] as the primary dataset
for its scale and diversity. The training dataset contains
1,280,000 images from 1,000 categories. These images are
mostly collected from the Internet and can be used to emulate
a reverse image search engine.

o Face Images. We use the images of human faces from the
“Real and Fake Face Detection Challenge” [27]. We only con-
sider the real face images (1,081 in total). This dataset allows
us to study related applications such as catfishing and social
network impersonation detection [16].

e Image Manipulation Dataset (IMD). This dataset con-
tains images collected by researchers to study image ma-
nipulations and misinformation campaigns [45]. The dataset
contains “real-life” manipulated images created by real peo-
ple on the Internet (also called fauxtography [77]). There are
414 original images and 2,010 manipulated images.

Experiment Methodology & Evaluation Metrics.  Our ex-
periment emulates an image searching process. Given a perceptual
hashing algorithm H, we generate the hash code for each image
and store them in a backend database. Then we randomly pick a set
of query images {x} to perform a reverse image search. For a query
image x, we first compute its hash string h = H(x). The search
function will return relevant images whose normalized Hamming
distance to h is below a threshold 7.

The returned images are sorted based on their distance to h. If
x has a copy stored in the backend database, ideally, the search
engine should return x’s copy and rank it at the top. Otherwise,
no result should be returned. Any irrelevant returned images (i.e.,
images that are not the copy of x) will be treated as false positives.

We consider the following evaluation metrics: (1) Average false
positives (FP): the average number of irrelevant images in the re-
turned results; (2) Top-K Hit Rate (Top-K HR): the ratio of queries



Distance Target hash distance d;=0.15 Target hash distance d;=0.31

Function Hash Dist. L, Pdist  # [terations (Gray+RGB) | Hash Dist. L, Pdist  # Iterations (Gray+RGB)
L2as D() 0.156 25.306 0.033 90.42+13.18 0.292 50.449 0.116 278.54+149.86
LPIPS as D() 0.156 6.788 0.005 22.98+1.52 0.310 20.828 0.034 87.56+1.40

Table 1: Comparison of different perceptual distance functions D() in the basic attack (ImageNet).
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Figure 2: False positives of image queries with respect to the
distance threshold. The dotted line represents the median
and the colored shade represents the 5- and 95-percentiles.

where the true matching images are ranked within the top-K among
the returned images; and (3) Failed Query Rate (FQR): the ratio of
queries where the true matching image is not included in the re-
turned results.

5.2 Establishing Distance Threshold

Before running the attack, we first empirically examine the proper
distance threshold for image matching. First, the image searching
function relies on a distance threshold 7 to retrieve relevant images.
Then, to launch our attack, we also need to set the desired hash
distance d; as a parameter. Intuitively, as long as d; > 7, our attack
is likely to succeed. Below, we explore how to set threshold 7 under
normal (non-attack) cases.

Distance Threshold vs. False Positives =~ We build a backend
database using all the images from ImageNet and the Face dataset
(over 1.28 million images). Then we randomly select 100 images
to run search queries. By setting different distance threshold 7, we
examine the number of false positives triggered by each query.

Figure 2 shows the median false positives (the dotted line) as well
as the 5- and 95-percentile values (the colored shade). Because the
number of false positives increases very quickly with the threshold
7, we set the y-axis in the log scale. The result shows that the robust
Blockhash is more likely to trigger false positives than the standard
pHash. For example, when threshold 7 = 0.15, most of the queries to
the pHash database return no more than 1 false positive. However,
certain queries to the Blockhash database already have large false
positives (i.e., the 95-percentile has reached 100). To avoid excessive
false positives in the search results, we want to choose the largest
thresholds so that their 95-percentile number of false positives is
below 100. The 7 threshold for Blockhash should be lower than 0.15
(we take 0.14). Similarly, the 7 threshold for pHash is set to 7 = 0.2.
These thresholds can effectively separate different benign images
apart (Appendix B shows additional analysis of the hash distances
of random image pairs).

Method Target hash distance d;=0.15
Hash Dist Pdist  # Iterations
Direct RGB (Baseline) 0.153 0.039 198.52

Grayscale+RGB (Our) 0.156 0.005  22.98+1.52

Table 2: Efficiency of attack algorithms (ImageNet): directly
optimizing RGB images vs. using grayscale initialization.

5.3 Attacking Standard pHash

We next test the basic attack against the standard pHash and justify
our design choices including the perceptual similarity metric and
grayscale initialization. For this experiment, we again combine
ImageNet and the Face dataset to build the backend database in
order to perform image searching. Then we randomly select 50
ImageNet images and 50 face images as the target images (i.e., x,).
We format ImageNet images into the size of 299 X 299, and format
Face images into 224 X 224.

Impact of Perceptual Distance Function D. A key proposed
design (Section 4.1) is to use Learned Perceptual Image Patch Simi-
larity (LPIPS) for D() to measure the visual difference introduced
by the attack noise in the loss function. As a comparison baseline,
we run the attack using Ly distance as D(). We set d; to 0.15 and
0.31 respectively where d; represents the target hash distance we
want to achieve for the attack image. For example, when d; =0.31,
it means the attack image aims to obtain a hash code that is at least
20-bit different from the original image (under a 64-bit hash).

As shown in Table 1, we report the resulting hash distance (nor-
malized Hamming distance) for the attack images. Also, we report
the resulting perceptual difference between the attack and original
images, measured by Ly distance (denoted as “Ly”) and LPIPS (de-
noted as “Pdist”) respectively. First, we observe that using Ly and
LPIPS as D() can both achieve the desired attack effect. Both attacks
have reached the respective target hash distance (0.15 and 0.31).
Second, comparing Ly and LPIPS, we find that using LPIPS as D()
creates higher-quality images with lower perceptual changes, based
on both L2 and LPIPS (Pdist) measures. Finally, LPIPS achieves the
desired result with fewer iterations, making the attack more effi-
cient. Overall, the results confirm the advantage of using LPIPS as
D() to measure the perceptual loss.

Impact of Grayscale Initialization. = Then we examine the
second design choice: the grayscale initialization. In Table 2, we
compare our method with a baseline where we directly optimize
the attack image on three RGB channels (called “Direct RGB”). We
observe that the grayscale initialization can significantly reduce the
number of iterations needed to achieve the desired attack impact.
For example, if we directly run the attack on the RGB channels, it
takes on average 198.52 iterations. In comparison, if we perform
grayscale initialization first, it takes 22.98 iterations for initialization



Dataset Target hash distance d;=0.15 Target hash distance d;=0.31 Target hash distance d;=0.47

Hash Dist Pdist #FP Top-5HR FQR | Hash Dist #FP Top-5HR FQR | HashDist Pdist #FP Top-5HR FQR
ImageNet 0.156 0.005 6.72 96% 0% 0.310 3.38 0% 100% 0.441 0.120  1.68 0% 100%
Face 0.156 0.009 4.76 100% 0% 0.293 3.32 6% 94% 0.383 0.145  2.90 4% 96%

Table 3: Basic attack against pHash (the search engine distance threshold 7 is set to 0.2).

and then another 1.52 iterations to generate the colored images. On
average, the grayscale initialization saves 87% of the iterations.

The grayscale initialization speeds up the attack algorithm by
significantly reducing the search space. In addition, perceptual
hashing algorithms typically use the grayscale version of the image
to compute the hashes. Noises learned from the grayscale image
are likely to cause effective changes in the hash space.

Impact on the Image Searching. = We next examine the attack
impact on the image search results. We perform the attack with
three different target hash distances: 0.15, 0.31, and 0.47 (corre-
sponding to causing a 10-, 20-, and 30-bit difference in a 64-bit
hash). According to Figure 2, we set the backend search function to
use 7 = 0.2 to return matched images.

As shown in Table 3, when the target hash distance d; is 0.15
and 0.31, most of the attack images can achieve the target distance.
When the target distance is 0.47, the attack images on average
can only get near but do not reach this target. This is not too
surprising given that d; = 0.47 is an extremely aggressive threshold.
As shown in Figure 2, a distance of 0.47 for pHash is already far from
a reasonable range (the median false positives reach 100,000). In our
experiment, the search engine uses a threshold 7 = 0.2 to limit the
number of false positives. Overall, we confirm that the basic attack
can successfully generate effective attack images (when d; =0.3
and 0.47). In these cases, the original copy of the query image is
mostly hidden from the returned results, leading to a near 100%
failed query rate (FQR). The top-5 hit rate (HR) is no more than 6%
for all the query images.

Table 3 shows that the perceptual distance (denoted as “Pdist”,
measured by LPIPS) is increasing as we aim for a higher d;, as we
need to introduce more perturbations. Note that LPIPS (Pdist) has
the value range of [0,1]. A pair of images are still visually similar
even when LPIPS is around 0.1. Figure 3 shows example images
under different target hash distances. We intentionally pick two
images from two extremes in terms of the visual changes. For exam-
ple, the “mushroom” image (Agaric) has almost no visible changes
even when getting to hash distance of 0.47 (LPIPS = 0.030). The
“bird” image (Robin) has more visible changes but the changes are
acceptable even at 0.31 (LPIPS = 0.097). Overall, our results confirm
that the basic attack can successfully generate attack images to
manipulate the reverse image search.

5.4 Attacking Blockhash

After experimenting with the standard pHash, we next attack the
Blockhash algorithm which is a more robust variant of pHash. In
this experiment, we start with the basic attack. Considering that
Blockhash is more likely to produce false positives (see Figure 2),
we set slightly smaller target thresholds for d; (0.15 and 0.31).

As shown in Table 4, the basic attack can successfully generate
attack images that reach the target hash distance and effectively
avoid the original copies being returned. When the target hash
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Figure 3: Example images for the basic attack against pHash.
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Figure 4: Example images for the basic attack against Block-
hash with different target distance d; to the original image.

distance d; is set to 0.31, ImageNet and Face images can reach an
average hash distance of 0.314 and 0.313 respectively. Across all the
attack settings, we can completely hide the original copies from
returned results, with a 100% FQR and a 0% top-5 hit rate (zr = 0.14,
as configured in Section 5.2). Compared with attacking the standard
pHash (see Table 3), attacking Blockhash indeed requires larger
visual changes, i.e., leading to higher perceptual changes in the
attack images (a higher Pdist). We show the example attack images
for the Blockhash attack in Figure 4. Overall, the attack images are
still visually similar to the original images (the Pdist is still at the
0.1 level). These results confirm that our attack is effective on the
more robust Blockhash algorithm too.

5.5 Transferability Evaluation

So far, we have experimented with the attack setting where we
query the target hash function to generate the attack images. In
practice, this query ability is often unavailable, and we will need to
rely on transferability to generate attack images based on a local
hash function. Next, we run experiments to compare the basic attack
and the advanced attacks in terms of attack transferability.



Dataset Target hash dist d;=0.15 Target hash dist d;=0.31

Hash Dist Pdist #FP Top-5HR FQR | Hash Dist Pdist #FP Top-5HR FQR
ImageNet 0.149 0.016  0.02 0% 100% 0.314 0.049 0 0% 100%
Face 0.149 0.038 4.08 0% 100% 0.313 0.119 0 0% 100%

Table 4: Basic attack against Blockhash (the search engine distance threshold 7 is set to 0.14).

Attack pHash, Target d;=0.31 | Blockhash, Target d;=0.15
Method | Hash Dist Pdist Hash Dist Pdist
AoE 0.283 0.082 0.150 0.049
AoT1 0.239 0.123 0.150 0.122
AoT2 0.239 0.157 0.160 0.164
AoT3 0.244 0.131 0.155 0.122

Table 5: Advanced attacks against pHash and BlockHash us-
ing Face dataset (AoT1: cropping, AoT2: rotation, AoT3: dis-
proportionate scaling).

Transformation Functions used in Advanced Attacks. We
first introduce the transformation functions T = {¢} to be used in
advanced methods. At the high level, any standard image trans-
formation, as long as it does not significantly temper with the
semantics of the image, can be used. For this experiment, we design
three transformations that can largely preserve image semantics:

e Cropping (t1): remove 2.5% at the edge of an image.

e Rotation (t2): rotate an image by a small angle (0.02 X360 =
7.2 degree), and crop 5% of the image to remove the black
edges introduced by the rotation.

e Disproportionate Scaling (t3): slightly stretch an image
by increasing the image width to 1.1 times of the original
width. Then we crop the image back to its original size by
removing excessive width at the edge.

For advanced method AoE, all three transformations are used.
For AoT, it can choose any of the three transformations to per-
form the attack. We call the three AoT attacks as AoT1, AoT2, and
AoT3, respectively. We have confirmed that these transformations,
when applied alone (without running our attack), cannot effectively
create meaningful hash distance for the images. For example, un-
der pHash, the average pHash distance caused by the above three
transformations is 0.095 with a standard deviation of 0.039 on the
ImageNet testing set. These transformations alone are far from
achieving the desired attack impact (e.g., d;=0.31).

Running Advanced Attacks. =~ We first run the advanced at-
tacks against pHash and Blockhash to establish a baseline. The
results are shown in Table 5. In general, the advanced attacks can
successfully reach the target hash distances. The result is slightly
worse for pHash when d; = 0.31 (the resulting hash distance is
within 0.239-0.283). In the meantime, the produced attack images
also have larger visual changes (Pdist is at the 0.1 level). The exam-
ple images of the advanced attacks are shown in Figure 5.

Transferability Experiment.  To explore transferability, we
run the basic and the advanced attacks against pHash, and then
examine the resulting hash distance of the attack images under
different hashing functions, including pHash, Blockhash as well as
other generic hashing algorithms: aHash (average hash), wHash
(wavelet hash), and dHash (difference hash). At the high-level,

Clean AoE AoT1 AoT2 AoT3
Figure 5: Example images for the advanced attacks against
Blockhash with target hash distance d;=0.15.

Attack Transferred Distance (target hash dist d; = 0.31)
Method pHash Blockhash aHash dHash wHash
pHash Basic | 0.313 0.122 0.073 0.164 0.081
pHash AoE 0.324 0.158 0.105 0.215 0.109
pHash AoT3 | 0.246 0.163 0.100 0.200 0.103
Attack Transferred # FP (target hash dist d; = 0.31)
Method pHash Blockhash aHash dHash wHash
pHash Basic 3.38 2.6 74.12 15.34 22.66
pHash AoE 2.64 1.82 80.74 9.28 12.44
pHash AoT3 3.2 1.48 130.54 12.4 14.08
Attack Transferred Top-5 HR (target hash dist d; = 0.31)
Method pHash  Blockhash aHash dHash wHash
pHash Basic 0% 68% 36% 46% 30%
pHash AoE 0% 36% 20% 24% 8%
pHash AoT3 10% 28% 16% 24% 12%
Attack Transferred FQR (target hash dist d; = 0.31)
Method pHash Blockhash aHash dHash wHash
pHash Basic | 100% 32% 58% 54% 66%
pHash AoE 100% 64% 78% 76% 90%
pHash AoT3 88% 72% 78% 74% 84%

Table 6: Transferring the attack image optimized for pHash
to other hash functions (ImageNet). We show average hash
distance, average number of false positives (FP), top-5 hit
rate and failed query rate (FQR) under each hash function.

aHash computes the average of image pixel values; wHash uses
Discrete Wavelet Transformation (DWT) to extract features to com-
pute the hash code; dHash computes hashes by comparing adjacent
pixels. We include more detailed descriptions of these hashing al-
gorithms in Appendix A.

To fairly compare the searching results for different hashing
algorithms, we need to determine their own distance threshold 7
for the backend database. Like before, we control the false positives,
and choose the thresholds for different hash algorithms so that their
95-percentile false positives are all under 100. Following the same
methodology of Section 5.2, we set 7 for aHash, dHash and wHash
as 0.05, 0.16 and 0.05, respectively. We notice that these thresholds
are lower than that of pHash (7=0.2) because aHash, dHash and
wHash are more likely to produce false positives.

The results are presented in Table 6 for ImageNet. For AoT, since
we did not observe major differences between the three variants, we
only show the results for AoT3 (disproportionate scaling) for brevity.



Attack | Target Hash Dist d;=0.31
Method | Hash Dist Pdist
pHash Basic 0.30 0.027
pHash AoT3 0.244 0.146

Table 7: Basic attack and AoT3 attack on IMD dataset.

Clean

Manipulated Basic
Figure 6: IMD pHash attack example. The manipulated im-
age is created by vandalizing a flag in the original image and
adding a new flag (it differs from the clean image by 0.125).
After our attack, the resulting hash distance reached 0.31 for
the basic attack and 0.25 for the AoT3 attack.

As shown in Table 6, when the attacker uses a local pHash to run
the attack, the resulting attack images perform well with respect to
pHash distance (getting close to 0.31) and can effectively hide the
original copies from searching results (0%-10% Top-5 hit rate and
88%-100% FQR). When using the image to attack the searching func-
tion built on other hashing algorithms (namely, Blockhash, aHash,
dHash, and wHash), the “transferred” attack impact is reduced.

Comparing different attack algorithms, Table 6 confirms that
advanced attacks (AoE and AoT3) are indeed more transferable than
the basic attack. As shown in Table 6, AoT?3 obtains a 88% FQR on
pHash (indicating the attack successfully hides the true matching
images for 88% of the query images). Under a transferring attack
against other hashes, the FQR is still maintained at a high level
(74%-84%). In comparison, the transferability of the basic attack
is weaker with a lower FQR (30%-68%). A similar trend can be
observed for the top-5 HR metrics. We also find the performance of
AoT3 and AoE are comparable across different hashing algorithms.
Note that AoE is three times slower than AoT3 (with |T| = 3). As
such, AoT3 is a better choice.

Overall, these results suggest that the transferred attack is still
effective using advanced attack methods.

In practice, attackers may jointly optimize the attack noise against
multiple hashing algorithms simultaneously. This idea has been
explored in ensemble-based adversarial examples in the classifier
setting [34]. Further discussions are presented in Section 7.1.

5.6 Evaluation with IMD Dataset

Finally, we perform a quick evaluation with the Image Manipulation
Dataset (IMD), as a case study. Recall that IMD contains manually
manipulated images collected from the Internet. In total, the dataset
contains 2,010 image pairs where each pair contains one original
image and one manipulated image. By comparing the pHash and
Blockhash distances of such image pairs, we find that over 50%
image pairs have a distance below 0.2. For these image pairs, a
reverse image search engine can easily find the original image by
searching the manipulated one. Image pairs that already have a
large hash distance (e.g., > 0.2) typically involve drastic changes
(e.g., cropping 90% of the original images). An example image is
shown in Appendix C.

For the rest of the image pairs with a pHash distance below 0.2,
we run our attack to further enlarge their hash distance. This will
help to eliminate the original images from the search results. As
a quick experiment, we run the basic attack and the AoT3 attack
against pHash. Given a pair of original and manipulated images
(%0, xm), we aim to generate an attack image x, such that it looks
similar to the manipulated image x,, while enlarging the pHash
distance (from x,,;) to reach 0.31. Table 7 shows that the attack
is successful. The attack images (especially the basic attack) can
successfully reach the target hash distance with imperceptible visual
changes. An example image is shown in Figure 6.

6 REAL-WORLD EXPERIMENTS

So far, we have demonstrated the attack effectiveness using con-
trolled experiments. In this section, we further run empirical tests
with real-world reverse image search engines.

6.1 Methodology Overview

Challenges and Approaches.  The key challenge of the real-
world experiment is that it cannot be fully automated. First, unlike
the controlled experiment where there is only one copy of the
query image in the database, real-world search engines often re-
turn multiple websites that have indexed the query image or its
legitimate variants (e.g., resized or cropped versions). To determine
true positives and false positives (i.e., irrelevant images), we need
to manually validate the search results. Here, we cannot use any
perceptual metrics to determine true/false positives automatically,
precisely because perceptual hashing is our attack target.

The needs for manual inspection limit the scale of our experi-
ment. To cover a wide range of attack algorithms and target images
(with reasonable manual efforts), we divide the experiment into two
stages. First, we use a small set of target images to compare a large
number of attack algorithms. Second, we select the most effective
algorithm from stage-1 and apply it to a larger set of target images.
We use the Face dataset [27] for this experiment. This dataset con-
tains face images of models (e.g., used for online advertising and
promotions), and thus the images are already indexed by different
websites in various forms. For example, we searched the 50 clean
face images used in Section 5 with Google search, and the average
number of returned entries is 108.5 (the first quartile is 26 and the
third quartile is 178). The results confirm that the Face images are
already heavily indexed.

Search Engines.  We select four popular reverse image search
engines, including three free services (Google, Microsoft Bing, and
Yandex) and one commercial service (TinEye). For TinEye, we pur-
chased its search API access for our experiment. Given a query
image, the search engines would return a list of entries where each
entry contains a matched image and the website (URL) that hosts
the image. For example, Google has a section called “Pages that
include matching images” to display the search results (as shown
in Figure 1). Other search engines have similar sections. Note that
social medial platforms such as Flicker and Pinterest also have im-
age search functions, but their search engines are more limited. For
example, their search functions are focused on “relevant images”
(images that contain similar types of objects) instead of finding the



TinEye Google
Evaluation Metric | Original Blockhash pHash Original Blockhash pHash
AoT3 AoE Basic | AoT3 AoE Basic AoT3 AoE Basic | AoT3 AoE Basic
Avg. Reduction Rate N/A 60% 20% 24% 65% 30% 5% N/A 62% 45% 40% 70% 64% 50%
Top1 Hit Rate 100% 60% 80% 80% 60% 80% 100% 100% 60% 100% 100% 80% 80% 80%
Top10 Hit Rate 100% 60% 80% 80% 60% 80% 100% 100% 80% 100% 100% 100% 100% 100%
False Positive Rate 0% 40% 20% 20% 40% 20% 0% 2% 33% 7% 11% 13% 13% 12%
Bing Yandex
Evaluation Metric | Original Blockhash pHash Original Blockhash pHash
AoT3 AoE Basic | AoT3 AoE Basic AoT3 AoE Basic | AoT3 AoE Basic
Avg. Reduction Rate N/A 100% 100% 100% | 100% 100% 100% N/A -611% -871% -756% | -813% -1086% -1014%
Top1 Hit Rate 80% 0% 0% 0% 0% 0% 0% 100% 80% 80% 80% 40% 80% 100%
Top10 Hit Rate 80% 0% 0% 0% 0% 0% 0% 100% 80% 80% 80% 40% 80% 100%
False Positive Rate 20% 100% 100% 100% | 100% 100% 100% 0% 39% 56% 58% 76% 92% 72%

Table 8: Real-world experiments with attack images optimized for pHash (d; = 0.31) and Blockhash (d; = 0.15) using different
attack algorithms. “Avg. Reduction Rate” shows the average rate of search result reduction caused by the attack image (in

comparison with the original image).

modified copies of the query image. Also, they only index images
of their users. For these reasons, we did not consider Flicker or
Pinterest in this experiment.

Ethical Considerations.  Testing cloud APIs with adversarial
images has been a common approach adopted by researchers [7, 13,
22,47, 48, 60, 82, 85] and our experiments follow a similar setup. We
have carefully controlled the number of queries and the query rate
to avoid overwhelming the search engines. In addition, after the
experiments, we manually checked the searching results again to
make sure that none of the attack images were indexed by the search
engines. More specifically, after the experiment at a given search
engine, we searched each x, again and made sure the corresponding
attack images x, were not in the returned results. Then, we directly
searched x4, and also did not find any archived copy of x,. If x,
were indexed by the search engine, directly searching x, should
find it out. We performed another sanity check (by repeating the
above searches) three months after the experiment and confirmed
the attack images were not indexed.

6.2 Small Experiments on Search Engines

As the first step, we use a small set of images to test a large number
of attack algorithms. We select 5 random images from the Face set.
For each image, we run six attack algorithms including the Basic,
AoE, and AoT3 attacks optimized against pHash, and the Basic,
AoE, and AoT3 attacks optimized against Blockhash. Although the
number of the target images is small, the experiment still involves
significant manual efforts to validate all the searching results. For
each query, we manually annotated the top-50 returned entries
from four search engines (1,236 returned entries in total).

Comparing Attack Algorithms. As shown in Table 8, we
report the top-1 and top-10 hit rate, and the average false positive
rate. Since we only manually validate the top-50 returned entries,
Failed Query Rate (FQR) is not applicable here. We introduce a
new metric called average reduction rate, which measures the rate
of search result reduction caused by the attack image. Suppose a
search engine returns n, images for the “original image” and returns
nq images for the “attack image”, the reduction rate is (no — nq)/no.
We then average the reduction rate across query images.

Overall, Table 8 shows our attack is still effective on most search
engines, but the attack impact is reduced compared to that of the
controlled experiments (Section 5). To better explain the results, we
use TinEye as a walk-through example. First, the “original” column
shows that TinEye’s search results are highly accurate for non-
attack images. Both top-1 and top-10 hit rates are 100% with a 0%
false positive rate. This indicates that all the returned results from
TinEye are correctly matched with the query images.

Second, under the attack images, TinEye’s top-1 and top-10 hit
rates are all dropped. For example, the top-10 hit rate for AoT3 is
60%, meaning that for 40% of the query images, the true matching
images are pushed out of the top-10 entries (i.e., first page). Given
users usually do not click on the search results beyond the first
page [25], we consider the attack is effective. Third, TinEye’s false
positive rates go up to 20%-40% (from 0%). This means the attack
not only decreases the rankings of the true matching images, but
also introduces more irrelevant images to distract users. Fourth, the
average reduction rates for attack images are within the range of
5%-65%. This confirms our attack also reduces the overall number
of returned results in TinEye.

Comparing the six attack algorithms, AoT3 achieves better re-
sults (AoT3-pHash and AoT3-Blockhash are comparable). This is
consistent with Section 5.5 (where we show AoT3 has a better
transferability). This conclusion is true for all four search engines.

Comparing Search Engines.  The attack works differently on
the four search engines. For Google and TinEye, our attack works
on certain images but not all of them. We have manually examined
the failed cases but did not find common patterns among those
images (see Appendix E). Later in Section 6.3, we will slightly tune
up the attack magnitude to run the experiments again with a larger
set of images. On Bing, our attack is very successful. Bing could
not find any true matching images for the attack images. Both the
top-1 and top-10 hit rates are 0%, and the false positive rates are
100%. Yandex has a unique reaction to our attack where the average
reduction rate is negative (ranging from -600% to -1000%). It turns
out our attack has increased the number of returned entries by 4-10
times, by introducing major false positives to distract users. For
example, for AoE-pHash, the false positive rate gets to 92%.



Evaluation Metrics TinEye Google Bing Yandex
Avg. Reduction Rate 100% 88% 100% -1364%
Top1 Hit Rate | 100%+0% 88%+36% 34%+0% 82%+58%
Top10 Hit Rate | 100%+0% 96%+36% 34%+0% 86%+58%

False Positive Rate | 0%+100% 11%+66% 66%+100% 21%+90%

Table 9: Real-world experiments with attack images opti-
mized for pHash (d; = 0.34). We show results in the format
of “original - attack”.

(b) Cropped Image to Spread Misinfo
“A Pennsylvania elections worker actually
filling out ballots rather than counting them”

(a) Original Image

Google: 160 matched
TinEye: 4 matched

Google: 0 matched
TinEye: 0 matched

it
(c) Attack Image (d) Attack Image

Figure 7: Example of a voting fraud image.

6.3 Increasing the Experiment Scale

As the second step of the experiment, we now focus on the best
attack algorithm (AoT3-pHash) and test more images (50 random
images from the Face set). Recall that Table 8 shows that directly
testing the attack images from the controlled experiments is not as
strong as before (possibly due to the search engines’ countermea-
sures). Realizing this, in this experiment, we slightly tune up the
attack thresholds for AoT3-pHash. We increase the target hash dis-
tance d; from 0.31 to 0.34 (the quality of images is still acceptable)
and increase the disproportionate scaling factor from 1.10 to 1.24.
We again manually validate the top-50 returned entries for each
query from four search engines (2,578 returned entries in total).

Table 9 shows that after slightly tuning up the attack magnitude,
the attack becomes highly effective. More specifically, on TinEye
and Bing, the attack has successfully eliminated all of the true
positives (true matching images) from the returned results. Their
top-1/top-10 hit rates are reduced to 0% and the false positives
reach 100%. This means all the returned results are irrelevant. On
Yandex, the attack introduces 1364% more returned images and 90%
of them are false positives (i.e., distracting users from spotting the
true matching images).

The attack is also more successful on Google than before. The
top-10 hit rate is 36%, which means the attack is successful on 64%
of the query images, hiding their true matching images away from
the first page (top-10). In the meantime, the false positive rates
are increased from 11% to 66% by the attack images. Finally, the
average reduction rate is 88%, suggesting that 88% of the previously
returned results are now eliminated.

6.4 Case Study

Finally, we demonstrate a case study to show the real-world implica-
tion of the attack. Due to space limit, we focus on one recent event
as an example. On November 6th, 2020 (two days after the 2020

U.S. presidential election), a tweet shared on social media claimed
that the ballot counters in Pennsylvania were seen in the act of
committing voter fraud. Figure 7-(b) (which is a screen capture of a
video) went viral on social media with the tweet. The caption of
the image suggested that “a Pennsylvania elections worker actually
filling out ballots rather than counting them”.

This turned out to be a false claim. According to Inquirer’s re-
port [73], the ballot counter in the image was transcribing ballots
that had been damaged and were unable to be fed into the counting
machines. The ballot counter was following the required proce-
dure to perform this task. More importantly, in the original video
footage, the ballot counter was being observed by poll watchers
from both political parties (Figure 7-(a)). To push the false narra-
tive, the image/video was manipulated by cropping out the poll
observers nearby (i.e., creating a “zoomed-in” version).

Through reverse image search, an Internet user can easily find
the sources of the modified image and the related “fact-checking”
information. For example, searching the top-right image on Google
and TinEye returned 160 and 4 entries respectively (both results
include the Inquirer report [73]). To emulate a potential adversary
who wanted to make it harder for users to find the original source
of this image, we apply the attack algorithms to generate attack
images (which could have been used to spread misinformation).
Attack image Figure 7-(c) is generated by AoT3-pHash (d;=0.28,
scaling factor=1.2). We find that it is already effective on TinEye (by
hiding all the matched images). In the meantime, this image reduced
Google’s returned entries from 160 to 11. For attack image Figure 7-
(d), we tune up the attack using AoT3-Blockhash (d;=0.22, scaling
factor=1.3), and the attack image successfully reduced the number
of returned entries to 0 for Google too. In this way, it becomes
harder for users to find relevant “fact-checking” information by
reverse image searching.

7 DISCUSSION OF POTENTIAL DEFENSES

So far, we have demonstrated the effectiveness of our attack in both
controlled experiments and empirical tests. Before discussing coun-
termeasures, we want to first dive deeper to reason why the attack
works. If we revisit the primary loss function in Eq. 1, we can see
the attack is essentially exploiting the misalignment between D()
(human perceptual difference) and the f() (an approximated hash
similarity). In other words, the hash value similarity is not perfectly
aligned with human perceptual similarity for images. In our attack,
we use the LPIPS for D() to approximate human perception, which
is a recently proposed perceptual metric that outperforms existing
metrics [89]. Unlike computing a perceptual hash (which can be
done directly), LPIPS incurs significantly higher costs (in terms of
time and image datasets) because LPIPS requires a training stage.
Even if we exclude the training cost, LPIPS is still slower to compute
in runtime. We argue that the attacker has the luxury to use an
expensive perceptual metric to optimize the attack noise because
they only focus on certain images of interest. As a comparison,
image search engines are mostly dealing with normal search queries
against billions of indexed images [69]. Search engines need to
balance efficiency (query latency) with searching robustness. From
this perspective, there is a power imbalance between attackers and
defenders.



Dataset Hash Distance Pdist Searching Results
pHash Blockhash aHash dHash wHash #FP  Top-5 HR  FQR

ImageNet 0.368 0.327 0.366 0.438 0.386 0.109 | 2.88 0% 100%

Face 0.371 0.317 0.354 0.421 0.375 0.146 | 3.38 0% 100%

Table 10: Adaptive attacks against an ensemble of hashes (d;=0.31) on ImageNet and Face datasets.

Experiment Setup and Results.  We again use the ImageNet
and Face datasets for this experiment. We set the target hash dis-
tance d;=0.31 for the adaptive attacker.

7.1 Server-side Robust pHash

Regarding countermeasures, one direction is to develop more robust
perceptual hashing algorithms for the server-side image searching.
For example, one possible direction is to improve robustness by
adding redundancy. The server side may consider an ensemble of
a diverse set of hashing algorithms to robustify the reverse image
search. However, attackers can also jointly optimize their attacks
against an ensemble of hashing algorithms (which turns this into a
cat-mouse game).

Another challenge for the server-side solution is to maintain the
high efficiency of searching and the high quality returned results
for normal (non-attack) queries. Considering normal queries are
likely the majority, one idea to make the trade-off is to allow users
to enable/disable a robust search feature on demand. For example,
if a user is trying to investigate a suspicious image in the news,
they can turn on the robust feature, allowing the search engine
to be more permissive on the returned results. In this case, users
can tolerate more false positives in order to locate the original
images. During normal searches, users can turn the robust feature
off to receive highly relevant returned results. This could enable
the server-side to adopt more aggressive/robust countermeasures.
We leave further exploration of this idea to further works.

As a preliminary exploration, we perform a quick experiment
to examine the server-side defense idea. More specifically, we first
construct a searching database using an ensemble of hashing al-
gorithms at the server side. Then we explore the capability of an
adaptive attack.

Server-side Hash Ensemble.  Suppose the server-side use mul-
tiple hashing algorithms to robustify the search. For each image, the
server computes multiple hash codes for this image in the backend
database. For this experiment, we assume the server uses pHash,
Blockhash, aHash, dHash, and wHash.

When receiving an incoming search query, the server first inde-
pendently uses each hashing function to produce a list of matched
entries. The distance threshold 7 for each hashing algorithm is set
the same way as in Section 5. Once the server gets the five lists of
returned entries, we perform a simple round-robin arbitration to
merge the five lists into a single ranked list. The idea is to iteratively
take the top-ranked item from each list and add it to the merged
list (as long as the item is not already on the merged list).

Co-optimizing Attack Noises. The adaptive attacker co-
optimizes the attack noises against pHash, Blockhash, aHash, dHash,
and wHash simultaneously. Given an input image x,, the attacker
aim to produce an attack image x, such that x, differs from x,
under each of the 5 hashing functions for at least d;. The new loss

function for the adaptive attacker is the following:

minimize D(xg, x,) +C - Z f(xa,x0))
. fer (5)
subjectto x4 € [0,1]7.

where F denotes the set of hashing algorithms considered by the
attacker.

Table 10 shows the experiment results. We find that after co-
optimizing the noises, the produced attack images achieve the de-
sired hashing distances under all five hash functions. Interestingly,
even though d; is set to 0.31, the resulting hash distances under
dHash, wHash, aHash and pHash are significantly higher than 0.31.
This is likely due to the need for achieving the desired distance
for Blockhash simultaneously (which is a more robust hashing al-
gorithm). The visual differences introduced by noises are slightly
higher compared with attacking a single hash (see Section 5). Even
so, the Pdist is still at the 0.1 level, and the attack images are of
good quality. Finally, we search the attack images at the server-end
with multiple hashing algorithms. We observe the co-optimized at-
tack images are highly successful, producing 0% top-5 hit rates and
100% FQR. The result indicates that a simple ensemble of multiple
hashing algorithms at the server side is insufficient against adaptive
attacks. Further research is needed to robustify the searching at the
server end.

7.2 User-side Robust Search

Another direction is to develop user-end solutions, considering that
not all the search engines are willing to (or able to) implement robust
server-side solutions in the short term. In comparison, a client-side
solution can be immediately implemented as a browser extension
to benefit users. Our idea is help users to pre-process images before
searching them. Given an image x, we can automatically generate
a small set of transformed images {x’} that are visually similar
to the original image. The set of images {x’} are generated with
randomized parameters for each given image (and for each user
client) such that adversaries cannot pre-optimize an attack image
that is universally effective against all the users on the Internet. For
each image x that a user wants to search, the browser extension
issues multiple search queries for {x’} to obtain the parallel (or
fused) search results.

Due to space limit, we put our preliminary experiment with this
idea in Appendix D. As a short summary, we implemented a simple
version of this idea and tested it on the attack images generated
from Section 6.3 (i.e., the strongest attack images). We perform the
searches on Google and show that the defense method can improve
the top-1 and top-10 hit rates while reducing false positives. Our
experiments are still preliminary — future works will be focusing
on designing more effective methods to generate the search image



set {x’}, and better fusion methods to consolidate multiple lists of
returned results.

8 LIMITATIONS AND FUTURE DIRECTIONS

Our paper has a few limitations. First, our attack method can be
potentially improved further by using more sophisticated optimiza-
tion functions for gradient estimation. We leave such exploration
to future works given the current method is sufficiently effective
to achieve the attack goals. Second, our evaluation scale, especially
for the real-world experiments, is not very high. The scale of the
real-world experiments is limited by the needs for manual inspec-
tion of all the search results. Given the consistency of results across
experimental settings, we believe the evaluation is sufficient to
support our conclusions. Third, we have experimented with three
datasets (of different sizes and image types) to show our attack is
generally applicable. Future works may extend the evaluation to
include more datasets (especially those used in cybercrime studies).
Finally, our experiments on the defense part are limited (as it is
not the main focus of this paper). We plan to systematically study
countermeasure strategies in future works.

9 RELATED WORK

We discuss other related works to our paper. Those that are already
described in Section 2 will not be repeated.

Adversarial Machine Learning.  Our attack is related to adver-
sarial machine learning attacks [11, 12, 17, 21, 43, 46-49, 51, 61, 67],
with some noticeable differences. At the high level, adversarial ex-
amples construct the loss over labels (i.e., classes of samples) [23],
whereas we construct the loss based on the perceptual hash dis-
tances between two specific images. Fundamentally, both attacks
rely on running optimization over the defined losses. In this paper,
we apply this idea to attack perceptual hashing applications and
address application-specific challenges. First, perceptual hashing
function is not differentiable and thus needs approximation; second,
to speed up the black-box optimization, we introduce gray-scale
initialization which exploits the gray-scale transformation step in
perceptual hashing; third, we introduce various enhancements to
attack real-world services.

We briefly discuss a few papers on adversarial machine learning
that are related to our work. A recent study [70] illustrates vari-
ous evasion attacks against perceptual ad-blocker (i.e., a classifier).
The idea is to add noises to visual ads images so that a perceptual
ad-blocker will classify them as “non-ad”. Fawkes [60] applies ad-
versarial machine learning to protect user privacy against facial
recognition systems. The idea is to run poisoning attacks on the
training process of facial recognition models, so that a user’s face
can no longer be correctly identified from the images. Our attack
shares some similarity, in the sense that we can hide a face image
from reverse image search. However, the methodology is fundamen-
tally different, i.e., Fawkes requires poisoning the model training
process. Another related work is the image-scaling attack [53, 82],
which achieves adversarial evasion without directly manipulating
a machine learning model. Instead, this attack manipulates the pre-
processing step where images are re-scaled before they are sent to
the machine learning pipeline. This attack is orthogonal to ours

— it is possible we could combine image-scaling attack with our
method to amplifies the attack impact against perceptual hashing.

Robustifying Perceptual Hashing.  Researchers have worked
to robustify perceptual hashing algorithms, but with a different
threat model in mind. As we briefly discussed in Section 2, exist-
ing robust methods focus on threats against image authentication.
Their goal is to accurately recognize malicious modifications (e.g.,
adding/removing an object in an image) by producing a different
hash value [35, 42, 66, 68, 76, 81]. In the meantime, the robust
method should produce the same hash value in the presence of
normal image transformations such as scaling and rotation [39].
In our context (reverse image search), the goal is the opposite —
a robust method should be more “tolerating” for modifications so
that the search engine can successfully retrieve the source images
(without introducing excessive false positives).

Recently, researchers also explored using deep neural networks
(DNN) to augment existing hashing algorithms. The idea is to use
DNN s to extract features that can better represent the neighborhood
relationships [33, 75, 78]. Such DNNs can be unsupervised, but
also can be supervised (by pairwise similarity labels) [10, 31, 32].
Unfortunately, DNN based hashing algorithms are extremely costly
to train (at a large scale). In this paper, we focus on perceptual
hashes that are widely used by current online services and security
researchers. We defer the study of attacking DNN-based hashing
algorithms to future work.

10 CONCLUSION

In this paper, we developed novel attack methods against perceptual
hashing algorithms in the context of reverse image search. The
attack challenges the validity of abuse detection and analysis tools
that are built on perceptual hashing. We validated the impact of
our attack using both controlled experiments and empirical tests
on 4 real-world image search engines (TinEye, Google, Bing, and
Yandex). Finally, we discussed (and briefly experimented with) a
defense method that can be implemented on user clients.
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A PERCEPTUAL HASHING

In this section, we provide more details for the perceptual hashing
algorithms used in our paper.

pHash.  pHash first down-scales the image to 32 X 32 = 1024
pixels, and converts it into the grayscale. Then it applies Discrete
Cosine Transform (DCT) to the image and computes a DCT hash
using the low DCT coefficients (i.e., the top 8x8=64 low frequency
part). It then calculates the median of the DCT coefficients. The bi-
nary hash string is generated depending on if each DCT frequency
is below or above the median. The final hash string is constructed

by converting the binary hash string into a hex string. pHash al-
ready considers robustness in its design as it describes the relative
frequency with respect to the median. It is designed to tolerate
image modifications as long as the main structure of the image
stays the same.

Blockhash.  Blockhash slices the RGB image into blocks (i.e.,
the default number is 16x16=256 blocks). If the image is dividable
by the required number of blocks, it will trigger a quick version
for hash computation. Otherwise, a slow version (with additional
processing) will be triggered. We pre-process our images such that
the images are dividable by the number of blocks. After the image is
divided into 256 blocks, the algorithm then assigns a value to each
block (which is the sum of all the pixels’ RGB values in this block).
After that, the algorithm divides these 256 blocks into 4 groups
(64 blocks per group). For each group, it computes the median of
the block values. To compute the binary string (256-bit), each bit is
calculated based on one block. The bit value is based on whether
this block’s value is above or below the median of the block’s
corresponding group. Finally, the binary string is converted to a
hex string. Unlike pHash which calculates the hash string based on
the frequency domain information, Blockhash relies on the color
domain information of different blocks.

aHash.  aHash is short for Average Hash. It reduces the image
into a fixed smaller size (i.e., 8x8=64 pixels) and then converts the
image into grayscale. Then it calculates the mean value of the 64
pixel/color values. The binary hash string is calculated based on
whether each pixel value is above or below the mean. Finally, aHash
converts the binary string into a hex string. aHash is fast but it
easily generates false positives as it tolerates more differences.

dHash.  dHash is short for Difference Hash. dHash computes
the hash string based on the differences between adjacent columns.
dHash down-scales the image into a smaller dimension (i.e., 9X8=72
pixels) and converts it into grayscale. Then dHash calculates the
binary string based on adjacent pixels. The 9 pixels in each row will
generate 8 values for the differences between the adjacent pixels (64
bits in total combining the 8 rows). dHash is comparable to aHash
in terms of efficiency, but dHash is more precise in image matching.

wHash.  wHash stands for Wavelet Hash. wHash first re-scales
the image to a smaller size (i.e., 8x8=64 pixels) and converts it
into grayscale. Then wHash uses Discrete Wavelet Transformation
(haar transformation to be more precise) to extract features from
the frequency domain to compute the hash string. Note that wHash
excludes the lowest frequency part. The lowest frequency consists
of only one data point that represents the contrast of the image
(which is not useful).

B HASH DISTANCE OF IMAGES

Below, we provide some reference points for hashing distance.
Given an image dataset, we examine the normalized Hamming
distance between the hash codes of a random pair of images. The
results are shown in Figure 8. For ImageNet, we randomly sample
100 classes and then randomly sample 100 images from each class.
We examine the distance of all image pairs. We break down the
results for image pairs from the same classes and those from two
different classes. We find that the inter-class distance and intra-class
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Figure 8: Normalized Hamming distance of image pairs.

distance does not have significant differences. Given random image
pairs (i.e., two different images), using a distance threshold of 0.2
can safely separate them apart. For the Face dataset, we exhaus-
tively compute the distance of all image pairs. Similarly, a distance
of 0.2 can separate different images in the pair. We did not show the
results for the IMD dataset here since it has a different setup: this
dataset contains pairs of original and manipulated images. Further
analysis of IMD is in Section 5.6.

C EXAMPLES FOR IMD DATASET

Certain image pairs in the IMD Dataset already have a large pHash
distance between the manipulated image and the original image
(e.g., >0.2). Figure 9 shows an example where the pHash distance of
the pair is 0.56. Such manipulated images often involve significant
modifications (e.g., the original image is no longer the main body
of the manipulated image).

Clean Manipulated

Figure 9: IMD image pairs with a large pHash distance (0.56).

D CLIENT-SIDE DEFENSE EXPERIMENT

In this section, we perform a preliminary experiment for our user-
side defense idea. The purpose of this experiment is to provide some
supporting evidence for our discussions regarding countermeasure
strategies. Since the experiments are only preliminary, we do not
claim this as a main contribution of the paper.

Given an input image x, our idea is to build a browser extension
that automatically generates multiple search queries to search a
set of similar-looking images {x’}. We hope some of the images in
{x’} can destroy the adversarial noises in the original input, and
help to return the true matching images.

Generating {x’}.  As a simple experiment, we design 8 trans-
formations to generate {x’}. Each time when the transformation is
used by a particular user, we pick random parameters for the trans-
formation such that attackers cannot pre-optimize the adversarial

noise that would universally work for all the users on the Internet.
As a proof-of-concept experiment, the transformations we used
include rotation, scaling, and denoising image filters.

Given an input x, we apply these transformations to generate
8 images. More specifically, we produce 2 images using rotation:
one rotation angle is randomly chosen from [0.01-27, 0.1-27] and
the other rotation angle is randomly chosen from [-0.1-27, 0). Then
we produce 4 more images from scaling: two scaling factors ry,
are randomly chosen from [1.01,1.21) to scale the image width r,,
times; Two scaling factors ry, are randomly chosen from [1.1,1.3) to
scale the image height ry, times. Then 2 more images are produced
by combining height-scaling with a random image filter (selected
from BLUR, SMOOTH-MORE, EDGE_ENHANCE_MORE). In this
way, 8 randomly transformed images are generated to form {x’}.

Performing Searches. For this experiment, we take all the
attack images from Section 6.3. These are the most aggressive attack
images generated by the AoT3-pHash attack. For each attack image
(treated as a x), we generated 8 transformed images {x’}. Then we
use each transformed image to perform a Google reverse search
and obtain the returned results.

Fusing Search Results.  There are many ways to fuse the search
results so that the true matching images can be ranked to the top.
Again, as a proof-of-concept, we design a simple fusion method.
Here, we need to merge 8 ranked lists into 1 ranked list. For each
entry, we rank it based on two factors (1) how often this entry
appears across the 8 lists; and (2) this entry’s original ranking in its
own list.

Suppose an entry e; ; is the i;;, ranked entry on the list j (j =
1,...,8). We compute a tuple for this entry as (count(e; j), i). Here,
the function count(e;,j) counts how many times this entry appears
across the 8 lists (based on the entry URL or the image file). To
create one ranked list, we collect all the entries (from 8 lists) and
their corresponding tuples. We first rank the entries based on the
count(e;,j) value in the tuple. For entries that share the same count,
we then refer to the original ranking i in their original list to rank
them. In this way, all the entries are ranked in a single list.

Results and Observations. ~ We perform the above experiment
on Google for all the attack images generated in Section 6.3. For
each image, we produce one ranked list using the fusion method
described above. Then we manually inspect the top-50 results of the
fused list and calculate the top-1 and top-10 hit rates and false posi-
tives as before. Comparing with the results in Table 9 (no defense),
we find that the defense method indeed has a better performance.
The defense method has improved the top-1 hit rate from 36% to
70%. The top-10 hit rate is also improved from 36% to 76%. In the
meantime, the average false positive rate of the defense method
is 39.1%, which is also much lower than the original 66% without
defense. As a preliminary experiment, the result shows the initial
promise for the proposed idea. We believe more work should be
done to improve the “naive” methods for generating {x’} and fusing
the search results, to further improve the defense performance.

E FAILED CASE ANALYSIS

As shown in Section 6, our attacks on real-world search engines
still have failed cases (especially on Google). We took the failed



images and manually inspected their search results. We did not
find clear patterns among these failed cases in comparison with
the successful ones. For example, the number of indexed copies
of the query image is not a clear predictor of success. In other
words, the attack is not necessarily more successful on query images
that are heavily/rarely indexed by the target search engine. In

addition, we do not think the attack image’s quality is a strong
predictor of success, i.e., attack images with more visible noises are
not necessarily more successful. Based on manual inspections, we
cannot conclusively determine the root causes (given we do not
have any knowledge of Google’s internal searching algorithms and
potential robustification methods).
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