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Abstract: Mechanochemistry initiated the reaction of hydrogen-terminated porous silicon (H/por-5i) pow-
der with arginine. Samples were analyzed using Fourier-transform infrared spectroscopy (FTIR), dynamic
light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and photoluminescence (PL)
spectroscopy. Arginine, which was physisorbed onto the surface of por-Si, blue-shifted the peak
PL intensity from ~630 nm for the H/por-Si to ~565 nm for arginine-coated por-Si. Grinding for
4 h reduced >80% of the initially 2-45 um particles to <500 nm, but was observed to quench the
PL. With appropriate rinsing and centrifugation, particles in the 100 nm range were isolated. Rins-
ing ground powder with water was required to remove the unreacted arginine. Without rinsing,
excess arginine induced the aggregation of passivated particles. However, water reacted with the
freshly ground por-Si powder producing Hj. A zeta potential of +42 mV was measured for arginine-
terminated por-Si particles dispersed in deionized water. This positive value was consistent with
termination such that NH; groups extended away from the surface. Furthermore, this result was
confirmed by FTIR spectra, which suggested that arginine was bound to silicon through the formation
of a covalent Si-O bond.

Keywords: passivation; chemisorption; porous silicon; arginine; surface modification; mechanochemistry;
photoluminescence; zeta potential

1. Introduction

The versatile chemical and physical properties of porous silicon (por-5i), including its bio-
compatibility, allow for applications in sensors [1], energy storage [2,3], and biomedicine [4].
Porous silicon can be formed through a variety of different methods, including regenerative
electroless etching (ReEtching) [5], stain etching [6], and metal-assisted catalytic etching
(MACE) [7]. Electroless production of por-Si possesses the distinct advantage of the abil-
ity to etch Si particles of arbitrary shape and size, in particular, it can etch Si powders
irrespective of doping type and level [8].

The visible photoluminescence (PL) of mesoporous silicon arises from an interplay
of quantum confinement and surface passivation effects [9]. Its optical properties fa-
cilitate applications in biological imaging [10] excited with one or two photons [11,12],
in theranostics [13] and photodynamic therapy [14]. In addition, porous silicon has many
advantages in pharmaceuticals and drug delivery, as its pore size, pore volume, and specific
surface area are all tunable, which allow for the loading of a wide variety of organic species,
such as small molecule drugs [15], RNA [16], insulin [17], and peptides [18]. The surface
chemistry of Si is extremely versatile. It can be hydrophobic or hydrophilic and even
coated with antigens [19]. However, the biosafety of silicon is critical for its potential use in
medicine [20]. Flat silicon is already prevalent in medical devices, such as implants and
pacemakers, but is considered to be bioincompatible [21]. In comparison, nanostructured
porous silicon can be resorbed by the body and decomposed into silicic acid, a bioavailable
form of silicon that can be eliminated naturally [20]. Therefore, the relative nontoxicity of
nanostructured porous silicon in vivo coupled with its photoluminescence and the ability
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to load organic molecules onto its surface make the use of silicon nanoparticles viable in
the fields of pharmaceuticals, drug delivery, and biomedical imaging.

A promising but underutilized technique for the attachment of organic molecules to
porous silicon is the mechanochemical approach, i.e., grinding. Mechanochemistry is a
solid-state approach to chemical synthesis, enabled by external mechanical forces. Grinding
helps in initiating and stimulating chemical reactions between solids or between solids
and liquids. This method aims to reduce or even avoid the use of solvents in the synthesis
process and is often referred to as a method of “green chemistry” [22].

Conventional methods of reaction between organic molecules and silicon generally
involve multi-step reactions that proceed by refluxing in the presence of large quantities of
solvents that may themselves be toxic. Grinding, unlike refluxing, is easily scaled to large
volumes, and represents a more energy and time efficient, lower waste generating, simpler
synthetic method. Furthermore, the reaction remains inside an enclosed environment,
whose parameters, such as time of grind, media size, and media-to-sample ratio can easily
be adjusted to obtain the desired product [23]. On the other hand, mechanochemistry may
also introduce unwanted non-radiative defects to the Si powder. The continuous impact of
alumina grinding media on nanostructured silicon may induce stress, fractures, surface
defects, oxidation, and radical formation [24]. Therefore, there is a need to elucidate the
way grinding impacts the chemical properties of porous silicon and determine the response
of material properties, such as particle size and PL to grinding parameters.

To more fully exploit por-Si for applications in drug delivery, antimicrobial activity,
and biomedical imaging, it is crucial to find safe, affordable, and effective methods for the
preparation and synthesis of organic molecules bound to porous silicon. In this study, we
focus on the way grinding affects the size, photoluminescence, and chemical structure of
the resulting silicon nanoparticles. We present strong evidence that grinding produces
surface free radicals associated with Si dangling bonds. Furthermore, we demonstrate for
the first time that mechanochemistry can be used to initiate a reaction between arginine—a
water soluble molecule that is unsuitable for conventional hydrosilylation—and por-Si to
generate surface-modified samples with a positive zeta potential. Physisorbed arginine
strongly blueshifts PL. However, nonradiative traps generated during grinding reduce the
PL intensity.

2. Materials and Methods
2.1. Mechanochemical Synthesis

Metallurgical grade Si powder (MG-5i) was provided by Elkem Materials Inc. (Oslo,
Norway, Silgrain HQ, 99.6% purity, 800 um particles). This was ground and sieved to
select < 45 pm particles. The powder was washed by sonication for 60 min in a mixture
of 3% H,O, (all of the chemicals are from Fisher Scientific, ACS reagent, Pittsburgh, PA,
USA unless otherwise noted) and deionized water. Roughly, a 150 mL solution per 10 g
of Si powder was used for washing. Filtration isolated particles were in the size range of
2-45 pm. Grinding, both to produce the initial Si powder and for mechanochemistry, was
performed with 0.25-in or 1-in alumina cylinders (Burundum grinding media and grinding
jar from E.R. Advanced Ceramics Inc., East Palestine, OH, USA).

ReEtched porous silicon powders were produced as described in detail in other
research works [25]. Approximately 0.15 g of V,0s (Fisher Scientific certified) was dissolved
in 20 mL of concentrated HF (Acros Organics, 49% ACS reagent). In a separate beaker,
approximately 1 g of Si was dispersed in 20 mL of acetic acid (Fisher Scientific, ACS reagent).
Both beakers were placed in a thermally insulated ice/water bath to maintain a temperature
close to 0 °C during etching. The contents of the HF /V,0Os5-containing beaker were added
to the Si-containing beaker. While the mixture was agitated with a Teflon-coated magnetic
stir bar, 3.27 mL of HyO, (Fisher Scientific, 30% certified ACS or proportionally less Acros
Organics, 35% ACS reagent) was injected over 85 min (molar ratio HyO,:5i = 0.9:1) using
a KD Scientific, Legato 100 syringe pump. The etchant was decanted 5 min after the end
of HyO; injection. The etched Si was filtered in a polypropylene Biichner funnel using
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2.5 pm Whatman filter paper. The etched powder was rinsed with copious 0.2 M HCl(aq),
a minimal amount of ethanol, and then wetted with pentane. When Si appeared nominally
dry, the filter top was placed in a vacuum oven at ~50 °C and the oven was evacuated with
an alumina-trapped mechanical pump. After at least several hours, Si was removed from
the oven and weighed, then placed in a sealed glass vial.

To perform mechanochemistry, grinding was performed using a 1:1 ratio of Si powder
to arginine (approximately 0.2 g each). The size 000 Roalox grinding jar was more stable and
ground more efficiently with the 1-inch media. To reduce oxidation, prior to grinding, all of
the reagents, including grinding media and the grinding jar, were dried in a vacuum oven
overnight at 50 °C. In addition, the jar was purged with argon gas prior to the addition of
reagents, and ~2 mL pentane was added before sealing. The grinding procedure involved
filling the cylindrical jar with grinding media and reagents and rotating the jar around its
longitudinal axis.

Periodically during mechanochemistry, a sample was removed from the vessel and
drop casted onto a Si wafer, adhering to a carbon adhesive disk (SPI Supplies, West Chester,
PA, USA) affixed to a Si wafer or retained as powder for analysis. Drop casting was
performed by adding enough ethanol to form a film over the wafer, coating it with the
powder, and allowing for the evaporation of ethanol. After each sample was taken, ~2 mL
pentane was added before grinding was continued.

After mechanochemistry, the powders were collected from the grinding jar and sepa-
rated from the alumina media by rinsing. Several solvents including water, pentane, and
ethanol were tested for their ability to avoid oxidation and overall rinsing effectiveness. In
the separation process, ground powders dispersed in ethanol or water were spun down
with a centrifuge (Eppendorf Model 5810 R, Hamburg, Germany) at 1800-2400 relative
centrifugal force (rcf) for 15-30 min until the powder sedimented.

2.2. Dynamic Light Scattering

To determine the particle size distribution and zeta potential of the powders, a Zeta-
sizer Pro (Malvern Panalytic, Malvern, UK) was used to perform dynamic light scattering
(DLS). The location in the jar from which the sample was taken may have affected the
size distribution determined by DLS. For example, powder collected from the lid of the
grinding jar versus powder collected from the bottom may have different sizes. Therefore,
sampling was taken from multiple locations in the jar and mixed prior to characterization.
Si particles were dispersed by sonication for 1 min in ethanol prior to size determination.
Scanning electron microscopy (FEI Quanta 400 SEM, Hillsboro, OR, USA) was used to
characterize the particle shape.

2.3. Photoluminescence

A Cary Eclipse fluorescence spectrometer (Agilent Technologies, Inc., Santa Clara, CA,
USA) with a solid sample holder attachment was used to analyze the photoluminescence
of the nanoparticles. The excitation wavelength was set to 340 nm, with the excitation slit
set to 5 nm and the emission slit set to 10 nm, unless noted otherwise. For measurement, a
Si wafer with drop cast powder or powder affixed to a carbon adhesive disk was placed on
the solid sample mount inside the fluorimeter.

2.4. Infrared Spectroscopy

A Nicolet iS50 Fourier-transform infrared spectrometer (FTIR) (Thermo Fisher Inc.,
Waltham, MA, USA) equipped with a diffuse reflectance (DR) or attenuated total reflectance
(ATR) attachment was used to collect IR spectra and confirm the chemical termination
of silicon surfaces. Spectra were acquired with 4 or 8 cm™! resolution averaging over
64 or 128 scans. IR spectra were simulated using Spartan Quantum Chemical Software
(Wavefunction Inc., Irvine, CA, USA) [26]. Calculations were performed on a SizoHzg
cluster using the density functional theory (DFT) with a 6-31G* basis set and a wB97X-D
exchange functional. The Si cluster exposed a dihydride-terminated Si(001) surface with
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one adsorbed H atom replaced by a molecular fragment originating from arginine bound
at either end of the molecule. All of the Si atoms at the edge of the cluster are terminated
with H atoms that are assigned the same mass as a Si atom. This engenders the tetrahedral
coordination of all Si atoms without introducing spurious dipole moments. Moreover, it
decouples the vibrational motion of the H atoms terminating the Si(001) surface from the
heavy H atoms in order that spurious vibrational modes are not introduced.

3. Results
3.1. Rinsing and Separation

In a typical rinsing cycle, 0.5 g ground Si is removed from the grinding jar with 150 mL
ethanol or water. This is distributed evenly into six 50-mL centrifuge tubes, capped after
piercing a hole in the cap, and centrifuged at 2400 rcf to pellet the powder. To wash arginine
from a pelleted sample, typically three rinsing cycles are performed. First, the pellet is
dispersed in 25 mL water and centrifuged. Then, the pellet is dispersed two additional
times in 10 mL water and centrifuged. Thereafter, the sample is ready for characterization
with DLS or for zeta potential measurement. If a dry sample is required, the sample is
dispersed in 10 mL of ethanol and centrifuged prior to drying.

When water was used to rinse ground Si powder from the grinding jar, significant
bubbling was observed from the dispersion. This was observed for grinding both with and
without arginine. Sufficient gas was evolved to increase the pressure within a centrifuge
tube to the point of rupture if a hole was not pierced in the cap. We confirmed that the
gas evolved was H, by detection with an electronic leak detector (model 28500 Restek
Corporation, Bellefonte, PA, USA).

Ethanol was highly effective in the rinsing and separation process. Significant bubbling
was not observed and no H, gas was detected for grinding both with and without arginine.
Therefore, ethanol should be used in the rinsing and separation process if oxidation is to be
avoided. However, arginine is not soluble in ethanol. Therefore, if unreacted, arginine is to
be removed and water must be used. In this case, pentane was not found to be an efficient
rinsing agent.

3.2. Particle Size and Zeta Potential

Dry ReEtched por-Si powder is hydrophobic and cannot be dispersed in water to mea-
sure the zeta potential of the H-terminated surface in the absence of surfactants. Grinds of
pure porous powder and por-5i + arginine were performed with samples taken periodically.
Powder that was ground with arginine acted as “sticky” and aggregated readily unless
excess arginine was removed. Therefore, the particle size of ground washed por-5i was
consistently smaller than the mixture in the presence of excess arginine. Sonication for
1 min dispersed the powders into the solution and separated these aggregates to some
degree prior to measurement. However, repeatedly performing the DLS experiments one
after another indicated that aggregation in the presence of arginine was occurring on the
timescale of data acquisition.

The particle size distribution obtained from grinding was initially extremely broad.
Settling, rinsing, and repeated steps of centrifugation were used to isolate particles of
different size distributions in the supernatant or the pellet. After 4 h of grinding while still
dispersed in ethanol, essentially all of the particles exhibited sizes below 4 pm with ~80%
of particles exhibiting sizes below 500 nm. When redispersed ultrasonically in ethanol and
then centrifuged at 2400 rcf for 30 min, the supernatant exhibited a Z-average particle size
of 230 nm with PDI = 0.107. After three cycles of rinsing with water, centrifuging, and
redispersing, the supernatant was characterized by a Z-average of 113 nm with PDI = 0.164.
As shown in Figure 1, SEM analysis confirmed that Si particles were initially quite angular
with sharp edges and smooth surfaces. After etching and grinding, the particles were sig-
nificantly more irregular with additional rounded edges and a good amount of embedded
material that made the surfaces rougher.
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Figure 1. (a) An SEM micrograph of the starting material, which was unetched, washed with
metallurgical grade Si powder. (b) Si particles after etching and grinding without arginine.

As shown in Figure 2, the surface of arginine-modified por-Si was positively charged
with a mean zeta potential of +42 mV. This result is quite interesting since, as we shall see
below, significant oxidation of por-Si occurred during mechanochemistry. Yakin et al. [27]
have reported that porous silica nanoparticles have a negative zeta potential in aqueous solu-
tions near neutral pH. The positive zeta potential that we observed at neutral pH strongly
supports the conclusion that the surfaces created by mechanochemical modification with
arginine were bound in a way that the NH; end of the molecule was pointing away from
the surface. Evidently, the observed oxidation to form Si-O bonds is not linked to the
formation of an appreciable amount of surface silanol groups.
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Figure 2. Zeta potential measured for por-Si coated with arginine after grinding for 4 h from a sample
with a Z-average particle size of 230 nm.

3.3. Photoluminescence

Without grinding, the photoluminescence of ReEtched por-Si powder exhibited strong
red-orange emission. The PL spectrum displayed in Figure 3 was fitted to a skew Gaus-
sian [25] with an intensity of A = 59 a.u., a peak wavelength of Apax = 629 nm, and a
width of o = 154 nm. Grinding without arginine led to virtually complete quenching of
the PL (not shown). Coating the por-Si with arginine (melting point = 244 °C) by heating a
mixture of arginine + por-5i to 250 °C under flowing N, significantly blue-shifted the peak
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Intensity / a.u.

to 565 nm with a slight reduction in intensity A = 39 a.u., while making the peak narrower
o =137 nm. Grinding for 2 h or 4 h in the presence of arginine did little to the peak position
or width (Amax ~ 555 nm, o ~ 123 nm). However, while grinding for 2 h increased the PL
intensity, A = 111 a.u., grinding for 4 h led to a substantial reduction in intensity, A = 19 a.u.
By rinsing to remove any arginine that was not covalently bound to the surface, the peak
position did not change substantially, Amax ~ 568 nm, whereas the PL intensity was greatly
reduced, A = 3 a.u. and the peak broadened somewhat (¢ = 144 nm). This indicated that
physisorbed arginine was capable of significantly modifying the PL response of por-Si.
However, the non-radiative traps induced by prolonged grinding, particularly after rinsing
to remove physisorbed arginine that had not become covalently bound, were detrimental
to the PL intensity. The blueshift in the presence of arginine is reproducible from sample to
sample. Similarly, the almost complete quenching after prolonged grinding and rinsing
away physisorbed arginine was consistently observed. However, the absolute intensity
fluctuated from sample to sample, and we have not tried to quantify trends in the intensity.
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Figure 3. Comparison of the photoluminescence of por-Si powder before grinding (red curves, both
as-etched and coated with arginine), por-Si after grinding 2 h or 4 h with arginine (blue curves), and
por-Si powder ground with arginine coated with covalently bound arginine, but after rinsing away
physisorbed arginine (green curve).

3.4. FTIR

To confirm the covalent attachment of arginine to the por-5i surface, we used the
spectroscopic analysis with FTIR combined with quantum chemical calculations to support
the assignment and interpretation of the spectra. As shown in Figure 4 and consistent
with the previous analysis [25,28], the as-etched surface of ReEtched por-5Si was primarily
covered with a combination of SiH and SiH; species adsorbed in sites similar to Si(001)
and Si(110) planes. The presence of adsorbed SiH and SiH; moieties was confirmed by the
broad feature in the 2070-2100 cm™' range, which peaked at 2085 cm™! and was associated
with Si-H stretching modes. The sharp 900 cm™! feature was assigned to the SiH, scissors
mode, while a broader low wavenumber peak consisted of overlapping features at 616,
655, and 715 cm™! associated with a variety of SiH and SiH; wags. These assignments
were consistent with previous reports, as well as a comparison of the vibrational spectrum
calculated for a fully H-terminated Siz;Hsg cluster using DFT. Due to the assumption
of harmonic behavior, it is well-known that these calculations tend to overestimate the
wavenumber of vibrations. A redshift of approximately 75-85 cm™ brought the calculated
spectra into agreement with the observed spectra on the H-terminated surface. The smaller
peaks associated with the carbonyl stretch at 1705 cm™ and C-H stretches at 2850 and
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2920 cm™! were assigned to acetic acid fragments bound through an Si-O linkage. Acetic
acid is used as a surfactant and solvent during ReEtching. The lack of a feature in the O-H
stretching region above 3000 cm™ confirmed the formation of an Si-O linkage.

After grinding without arginine, the Si-H region was broadened due to the disorder
and insertion of O atoms into the Si-Si back bonds under Si-H groups, which is known to
blueshift the peaks. The SiH2 scissors peak was also broadened. The peak near 1040 cm™!
was associated with Si—O stretches and confirmed partial oxidation of the sample. After
grinding with arginine for 4 h followed by rinsing with water and drying, the FTIR spectrum
of por-Si exhibited significant modification. The Si-H stretching region decreased in
intensity while broadening in width. The loss of intensity was consistent with the removal
of adsorbed H atoms through substitution by other adsorbates. Broadening indicated
greater inhomogeneity in adsorption sites introduced by disorder, defects, and possibly
the introduction of Si(111) facets by mechanical cleavage during grinding, which results in
particle size reduction. Whereas 5i(001) and 5i(110) facets are the most likely to be produced
by etching, Si(110) and Si(111) facets are the most likely to be produced by cleavage [29].
Moreover, significant oxidation of por-Si was observed as indicated by the large peak
at 1038 cm™.

— Ground with arginine
—— ReEtched H/por-Si

— Ground without arginine Si-0

0.05 Abs units

Absorbance

SiH, scissors

1
N Lack of OH C-H

4

I I I I I I
3500 3000 2500 2000 1500 1000

-1
Wavenumber / cm

Figure 4. FTIR spectrum from 1200-3600 cm™'. The red spectrum in the middle belongs to the
as-etched por-Si. The green spectrum at the bottom belongs to por-Si ground for 4 h without arginine.
The upper blue spectrum is obtained after a 4-h grind of por-Si with arginine. The sample ground
with arginine was rinsed to remove excess and physisorbed arginine. CO, and H,O features are due
to incomplete purging of atmospheric gas.

To interpret the FTIR spectra, we simulated the vibrational spectra for SispH3¢ clusters
from which one H atom was removed from the cluster and one H atom was removed
from arginine, NH,RCOOH, to produce an adsorbate that was bound through the N end,
Si-NHRCOOH(a) or O end, Si-OOCRNH),(a). Here, we refer to the surface-bound end of
the molecule as the o end and the end of the adsorbed molecule that points away from the
surface as the w end. The resulting structures are shown in Figure 5.
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(a) Si-N linkage (b) Si-O linkage

Figure 5. (a) Optimized geometry of arginine bound to a Siz; cluster with an H-terminated Si(001)
surface through an Si-N linkage created by attachment through the -NH, group with loss of Hj.
This geometry creates an adsorbate with a carboxyl group -COOH at its w terminus. (b) Optimized
geometry of arginine bound to a Siz, cluster with an H-terminated Si(001) surface through an Si-O
linkage created by attachment through the -OH group with loss of Hy. This geometry creates an
adsorbate with an amine group —-NHj at its w terminus.

The simulated FTIR spectra resulting from these calculations are shown in Figure 6. Of
note, these spectra were simulated for a single isolated adsorbate. Therefore, the broadening
due to lateral interactions and adsorption site inhomogeneities was absent. The most salient
features to emphasize are that the N-H stretches (3400-3500 cm™!) are extremely weak,
while the C=N stretch (1683 or 1641 cm™), NH, scissors (1582 cm™), and NH or OH wag
(1404 or 1420 cm™) are quite strong in the Si-O or Si-N configurations, respectively. The
most distinctive differences are that the Si-N configuration with COOH w end should
exhibit a strong O-H stretch at 3276 cm™! and a strong and distinct C=0 stretch (1804 cm™).
In contrast, the Si—O configuration with an NH; w end is missing the O-H related feature.
In addition, the C=0 stretch at 1723 cm™ is not only significantly weaker, but also less
distinct since it is not well-resolved from the C=N stretch. By comparison of the simulated
spectra with the full spectrum of Figure 4, we concluded that mechanochemistry fostered
the attachment of arginine to produce an Si-O linkage and NH; terminus.

(a) — Si-NHCgH;,N30,

O-H

Absorbance

NH, scissors
NH wag

1 (b) — Si-OCgH2N,O

_ M

T T T
3500 3000 2500 2000 1500 1000

Wavenumber / cm™'

Figure 6. (a) Simulated FTIR spectrum of Si-N bound arginine. Note the prominent stretch of free
OH at 3276 cm™ and the distinct C=0O carbonyl stretch at 1804 em™!. (b) Simulated FTIR spectrum of
Si-O bound arginine. Note the more congested region from 1400-1700 cm™.
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4. Discussion

Mechanochemistry reduced the mean particle size of por-Si powder. This occurs by
cleavage of the polycrystalline powder, which exposes Si surface atoms with dangling
bonds. The presence of these dangling bonds initiated further chemistry. First, we observed
this when water was used to rinse ground por-Si from the grinding jar, which generated
Hj gas. One might consider the oxidative displacement of H, by water to produce H
following the reaction:

SiH(a) + HyO(1) — SiOH(a) + Hy(g). 1)

However, the H-terminated surface is stable and requires activation in the form
of heat [30,31], light [32,33], bias [34], strong oxidant [35], microwave [36,37] or radical
initiator [38] as has been reviewed recently [39]. Therefore, Rxn. (1) does not occur at an
appreciable rate at room temperature. In the absence of any other form of activation, it
must be the presence of highly reactive dangling bonds that initiates reactivity to produce
H,. Dissociative adsorption on two dangling bond sites (on a single Si atom or two
adjacent sites),

2Sie(a) + H,O(l) — SiH(a) + SiOH(a), 2)

does not lead to Hy desorption. Therefore, it must be followed by a second step involving a
condensation reaction of neighboring silanol groups, as follows:

2SiOH(a) — 25i0(a) + Ha(g). 3)

Condensation of Si-OH to Si—O-5i bridges and substoichiometric SiO;_, nuclei has
been proposed previously to explain the initial stages of oxidation of Si by water [40,41].

FTIR spectra and the positive zeta potential suggested the attachment of arginine by
the formation of an Si-O bond to form Si-OOCRNHj;(a). In analogy to Rxn. (2), a plausible
reaction to form this species is as follows:

2Sie(a) + HOOCRNH;(s) — SiH(a) + Si-OOCRNH;(a). 4)

The resulting adsorbate structure is shown in Figure 5b. Interestingly, the total energies
calculated with DFT in the two configurations differ by an inconsequential 1 k] mol~!.
Therefore, the prevalence of the NH;-terminated species must result from the kinetically
favored formation of the Si-O linkage compared to the Si-N linkage.

Prior to grinding, ReEtched por-Si exhibited a strong red-orange PL due to the good
electronic passivation provided by the predominantly H-terminated surface. The require-
ment for two adjacent Sie sites or a diradical site may explain the strong quenching of PL
upon grinding, as numerous isolated dangling bond sites will remain after the reaction with
arginine. Dangling bonds will act as non-radiative traps. The addition of pentane during
grinding did not prove effective in providing H atoms to terminate these sites, which may
require the addition of a terminal alkene for this passivation step.

Physisorbed arginine shifted the PL intensity maximum from red orange (630 nm)
to green (565 nm) with little loss of intensity. The origin of the blueshift is unclear. How-
ever, it is clear that physisorbed arginine was quite efficient at passivating non-radiative
defects present on the surface. The peak position remained the same in the presence of
covalently bound arginine. However, the greatly reduced PL intensity after rinsing to
remove physisorbed arginine was ascribed to the uncovering of surface defects. Removal
of physisorbed arginine caused non-radiative traps to no longer be passivated. As a result,
finding methods to passivate these non-radiative traps is currently investigated.

5. Conclusions

In the present paper, we have shown that mechanochemistry can modify H-terminated
porous Si with a covalently linked arginine fragment. The modified surface exhibits a
positive zeta potential in neutral aqueous solution due to the NH; group at the w end
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of the adsorbate. Arginine is not suitable for hydrosilylation, which is commonly used
to chemically modify H-terminated por-Si, due to its low solubility in nonpolar high-
boiling point organic solvents. Herein, the demonstrated mechanochemical route should
be generally applicable to other polar organic compounds and is easily scalable to large
volumes. In future work, we will investigate (1) the dependence of photoluminescence
fading by pursuing methods to passivate the non-radiative traps introduced by grinding,
and (2) the dependence of PL intensity and peak wavelength shift on the presence of
physisorbed molecules. Furthermore, we will investigate how passivation with arginine or
other moieties affects the loading of molecules, e.g., pharmaceuticals, into porous silicon.
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