
Revisiting Email Forwarding Security under the Authenticated
Received Chain Protocol

Chenkai Wang
University of Illinois at Urbana-Champaign

USA
chenkai3@illinois.edu

Gang Wang
University of Illinois at Urbana-Champaign

USA
gangw@illinois.edu

ABSTRACT

Email authentication protocols such as SPF, DKIM, and DMARC

are used to detect spoofing attacks, but they face key challenges

when handling email forwarding scenarios. Recently in 2019, a new

Authenticated Received Chain (ARC) protocol was introduced to

support mail forwarding applications to preserve the authentica-

tion records. After 2 years, it is still not well understood how ARC

is implemented, deployed, and configured in practice. In this paper,

we perform an empirical analysis on ARC usage and examine how it

affects spoofing detection decisions on popular email provides that

support ARC. After analyzing an email dataset of 600K messages,

we show that ARC is not yet widely adopted, but it starts to attract

adoption from major email providers (e.g., Gmail, Outlook). Our

controlled experiment shows that most email providers’ ARC im-

plementations are done correctly. However, some email providers

(Zoho) have misinterpreted the meaning of ARC results, which can

be exploited by spoofing attacks. Finally, we empirically investigate

forwarding-based łHide My Emailž services offered by iOS 15 and

Firefox, and show their implementations break ARC and can be

leveraged by attackers to launch more successful spoofing attacks

against otherwise well-configured email receivers (e.g., Gmail).

CCS CONCEPTS

· Security and privacy→ Security protocols.

KEYWORDS

Email Forwarding Security; Spoofing Attack; ARC

ACM Reference Format:

Chenkai Wang and Gang Wang. 2022. Revisiting Email Forwarding Security

under the Authenticated Received Chain Protocol. In Proceedings of the

ACM Web Conference 2022 (WWW ’22), April 25ś29, 2022, Virtual Event,

Lyon, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3485447.3512228

1 INTRODUCTION

Email spoofing is commonly used in phishing and social engineer-

ing attacks where the attacker impersonates the sender address of a

trusted entity [16, 24]. To prevent and detect email spoofing, various

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW ’22, April 25ś29, 2022, Virtual Event, Lyon, France

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512228

email authentication protocols (e.g., SMTP extensions) have been

proposed and standardized in the past decades including SPF [11],

DKIM [5], and DMARC [12].

While SPF, DKIM, and DMARC can work together to detect

spoofing, they still face challenges to handle mail forwarding sce-

narios. Forwarding is a key mechanism to enable applications like

mailing lists. More recently, to protect the privacy of personal email

addresses, forwarding-based email relay services are introduced.

This includes the most recent łHide My Emailž feature in iOS 15,

which allows users to use a random iCloud alias to register online

accounts without revealing their true email addresses [2]. During

forwarding, emails are sent through one or multiple forwarders

while preserving the original sender’s information. During this

process, however, key authentication information cannot be carried

over, and thus it often leads to authentication failures [9].

To preserve the authentication records during mail forwarding,

a new protocol called Authenticated Received Chain (ARC) [1] was

published under RFC8617 in July 2019. ARC allows an intermediate

mail server to sign the message’s original authentication results so

that even when SPF or DKIM fails at the receiver end, the receiver

can still check the chain of authentication records to determine

whether the message can be accepted. While it has been two years

after the initial introduction of ARC, little is known about how ARC

is adopted, implemented and configured in practice. Most existing

studies have been focused on the more established protocols such

as SPF, DKIM, and DMARC [6, 8, 10, 21, 23], and this paper seeks

to fill in the gaps.

Our Questions. We focus on email forwarding scenarios and per-

form an empirical analysis of the real-world ARC implementations.

We seek to answer the following questions. First, how widely are

ARC adopted among email providers? Second, is the ARC protocol

correctly implemented and deployed? Third, whether and how do

email providers use ARC information to make spoofing detection

decisions? To answer these questions, we gather and analyze email

datasets, and design controlled experiments to test real-world email

services as well as the recently introduced łHideMy Emailž services.

Our analysis leads to several key findings.

Analysis and Findings. First, we find the ARC is not widely

adopted yet. Unlike SPF/DMARC, the adoption of ARC is not di-

rectly measurable using public DNS records [10, 23]. Instead, we

work with an industry collaborator to analyze a dataset of 674,564

email headers (collected in 2020 and 2021) to look for signs of ARC

adoption. In 2020, out of 10,740 unique email domains analyzed,

ARC domain keys are only found in 6 sender/forwarder domains.

The observation is similar in the 2021 data. Then we analyze pop-

ular public email providers and find that Gmail, Outlook, Zoho,

Fastmail, and Pobox have adopted ARC. As major email providers

WWW ’22, April 25ś29, 2022, Virtual Event, Lyon, France Chenkai Wang and Gang Wang

such as Gmail start to adopt ARC, we do not rule out the possibility

that ARC’s adoption rate would increase in the future.

Second, we find that ARC results have different impacts on differ-

ent email providers for spoofing detection. Specifically, we design

and run a series of controlled experiments by sending spoofing

emails to our own accounts within Gmail, Outlook, Fastmail, and

Zoho.We emulate the scenario where an attacker aims to spoof a tar-

get domain that is protected by DMARC. By forging an ARC chain

(with authentication results set to łpassž), we examine how email

providers would make decisions. We find that Gmail responded

correctly under all conditions; Fastmail and Outlook do not always

follow the DMARC policy but they are also not influenced by ARC.

On Zoho, however, we observe that a seemingly valid ARC chain

(from an untrusted party) can help spoofing emails to get into their

inbox and remove warnings.

Third, during our experiment, we do not find major implemen-

tation errors in the ARC protocol in Gmail. However, we find that

Outlook, Zoho and Fastmail do not seal the DKIM signature in

ARC sets when sending/forwarding emails (against RFC8617 rec-

ommendations [1]). After analyzing a few other open-sourced ARC

implementations, we find several issues in the existing OpenARC

codebase and the ARCmodule of Mailman3 (a mailing list manager).

Finally, we analyze email relay services including iCloud łHide

My Emailž and Firefox Relay, and find that they implement the

forwarding in a way that would break the ARC chain. Their current

designs do not perform careful authentication and also take away

the ability of checking authenticity of the original senders from

the end receivers. Through controlled experiments, we show that

attackers can leverage their relay services to conduct spoofing

attacks against Gmail, successfully sending spoofing emails into

Gmail’s inbox (that would be otherwise rejected).

Contributions. In summary, we have three key contributions:

• First, we analyze a large email dataset and popular email providers

to understand ARC adoption in practice.

• Second, we run controlled experiments to examine how email

providers use ARC results to make spoofing detection decisions.

The results reveal potentially incorrect interpretations of ARC

results from email providers.

• Third, we analyze łHide My Emailž services to understand how

their email forwarding are implemented. We show the current

implementations can be used to assist spoofing attacks.

As ARC is going through the trial phase in practice, the main

contribution of our work is to empirically examine the gaps between

the protocol specification and real-world executions, and point out

common mistakes when using ARC results to make decisions.

2 BACKGROUND AND MOTIVATION

2.1 Email Spoofing Attack

Simple Mail Transfer Protocol (SMTP) [18] is the standard protocol

for email delivery over the internet. Introduced in 1982, SMTP does

not include any built-in security features. As a result, adversaries

can spoof an arbitrary sender address to send emails on their behalf.

Suppose the impersonation target is łinfo@bank.comž, there are

twoways to implement spoofing. First, the adversary canmodify the

łMAIL FROMž field in the SMTP protocol and use łinfo@bank.comž as

the sender address. This address, by default, will also be inserted as

the łReturn-Pathž and łFromž in the email header. łReturn-Pathž

determines the destination address of the reply message, and the

łFromž address will be eventually displayed on the user interface (UI)

of the receiver’s email client. Second, alternatively, the adversary

can directly modify the łFromž field in the email header [20].

2.2 Security Extensions against Spoofing

In the past decades, security extensions have been introduced to

defend against email spoofing attacks:

SPF. Sender Policy Framework (SPF) [11] uses IP addresses to au-

thenticate email senders. Using the same example above, to prevent

spoofing, administrators of łbank.comž can publish a DNS record

to declare which IP addresses are valid to send emails on their

behalf. When the receiving server receives an email whose łMAIL

FROMž address is claimed to be łbank.comž, the server can query

bank.com’s DNS record to check if the declared IP address matches.

DKIM. DomainKeys Identified Mail (DKIM) [5] is a public-key-

based protocol. The composer of the email will sign the (selected)

header fields and the message body with its domain key (e.g., a pri-

vate key associated with łbank.comž). The generated signature will

be attached to the email header. When a receiving server receives

this email, the server can query the DNS to obtain the public key

of łbank.comž to verify the signatures. Compared with SPF (which

only focuses on the authenticity of the sender), DKIM additionally

provides an integrity check on the email message.

DMARC. Domain-based Message Authentication (DMARC) [12]

is designed to work together with SPF and/or DKIM to holistically

verify the sender authenticity, handle authentication failures, and

report results back to senders. One of the key contributions of

DMARC is that it fixes a spoofing vulnerability of SPF and DKIM.

More specifically, SPF only inspects łMAIL FROMž (for email delivery)

but does not consider the łFromž field in the header (the address

that will be displayed to users on the UI). As a result, the attacker

may use an łattacker.comž (under its control) as the łMAIL FROMž

to pass SPF, while setting the łFromž field as łinfo@bank.comž

to fool users [9]. Similarly, to bypass DKIM, the attacker can use

its own domain key associated with łattacker.comž to sign the

message while setting the łFromž field as łinfo@bank.comž [9].

DMARC fundamentally solves this problem by requiring all domain

identifiers to be aligned, including the domain name of the DKIM

key, łMAIL FROMž, and the łFromž in the header.

Recent measurement shows the adoption rates of SPF, DKIM,

and DMARC protocols have been increasing, but there are still

a large number of domain names that have not adopted (or only

partially adopted) them [6, 8, 10, 15, 23].

2.3 Email Forwarding and ARC

Unfortunately, existing security extensions are not working well

with email forwarding [9]. Email forwarding is a key mechanism

to enable mailing list functions, and it is also used by individuals

who need to automatically forward emails from one email provider

to another (for convenience or privacy). Figure 1 illustrates an

email forwarding process. Suppose f.com is a mailing list, when

Revisiting Email Forwarding Security under the Authenticated Received Chain Protocol WWW ’22, April 25ś29, 2022, Virtual Event, Lyon, France

1

s.com

Sender Client Receiver Client

alex@s.com bob@r.com

Sender

Server 2

f.com

Forwarder

Server 3

r.com

Receiver

Server 4

SMTP SMTP

Figure 1: The email forwarding process.

alex@s.com sends an email to the mailing list, f.com will automat-

ically forward the message to all its subscribers (bob@r.com is one

of the subscribers). While the receiver Bob still sees łalex@s.comž

is displayed as the sender, it is more difficult to verify the sender

authenticity.

First, SPF is broken bymail forwarding. From the receiver r.com’s

perspective, the immediate sending server is f.com whose IP ad-

dress will not match with the original sender s.com’s SPF record.

Forcefully modifying the łReturn-Pathž to be łf.comž can pass

SPF but will cause DMARC failure due to identifier misalignment.

Second, DKIM has a chance to be broken too as mailing lists

often need to modify the original message. A common modification

is to add a footer to include the name of the mailing list and/or a

link for unsubscription. Some mailing lists also help to convert all

hidden hyperlinks into displayed links in the email body. Due to

the modification, the original DKIM signature becomes invalid and

thus DMARC will fail.

Authenticated Received Chain (ARC) Overview. ARC proto-

col (RFC8617) [1] was recently published in 2019. ARC allows an

intermediate mail server (a mailing list or a forwarding service) to

sign the message’s original authentication records. In this way, the

receiving server can validate the message even when the email’s

SPF or DKIM fails due to the intermediate server’s processing. ARC

creates a chain of authentication records when an email message is

forwarded by multiple intermediate servers, as shown in Figure 2.

During each forwarding hop, an łARC Setž is added to the chain.

This is done by (1) validating the records in the previous ARC Sets

(validation process), and (2) signing any new changes introduced

to the email before sealing the entire chain (sealing process).

ARC Set is the building block of the chain. Each ARC Set has an

instance number (i.e., sequence number) which increases by 1 after

each ARC-participating hop. It also contains three header fields:

• ARC-Authentication-Results (AAR) header holds the authen-

tication results (SPF, DKIM, DMARC) produced by the current

server at the message arrival time. This allows the final receiver

to trace the authentication results at each hop, especially the first

hop that involves the original sender.

• ARC-Message-Signature (AMS) header contains the signature

of selected email headers (excluding ARC headers) and the mes-

sage body signed by the current server.

• ARC-Seal (AS) header contains a signature for all łARC-ž header

fields as a whole (to preserve the integrity of the ARC Chain). It

also contains the current łchain validation statusž (łcvž).

In the following, we use Figure 2 to explain how the 𝑖𝑡ℎ hop server

performs the validation process and the sealing process.

ARC Validation Process. When the 𝑖𝑡ℎ hop server receives an

incoming message, it needs to validate the ARC Sets from previous

hops. It first collects all of the previous ARC Sets on the chain,

and checks their ARC-Seal (AS) headers. If any of the previous

AS headers has the chain validation status (cv) marked as łfailž,

it means the chain has already failed, and thus there is no point

AAR (i) = {SPF, DKIM, DMARC auth. result (ith hop)}

AMS (i) = {Signature of current msg body and headers}

AS (i): = {Signature of ARC chain, chain validity status}

AAR (i-1)

AMS (i-1)

AS (i-1)

...
AAR (1)

AMS (1)

AS (1)

ith ARC Set(i-1)th ARC Set1st ARC Set

Figure 2: ARC chain structure. Each ARC set contains

an ARC-Authentication-Results (AAR), an ARC-Message-

Signature (AMS), and an ARC-Seal (AS).

to continue the process. Also, if there is any missing ARC Set on

the chain (based on instance numbers), the validation process will

return a łfailž status immediately. Finally, the server will check the

ARC-Message-Signature (AMS) from the most recent (𝑖 − 1)𝑡ℎ hop

to verify the integrity of the non-ARC headers and the email body.

If all of the above integrity checks are successful, the current chain

validation status is set to łcv=passž (łfailž otherwise).

Sealing Process. If this server (e.g., a mailing list) needs to modify

the email message (e.g., adding a footer), the modification must be

done before the sealing process. To perform sealing, the server first

prepares the ARC-Authentication-Results (AAR) header by storing

the current 𝑖𝑡ℎ hop’s authentication results for SPF, DKIM, and

DMARC to its AAR header. Second, the server prepares the ARC-

Message-Signature (AMS) header by signing the email body and

other non-ARC headers. Third, the server prepares the ARC-Seal

(AS) header by collecting every ARC-* header in the current email

(including the new AAR and AMS generated above), sorting them

in an ordered list, and signing its hash with this 𝑖𝑡ℎ hop server’s

private key. Also, this ARC-Seal (AS) header includes the current

chain validation status (cv) produced by the validation process above.

Checking ARC at the Receiver End. From the final receiver’s

point of view, if SPF, DKIM, or DMARC fails at the last hop (e.g,

due to message modification during forwarding), the receiver can

then check the ARC Sets. It can use the ARC chain to trace back to

the SPF/DKIM/DMARC authentication results at the first hop when

authenticating the original sender. Also, email modifications can be

analyzed along the chain using the AMS headers. As pointed out by

the protocol specification and other analysis articles [1, 13], ARC

has an important assumption, that is, the forwarders are trusted

(i.e., they follow the ARC protocol). In this paper, we will examine

how the ARC protocol is interpreted and implemented in practice.

3 PROGRESS OF ADOPTION

We start by exploring the real-world adoption of ARC among email

providers. Determining whether a given mail domain has adopted

ARC is challenging using existing measurement methods. Prior

works have examined the adoption rates of SPF and DMARC by

scanning their records in the public DNS [8, 10, 15, 23]. In compar-

ison, DKIM’s adoption rate is more difficult to measure because

querying a domain’s DKIM key requires knowing the łselectorž

information (which is not public knowledge). A recent work over-

comes this challenge by guessing common selectors used for DKIM

keys [23]. ARC also hosts its domain key using DNS with a similar

mechanism like DKIM (ARC may even use the same DKIM key).

This creates a problem: even if we find out a given domain hosts

a domain key on DNS, it does not mean the domain has adopted

ARC (i.e., it could be a DKIM key). As such, to examine whether a

WWW ’22, April 25ś29, 2022, Virtual Event, Lyon, France Chenkai Wang and Gang Wang

Count Domain Key Key Length

94,580 arcselector9901._domainkey.microsoft.com 2048 bit

38 arc-20160816._domainkey.google.com 1024 bit

7 arc-20200618._domainkey.improvmx.com 1024 bit

4 arc-201807._domainkey.one.com 1024 bit

2 zohoarc._domainkey.zohomail360.com 1024 bit

1 zohoarc._domainkey.zohomail.eu 1024 bit

1 key201809._domainkey.1-hostingservice.com 1024 bit

Table 1: ARC keys found in 407,357 email messages in the

2020 dataset. The keys are ranked by the number of associ-

ated messages.

given domain has adopted ARC, we need to collect email messages

sent/forwarded by this domain and analyze the header informa-

tion. We perform such analyses with (1) an email dataset obtained

from an industry partner (with IRB approval); and (2) public email

services where we can register accounts to send/receive emails.

3.1 Analyzing an Email Dataset

We analyze an dataset (674,564 email headers) working with our

collaborator atmailsac.com (a disposable email service). The dataset

contains two parts collected from 2020 and 2021, respectively.

Dataset 2020. This dataset contains the header information for

407,357 incoming email messages sent/forwarded to mailsac.com

in November 2020. Among the 407,357 email headers, we observe

10,740 unique sender domain names (that send/forward emails to

mailsac.com). Among them, 360,542 (88.5%) emails contain DKIM

keys and only 94,633 (23.2%) emails contain ARC keys. After re-

moving duplicated keys, we find a total 6,189 unique DKIM keys,

and only 7 unique keys for ARC. This suggests that ARC adoption

rate is far lower than that of DKIM.

Table 1 shows the 7 ARC keys we find, used by 6 different ser-

vice providers, including Microsoft Outlook, Google Gmail, Zoho,

one.com (a web hosting service), improvmx.com (an email alias

service), and e-goi.com (a marketing service). The vast majority of

ARC-enabled messages are either sent from or forwarded through

Microsoft (Outlook).

Dataset 2021.We use a more recent dataset collected in November

2021 to double check the results. This set contains 267,207 message

headers, from which we find 11,277 unique sender domain names.

Among them, 88.7% of the messages contain DKIM keys, and 13.4%

of the messages contain ARC keys. While our dataset is not neces-

sarily representative (e.g., it is collected from a single email service),

the results can at least indicate that ARC is not widely adopted.

3.2 Analyzing Email Providers

To complement the above analysis, we further examined the ARC

adoption in popular email providers.We considered 13 email providers

that allow us to create accounts for running experiments (see Table 4

in the Appendix). Most of them are free/public services (e.g., Gmail,

Yahoo Mail) and two are paid services (i.e., Fastmail, Pobox). Given

an email provider, we first register an account with it. Then we

try to send and receive ARC-enabled messages using this account.

We also try to set up email forwarding within the email provider.

Finally, we check whether they perform ARC sealing and validation

based on the header information of the received messages.

We find that most of the email services do not have any support

for ARC (see Table 4). For free services, only Outlook, Gmail, and

Zoho support both ARC validation and sealing during forwarding.

Note that Gmail does not support ARC sealing when sending out

emails. Fastmail is a commercial email service and has full ARC

support. While Pobox supports ARC, it is a forwarding-only service

for users to create email aliases and does not provide email inbox

services. Overall, the result is consistent with Section 3.1 that ARC

is not yet widely supported yet.

3.3 Open-source ARC Implementations

We suspect that the quality of readily available open-source ARC

implementations may have affected the adoption of ARC. As such,

we analyzed existing open-source ARC implementations that act as

plugins (or łmiltersž) in mail transfer agents (MTA) suits and those

integrated in popular Mailing List Managers. We find that certain

projects (e.g., OpenARC andMailman3) have implementation errors

or design choices against the RFC recommendations. Due to the

space limit, we report the more detailed results in Appendix A.

3.4 Result Summary

Our investigation of an email dataset and popular email providers

shows that most email providers have not adopted ARC (except for

Gmail, Outlook, Zoho, and Fastmail). We also find implementation

errors in certain open-source ARC implementations.

4 ARC IMPACT ON SPOOFING

Given ARC has been adopted by popular email services (e.g., Gmail,

Outlook, Fastmail, and Zoho), we run experiments to understand

how ARC is used, and how ARC results affect their decisions on

spoofing emails. In these experiments, the adversary pretends to be

a forwarding server to interact with these email providers (who act

as receivers). By fabricating the ARC sets (i.e., the authentication

records), the adversary tries to convince the email providers that

the spoofing email is forwarded from the original sender and is

authentic. Recall that ARC does not address the issue of untrusted

forwarders [1, 13]. We use this experiment to check whether real-

world email providers have interpreted ARC correctly.

4.1 Experiment Setup

Suppose we try to spoof a target domain name (e.g., t.com), the

adversary sets up a mail forwarding server f.com to send a spoofing

email to the testing email provider (e.g., Gmail). If t.com has already

set up SPF/DKIM and DMARC, attempts of directly spoofing t.com

will be detected by Gmail. Instead, the adversary tries to use ARC to

convince the receiver that any authentication failure at the receiver

end is due to forwarding, and the original authentication record in

the ARC Set (AAR) shows that the original sender t.com has been

correctly verified. In this attack, there is no real sender sending

emails to the attacker at f.comÐthe attacker will simply spoof

the email and fabricate the ARC Sets. Our goal is to understand

whether the email receiver (Gmail) would take the ARC results into

consideration when making spoofing detection decisions.

To run this experiment, we first register accounts at the testing

email providers. All of the emails are sent to these accounts under

our control. Then we test different setups for the choices of the

Revisiting Email Forwarding Security under the Authenticated Received Chain Protocol WWW ’22, April 25ś29, 2022, Virtual Event, Lyon, France

Setup Spoof DMARC=łnonež Spoof DMARC=łquarantinež Spoof DMARC=łrejectž

SPF, DKIM, ARC zoho fastmail gmail outlook zoho fastmail gmail outlook zoho fastmail gmail outlook

SPF=0, DKIM=0, ARC=0 [#] # G# G# G# [G#] G# G# G#

SPF=0, DKIM=0, ARC=1 # # G# G# # G# [G#] G# G# G#

SPF=0, DKIM=1, ARC=0 [#] # G# G# G# [G#] G# G# G#

SPF=0, DKIM=1, ARC=1 # # G# G# # G# [G#] G# G# G#

SPF=1, DKIM=0, ARC=0 # # G# G# G# [G#] G# G# G#

SPF=1, DKIM=0, ARC=1 # # G# G# # G# [G#] G# G# G#

SPF=1, DKIM=1, ARC=0 # # G# G# G# [G#] G# G# G#

SPF=1, DKIM=1, ARC=1 # # G# G# # G# [G#] G# G# G#

Table 2: The spoofing experiment results.#=inbox;G#=spam/junk folder; =blocked/discarded; [] means a warningmessage is

shown on the email client. The spoofing target domains each has different DMARC policies: łnonež, łquarantinež, and łrejectž.

For the experiment setup, DMARC will fail for all cases (due to spoofing). SPF is set to either pass (1) or fail (0). DKIM is set

to either pass (1) or fail (0). For ARC, the attacker can choose to not include any ARC set (0), or add an ARC Set with falsified

authentication records (1).

target domain t.com, and the SPF and DKIM configurations during

forwarding. Since we focus on spoofing detection (which only con-

siders sender identity), we use benign email content for our testing

messages (i.e., the content is considered łbenignž by all tested email

providers; verified by non-spoofing experiments).

Target Domain Names. Prior works already show that domains

that have not adopted SPF/DKIM/DMARC can be successfully

spoofed [6, 10, 23]. In this experiment, we only consider target

domains (t.com) that have adopted SPF+DMARC, DKIM+DMARC,

or both. t.com may set different DMARC policies to instruct the

receiver how to handle an email when the authentication fails. For

example, łnonež means t.com does not have any instruction and

it is up to the receiver to make a decision; łquarantinež means the

receiver should put the email into a spam folder; łrejectž means

the receiver should directly discard the email when the authentica-

tion fails. In our experiment (see Table 2), we select three domain

names with different DMARC policies: illinois.edu (łnonež),

usenix.org (łquarantinež), and nicehash.com (łrejectž). Here, we

choose to spoof real-world domain names (instead of freshly regis-

tered domain names) to mimic realistic attack scenarios1.

SPF Setting. For SPF, we test two conditions where SPF is either

pass (1) or fail (0). First, if the attacker uses the attacker’s f.com

as the łMAIL FROMž, then SPF can pass, but DMARC will fail due

to identifier misalignment (see Section 2.3). Second, if the attacker

modifies the łMAIL FROMž to be aligned with the łFromž field in the

email header (both are t.com), then SPF will fail due to t.com’s SPF

record (see Section 2.2). In both cases, DMARC will fail.

DKIM Setting. We have two conditions for DKIM where DKIM is

either pass (1) or fail (0). First, if the attacker inserts its own DKIM

signature by signing the message, DKIM will pass but DMARC will

fail due to identifier misalignment (see Section 2.3). Second, if the

attacker does not insert any DKIM signature, the original DKIM

will fail (due to spoofing). In both cases, DMARC will fail.

ARC Setting. For ARC, we have two conditions. Condition ARC=0

means the attacker does not include any ARC record (baseline).

Condition ARC=1 means the attacker adds one ARC Set (i=1) in

the chain sealed with a falsified authentication record łspf=pass,

1During our pilot experiments, we also tested with freshly registered domain names,
and the conclusion was the same.

dkim=pass, dmarc=passž. This falsified record tries to convince the

receiver that the original sender (t.com) is correctly authenticated

before the forwarding.

4.2 Experiment Results

Table 2 shows the results. We consider Gmail, Zoho, Fastmail, and

Outlook for this experiment. Pobox is not applicable because it

does not have an inbox (forwarding only). Under all scenarios, the

spoofing target t.com has a DMARC record (with different DMARC

policies). By manually checking the results, we confirm that all four

email providers have correctly mark DMARC łfailž under these

scenarios. Even so, Table 2 shows that these email providers handle

the spoofing emails differently, and ARC has influenced the decision

of certain providers.

DMARC policy=łnonež. When the target domain’s DMARC pol-

icy is łnonež, it means the email receivers can make their own

decisions on how to handle the emails (that have failed DMARC).

In this case, we observe that Gmail and Outlook put the spoofing

emails into the spam folder. However, Fastmail and Zoho put the

spoofing email into user’s inbox. More importantly, on Zoho, the

falsified ARC set (ARC=1) has boosted Zoho’s trust toward the

spoofing email. For example, when SPF fails (SPF=0), Zoho will

display a warning message on the email client UI to warn users

that the email sender is not verified. However, by using an ARC

Set, we can successfully remove the warning message.

A closer inspection shows that Zoho has correctly marked all

the decisions for SPF and DKIM. Also, Zoho has correctly marked

the DMARC authentication results as łfailž for all cases2. A likely

explanation is that Zoho has checked the ARC chain and looked

into the ARC Set (i=1) for the authentication records of the original

sender (t.com). Recall that the attacker has falsified this record as

łspf=pass, dkim=pass, dmarc=passž, which may have influenced

Zoho’s decision (i.e., remove the warning message).

DMARC policy=łquarantinež. When the target domain has a

DMARC policy of łquarantinež, it means the receiver is supposed

2This observation is different from a recent analysis performed in 2020 [21], which
shows Zoho has an ARC implementation error that leads to incorrect DMARC łpassž
for forwarded emails. As of October 2021, we do not observe such an implementation
error anymore as DMARC is marked as łfailž correctly by Zoho. It is likely that Zoho
has fixed that error in the past year.

WWW ’22, April 25ś29, 2022, Virtual Event, Lyon, France Chenkai Wang and Gang Wang

to put the message into the spam folder when authentication fails.

We find that Fastmail, Outlook, and Gmail have followed the policy.

Gmail even added a warning message explaining why the email is

put into the spam folder. However, Zoho again shows the influence

of ARC. Without ARC (ARC=0), Zoho will directly drop the mes-

sage without even putting it into the spam folder due to the failed

DMARC. However, with ARC (ARC=1), even with a failed DMARC,

Zoho consistently puts the spoofing email into user inbox without

showing the warning.

DMARC policy=łrejectž.When the target domain has a DMARC

policy of łrejectž, the receiver is expected to directly drop the mes-

sage when authentication fails. Our results show that Gmail has

respected the reject policy. However, Fastmail and Outlook still keep

the spoofing email in the spam folder (i.e., not rigorously follow-

ing the policy). Interestingly, Zoho also correctly follow the reject

policy this time. Based on the error code we received, it seems that

DMARC rejection happened at the SMTP receiving stage (without

reaching the next phase to check ARC yet).

Other Problems Observed. We find a separate problem with the

ARC sealing process in Zoho, Outlook, and Fastmail (which is not

related to the above experiment). When these services are acting as

the sender/forwarder, their seals do not include the DKIM signature

in AMS. This is a similar problem with Mailman3 described in

Appendix A. As DKIM signatures are not sealed by ARC, their

integrity cannot be protected. Gmail is the only service that seals

with the DKIM signature header in AMS.

4.3 Result Summary

Overall, our experiment shows that in most cases, a spoofing email

with a falsified ARC Set does not necessarily change the decisions

of email providers at the receiving end. However, for Zoho, even

though its DMARC authentication is correctly performed, the pres-

ence of ARC=łpassž still increased their trust toward spoofing

emails for certain conditions (e.g., when DMARC policy is not

łrejectž). While this is not an implementation error, it appears that

Zoho has misinterpreted the meaning of ARC=łpassž. Fundamen-

tally, ARC cannot prevent malicious forwarders from deviating

from the ARC protocol and inserting fabricated authentication

records. Instead, ARC results should only be used to audit a failed

DMARC for trusted forwarders (e.g., a mailing list on the receivers’

allowlist, a high reputation forwarding service). Further discussion

is presented in Section 6.

5 łHIDE MY EMAILž SERVICES

Finally, we investigate an email forwarding scenario for privacy-

preserving purposes. In September 2021, iOS 15 introduces a new

privacy feature called łHide My Emailž (or HME), which is devel-

oped based on the concept of mail forwarding [2]. It allows users

to generate random email aliases (e.g., random_name@icloud.com)

to register accounts with online services (e.g., online social net-

works) without revealing their true personal email address (e.g.,

true_name@gmail.com). Whenever the email alias receives a mes-

sage, iCloud will automatically forward the message to the user’s

true email address (e.g., at Gmail). This also allows users to create a

a.com

Attacker

Server

random_name@icloud.com

iCloud

HME

SMTP

real_name@gmail.com

Gmail

Server

SMTP

From: “Trusted Name”

<trusted.name_at_target_com_randomstring@icloud.com>

Spoofing

<trusted_name@target.com>

Inbox

Figure 3: Spoofing attack via iCloud’s łHide My Emailž

(HME) service. The spoofing emails can reach the inbox of

the receiver at Gmail.com.

large number of email alias to reduce the linkability of their identi-

ties across online platforms (and even password dumps). A similar

service is offered by Firefox too called Firefox Relay [7].

In the following, we conduct a simple experiment to investi-

gate how these two email relay services implement the forwarding

process, and whether ARC/DKIM is correctly used.

5.1 Attacking via iCloud HME

We use iCloud’s Hide My Email (HME) as an example to explain our

experiment process. Figure 3 shows the setup. We set up an attacker

mail server at a.com and spoof a target identity under the target

domain, e.g., łtrusted_name@target.comž. The spoofing emails

are sent to the victim users whose real email at Gmail is hidden

behind iCloud’s HME. The attacker will simply send the spoofing

email to the victim’s alias at random_name@icloud.com, which will

be automatically forwarded to real_name@gmail.com. The config-

urations of the attacker’s SPF, DKIM, ARC, and the spoofing target

domains are the same with the previous experiment in Section 4.1.

More Successful Attacks. Table 3 shows the experiment results.

As a comparison baseline, we directly run the spoofing attack with-

out using iCloud HME to send emails to the Gmail receiver (same

attack described in Section 4.1). Gmail has either put the spoofing

emails into the spam folder or directly discarded the emails without

showing them to users.

When we run the attack via iCloud HME, the spoofing attack

becomes more effective. For instance, when the target domain’s

DMARC policy is łnonež, all emails get into the Gmail inbox. When

the target domain’s DMARC policy is łrejectž, we find that the

spoofing emails can no longer reach the inbox. A closer examina-

tion shows that the emails are dropped by iCloud (which never

reached Gmail) as iCloud follows the target domain’s DMARC pol-

icy. The interesting part is when the target domain’s DMARC policy

is łquarantinež. Since iCloud HME is a forwarding service, it does

not store the message and thus cannot accommodate łquarantinež.

The email needs to be either forwarded or rejected by iCloud HME.

As a result, iCloud decides to forward it through even though the

DMARC fails. Eventually, all of these emails enter the Gmail in-

box. Also, the warnings that exist in the baseline experiment are

removed.

BrokenChain of ARC.We examine the email forwarding process

of iCloud HME, and have two key observations.

Revisiting Email Forwarding Security under the Authenticated Received Chain Protocol WWW ’22, April 25ś29, 2022, Virtual Event, Lyon, France

Setup Direct Spoofing (baseline) Attack via iCloud HME Attack via Firefox Relay

SPF, DKIM, ARC none quarantine reject none quarantine reject none quarantine reject

SPF=0, DKIM=0, ARC=0 G# [G#] # # # # #

SPF=0, DKIM=0, ARC=1 G# [G#] # # # # #

SPF=0, DKIM=1, ARC=0 G# [G#] # # # # #

SPF=0, DKIM=1, ARC=1 G# [G#] # # # # #

SPF=1, DKIM=0, ARC=0 G# [G#] # # # # #

SPF=1, DKIM=0, ARC=1 G# [G#] # # # # #

SPF=1, DKIM=1, ARC=0 G# [G#] # # # # #

SPF=1, DKIM=1, ARC=1 G# [G#] # # # # #

Table 3: The spoofing attack results against Gmail as the receiver. We compare the baseline attack (directly spoofing)

with the attack via iCloud’s łHide My Emailž (HME) and the attack via Firefox Relay. #=inbox; G#=spam/junk folder;

 =blocked/discarded; [] means a warning message is shown on the email client. The spoofing target domains each has dif-

ferent DMARC policies: łnonež, łquarantinež, and łrejectž. For the experiment setup, DMARC will fail for all cases (due to

spoofing). SPF is set to either pass (1) or fail (0). DKIM is set to either pass (1) or fail (0). For ARC, the attacker can choose to

not include any ARC set (0), or add an ARC Set with falsified authentication records (1).

First, iCloud does not perform any ARC operation (no validation

or sealing). For emails that have eventually reached Gmail, the

ARC Set inserted by the attacker is still preserved after passing

through iCloud. Second, iCloud makes changes to the email. As

shown in Figure 3, instead of forwarding the received message as

it is, iCloud has replaced the original łFromž in the header which is

łtrusted_name@target.comž with a reformatted sender address

as shown in Figure 3. Note that the new łFromž address has the

domain name of icloud.com. The advantage is that this forces

identifier alignment between łMAIL FROMž and łFromž which helps

the email to bypass DMARC. However, this also breaks the ARC Set:

without re-sealing the modified header, the existing AMS signature

is no longer valid (due to the above header modification). As a

result, when Gmail receives this email, it marks łarc=failž due to

the broken AMS signature.

5.2 Attacking via Firefox Relay

We run a similar experiment for Firefox Relay. Table 3 shows even

stronger results.

First, regardless of the target domain’s DMARC policies, all spoof-

ing emails enter Gmail’s inbox without raising any warnings. The

result indicates that Firefox Relay does not perform any authenti-

cation (e.g., DMARC) or take any actions other than forwarding all

the emails through.

Second, like iCloud HME, Firefox Relay also breaks ARC, but in a

different way. Firefox Relay completely removes all authentication-

related headers (including ARC Sets) from the original email and

converts the original plain text email into an HTML format. Then

Firefox sends the newly formatted email to the receiver (Gmail). The

email is essentially recomposed, and the łFromž field is formatted as

ł‘trusted_name@.target.com [via Relay]’ <noreply@relay.

firefox.com>ž In this way, the original sender address is formatted

as the displayed łsender namež and the new łFromž domain name

is set to relay.firefox.com. This again helps to align the SPF

identifiers to pass DMARC.

5.3 Result Summary

In summary, both iCloud HME and Firefox Relay have made a

similar decision to modify the emails. This improves deliverability

of the messages because: (1) the IP addresses of iCloud and Firefox

have a high reputation, and (2) changing the łFromž domain to

the domain names of the relay helps to pass DMARC to get the

emails accepted. The problem is, this modification can be exploited

by attackers. As shown in our experiment, spoofing emails that

were previously blocked by Gmail are nowmostly accepted without

raising warnings. Also, iCloud modifies emails without re-sealing

the ARC headers and Firefox completely removes all authentication

headers. This takes away the opportunity from the final receiver

(e.g., Gmail) to check the authenticity of the original email.

As a relay service, high deliverability is highly desired. The

question is, can they maintain high deliverability while preserving

the chain of authentication records? We believe this is a largely

reachable goal. (1) iCloud/Firefox relay should perform their own

authentication and drop emails with failed DMARC (when sender

policy=łrejectž). (2) The relay should perform ARC validation and

sealing to maintain the integrity of the ARC chain. (3) By default,

the relay should not modify the original email3.

For such a relay, if the incoming email has DKIM, because of (3),

the DKIM signature will still be valid when the email reaches the

receiver, which makes DMARC pass (i.e., no harm on deliverability).

If the incoming email does not have DKIM but has SPF, the above

recommendations might hurt deliverability when (a) the sender’s

DMARC policy is łrejectž/łquarantinež and (b) SPF=łpassž at the

relay. Under this condition, the relaymay considermodifying łFromž

to ensure deliverability. In this case, because SPF is łpassž at the

relay (i.e., email authenticity is verified), modifying łFromž does

not introduce additional risks to the receiver. If the incoming email

does not have DKIM or SPF, the above recommendations also do

not hurt deliverability.

6 DISCUSSION

6.1 Ethical Considerations

We have taken active steps to ensure research ethics. Our study

has an approved IRB protocol. All spoofing emails sent in our ex-

periments have been sent to accounts under our control. There

3If the relay modifies the original email, it is suboptimal. This is because the receivers
would lose the opportunity to verify the original sender themselves, and have to put
extra trust to the relayÐtrusting it can correctly verify the original sender.

WWW ’22, April 25ś29, 2022, Virtual Event, Lyon, France Chenkai Wang and Gang Wang

are no other users’ accounts involved in these experiments. We

are in the process of sharing our research findings to related par-

ties (e.g., Zoho, iCloud, Firefox, Mailman3) to help improve their

implementations.

6.2 Benefits and Problems of ARC

Overall, our results show that major email providers (e.g., Gmail and

Outlook) have correctly implemented the ARC protocol. However,

some providers (Zoho) might have misinterpreted the meaning

of łARC=passž (their ARC validation is implemented correctly).

Fundamentally, ARC is a chain of signed authentication results,

which allows the email receiver to audit potential DMARC failures.

However, there is an implicit assumption that the receiver needs to

trust the łgood faithž of forwarders, i.e., good-faith forwarders may

make legitimate changes to the email (e.g., a mailing list adding a

footer) but they should always follow the ARC protocol. This also

means ARC cannot prevent malicious forwarders from deviating

from the protocol and adding fabricated authentication records

onto the chain.

When forwarders are trusted, ARC can help to save a legitimately

forwarded email when the forwarding breaks its DMARC. For ex-

ample, when a trustedmailing list forwards an email to a Gmail user.

Due to the mailing list’s modification of the email (e.g., adding a

footer), the original DKIM fails and thus DMARC fails. In this case,

because the mailing list is known to be legitimate, Gmail can choose

to further check the ARC. If ARC=pass, Gmail then can use the

ARC chain to check the authentication record of the original sender

(prior forwarding) and check where the modification is made that

causes the DMARC failure. Gmail may let this legitimate email into

the inbox if the modification is done by this trusted mailing list.

However, if this email is forwarded by an unknown forwarder,

the receiver (Gmail) should not trust the email simply because of

łARC=passž or other assertions carried in the chain. Otherwise, this

decision could be exploited by attackers to facilitate their spoofing

attacks (as shown in Section 4.2).

The above discussion leads to an interesting dilemma. ARC

should be considered only when the receiver trusts the forwarders

are in good faith (i.e., honest). This means ARC needs to be used

in combination with allowlists or domain reputation systems. On

one hand, if a forwarder is already on the allowlist of the receiver,

ARC may not add much value to increase email deliverability. On

the other hand, if a forwarder is not currently trusted, ARC should

not be used to establish such trust. This dilemma could lead to a

relatively narrow applicable scope of ARC and hurt its adoption.

Lastly, for security-sensitive domains, we recommend always

using DKIM and setting DMARC policy to łrejectž. This minimizes

spoofing attack’s success rate even when ARC is used to amplify

the attack.

6.3 Limitations and Future Work

Our work has some limitations. First, the email dataset used in

Section 3.1 is not necessarily representative. Indeed, finding a large

and recent email dataset is challenging given its sensitive nature.

As such, we only make a conservative conclusion that ARC is not

widely adopted as DKIM yet. Second, our experiments in Section 4

and Section 5 only use a small number of target domains which is a

limitation. We tried to limit our experiment scale to avoid stressing

the receiving email services. Third, our analysis on open-source

ARC implementations is focused on those can be easily found via a

quick Google search. Future work may examine a larger collection

of ARC implementations. Finally, while email user interfaces (UI)

are not a main focus of this paper, we observe that email providers

display forwarded emails differently. Our future work will explore

how users perceive the forwarded (spoofing) emails and whether

they can interpret the information on the UIs correctly.

7 RELATED WORK

DNS-based email authentication protocols have been studied in

the past with a focus on SPF, DKIM, and DMARC. Researchers

have studied their adoption rates in practice [6, 8ś10, 15, 23], secu-

rity flaws rooted in the inconsistent interpretation/parsing of mes-

sages [4], and their inability to handle subdomain spoofing [19, 21].

Our study is different from existing works as we focus on the new

ARC protocol and email forwarding scenarios to understand the

impact of ARC on spoofing detection.

The most related work to ours is [21] where the authors studied

many spoofing techniques but only briefly mentioned ARC. In our

paper, we focus on ARC to dive deeper. The key differences are

three-fold. First, we have different threat models. Prior work [21]

assumes a legitimate forwarder contains vulnerabilities that allow

an attacker to forward (spoofing) emails to an address that the

attackers does not own, whereas our paper assumes the attacker

sets up its own forwarding server. Second, the problems identified in

[21] (in Zoho and Outlook) have been fixed after a year (confirmed

in our experiment). The problems discovered in our experiment are

new. Finally, we analyzed the łHide-My-Emailž forwarding services

of iCloud and Firefox, which is a new contribution.

8 CONCLUSION

In this paper, we perform an empirical analysis on ARC adoption

and implementations in practice. Our analysis is based on an email

dataset of 600K messages, which shows ARC is not yet widely

adopted (in comparison with DKIM). Our controlled experiment

shows that most email providers’ ARC implementations are done

correctly. However, some email provider (i.e., Zoho) has misinter-

preted the meaning of ARC results, which makes spoofing emails

with ARC Sets more successful. Finally, we empirically investigate

forwarding-based łHide My Emailž services from iCloud and Fire-

fox and show their implementation breaks the ARC chain and can

be used to run spoofing attacks against strong defenses. As ARC

starts to get popularized, we hope our results can help practitioners

to avoid common mistakes.

ACKNOWLEDGMENTS

We thank Jeff Parrish for preparing and sharing the email dataset

for our project. This work was supported in part by NSF grant CNS-

2030521, and Jump ARCHES endowment through the Health Care

Engineering Systems Center. Any opinions, findings, conclusions,

or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of any funding

agencies.

Revisiting Email Forwarding Security under the Authenticated Received Chain Protocol WWW ’22, April 25ś29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] K. Andersen, B. Long, S. Blank, and M. Kucherawy. 2019. The Authenticated

Received Chain (ARC) Protocol. RFC8617. https://datatracker.ietf.org/doc/html/
rfc8617.

[2] Apple. 2021. What is Hide My Email? https://support.apple.com/en-us/
HT210425.

[3] Marc Bradshaw. 2021. Fastmail Authentication Milter. https://github.com/
fastmail/authentication_milter.

[4] Jianjun Chen, Vern Paxson, and Jian Jiang. 2020. Composition Kills: A Case Study
of Email Sender Authentication. In Proc. of USENIX Security.

[5] D. Crocker, T. Hansen, and M. Kucherawy. 2011. DomainKeys Identified Mail
(DKIM) Signatures. RFC6376. https://tools.ietf.org/html/rfc6376.

[6] Zakir Durumeric, David Adrian, Ariana Mirian, James Kasten, Elie Bursztein,
Nicolas Lidzborski, Kurt Thomas, Vijay Eranti, Michael Bailey, and J. Alex Hal-
derman. 2015. Neither Snow Nor Rain Nor MITM: An Empirical Analysis of
Email Delivery Security. In Proc. of IMC.

[7] Firefox. 2021. Firefox Relay. https://relay.firefox.com/.
[8] Ian D. Foster, Jon Larson, Max Masich, Alex C. Snoeren, Stefan Savage, and Kirill

Levchenko. 2015. Security by Any Other Name: On the Effectiveness of Provider
Based Email Security. In Proc. of CCS.

[9] Hang Hu, Peng Peng, and Gang Wang. 2018. Towards Understanding the Adop-
tion of Anti-Spoofing Protocols in Email Systems. In Proc. of SecDev.

[10] Hang Hu and Gang Wang. 2018. End-to-End Measurements of Email Spoofing
Attacks. In Proc. of USENIX Security.

[11] S. Kitterman. 2014. Sender Policy Framework (SPF). RFC7208. https://tools.ietf.
org/html/rfc7208.

[12] M. Kucherawy and E. Zwicky. 2015. Domain-based Message Authentication,
Reporting, and Conformance (DMARC). RFC7489. https://tools.ietf.org/html/
rfc7489.

[13] John Levine. 2015. What’s ARC? https://circleid.com/posts/20151028_what_is_
authenticated_received_chain_arc.

[14] Mailman3. 2021. Mailman3 Mailing List Manager. https://docs.mailman3.org/
en/latest/.

[15] Sourena Maroofi, Maciej Korczynski, Arnold Hölzel, and Andrzej Duda. 2021.
Adoption of Email Anti-Spoofing Schemes: A Large Scale Analysis. IEEE Trans.
Netw. Serv. Manag. 18, 3 (2021), 3184ś3196.

[16] Daniela Oliveira, Harold Rocha, Huizi Yang, Donovan Ellis, Sandeep Dommaraju,
Melis Muradoglu, Devon Weir, Adam Soliman, Tian Lin, and Natalie Ebner. 2017.
Dissecting Spear Phishing Emails for Older vs Young Adults: On the Interplay of
Weapons of Influence and Life Domains in Predicting Susceptibility to Phishing.
In Proc. of CHI.

[17] OpenARC. 2021. The Trusted Domain Project: OpenARC. https://github.com/
trusteddomainproject/OpenARC.

[18] J. B. Postel. 1982. Simple Mail Transfer Protocol (SMTP). RFC821. https:
//tools.ietf.org/html/rfc821.

[19] Florian Quinkert, Dennis Tatang, and Thorsten Holz. 2021. Digging Deeper:
An Analysis of Domain Impersonation in the Lower DNS Hierarchy. In Proc. of
DIMVA.

[20] P. Resnick. 2001. Internet Message Format (RFC5321). https://www.ietf.org/rfc/
rfc2822.txt.

[21] Kaiwen Shen, Chuhan Wang, Minglei Guo, Xiaofeng Zheng, Chaoyi Lu, Baojun
Liu, Yuxuan Zhao, Shuang Hao, Haixin Duan, Qingfeng Pan, and Min Yang. 2021.
Weak Links in Authentication Chains: A Large-scale Analysis of Email Sender
Spoofing Attacks. In Proc. of USENIX Security.

[22] Sympa. 2021. Sympa Mailing List Manager. https://www.sympa.org/.
[23] Dennis Tatang, Florian Zettl, and Thorsten Holz. 2021. The Evolution of DNS-

based Email Authentication: Measuring Adoption and Finding Flaws. In Proc. of
RAID.

[24] TrendMicro. 2021. White Paper by Osterman Research: How to Reduce the Risk
of Phishing and Ransomware. https://resources.trendmicro.com/rs/945-CXD-
062/images/Reduce-Phishing-Ransomware_Trend-Micro.pdf.

A ARC IMPLEMENTATION ANALYSIS

We briefly analyze existing open-source ARC implementations that

can be found online, and explore potential problems with them.

ARC Implementation as Milters. Popular mail transfer agents

(MTA) suits such as Postfix and Sendmail use plugin software, called

łmiltersž, to run security checks and other extended functionalities

like spam filtering. For example, for DKIM and DMARC, the com-

monly used milters are OpenDMARC and OpenDKIM. For ARC,

we find an łOpenARCž implementation [17] by the same Trusted

Domain Project (TDP) that also developed OpenDKIM and OpenD-

MARC. However, by running OpenARC on our mail server, we find

the implementation has various errors including broken and/or

mismatched signatures (confirmed by sending the OpenARC sealed

emails to Outlook and Gmail). Also, the OpenARC code has not

been actively maintained since 2018.

Another open-source ARC implementation is an authentication

milter developed by Fastmail that contains ARC support [3]. Com-

pared to OpenARC, this project is still actively maintained as of

2021. It is currently used by the Fastmail email service (tested later

in Section 4; no obvious implementation error is spotted).

IntegrationwithMailing List Managers.Mailing lists are based

on email forwarding, and thus we investigate open-source Mail-

ing List Managers to explore their ARC integration. We find that

Mailman3 [14] has included ARC. Their overall implementation

is compliant with the RFC8617 [1], with one exception. We find

Mailman3 does not handle DKIM signing and thus its ARC Set does

not include the DKIM signature header. Even if the outgoing MTA

generates a DKIM header later, it would not be sealed by the ARC

Set. Not sealing the DKIM header makes it difficult to keep track of

its integrity, which is against the RFC8617 recommendations [1].

Since it is the Mailing List Manager (Mailman3) that modifies the

email (e.g., adding the footer), it is better for Mailman3 to handle

the DKIM signature and seal it within the ARC Set.

Another open-source Mailing List Manager Sympa [22] also

integrates ARC. However, due to outdated documentations, we did

not manage to start a runnable instance for Sympa.

Domain Validate Seal in Forwarding Seal in Sending

outlook.com Yes Yes Yes

zoho.com Yes Yes Yes

fastmail.com∗ Yes Yes Yes

gmail.com Yes Yes No

pobox.com∗ Yes Yes N/A

mail.ru No No No

yandex.com No No No

protonmail.com No No No

aol.com No No No

yahoo.com No No No

qq.com No No No

163.com No No No

icloud.com No No No

Table 4: Email providers and their adoption status of ARC.
∗Commercial email services.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Email Spoofing Attack
	2.2 Security Extensions against Spoofing
	2.3 Email Forwarding and ARC

	3 Progress of Adoption
	3.1 Analyzing an Email Dataset
	3.2 Analyzing Email Providers
	3.3 Open-source ARC Implementations
	3.4 Result Summary

	4 ARC Impact on Spoofing
	4.1 Experiment Setup
	4.2 Experiment Results
	4.3 Result Summary

	5 ``Hide My Email'' Services
	5.1 Attacking via iCloud HME
	5.2 Attacking via Firefox Relay
	5.3 Result Summary

	6 Discussion
	6.1 Ethical Considerations
	6.2 Benefits and Problems of ARC
	6.3 Limitations and Future Work

	7 Related Work
	8 Conclusion
	References
	A ARC Implementation Analysis

