MATHEMATICS OF MAGIC ANGLES
IN A MODEL OF TWISTED BILAYER GRAPHENE

SIMON BECKER, MARK EMBREE, JENS WITTSTEN, AND MACIEJ ZWORSKI

ABSTRACT. We provide a mathematical account of the recent Physical Reviews Let-
ter by Tarnopolsky—Kruchkov—Vishwanath [TKV19]. The new contributions are a
spectral characterization of magic angles, its accurate numerical implementation and
an exponential estimate on the squeezing of all bands as the angle decreases. Pseu-
dospectral phenomena [DSZ04],[TrEm05], due to the non-hermitian nature of opera-
tors appearing in the model considered in [TKV19] play a crucial role in our analysis.

1. INTRODUCTION AND STATEMENT OF RESULTS

Following a recent Physical Review Letter by Tarnopolsky-Kruchkov-Vishwanath
[TKV19] we consider the following Hamiltonian modeling twisted bilayer graphene:

(0 Do) _( 2D: aU(z)
H(a) := (D(a) 0 ) , D(a):= (aU(—z) oD, ) (1.1)
where z = 11 + iz, Ds := %(&Tl +i0,,) and
2
U(z) =U(z,2) = Zwke%(zwk_zwk), w = e¥m/3, (1.2)
k=0

(We abuse the notation in the argument of U for the sake of brevity and write U(z)
rather than U(z, z).) The dimensionless parameter « is essentially the reciprocal of the
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FIGURE 1. Reciprocals of magic angles for the specific potential (1.2):
resonant «’s (red circles) come from the full spectrum of the compact
operator (1.9) defining magic angles, and the magic a’s (black dots) are
the reciprocals of the “physically relevant” positive angles.
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angle of twisting between the two layers. When two honeycomb lattices are twisted
against one another, a periodic honeycomb superlattice, called the moiré lattice, be-
comes visible. (This name comes from the patterns formed when two fabrics lie on top
of each other.) Bistritzer and MacDonald in [BiMall] predicted that the symmetries
of the periodic moiré lattice lead to dramatic flattening of the band spectrum. The
operator (1.1) and in particular potential (1.2) were obtained in [TKV19] by removing
certain interaction terms from the operator constructed in [BiMall].

In this paper we consider any potential having the symmetries of (1.2):
a=imiw', (=12 = U(z+a)=wU(z), and

U(wz) = wU(z). (1:3)

The only exception is Theorem 4 which requires a non-triviality assumption, see (4.3).
Such potentials are explored further in Section 4.

The Hamiltonian H is periodic with respect to a lattice I' (see (2.2) below) and
magic angles are defined as the o’s (or rather their reciprocals) at which

0e (YSpecsaem(dal). Hida) = (e P TF)

The Hamiltonian Hy(«) comes from the Floquet theory of H(«) and (1.4) means that
H(«) has a flat band at 0 (see Proposition 2.4 below). Since the Bloch electrons
have the same energy at the flat bands, strong electron-electron interactions leading
to effects such as superconductivity have been observed at magic angles. We refer
to [TKV19] for physical motivation and references. Some aspects of this paper carry
over to more general models such as the Bistritzer—MacDonald [BiMall] and that is
discussed in [B*21].

The first theorem is, essentially, the main mathematical result of [TKV19]. To
formulate it we define the Wronskian of two C?-valued I'-periodic functions:

W(u,v) =det[u,v], u,veC? (1.5)
noting that if D(a)u = D(a)v = 0, then W is constant (applying 0; shows that W is
holomorphic and periodic). We also define an involution & satisfying & D(«) = D(«)&:

Eu(a, z) = <(1) _(1]) u(a, —2z). (1.6)
We then have

Theorem 1. Suppose that D(«) is given by (1.1) with U € C*(C/T';C) satisfying
(1.3). Then there exists a real-analytic function f on R such that

0 € ) Specyzc/m(Hi(e) <= f(a) =0.
keC
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FIGURE 2. For U,(2) = U(z) + uY i, whe =" " with U given by
(1.2) and p = —1.96, we show set A (indicated by e). The distribution
is much less regular than for ¢ = 0 shown in Figure 1, and nothing like
(1.12) can be expected. The coloured paths trace the dynamics of magic
a’s for —2.2 < p < —1.7: to understand the dependence of “physically
relevant” real a’s complex values should be considered.

The function f is defined using a projectively unique family R 3 o — u(a) € C=(C/T; C?)
such that u(0) = (1,0), D(a)u(a) = 0. Then f(a) := W(u(a), Eu(w)), where W is
given by (1.5) and & is defined in (1.6).

A more precise, representation theoretical, description of u(«) will be given in §2.
Projective uniqueness means uniqueness up to a multiplicative factor. In §3 we show
that (after possibly switching u and &u)

v(a) == W(u(a),Eu(a)) =0 <= u(a,zs) =0, 25:= 8, (1.7)

which then provides a recipe [TKV19] for constructing the zero eigenfunctions of
Hy(a): if v(a) = 0 then (D(a) — k)u(a) = 0, ux(a) € C=(C/T;C?), where

2k+2k) 9—%+k1/3,%—k2/3(32/47”@‘“)
0 17+%(3z/47m'w|w)

g (2) = ez (2), k=L(khw?—kw), (L8)
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FIGURE 3. Left: spectrum of D(«) as « varies. Right: level surface
of k — [|[(D(a) — k)7!| = 102 as « varies: we see that the norm of the
resolvent (D(a)—k)™! grows as we approach the first two magic a’s (near
0.586 and 2.221), at which it blows up for all k. In any discretization
that norm would be finite except on a finite set but it would blow up as
the discretization improves.

where ¢ — 6,5(C|w) is the Jacobi theta function — see §3.2 for a brief review and
[Mu83, Chapter I} for a proper introduction. (Our convention is slightly different than
that in [TKV19] but the formulas are equivalent.)

The next theorem provides a simple spectral characterization of a’s satisfying (1.4).
Combined with some symmetry reductions (see §§2,5) this characterization allows a
precise calculation of the leading magic a’s — see Table 1 for the values of the first
13 elements of A, and Tables 2, 3 for rigorous error bounds. As seen in Proposition
5.2, it also implies that the multiplicities of flat bands at 0 is at least 18.

Theorem 2. Let I'* be the dual lattice and define the family of compact operators

Ty := (2D, — k) (U(gz) U(()Z)> . ke T, (1.9)

where U(z) is given by (1.2), or more generally satisfies U € C*(C/I';C) and (1.3).
Then the spectrum of Ty is independent of k ¢ I'*, and the following statements are
equivalent:

(1) 1/a € Specpaoyry(Ti), k ¢ I';
(2) SpecL?(C/P) D(a) =C;
(3) 0 € Nkee Specr2c/ry (Hi(a)), where Hy is defined in (1.4).
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We denote the full set of resonant a’s and the set of magic a’s as

A= 1/(Specracry(Ti) \ {0}), k& T7,

1.10
Amag 32Aﬁ(0,00)={aj}j21’ ap < ag < ---, ( )

respectively. The elements of A are included with their multiplicities as multiplicities of
eigenvalues of Ty. Those multiplicities are at least 9 — see Proposition 5.2. Numerical
evidence suggests that multiplicities of Ay,e are exactly 9 and that is related to the
question about zeros of u(«) —see (1.7) and Remark 1 after Proof of Theorem 1 in §3.

As a simple byproduct of Theorems 1 and 2 we have
Specp2 oy Do) =17, a ¢ A

Examples of operators which have either discrete spectra or all of C as spectrum,
depending on analytic variation of coefficients, have been known before, see for instance
Seeley [Se86]. The operator D(«) provides a new striking example of such phenomena,
showing that it is physically relevant and not merely pathological.

If we assume that U(z) = U(z), then Proposition 3.2 below (see also Figure 1) also
gives A= -A=A.
Mathematical description of A remains open and here we only contribute the fol-

lowing simple result:

Theorem 3. For the potential U given by (1.2) we have
> a™t=T12m/V3, (1.11)
acA

where a’s are included according to their multiplicities. In particular, A # ().

Concerning A, an intriguing asymptotic relation for o;’s for U given by (1.2) was
suggested by the numerics in [TKV19]:

ajJrl — Oéj ~ %, j > 1. (112)

We do not address this problem here except numerically in §5 and in Figure 2, which
shows that regular spacing does not hold for general potentials. The following result
based on Dencker—Sjostrand—Zworski [DSZ04] indicates the mathematical subtlety un-
derlying the distribution problem: for large values of o the bands get exponentially
squeezed, making it difficult to find the ones that are exactly zero; see Figure 4 and
the following

Theorem 4. Suppose that Hy(«) is given by (1.1) and (1.4) with U given by (1.2)
and that

SpeCLz(C/F) Hk(Oé) = {Ej(k, a)}jez, Ej(k, a) < Ej+1(k, Oé), keC, a>0,
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:k =1/(2v3) +i/6|3
k=1/(4V3)
—k=1/(8V3)

6
4
05 -04 03 02 01 0 01 02 03 04 05 0586 2.221 3.751 5276 6.795 8.313 9.829
k o

FIGURE 4. On the left, the smallest non-negative eigenvalues of Hy(«),
a =5,k =kw/V3, —3 <k < 3. On the right, Ey(k, @) (log scale) for
several values k. (The point k = 1/(2v/3) + i/6 is farthest from an
eigenvalue of D(«) for a ¢ A.) The exponential squeezing of the bands
described in Theorem 4 is clearly visible.

with the convention that Ey(k, o) = min; |Ej(k, «)|. Then there exist positive constants
o, €1, and cy such that for all k € C,

|E;(k, )] < coe” %, |j| < e, a>0. (1.13)

Numerical experiments presented in Figure 7 (see also Figure 4) suggest that for
any co there exists c¢q for which (1.13) holds, with ¢; = 1. The theorem is proved by
showing that for large o every point “wants to be” in the spectrum of D(«) modulo an
exponentially small error. That is a typical pseudospectral effect in the study of non-
hermitian operators — see Trefethen-Embree [TrEm05] for a broad description of such
phenomena. Although Hy(«) is self-adjoint, having a zero eigenvalue is equivalent to
k € Spec 2 (c/ry(D(a)) and D(e) is highly non-normal. This is illustrated in Figure 3.
In Section 4 we explore the situation for general potentials satisfying the symmetries
(1.3), and prove that a result corresponding to Theorem 4 continues to hold if an
additional non-triviality assumption is imposed; see (4.3) and Theorem 5. (Some
condition is clearly needed, as shown by the example of U = 0.)

Watson and Luskin [Wal.u21] have recently provided an alternative proof of Theo-
rem 1 and implemented it numerically with precise error bounds. Assuming accuracy
of singular value and polynomial calculations they proved existence of a; € Apag,
aj ~ 0.586. Motivated by [Wal.u21] we added error estimates for our calculations in
§5.2. Assuming accuracy of singular value estimates for large sparse matrices we show
existence of o; within 107? and ay within 1072 — see Tables 2 and 3. However, we do
have high confidence in all digits shown in Table 1.
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2. HAMILTONIAN AND ITS SYMMETRIES

In this section we discuss symmetries of D(«) and H(«) and prove basic results
about their spectra.

Before entering mathematical analysis of the model we provide a brief motivation for
the Hamiltonian. Two basic symmetries are inherited from the honeycomb structure
of the moiré lattice: a translation symmetry and a rotational symmetry by 27/3. In
addition, the model exhibits a chiral symmetry which accounts for the massless and
symmetric Dirac cones of the model that are preserved by the tunneling interaction.
The Dirac cones are effectively described by 2D-massless Dirac operators. Therefore,
the cones of two non-interacting sheets of graphene are described by a kinetic Hamil-
tonian

. ) 0 2D,
Hyin = diag(Hpiracs Hpirac), With Hpiae = <2Dz 0 ) :

Since honeycomb lattices are unions of two triangular lattices, we may distinguish

between atoms of type A and B. Considering then only the tunnelling interaction
of atoms of different types between the layers gives rise to an off-diagonal tunnelling

3= (oo QT) '

The tunnelling potential is then described by

)= (e 757

Conjugating the sum of the two Hamiltonians by unitary operators yields, for o, =

01
1 0)’
H(a) = diag(1, 01, 1)(Hyin + Hyun () diag(1, o1, 1),
which is the operator introduced in [TKV19] and studied in this article.

matrix

2.1. Symmetries of H(«). The potential (1.2) satisfies the following properties:

azgﬂiw£7€:172 — U(z+a)=wU(z), and 2.1)
U(wz) = wU(z). '

The first property in (2.1) follows from the fact that (with k, ¢ € Zs)

L(aw® — awh) = Zmi(wh "t + ot 0 = { 37”_27”_37” mod 27, : - ﬁ D 8’
37t :

From this first property in (2.1) we see that
U(z+7) =U(z), v€eT =4 (iwZ & iw’Z). (2.2)
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The dual lattice consisting of k satisfying 1(vk + 7k) € 27Z for v € T, is given by
= \/Lg (WZ D W?Z).
The second identity in (2.1) shows that with Lav(2) := v(z + a),

D(a)La = L, <@aU(—o) 2D5) = (0 1) L.D(«) (0 1) , a=3miw, (=12

Hence,

ZD(a) = D)Ly, La:i= (‘6’ (1)) L., a=imit, (=1,2. (2.3)

Putting
Iy :=T/3 = 37(iwZ ®iw’Z), Ts/T ~7Z3, (2.4)

and

wrrtez () .
L= ( 0 1> L,, a= %m(wal + w?ay),

we obtain a unitary action of I's on L?(C) or on L*(C/T'), s 3 a + Za.

We extend the action of %, to L*(C;C*) or L?*(C/T';C*) block-diagonally and we
have Z,H (o) = H(a) %La.

The second identity in (2.1) shows that [D(a)u(we)](2) = w[D(a)u](wz). Hence,

o O

¢H(a)=H()¢, %u(z):= u(wz), ue L*C;Ch).

S O O =
O O = O
o €

S oo o

Since €.L. = Z-2%, we combine the two actions into a unitary group action that
commutes with D(«):

G:=T3x2Zs, Zz>k:a—a"a, (ak) (a,f)=(a+c"a k+1),

(a,f) -u= 2% u (2:5)

By taking a quotient by I' we obtain a finite group acting unitarily on L*(C/T") and
commuting with H(«):

G3 = G/F:Fg,/FNZg)EZ%NZg (26)

By restriction to the first two components, G and G3 act on L*(C; C) and L*(C/T; C?)
as well and we use the same notation for those actions.
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Remark. The group (3 is naturally identified with the finite Heisenberg group Hes:

1 ot
Hez := 01 vy, z,ytels,,
0 01
1 = t 1 1 x—i—x t+t' +xy
01 yl||O y+y
0 01 0 1
The identification of G5 and Hes follows: with F3/F 5> a— F(a) := (a1,a9) € 73,
a = 3mi(wa; + w?ag), we have Heg 3 (z,y,t) — (F'(t,y —t),z) € Gs. O

We record two more actions involving H(«):

1 0

H(a)=—-#H()W*, W .= (0 1

) L WC=CW, LW =WL (27)

and

QH()2" = —-H(—«a), 2:=diag(i,—i,—i,1), 2¢ =2, 2%, =2.2.
We summarize these simple findings in

Proposition 2.1. The operator H(a) : L*(C;C*) — L*(C;C*) is an unbounded self-
adjoint operator with the domain given by H'(C;C*). The operator H(a) commutes
with the unitary action of the group G given by (2.5) and

Specz () H(a) = — Specz ¢y H(a) = Specpzc) H(—a).
The same conclusions are valid when L*(C) is replaced by L*(C/T') and G by G5 given
by (2.6). In addition, the spectrum is then discrete.
2.2. Representation theory and protected states at 0. Irreducible unitary rep-
resentations of Z2 are one dimensional and are given by
me 1 Z5 — U(1), m(a) = ¢35 (aktak)
‘—Lw(aliw + CLQiWQ), a; € Zs, k= 7§(w2]€1 — u}kig), k’j € Zs, (28)

a—
3
%(al_< + ék) = (a, k> = %(kl(ll + k2a2).

Irreducible representations of G are one dimensional for k € A (given by A(Zs) :=
{(k, k), k € Z3} — we note that (k,wa) = (k,a), a € I's/T, if and only if k € A),

Pk,p((aa 0) = @Kpﬁ(k,k)(a),

or three dimensional, for k ¢ A:
¢

wka) 0 0 010
p((a )= 0 wlhwa 0 00 1] €U@®).
0 0 wkea 100
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The representations are equivalent for k in the same orbit of the transpose of a — wa,
and hence there are only two.

From this we see the well known fact that there are 11 irreducible representations:
9 one dimensional and 2 three dimensional. We can decompose L?(C/T;C*) into 11
orthogonal subspaces (since the groups are finite we do not have the usual Floquet
theory difficulties!):

L(c/r;chy = € L, (C/r;CY) ® L, (C/Tche L], (C/T;CY.

P(2,0)
’pGZS

In view of Proposition 2.1 we have
Hip(a) = H(a) : (I3, 1 HY)(C/T;CY) — L2, (C/T;CY,

with similarly defined H, ) and Hq ).

We now consider the case of a = 0 and analyse kerp2(c/r) H (0) decomposed into the
corresponding representations:

keI‘Lz((c/p) H(O) = {u = ej, j = 1, e ,4},

where the e; form the standard basis elements of C*. The action of Gy = Z3xZ3 is

diagonal and, with a = %ﬂ(aliw + agiw?),

Le; = wt2e, Liey =€y, Loes=w"TRe;, Le,=e

‘Kel = ey, Cgeg = €9, %83 = @83, %64 = wey.
These observations imply that, with L2, = L2 (€T CcY),

e4€L2

eleL po.1”

GQEL egeL

p1,07 £0,0° P1,17?

Hence for a = 0, each of Hyo(0), H10(0), Ho1(0) and H;1(0) has a simple eigenvalue
at 0. Since # (see (2.7)) commutes with the action of G, the spectra of Hj ()
are symmetric with respect to 0, it follows that Hy ,(«), k, ¢ as above, each have an
eigenvalue at 0.

Since kerLQ((C/F;@) H(O{) = kerLa(C/p;@) D(O{) S {0@2} + {O((ﬁ} D keI'L2((C/F;(C2) D(Cl/)*,
we obtained the following result about a symmetry protected eigenstate at 0:

Proposition 2.2. For all a € C,
kerps c/ric2) D(a) # {0}

In the notation of (1.6), kerL%O,O(‘C/F;@) D(a) = é"kerL%LO(C/p;Cz) D(a)) #{0}.
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2.3. Floquet theory. Since the statement (1.4) is interpreted as having a “flat Flo-
quet band” at zero energy, we conclude this section with a brief account of Floquet
theory.

In principle, we could use the unitarity dual of G defined in (2.5) (and described
similarly to the unitary dual of Gy in §2.2) and decompose L?(C) into irreducible
representations under the action of G. However, let us take the standard Floquet
theory approach based on invariance under I' (see (2.2))

I>a:y— Zab(z) =9¢(z+a), e L*(C;C?, D(a)%=LaD(a).
(This definition agrees with (2.3) when a € T".)
We start by recording basic properties of the operator D(«). We first observe that
Specyaesry D(0) = I, D(0)exe; = kewey, e(z) = i) keT", j=1,2,
(2.9)

where the exponentials ey / vol(C/I')2 form an orthonormal basis of L?(C/T') and e;
are the standard basis of C2.

We then have the following simple
Proposition 2.3. The family C 3 a — D(«a) : H(C/T;C?) — L*(C/T;C?) is a holo-
morphic family of elliptic Fredholm operators of index 0, and for all o, the spectrum
of D(«) is I -periodic:
Speczcry D(a) = Specrzcry D(a) +k, k eT™. (2.10)

Proof. Since Dj is an elliptic operator in dimension 2, existence of parametrices (see for
instance [DyZw19, Proposition E.32]) immediately shows the Fredholm property (see
for instance [DyZw19, §C.2] for that and other basic properties of Fredholm operators).
In view of (2.9), D(0)—k is invertible for k ¢ T'* and hence D(0) : H'(C/T") — L*(C/T)
is an operator of index 0. The same is true for the Fredholm family D(«). To see (2.10),
note that if (D(a) — A\)u = 0 then (D(a) — (A +k))(exu) =0, k € I'™. O

For k € C/I'™* (or simply k € C) we defined the Floquet boundary condition as
Pz +a) =e 2@y e [2 (C;C?), acT.

loc
This means that o
V() 1= e RIRy ()
satisfies
v(iz4a) =v(z), acl, e2f*D(a)y(z) = (D(a)—k)v(2).
It follows that
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where Hy (o) is the operator in (1.4).

We now proceed with standard Floquet theory and introduce the unitary transfor-
mation

U IX(C;C") — LX(C/T L (C)T)), Zu(k,2) =Y ulz+a)ed(ralkrEalk),
acl’

We then have
UHY v (2,k) = Hv(z, k), v(e k)€ C®(C/T;C),

that is, for a fixed k € C/T™*, Z H% * acts on periodic functions with respect to T" as
the operator in (2.11). For each k, the operator Hy(«) is an elliptic differential system

(see Proposition 2.3 above) and hence it has a discrete spectrum that then describes
the spectrum of H(«) on L*(C):
SpeCL?(C)(H(a)) = U Specm(C/r)(Hk(Of))a
SpeCL2(C/F)(Hk<a)) = {:l:EJ'(k? C“) ;.207 Ej+1(ka a) > Ej(k? a) > 0.

To see the last statement we recall that

(A=) = ((AQ _gl*A)_l (2 —Sxm—l) (jx ﬁ) A= (21 f(l)) '

Hence, the non-zero eigenvalues of Hy are given by 4+ the non-zero singular values of
D(a) +k (that is, the eigenvalues of [(D(a) +k)*(D() +k)]2), included according to
their multiplicities). We need to check that the eigenvalue 0 of (D(«) 4+ k)*(D(a) + k)
has the same multiplicity as the zero eigenvalue of (D(«a) + k)(D(«) + k)*, so that
eigenvalues Ej(k, o) = 0 are included exactly twice (for +).

For that we use Proposition 2.3, which also shows that D(a) + k is a Fredholm
operator of order zero, and hence

dimkerz2(c/r.c2)(D(@) + k) = dimker 2 r.c2y(D(a)* + k).
In (2.12) we abuse notation by counting 0 twice in the spectrum of Hy(«).
From this discussion we can re-interpret (1.4) as the existence of a flat band:
Proposition 2.4. In the notation of (1.4) and (2.12)
0 € () Speciaie/ren He(e) <= Eo(k,a) =0 for allk € C/T*, (2.13)
keC

3. RESONANT AND MAGIC ANGLES

We now want to obtain a computable condition on « guaranteeing (1.4), that is,
the flatness of a band (2.13). In view of (2.11) and (2.12), (1.4) is equivalent to
SpeCLg(C/F) D(Oé) =C.
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3.1. Spectrum of D(«a). To investigate the spectrum of D(a) we use the operator
Ty defined in (1.9). We note that for k ¢ I'*, (2.9) shows that
D(a) —k = (D(0) = k)(I +aTx), D(0)=2D:. (3.1)

The operator Ty : L*(C/T; C?) — L*(C/T; C?) is compact and hence its spectrum can
only accumulate at 0. This means that

I # k € Specyacry D(a) <= a € A, Ax:=1/(Specpac/ry(Ti) \ {0}), (3.2)
where Ay is a discrete subset of C.

We now have a proposition proving the first part of Theorem 2. It also defines the

family of functions appearing in Theorem 1.

Proposition 3.1. For k ¢ T'*, the discrete set A = Ay is independent of k and

I, A;
specizem(Dle) ={ ¢ 0 E7 (3.3

Moreover, for all a ¢ A,
kerrzcrc2y D(a) = Cu(a) @ C&u(a), u(a) € L2 (C/T;C?), u(0)=e;, (3.4)

pLO
where & is defined in (1.6) and e; = (1,0)". For o € R, u extends to a real analytic
family, R 5> o= u(a) € kerz (c/rie2) D(@).

Proof. Suppose a € C\ Ay, k ¢ T'*. Then (D(a) —k)™!: L*(C/T) — HY(C/T) —
L*(C/T) is a compact operator and hence D(«) has discrete spectrum. By Proposition
2.2, 0 € Specrzcry(D()) for all @ € C, and thus together with the periodicity con-
dition (2.10) this implies Specz2c ) (D(a)) D I'*. Recall now that D(«) depends on o
holomorphically and 0 is isolated in the spectrum for a ¢ Ay. Thus, kerp2c/r,c2) D()
depends holomorphically on « ¢ Ay [Ka80, VII. Theorem 1.7] and by Proposition 2.2
dim(kerz2(c/rc2) D(a)) > 2 for all o € C, we find

dim(ker2(c/rc2) D(a)) = dim(kerp2(c/ric2y) D(0)) = 2 for all o ¢ Ay.
The discreteness of the spectrum implies that the spectrum depends continuously

on a [Kag0, II. §6] for o ¢ Ay. Since dim(kerp2(c/r,c2) D(av)) = 2 for all o ¢ Ay and
by periodicity (2.10), this implies that Spec 2 p c2)(D(a)) = T'™.

Using (3.2) and that Spec 2 r c2)(D(a)) = I'* for all a ¢ A, it follows that
dk ¢ I'" such that o ¢ Ax = Vp ¢ 1™ we have a ¢ A,.
This shows independence of Ay =: A of k.

Since

C>3a~ H(a) ::( 0 D@)*), H(a)=H(a), a€R,
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is a holomorphic operator family with compact resolvents, self-adjoint for a € R,
Rellich’s theorem [Ka80, VII. Theorem 3.9] implies that all eigenvalues and eigenfunc-
tions of H(a) = H(a) can be chosen to depend real-analytically on o € R. If we let
p(a) == (u(a),0,0)" € L2 , o € R\ A, then p(0) = e; € C* and by the discussion
above p(a) extends to a real analytic family for all « € R. O

The next proposition provides the symmetries of the set A.

Proposition 3.2. Suppose that in addition to (2.1) we have U(z) = U(Z). Then,
Spec D(a) = Spec D(—«) = Spec D(&) and hence

A=-A=A
In these statements Spec can be either the spectrum on L*(C), Specz2 (), or on L3(C/T),
Specac/ry-

Proof. To see the symmetries of the spectrum, we note that since Qv(z) = v(—z), the
anti-linear involution satisfies

D(a)Qv = —QD(—a)*v
which in turn implies Spec D(a) = —SpecD(—a)* = —SpecD(—a). But then (3.3)
shows that Spec D(«a) = Spec Q).

D(-
Next we notice that U(z) = U(z). If we define the unitary map Fv(z) := v(Z), then
we find using (D;Fv)(z) = (D.,V)(2) = —(D:v)(2) = —(FD;v)(2) the relation

D(a)(Fv) = —F(D(=a)v),
which implies that Spec(D(a)) = — Spec(D(—a)) = Spec(D(a)). O

The description of the kernel of D(a) gives us an expression for the inverse of
D(a) —k, k ¢ I and a ¢ A. We start with the following simple

Proposition 3.3. Suppose that u(«) is given in (3.4) and define a two-by-two matriz
V(a) = [u(a),&u(a)], v(a):=det V(a).
Then v(a) # 0 and k ¢ T* imply that, with the cofactor matriz denoted by adj,

1
v(@)
For a fized k ¢ T*, a — (D(a) —k)™! is a meromorphic family of compact operators
with poles of finite rank at o € A.

(D(e) — k)™ = ——adj(V(a))(2D: — k)~ (V(«)). (3.5)

Proof. If v(a) # 0, then V(a)™! = adjV(a)/v(a) and (3.5) follows from a simple
calculation (V(«) provides a matrix-valued integrating factor). In view of (3.1),

(D(er) = k)" = (I +aTi) " (D(0) — k)™,
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where, using analytic Fredholm theory (see for instance [DyZw19, Theorem C.8]),
a > (I +aTy)™! is a meromorphic family of operators with poles of finite rank. [

The proposition shows that o € A implies that v(«) = 0. To obtain the opposite
implication (which then gives Theorem 1) we will use the theta function argument
from [TKV19].

3.2. A theta function argument. We first review basic definitions and properties
of 6 functions — see [Mu83]. We have

Oop(2|7) = Z exp(mi(a + n)’7 + 2mi(n + a)(z + b)), Im7 >0,
nez

Ounl(z +117) = €590, (217), Oupl(z + 7]r) = e 2 CED g gy (36)
Oui1p(2|7) = 0up(2]7),  Oupi1(2|7) = €™ Gus(2|7).
The (simple) zeros of the (entire) function z — 6,,(z|7) are given by
Zam=Mm—3—a)T+1-b—m. (3.7)
If
/
ole) = G, 33)
then (3.6) shows that
gz +7) = D (2), gzt 7r) = (), (3.9

and from (3.7) we know the zeros and poles of g.

With this in place we can prove
Proposition 3.4. In the notation of Propositions 3.1 and 3.3 we have

() =0, aeR = acA
Proof. If u(a) = (¢1,12) then

v(a) = P1(2)1(=2) + 2(2)Pa(—2).

As remarked after (1.5), v(«) is independent of z.

The observation made in [TKV19] is that 1 vanishes at special stacking points.
These are fixed points of the action z — wz on C/I'3 (see (2.4)):

Voo, £25) =0, z5:=3(ay—ay) = %gﬁ, a; = miw’. (3.10)
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FIGURE 5. Plots of z — log |u(«, z)| (in the notation of Proposition 3.1)
for a close to magic values (due to pseudospectral effects it is difficult

to compute the exact eigenfunction at a magic angle) showing that the

value of u at zg = %gw is close to 0.
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To see this, note that (with the action of % identified with the action on (u,0c2)" €
L*(C/T;CY))
u(a, £25) = Fu(a, £25) = u(a, fwzg) = u(a, tzs F ag)

w0 1 0
— ( 0 1) Lrau(a, £z5) = (0 uﬁl) u(a, +z5).

Hence 5 (+25) = wTlihy(F25), which proves (3.10).

We conclude that if v(a) = 0 then 9 (z5)91(—25) = 0, and hence u(c, zg) = 0 or
u(a, —zg) = 0. Assume the former holds (otherwise we replace u with &u). We can
then construct a periodic solution to (D(a)—k)vyx = 0 for any k € C, and in particular
for k ¢ T, implying, in view of (3.3), that a € A.

In fact, if fi is holomorphic with simple poles at the zeros of u allowed (we note
that the equations 2D;tb; + U (2)1g = 2Ds105 + U(—2)1b1 = 0 imply that 04;(zs) = 0
and hence u = (z — zg)u, where u is smooth near zg) then

(D(e) =k)vic =0, vie(2) = e3EKH f (v (2).
To obtain periodicity we need
fulz+a) =e 2@ L () 4T,

a = 4r(ayiw + agiw?), k = \%(kluﬂ — kow).

(ak + ak) = 27 (aik; + azks),

1
2

But now, (3.7)-(3.9) show that we can take

. 9—%+k1/3,é—k2/3(32/4mw|w)

flz) = 0_11(3z/4miw|w) -

11
5%
Proof of Theorem 2. The lack of dependence of the spectrum of Ty on k ¢ I'* and

equivalence of statements (1) and (2) are the content of Proposition 3.1. The definition
of Hy(«) in (1.4) immediately shows their equivalence to statement (3). O

Proof of Theorem 1. In Proposition 3.1 we already obtained a (real) analytic family
a — u(a). Then v(a) = W(u(a),&u(e)) and the equivalence of v(a) to (1) in
Theorem 2 follows from Proposition 3.3 and 3.4. 0

Remarks. 1. The zero of u(a) € kerLgLO(C/F,(C?) D(«a) seems to occur at zg only — see
Figure 5. This is also suggested by the following argument: from v(a) = 0 we see that
&u(z) = f(z)u(z), where, using v(«) = 0 again,
fo) oo Ba(E2) __i(=2) _ ol (=2)
1(2) a(2) 2Dz(z)
is holomorphic away from ;' (0) N (Dz1)~1(0). We also see that f is meromorphic:

in fact, near any point 29, ¥1(20 + () = Fl(CaE)a Uy(—20 — () = F2(<7E)7 where
F; : Be2(0,6) — C are holomorphic functions (this follows from real analyticity of

(3.11)
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t;, which follows in turn from the ellipticity of the equation — see [HOI, Theorem
8.6.1]). The definition of f and the fact that d;f = 0 away from zeros of ¢ shows
that F5((,€) = f(z0 + ¢)F1((,€). We can then choose & such that Fi((,&) is not
identically zero (if no such &, existed, ¢; = 0, and hence, from the equation, u = 0).
But then ¢ — f(z0 + () = F2((, &)/ F1(¢, &) is meromorphic near ( = 0 and, as z
was arbitrary, everywhere. In addition,

flz+a)=w""f(2), a€ls, f(w2)=[f(2), f(2)f(-2)=-L

These symmetries also show that f(zg + w() = w™!f(2¢ + (), which means that
flzs +0) = Yon ¢ fr and f(=25 — ) = Xynq_y, ¢ g0, for some ko € Z.
Hence, if f has only poles of order 1, we have u(a, zg) = 0. We formulate this bold
guess as follows:

u(a) € kerrz c/rez D(a), u(e) #0 = u(a,z) #0, z¢z5+1Ts. (3.12)
This is related to the following fact, which seems to hold as well:

dim kerL‘zj1 L(C/r,c2) D(a) =1, a€C. (3.13)

Proof of (3.12) = (3.13). Suppose that u = (¢1,1»)" and v = (1, pa)" are two ele-
ments of the kernel in L,%l,o' We then define the (constant) Wronskian w := 110 —12p;.
Since po(Ezs) = 1o(Ezs) = 0 (see (3.10)), we have w = 0 and hence v = gu, where
9(z) = p1(2)/¥1(2). As in the discussion of f given after (3.11), we see that g(z) is a
meromorphic function periodic with respect to I's. From (3.12) applied to 1 we see
that g can only have poles at zg+ '3, and applied to ¢;(z) we see that g can only have
zeros at the same place. But this implies that ¢ is constant. 0

2. The elements of the kernel of D(«) —k can be obtained from the (finite rank) residue
of the operator (3.5), and theta functions are already implicitly present there. On one
hand (see §5) the operator (2D; —k)~! can be described using Fourier expansion, but
on the other hand it can be represented using theta functions: it is the convolution
with the fundamental solution of 2D; — k on C/I'. To obtain the convolution kernel
(in a construction which works for any torus) we seek a function Gy such that

(2D; — k)Gx = 6o(2), Gx= G%(kﬂf(z)gk(z)a O:9x|cvr = 0,

i/(2r), weT;

gx(z +a) = e_%(RaJrké)gk(Z), Res.—wgk(2) = { 0. w¢T.

(The last condition gives 2Dz gy (2) = >, cr 0a(2), as 0:(1/(7w2)) = do(2).)

To find gx we return to (3.7) and (3.8) and choose

/ : / .
T =dmiw, 77 =4miv?, a=

N[ —=

N b:%, a':%—kl, b,:%—l-/{ig
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Hence we have

e~ miki+2miki (3 +k2)92 (0|w>91 k1,3 +ko (2/Amiw|w)

gr(z) = 27r@9§ 1 (why + k) |w) 0%75(2/4mw|w) ’ (3.14)
%f(klw —ka®), (ku, ko) ¢ 22,
It would be interesting to derive (1.8) from (3.5) and (3.14). O

3.3. Existence of magic a’s. We now give a proof of Theorem 3 which amounts to
calculating tr 7j;. For that it is convenient to switch to rectangular coordinates, which
are also used in numerical computations (see §5): 2z = z; + Ty = 2iwy; + 2iwWys.
We have U(z) = e iWtvz) 4 ei@nv2) 4 (2ei-0+22) and 2D, = D,, + iD,, =
(w?D,, —wD,,) //3. We are then studying

Di(a) == D(a) +k = % (W@(‘k ) “;{”)

Dy = WQ(DM + k1) — w(Dy, + k),
Y (y) = \/g(e—i(yﬁ-yz) + wetZi—v2) 4 w26i(—y1+2y2))’

(3.15)

with periodic periodic boundary conditions (for y — y+27mn, n € Z?). In the following,
we shall write 74 (y) := ¥ (£y). The operator Ty, k = (w?k; — wky)/V/3, (k1 k) & 72,
is given by
T, = 0 @1:17/-&-
T \gctve o0 )

In this notation,
trT =18tr A%, A= Ax = 19V, DMV, (3.16)

where we note that A2, a pseudodifferential operator of order —4, is of trace class (see
for instance [DyZw19, Theorem B.21]).

By taking the (discrete) Fourier transform on R?/27Z* we consider the operator
Dy () as acting on (*(Z) ® (*(Z). With D := diag ({)sez and J((an)nez)) = (@ni1)nez,

we have
D= (D+ k) @1 —wl® (D + k),
Vi N3=J®J+wJ 20 J+w]®J 2 (3.17)
YV V3=J'eJ  twlre T+t T e JA

The numerical value in Theorem 3 will come from the following, surely classical,
computation:
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Lemma 3.5. For [ := wZ &7, w := >/ and ~, € '\ {0} define

K(y):= Y 7 (r=%" (3.18)
YeM{0,70}
Then
Ami(w(2n —m) +n +m)
K = _ 3.19
(wm +n) 3(wm + n)? (3.19)
Proof. We notice that K(wvy) = WK (79). Hence it is enough to evaluate
2
9(0) = > W K (W) = 3K (y0). (3.20)

J=0

Also, if we define F(z,v) := Zver(’y —2)72(y — v — 2)72, then F' is a meromorphic
[-periodic function with the singularity at z = 0 given by 2/(27,)?. Hence,

F(z,%) = 29 °p(2) + K(0), (z) =) <(7—1z)2 - - _3%0) ‘

yel’ 7

Using the partial fraction expansion, the fact that Z?:o w’ = 0 and the above series
for the p-function, we obtain

2007 1
g(y ZwJszWo ZZWJ(7 wﬂ%—Z)Q_ - — )

Yo (7 — wiv — 2)

Jj=0 vel' j=0
2
o1 - wino 2007
=707 2 olz) + ZZ e ZZ
e Lo =0 (v — wiv)? el i (v — WJ”YO —z)

where the first term on the right hand side vanishes and both series converge absolutely
(this can be checked by taking a common denominator using H?ZO(C —wiyg) = C3=3).
We now have

D) DR D DD DRI

wﬂ ,
yel j=0 (v = w0)? J=0 |y—wiy|<N

= O(1) lim > N2 =0.

N—o0
N—|v|<|V[EN+|ol

Hence, using the fact that >, _,((n —a)™' — (n —b)™") = wcot 7b — 7 cot 7a,

M 2

g(m) = 277y ° ]\/lll—r>Iloo ZM Zowj (cot m(mw + w’yg + z) — cot T(mw + 2)) . (3.21)
= j=
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Since cot ma — cot my = 2i( (€2 — 1)~1 — (€2 — 1)), e2rinw — (_1) eV e 7,
we obtain, with a,, := (e2™(m«+2) _ 1)=1

M
Z (cot((m + mo)w + ng — z) — cot m(mw — z))
m=—M
M M+mg —M+mo+1
=2 Y (G — Om) =20 Y =2 > am
m=—M m=M+1 m=—M
M+mg M
=2 Y (=14+0(™M)-2i > O(e™)=—2img+O(c™).
m=M+1 m=M—mgo+1

Inserting this in (3.21) with v = wmyg + ng (and calculating the corresponding w’~)
gives

g(wmg 4+ ng) = —4mi(wmg + ng) "> (w(2ne — mo) + ng + my),

which, in view of (3.20), proves (3.19). O
We can now give the

Proof of Theorem 3. To simplify calculations we introduce the following notation:
JP = JP @ J1 p,q € Z. (3.22)

Also, for a diagonal matrix A = (A;;); ez acting on (*(Z) ® ¢*(Z) we define a new
diagonal matrix with the following basic properties:

Apg = (Nivpjrq)ijez,
(AA/)p,q = Ap,qulo,qa (Ap’,q’>p,q = Ap+p’,q+q/a

where A’ is just another diagonal matrix. To express powers of A in (3.16) we will use

(3.23)

the following simple fact:
JPAp P — Apqup+p’,q+q’ - Jp+p’,q+q’A_p,7_q,' (3.24)

If we put

A= D1217 Amn = (w2(m + kl) - w(”’ + kQ))ila (khk?) ¢ Z27
then, in the notation of (3.16),

A — A(Jl,l + wJ—?,l + wQJl,—Q)A(J—l,—l 4 wJQ,—l + wQJ—l,Q)
= AN +wAA o+ WPAA o+ wAA TP+ WPAA TP
+ CL)AA,QJ J7370 + W2AA1’,2JO’73 + AA,QJ J73’3 + AA17,2J3’73.
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The diagonal part of A? is then given by (note that the matrices are diagonal and
commute)
B .= AzAil + w2A2Ai_2 + CUAQAQ_Q’I + 2WA2A1,1A1,_2 + 2&}2/\2/\171[\_271
+ 2A2A,2’1A1’,2 + CL)ZA%71AA370 + CL)QA%Q,lAA,g’O —+ WA%JAAU,?: (325)
+ MA%,_QAA()’_P, + A2_271AA_373 + A%’_QAAg,_g,.

Since tr A7 jAp oAy g =t ALy, o AprrgrsDpirg+s, We have
tr A2 =tr A2 (Ail + 2A_271A17_2 + 2A27_1A_1’2)
+ wtr AQ(AZ_QJ -+ 2A171A17_2 + 2A_1,2A_17_1)
+ w2 tr Az(Aiiz + 2A1’1A,2’1 + 2A,17,1A2,,1).
We now find that
Apor1As1 10 + WA 20N 51 71 + WQA:Fl,:FlA:tZ,:tl = 0.

In fact, using
1 1 1 a+b+c

ab ' be ' ca abe

it suffices to show, say for the + case, that for all n € Z?
W(A2, 1)y + @A r2)nn + (Aot-1)py = 0

which follows from a direct computation. Hence, the expression for the trace simplifies
further to

and this expression can be calculated using Lemma 3.5. The singular terms of the sum
in (3.26) cancel, as the proof of Lemma 3.5 shows, so we can remove them, and put
ki = ko = 0. Noting that w?*m —wn = wy, vy =wm —n, and w?*(m +p) —w(n +q) =
w(y =), 10 = —wp + ¢,
trA? =oK(~w+1)+ KQw+ 1)+ wK(—w —2)
=KQ2w+1)+wK(w2w+1)) + wK(Ww?(2w+ 1)) = 3K (2w + 1)
= 47//3,

where we used (3.19) and (3.20). In view of (3.16), this concludes the proof. O

Remark. Similar arguments can be used to show that >, a™® = tr T} = 7407 //3.
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4. EXPONENTIAL SQUEEZING OF BANDS

Here we prove a more general version of Theorem 4 valid for potentials with sym-
metries (2.1). Theorem 4 is then obtained as a special case by choosing the potential
as in (1.2). As mentioned in the introduction, in order to see exponential squeezing
of bands as o — oo for general potentials, it is necessary to impose an additional
non-degeneracy assumption.

To introduce our class of potentials, let

fal2) = fal2,2) == Zw Feet-h ez, (4.1)

Then f,(wz) = wf,(z) and

falz+a) =w"f,(2), a=iriw', (=12

Hence, f, satisfies (2.1) only when n = 1 mod 3. We shall therefore consider potentials
given by
U)=U(z2) = Y anfu(22), lan] < coe™", (4.2)
ne3Z+1

for some constants ¢y, c; > 0. The condition on a, is equivalent to real analyticity of

U.

Special cases of this type of potential have appeared in [GuWal9] and [WaGul9],
where the strength of the potential at certain points based on orbital positions and
shapes is taken into account to obtain a model different from (1.2) that still satisfies
the desired symmetries. Note that the potential in (1.2) is obtained from (4.2) by
taking a; = 1 and a, = 0 for all n # 1. The potential U, appearing in Figure 2 is
obtained by taking a; =1, a_s = p and a, = 0 for n # 1, —2.

Since f,(2) = fn(z) for all n, the symmetry relation U(z) = U(z) (used in Proposi-
tion 3.2 to achieve A = A) is equivalent to Ima,, = 0 for all n.

We now impose a generic non-degeneracy assumption that

> nRe(ay) # 0. (4.3)
ne3Z+1

This is trivially satisfied by the standard potential in (1.2), and for the potential U,
appearing in Figure 2 it holds as long as pu # % For such potentials we have the
following strengthened version of Theorem 4.

Theorem 5. Suppose that Hy(«) is given by (1.1) and (1.4) with U given by (4.2)
and that

SpeCLz(C/F) Hk(Oé) = {Ej(k, a)}jez, Ej(k, a) < Ej+1(k, Oé), keC, a>0,
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with the convention that Ey(k,a) = min; |E;(k, a)|. If U satisfies (4.3), then there
exist positive constants cg, c1, and cy such that for all k € C,

(K, )] < coe™®, || < ea0, >0,

Remark. If in (4.2) we assumed instead that |a,| < Cy|n|™ for all N, that is, that
the potential is smooth, then the conclusion would be replaced by |E;(k, )] < Cya™
for any N. That follows essentially from Hérmander’s original argument — see [DSZ04,
Theorem 2] and references given there.

To prove Theorem 5 it is natural to consider h = 1/« as a semiclassical parameter.
This means that

Hi(a) = h~! (P(h)o_ - P(h);_ hl—‘) , P=P(h) = <5?i) 2%’?) ,

where U(z) is a potential given by (4.2) that satisfies (4.3).
The semiclassical principal symbol of P(h) — hk (see [DyZw19, Proposition E.14])

is given by
_oa 2¢ U(z,2)
where we use the complex notation { = %(51 —i&s), z = 1 +ix2. The Poisson bracket

can then be expressed as

2
{a,b} = Z 0¢;00,;b — 0¢, b0, ;0 = 0ca0.b — 0:b0.a + Opadzb — Jboza. (4.5)

j=1

The key fact we will use is the analytic version [DSZ04, Theorem 1.2] of Hérmander’s
construction based on the bracket condition: suppose that @ = 3_, <, aa(z, h)(hD)*
is a differential operator such that x + a,(x,h) are real analytic near xzp, and let
q(z, &) be the semiclassical principal symbol of Q. If there exists

Q<x07 gO) = 07 {(L q_}(ﬂf(), 50) # 07 (46)
then there exists a family v, € C°(£2), Q a neighbourhood of z, such that
|(hD);Qua(x)] < Cae™", Jlunllie =1, |(hd,) va(w)| < Cae==l/m (4.7)

for some ¢ > 0. The formulation is different than in the statement of [DSZ04, Theorem
1.2], but (4.7) follows from the construction in [DSZ04, §3] — see also [HiSj15, §2.8].

We will use this result to obtain

Proposition 4.1. There exists an open set 0 C C and a constant ¢ such that for
any k € C and zy € Q there exists a family h — w;, € C*(C/T;C?) such that for
0<h< ho,

(P(h) = hl)us(2)] < e, Junllzz =1, Jup(z)] < emlm, (4.8)
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FIGURE 6. A contour plot of [{q,q}| = |Im(V%8zV)| —see (4.9). Here
V(z) = U(2)U(—=) with U given by (4.2) so that U = 3" a,fn,, n =1
mod 3. In the left panel, U = a;f; with a; = 1 so that U coincides
with (1.2). In the right panel, U = a1 f; + a_aof o + agfy with a; = 1,
a_s = —0.75 and a4 = 0.15. The bracket i{q, g} is non-zero except on
a one-dimensional graph and on a set of points given by the red set,
and can take any sign by choosing a branch of the square root Vz. The
punctured domain around the origin where |{g, ¢}| # 0 is clearly visible.

Proof. To apply (4.7) we reduce to the case of a scalar equation, and for that we look
at points where U(zg, Zp) # 0. In that case, existence of u; follows from the existence
of v, € CX(V;C), Q' a small neighbourhood of z; on which U(z, z) # 0, such that

Qui=0(e™), wn(z0) = 1, |on(2)| < e e 2ol/n,
Q = U(2,2)(2hDs = hk) (U(2,2) 7 (2hD; = hk)) = U(=2, =2)U(z, 2),

with estimates for derivatives as in (4.7). We then put
uy, := (v, —U(2,2) " (2hDs — hk)vy,)

and normalize to have ||uy||zz = 1. Since such v, are supported in small neighbour-
hoods, this defines an element of C°°(C/I",C?). The principal symbol of 2hD; — hk is
2, and basic algebraic properties of the principal symbol map (see [DyZw19, Propo-
sition E.17]) imply that the semiclassical principal symbol of @) is given by

q(2,2,¢) = det(p(z,2,()) = 4C* = V(2,2), V(z,2):=U(z,2)U(~z,—2).

To use (4.7) we need to check Hérmander’s bracket condition (4.6): for z in an open
neighbourhood of zq, U(zg, Zg) # 0, there exists ¢ such that

4(2,2,¢) =0, {q,3}(2,0) #0.
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N[

Since ¢ = 4¢* — V/(z, Z), we can take ( = 3V
that, using (4.5),

i{q, g} = i(8€0: + 0.V ) (4¢* = V) = 8i(¢0.V — C2.V)

(for either branch of the square root) so

o, (4.9)
= —16Im(CO.V) = —8Im(V2.V).

We need to verify that the right-hand side is non-zero at some point zy, as that will
remain valid in an open neighbourhood of zj.

To do so we write the expression Im(V 20,V from (4.9) as a Taylor series at the
origin. With f,, given by (4.1) we observe that f,,(0) = 0 for all n, and that

2 2
o _n 2 (zw* —zwk) _ 3n B __n 2k 2 (z*—zwk) _
L fa(0) =3 e = (0 =5 ) W =0
k=0 k=0
since w? = w and 1 + w + w? = 0. Hence,
U(z,2) = 0.U(0)z+O(z]*),  2.U0)=35 Y nay. (4.10)

Recall that V(z) = U(z)U(—z). Since U(0) = 0:U(0) = 0, we have V(0) = 9,V (0) =
0:V(0) =0, and

02V (0) = —2(0,U(0))?, 0,0:V(0) = 92V (0) = 0.
It follows that
V(z) = =22(0.U(0))*(1+ O(|2])), 0.V (2) = —22(9.U(0))*(1 + O(|2])),

which gives

N[

V3 (2)0:.V (2) = /=2%(9.U(0))*(~22(0:U(0))*)(1 + O(l2]))

= 2i|2|*|0.U(0)]?0,U(0)(1 + O(]2])).

From this we see that Im(V20,V) # 0 in a punctured neighbourhood of the origin if
Re 0,U(0) # 0, which in view of (4.10) holds by virtue of the non-triviality assumption
(4.3). This completes the proof. O

Remark. The open set on which the right-hand side of (4.9) does not vanish can be
easily determined numerically, and it is a complement of a one dimensional set — see
Figure 6.

To prove Theorem 5 we will use the following fact, with the proof left to the reader:
Proposition 4.2. Suppose that g, € L*(C/T), n € Z?, |n| < N satisfy |{gn, gm)| <

e~ Min=ml> (g gV = 1. If M > 3 then the set {gn}ini<n is linearly independent in
L3(C/T). O

We can now give
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Proof of Theorem 5. In the notation of Proposition 4.1, let C' = [a, b] X [¢,d] € 2 and
consider the finite set 25, := KVhZ?> N C, | 23| ~ 1/h. Then (4.8) gives uf, w € 2,
(with zo replaced by w). Let M > 1. Using |w — 2> + |0’ — z|* = §|w — w'|* + 2|z —
$(w +w')|?, and taking K large enough, we obtain from (4.8)

[(ugy,wp)| < e M=

P 0= 2 e P luplle =1 (4.11)

Abusing notation, let us identify u? with (u?,0c2) € L*(C/I';C*), with (4.11) un-
changed. We then have
| Hi(@)u || z2cmy < e, h=1/a. (4.12)
Using self-adjointness of Hy and in the notation of Theorem 5, write
He(o)v =Y Ej(k,a)g;(v.g;), Hula)g; = Ej(k,a)g;, (g;,8) = dij.
jEL
Then (4.12) implies that 3= 4 o)ze-c/2n 8 (U} &) = O(e=¢/?) 2, which gives

dim span{g; }| g (i a)j<e-e'/20 = dimspan{u}ye .

But (4.11) and Proposition 4.2 show that the right hand side is given by 27, ~ 1/h.
This completes the proof. 0

Remark. This simple argument showing exponential squeezing of bands does not
apply to the more realistic Bistritzer—MacDonald model of twisted bilayer graphene
[BiMall]. In that case, a more complicated non-self-adjoint system can be extracted
from the analogue of H(«), but whenever eigenvalues of the symbol (the analogue of
(4.4)), A, are simple, the Poisson bracket {\, A}|x—o vanishes [B*21].

5. NUMERICAL RESULTS

The results are numerically implemented using rectangular coordinates z = x; +
iz = 2iwy; + 2iw?ys, see §3.3. We then consider

where Dy () is given in (3.15), withperiodic boundary conditions (for y — y + 27n,
n € Z*). For a fundamental domain in k we choose Q := {(ki, k2); —3 < k; < 1}.

5.1. Numerical implementation. The discretization is given using a Fourier spec-
tral method; see [Tr00, Chapter 3|. Using the tensor structure of % and ¥ we
start with the standard orthonormal basis of L*(R?/27Z?): en(y) := €n, ® €n,(y) :=
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en, (Y1)en, (Y2), €o(t) := (QW)’%em. Using the identification [—N, N|NZ ~ Zon 1, We
define

Uy : LQ(Rz/Qﬂzz; CQ) - €2(Z3N+1; CQ) = fz(ZzNH; C2) ® €2<Z2N+15 62)7

Iy (Z Gn€i<y’n>> = {a(nl,nz)}\nﬂSN? an € (CQ, n = (ny,ng) € ZZ;

neZz?

and DY («) := Ty Dy (a)IT}. Hence,

a2y  avlN
D@ = (o U )

where (with DV := diag (¢)_ny<j¢<n and Jy the 2N + 1 dimensional Jordan block)
DY = W (DN + kyloni1) @ Ipavin — wilganss @ (DN + kyleanss),
YN =3Iy @ Iy +w (3 @ Iy + Wiy @ (J3)),
YN = VB(Jn)' @ (Jn) 4wl @ (Jn)t +w? (Jy) @ JZ).

The matrix Dy («) has dimension 2(2N + 1)%.. To obtain reasonable accuracy up
through the second magic «, one should at least use N = 16 (giving a matrix of
dimension 2,178); for the range « € [0, 15] in Figures 7 and 8, we use N = 96 (giving
dimension 74,498). It is expedient in the former case, and essential in the latter, to use
sparse-matrix algorithms that take advantage of the many zero entries in Dy («). To
compute the smallest singular values of DY («), we use Krylov subspace methods, either
the inverse Lanczos algorithm adapted from [1r99, Wr02] or the augmented implicitly
restarted Lanczos method [BaRe05] implemented in MATLAB’s svds command.

Figure 7 shows numerical calculations of the first 41 non-negative eigenvalues of
Hy (). Asrequired by Theorem 4, these eigenvalues decay exponentially, apparently no
slower than e~®. The vertical lines in the figure indicate the magic o values. We pursue
two approaches to locating these magic o € Ap,, (see (1.10) and Theorem 2). The
spectral characterization of the set A of resonant a’s via the operator Ty enables the
precise calculation of many points in A as reciprocals of eigenvalues of the discretisation

0 (g
@)y o)
To reduce dimensions (and multiplicities) we consider these operators in the decom-

position of L*(R/27Z) in terms representations of I's/T" ~ Z2 (we did not use the full
symmetry group Gz — see (2.6)). We used this approach to compute Figure 1 and to

Tliv =

get initial estimates of the values in Table 1; note however that for large |a| the non-
self-adjointness of 7}¥ limits the precision to which these eigenvalues can be computed.
(This pseudospectral effect is a more significant obstacle to high precision than the
errors introduced by truncation to finite NV.)
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0.586 2.221 3.751 5.276 6.795 8.313 9.829 11.345 12.861 14.376
(07

FiGUurRE 7. Numerical confirmation for Theorem 4: Computed eigen-
values Ey(k,a), ..., FEyu(k,a) of Hy(a) for k, = 1/(2v/3) + i/6 (see
Figure 8). Numerous eigenvalues are quite close together or have high

multiplicity.
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FIGURE 8. On the left, the norm of the resolvent (D(a) — k)™ at
k., = 1/(2V/3) 4+ i/6, a point equidistant from three eigenvalues of D(«)
for o € A. The red dashed line shows e®. The right shows a portion of
Specra e ryD(a) =T for a & A.

To understand the accuracy of the values in Table 1, we studied ||(D{ (a))~!|| near
the putative magic o values. Figure 8 reveals the computational challenge of resolv-
ing large magic angles to high fidelity. One can characterize the magic a’s as points
where (D(a) —k)™! does not exist, and hence they are approximated by «’s for which
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TABLE 1. Estimates of the first thirteen magic a’s, truncated (not
rounded) to digits supported with high confidence by our numerics. The
last column shows the difference between consecutive magic a’s, which
seem to converge a bit above the conjecture of 3/2 in [TKV19].

k o o — O_q
1 0.58566355838955
2 2.2211821738201 1.6355
3 3.7514055099052 1.5302
4 5.276497782985 1.5251
5 6.79478505720 1.5183
6 8.3129991933 1.5182
7 9.829066969 1.5161
8 11.34534068 1.5163
9 12.8606086 1.5153
10 14.376072 1.5155
11 15.89096 1.5149
12 17.4060 1.5150
13 18.920 1.5147

| DY () 7Y| is very large for generic k. Careful scanning for a’s around magic val-
ues (using N = 96 and N = 128) refines the estimates and indicates their accuracy.
Overall, as « increases || DY (a)~}|| grows exponentially (as guaranteed by Theorem 4,
since || DY ()7t = 1/Ey(k,a)), so that precisely locating large || DY («)7|| values
against this growing background becomes increasingly challenging. Indeed, this nu-
merical struggle nicely parallels the presumed diminishing physical significance of large
magic « values (corresponding, as they do, to reciprocals of angles of twisting).

5.2. Error bounds. Assuming accuracy of matrix calculations it is possible to give
error bounds for the approximation of the actual magic a’s. We consider the general
situation in which B € £,(H) (a trace class operator on a Hilbert space) is approxi-
mated by a m(N)-by-m(N) matrix, (in our case m(N) = (2N + 1)?) where

B =By +Ey, [[Exli<pi(N)/N° ||Ex| < po(N)/NF, (5.1)

where || e ||; and || e || are trace class and operator norms, respectively. (The strange
look of the estimates is explained by the statement of Proposition 5.2.)

Suppose that the matrix By has a simple eigenvalue uy € R (computed numerically)
and that (by a numerical calculation)

[(By — \) 7 < O%(e), Nji= py +ee®™7 5 =0,1,---,J—1. (5.2)
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We then have, for all A\ with |\ — uy| = ¢,
2eCY(e)sin(m/2J) <0 = [|[(By — A) 7| < Cn(e) :=CR(e)(1—0)"".  (5.3)
We then note that for |A — uy| = ¢,
Cn(e)po(N)/N® <0 = (B—=XN)""=(By—A)"'(I = Dn(N)),
Dy()) := Ex(\)(By — N)"HI + Ex(\)(By — A)™H 7 (5.4)
IDx (NIl < Cw(e)pr(N)/NO(1 = 9).

These bounds lead to an estimate of the trace class norm: if the assumptions in (5.3),
using here the larger constant Cy instead of C%;, and (5.4) hold:

2eCy(e)sin(n/2J) < 6, COn(e)po(N)/N® < 6, (5.5)
where po(NV) is defined in (5.1) and Cx(¢) in (5.3), then

I(B =X)™" = (By = X)) l1 < Cn(e)*pa(N)/N°(1 = 9). (5.6)

If we define spectral projectors

1 1
P(e) i= — (A= B)'d\, Py(e) = — (A= By)HdA,  (5.7)
270 S A= 270 S r—pu|=e

we see that if (5.5) holds then

eOn(e)?p1(N)/NS(1 —=6) <1 = tr P =tr Py =1, (5.8)

that is, we have a simple eigenvalue of B within € of uy:
| Spec(B) N D(un,e)| = 1. (5.9)

If we know that the eigenvalues of B are symmetric with respect to R it follows that
B has a real eigenvalue in (uy — &, uy + €).
Remark. Anders Hansen pointed it out to us that a similar argument working in

greater generality was presented in [Be*15].

We now implement this for the operator B = By = 3Ax, k ¢ I'*, where Ay is the
operator defined in (3.16). The Hilbert space is the symmetry reduced L?*:

H = L3(C/T) :={u € L*(C/T) : u(z +7) = u(z),y € I's/T'}, (5.10)

where T'y = 3mi(wZ & w?Z), ' = 313 — see (2.4).
We start with the computation of the constants in (5.1). Let 7" be a compact
operator and ||T||, its p-Schatten norm:

o0

1Ty = 1T Nl 2y == (Z Sj(T)”> , TeLl(H) < [T, < oo,

J=0
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where s;(T") are the singular values of T — see [DyZw19, §B.3]. In the notation of §5.1,
we let my := [ —Ily. For p >3, M > 2, and k = (w?k; — whky)/V/3, (k1, k) € (0,1)2,
we claim

H7TMD(k)_1||£ < 21 6P/2

f/[u2p2 AI=177 = \3p_2) (5.11)

Tp =
In fact,
lm D) E =32 > [(mt k) =W (n+ ko)
|m|>MV|n|>M

< 30/ Z |m? 4+ mn + n?| P/
[m|=MV|n|>M

8] 2m 1
<3 dp d 5.12
=7 /Ml /0 rP=1(1 4 cos(ip) sin(p))P/? par (5.12)

2— 2
p=2 )y (+Isn@o)?
2m6P/2 (M — 1)27P
<
V3 p-2
where we used, with f(¢) := (1 + 1 sin2¢p)
47
V3
(The integral can also be estimated very accurately using the method of steepest
descent.) In addition, we observe that for the operator norm and M > 1,

-1/2
)

1 —
1153 === 1fllee =22, 15 < IFIBIFIE.

I D) < VB sup  (m? 4 mn+n?) 7 <2/M. (5.13)

Iml|>MVin|>M

We used these estimates to compare finite rank operators used in numerical calcu-
lations to powers of T}:

Proposition 5.1. In the notation of §5.1, and with ki, ke € (=1,1), N > 2p > 6, we
have
4754721 (N, p)

V3(p — 2)Nr2

|1TY — N TE N ||x <

and in operator norm
| T — Ty TE || < 672p9(N, p) NP,

where
p—1

pi(N.p) = TJ(1 = (20 + 5)/N) 71+ 5. (5.14)

=0
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Proof. We first observe that
1T = Iy T Myl = ([T = (1 = 7o) T + (I = wn) T |
< lenTilh + ([ Tmnlly, 7y =1 =Ty,
We will estimate the first term, with a same argument applicable to the second term.

Letting T = Ty, we write T = Dy (0)7'V, where V is the potential with U(z) and
U(—z) on the antidiagonal. We note that ||V|| < 3. By analysing the potential in (1.2)
we find that

T = T mN_a. (5.15)
Hence (using Schatten norms)
p—1 p—1
70l < [T Tl < 3 T] Imsv-2eDi(0) (5.16)
=0 =0
For M > 2, (5.11) gives
1
Imar Dic(0) Iy < 9 (M = 1) 75, p >3, (5.17)

and hence we have, using (5.11) and (5.14),
2547/ py (N, p)
V3(p —2)NP=2

Combined with the same estimate for ||7P7x|[; this implies the result. The operator

lrn TPl <

norm estimate is fully analogous, using (5.13). OJ

We recall that ., commutes with Dy(0) and V, where V' is as in the proof of
Proposition 5.1. It also commutes with Il since pull backs by translations and multi-
plication by constants do not change orders of trigonometric polynomials. This gives
an action of Z2 on L*(C/T, C?) which can then be decomposed using nine irreducible
representations of that group (2.8):

L3 (C/T;C%) = {u € L*(C/I;C?) : Zyu = mp(a)u},
where p = (w?p1 — wp2)/V3, p; € Zs3, Tp(a) = exp(i Re(ap)). We then specialize to

this symmetry reduced case and power p = 8. The former gives a small improvement:

Proposition 5.2. Suppose that B = By = 3Ay, k = w?/2V/3, where Ay comes from
(3.16) and H is given by (5.10). Then, with Il given in §5.1, and p; defined in (5.14),

) . 1 -1 i
1B* = TN B TN 17, 2 rczyy < 10-23N 7 pi(8,N)e, (5.18)

|B* — Iy By || 22 (c/rc2y) < 6%2p0(8, N)N .

Moreover, at every magic angle, o € A, the Hamiltonian H(«) exhibits at least 18 flat
bands.
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TABLE 2. The values of N needed to obtain a rigorous error bound of
§ = 107%, as computed using the guarantee.m code in the Appendix
(using the default NN=16). The matrices used in calculations then have
size (2N + 1)%-by-(2N + 1)2. Hence the rigorous error estimates are
realistic for a; and for rough bounds on as and asz but not for higher
a;’s. All the values of N < 328 here were certified by a second (long)
run of guarantee.m with the procedure described in the Appendix.

k ) Qo Qs
1 21 128 374
2 21 159 476
3 28 226 689
4 38 328 1011
5 51 472 1480
6 71 691 2168
7 100 1012

8 145 1485

9 211

Proof. We observe that we have unitary equivalence,

Upu(z) : L2(C/T;C*) — L2, (C/T;C%), Upu(z) := e RGPy (),

p+ad
and that,

UphhlUy=Tip =Tk, pel™, k¢l
Hence, in the computation of the trace class norm on L3 we gain 1/9 and Proposi-
tion 5.1 gives, with H of (5.10) and p = 8 (see (3.16): the 8th power of T} corresponds
to the 4th power of B),

475441 (8, N) o 1 1
L%((C/F,(C2)) S <W N =10.2244 p1<8, N)GN s

which gives the desired estimate. The operator norm is estimated using Proposition

|B* - Iy B'TIn| 7,

5.1 as there is no gain from symmetry reduction. U

Combining Proposition 5.2 and (5.8) provides an error estimate in the numerical
computation of a; and as. In principle, the same methods are applicable for higher
a’s shown in Table 1 but that seems to require much larger matrices and any claim of
a “rigorous” calculation is not feasible.

Replacing B with B* of Proposition 5.2 we see that (5.1) holds for that B. We then
have
67% =¥ <e:=87" = (B+0)"° = [B—qy <.
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TABLE 3. Values needed for the backward error calculation guaran-

teeing 107" accuracy for computing «; (those errors are much smaller

than those from Proposition 5.2). We show e; = ||( By — t3s)uds || /|| tds |
k

where N/ comes from Table 2, i, is the eigenvalue closest to aj_S ob-
tained using Bss, and ul, is the corresponding eigenvector extended by
0 — see backerror.m in the Appendix. These values, on the order of

machine precision, can vary slightly based on implementation, machine,
and MATLAB version.

k €110 510 e510%°
1 4.33 347
2 4.33  3.47
3 4.33 347
4 1.68 4.33 347
5 1.68 4.33 347
6 1.68 4.33 347
7 1.68 4.33

8 1.68 4.33

9 1.68

This is particularly favourable in the case of a; as then 5 ~ 0.5. (We have to take ¢
sufficiently small to avoid other eigenvalues of B.)

The method described above is implemented in BkN.m in the Appendix, which com-
putes Iy BIly (see Proposition 5.2). The code guarantee.m then returns an N for
which we obtain an accuracy of . We have to trust the numerical calculation of the
smallest singular value of (2N + 1)2-by-(2N + 1)? matrices needed for (5.2) and (5.3).
To estimate the backward error associated with an approximate eigenpair of By, we
need to calculate ||(By — pn)un||, where py and uy are the eigenvalue and eigenvector
returned by MATLAB. We know then that uy is an ezact eigenvalue of By + Ry
where ||Ry|| < ||[(By — pn)un||/|lun]||- In principle Ry should be added to Ey, but
those errors are negligible compared to our estimates on Ey. We should stress that,
for these estimates, we do not need to calculate puy and uy from By for the large val-
ues of IV given in Table 2. It is sufficient to compute the eigenpair for Bs,, then take
iy = sz and build uy € CEVD? by extending usy, € C*225 by 0s. (This extension
is justified by noting that the function approximated by uy is a solution of an elliptic
equation with analytic coefficients, hence analytic [HoI, Theorem 9.5.1]. Consequently,
Fourier coefficients decay exponentially.) We show the resulting error in Table 3.

Table 2 gives estimates of values of N for which calculated a’s are within § = 107*
of the actual elements of A,,,,. Table 3 gives the estimates of the deviation of By from



36 SIMON BECKER, MARK EMBREE, JENS WITTSTEN, AND MACIEJ ZWORSKI

the matrix with eigenvalues given by a MATLAB calculation. Hence we can claim a
rigorous calculation for o and ay within errors 1072 and 1073, respectively.

APPENDIX

We include a MATLAB code, BkN.m, that constructs a sparse matrix of the trunca-
tion (as described in §5.1) of the operator of By := 3A for the potential

2
Uu(e) = 3w (eHE 20 e =) (A1)
k=0

see Figure 2.

Approximations of real and complex elements of the magic set A are given by com-
puting the spectrum of By:

X € Specy oyreny (B) = 1/VAEA, k¢TI (A.2)

To obtain all a’s with multiplicities we should consider the action on all representations
of I'3/T" rather than just (5.10) —see §2.1 and the proof of Proposition 5.2. For instance,
in MATLAB,

ay ~ real(l./sqrt(eigs(BkN(0.5,8),1))) = 0.585663558389558.

The size of the matrix is 289-by-289 ((2N + 1)? = 289, N = 8) and no improvement is
achieved by taking larger matrices.

function B = BkN(k,N); % create Pi_N * Bk * Pi_N
NO = N; N=N+2; N2 = N;
Rp=RR(k,N,1); Rm=RR(k,N,-1);
omega=exp(2i*pi/3); N=2xN+1; n=N"2;
J1 = spdiags(ones(N,1),1,N,N);
Vp = speye(n)+omega~2xkron(speye(N),J1’)+omegaxkron(J1’,speye(N));
Vm = speye(n)+omega”2*xkron(speye(N),J1)+omega*xkron(J1,speye(N));
B = Rp*Vp*Rm*Vm/3;
indx = downsize(NO,N2);
B = B(indx,indx);
end
function RR=RR(k,N,j)
kk=-N:1:N; N=2xN+1; n=N"2; kki=kk-j/6; kkl=spdiags(kk1’,0,N,N);
omega=exp (2i*pi/3);

RR = omega”2xkron(kkl,speye(N))-omega*kron(speye(N) ,kkl);

RR = RR-(omega~2*real(k)-omega*imag(k))*speye(size(RR));
RR = spdiags(1l./diag(RR),0,n,n);
end

function indx = downsize(N1,N2); % indices to truncate from N1 to N2
nl = max(N1,N2); n2 = min(N1,N2); dn = nl1-n2;
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indx = reshape(1:(2*n1+1)°2,2*%nl+1,2%n1+1);
indx = indx(dn+1:dn+2*n2+1,dn+1:dn+2*n2+1) ;
indx = reshape(indx, (2*n2+1)72,1);

end

To reproduce (half of) Figure 1 one simply calls

plot(l./sqrt(eigs(BkN(0.5,32),800)),’ro’, ’LineWidth’,1.5)
x1im([0,18]1), ylim([-9,9])

The error bounds based on Proposition 5.2 are implemented in guarantee.m, which
returns an estimate on N needed to obtain accuracy 0 using BkN.m. The subroutine
Bk4 uses BkN to form IIyBilly, via (5.15). As explained in §5.2 the only “non-
rigorous” aspect here involves the calculation of the smallest singular values of sparse
matrices (a reliable numerical task). To find N for, say, accuracy § = 0.1 for com-
puting as, the command guarantee(0.1,2) returns an approximation, N = 128,
based on an estimate of those singular values with a lower N (experimentally, always
the same). To have a “rigorous” confirmation, N = 128 should then be used to run
guarantee(0.1,2,116) (which again produces N = 116, though at a much longer
run time). Table 2 was produced using guarantee (107%,p), p = 1,2,3. We ran the
second refinement step to confirm N for all values in this table with N < 328.

function N = guarantee(delta,p,NN)

% returns N for which alpha_p is computed within error delta, p = 1,2,3
if (nargin<2) p=1; end

if (nargin<3) NN=16; end

alpha(1)=0.585663; alpha(2)=2.221182; alpha(3)=3.7514055;
rad(1)=72.2;rad(2)=0.0017;rad(3)=2.3830e-05; % dist to the rest of A."-8
bet=alpha(p); epsi=bet~-8-(bet+delta) -8; epsi=min(rad(p)/5,epsi);
Cep=circle_norm(epsi,NN,bet); M=16; CO=2x6"8*rhoj(M,0)*M" (-8)*Cep;
while C0>0.5, M = M+1; CO=Cep*2*6~8xrhoj(M,0)*M"~(-8); end

N=M; CO=Cep*(1-C0)~(-1); C1=10.23*rhoj(N,1)"(1/6);

while (CO*Cep*epsi)~(1/6)*C1 > N, N=N+1; C1=10.23*rhoj(N,1)~(1/6); end
end
function [C,J] = circle_norm(epsi,N,bet)
% Computes the approximate norm of (B-lambda)”-1 for B=Pi_Nx*Bk(0.5) 4*Pi_N
% and |lambda-mu|=epsi where mu is an approximate eigenvalue of B
b=1/bet”~8; B4=Bk4(0.5,N); J=10; [Cl,del]l=Jtest(J,B4,epsi,b);

while del>0.5, J=2%J; [Cl,del]l=Jtest(J,B4,epsi,b); end
C=C1/(1-del) ;end
function [C1l,del]l=Jtest(J,T,epsi,mu)
% calculates the maximum of the norm of (T-lambda)~{-1}, T sparse
% at J points on the circle |lambda-mul|=epsi

mu = eigs(T,1,mu);
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zz = exp(1i*(0:1:J-1)*2xpi/J); la = mu + epsixzz;

for j=1:J, A=T-la(j)*speye(size(T)); CC(j)=1/svds(A,1,’smallest’); end
Cl=max(CC); del=2*max(CC)*epsi*sin(pi/(2*J)); end

function rhoj = rhoj(N,j)

rhoj=1; for ell=0:7 rhoj=rhoj*(1-(2%ell+j)/N)~(-1+j/4); end

end

function B4 = Bk4(k,N); % create Pi_N * Bk~4 * Pi_N

Bp8 = BkN(k,N+8); % Pi_{N+8} Bk Pi_{N+8}
Bp4 = BkN(k,N+4); % Pi_{N+4} Bk Pi_{N+4}
Bp8sq = Bp872; % (Pi_{N+8} Bk Pi_{N+8})"2

indx_8_4 = downsize(N+4,N+8);

Bp8sq = Bp8sq(indx_8_4,indx_8_4); % Pi_{N+4} Bp8sq Pi_{N+4}
B4 = Bp4*Bp8sq*Bp4;

indx_4_0 = downsize(N,N+4);

B4 B4(indx_4_0,indx_4_0);
end

Finally we include the code used to obtain Table 3, using the discretization in BkN.m.

function ba = backerror (N2,p,N1)
if (nargin < 3) N1=32; end
N1 = min(N2-1,N1);
alpha(1)=0.585663; alpha(2)=2.221182; alpha(3)=3.7514055;
al = alpha(p); mu = 1/al1"8; B1 = BkN(0.5,N1); B2 = BkN(0.5,N2);
[vi,laml] = eigs(B1,1,1/al"2);
% inflate the N1 eigenvector to N2 by:
% - shaping it into a (2xN1+1)-by-(2#N1+1) matrix;
% - padding it with a border of dN := N2 - N1 zeros;
% — reshaping it into a (2%N2+1)°2 length vector.

dN = N2-N1;
V1l = [zeros(dN,2xN2+1);
zeros (2*%N1+1,dN) reshape(vl,2*N1+1,2*N1+1) zeros(2*N1i+1,dN);
zeros (dN,2%N2+1)];
v2 = reshape(V1, (2¥N2+1)~2,1); ba = norm(B2*v2-laml*v2)/norm(v2);
end
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