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For varieties over a perfect field of characteristic p, étale 
cohomology with Qℓ-coefficients is a Weil cohomology theory 
only when ℓ �= p; the corresponding role for ℓ = p is 
played by Berthelot’s rigid cohomology. In that theory, the 
coefficient objects analogous to lisse ℓ-adic sheaves are the 
overconvergent F -isocrystals. This expository article is a brief 
user’s guide for these objects, including some features shared 
with ℓ-adic cohomology (purity, weights) and some features 
exclusive to the p-adic case (Newton polygons, convergence 
and overconvergence). The relationship between the two cases, 
via the theory of companions, will be treated in sequel papers.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let k be a perfect field of characteristic p > 0. For each prime ℓ �= p, étale cohomology 

with Qℓ-coefficients constitutes a Weil cohomology theory for varieties over k, in which 

the coefficient objects of locally constant rank are the smooth (lisse) Qℓ-local systems; 

when k is finite, one also considers lisse Weil Qℓ-sheaves. This article is a brief user’s guide 
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for the p-adic analogues of these constructions; we focus on basic intuition and statements 

of theorems, omitting essentially all proofs (except for a couple of undocumented variants 

of existing proofs, which we record in an appendix).

To obtain a Weil cohomology with p-adic coefficients, Berthelot defined the theory 

of rigid cohomology. One tricky aspect of rigid cohomology is that it includes not one, 

but two analogues of the category of smooth ℓ-adic sheaves: the category of convergent 
F -isocrystals and the subcategory of overconvergent F -isocrystals. The former category 

can be interpreted in terms of crystalline sites (see Theorem 2.2), but the latter can only 

be described using analytic geometry. (We will implicitly use rigid analytic geometry, 

but any of the other flavors of analytic geometry over nonarchimedean fields can be used 

instead.)

The distinction between convergent and overconvergent F -isocrystals carries impor-

tant functional load: overconvergent F -isocrystals seem to be the objects which are 

“classically motivic” whereas convergent F -isocrystals can arise from geometric con-

structions exclusive to characteristic p. For example, the “crystalline companion” to a 

compatible system of lisse Weil Qℓ-sheaves (i.e., the “petit camarade cristalline” in the 

sense of [28, Conjecture 1.2.10]) is an overconvergent F -isocrystal, which is irreducible if 

the ℓ-adic objects are; however, in the category of convergent F -isocrystals the crystalline 

companion often acquires a nontrivial slope filtration. A typical example is provided by 

the cohomology of a universal family of elliptic curves (Example 4.6).

When transporting arguments from ℓ-adic to p-adic cohomology, one can often assign 

the role of Qℓ-local systems appropriately to either convergent or overconvergent F -

isocrystals. In a few cases, one runs into difficulties because neither category seems to 

provide the needed features; on the other hand, in some cases the rich interplay between 

the constructions makes it possible to transport statements back to the ℓ-adic side which 

do not seem to have any direct proof there.

One can continue the story by describing links between ℓ-adic and p-adic coefficients 

via the theory of companions as alluded to above. However, this would require setting 

aside the premise of a purely expository paper, as some new results would be required. 

We have thus chosen to defer this discussion to two sequel papers [72,73].

Notation 1.1. Throughout this paper, let k denote a perfect field of characteristic p > 0

(as above), and let X denote a smooth variety over k. By convention, we require varieties 

to be reduced separated schemes of finite type over k, but they need not be irreducible. 

Let K denote the fraction field of the ring of p-typical Witt vectors W (k).

2. The basic constructions

We begin by illustrating the construction of convergent and overconvergent F -

isocrystals on smooth varieties, following Berthelot’s original approach to rigid coho-

mology in which the constructions are fairly explicit but not overtly functorial. A more 
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functorial approach, using suitably constructed sites, is described in [81], to which we 

defer for justification of all unproved claims (and for treatment of nonsmooth varieties).

We will use without comment the fact that coherent sheaves on affinoid spaces corre-

spond to finitely generated modules over the ring of global sections (i.e., Kiehl’s theorem 

in rigid analytic geometry). See for example [14, Chapter 9].

Definition 2.1. For X affine, we construct the category F-Isoc(X) of convergent F -iso-
crystals on X as follows. Using a lifting construction of Elkik [34] (or its generalization by 

Arabia [10]), we can find a smooth affine formal scheme P over W (k) with special fiber 

X and a lift σ : P → P of the absolute Frobenius on X. Let PK denote the Raynaud 

generic fiber of P as a rigid analytic space over K. Then an object of F-Isoc(X) is 

a vector bundle E on PK equipped with an integrable connection (i.e., an O-coherent 

D-module) and an isomorphism σ∗E ∼= E of D-modules (which we view as a semilinear 

action of σ on E); a morphism in F-Isoc(X) is a σ-equivariant morphism of D-modules.

One checks as in [81] (by comparing to a more functorial definition) that the functor 

F-Isoc is a stack for the Zariski and étale topologies on X. This leads to a definition 

of F-Isoc(X) for arbitrary X. When X = Spec R is affine, we will occasionally write 

F-Isoc(R) instead of F-Isoc(Spec R).

Theorem 2.2 (Ogus). Let C be the isogeny category associated to the category of crystals 
of finite OX,crys-modules. Then F-Isoc(X) is canonically equivalent to the category of 
objects of C equipped with F -actions (i.e., isomorphisms with their F -pullbacks).

Proof. The functor from crystals to F-Isoc(X) is exhibited in [86] and shown therein to 

be fully faithful. For essential surjectivity, see [12, Théorème 2.4.2]. �

Remark 2.3. Theorem 2.2 implies that the category F-Isoc(X) is abelian. This can also 

be seen more directly from the fact that (because K is of characteristic zero) any coherent 

sheaf on a rigid analytic space over K admitting a connection is automatically locally 

free. (See [66, Proposition 1.2.6] for a general argument to this effect.)

Even so, a general object of F-Isoc(X) need not correspond to a crystal of locally 

free OX,crys-modules, except in the unit-root case (see Theorem 3.7 below). However, 

using the fact that reflexive modules on regular schemes are locally free in dimension 

2, one sees that for E ∈ F-Isoc(X), there exists an open dense subspace U of X with 

codim(X − U, X) ≥ 2 for which the restriction of E to F-Isoc(U) can be realized as a 

crystal of locally free OX,crys-modules. (See [18, Lemma 2.5.1] for a detailed discussion.) 

In some cases, one can promote the desired results from U back to X using purity for 

isocrystals; see Theorem 5.1.

Definition 2.4. For X → Y an open immersion of k-varieties with X and Y affine (but 

Y not necessarily smooth), we construct the category F-Isoc(X, Y ) of isocrystals on X

overconvergent within Y as follows. Again using the results of Elkik or Arabia, we can 
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find an affine formal scheme P over W (k) with special fiber Y which is smooth in a 

neighborhood of X and a lift σ : Q → Q of absolute Frobenius, for Q the open formal 

subscheme of P supported on Y , which extends to a neighborhood of QK in PK for 

the Berkovich topology (or in more classical terminology, a strict neighborhood of QK in 

PK). Then an object of F-Isoc(X, Y ) is a vector bundle E on some strict neighborhood 

equipped with an integrable connection and an isomorphism σ∗E ∼= E of D-modules; a 

morphism in F-Isoc(X, Y ) is a σ-equivariant morphism of D-modules defined on some 

strict neighborhood of QK , with two morphisms considered equal if they agree on some 

(hence any) strict neighborhood on which they are both defined. In particular, restriction 

of a bundle from one strict neighborhood to another is an isomorphism in F-Isoc(X, Y ).

One again checks as in [81] that the functor F-Isoc is a stack for the Zariski and 

étale topologies on Y . This leads to a definition of F-Isoc(X, Y ) for an arbitrary open 

immersion X → Y .

Remark 2.5. Given a commutative diagram

X ′ Y ′

X Y

in which X ′ → Y ′ is again an open immersion of k-varieties with X ′ smooth, one obtains a 

pullback functor F-Isoc(X, Y ) → F-Isoc(X ′, Y ′). If X ′ = X, then this pullback functor 

is obviously faithful; we will see later that it is also full (Theorem 5.3).

Lemma 2.6 (Berthelot). Let f : Y ′ → Y be a proper morphism such that f−1(X) → X

is an isomorphism. Then the pullback functor F-Isoc(X, Y ) → F-Isoc(X, Y ′) is an 

equivalence of categories.

Proof. The original but unpublished reference is [12, Théorème 2.3.5]. An alternate ref-

erence is [81, Theorem 7.1.8]. �

Definition 2.7. We define the category F-Isoc
†(X) of overconvergent F -isocrystals on X

to be F-Isoc(X, Y ) for some (hence any, by Lemma 2.6) open immersion X → Y with 

Y a proper k-variety. In particular, if X itself is proper, then F-Isoc
†(X) = F-Isoc(X); 

in general, F-Isoc
†(X) is a stack for the Zariski and étale topologies on X.

Remark 2.8. Retain notation as in Remark 2.5. If X ′ → X is finite étale of con-

stant degree d > 0 and Y ′ → Y is finite flat, one also obtains a pushforward functor 

F-Isoc(X ′, Y ′) → F-Isoc(X, Y ) which multiplies ranks by d. In particular, if X ′ → X

is finite étale, we obtain a pushforward functor F-Isoc
†(X ′) → F-Isoc

†(X).
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Remark 2.9. The pushforward functoriality of F-Isoc is often used in conjunction with 

the following observation (a higher-dimensional analogue of Belyi’s theorem in positive 

characteristic): any projective variety over k of pure dimension n admits a finite mor-

phism to P n
k which is étale over An

k [54]. Moreover, any given zero-dimensional subscheme 

of the smooth locus may be forced into the inverse image of An
k ; in particular, the smooth 

locus is covered by open subsets which are finite étale over An
k (via various maps).

Remark 2.10. Let ϕ : K → K be the Witt vector Frobenius. In case X = Spec k, the 

categories F-Isoc(X) and F-Isoc
†(X) coincide, and may be described concretely as the 

category of finite-dimensional K-vector spaces equipped with isomorphisms with their 

ϕ-pullbacks.

In general, choose any closed point x ∈ X with residue field ℓ and put L = Frac W (ℓ). 

Then the pullback functors F-Isoc(X) → F-Isoc(x), F-Isoc
†(X) → F-Isoc

†(x) define 

fiber functors in L-vector spaces; however, these are not neutral fiber functors unless 

ℓ = Fp. For more on the Tannakian aspects of the categories F-Isoc(X) and F-Isoc
†(X), 

see [19]; for the special case of a finite base field, see also the discussion starting in §9.

Much of the basic analysis of convergent and overconvergent F -isocrystals involves 

“local models” of the global statements under consideration. We describe the basic setup 

using notation as in [25].

Remark 2.11. Put Ω = W (k)�t�. Let Γ be the p-adic completion of W (k)((t)). Let Γc

be the subring of Γ consisting of Laurent series convergent in some region of the form 

∗ ≤ |t| < 1. Each of these rings carries a Frobenius lift σ with σ(t) = tp and a derivation 
d
dt .

Define the categories

F-Isoc(k�t�), F-Isoc(k((t))), F-Isoc
†(k((t)))

to consist of finite projective modules over the respective rings Ω[p−1], Γ[p−1], Γc[p−1]

equipped with compatible actions of σ and d
dt . Here compatibility means that the com-

mutation relation between σ and d
dt on the modules is the same as on the base ring:

d

dt
◦ σ = ptp−1σ ◦

d

dt
.

For some purposes, it is useful to consider also the ring R consisting of the union of 

the rings of rigid analytic functions over K on annuli of the form ∗ ≤ |t| < 1 (commonly 

called the Robba ring over K). Note that Γc is the subring of R consisting of Laurent 

series with coefficients in W (k). Let R+ be the subring of R consisting of formal power 

series (i.e., with only nonnegative powers of t); this is the ring of rigid analytic functions 

on the open unit t-disc over K.
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Define the categories

F-Isoc
‡(k�t�), F-Isoc

‡(k((t)))

to consist of finite projective modules over the respective rings R+, R equipped with 

compatible actions of σ and d
dt (note that this use of ‡ is not standard notation). We 

then have faithful functors

F-Isoc(k�t�) F-Isoc
†(k((t))) F-Isoc(k((t)))

F-Isoc
‡(k�t�) F-Isoc

‡(k((t)))

but no comparison between F-Isoc(k((t))) and F-Isoc
‡(k((t))).

Remark 2.12. One can also define convergent and overconvergent isocrystals without 

Frobenius structure (in both the global and local settings); on these larger categories, 

the fiber functors described in Remark 2.10 become neutral. This corresponds on the 

ℓ-adic side to passing from representations of arithmetic fundamental groups to repre-

sentations of geometric fundamental groups. However, there are some subtleties hidden 

in the construction: one must include an additional condition on the convergence of the 

formal Taylor isomorphism (which is forced by the existence of a Frobenius structure).

Remark 2.13. One can also define convergent and overconvergent isocrystals (with or 

without Frobenius structure) on nonsmooth varieties. For X affine, this is done by choos-

ing a smooth affine variety Y containing X as a closed subscheme, lift to a smooth formal 

scheme, and work on the inverse image of X in the generic fiber of the lift under the 

specialization morphism (the so-called tube of X) in the convergent case, or some strict 

neighborhood thereof in the overconvergent case. See again [12] or [81].

3. Slopes

We next discuss a basic feature of isocrystals admitting no ℓ-adic analogue: the theory 

of slopes. We begin with the situation at a point.

Definition 3.1. Let r, s be integers with s > 0 and gcd(r, s) = 1. Let Fr/s ∈ F-Isoc(k) be 

the object corresponding (via Remark 2.10) to the K-vector space on the basis e1, . . . , es

equipped with the ϕ-action

ϕ(e1) = e2, . . . , ϕ(es−1) = es, ϕ(es) = pr
e1.

One checks easily that
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HomF-Isoc(k)(Fr/s, Fr′/s′) =

{

Dr,s r′/s′ = r/s

0 r′/s′ �= r/s
(3.1.1)

where Dr,s denotes the division algebra over K of degree s and invariant r/s.

Theorem 3.2 (Dieudonné–Manin). Suppose that k is algebraically closed. Then every 

E ∈ F-Isoc(Spec k) is uniquely isomorphic to a direct sum

⊕

r/s∈Q

Er/s

in which each factor Er/s is (not uniquely) isomorphic to a direct sum of copies of Fr/s. 
(Note that uniqueness is forced by (3.1.1).)

Proof. This is the standard Dieudonné–Manin classification theorem, the original refer-

ence for which is [83]. See also [68, Theorem 14.6.3] and [30]. �

Definition 3.3. For E ∈ F-Isoc(k), choose an algebraic closure k of k and let E ′ be the 

pullback of E to F-Isoc(k). Then the direct sum decomposition of E given by Theorem 3.2

descends to E (and is independent of the choice of k). We define the slope multiset
of E to be the multisubset of Q of cardinality equal to the rank of E in which the 

multiplicity of r/s equals rank Er/s; the slope multiset is additive in short exact sequences 

[46, Lemma 1.3.4]. We arrange the elements of the slope multiset into a convex Newton 

polygon with left endpoint (0, 0), called the slope polygon of E . Note that the vertices of 

the slope polygon belong to [0, rank(E)] × Z.

For E ∈ F-Isoc(X), we define the slope multiset and slope polygon of E at x ∈ X by 

pullback to Spec κ(x)perf . We say that E is isoclinic if the slope multisets at all points 

are equal to a single repeated value; if that value is 0, we also say that E is unit-root or 

étale. By (3.1.1), there are no nonzero morphisms between isoclinic objects of distinct 

slopes. Moreover, the isoclinic and unit-root properties are preserved by formation of 

subquotients and extensions (between objects of the same slope).

Remark 3.4. Since the action of Frobenius on an object of F-Isoc(k) can be characterized 

by writing down the matrix of action on a single basis, one might wonder whether 

the Newton polygon of the characteristic polynomial of said matrix coincides with the 

slope polygon. In general this is false; see [46, §1.3] for a counterexample. However, 

it does hold when the basis is the one derived from a cyclic vector for the action of 

Frobenius [56, Lemma 5.2.4], i.e., when the matrix is the companion matrix associated 

to its characteristic polynomial.

Remark 3.5. Every E ∈ F-Isoc(X) of rank 1 is isoclinic of some integer slope; this can 

either be proved directly or deduced from Theorem 3.12 below.
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Remark 3.6. The sign convention for slopes used here is the one from [46]. However, 

in certain related contexts it is more natural to use the opposite sign convention. For 

example, in the theory of ϕ-modules over the Robba ring, the sign convention taken 

here is used in [52]; however, this theory can be reformulated in terms of vector bundles 

on curves [38–40] and the opposite sign convention is the one consistent with geometric 

invariant theory.

Using slopes, we can now articulate two results that explain the relationship between 

étale Qp-local systems and isocrystals. The first result says that in a sense, there are “too 

few” étale Qp-local systems for them to serve as a good category of coefficient objects.

Theorem 3.7 (Katz, Crew). The category of unit-root objects in F-Isoc(X) is equivalent 
to the category of étale Qp-local systems on X. In particular, if X is connected, this 
category is equivalent to the category of continuous representations of π1(X, x) on finite-
dimensional Qp-vector spaces (for any geometric point x of X).

Proof. See [18, Theorem 2.1]. �

The second result says that on the other hand, there are also “too many” étale Qp-local 

systems for them to serve as a good category of coefficient objects.

Definition 3.8. An étale Qp-local system V on X is unramified if the corresponding rep-

resentations of the étale fundamental groups of the connected components of X restrict 

trivially to all inertia groups. If X admits an open immersion into a smooth proper 

variety X, then by Zariski–Nagata purity, V is unramified if and only if V extends (nec-

essarily uniquely) to an étale Qp-local system on X. We say V is potentially unramified if 

there exists a finite étale cover X ′ → X such that the pullback of V to X ′ is unramified.

Theorem 3.9 (Tsuzuki). In the equivalence of Theorem 3.7, the unit-root objects in 

F-Isoc
†(X) form a full subcategory of F-Isoc(X) corresponding to the category of po-

tentially unramified étale Qp-local systems on X.

Proof. In the case dim X = 1, this is [97, Theorem 4.2.6]. For the general case, see [98, 

Theorem 1.3.1, Remark 7.3.1]. �

Remark 3.10. The local model of Theorem 3.7 is that the category of unit-root objects in 

F-Isoc(k((t))) is equivalent to the category of continuous representations of the absolute 

Galois group Gk((t)) on finite-dimensional Qp-vector spaces. The local model of Theo-

rem 3.9 is that the unit-root objects in F-Isoc
†(k((t))) constitute the full subcategory 

in F-Isoc(k((t))) corresponding to the representations with finite image of inertia. See 

[97, Theorem 4.2.6] for discussion of both statements.
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Remark 3.11. By arguing as in [98], one may prove a common generalization of The-

orem 3.7 and Theorem 3.9: for X → Y an open immersion, the unit-root objects in 

F-Isoc(X, Y ) form a full subcategory corresponding to the category of étale Qp-local 

systems V on X with the following property: there exists some proper morphism Y ′ → Y

such that X ′ = X ×Y Y ′ is finite étale over X and the pullback of V to X ′ extends to 

an étale Qp-local system on Y ′.

We now consider the variation of the slope polygon over X.

Theorem 3.12 (Grothendieck, Katz, de Jong–Oort, Yang). For E ∈ F-Isoc(X), the fol-
lowing statements hold.

(a) The slope polygon of E is an upper semicontinuous function of X; moreover, its right 
endpoint is locally constant.

(b) The locus of points where the slope polygon does not coincide with its generic value 

(which by (a) is Zariski closed) is of pure codimension 1 in X.
(c) Let U be an open neighborhood of a point x ∈ X. Suppose that the closure Z of x in 

U has codimension at least 2 in U . If the slope polygons of E at all points of U \ Z

share a common vertex, then this vertex also occurs in the slope polygon of E at x. 
(Beware that this statement does not apply to points of the slope polygon other than 

vertices.)

Proof. Suppose first that E arises from a crystal of finite locally free OX,crys-modules via 

Theorem 2.2. In this case, we may deduce (a) from [46, Theorem 2.3.1], (b) from [27, 

Theorem 4.1] or [103, Main Theorem 1.6], and (c) from [106, Theorem 1.1].

In light of Remark 2.3, this argument is not sufficient except when dim(X) = 1. To 

proceed further, we may assume that X is irreducible with generic point η. To recover 

(a), we argue by noetherian induction. By discarding a suitable closed subspace of codi-

mension at least 2, we may deduce that there exists an open dense subscheme U of X

on which the slope polygon coincides with its value at η (compare [18, Lemma 2.5.1]). 

By restricting to curves in X, we may deduce that the slope polygon at every point lies 

on or above the value at η. Consequently, for each irreducible component Z of X \ U , 

the set of points z ∈ Z at which the slope polygon of E coincides with its value at η is 

either empty or an open dense subscheme; in either case, its complement is closed in Z

and hence in X.

Unfortunately, it is not clear how to use a similar approach to reduce (b) or (c) to 

the case of locally free crystals. We thus adopt a totally different approach; see Re-

mark 5.2. �

Remark 3.13. The reference given for Theorem 3.12(a) also implies the local model 

statement: for E ∈ F-Isoc(k�t�), the slope polygon of the pullback of E to F-Isoc(k)

(the special slope polygon) lies on or above the slope polygon of the pullback of E to 
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F-Isoc(k((t))) (the generic slope polygon), with the same endpoint. This statement can 

be generalized to E ∈ F-Isoc
†(k((t))) using slope filtrations in F-Isoc

‡(k((t))); see Re-

mark 4.10.

In certain cases, the geometric structure on X precludes the existence of nontrivial 

variation of slope polygons, as in the following recent result of Tsuzuki (given a different 

proof by D’Addezio).

Theorem 3.14 (Tsuzuki, D’Addezio). For k finite, X an abelian variety over k, and E ∈

F-Isoc(X), the slope polygon of E is constant on X.

Proof. See [100, Theorem 1.4] or [22, Theorem 1.1]. �

4. Slope filtrations

We continue the discussion of slopes by considering filtrations by slopes. Such filtra-

tions are loosely analogous to the filtration occurring in the definition of a variation of 

Hodge structures.

Theorem 4.1 (after Katz). Suppose E ∈ F-Isoc(X) has the property that the point 
(m, n) ∈ Z2 is a vertex of the slope polygon at every point of E. Then there exists a 

short exact sequence

0 → E1 → E → E2 → 0

in F-Isoc(X) with rank E1 = m such that for each x ∈ X, the slope polygon of E1 is the 

portion of the slope polygon of E from (0, 0) to (m, n).

Proof. In the case where X is a curve, we may apply [46, Corollary 2.6.2]. For general 

X, in light of Remark 2.3 we may execute the same argument to obtain the desired exact 

sequence over some open dense subspace U of X with codim(X − U, X) ≥ 2. We may 

then conclude using Zariski–Nagata purity (see Theorem 5.1 and Remark 5.2 below). �

Corollary 4.2 (after Katz). Suppose E ∈ F-Isoc(X) has the property that the slope poly-
gon of E is constant on X. Then E admits a unique filtration

0 = E0 ⊂ · · · ⊂ El = E

such that each successive quotient Ei/Ei−1 is everywhere isoclinic of some slope si, and 

s1 < · · · < sl. We call this the slope filtration of E.

Remark 4.3. In Theorem 4.1, it is not enough to assume that (m, n) lies on the slope 

polygon at every point of E , even if one also assumes that (m, n) is a vertex at each 

generic point of X.
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Remark 4.4. One local model of Corollary 4.2 is that every object of F-Isoc(k((t)))

has a slope filtration [52, Proposition 5.10]. A more substantial version is that for E ∈

F-Isoc(k�t�), if the generic and special slope polygons coincide, then E admits a slope 

filtration [46, Corollary 2.6.3]. A similar statement holds for E ∈ F-Isoc
†(k((t))); see 

Remark 4.10.

Remark 4.5. The arguments in [46] involve a finite projective module equipped only with 

a Frobenius action (and not an integrable connection). On one hand, this means that 

Theorem 4.1 remains valid in this setting, as does its local model (Remark 4.4). On the 

other hand, to obtain Theorem 4.1 (or Remark 4.4) as stated, one must make an extra 

argument to verify that the filtration is respected also by the connection. To wit, the 

Kodaira–Spencer construction defines a morphism E1 → E2 of σ-modules which vanishes 

if and only if E1 is stable under the connection; however, this vanishing is provided by 

(3.1.1).

There is no analogue of Theorem 4.1 for overconvergent F -isocrystals. Here is an 

explicit example.

Example 4.6. Let X be the modular curve X(N) for some N ≥ 3 not divisible by p

(taking N ≥ 3 forces this to be a scheme rather than a Deligne–Mumford stack). Then 

the first crystalline cohomology of the universal elliptic curve over X gives rise to an 

object E of F-Isoc
†(X) of rank 2. The slope polygon of E generically has slopes 0, 1, but 

there is a finite set Z ⊂ X (the supersingular locus) at which the slope polygon jumps to 

1/2, 1/2. Let U be the complement of Z in X (the ordinary locus); by Theorem 4.1, the 

restriction of E to F-Isoc(U) admits a rank 1 subobject which is unit-root. However, no 

such subobject exists in F-Isoc
†(U); see Remark 5.12.

By completing at a supersingular point, we also obtain an irreducible object of 

F-Isoc(k�t�) which remains irreducible in F-Isoc
†(k((t))) but not in F-Isoc(k((t))).

Remark 4.7. Notwithstanding Example 4.6, one can formulate something like a filtration 

theorem for overconvergent F -isocrystals, at the expense of working in a “perfect” setting 

where the Frobenius lift is a bijection; since one cannot differentiate in such a setting, 

one only gets statements about individual liftings.

For simplicity, we discuss only the local model situation here. Put Γperf =

W (k((t))perf); there is a natural Frobenius-equivariant embedding Γ → Γperf taking 

t to the Teichmuller lift [t] (that is, the Frobenius lift σ on Γ corresponds to the unique 

Frobenius lift ϕ on Γperf). Each element of Γperf can be written uniquely as a p-adically 

convergent series 
∑∞

n=0 pn[xn] for some xn ∈ k((t))perf ; let Γperf
c be the subset of Γperf

consisting of those series for which the t-adic valuations of xn are bounded below by 

some linear function of n (for n > 0). One verifies easily that Γperf
c is a ϕ-stable subring 

of Γperf containing the image of Γc.

Suppose now that E is a finite projective module over Γperf
c [p−1] equipped with an 

isomorphism ϕ∗E ∼= E . Using an argument of de Jong [25, Proposition 5.5], one can show 
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[52, Proposition 5.11] that E admits a unique filtration implies that E admits a unique 

filtration

0 = E0 ⊂ · · · ⊂ El = E

by ϕ-stable submodules such that each successive quotient Ei/Ei−1 is everywhere isoclinic 

of some slope si, and s1 > · · · > sl. We call this the reverse slope filtration of E .

We add some additional remarks concerning the local situation.

Remark 4.8. For E ∈ F-Isoc
‡(k�t�), an argument of Dwork [25, Lemma 6.3] implies that 

E admits a unique filtration specializing to the slope filtration in F-Isoc(k), and that 

each subquotient descends uniquely to an isoclinic object in F-Isoc(k�t�). In particular, 

the image of E in F-Isoc
‡(k((t))) admits a filtration that in a certain sense reflects the 

special slope polygon of E . This sense is made more precise in Remark 4.10 below.

Remark 4.9. The functor from F-Isoc
†(k((t))) to F-Isoc

‡(k((t))) is not fully faithful in 

general, but it is fully faithful on the category of isoclinic objects of any fixed slope [56, 

Theorem 6.3.3(b)]. We declare an object of F-Isoc
‡(k((t))) to be isoclinic of a particular 

slope if it arises from an isoclinic object of F-Isoc
†(k((t))) of that slope.

Beware that the analogue of (3.1.1) in this context only holds when r/s ≤

r′/s′. More precisely, if E1, E2 ∈ F-Isoc
‡(k((t))) are isoclinic of slopes s1, s2, then 

HomF-Isoc‡(k((t)))(E1, E2) vanishes when s1 < s2 (by [56, Proposition 3.3.4]), equals the 

corresponding Hom-set in F-Isoc
†(k((t))) if s1 = s2 (by the full faithfulness statement 

quoted above), and is hard to control if s1 > s2.

Remark 4.10. In light of Remark 4.10, one may ask whether an arbitrary object 

E ∈ F-Isoc
‡(k((t))) admits a slope filtration in the sense of Corollary 4.2. Such a fil-

tration, were it to exist, would be unique by virtue of Remark 4.9; namely, under the 

geometric sign convention (Remark 3.6), it would coincide with the Harder–Narasimhan 

filtration by destabilizing subobjects. However, constructing such a filtration is made 

difficult by the fact that in this setting, it cannot be studied using cyclic vectors (as 

in Remark 3.4). Nonetheless, with some effort one can prove existence of such a fil-

tration [52, Theorem 6.10] (again using the Kodaira–Spencer argument to pass from a 

filtration of σ-modules to a filtration of isocrystals) and then use it to define the slope 

polygon of E . (For alternate expositions of the construction, see [56, Theorem 6.4.1], [62, 

Theorem 1.7.1].)

For E ∈ F-Isoc
†(k((t))), one can now associate two slope polygons to E : one arising 

from the image in F-Isoc(k((t))), called the generic slope polygon; and one arising from 

the image in F-Isoc
‡(k((t))), called the special slope polygon. In case E arises from 

F-Isoc(k�t�), these definitions agree with the ones from Remark 3.13. One can make 

an extended Robba ring containing both Γperf
c and R and use it to compare the slope 

filtration described above with the reverse slope filtration (Remark 4.7), so as to obtain 
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analogues of Remark 3.13 and Remark 4.4: the special slope polygon again lies on or 

above the generic slope polygon, with the same right endpoint [56, Proposition 5.5.1], 

and equality implies the existence of a slope filtration of E itself [56, Theorem 5.5.2].

Remark 4.11. By combining Remark 3.10 with Remark 4.10, one sees that every object 

E ∈ F-Isoc
‡(k((t))) admits a filtration with the property that for some finite étale mor-

phism Spec k′((u)) → Spec k((t)), the pullback to F-Isoc
‡(k′((u))) of each subquotient 

of the filtration is itself an object arising by pullback from F-Isoc(k′). (Technical note: 

forming the pullback involves changing Frobenius lifts, which is achieved using the Tay-

lor isomorphism provided by the connection.) This is a statement formulated1 by Crew 

[20, §10.1], commonly known thereafter as Crew’s conjecture; the approach to Crew’s 

conjecture we have just described is the one given in [52]. Independent contemporane-

ous proofs were given by André [9] and Mebkhout [84] based on the theory of p-adic 

differential equations; see [68, Theorem 20.1.4] for a similar argument.

Remark 4.12. Let X be a curve, let x ∈ X be a closed point of residue field k, let U be 

the complement of x in X, and identify the completed local ring of X at x with k�t�. 

For E ∈ F-Isoc(U, X), by applying Remark 4.11 to the pullback of E to F-Isoc
‡(k((t))), 

we obtain a representation of Gk((t)) with finite image of inertia. This is called the lo-
cal monodromy representation of E at x, because it plays a similar role to that played 

in ℓ-adic cohomology to the pullback of a local system from X to Spec k((t)); see Re-

mark 7.7 for more details. For this reason, Crew’s conjecture is also called the p-adic 

local monodromy theorem; however, in the p-adic setting there is no natural definition 

of a global monodromy representation which specializes to the local ones. (See [63] for a 

careful construction of local monodromy representations.)

5. Restriction functors

Throughout §5, let X → Y be an open immersion of k-varieties (with no smooth-

ness condition on Y ), let U be an open dense subscheme of X, and let W be an open 

subscheme of Y containing U . We exhibit some properties of the restriction functor 

F-Isoc(X, Y ) → F-Isoc(U, W ); in the case of unit-root isocrystals, most of these state-

ments can be predicted from Theorem 3.7 and Theorem 3.9, but the proofs require 

additional ideas. In a few cases, the predictions turn out to be misleading.

We begin with an analogue of Zariski–Nagata purity (which has no local model). In 

the unit-root case, this may be deduced from Remark 3.11.

Theorem 5.1 (Kedlaya, Shiho). Suppose that codim(X − U, X) ≥ 2.

(a) The functor F-Isoc(X, Y ) → F-Isoc(U, Y ) is an equivalence of categories.

1 Crew’s exact wording was: “It seems reasonable that any overconvergent F -isocrystal on a smooth curve 
is quasi-unipotent.” This was later interpreted as the first formal statement of Crew’s conjecture.
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(b) Suppose further that Y is smooth, Y \X is a normal crossings divisor, and codim(Y −

W, Y ) ≥ 2. Then the functor F-Isoc(X, Y ) → F-Isoc(U, W ) is an equivalence of 
categories.

(c) The functors

F-Isoc
†(X) → F-Isoc

†(U), F-Isoc(X) → F-Isoc(U)

are equivalences of categories.

Proof. For (a), see [59, Proposition 5.3.3]. For (b), see [94, Theorem 3.1]. For (c), apply 

(a) with Y = X and (b) with Y = X, W = U . �

Remark 5.2. It should be pointed out that in Theorem 5.1, full faithfulness of the re-

striction morphism is quite elementary. For example, in the case Y = X of part (a), full 

faithfulness reduces to the fact that with notation as in Definition 2.1, for Q the open 

formal subscheme of P supported on U , we have H0(QK , O) = H0(PK , O). This fact, 

whose proof we leave to the reader, might be thought of as a nonarchimedean analogue 

of the Hartogs theorem from the theory of several complex variables.

This weaker statement suffices for some important applications. For example, to de-

duce Theorem 4.1 from the results of [46], as noted above one must extend the conclusion 

from U to X for some open dense subspace U with codim(X − U, X) ≥ 2. For this, by 

replacing E with ∧mE we may reduce to the case m = 1; in this case, E1 is automat-

ically a twist of a unit-root object (see Remark 3.5) and so corresponds to an étale 

Qp-local system on U by Theorem 3.7. The latter extends to X by Zariski–Nagata pu-

rity in the usual sense [96, Tag 0BMB]; by Theorem 3.7 again, this means that E1 itself 

extends canonically to an object of F-Isoc(X). We may thus apply full faithfulness in 

Theorem 5.1 to conclude.

Similar considerations apply to part (c) (and therefore part (b)) of Theorem 3.12(c), 

to give a proof which is completely independent of [27] and [106]. Namely, we may assume 

that X is irreducible with generic point η. Fix a vertex of the slope polygon of E at η, and 

let U be the subset of X on which this vertex persists. By Theorem 3.12(a), U is open; by 

Corollary 4.2, the restriction of E to U admits a slope filtration. If codim(X −U, X) ≥ 2, 

then by full faithfulness in Theorem 5.1 this filtration extends over X; this proves the 

claim.

We continue with a general statement about restriction functors, which combines 

work of several authors; in addition to the results cited in the proof, see Remark 5.4 and 

Remark 5.5 for relevant attributions.

Theorem 5.3 (de Jong, Kedlaya, Shiho). The restriction functor

F-Isoc(X, Y ) → F-Isoc(U, W )



JID:YJNTH AID:6945 /FLA [m1L; v1.312] P.15 (1-42)

K.S. Kedlaya / Journal of Number Theory ••• (••••) •••–••• 15

is fully faithful. In particular, the functors

F-Isoc(X, Y ) → F-Isoc(X), F-Isoc
†(X) → F-Isoc(X),

F-Isoc(X, Y ) → F-Isoc(U, Y ), F-Isoc(X) → F-Isoc(U),

F-Isoc
†(X) → F-Isoc

†(U)

are fully faithful.

Proof. By forming the composition

F-Isoc(X, Y ) → F-Isoc(U, W ) → F-Isoc(U),

we immediately reduce the general problem to the case W = U . In this case, the functor 

in question factors as

F-Isoc(X, Y ) → F-Isoc(X) = F-Isoc(X, X) → F-Isoc(U, X) → F-Isoc(U).

By [59, Theorem 5.2.1], the functor F-Isoc(X, X) → F-Isoc(U, X) is fully faithful. 

By [60, Theorem 4.2.1], the functors F-Isoc(X, Y ) → F-Isoc(X), F-Isoc(U, X) →

F-Isoc(U) are fully faithful. �

Remark 5.4. For unit-root isocrystals, the full faithfulness of F-Isoc
†(X) → F-Isoc(X)

is included in Theorem 3.9; the general case is treated in [53, Theorem 1.1]. The proof 

of full faithfulness of F-Isoc(X, Y ) → F-Isoc(X) appearing in [60, Theorem 4.2.1] is a 

small variant of the proof of [53, Theorem 1.1]; in particular, it involves reduction to the 

local model statement (Remark 5.5).

The full faithfulness of F-Isoc
†(X) → F-Isoc

†(U) follows from [36, Théorème 4]. The 

argument is extended in [59, Theorem 5.2.1] to obtain full faithfulness of F-Isoc(X, Y ) →

F-Isoc(U, Y ); see also [92] for some stronger results.

Remark 5.5. The local model of Theorem 5.3 is the statement that the functors

F-Isoc(k�t�) → F-Isoc
†(k((t))), F-Isoc

†(k((t))) → F-Isoc(k((t)))

are fully faithful. The full faithfulness of the composite functor F-Isoc(k�t�) →

F-Isoc(k((t))) is due to de Jong [25, Theorem 9.1], and is the key ingredient in his 

proof of the analogue of Tate’s extension theorem for p-divisible groups in equal positive 

characteristic. (See also [55, Theorem 1.1] for a streamlined exposition.)

In fact, de Jong’s approach is to first show that F-Isoc(k�t�) → F-Isoc
†(k((t))) is 

fully faithful, then to show that the restriction of F-Isoc
†(k((t))) → F-Isoc(k((t))) to 

the essential image of F-Isoc(k�t�) is fully faithful. Both steps make essential use of 

the functor F-Isoc
†(k((t))) → F-Isoc

‡(k((t))); for example, it is crucial that objects of 
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F-Isoc(k�t�) admit slope filtrations in F-Isoc
‡(k�t�) (Remark 4.8). The argument also 

makes essential use of the reverse slope filtration (Remark 4.7).

Building on de Jong’s approach, full faithfulness of F-Isoc
†(k((t))) → F-Isoc(k((t)))

was established in [53, Theorem 5.1]. The argument follows [25] fairly closely, except 

that Remark 4.8 is replaced by Remark 4.10 (see also Remark 7.7).

Although this is not explained in [25], one may use the results of that paper to 

establish full faithfulness of F-Isoc(X) → F-Isoc(U). However, even if one does this, 

the argument still implicitly refers to F-Isoc
†(X); in fact, despite the fact that the 

statement can be formulated using only convergent F -isocrystals, we know of no proof 

that entirely avoids the use of overconvergent F -isocrystals.

Remark 5.6. If one considers isocrystals without Frobenius structure, then the analogue 

of full faithfulness for F-Isoc
†(X) → F-Isoc

†(U) holds (by the same references as in 

Remark 5.4), but the analogue of full faithfulness for F-Isoc
†(X) to F-Isoc(X) fails 

(see [1]). The latter is related to known pathologies in the theory of p-adic differential 

equations related to p-adic Liouville numbers (i.e., p-adic integers which are overly well 

approximated by ordinary integers); see [71] for more discussion.

Remark 5.7. An alternate approach to the full faithfulness problem for F-Isoc
†(X) →

F-Isoc(X), which does not go through the local model or depend on Crew’s conjecture, 

is suggested by recent work of Ertl [35] on an analogous problem in de Rham–Witt 

cohomology.

On a related note, we mention the following results.

Theorem 5.8 (Kedlaya). The functors

F-Isoc(X, Y ) → F-Isoc(U, Y ) ×F-Isoc(U) F-Isoc(X)

F-Isoc
†(X) → F-Isoc

†(U) ×F-Isoc(U) F-Isoc(X)

are equivalences of categories.

Proof. See [59, Proposition 5.3.7]. �

Corollary 5.9. Set notation as in Remark 2.5 and suppose that X ′ → X is dominant and 

Y ′ → Y is surjective. Then the functors

F-Isoc(X, Y ) → F-Isoc(X ′, Y ′) ×F-Isoc(X′) F-Isoc(X)

F-Isoc
†(X) → F-Isoc

†(X ′) ×F-Isoc(X′) F-Isoc(X)

are equivalences of categories.
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Proof. By Theorem 5.3, the functor F-Isoc(X, Y ) → F-Isoc(X) is fully faithful; there 

is thus no harm in replacing X ′ with X ′′ for some morphism X ′′ → X ′. In particular, 

we may reduce to the case where X ′′ is finite étale over some open dense subscheme 

of X. Using Theorem 5.8, we may reduce further to the case where X ′ → X is finite. 

By Lemma 2.6, we may also replace Y with a blowup away from X; using Gruson–

Raynaud flattening [43], we may further reduce to the case where Y ′ → Y is finite flat 

(and surjective). In this case, if f∗E ∈ F-Isoc(X ′) extends to F ∈ F-Isoc(X ′, Y ′), then 

using Remark 2.8, the restriction of f∗F ∈ F-Isoc(X, Y ) to F-Isoc(X) has a summand 

isomorphic to E . By Theorem 5.3, the decomposition extends to a decomposition of f∗F

itself. �

Remark 5.10. In the case where dim(X) = 1, Theorem 5.8 admits a local variant: if 

Y − X consists of a single k-rational point x, for t a uniformizer of Y at x, the functors

F-Isoc(Y ) → F-Isoc(X, Y ) ×F-Isoc(k((t))) F-Isoc(k�t�)

F-Isoc(X, Y ) → F-Isoc(X) ×F-Isoc(k((t))) F-Isoc
†(k((t)))

are equivalences.

We next consider extension of subobjects.

Theorem 5.11 (Kedlaya). Any subobject in F-Isoc(U, Y ) of an object of F-Isoc(X, Y )

extends to F-Isoc(X, Y ). In particular, any subobject in F-Isoc
†(U) of an object of 

F-Isoc
†(X) extends to F-Isoc

†(X).

Proof. See [59, Proposition 5.3.1]. �

Remark 5.12. By contrast with Theorem 5.11, not every subobject in F-Isoc(X) of an 

object of F-Isoc
†(X) extends to F-Isoc

†(X). For example, set notation as in Exam-

ple 4.6. If the unit-root subobject of E in F-Isoc(U) could be extended to F-Isoc
†(U), 

then by Theorem 5.3 and Theorem 5.8 it would also extend to F-Isoc
†(X); this would 

imply that for any point x ∈ X in the supersingular locus, the rigid cohomology of the 

elliptic curve corresponding to x contains a distinguished line. However, using the endo-

morphism ring of such a curve (which is an order in a quaternion algebra over Q) one 

sees easily that no such distinguished line can exist.

Remark 5.13. Given an exact sequence

0 → E1 → E → E2 → 0

with E1, E2 ∈ F-Isoc
†(X) and E ∈ F-Isoc(X), it does not follow that E ∈ F-Isoc

†(X); 

for instance, this already fails in case X = A1
K and E1, E2 are both the constant object 
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in F-Isoc
†(X). Similarly, if E1, E2 ∈ F-Isoc

†(X) and E ∈ F-Isoc
†(U), it does not follow 

that E ∈ F-Isoc
†(X) unless we allow for logarithmic structures (see Definition 7.1).

Although convergent subobjects of overconvergent F -isocrystals are in general not 

themselves overconvergent, they still seem to capture some structural information in the 

overconvergent category.

Remark 5.14. In a previous version of this paper, we stated the following optimistic con-

jecture. Let E1, E2 ∈ F-Isoc
†(X) be irreducible. Let F1, F2 be objects in F-Isoc(X)

which are subobjects of E1, E2, respectively. Then for every morphism F1 → F2 in 

F-Isoc(X), there exists a morphism E1 → E2 in F-Isoc
†(X) such that the diagram

F1 F2

E1 E2

commutes in F-Isoc(X). This turns out to be false; see Example 5.15 below.

However, we have no counterexample against the restricted form of the optimistic 

conjecture in which Fi is an isoclinic subobject of Ei of slope equal to the minimal 

generic slope of Ei. Moreover, some partial results towards the restricted statement are 

known.

• Suppose that E1, E2 admit slope filtrations with respective first steps F1, F2. In this 

case, Tsuzuki [101] has proved this when either X is a curve or k is finite (the second 

case reduces to the first via Theorem 5.21 below). Under the additional hypothesis 

that E1, E2 have all Frobenius slopes in the interval [0, 1], an alternate proof has been 

given by D’Addezio (in preparation).

In particular, an irreducible overconvergent F -isocrystal with constant slope polygon 

is uniquely determined by the first step of its slope filtration. Note that the condition 

on constant slope polygon is not essential: by Theorem 3.12 it holds on an open dense 

subspace U of X, and by Theorem 5.3 any morphism E1 → E2 in F-Isoc
†(U) lifts 

uniquely to a morphism in F-Isoc
†(X).

• Suppose that X is irreducible, F1 is the maximal subobject of E1 in F-Isoc(X) of 

minimal generic slope, and E2 = F2 = OX . The statement in this case is due to 

Ambrosi–D’Addezio [8, Theorem 1.1.1].

In addition, it should be possible to formulate other restricted forms of the optimistic con-

jecture, not contained in the previous ones, for which one expects an affirmative answer; 

but it is not clear how to make the original formulation airtight. One option is Crew’s 

parabolicity conjecture, formulated in terms of monodromy groups (see Definition 9.8) 

and recently proved by D’Addezio [23].
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The following counterexample against the optimistic conjecture of Remark 5.14 was 

provided by Marco D’Addezio.

Example 5.15 (D’Addezio). Retain notation as in Example 4.6, and let F ∈ F-Isoc(U)

be the unit-root subobject of E . Define the objects

E1 = Sym2(E), E2 = ∧2E

in F-Isoc
†(X) and the subobjects

F1 = E ⊗ F ⊂ E1, F2 = E2

in F-Isoc(U). Then there is a surjective morphism F1 → F2 in F-Isoc(U) given by

F1 = E ⊗ F → (E/F) ⊗ F ∼= F2,

but this cannot arise from a (necessarily surjective) morphism E1 → E2 in F-Isoc
†(U)

because E1 is irreducible in F-Isoc
†(U) (see [19, Proposition 4.11] or Example 9.11).

One can ask whether extendability of an F -isocrystal can be characterized on the 

level of curves (note that this question has no local model). Here is an example of such 

a statement. (It should be possible to remove the hypothesis on k using Poonen’s finite 

field Bertini theorem [89] or related results.)

Theorem 5.16 (Shiho). The following statements hold.

(a) An object of F-Isoc(U, Y ) extends to F-Isoc(X, Y ) if and only if for every curve 

C ⊆ Y , the pullback object in F-Isoc(C ×Y U, C) extends to F-Isoc(C ×U X, C).
(b) An object of F-Isoc

†(U) lifts to F-Isoc
†(X) if and only if for every curve C ⊆ X, 

the pullback object in F-Isoc
†(C ×X U) lifts to F-Isoc

†(C).

Proof. In the case where k is uncountable, we obtain (a) by applying [95, Theorem 0.1]

(see the proof of Theorem 7.4); this immediately implies (b). (This part of the argument 

applies even in the absence of a Frobenius structure.) In the general case, one may amend 

the argument as in the footnote to [3, Lemma 2.4.13]. �

It is reasonable to expect an analogue of Theorem 5.16 for extension from convergent 

to overconvergent isocrystals, but this is presently unknown. Somewhat weaker results 

have been obtained by [93]; for instance, one must assume that the underlying connection 

extends to a strict neighborhood.

Conjecture 5.17. An object of F-Isoc(X) extends to F-Isoc(X, Y ) if and only if for every 

curve C ⊆ Y , the pullback object in F-Isoc(C ×Y X) extends to F-Isoc(C ×Y X, C). 
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In particular, an object of F-Isoc(X) extends to F-Isoc
†(X) if and only if for every 

curve C ⊆ X, the pullback object in F-Isoc(C) extends to F-Isoc
†(C). (This holds for 

unit-root objects by Theorem 3.7 and Theorem 3.9.)

Remark 5.18. In conjunction with Theorem 5.16 (or more precisely, its expected exten-

sion to arbitrary k), Conjecture 5.17 would imply that an object of F-Isoc(U) extends to 

F-Isoc(X) if and only if for every curve C ⊆ X, the pullback object in F-Isoc(C ×Y U)

extends to F-Isoc(C). (Again, this holds for unit-root objects by Theorem 3.7.)

One expects the following by analogy with Wiesend’s theorem in the ℓ-adic case 

[105,31], but we have no approach in mind except in the case where k is finite.

Conjecture 5.19. For E ∈ F-Isoc
†(X) irreducible, we can find a curve C ⊆ X such that 

the pullback of E to F-Isoc
†(C) is irreducible.

Remark 5.20. In light of Remark 5.12, Conjecture 5.19 cannot be proved by reduction 

from F-Isoc
†(X) to F-Isoc(X).

Theorem 5.21 (Abe-Esnault). Conjecture 5.19 holds in case k is finite and det(E) is of 
finite order.

Proof. See [6, Theorem 0.3]. �

Remark 5.22. The proof of Theorem 5.21 relies on the theory of weights (§10) and the 

theory of companions (see [72]). An alternate proof using these ingredients, but otherwise 

quite different in nature, will be given in [72].

Remark 5.23. It is possible for an object of F-Isoc(X) to admit an overconvergent Frobe-

nius structure with respect to one particular lift of Frobenius without itself being an 

object of F-Isoc
†(X). For example, it is possible to have E ∈ F-Isoc

†(X) with constant 

Newton polygon for which, for a suitable choice of the Frobenius lift, the Frobenius action 

on E induces an overconvergent Frobenius structure on the steps of the slope filtration; 

some explicit examples were found by Dwork [33].

6. Slope gaps

We next study the behavior of gaps between slopes, starting with a cautionary remark.

Remark 6.1. Note that in general, a persistent gap between slopes is not enough to 

guarantee the existence of a slope filtration. That is, suppose that E ∈ F-Isoc(X) has 

the property that for some positive integer k < rank(E), the k-th and (k + 1)-st smallest 

slopes of E at each point of X are distinct. Then E need not admit a subobject of rank 

k whose slopes at each point are precisely the k smallest slopes of E at that point. 
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Namely, by Theorem 3.12, this would imply that the sum of the k smallest slopes is 

locally constant, which can fail in examples (see Example 6.2). However, this does hold 

if the gap is large enough; see Theorem 6.3.

Example 6.2. Let Y be the moduli space of principally polarized abelian threefolds with 

full level N structure for some N ≥ 3 not divisible by p. Then the first crystalline 

cohomology of the universal abelian variety over Y is an object E of F-Isoc
†(Y ) of rank 

6. It is known (e.g., see [17]) that the image of the slope polygon map for E consists of 

all Newton polygons with nonnegative slopes and right endpoint (6, 3). In particular, we 

can find a curve X in Y such that the pullback of E to X has slopes 0, 0, 0, 1, 1, 1 at its 

generic point and 1
3 , 13 , 13 , 23 , 23 , 23 at some closed point. Since the smallest 3 slopes do not 

have constant sum, they cannot be isolated using a slope filtration.

Recall that there is a loose analogy between isocrystals and variations of Hodge struc-

ture. With Griffiths transversality in mind, one may ask whether a persistent gap between 

slopes of length greater than 1 gives rise to a partial slope filtration. In fact, an even 

stronger statement holds: it is enough for such a gap to occur generically.

Theorem 6.3 (Drinfeld–Kedlaya). Suppose that E ∈ F-Isoc(X) (resp. E ∈ F-Isoc
†(X)) 

has the property that for some positive integer k, the difference between the k-th and 

(k + 1)-st smallest slopes of E at each generic point of X is strictly greater than 1.

(a) At each x ∈ X, the sum of the k smallest slopes of Ex is equal to a locally constant 
value, and the difference between the k-th and (k+1)-st smallest slopes of E is strictly 

greater than 1.
(b) There is a splitting E ∼= E1 ⊕ E2 of E in F-Isoc(X) (resp. F-Isoc

†(X)) with 

rank(E1) = k such that the slopes of E1 at each point are exactly the k smallest 
slopes of E at that point.

Proof. In light of Theorem 5.3, it is only necessary to prove Theorem 6.3 in the case 

E ∈ F-Isoc(X). This is proved in [32, Theorem 1.1.4] using the Cartier operator; see 

Lemma A.2 for a variant proof. �

Remark 6.4. Theorem 6.3 implies that if X is irreducible and E ∈ F-Isoc
†(X) is inde-

composable, then there is no gap of length greater than 1 between consecutive slopes of 

E at the generic point of X. However, such gaps can occur at other points of X; see [32, 

Appendix] for some examples.

Remark 6.5. Theorem 6.3 can be used to obtain nontrivial consequences about the New-

ton polygons of Weil Qℓ-sheaves, refining results of V. Lafforgue [77]. See [32] for more 

discussion.
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Remark 6.6. In the overconvergent case, another approach to Theorem 6.3 has been given 

by Kramer-Miller (in preparation). This avoids the dependence on the full faithfulness 

of restriction (Theorem 5.3) but does introduce a dependence on Theorem 5.21 which is 

not present in the approach of [32].

7. Logarithmic compactifications

As in other cohomology theories, a key technical tool in the study of overconvergent 

F -isocrystals on nonproper varieties is the formation of certain logarithmic compactifi-

cations.

Definition 7.1. Suppose that X → X is an open immersion with X smooth and X − X a 

normal crossings divisor. Let X log denote the scheme X equipped with the logarithmic 

structure defined by the divisor X − X; one can then define the associated category 

F-Isoc(X log) of convergent log-F -isocrystals [90,91].

To give a local description of this category, suppose that there exist a smooth affine 

formal scheme P over W (k) with Pk
∼= X, a relative normal crossings divisor Z on P

with Zk
∼= X − X, and a Frobenius lift σ : P → P which acts on Z. Then an object of 

F-Isoc(X log) may be viewed as a vector bundle E on PK equipped with an integrable 

logarithmic connection (for the logarithmic structure defined by ZK) and an isomorphism 

σ∗E → E of logarithmic D-modules.

Definition 7.2. Given an integrable logarithmic connection, the resulting map E →

E ⊗OPK
Ωlog

PK/K/ΩPK/K induces an OZK
-linear endomorphism of E|ZK

called the residue 

map. The eigenvalues of the residue map must be killed by differentiation, and thus 

belong to K; the presence of the Frobenius structure forces the set of eigenvalues to 

be stable under multiplication by p. That is, any object of F-Isoc(X log) has nilpotent 

residue map. Note that this would fail if we only required σ∗E → E to be an isomor-

phism away from ZK ; in this case, only the reductions modulo Z of the eigenvalues of 

the residue map would form a set stable under multiplication by p, so they would only 

be constrained to be rational numbers.

Theorem 7.3 (Kedlaya). The functor F-Isoc(X log) → F-Isoc(X, X) is fully faithful. In 

particular, if X is proper, then F-Isoc(X log) → F-Isoc
†(X) is fully faithful.

Proof. See [59, Theorem 6.4.5]. �

Theorem 5.16 admits the following logarithmic analogue.

Theorem 7.4 (Shiho). An object of F-Isoc
†(X) extends to F-Isoc(X log) if and only if 

for every curve C ⊆ X, the pullback object in F-Isoc
†(C ×X X) extends to F-Isoc(Clog)

(where the logarithmic structure on C is the one pulled back from X).
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Proof. As in the proof of Theorem 5.16, this ultimately follows from the proof of [95, 

Theorem 0.1], taking the subset Σ of Zs
p therein to be identically zero. In that case, 

the condition of “Σ-unipotent monodromy” in [95, Theorem 0.1] corresponds to log-

extendability as per [59, Proposition 6.3.2]. One can recover Theorem 5.16 from this by 

noting that extendability in F-Isoc(X, Y ) is equivalent to log-extendability plus vanish-

ing of the residue along each boundary divisor (see [59, Theorem 5.2.1]), and the latter 

can be detected on any single curve meeting that divisor. �

Remark 7.5. In light of Theorem 7.4, Conjecture 5.17 would imply that an object of 

F-Isoc(X) extends to F-Isoc(X log) if and only if for every curve C ⊆ X, the pullback 

object in F-Isoc(C ×X X) extends to F-Isoc(Clog).

In general, not every object of F-Isoc
†(X) extends to F-Isoc(X log). However, the ob-

struction to extending can always be eliminated using a finite cover of varieties. Note that 

the unit-root case of the following theorem is an immediate consequence of Theorem 3.9.

Theorem 7.6 (Kedlaya). Given E ∈ F-Isoc
†(X), there exist an alteration f : X ′ → X in 

the sense of de Jong [24] and an open immersion j : X ′ → X
′

with X
′

smooth proper and 

X
′
− X ′ a normal crossings divisor, such that the pullback of E to F-Isoc

†(X ′) extends 
to F-Isoc(X

′

log).

Proof. For the case dim X = 1, see [51, Theorem 1.1]. For the general case, see [69, 

Theorem 5.0.1]. �

Remark 7.7. The local model of Theorem 7.6 is the following statement: for any E ∈

F-Isoc
†(k((t))), there exists a finite étale morphism Spec k′((u)) → Spec k((t)) such that 

the pullback of E to F-Isoc
†(k′((u))) extends to the category F-Isoc(k�u�log) of finite 

projective W (k′)�u�[p−1]-modules equipped with compatible actions of the Frobenius 

lift u �→ up and the derivation u d
du . This was stated formally by de Jong [26, §5], but 

was known to Crew to be a special case of his conjecture formulated in [20, §10.1]; 

more precisely, E ∈ F-Isoc
†(k((t))) lifts to F-Isoc(k�t�log) if and only if its image in 

F-Isoc
‡(k((t))) is a successive extension of objects, each of which arises by pullback 

from F-Isoc(k). In light of Remark 4.11, the resolution of Crew’s conjecture thus yields 

the statement in question.

Remark 7.8. In the case dim X = 1, Theorem 7.6 is an easy consequence of the lo-

cal model statement described in Remark 7.7. In the wake of de Jong establishing his 

alterations theorem as a weak replacement for resolution of singularities in positive 

characteristic (Remark 7.9), the general statement of Theorem 7.6 was formulated as 

a natural higher-dimensional analogue of the one-dimensional case; it first appeared (in 

a sentence of the form “One can ask...”) in [26, §5] and was formally conjectured by 

Shiho [91, Conjecture 3.1.8].
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The proof of Theorem 7.6 is the culmination of the sequence of papers [59,60,64,69]

(plus [70, Appendix] for a crucial erratum to [69]) where it is described as a semistable 

reduction theorem for overconvergent F -isocrystals (based on Crew’s usage of the term 

semi-stable in the one-dimensional case [20, §10.1]). The principal difficulty in the higher-

dimensional case is that the alteration is generally forced to include some wildly ramified 

cover, whose singularities are hard to control; consequently, one cannot simply argue 

using Theorem 5.1 and the one-dimensional case. Rather, one must work locally on the 

Riemann–Zariski space of the variety. Similar difficulties arise in trying to formulate 

a higher-dimensional analogue of the formal classification of meromorphic differential 

equations; see [66,67].

Remark 7.9. Note that de Jong’s alteration theorem is required even to produce the pair 

X ′, X
′

with the prescribed smoothness properties; the nature of de Jong’s proof is such 

that one has very little control over the finite locus of the alteration. One might hope that 

under a strong hypothesis on resolution of singularities, Theorem 7.6 can be strength-

ened to ensure that the alteration f is finite étale over X. This can be achieved when 

dim X = 1: it is enough to ensure that f trivializes the local monodromy representations 

(Remark 4.12), which can be achieved via careful use of Katz–Gabber local-to-global 

extensions [47]. It is less clear whether one should even expect this to be possible when 

dim X > 1, as there is in general no global monodromy representation controlling the 

situation (compare Remark 4.12). However, using the theory of companions, modulo 

resolution of singularities this can be established when k is finite [6, Remark 4.4]: there 

exists a finite étale cover of X which trivializes an ℓ-adic companion modulo ℓ (for some 

prime ℓ �= p), and any alteration that factors through this cover suffices to achieve 

semistable reduction.

8. Cohomology

Having studied the coefficient objects of rigid cohomology up to now, it is finally 

time to introduce the cohomology theory itself. Again, we fall back on [81] for missing 

foundational discussion.

Definition 8.1. For i ≥ 0 and E ∈ F-Isoc
†(X), let Hi

rig(X, E) denote the i-th rigid 

cohomology group of X with coefficients in E ; it is a K-vector space equipped with an 

isomorphism with its ϕ-pullback.

One may describe rigid cohomology concretely in case X is affine. Let P be a smooth 

affine formal scheme with Pk
∼= X; then E can be realized as a vector bundle with 

integrable connection on a strict neighborhood U of PK in a suitable ambient space. 

The rigid cohomology is then obtained by taking the hypercohomology of the de Rham 

complex

0 → E
∇
→ E ⊗OU

Ω1
U/K

∇
→ E ⊗OU

Ω2
U/K → · · · ,
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then taking the direct limit over (decreasing) strict neighborhoods. For example, if X =

An
k , we may take P to be the formal affine n-space, identify PK with the closed unit 

polydisc in T1, . . . , Tn, then take the family of strict neighborhoods to be polydiscs of 

radii strictly greater than 1.

Remark 8.2. For constant coefficients, the computation of rigid cohomology in the affine 

case agrees with the definition of “formal cohomology” by Monsky–Washnitzer [85], 

which was one of Berthelot’s motivations for the definition of rigid cohomology. The 

key example is that of the affine line with constant coefficients: the de Rham complex 

over the closed unit disc has infinite-dimensional cohomology, whereas rigid cohomology 

behaves as one would expect from the Poincaré lemma (i.e., H0 is one-dimensional and 

H1 vanishes).

Theorem 8.3 (Ogus). Suppose that X is smooth and proper, and let E be the object of 
F-Isoc(X) = F-Isoc

†(X) corresponding to a crystal M of finite OX,crys-modules via 

Theorem 2.2. Then there are canonical isomorphisms

Hi(Xcrys, M) ⊗Z Q ∼= Hi
rig(X, E) (i ≥ 0).

Proof. See [87, Theorem 0.0.1]. �

Theorem 8.4 (Kedlaya). For E ∈ F-Isoc
†(X), the K-vector spaces Hi

rig(X, E) are finite-
dimensional for all i ≥ 0 and zero for all i > 2 dim X.

Proof. See [57, Theorem 1.2.1]. Alternatively, this can be deduced from Theorem 7.6

using the fact that Theorem 8.3 can be extended to logarithmic isocrystals (see [92]). �

Remark 8.5. Theorem 8.4 fails for convergent F -isocrystals if X is not proper: The-

orem 8.3 (suitably stated) remains true without the properness condition, whereas 

crystalline cohomology for open varieties does not have good finiteness properties. More 

subtly, Theorem 8.4 also fails for overconvergent isocrystals without Frobenius structure 

(Remark 2.12), due to issues involving p-adic Liouville numbers (see Remark 5.6).

For an overconvergent F -isocrystal on a curve, we have the following analogue of the 

Grothendieck–Ogg–Shafarevich formula [42]. The original formulation is due to Garnier 

[41, Proposition 5.3.2], though it had to be made conditionally because Theorem 8.4 was 

not available.

Theorem 8.6 (Christol–Mebkhout, Crew, Matsuda, Tsuzuki). Assume that k is alge-
braically closed. Suppose that X is geometrically irreducible of dimension 1, and let X be 

the smooth compactification of X. For E ∈ F-Isoc
†(X) and x ∈ X −X, let Swanx(E) de-

note the Swan conductor of the local monodromy representation of E at x (Remark 4.12). 
Then
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2
∑

i=0

(−1)i dimK Hi
rig(X, E) = χ(X) rank(E) −

∑

x∈X−X

Swanx(E).

Proof. See [58, Theorem 4.3.1]. �

Theorem 8.7. Rigid cohomology (of an overconvergent F -isocrystal) satisfies cohomolog-
ical descent for proper hypercoverings.

Proof. See [99, Corollary 2.2.3]. �

Remark 8.8. There is also a theory of rigid cohomology with compact support admitting 

a form of Poincaré duality; see [57]. This is relevant for the Lefschetz trace formula; see 

Remark 9.7.

9. Finite fields

We now specialize to the situation over finite fields. In order to best simulate the 

ℓ-adic setting, we must promote the categories of isocrystals, which are linear over some 

finite extension of Qp, to Qp-linear categories. We follow the general approach of [3].

Hypothesis 9.1. Throughout §9, assume that k = Fq is finite and choose a homomorphism 

j : W (k) →֒ Qp. For n a positive integer, let kn be the degree n subextension of k over 

k, and put Xn := X ×k kn.

Definition 9.2. For each finite extension L of Qp within Qp, let F-Isoc(X) ⊗ L (resp. 

F-Isoc
†(X) ⊗ L be the category of objects of F-Isoc(X) (resp. F-Isoc

†(X)) equipped 

with a Qp-linear action of L. Let F-Isoc(X) ⊗ Qp (resp. F-Isoc
†(X) ⊗ Qp) be the 2-

colimit of the categories F-Isoc(X) ⊗ L (resp. F-Isoc
†(X) ⊗ L) over all finite extensions 

L of Qp within Qp.

We extend the tensor product operation to F-Isoc(X) ⊗Qp (and similarly F-Isoc
†(X)

⊗ Qp) as in [3, §2.2]. Given two objects E1, E2 in F-Isoc(X) ⊗ L for some L, the tensor 

product E := E1 ⊗ E2 in F-Isoc(X) inherits two distinct L-linear structures, and we 

define the tensor product in F-Isoc(X) ⊗ L to be the maximal quotient of E on which 

the two L-linear structures coincide. Similarly, for each positive integer n, applying the 

base extension functor F-Isoc(X) → F-Isoc(Xn) to the underlying object of some 

E ∈ F-Isoc(X) ⊗ Qp yields an object En inheriting two distinct W (kn)-linear structures 

(one of them coming via j), and we define the base extension functor F-Isoc(X) ⊗Qp →

F-Isoc(Xn) ⊗ Qp so as to take E to the maximal quotient of En on which the two 

W (kn)-linear structures coincide.

To justify the omission from k in the notation, we observe that the category 

F-Isoc(X) ⊗ Qp remains unchanged if one changes the structure morphism X → Spec k

to X → Spec kn. More precisely, if X is irreducible and kn is the normalization of k in 
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k(X), then the composition of the base extension functor from F-Isoc(X) ⊗Qp (defined 

relative to k) to F-Isoc(Xn) ⊗ Qp (defined relative to kn) with pullback from Xn to 

one of its connected components is an equivalence. See also Definition 9.5 for the case 

X = Spec(kn).

Remark 9.3. With the previous caveats about tensor products and base extensions, all 

of the previous results about F-Isoc(X) and F-Isoc
†(X) can be formally promoted to 

statements about F-Isoc(X) ⊗ Qp and F-Isoc
†(X) ⊗ Qp, which we will mostly use 

without further comment. One cautionary remark: for objects in F-Isoc(X) ⊗ L, the 

y-coordinates of the vertices of the slope polygon belong not to Z but to e−1Z where e

is the absolute ramification index of L.

We spell out explicitly one instance of Remark 9.3, corresponding to Theorems 3.7

and 3.9.

Theorem 9.4. Let L be a finite extension of Qp.

(a) The category of unit-root objects in F-Isoc(X) ⊗ L is equivalent to the category of 
étale L-local systems on X.

(b) Under this equivalence, the unit-root objects in F-Isoc
†(X) ⊗ L correspond to the 

potentially unramified L-local systems on X.

Proof. This follows by applying Theorems 3.7 and 3.9 to the underlying objects in 

F-Isoc(X) and F-Isoc
†(X) on one hand, and the underlying étale Qp-local systems 

on the other hand. �

Over a finite field, we can define the L-function associated to an overconvergent F -

isocrystal and formulate the Lefschetz trace formula for Frobenius.

Definition 9.5. Suppose that k = Fq is finite. For n a positive integer, put kn =

Fqn ⊆ k and Kn = Frac W (kn). An object of F-Isoc
†(kn) ⊗ Qp corresponds to a fi-

nite (Kn ⊗Qp
Qp)-module equipped with an isomorphism with its (ϕ ⊗ 1)-pullback, or 

equivalently to a finite-dimensional Qp-vector space equipped with an invertible endo-

morphism (the linearized Frobenius action). Note that the second equivalence depends on 

our prior choice of an embedding j : Kn →֒ Qp, but the conjugacy class of the resulting 

endomorphism does not.

Let X◦ be the set of closed points of X. Given E ∈ F-Isoc
†(X) ⊗ Qp, define the 

L-function associated to X as the power series

L(E , T ) :=
∏

x∈X◦

∏

α∈Sx

(1 − αT deg(x/Fq))−1 ∈ Qp�T �,

where Sx is the multiset of eigenvalues of the linearized Frobenius action on Ex.
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When X is a curve, one can also define Euler factors at points of the smooth compact-

ification of X; these play a crucial role in the Langlands correspondence. See [3, §A.2]

for a detailed construction.

Theorem 9.6 (Étesse–Le Stum). Suppose that k = Fq is finite and that X is of pure 

dimension d. For E ∈ F-Isoc
†(X) ⊗ Qp, we have

L(E , T ) =
2d
∏

i=0

det(1 − q−dF −1T, Hi
rig(X, E∨))(−1)i+1

. (9.6.1)

Proof. See [37, Théorème 6.3]. �

Remark 9.7. In terms of cohomology with compact support, the Lefschetz trace formula 

for Frobenius reads more simply

L(E , T ) =
2d
∏

i=0

det(1 − FT, Hi
c,rig(X, E))(−1)i+1

;

moreover, it continues to hold without assuming that X is smooth. See [37, Théorème 6.3], 

[58, (2.1.2)].

While it is not the case that overconvergent isocrystals can be described completely 

in terms of group representations (except in the unit-root case), one can use the formal-

ism of Tannakian categories to construct monodromy groups that record some crucial 

information. We give a brief discussion here; see [21] for a more detailed exposition.

Definition 9.8. Suppose that X is connected and choose a closed point x ∈ X◦ (which 

we will typically neglect to mention when applying this construction). Let ωx be the 

Qp-linear fiber functor on F-Isoc
†(X) ⊗ Qp taking E to the underlying vector space of 

the linearized Frobenius action on Ex (see Definition 9.5). After restricting this to the 

Tannakian category generated by E within F-Isoc
†(X) ⊗ Qp, we may extend it to the 

Tannakian category [E ] generated by E within the category of overconvergent isocrystals 
on X without Frobenius structure (tensored with Qp); this amounts to allowing objects 

which are stable under the connection but not the Frobenius action. (For a more thorough 

development of the theory of overconvergent isocrystals, see the references given in §2.) 

Taking the automorphism group of the resulting fiber functor yields a linear algebraic 

group G(E) over Qp, called the geometric monodromy group of E .

Remark 9.9. In the original development of monodromy groups of isocrystals given by 

Crew [19], the geometric hypotheses are somewhat stronger: X is required to be a geo-

metrically connected curve, and the base point x is required to be k-rational. (See [88, 

§3–4] for an alternate treatment in that context.) The condition that X be a curve was 
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imposed due to limitations in the theory of overconvergent F -isocrystals at the time (in 

particular, Theorem 7.6 was unknown even for curves). The other restrictions were made 

so that Crew could work directly with F-Isoc
†(X), and in particular to avoid having to 

require k to be finite. The extension of Crew’s results to the setup we have described is 

straightforward, but for clarity we have chosen to spell out a few of the key steps.

Remark 9.10. Theorem 5.11 remains true for overconvergent isocrystals without Frobe-

nius structure (again see [59, Proposition 5.3.1]). Consequently, geometric monodromy 

groups remain invariant under restriction from X to an open dense subscheme; this 

answers a question raised in [19, Remark 2.9].

For missing details in the following example, see [19, Proposition 4.11].

Example 9.11. We calculate G(E) in the setting of Example 4.6. By Remark 9.10, this 

will not depend on whether we work over X or U .

By definition, we have G(E) ⊆ GL2. Using the trace map in crystalline cohomology, 

one may show that G(∧2E) is trivial; this implies that G(E) ⊆ SL2. On the other hand, 

the monodromy group of E in the category of convergent isocrystals over U is a Borel 

subgroup B of SL2, corresponding to the slope filtration. (We omit the calculation that 

is required to show that the convergent monodromy group is not any smaller than B.) 

Since the slope filtration does not extend to F-Isoc
†(X) ⊗ Qp, it follows that G(E) �= B

and hence G(E) = SL2. In particular, Symn E is irreducible in F-Isoc
†(U) ⊗ Qp for all 

positive integers n.

Definition 9.12. Fix a prime ℓ �= p. In the ℓ-adic setting, the category corresponding to 

F-Isoc
†(X) ⊗Qp is the category of lisse Weil Qℓ-sheaves. For X connected, these may be 

described as the 2-colimit over finite extensions L of Qp of the continuous representations 

of the Weil group of X on finite-dimensional L-vector spaces. The Weil group WX is in 

turn defined, in terms of a geometric point x of X, as the semidirect product of the 

geometric étale fundamental group π1(Xk, x) by the action of Frobenius; we thus have 

an exact sequence

1 → π1(Xk, x) → WX → Z → 1.

One may define the geometric monodromy group and the Weil group of an individual 

representation by taking the images of π1(Xk, x) and WX , respectively.

In a similar vein, we may define the Weil group of E ∈ F-Isoc
†(X) ⊗ Qp as the 

semidirect product W (E) of G(E) by Frobenius; this is an algebraic group over Qp

equipped with a tautological linear representation which is faithful on G(E) and fitting 

into an exact sequence

1 → G(E) → W (E) → Z → 1. (9.12.1)
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The projection to Z is the degree map.

The definition of the Weil group makes it possible to transport various basic arguments 

from étale cohomology into the crystalline setting. As an example, we offer the follow-

ing remark suggested by Marco D’Addezio. (See [88, Proposition 3.9] for an alternate 

treatment.)

Remark 9.13. Suppose that X is connected. In [29, §1.2, 1.3], the following two facts 

about lisse Weil Qℓ-sheaves are used without further comment; however, they are both 

contained in the conjunction of [107, Lemma II.2.4, Proposition II.2.5].

(a) A representation ρ of WXn
remains irreducible after all finite base extensions of 

k if and only if its restriction to π1(Xk, x) is irreducible. In this case, we say ρ is 

geometrically irreducible.
(b) Any irreducible representation splits, for some n, as a direct sum of n irreducible 

representations of WXn
permuted cyclically by the k-Frobenius.

Using similar arguments, we may obtain analogous assertions for isocrystals.

(a) An object E ∈ F-Isoc
†(X) ⊗ Qp remains irreducible after all finite base extensions 

of k if and only if the tautological representation of W (E) restricts to an irreducible 

representation of G(E) (i.e., if E is irreducible even without its Frobenius structure). 

In this case, we say E is geometrically irreducible.

(b) For E ∈ F-Isoc
†(X) ⊗ Qp irreducible, there exists a positive integer n such that in 

F-Isoc
†(Xn) ⊗ Qp, E splits as a direct sum of n geometrically irreducible summands 

permuted cyclically by the action of the k-Frobenius.

We spell this out in detail for (a). Suppose that E remains irreducible after all finite 

base extensions of k. Since E is semisimple, G(E) is reductive (but see Corollary 9.20

for a stronger statement). Since the tautological representation is faithful on G(E), the 

implication (i) ⇒ (iv) of [28, Lemme 1.3.10] implies that the center of W (E)(Qp) contains 

an element g of some positive degree n (but again, see Corollary 9.21 for a stronger 

statement). By hypothesis, the tautological representation of W (E) remains irreducible 

upon restriction to the inverse image of nZ; since g defines an automorphism of this 

restricted representation, by Schur’s lemma it must act via a scalar multiplication. Hence 

the original representation of G(E) must also be irreducible.

For (b), we point out solely that the relevant arguments are 1 ⇒ 2 of [107, 

Lemme II.2.4] and 1 ⇒ 2 of [107, Proposition II.2.5], both of which are of purely group-

theoretic nature; they concern the behavior of induction between Weil groups. They thus 

carry over directly to arguments involving W (E).
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One point at which the étale–crystalline analogy suffers some strain is the nature of 

abelian monodromy. For a lisse Weil Qℓ-sheaf of rank 1 on X, the geometric monodromy 

group is always finite due to the mismatch between the ℓ-adic and p-adic topologies [28, 

Proposition 1.3.4]. This argument cannot be applied in the crystalline setting; however, 

it can be replaced with a more intricate argument from geometric class field theory due 

to Katz–Lang [49] to obtain the following result.

Lemma 9.14 (Crew, Abe). For any E ∈ F-Isoc
†(X) ⊗ Qp, there exists an object F ∈

F-Isoc
†(k) ⊗ Qp of rank 1 such that det(E ⊗ F) is of finite order. In particular, if X is 

connected, then G(det(E)) is finite.

Proof. This reduces at once to the case where rank(E) = 1. For this, see [19, Corol-

lary 1.5] in the case where X is a geometrically connected curve, and [2, Lemma 6.1] in 

the general case. �

The following corollary of Lemma 9.14 is parallel to [29, 1.3].

Corollary 9.15. Suppose that X is connected. For n a positive integer, let πn : Xn → X

be the canonical projection. For any semisimple E ∈ F-Isoc
†(X) ⊗ Qp, there exists a 

decomposition

E ∼=
⊕

i

πni∗(Ei ⊗ Li) (9.15.1)

in which for each i, ni is a positive integer, Ei is an object of F-Isoc
†(Xni

) ⊗ Qp which 

is geometrically irreducible (in the sense of Remark 9.13) and has determinant of finite 

order, and Li is an object of F-Isoc
†(kni

) ⊗ Qp of rank 1.

Proof. We may assume at once that E is irreducible. By Remark 9.13, there exists a 

positive integer n such that E splits in F-Isoc
†(Xn) ⊗ Qp as a direct sum of absolutely 

irreducible subobjects F1, . . . , Fn which are permuted cyclically by the action of Frobe-

nius. We then have a canonical isomorphism E ∼= πn∗F1, and applying Lemma 9.14 to 

F1 thus yields the desired result. �

In general, the geometric monodromy group of an isocrystal cannot be naturally 

interpreted as a quotient of the geometric étale fundamental group; however, this is 

crucially true for unit-root isocrystals.

Lemma 9.16. Suppose that X is connected and choose a geometric point x lying over x. 
Let E ∈ F-Isoc

†(X) ⊗ Qp be a unit-root object corresponding as per Theorem 9.4 to a 

representation ρ : π1(X, x) → GLn(Qp). Then there is a canonical isomorphism of G(E)

with the Zariski closure of ρ(π1(Xk, x)).

Proof. This follows from Theorem 9.4 as in the proof of [19, Proposition 3.7]. �



JID:YJNTH AID:6945 /FLA [m1L; v1.312] P.32 (1-42)

32 K.S. Kedlaya / Journal of Number Theory ••• (••••) •••–•••

This leads to an analogue of [19, Proposition 4.3].

Corollary 9.17. Suppose that X is connected. For E ∈ F-Isoc
†(X) ⊗ Qp, G(E) is finite 

if and only if there exists a finite étale cover f : X ′ → X such that G(f∗E) is the trivial 
group. (In the language of [19], this means that f∗E is isotrivial.)

Proof. We may assume at once that X is geometrically connected. Then the proof of 

[19, Proposition 4.3] carries over unchanged, except that [19, Proposition 3.7] must be 

replaced with Lemma 9.16. �

This in turn leads to an analogue of [19, Proposition 4.6].

Lemma 9.18. Suppose that X is connected. For E ∈ F-Isoc
†(X) ⊗Qp, the following state-

ments hold. (For G a group scheme over a field, we write G◦ for the identity connected 

component of G.)

(a) For f : X ′ → X a connected finite étale cover, the natural inclusion G(f∗E) → G(E)

is an open immersion, or in other words G(f∗E)◦ = G(E)◦.
(b) There exists a choice of f for which G(f∗E) is connected, and therefore corresponds 

to G(E)◦ via the natural inclusion.

Proof. We may assume at once that X is geometrically connected and choose a geometric 

basepoint x lying over x. To prove (a), it suffices to treat the case where f is Galois 

(namely, for general f we can find a Galois cover f ′ factoring through f , and then the 

claim for f ′ implies the claim for f). We may also assume (by enlarging k if needed) 

that both X and Y are geometrically connected. Let H be the automorphism group 

of f ; then H acts naturally on [f∗E ] and hence on G(f∗E), and the natural inclusion 

G(f∗E) → G(E) extends to a morphism G(f∗E) ⋊ H → G(E). From the fact that 

overconvergent isocrystals without Frobenius structure admit effective descent for finite 

étale coverings (see for example [80]), it follows that G(f∗E) ⋊ H → G(E) is surjective, 

and hence dim G(f∗E) ≥ dim G(E). Since G(f∗E) → G(E) is injective, we must have 

G(f∗E)◦ = G(E)◦, proving (a).

To prove (b), we characterize the quotient group π0(G(E)) as the automorphism group 

of ωx on the category of objects F ∈ [E ] for which G(F) is finite. This category can be 

generated by some finite set of irreducible objects F1, . . . , Fn. For each i ∈ {1, . . . , n}, 

Fi occurs as a Jordan-Hölder constituent of an object G of F-Isoc
†(X) ⊗ Qp; the set of 

isomorphism classes of constituents of G in [G] is finite and acted upon by ϕ∗, so there 

exists a positive integer m such that Fi ⊕ ϕ∗Fi ⊕ · · · ⊕ ϕ(m−1)∗Fi admits a Frobenius 

structure. We may thus apply Corollary 9.17 to Fi ⊕ ϕ∗Fi ⊕ · · · ⊕ ϕ(m−1)∗Fi to obtain a 

finite étale cover f : X ′ → X such that G(f∗Fi) is trivial. By taking a fiber product, we 

can make a single choice of f that works for all i; this cover has the desired effect. �
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This finally leads to an analogue of Grothendieck’s global monodromy theorem [75, 

Theorem I.3.3(1)]. See also [21, Theorem 3.4.4].

Theorem 9.19 (Crew). Suppose that X is connected. For E ∈ F-Isoc
†(X) ⊗ Qp, the 

radical of G(E)◦ is unipotent.

Proof. It suffices to check the claim after replacing X with a finite étale cover and/or 

replacing k with a finite extension. By Lemma 9.18, we may thus assume that X is 

geometrically irreducible, x ∈ X(k), and G(E) is connected. We may then argue as in 

[19, Theorem 4.9], using Lemma 9.14 in place of [19, Corollary 1.5]. �

Corollary 9.20. Suppose that X is connected. For E ∈ F-Isoc
†(X) ⊗Qp semisimple, G(E)

is also semisimple.

Proof. This follows from Theorem 9.19 as in [19, Corollary 4.10]. �

Corollary 9.21. Suppose that X is connected and E ∈ F-Isoc
†(X) ⊗ Qp is semisimple. 

Let Z be the center of W (E)(Qp). Then the degree map Z → Z has finite kernel and 

cokernel; more precisely, Z contains a power of some element of W (E)(Qp) of degree 1.

Proof. This follows from Corollary 9.20 as in the proof of [75, Theorem I.3.3(2)]. �

10. Theory of weights

Since rigid cohomology is a Weil cohomology theory, one may reasonably expect that 

the theory of weights in ℓ-adic étale cohomology should carry over. This expectation 

turns out to be correct.

Hypothesis 10.1. Throughout §10, continue to retain Hypothesis 9.1. In addition, fix an 

algebraic embedding ι : Qp →֒ C.

Definition 10.2. Suppose that E ∈ F-Isoc
†(X) ⊗ Qp.

• For w ∈ R, we say that E is ι-pure of weight w if for each closed point x ∈ X

with residue field kn, each eigenvalue α of the linearized Frobenius action on Ex (see 

Definition 9.5) satisfies |ι(α)| = qnw/2.

• We say that E is ι-mixed of weights ≥ w (resp. ≤ w) if it is a successive extension of 

objects, each of which is ι-pure of some weight ≥ w (resp. ≤ w).

We have the following partial analogue of Deligne’s “Weil II” theorem [28]. A more 

complete analogue can be stated in terms of constructible coefficients; see §11.

Theorem 10.3 (Kedlaya). Suppose that E ∈ F-Isoc
†(X) ⊗ Qp is ι-mixed of weights ≥ w. 

Then for all i ≥ 0, Hi
rig(X, E) is ι-mixed of weights ≥ w + i.
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Proof. We may reduce to the case E ∈ F-Isoc
†(X), for which see [58, Theorem 5.3.2]. 

(The latter statement also includes a version for cohomology with compact supports, 

applicable without requiring X to be smooth.) �

Corollary 10.4. Let

0 → E1 → E → E2 → 0

be an exact sequence in F-Isoc
†(X) ⊗ Qp in which Ei is ι-pure of weight wi, w1 �= w2, 

and w2 < w1 + 1. (In particular, these conditions hold if w2 < w1.) Then this sequence 

splits in F-Isoc
†(X) ⊗ Qp.

Proof. We reduce formally to the case of an exact sequence in F-Isoc
†(X). We have the 

following exact sequence of Hochschild–Serre type:

0 → H0
rig(X, E∨

2 ⊗ E1)F → Ext1
F-Isoc†(X)(E2, E1) → H1

rig(X, E∨
2 ⊗ E1)F .

In this sequence, H0
rig(X, E∨

2 ⊗E1) is finite-dimensional and ι-pure of weight w1 −w2 �= 0, 

so its Frobenius coinvariants are trivial. Meanwhile, by Theorem 10.3, H1
rig(X, E∨

2 ⊗ E1)

is ι-mixed of weights ≥ w1 − w2 + 1 > 0, so its Frobenius invariants are also trivial. �

Corollary 10.5 (Abe–Caro). Any E ∈ F-Isoc
†(X) ⊗ Qp which is ι-mixed admits a unique 

filtration

0 = E0 ⊂ · · · ⊂ El = E

such that each successive quotient Ei/Ei−1 is ι-pure of some weight wi, and w1 < · · · < wl. 
We call this the weight filtration of E.

Proof. This is immediate from Corollary 10.4. For an independent derivation (and an 

extension to complexes), see [5, Theorem 4.3.4]. �

Remark 10.6. In Corollary 10.4, half of the proof applies in the case w1 = w2: the 

extension class in H1
rig(X, E∨

2 ⊗ E1)F still vanishes. We thus still get a splitting in the 

category of overconvergent isocrystals without Frobenius structures; consequently, any 

ι-pure object in F-Isoc
†(X) ⊗ Qp becomes semisimple in the category of overconvergent 

isocrystals without Frobenius structure.

Remark 10.7. While the proof of Theorem 10.3 draws many elements from Deligne’s 

original arguments in [28], in overall form it more closely resembles the stationary phase 

method of Laumon [79], and even more closely the exposition of Katz [48] which makes 

some minor simplifications to Laumon’s treatment. In fact, translating the arguments 

from [58] back to the ℓ-adic side would yield an argument differing slightly even from 

[48].



JID:YJNTH AID:6945 /FLA [m1L; v1.312] P.35 (1-42)

K.S. Kedlaya / Journal of Number Theory ••• (••••) •••–••• 35

One pleasing feature of the p-adic approach is that the ℓ-adic Fourier transform analo-

gizes to a Fourier transform on some sort of D-modules on the affine line, which is 

genuinely constructed by interchanging terms in a Weyl algebra. This point of view was 

originally developed by Huyghe [45], and is maintained in [58].

The following is analogous to a statement in the ℓ-adic case which is a consequence 

of the Chebotarev density theorem; however, here one must instead make an argument 

using weights.

Theorem 10.8 (Tsuzuki). Suppose that E1, E2 ∈ F-Isoc
†(X) ⊗ Qp are ι-mixed and have 

the same set of Frobenius eigenvalues at each closed point x ∈ X. Then E1, E2 have the 

same semisimplification in F-Isoc
†(X) ⊗ Qp.

Proof. We reproduce the argument given in [3, Proposition A.4.1]. We may assume 

that X is irreducible, and hence of some pure dimension d. By Corollary 10.5, we may 

assume that E1, E2 are both ι-pure, necessarily of the same weight w. For any irreducible 

F ∈ F-Isoc
†(X) ⊗Qp, we have L(E1 ⊗F∨, T ) = L(E2 ⊗F∨, T ). Combining Theorem 9.6

with Theorem 10.3, we see that for j = 1, 2, the pole order of L(Ej ⊗ F∨, T ) at T = q−d

equals dimQp
H0

rig(X, Ej ⊗ F∨)F (the factors in (9.6.1) with i > 0 only contribute zeroes 

and poles in the region |T | ≥ q−d+1/2). The latter equals the multiplicity of F as a 

constituent of Ej , so these agree for j = 1, 2 for all F ; this proves the claim. �

By analogy with Deligne’s equidistribution theorem, one has an equidistribution the-

orem for Frobenius conjugacy classes in rigid cohomology; this was described explicitly 

by Crew in the case where dim(X) = 1 [20, Theorem 10.11], but in light of the general 

theory of weights, one can adapt the proof of [28, Théorème 3.5.3] to arbitrary X.

Definition 10.9. Suppose that X is connected and E ∈ F-Isoc
†(X) ⊗ Qp is semisimple. 

Set notation as in Definition 9.8 (with respect to some closed point x ∈ X◦). Using the 

map ι to perform a base extension on the sequence (9.12.1), as in [19, §5] we obtain an 

exact sequence

1 → GC → WC

deg
→ Z → 1

of affine C-groups. There is a subgroup WR ⊆ WC projecting onto Z such that GC ∩WR

is a maximal compact subgroup of GC [28, 2.2.1]. The conjugacy classes of WR are the 

intersections with WR of the conjugacy classes of WC.

Choose any element z of the center of WR of positive degree (see Remark 9.13 and 

Corollary 9.21). Let μ0 be the measure on WR obtained as the product of Haar measure 

(normalized so GR has measure 1) with the characteristic function of the set of elements 

of positive degree.
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Let W ♮
R

denote the space of conjugacy classes of WR equipped with the quotient 

topology. For any measure μ on WR, let μ♮ denote its image on W ♮
R

. For n ∈ Z, let W ♮
n

denote the set of classes in W ♮
R

of degree n.

Suppose now that E is ι-mixed. As in [28, 2.2.6], for each closed point x ∈ X, we can 

find an element gx ∈ WR conjugate in WC to a semisimplification of ι(Frobx). Let μ be 

the measure on WR given by

μ =
∑

x

deg(x)

∞
∑

n=1

q−n deg(x)δ(gn
x ),

where δ denotes a Dirac point measure.

Theorem 10.10. Suppose that X is connected and E ∈ F-Isoc
†(X) ⊗ Qp is semisimple 

and ι-mixed. Then for any i ∈ Z, in measure we have

lim
n→∞

z−nμ♮|W ♮
i+n deg(z)

= μ♮
0|W ♮

i
.

Proof. In light of Theorem 10.3 (or more precisely, its version for cohomology with 

compact supports, to stand in for [28, Corollaire 3.3.4]), the proof of [28, Théorème 3.5.3]

applies unchanged. �

Remark 10.11. In the ℓ-adic case, a more precise version of the equidistribution theorem 

has been formulated by Ulmer [102], although with few details of the proof. A more 

thorough argument, which also covers the p-adic case, has been given by Hartl–Pál [44]; 

this for example implies Zariski density of Frobenius conjugacy classes in the arithmetic 

monodromy group [88, Theorem 4.13].

Remark 10.12. In the ℓ-adic setting, one can refine the construction of local monodromy 

representations for lisse sheaves on a curve (Remark 4.12) to obtain local ǫ-factors which 

multiply together to give the global ǫ-factor arising in the functional equation for the 

L-function; this was originally proved by Laumon [79] building on work of Langlands 

and Deligne. Laumon’s work admits a parallel version in the p-adic case, as shown by 

Abe–Marmora [7].

Remark 10.13. One can also associate L-functions to convergent F -isocrystals, but the 

construction carries only p-adic analytic meaning; there is no theory of weights for such 

objects. See for example [104].

11. A remark on constructible coefficients

To get any further in the study of rigid cohomology, one needs an analogue not 

just of lisse étale sheaves, but also constructible étale sheaves. Berthelot originally pro-

posed a theory of arithmetic D-modules for this purpose [13], and conjectured that 
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holonomic objects in this theory (equipped with Frobenius structure) are stable under 

the six operations formalism. This result remains unknown, partly because the defini-

tion of holonomicity is itself a bit subtle; for instance, a direct arithmetic analogue of 

Bernstein’s inequality fails, so one must use Frobenius descent to correct it.

In the interim, a modified definition of overholonomic arithmetic D-modules has been 

given by Caro [15], as a way to formally salvage the six operations formalism. Of course, 

this provides little benefit unless one can prove that this category contains the overcon-

vergent F -isocrystals as a full subcategory; fortunately, this is known thanks to a difficult 

theorem of Caro–Tsuzuki [16] (whose proof makes essential use of Theorem 7.6). The 

theory of weights in Caro’s formalism is developed in [5].

Recently, Le Stum has given a site-theoretic construction of overconvergent F -

isocrystals [81] and proposed a theory of constructible isocrystals [82]. It is hoped that 

this again yields a six operations formalism, with somewhat less technical baggage re-

quired than in Caro’s approach.

In any case, using arithmetic D-modules, Abe [3] has recently succeeded in porting 

L. Lafforgue’s proof of the Langlands correspondence for GLn over a function field [76]

into p-adic cohomology; this immediately resolves Deligne’s conjecture on crystalline 

companions [28, Conjecture 1.2.10] in dimension 1, and ultimately leads to corresponding 

results in higher dimension. (Note that this requires working not just on schemes, but 

on certain algebraic stacks.) See [72,73] for further discussion.

A related point is that the category of arithmetic D-modules satisfies descent with 

respect to proper hypercoverings (as then does the category of overconvergent F -

isocrystals). See [4, §3].

It is expected that one can similarly port V. Lafforgue’s construction of (one direction 

of) the Langlands correspondence for any reductive group over a function field [78]

into p-adic cohomology. This requires an adaptation of Drinfeld’s lemma, on products 

of fundamental groups in characteristic p, for both overconvergent F -isocrystals and 

arithmetic D-modules. For discussion of the former, see [74].

12. Further reading

We conclude with some suggestions for additional reading, in addition to the references 

already cited.

• Berthelot’s first sketch of the theory of rigid cohomology is the article [11]; while 

quite dated, it remains a wonderfully readable introduction to the circle of ideas 

underpinning the subject.

• In [61], there is a discussion of p-adic cohomology oriented towards machine compu-

tations, especially of zeta functions.

• In [65], some discussion is given of how recent (circa 2009) results in rigid cohomology 

tie back to older results in crystalline cohomology.
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Appendix A. Separation of slopes

In this appendix, we record an alternate approach to Theorem 6.3 in the case E ∈

F-Isoc(X) based on reduction to the local model statement, which is an unpublished 

result from the author’s PhD thesis [50, Theorem 5.2.1].

Lemma A.1. Let

0 → E1 → E → E2 → 0

be a short exact sequence in F-Isoc(k((t))) with Ei isoclinic of slope si and s2 − s1 > 1. 
Then this sequence splits uniquely.

Proof. Using internal Homs, we may reduce to treating the case where E2 is trivial, and 

in particular s2 = 0 and s1 < −1. The extension group Ext1
F-Isoc(k((t)))(E2, E1) may then 

be computed as the first total cohomology group of the double complex

E1

d/dt

σ−1

E1

ptp−1σ−1

E1

d/dt
E1

where the top left entry is placed in degree 0. A 1-cocycle is a pair (v1, v2) ∈ E1 × E1

with d
dt (v1) = (ptp−1σ − 1)(v2), and a 1-coboundary is a pair for which there exists an 

element v ∈ E1 with (σ − 1)(v) = v1, d
dt (v) = v2.

For c > 0, let Γperf(c) be the subring of Γperf consisting of those x for which for each 

n ≥ 0, there exists yn ∈ Γ such that σ−n(yn) −x is divisible by p⌊cn⌋. Note that for c > 1, 

the operator d
dt on Γ extends to a well-defined map Γperf(c)[p−1] → Γperf(c−1)[p−1].

Since E1 is isoclinic of slope s1 < −1, we may define

v = σ(1 + σ−1 + σ−2 + · · · )(v1) ∈ E1 ⊗Γ[p−1] Γperf(−s1)[p−1]

via a convergent infinite series. By the previous paragraph, we may then form d
dt (v) ∈

E1 ⊗Γ[p−1] Γperf(−s1−1)[p−1], which satisfies

(ptp−1σ − 1)

(

d

dt
(v) − v2

)

= 0.

Since s1 + 1 < 0, ptp−1σ − 1 is bijective on E1 ⊗Γ[p−1] Γperf [p−1], so this forces

d

dt
(v) = v2. (A.1.1)

It will now suffice to check that this equality forces v ∈ E1.
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To see this, write Γperf [p−1] as a completed direct sum of tαΓ[p−1] with α varying over 

Z[p−1] ∩ [0, 1), then split E1 ⊗Γ[p−1] Γperf [p−1] accordingly. For each component tα
vα of 

v with α �= 0, (A.1.1) then implies d
dt (tα

vα) = 0.

Now let Γunr be the completion of the maximal unramified extension of Γ; the deriva-

tion d
dt extends uniquely by continuity to Γunr. By a suitably precise form of Theorem 3.7

(e.g., see [97, Corollary 5.1.4]), there exists a basis e1, . . . , em of E1 ⊗Γ[p−1] Γ
unr[p−1] such 

that d
dt (ei) = 0 for i = 1, . . . , n. Writing vα =

∑m
i=1 ciei with ci ∈ Γunr[p−1], we have

0 =
d

dt
(tα

vα) =

m
∑

i=1

tα

(

αt−1ci +
dci

dt

)

ei. (A.1.2)

However, the p-adic valuation of α is negative and the p-adic valuation of ci is no greater 

than that of its derivative, so (A.1.2) can only hold if ci = 0 for all i = 0. This implies 

that v ∈ E1, as needed. �

Lemma A.2. Theorem 6.3 holds in the case E ∈ F-Isoc(X).

Proof. We first show that the claim may be reduced from X to an open dense affine 

subspace U . The splitting of E is defined by a projector, so it can be extended from U to 

X using Theorem 5.3. This in turn implies Theorem 6.3(a) using Theorem 3.12: the sum 

of the slopes of E1 is locally constant, the largest slope of E1 can only decrease under 

specialization, and the smallest slope of E2 can only increase under specialization.

Using Theorem 3.12 again, we may thus reduce to the case where E has constant slope 

polygon (so we no longer need to verify Theorem 6.3(a) separately). By Corollary 4.2, E

now admits a slope filtration. We are thus reduced to showing that if X is affine and

0 → E1 → E → E2 → 0

is a short exact sequence in F-Isoc(X) with Ei isoclinic of slope si and s2 − s1 > 1, 

then this sequence splits uniquely. Using Remark 2.8 and Remark 2.9, we reduce to 

the case X = An
k (this is not essential but makes the argument slightly more trans-

parent). As in Definition 2.1, we may realize E , E1, E2 as finite projective modules over 

the Tate algebra R = K〈T1, . . . , Tn〉 equipped with compatible actions of the stan-

dard Frobenius lift σ : Ti �→ T p
i and the connection ∇. Let R′ be the completion of 

K〈T1, . . . , Tn〉[T
1/p∞

1 , . . . , T
1/p∞

n ] for the Gauss norm; then the sequence of σ-modules 

splits uniquely over R′, and we must show that this splitting descends to R and is compat-

ible with the action of the derivations d
dT1

, . . . , d
dTn

. For this, we may apply Lemma A.1

to treat each variable individually. �
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