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Abstract: Foot shape can strongly influence performance and efficiency in bipedal gait, playing a critical 
role in both human and robot walking. While flat feet and circular feet are common in human models, a 
more general shape may better capture the effective foot shape of humans, leading to an improved 
simulation-experimental match. The key challenge in modeling a biped with a nonuniform foot shape is 
locating the ankle as the foot rolls forward so that the equations of motion can be derived. This work 
develops a method to find the equations of motion for a planar biped whose foot shape can be modeled as 
any convex, continuously differentiable function. The method is demonstrated using a six-link, planar 
biped model with nonuniform, curved feet. Using nonlinear constrained optimization, valid gaits were 
identified for foot shapes parameterized by circular, elliptical, and polynomial functions. The resulting 
gaits were compared to experimental spatiotemporal and kinematic walking data from one human subject. 
The polynomial model both best approximated the subject’s foot shape and best matched the experimental 
spatiotemporal behavior and stance ankle angle trajectory, confirming the viability of the method for both 
simulating gait and matching human walking. 
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1. INTRODUCTION 

Foot shape plays a significant role in the mechanics of bipedal 
walking (Hansen, Childress and Knox, 2004; Adamczyk, 
Collins and Kuo, 2006; Adamczyk and Kuo, 2013; Croft and 
Bertram, 2020; Schmitthenner et al., 2020). The human foot is 
composed of several distinct segments and joints, which 
collectively deform as a person progresses through the gait 
cycle (Carson et al., 2001). Studies investigating foot shape 
have shown that foot shape and length can reduce the work to 
redirect the biped center of mass when transitioning between 
steps (Adamczyk, Collins and Kuo, 2006; Adamczyk and Kuo, 
2013), which is a significant contributor to the energetic cost 
of transport (Donelan, Kram and Kuo, 2002). Additionally, 
foot shape is a critical parameter in designing stable and 
efficient biped robots (Collins, Wisse and Ruina, 2001; Collins 
and Ruina, 2005; Martin, Post and Schmiedeler, 2014). Thus, 
investigating complex foot shape in gait models has 
implications in both the biomechanics of human walking and 
the performance of biped robots. 

Gait models often reduce the complex anatomical degrees of 
freedom by representing the foot as a flat, rigid plate 
(Goswami, 1999; Tlalolini, Chevallereau and Aoustin, 2009). 
This approach is simpler than using multisegmented 
(Mummolo, Akbas and Carbone, 2021) or compliant (Yazdi-
Mirmokhalesouni et al., 2018) models, but requires additional 
modelling phases such as heel strike at the beginning of the 
step, a mid-stance transfer of support from heel to toe, and toe 
off at the end of the step. An alternative method is to model 
the foot as a circular arc that rolls without slipping in the 

sagittal plane (Kuo, 2001, 2007; Martin and Schmiedeler, 
2014; Martin, Post and Schmiedeler, 2014; Trkov, Chen and 
Yi, 2019). This approach reduces the number of modelling 
phases and in some cases improves efficiency over flat foot 
models (Asano and Luo, 2006; Kwan and Hubbard, 2007). 
Control is relatively straightforward since the hybrid zero 
dynamics (HZD) based control strategy (Westervelt et al., 
2007) has been extended to planar biped models with circular 
feet (Martin, Post and Schmiedeler, 2014). This method has 
successfully been used with a six-link planar biped to match 
and predict human walking kinematics (Martin and 
Schmiedeler, 2014). But the model foot and ankle did not 
sufficiently capture the physiological complexity of the human 
foot and ankle, resulting in relatively low correlations between 
simulated and experimental ankle kinematics.  

A model with nonuniform foot curvature likely could better 
capture the foot and ankle behavior when mimicking human 
walking, but it introduces new modelling challenges when 
deriving the equations of motion and impact map. Analytical 
expressions for ankle position and velocity are required for 
these derivations. When using a circular stance foot, the 
constant-height center of curvature provides a suitable 
reference point to locate the ankle, but for nonuniform foot 
shape, this point varies, complicating the necessary 
calculations. Some works have derived models for elliptical 
(Smyrli et al., 2019) or piecewise (Yamane and Trutoiu, 2009) 
foot shapes, but these derivations were specific to the chosen 
foot parameterizations and are not generalizable to others. This 
paper provides a derivation for finding the ankle position and 
velocity for any foot shape that can be represented by a convex 
and continuously differentiable function. Concurrently, Smyrli 
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and Papadopoulos (2020) have independently developed a 
similar method for locating the ankle position and carrying out 
the subsequent derivations when the foot shape is described 
using a lookup table. They illustrate their method using a 
passive spring-loaded inverted pendulum model with one foot 
shape. In contrast, this paper uses a six-link, actuated biped 
model to demonstrate successful walking for three 
representative foot shapes.  

HZD control was chosen for this model due to its successful 
use in underactuated point- and curved-foot biped simulation 
(Chevallereau and Aoustin, 2001; Westervelt et al., 2007; 
Ames, Cousineau and Powell, 2012; Chevallereau et al., 2013; 
Martin and Schmiedeler, 2014; Martin, Post and Schmiedeler, 
2014). In this method, feedback linearization drives the 
actuated joint angles along the desired trajectories during the 
single support phase (Isidori, 1989; Westervelt et al., 2007). 
At the end of the step, the impact of the swing foot marks an 
instantaneous double support phase. Foot shape influences the 
system behavior during both phases of this hybrid model 
(Martin, Post and Schmiedeler, 2014).  

This work derives a hybrid model for simulating a planar biped 
with nonuniform curved feet. The model is validated for three 
representative foot shapes by determining the desired gait 
trajectories to generate stable walking and match experimental 
kinematic data from a human subject. Section 2 contains the 
derivation of the equations of motion and impact map and a 
description of the controller. Section 3 describes the 
experimental data collection and processing and the gait 
matching simulation protocol. The simulation results and 
discussion are found in Section 4. 

2. MODEL DEVELOPMENT 

The planar biped model is comprised of 𝑁𝑁 links connected by 
𝑁𝑁 − 1 revolute joints (Martin and Schmiedeler, 2014). For 
illustration purposes, this work will consider a six-link model 
that has two thighs, two shanks, and two feet, each of which 
has mass and rotational inertia (Fig. 1). A point mass at the hip 
represents the head, arms, and torso of a person, but the 
rotational inertia of these segments is neglected. The feet have 
nonuniform curvature, which will be described further in the 
following sections. They roll without slipping relative to the 
ground, and thus the system has one degree of underactuation. 
The stance thigh orientation, 𝑞𝑞!, is the unactuated generalized 
coordinate, and the relative joint angles, 𝑞𝑞"…𝑞𝑞#, are actuated 
with ideal actuators.  

The hybrid model of a step consists of two alternating phases 
(Westervelt et al., 2007). In the single support phase, the 
stance leg supports the biped as the swing leg moves forward. 
The double support phase occurs instantaneously when the 
swing leg impacts the ground and the stance and swing leg 
roles swap. Single support is modelled with continuous 
nonlinear differential equations, and double support is 
modelled using an algebraic impact map.  

This section contains the derivation of this hybrid model for a 
biped with nonuniformly curved feet. Section 2.1 contains the 
parameterization of the foot shape and calculation of the ankle 
position and velocity. Sections 2.2 and 2.3 derive the equations 

of motion for single and double support, respectively by 
showing the effect of nonuniform curved feet on the 
calculation. Finally, Section 2.4 contains a description of the 
HZD control strategy used. 

2.1 Ankle Position and Velocity 

During single support, the nonlinear equations of motion have 
the form  

𝑫𝑫(𝒒𝒒)𝒒̈𝒒 + 𝑪𝑪(𝒒𝒒, 𝒒̇𝒒)𝒒̇𝒒 + 𝑮𝑮(𝒒𝒒) = 𝑩𝑩𝑩𝑩 (1) 

where 𝒒𝒒	is the 𝑁𝑁 × 1 vector of generalized coordinates, 𝒖𝒖 is 
the 𝑁𝑁 − 1 × 1 vector of joint torques, 𝑫𝑫 is the 𝑁𝑁 ×𝑁𝑁 inertia 
matrix, 𝑪𝑪 is the 𝑁𝑁 ×𝑁𝑁 Coriolis matrix, 𝑮𝑮 is the 𝑁𝑁 × 1 
gravitational vector, and 𝑩𝑩 is the 𝑁𝑁 ×𝑁𝑁 − 1 matrix that 
converts the control inputs to joint torques. 𝑫𝑫,𝑪𝑪,	and 𝑮𝑮 are 
derived using the Euler-Lagrange equation and thus are 
affected by the curvature of the foot. Finding the matrices 
requires the global positions and velocities of the COM of the 
links. These positions are calculated by working up the 
kinematic chain from the ground contact point 𝐶𝐶 and 
differentiating to get the velocities. Thus, the foot must be 
parameterized such that the global stance ankle coordinates 
can be calculated for a given state of the biped. 

When parameterizing the foot roll-over shape of the biped, two 
critical assumptions were made: 

F1. The stance foot rolls along the ground without slipping, 
and 

F2. The function describing the foot must be convex and 
thrice continuously differentiable for the defined range. 

The following derivations are generalizable to any system that 
satisfies assumptions F1 and F2. Thus, the foot shape is 

Fig. 1. Depiction of a six-link planar biped configuration 
during single support. Joint angles 𝑞𝑞", 𝑞𝑞$, 𝑞𝑞%, 𝑞𝑞&, and 𝑞𝑞# are 
actuated and 𝑞𝑞! is unactuated. Joint positions and link COM 
positions are shown, measured in body-fixed reference frames 
from the proximal joint. Ankle angles 𝑞𝑞& and 𝑞𝑞# are measured 
from the shank to the foot-fixed horizontal axis 𝑋𝑋'. 
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and Papadopoulos (2020) have independently developed a 
similar method for locating the ankle position and carrying out 
the subsequent derivations when the foot shape is described 
using a lookup table. They illustrate their method using a 
passive spring-loaded inverted pendulum model with one foot 
shape. In contrast, this paper uses a six-link, actuated biped 
model to demonstrate successful walking for three 
representative foot shapes.  

HZD control was chosen for this model due to its successful 
use in underactuated point- and curved-foot biped simulation 
(Chevallereau and Aoustin, 2001; Westervelt et al., 2007; 
Ames, Cousineau and Powell, 2012; Chevallereau et al., 2013; 
Martin and Schmiedeler, 2014; Martin, Post and Schmiedeler, 
2014). In this method, feedback linearization drives the 
actuated joint angles along the desired trajectories during the 
single support phase (Isidori, 1989; Westervelt et al., 2007). 
At the end of the step, the impact of the swing foot marks an 
instantaneous double support phase. Foot shape influences the 
system behavior during both phases of this hybrid model 
(Martin, Post and Schmiedeler, 2014).  

This work derives a hybrid model for simulating a planar biped 
with nonuniform curved feet. The model is validated for three 
representative foot shapes by determining the desired gait 
trajectories to generate stable walking and match experimental 
kinematic data from a human subject. Section 2 contains the 
derivation of the equations of motion and impact map and a 
description of the controller. Section 3 describes the 
experimental data collection and processing and the gait 
matching simulation protocol. The simulation results and 
discussion are found in Section 4. 

2. MODEL DEVELOPMENT 

The planar biped model is comprised of 𝑁𝑁 links connected by 
𝑁𝑁 − 1 revolute joints (Martin and Schmiedeler, 2014). For 
illustration purposes, this work will consider a six-link model 
that has two thighs, two shanks, and two feet, each of which 
has mass and rotational inertia (Fig. 1). A point mass at the hip 
represents the head, arms, and torso of a person, but the 
rotational inertia of these segments is neglected. The feet have 
nonuniform curvature, which will be described further in the 
following sections. They roll without slipping relative to the 
ground, and thus the system has one degree of underactuation. 
The stance thigh orientation, 𝑞𝑞!, is the unactuated generalized 
coordinate, and the relative joint angles, 𝑞𝑞"…𝑞𝑞#, are actuated 
with ideal actuators.  

The hybrid model of a step consists of two alternating phases 
(Westervelt et al., 2007). In the single support phase, the 
stance leg supports the biped as the swing leg moves forward. 
The double support phase occurs instantaneously when the 
swing leg impacts the ground and the stance and swing leg 
roles swap. Single support is modelled with continuous 
nonlinear differential equations, and double support is 
modelled using an algebraic impact map.  

This section contains the derivation of this hybrid model for a 
biped with nonuniformly curved feet. Section 2.1 contains the 
parameterization of the foot shape and calculation of the ankle 
position and velocity. Sections 2.2 and 2.3 derive the equations 

of motion for single and double support, respectively by 
showing the effect of nonuniform curved feet on the 
calculation. Finally, Section 2.4 contains a description of the 
HZD control strategy used. 

2.1 Ankle Position and Velocity 

During single support, the nonlinear equations of motion have 
the form  

𝑫𝑫(𝒒𝒒)𝒒̈𝒒 + 𝑪𝑪(𝒒𝒒, 𝒒̇𝒒)𝒒̇𝒒 + 𝑮𝑮(𝒒𝒒) = 𝑩𝑩𝑩𝑩 (1) 

where 𝒒𝒒	is the 𝑁𝑁 × 1 vector of generalized coordinates, 𝒖𝒖 is 
the 𝑁𝑁 − 1 × 1 vector of joint torques, 𝑫𝑫 is the 𝑁𝑁 ×𝑁𝑁 inertia 
matrix, 𝑪𝑪 is the 𝑁𝑁 ×𝑁𝑁 Coriolis matrix, 𝑮𝑮 is the 𝑁𝑁 × 1 
gravitational vector, and 𝑩𝑩 is the 𝑁𝑁 ×𝑁𝑁 − 1 matrix that 
converts the control inputs to joint torques. 𝑫𝑫,𝑪𝑪,	and 𝑮𝑮 are 
derived using the Euler-Lagrange equation and thus are 
affected by the curvature of the foot. Finding the matrices 
requires the global positions and velocities of the COM of the 
links. These positions are calculated by working up the 
kinematic chain from the ground contact point 𝐶𝐶 and 
differentiating to get the velocities. Thus, the foot must be 
parameterized such that the global stance ankle coordinates 
can be calculated for a given state of the biped. 

When parameterizing the foot roll-over shape of the biped, two 
critical assumptions were made: 

F1. The stance foot rolls along the ground without slipping, 
and 

F2. The function describing the foot must be convex and 
thrice continuously differentiable for the defined range. 

The following derivations are generalizable to any system that 
satisfies assumptions F1 and F2. Thus, the foot shape is 

Fig. 1. Depiction of a six-link planar biped configuration 
during single support. Joint angles 𝑞𝑞", 𝑞𝑞$, 𝑞𝑞%, 𝑞𝑞&, and 𝑞𝑞# are 
actuated and 𝑞𝑞! is unactuated. Joint positions and link COM 
positions are shown, measured in body-fixed reference frames 
from the proximal joint. Ankle angles 𝑞𝑞& and 𝑞𝑞# are measured 
from the shank to the foot-fixed horizontal axis 𝑋𝑋'. 

 
 

     

 

defined by the curve  

𝑦𝑦( ' = 𝑓𝑓'9 𝑥𝑥( '; (2) 

where ( 𝑥𝑥( ' , 𝑦𝑦( ') are the cartesian coordinates of the foot in 
an ankle-fixed reference frame. The preceding superscript and 
following subscript notation denote the reference frame and 
point, respectively. 𝑓𝑓' is a function satisfying assumption F2 
(Fig. 2a). Each point along the curve has a defined slope in 
ankle-fixed coordinates  

) *! "

) +! "
= 𝑔𝑔'9 𝑥𝑥( '; (3) 

where 𝑔𝑔'9 𝑥𝑥( '; is the derivative of 𝑓𝑓'9 𝑥𝑥( ';, relabelled for 
convenience later. The absolute stance foot orientation, 𝛽𝛽, is 
measured from the horizontal global axis and for this particular 
model, is defined as 

𝛽𝛽(𝒒𝒒) = ,
" − (𝑞𝑞! + 𝑞𝑞$ + 𝑞𝑞&). (4) 

As the stance foot rotates through this absolute angle, the 
contact point 𝐶𝐶 is defined as the tangential intersection 
between the foot curve and the ground (Fig. 2b). Because the 
foot is tangent to the ground at this point,  

𝑔𝑔'( 𝑥𝑥( -) = tan𝛽𝛽(𝒒𝒒) . (5) 

Because 𝑓𝑓' is convex under assumption F2, 𝑔𝑔' is by definition 
monotonically increasing. Thus, under the one-to-one 
mapping 𝑔𝑔'(∙), 𝑥𝑥( - can be uniquely determined from the 
stance foot orientation using (3) and (5): 

𝑥𝑥( - = 𝑔𝑔'.![tan𝛽𝛽 (𝒒𝒒)]. (6) 

𝑦𝑦( - follows from (2).  

To locate the stance ankle in the global reference frame, 𝒓𝒓𝑨𝑨 𝑨𝑨𝑨𝑨 
is defined as the vector from point 𝑨𝑨 to 𝑪𝑪 in ankle-fixed 
coordinates with magnitude and direction 

L 𝒓𝒓𝑨𝑨 𝑨𝑨𝑨𝑨L = M 𝑥𝑥( -
" + 𝑦𝑦( -

" (7𝑎𝑎)

∠ 𝒓𝒓𝑨𝑨 𝑨𝑨𝑨𝑨 = tan.! #! $
%! $
. (7𝑏𝑏)

 

So, in global coordinates, the stance ankle position ( 𝑥𝑥1 (, 𝑦𝑦1 () 
is  

𝑥𝑥1 ( = 𝑥𝑥1 - − L 𝒓𝒓𝑨𝑨 𝑨𝑨𝑨𝑨L cos[∠ 𝒓𝒓𝑨𝑨 𝑨𝑨𝑨𝑨 − 𝛽𝛽(𝒒𝒒)]	 (8𝑎𝑎)
𝑦𝑦1 ( = −L 𝒓𝒓𝑨𝑨 𝑨𝑨𝑨𝑨L sinW∠ 𝒓𝒓𝑨𝑨 𝑨𝑨𝑨𝑨 − 𝛽𝛽(𝒒𝒒)X	 (8𝑏𝑏)

 

where 𝑥𝑥1 2 is the global x-coordinate of the contact point (Fig. 
2b). Under assumption F1, this point is defined as the arc 
length  

𝑥𝑥1 2 = Y M1 + 𝑔𝑔'"9 𝑥𝑥( ';	𝑑𝑑 𝑥𝑥( ' 	
+! $

+! $&

(9) 

where 𝑥𝑥( -3 = 𝑔𝑔'.!(0), as per (6) when 𝛽𝛽(𝒒𝒒) = 0. 

While 𝑔𝑔'(∙) is inherently a one-to-one mapping, it is not 
necessarily analytically invertible. Thus, an indirect method 
for determining 𝑥̇𝑥( -, 𝑦̇𝑦( -, and 𝑥̇𝑥1 - is required to calculate the 
link COM velocities. Solving (5) for 𝛽𝛽, differentiating with 
respect to time, and rearranging yields  

𝑥̇𝑥( - =
[!56"'7 +! $8]

6"(( +! $)
	
)=(𝒒𝒒)
)𝒒𝒒

	𝒒̇𝒒 (10) 

where the dot and prime denote the derivatives with respect to 
time and 𝑥𝑥( ', respectively. Differentiating (2) yields 

𝑦̇𝑦( - = 𝑔𝑔'( 𝑥𝑥( -) 𝑥̇𝑥( - (11) 

and differentiating (9) using the chain rule yields 

𝑥̇𝑥1 - =
) +) $

) +! $
	 𝑥̇𝑥( - = M1 + 𝑔𝑔'"9 𝑥𝑥( -;	 𝑥̇𝑥( - . (12) 

Thus, substituting 𝑥̇𝑥( - from (10) into (11) and (12) yields 𝑦̇𝑦( - 
and 𝑥̇𝑥1 - in terms of the biped states 𝒒𝒒 and 𝒒̇𝒒. These 
expressions are plugged into the derivatives of (8), which are 
used to determine the link COM velocities. 

2.2 Single Support 

Once the link COM positions and velocities have been 
determined, the Lagrangian is determined as 𝐿𝐿 = 	𝐾𝐾 − 𝑉𝑉, 
where 𝐾𝐾 and 𝑉𝑉 are the kinetic and potential energy of the 
system. The Euler-Lagrange method is applied, yielding 𝑫𝑫 
directly, as the terms of 𝐾𝐾 are linear with respect to 𝒒̇𝒒. 
Calculating 𝑮𝑮 and 𝑪𝑪, however, involves differentiating with 
respect to 𝒒𝒒. 𝑮𝑮 is calculated as 

𝑮𝑮 =	 )?
)𝒒𝒒

(13) 

and  𝑪𝑪 is formulated from (Spong and Vidyasagar, 1989): 

𝐶𝐶@A =` *
'
+
,-./
,01

2
,-.1
,0/

3
,-1/
,0.

40̇1

#

BC!
(14) 

where 𝑘𝑘, 𝑗𝑗 denote rows and columns of 𝑪𝑪. The elements of 𝑉𝑉 
and 𝑫𝑫 are expressed in terms of 𝑥𝑥( - and 𝑦𝑦( -. Because these 
terms do not necessarily have analytically separable 
expressions in terms of 𝒒𝒒, the chain rule must be employed to 
complete the partial derivatives of 𝑉𝑉 and 𝑫𝑫 with respect to 𝒒𝒒. 

Fig. 2. Model of the foot for a general nonuniform curve. (a) 
The curve of the foot is described by the function 𝑓𝑓'  in an 
ankle-fixed reference frame with the origin at the ankle joint 
𝐴𝐴. (b) The foot at an absolute orientation 𝛽𝛽 in contact with the 
ground at point 𝐶𝐶. The foot shape curve is tangent to the 
ground at 𝐶𝐶, relating the ankle-fixed function slope to the foot 
orientation. Vector 𝒓𝒓.𝑨𝑨 𝑨𝑨𝑨𝑨 locates the contact point 𝐶𝐶 relative to 
the ankle 𝐴𝐴. 
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This calculation requires analytical expressions for 6 %! $
6𝒒𝒒  and 

6 #! $
6𝒒𝒒 . Following the same procedure to get (10) and (11) but 

differentiating with respect to 𝒒𝒒 instead of time yields  

	
) +! $
)𝒒𝒒

=
[!56"'7 +! $8]

6"(( +! $)
	
)=(𝒒𝒒)
)𝒒𝒒

	 (15) 

) *! $
)𝒒𝒒

= 𝑔𝑔'9 𝑥𝑥( -;	
) +! $
)𝒒𝒒

. (16) 

𝑩𝑩 is unaffected by the foot shape. Thus, the equations of 
motion for a biped with any foot shape described by function 
𝑓𝑓' that satisfies assumptions F1 and F2 can be found using (15) 
and (16) along with standard Euler-Lagrange methods. 

2.3 Instantaneous Double Support 

At the end of the single support phase, the swing leg impacts 
the ground, marking the end of the previous step and resetting 
the leg roles for the beginning the next one. This impact is 
modelled as an instantaneous inelastic collision, with the 
impacting foot rolling without slipping and the back foot 
lifting without interaction from the ground (Martin, Post and 
Schmiedeler, 2014). Because the impact is instantaneous, the 
biped configuration is assumed constant during the event. An 
algebraic impact map determines the joint angles and 
velocities just after the impact based on those just prior. 
Because the biped model is one-step symmetric, the impact 
map also swaps the stance and swing leg roles so that the same 
equations of motion can simulate steps with both the left and 
right leg in stance. This mapping takes the form  

𝒒𝒒5 = 𝑺𝑺𝒒𝒒. (17𝑎𝑎)
𝒒̇𝒒5 = 𝑨𝑨(𝒒𝒒.)𝒒̇𝒒. (17𝑏𝑏) 

where 𝒒𝒒.and 𝒒𝒒5 are the biped configuration immediately pre- 
and post-impact, 𝑺𝑺 is an 𝑁𝑁 ×𝑁𝑁 matrix that swaps the stance 
and swing leg roles, and  𝑨𝑨 is an 𝑁𝑁 ×𝑁𝑁 matrix that maps the 
joint velocities. Similar to the single support matrices, 𝑨𝑨 is 
affected by foot curvature (Martin, Post and Schmiedeler, 
2014).  

Calculating 𝑨𝑨 requires the reaction forces at the feet, so the 
extended equations of motion with a Lagrange multiplier term 
are determined using the Euler-Lagrange approach. Using 
extended generalized coordinates, 𝒒𝒒𝒆𝒆 = [𝒒𝒒F , 𝑥𝑥1 G , 𝑦𝑦1 G]F 
where ( 𝑥𝑥1 G , 𝑦𝑦1 G) are the global coordinates of the hip, the 
extended equations of motion are integrated, resulting in a set 
of 𝑁𝑁 + 2	equations describing the conservation of momentum 
at impact. This integration assumes that the impact force is 
impulsive and thus the resulting ground reaction forces are 
significantly higher than those due to gravity or the actuators 
in this instant. To solve for the post-impact extended 
generalized coordinate velocities and the impulsive impact 
forces (𝑁𝑁 + 4 unknowns), two additional equations are 
required. These equations are represented by  

𝑬𝑬(𝒒𝒒𝒆𝒆.)𝒒̇𝒒𝒆𝒆5 = 0 (18) 

where 𝑬𝑬 is a 2 × 𝑁𝑁 + 2 matrix and the Jacobian of the 
constraint equations, which enforce the no-slip and lifting-

without-interaction conditions. The constraint matrix 𝑬𝑬 is 
determined by differentiating a vector loop with respect to 𝒒𝒒𝒆𝒆: 

𝒓𝒓𝑶𝑶 𝟎𝟎𝑯𝑯 + 𝒓𝒓𝑶𝑶 𝑯𝑯𝑯𝑯 + 𝒓𝒓𝑶𝑶 𝑭𝑭𝟎𝟎 = 𝟎𝟎 (19) 

where 𝒓𝒓𝑶𝑶 𝟎𝟎𝑯𝑯, 𝒓𝒓𝑶𝑶 𝑯𝑯𝑯𝑯, and 𝒓𝒓𝑶𝑶 𝑭𝑭𝑭𝑭 are the vectors from the global 
reference frame origin to the hip, from the hip to the contact 
point of the impacting foot, and from the contact point of the 
impacting foot to the global origin in terms of 𝒒𝒒𝒆𝒆. 
Differentiating (19) yields 

𝐸𝐸 =	 ) 𝒓𝒓𝑶𝑶 𝟎𝟎𝑯𝑯
)𝒒𝒒𝒆𝒆

+ ) 𝒓𝒓𝑶𝑶 𝑯𝑯𝑯𝑯
)𝒒𝒒𝒆𝒆

+ ) 𝒓𝒓𝑶𝑶 𝑭𝑭𝟎𝟎
)𝒒𝒒𝒆𝒆

(20𝑎𝑎) 

where 

and ) +) $,1>
)𝒒𝒒

 is the derivative of the impacting foot contact point 
with respect to 𝒒𝒒. Using the chain rule on (9) yields 

) +) $,1>
)𝒒𝒒

= ) +) $

) +! $
	
) +! $
)𝒒𝒒

	= M1 + 𝑔𝑔'"9 𝑥𝑥( -;
) +! $
)𝒒𝒒

. (20𝑒𝑒) 

Finally, solving the extended conservation of momentum 
equations and constraint equations for 𝒒̇𝒒5 in terms of 𝒒̇𝒒. yields 
𝑨𝑨. This completes the parameterization of the hybrid model for 
a planar biped with nonuniform curved feet.  

2.4 Control 

This work uses HZD-based control, as shown in Martin, Post 
and Schmiedeler (2014). The non-uniform foot shape does not 
directly affect the controller, so only a brief derivation is 
included here for completeness. The equations of motion in (1) 
can be expressed as a first order system of the form 

𝒙̇𝒙 = j
𝒒̇𝒒

𝑫𝑫.!(−𝑪𝑪𝒒̇𝒒 − 𝑮𝑮)k + l 𝟎𝟎
𝑫𝑫.!𝑩𝑩m𝑩𝑩

(21𝑎𝑎) 

𝑥̇𝑥 = 𝒇𝒇(𝒙𝒙) + 𝒈𝒈(𝒙𝒙)𝑩𝑩																													 (21𝑏𝑏) 

where 𝒙𝒙 = [𝒒𝒒F , 𝒒̇𝒒F]F is the state vector. The output 𝒚𝒚 = 𝒉𝒉(𝒒𝒒) 
is an 𝑁𝑁 − 1 × 1 vector of the error between the actuated joint 
angles and the desired trajectories. The desired joint angle 
trajectories are represented as fifth order Bezier polynomials. 
Differentiating 𝒚𝒚 twice yields 

𝒚̈𝒚 = 𝐿𝐿𝒇𝒇"𝒉𝒉 +	𝐿𝐿𝒈𝒈𝐿𝐿𝒇𝒇𝒉𝒉	𝑩𝑩 (22) 
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𝑩𝑩 is unaffected by the foot shape. Thus, the equations of 
motion for a biped with any foot shape described by function 
𝑓𝑓' that satisfies assumptions F1 and F2 can be found using (15) 
and (16) along with standard Euler-Lagrange methods. 

2.3 Instantaneous Double Support 

At the end of the single support phase, the swing leg impacts 
the ground, marking the end of the previous step and resetting 
the leg roles for the beginning the next one. This impact is 
modelled as an instantaneous inelastic collision, with the 
impacting foot rolling without slipping and the back foot 
lifting without interaction from the ground (Martin, Post and 
Schmiedeler, 2014). Because the impact is instantaneous, the 
biped configuration is assumed constant during the event. An 
algebraic impact map determines the joint angles and 
velocities just after the impact based on those just prior. 
Because the biped model is one-step symmetric, the impact 
map also swaps the stance and swing leg roles so that the same 
equations of motion can simulate steps with both the left and 
right leg in stance. This mapping takes the form  

𝒒𝒒5 = 𝑺𝑺𝒒𝒒. (17𝑎𝑎)
𝒒̇𝒒5 = 𝑨𝑨(𝒒𝒒.)𝒒̇𝒒. (17𝑏𝑏) 

where 𝒒𝒒.and 𝒒𝒒5 are the biped configuration immediately pre- 
and post-impact, 𝑺𝑺 is an 𝑁𝑁 ×𝑁𝑁 matrix that swaps the stance 
and swing leg roles, and  𝑨𝑨 is an 𝑁𝑁 ×𝑁𝑁 matrix that maps the 
joint velocities. Similar to the single support matrices, 𝑨𝑨 is 
affected by foot curvature (Martin, Post and Schmiedeler, 
2014).  

Calculating 𝑨𝑨 requires the reaction forces at the feet, so the 
extended equations of motion with a Lagrange multiplier term 
are determined using the Euler-Lagrange approach. Using 
extended generalized coordinates, 𝒒𝒒𝒆𝒆 = [𝒒𝒒F , 𝑥𝑥1 G , 𝑦𝑦1 G]F 
where ( 𝑥𝑥1 G , 𝑦𝑦1 G) are the global coordinates of the hip, the 
extended equations of motion are integrated, resulting in a set 
of 𝑁𝑁 + 2	equations describing the conservation of momentum 
at impact. This integration assumes that the impact force is 
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Finally, solving the extended conservation of momentum 
equations and constraint equations for 𝒒̇𝒒5 in terms of 𝒒̇𝒒. yields 
𝑨𝑨. This completes the parameterization of the hybrid model for 
a planar biped with nonuniform curved feet.  

2.4 Control 

This work uses HZD-based control, as shown in Martin, Post 
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where 𝒗𝒗 = −𝑘𝑘R𝒚𝒚 − 𝑘𝑘S𝒚̇𝒚 with feedback gains 𝑘𝑘R and 𝑘𝑘S 
chosen to drive the output to zero even in the presence of 
disturbances.  

3. MODEL VALIDATION 

To validate the model derived above, simulated gait 
trajectories modelled using three different foot shapes were 
compared to the experimental kinematics for one human 
subject. Section 3.1 describes the experimental methods used 
to collect and process the walking data. Section 3.2 describes 
the simulation procedure for generating representative viable 
gaits for the three foot shapes explored.  

3.1 Experimental Methods  

After obtaining informed consent, one subject (height 1.74 m, 
weight 61.2 kg) walked on an instrumented, split-belt treadmill 
(Bertec, Columbus, OH) at a constant speed of 1.07 m/s for 
one minute. The embedded force plates measured ground 
reaction forces and center of pressure (COP). Joint kinematics 
of the legs were recorded with a Vicon Vero camera system.  

The ground reaction force data were used to detect heel strike 
and toe off events. Because the experimental gait has a finite 
time double support period in contrast with the instantaneous 
phase of the model, the transition between steps was chosen as 
halfway between the double support heel strike and toe off 
events. Step time was normalized between 0 (beginning of the 
step) and 1 (end of the step). The sagittal plane COP and hip, 
knee, and ankle joint angles were delimited by step, and the 

mean and standard deviation were calculated. Step length and 
step time were also calculated.  

3.2 Simulation Methods 

The key purpose of the simulation testing was to ensure that 
the biped was able to walk with a range of nonuniform foot 
shapes. A secondary goal was to begin determining which foot 
shape allowed the model to best mimic human walking.  Thus, 
the model was scaled according to the subject’s height and 
mass using standard anthropometric proportions from Winter 
(2009). The specific model parameters used are shown in 
Table 1. To ascertain the subject’s foot shape, the COP data 
was transformed into a foot-fixed reference frame with the 
ankle at the origin (Hansen, Childress and Knox, 2004). Using 
least-squares curve fitting, three foot shape functions were fit 
to the data: a circle 

𝑓𝑓',-( 𝑥𝑥( ') = 𝑦𝑦( '3,- −M𝑅𝑅" − 9 𝑥𝑥( ' − 𝑥𝑥( '3,-;
" (23𝑎𝑎) 

where 𝑅𝑅 is the radius and ( 𝑥𝑥( '3,- , 𝑦𝑦( '3,-) is the offset of the 
circle center relative to the ankle; an ellipse 

𝑓𝑓',U( 𝑥𝑥( ') = 𝑦𝑦( '3,U −M𝑏𝑏" − V'

W'
9 𝑥𝑥( ' − 𝑥𝑥( '3,U;

"
(23𝑏𝑏) 

where 𝑎𝑎, 𝑏𝑏 are the major and minor axes and ( 𝑥𝑥( '3,U , 𝑦𝑦( '3,U) 
is the offset of the ellipse center relative to the ankle; and a 
fourth-order polynomial 

𝑓𝑓',R9 𝑥𝑥( '; = 𝑎𝑎% 𝑥𝑥( '
% + 𝑎𝑎$ 𝑥𝑥( '

$ + 𝑎𝑎" 𝑥𝑥( '
" + 𝑎𝑎! 𝑥𝑥( ' + 𝑎𝑎3 (23𝑐𝑐) 

where {𝑎𝑎3, 𝑎𝑎!, 𝑎𝑎", 𝑎𝑎$, 𝑎𝑎%} is a set of coefficients that satisfy the 
convexity requirement of F2. Other convex functions are 
possible, but these functions described the data well. The 
functions are constrained by the maximum and minimum 
absolute stance foot angle observed experimentally. The three 
subject-specific foot shapes are shown in Fig. 3. The 
polynomial function fit the COP data best, followed by the 
ellipse and then the circle. 

To simulate the scaled biped model, the actuated joint angle 
trajectories were parameterized using fifth-order Bezier 
polynomials. To find a set of Bezier coefficients describing a 
representative gait for a particular foot shape, nonlinear 
constrained optimization was used. The objective function 
minimized the difference between the simulated and 
experimental spatiotemporal parameters step time, step length, 
and speed. Constraints were used to ensure the gait was valid. 
Key constraints included periodic walking and no slipping or 
lifting at the foot-ground contact point. In addition, the Bezier 
coefficients were limited to a small region around the initial 

Table 1. Model parameters. The legs are symmetric, so the 
values are the same for both. 

Parameter Value Description 
Thighs   
 𝐿𝐿F 0.394 Thigh length (m) 
 𝐿𝐿2X,F 0.171 Thigh COM position (m) 
 𝑚𝑚F 6.07 Thigh mass (kg) 
 𝐽𝐽F 0.099 Thigh Moment of Inertia (kg.m2) 
Shanks   
 𝐿𝐿Y 0.396 Shank length (m) 
 𝐿𝐿2X,Y 0.172 Shank COM position (m) 
 𝑚𝑚Y 2.82 Shank mass (kg) 
 𝐽𝐽Y 0.040 Shank Moment of Inertia (kg.m2) 
Feet   
 𝑥𝑥2X,' 0.046 Foot horizontal COM position (m) 
 𝑦𝑦2X,' 0.122 Foot vertical COM position (m) 
 𝑚𝑚' 0.880 Foot mass (kg) 
 𝐽𝐽F 0.012 Foot Moment of Inertia (kg.m2) 
Body   
 𝑚𝑚G(F 41.2 Head, arms, and torso mass (kg) 
Control   
 𝑘𝑘R 1000 Proportional gain 
 𝑘𝑘S 100 Derivative gain 

Fig. 3. The circle, ellipse, and polynomial foot shape models 
for one subject. Each function is plotted for the stance foot 
orientation range -18.4 ≤ 𝛽𝛽 ≤ 23.7 degrees. 
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conditions because the optimization tended to jump to regions 
where the biped could not take a step when the Bezier 
coefficients were not constrained. The initial optimization 
guess used a hand-tuned gait that could take a step using all 
three foot shapes, although not all constraints were met. The 
optimization was executed ten consecutive times for each foot 
shape, starting from the hand-tuned gait for the first 
optimization and using the result of the previous optimization 
as the initial condition for the subsequent optimizations. The 
gait corresponding to the lowest local minimum was selected. 

To compare the simulated generalized coordinate trajectories 
to the corresponding experimental kinematics, the Pearson’s 
correlation coefficient and root mean square error (RMSE) 
were determined for each joint. These values indicate how well 
the simulated and experimental results agree. 

4. RESULTS AND DISCUSSION 

4.1 Identifying Valid Gaits 

Valid gaits that minimized the objective function were 
identified for each foot shape model. To confirm stability, the 
same perturbation for each model was applied to its initial 
post-impact state, and the model was simulated for 100 steps. 
The phase portrait of the resulting stance hip generalized 
coordinate for each model is shown in Fig. 4, confirming the 
presence of a stable limit cycle for all foot shape models.  

4.2 Spatiotemporal Behavior 

The spatiotemporal parameters for each simulated model and 
the experimental results are shown in Table 2. The model with 
circular feet best matched the experimental walking speed, but 
significantly underestimated the step time and step length by 
approximately 25%. The ellipse foot shape model severely 
underestimated the step time and length by approximately 40%  

and 30% respectively and overestimated the speed by 17%. 
The polynomial foot shape model results were the best 
experimental match for all three parameters overall, 
underestimating the step time, step length, and speed by 4%, 
15%, and 11%, respectively. 

4.3 Kinematic Behavior 

The experimental and simulated hip, knee, and ankle angle 
trajectories for one stride are shown in Fig. 5. The stance and 
swing hip angles exhibited correlation coefficients greater than 

0.99 and RMSE lower than 6.1 degrees for all three foot shape 
models, indicating good agreement between simulated and 
experimental data for this joint (Tables 3 and 4). Both the 
simulated stance and swing knee angle trajectories also 
matched the experimental results well, with correlation 
coefficients above 0.90 and 0.99 and RMSE below 8.7 and 5.5 
degrees respectively for all foot models.  

The simulated stance ankle trajectories demonstrated moderate 
experimental agreement, with correlation coefficients of 0.60, 
0.66, and 0.71 and RMSE of 6.8, 6.6, and 4.7 degrees for the 
circle, ellipse, and polynomial, respectively. Notably, the 
correlation coefficient increases and the RMSE decreases at 
the stance ankle joint as the foot shape function fit improves, 
with the polynomial foot simulation matching the 
experimental trajectories better than the ellipse and the circle 
foot model simulations. This trend indicates that improving the  

Table 2. Spatiotemporal parameters for the three foot shape 
models and experimental data. 

 

 

Model Step Time 
(s) 

Step Length 
(m) 

Speed 
(m/s) 

 

Circle 0.381 0.387 1.018  

Ellipse  0.296 0.368 1.246  

Polynomial  0.470 0.446 0.948  

Experimental 0.489 0.523 1.069  

Fig. 5. Joint angle trajectories for the hip (top), knee (middle), 
and ankle (bottom) over one stride. When the step progression 
is between 0 and 1, the limb is in stance and when the step 
progression is between 1 and 2, the limb is in swing. The 
stance and swing knee and ankle joint angles correspond 
directly to the generalized coordinates. The hip splay, 
however, was transformed to absolute thigh orientation during 
swing to maintain continuity in this plot. 

Fig. 4. Stance hip generalized coordinate phase portraits for 
each foot shape model. The trajectories converge to a stable 
limit cycle in response to a small perturbation. 
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were determined for each joint. These values indicate how well 
the simulated and experimental results agree. 

4. RESULTS AND DISCUSSION 

4.1 Identifying Valid Gaits 

Valid gaits that minimized the objective function were 
identified for each foot shape model. To confirm stability, the 
same perturbation for each model was applied to its initial 
post-impact state, and the model was simulated for 100 steps. 
The phase portrait of the resulting stance hip generalized 
coordinate for each model is shown in Fig. 4, confirming the 
presence of a stable limit cycle for all foot shape models.  

4.2 Spatiotemporal Behavior 

The spatiotemporal parameters for each simulated model and 
the experimental results are shown in Table 2. The model with 
circular feet best matched the experimental walking speed, but 
significantly underestimated the step time and step length by 
approximately 25%. The ellipse foot shape model severely 
underestimated the step time and length by approximately 40%  

and 30% respectively and overestimated the speed by 17%. 
The polynomial foot shape model results were the best 
experimental match for all three parameters overall, 
underestimating the step time, step length, and speed by 4%, 
15%, and 11%, respectively. 

4.3 Kinematic Behavior 

The experimental and simulated hip, knee, and ankle angle 
trajectories for one stride are shown in Fig. 5. The stance and 
swing hip angles exhibited correlation coefficients greater than 

0.99 and RMSE lower than 6.1 degrees for all three foot shape 
models, indicating good agreement between simulated and 
experimental data for this joint (Tables 3 and 4). Both the 
simulated stance and swing knee angle trajectories also 
matched the experimental results well, with correlation 
coefficients above 0.90 and 0.99 and RMSE below 8.7 and 5.5 
degrees respectively for all foot models.  

The simulated stance ankle trajectories demonstrated moderate 
experimental agreement, with correlation coefficients of 0.60, 
0.66, and 0.71 and RMSE of 6.8, 6.6, and 4.7 degrees for the 
circle, ellipse, and polynomial, respectively. Notably, the 
correlation coefficient increases and the RMSE decreases at 
the stance ankle joint as the foot shape function fit improves, 
with the polynomial foot simulation matching the 
experimental trajectories better than the ellipse and the circle 
foot model simulations. This trend indicates that improving the  
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and ankle (bottom) over one stride. When the step progression 
is between 0 and 1, the limb is in stance and when the step 
progression is between 1 and 2, the limb is in swing. The 
stance and swing knee and ankle joint angles correspond 
directly to the generalized coordinates. The hip splay, 
however, was transformed to absolute thigh orientation during 
swing to maintain continuity in this plot. 

Fig. 4. Stance hip generalized coordinate phase portraits for 
each foot shape model. The trajectories converge to a stable 
limit cycle in response to a small perturbation. 

 
 

     

 

biped model by incorporating nonuniform foot shapes to better 
capture the effective human foot shape improves the 
simulation-experimental kinematic agreement of the stance 
ankle during human walking.  

In contrast, the swing foot trajectory was negatively correlated 
for all foot shape models, with correlation coefficients less 
than -0.41. The RMSE for this joint angle trajectory was 
greater than 18.0 degrees for all models, more than double 
those of the other joints. Despite the poor simulation-
experiment agreement for this joint, however, the RMSE 
decreased across foot shape models as the foot shape function 
fit improved.  

These results demonstrate that the method described in Section 
2 can be used to generate valid walking gaits for a six-link 
biped with curved feet described by both uniform and 
nonuniform functions. Further, the preliminary simulations 
suggest that using a foot shape that matches the effective 
human foot shape better than a circular arc improves both 
spatiotemporal and kinematic agreement. While some 
simulation-experiment discrepancies remain, both in the 
spatiotemporal behavior and swing ankle kinematics, 
additional optimization with other objective functions could 
likely rectify these issues. For example, Martin and 
Schmiedeler (2014) used an objective function that minimized 
the difference not only between the simulated and 
experimental spatiotemporal behavior but also the kinematic 
trajectories as well. Additionally, systematically varying the 
optimization initial conditions and tolerances could help 
identify additional local minima, as the optimization objective 
function appears to be highly nonlinear. Including a finite-time 
double support phase  may also improve the simulation-
experimental agreement during the step-to-step transition in 
the gait cycle (Williams and Martin, 2019; Williams and 
Martin, 2021). However, the methods used in this work 
successfully establish a proof of concept for simulated gait 
matching of human walking.  
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