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Abstract: Foot shape can strongly influence performance and efficiency in bipedal gait, playing a critical
role in both human and robot walking. While flat feet and circular feet are common in human models, a
more general shape may better capture the effective foot shape of humans, leading to an improved
simulation-experimental match. The key challenge in modeling a biped with a nonuniform foot shape is
locating the ankle as the foot rolls forward so that the equations of motion can be derived. This work
develops a method to find the equations of motion for a planar biped whose foot shape can be modeled as
any convex, continuously differentiable function. The method is demonstrated using a six-link, planar
biped model with nonuniform, curved feet. Using nonlinear constrained optimization, valid gaits were
identified for foot shapes parameterized by circular, elliptical, and polynomial functions. The resulting
gaits were compared to experimental spatiotemporal and kinematic walking data from one human subject.
The polynomial model both best approximated the subject’s foot shape and best matched the experimental
spatiotemporal behavior and stance ankle angle trajectory, confirming the viability of the method for both
simulating gait and matching human walking.
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1. INTRODUCTION

Foot shape plays a significant role in the mechanics of bipedal
walking (Hansen, Childress and Knox, 2004; Adamczyk,
Collins and Kuo, 2006; Adamczyk and Kuo, 2013; Croft and
Bertram, 2020; Schmitthenner et al., 2020). The human foot is
composed of several distinct segments and joints, which
collectively deform as a person progresses through the gait
cycle (Carson et al., 2001). Studies investigating foot shape
have shown that foot shape and length can reduce the work to
redirect the biped center of mass when transitioning between
steps (Adamczyk, Collins and Kuo, 2006; Adamczyk and Kuo,
2013), which is a significant contributor to the energetic cost
of transport (Donelan, Kram and Kuo, 2002). Additionally,
foot shape is a critical parameter in designing stable and
efficient biped robots (Collins, Wisse and Ruina, 2001; Collins
and Ruina, 2005; Martin, Post and Schmiedeler, 2014). Thus,
investigating complex foot shape in gait models has
implications in both the biomechanics of human walking and
the performance of biped robots.

Gait models often reduce the complex anatomical degrees of
freedom by representing the foot as a flat, rigid plate
(Goswami, 1999; Tlalolini, Chevallereau and Aoustin, 2009).
This approach is simpler than using multisegmented
(Mummolo, Akbas and Carbone, 2021) or compliant (Yazdi-
Mirmokhalesouni ef al., 2018) models, but requires additional
modelling phases such as heel strike at the beginning of the
step, a mid-stance transfer of support from heel to toe, and toe
off at the end of the step. An alternative method is to model
the foot as a circular arc that rolls without slipping in the

sagittal plane (Kuo, 2001, 2007; Martin and Schmiedeler,
2014; Martin, Post and Schmiedeler, 2014; Trkov, Chen and
Yi, 2019). This approach reduces the number of modelling
phases and in some cases improves efficiency over flat foot
models (Asano and Luo, 2006; Kwan and Hubbard, 2007).
Control is relatively straightforward since the hybrid zero
dynamics (HZD) based control strategy (Westervelt et al.,
2007) has been extended to planar biped models with circular
feet (Martin, Post and Schmiedeler, 2014). This method has
successfully been used with a six-link planar biped to match
and predict human walking kinematics (Martin and
Schmiedeler, 2014). But the model foot and ankle did not
sufficiently capture the physiological complexity of the human
foot and ankle, resulting in relatively low correlations between
simulated and experimental ankle kinematics.

A model with nonuniform foot curvature likely could better
capture the foot and ankle behavior when mimicking human
walking, but it introduces new modelling challenges when
deriving the equations of motion and impact map. Analytical
expressions for ankle position and velocity are required for
these derivations. When using a circular stance foot, the
constant-height center of curvature provides a suitable
reference point to locate the ankle, but for nonuniform foot
shape, this point varies, complicating the necessary
calculations. Some works have derived models for elliptical
(Smyrli et al., 2019) or piecewise (Yamane and Trutoiu, 2009)
foot shapes, but these derivations were specific to the chosen
foot parameterizations and are not generalizable to others. This
paper provides a derivation for finding the ankle position and
velocity for any foot shape that can be represented by a convex
and continuously differentiable function. Concurrently, Smyrli
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and Papadopoulos (2020) have independently developed a
similar method for locating the ankle position and carrying out
the subsequent derivations when the foot shape is described
using a lookup table. They illustrate their method using a
passive spring-loaded inverted pendulum model with one foot
shape. In contrast, this paper uses a six-link, actuated biped
model to demonstrate successful walking for three
representative foot shapes.

HZD control was chosen for this model due to its successful
use in underactuated point- and curved-foot biped simulation
(Chevallereau and Aoustin, 2001; Westervelt et al., 2007,
Ames, Cousineau and Powell, 2012; Chevallereau et al., 2013;
Martin and Schmiedeler, 2014; Martin, Post and Schmiedeler,
2014). In this method, feedback linearization drives the
actuated joint angles along the desired trajectories during the
single support phase (Isidori, 1989; Westervelt et al., 2007).
At the end of the step, the impact of the swing foot marks an
instantaneous double support phase. Foot shape influences the
system behavior during both phases of this hybrid model
(Martin, Post and Schmiedeler, 2014).

This work derives a hybrid model for simulating a planar biped
with nonuniform curved feet. The model is validated for three
representative foot shapes by determining the desired gait
trajectories to generate stable walking and match experimental
kinematic data from a human subject. Section 2 contains the
derivation of the equations of motion and impact map and a
description of the controller. Section 3 describes the
experimental data collection and processing and the gait
matching simulation protocol. The simulation results and
discussion are found in Section 4.

2. MODEL DEVELOPMENT

The planar biped model is comprised of N links connected by
N — 1 revolute joints (Martin and Schmiedeler, 2014). For
illustration purposes, this work will consider a six-link model
that has two thighs, two shanks, and two feet, each of which
has mass and rotational inertia (Fig. 1). A point mass at the hip
represents the head, arms, and torso of a person, but the
rotational inertia of these segments is neglected. The feet have
nonuniform curvature, which will be described further in the
following sections. They roll without slipping relative to the
ground, and thus the system has one degree of underactuation.
The stance thigh orientation, q,, is the unactuated generalized
coordinate, and the relative joint angles, g, ... ¢, are actuated
with ideal actuators.

The hybrid model of a step consists of two alternating phases
(Westervelt et al., 2007). In the single support phase, the
stance leg supports the biped as the swing leg moves forward.
The double support phase occurs instantanecously when the
swing leg impacts the ground and the stance and swing leg
roles swap. Single support is modelled with continuous
nonlinear differential equations, and double support is
modelled using an algebraic impact map.

This section contains the derivation of this hybrid model for a
biped with nonuniformly curved feet. Section 2.1 contains the
parameterization of the foot shape and calculation of the ankle
position and velocity. Sections 2.2 and 2.3 derive the equations

Fig. 1. Depiction of a six-link planar biped configuration
during single support. Joint angles q,, g3, ¢4, ¢s, and g, are
actuated and g, is unactuated. Joint positions and link COM
positions are shown, measured in body-fixed reference frames
from the proximal joint. Ankle angles g< and q, are measured
from the shank to the foot-fixed horizontal axis X.

of motion for single and double support, respectively by
showing the effect of nonuniform curved feet on the
calculation. Finally, Section 2.4 contains a description of the
HZD control strategy used.

2.1 Ankle Position and Velocity

During single support, the nonlinear equations of motion have
the form

D(q)q +C(q,q)q + G(q) = Bu €Y)

where q is the N X 1 vector of generalized coordinates, u is
the N — 1 x 1 vector of joint torques, D is the N X N inertia
matrix, € is the N X N Coriolis matrix, G is the N x 1
gravitational vector, and B is the N X N —1 matrix that
converts the control inputs to joint torques. D, C,and G are
derived using the Euler-Lagrange equation and thus are
affected by the curvature of the foot. Finding the matrices
requires the global positions and velocities of the COM of the
links. These positions are calculated by working up the
kinematic chain from the ground contact point C and
differentiating to get the velocities. Thus, the foot must be
parameterized such that the global stance ankle coordinates
can be calculated for a given state of the biped.

When parameterizing the foot roll-over shape of the biped, two
critical assumptions were made:

F1. The stance foot rolls along the ground without slipping,
and

F2. The function describing the foot must be convex and
thrice continuously differentiable for the defined range.

The following derivations are generalizable to any system that
satisfies assumptions F1 and F2. Thus, the foot shape is
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defined by the curve

AYF = fF(AxF) (2)

where (“4xg, 4yz) are the cartesian coordinates of the foot in
an ankle-fixed reference frame. The preceding superscript and
following subscript notation denote the reference frame and
point, respectively. fr is a function satisfying assumption F2
(Fig. 2a). Each point along the curve has a defined slope in
ankle-fixed coordinates

alyp _ A

Pz gF( xF) (3)
where gF(AxF) is the derivative of fF( AxF), relabelled for
convenience later. The absolute stance foot orientation, 3, is
measured from the horizontal global axis and for this particular
model, is defined as

B(q) =g—(CI1 +43 + qs). (4)

As the stance foot rotates through this absolute angle, the
contact point C is defined as the tangential intersection
between the foot curve and the ground (Fig. 2b). Because the
foot is tangent to the ground at this point,

gr(“xc) = tan B(q). )

Because f; is convex under assumption F2, g is by definition
monotonically increasing. Thus, under the one-to-one
mapping gr("), “x; can be uniquely determined from the
stance foot orientation using (3) and (5):

“xc = gp*[tan B (g ©6)
Ayc follows from (2).

To locate the stance ankle in the global reference frame, 1 ,¢
is defined as the vector from point 4 to C in ankle-fixed
coordinates with magnitude and direction

2 2
I7acll = J 4" + 4 (7)
A
2% = tan—lAixz. (7b)

So, in global coordinates, the stance ankle position ( °x4, °y,)

1S

OXAZO

o

(8a)
(8b)

Xc — ” ArAC” cos[£ 47 4c — B(Q)]
Ya = _” ArAC” sin[L Tac— ﬁ(Q)]

where %x, is the global x-coordinate of the contact point (Fig.
2b). Under assumption F1, this point is defined as the arc

length
AxC
Ox, = f /1 + 9r2(4xp) d x5 9
Axco

where “x., = gr~1(0), as per (6) when 8(q) = 0.

(@) ()
Ay .q},
A (%x4,%y,)
A Ax
o O
F N\ X
Ay = fr(%xp) % % B I v:??\%

ox/" /€ (°x,0)

Fig. 2. Model of the foot for a general nonuniform curve. (a)
The curve of the foot is described by the function fi in an
ankle-fixed reference frame with the origin at the ankle joint
A. (b) The foot at an absolute orientation f§ in contact with the
ground at point C. The foot shape curve is tangent to the
ground at C, relating the ankle-fixed function slope to the foot
orientation. Vector 41 4. locates the contact point C relative to
the ankle A.

While gg(-) is inherently a one-to-one mapping, it is not
necessarily analytically invertible. Thus, an indirect method
for determining “x., “y., and °x. is required to calculate the
link COM velocities. Solving (5) for £, differentiating with
respect to time, and rearranging yields

a, _ [1+gr2(“xc)lap(g .
e it an (10

where the dot and prime denote the derivatives with respect to
time and “x, respectively. Differentiating (2) yields

€5y

e = gr("xc) “%e
and differentiating (9) using the chain rule yields

0. d

o
xC = dAxC AXC = 1 + gFZ(AxC) AxC. (12)
xc \
Thus, substituting “%, from (10) into (11) and (12) yields “y,
and %% in terms of the biped states q and . These

expressions are plugged into the derivatives of (8), which are
used to determine the link COM velocities.

2.2 Single Support

Once the link COM positions and velocities have been
determined, the Lagrangian is determined as L = K —V,
where K and V are the kinetic and potential energy of the
system. The Euler-Lagrange method is applied, yielding D
directly, as the terms of K are linear with respect to q.
Calculating G and C, however, involves differentiating with
respect to q. G is calculated as

=2 (13)

and C is formulated from (Spong and Vidyasagar, 1989):

6
C., = E 1
'jk

=12

where k, j denote rows and columns of C. The elements of V
and D are expressed in terms of “x. and “y.. Because these
terms do not necessarily have analytically separable
expressions in terms of g, the chain rule must be employed to
complete the partial derivatives of V and D with respect to q.

9Dkj 3Dy 9Pij|.
9q; " 9q; dqi |t

(14)




458 Claire H. Rodman et al. / I[FAC PapersOnLine 54-20 (2021) 455—462

d AXC

a5 and

This calculation requires analytical expressions for
A
d

yc
dq

differentiating with respect to q instead of time yields

. Following the same procedure to get (10) and (11) but

atxe _ [1+ar?(4xc)l ap(q)

dg — gp'("xe) da (15)
da Ay d4x
e = go((xe) L2 (16)

B is unaffected by the foot shape. Thus, the equations of
motion for a biped with any foot shape described by function
fr that satisfies assumptions F1 and F2 can be found using (15)
and (16) along with standard Euler-Lagrange methods.

2.3 Instantaneous Double Support

At the end of the single support phase, the swing leg impacts
the ground, marking the end of the previous step and resetting
the leg roles for the beginning the next one. This impact is
modelled as an instantaneous inelastic collision, with the
impacting foot rolling without slipping and the back foot
lifting without interaction from the ground (Martin, Post and
Schmiedeler, 2014). Because the impact is instantaneous, the
biped configuration is assumed constant during the event. An
algebraic impact map determines the joint angles and
velocities just after the impact based on those just prior.
Because the biped model is one-step symmetric, the impact
map also swaps the stance and swing leg roles so that the same
equations of motion can simulate steps with both the left and
right leg in stance. This mapping takes the form

(17a)
(17b)

qt=5q”
qt =A@ )q

where q"and g™ are the biped configuration immediately pre-
and post-impact, § is an N X N matrix that swaps the stance
and swing leg roles, and A is an N X N matrix that maps the
joint velocities. Similar to the single support matrices, A is
affected by foot curvature (Martin, Post and Schmiedeler,
2014).

Calculating A requires the reaction forces at the feet, so the
extended equations of motion with a Lagrange multiplier term
are determined using the Euler-Lagrange approach. Using
extended generalized coordinates, q, = [q", °xy, °yy]T
where (°xy, °yy) are the global coordinates of the hip, the
extended equations of motion are integrated, resulting in a set
of N + 2 equations describing the conservation of momentum
at impact. This integration assumes that the impact force is
impulsive and thus the resulting ground reaction forces are
significantly higher than those due to gravity or the actuators
in this instant. To solve for the post-impact extended
generalized coordinate velocities and the impulsive impact
forces (N + 4 unknowns), two additional equations are
required. These equations are represented by

E(qz)q: =0 (18)

where E is a 2 X N + 2 matrix and the Jacobian of the
constraint equations, which enforce the no-slip and lifting-

without-interaction conditions. The constraint matrix E is
determined by differentiating a vector loop with respect to q,:

(19)

where %roy, °ryp, and °rpg are the vectors from the global
reference frame origin to the hip, from the hip to the contact
point of the impacting foot, and from the contact point of the
impacting foot to the global origin in terms of gq,.
Differentiating (19) yields

OTOH + OTHF + OTFO =0

(1) [ [/
d“TroH d ryr d“TFg
E= + +

20a
dqe dqe dqe ( )
where
[ _
d%on =[0xn  Iox2] (20b)
dq
dOTHp = 6OTHF 60er6AxC 30THF(9A:YC 0 (ZOC)
dq aq a4xc 09 a4y, 0q 2x2

(20d)

dorpo = _doxC,im
dq dq 02)(2

01><N

d%cim . . . . .
and % is the derivative of the impacting foot contact point

with respect to q. Using the chain rule on (9) yields

= i+ g8 (re) e

Finally, solving the extended conservation of momentum
equations and constraint equations for g* in terms of ¢~ yields
A. This completes the parameterization of the hybrid model for
a planar biped with nonuniform curved feet.

d OXC,im — d Oxc d AXC
dq d4xc dq

(20e)

2.4 Control

This work uses HZD-based control, as shown in Martin, Post
and Schmiedeler (2014). The non-uniform foot shape does not
directly affect the controller, so only a brief derivation is
included here for completeness. The equations of motion in (1)
can be expressed as a first order system of the form

) q 0
i = D—l(—cq—a)] + [D—lB]” (21a)
x=f(x)+gxu (21b)

where x = [q7, 477 is the state vector. The output y = h(q)
isan N — 1 X 1 vector of the error between the actuated joint
angles and the desired trajectories. The desired joint angle
trajectories are represented as fifth order Bezier polynomials.
Differentiating y twice yields

(22)

where L}h and LgL¢h are Lie derivatives (Isidori, 1989).
Performing input-output linearization gives

y=1%h+ LyLshu

u=LL,h™(v— L7h) (23)
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Table 1. Model parameters. The legs are symmetric, so the
values are the same for both.

Parameter ~ Value Description
Thighs

Ly 0.394  Thigh length (m)

Lemr 0.171  Thigh COM position (m)

mp 6.07 Thigh mass (kg)

Ir 0.099  Thigh Moment of Inertia (kg.m?)
Shanks

Lg 0.396  Shank length (m)

Lems 0172 Shank COM position (m)

mg 2.82 Shank mass (kg)

Js 0.040  Shank Moment of Inertia (kg.m?)
Feet

Xemp 0.046  Foot horizontal COM position (m)

Yemr 0.122 Foot vertical COM position (m)

mg 0.880  Foot mass (kg)

Ir 0.012  Foot Moment of Inertia (kg.m?)
Body

myar 412 Head, arms, and torso mass (kg)
Control

kp 1000  Proportional gain

kp 100 Derivative gain

where v = —kpy — kpy with feedback gains kp, and kj
chosen to drive the output to zero even in the presence of
disturbances.

3. MODEL VALIDATION

To wvalidate the model derived above, simulated gait
trajectories modelled using three different foot shapes were
compared to the experimental kinematics for one human
subject. Section 3.1 describes the experimental methods used
to collect and process the walking data. Section 3.2 describes
the simulation procedure for generating representative viable
gaits for the three foot shapes explored.

3.1 Experimental Methods

After obtaining informed consent, one subject (height 1.74 m,
weight 61.2 kg) walked on an instrumented, split-belt treadmill
(Bertec, Columbus, OH) at a constant speed of 1.07 m/s for
one minute. The embedded force plates measured ground
reaction forces and center of pressure (COP). Joint kinematics
of the legs were recorded with a Vicon Vero camera system.

The ground reaction force data were used to detect heel strike
and toe off events. Because the experimental gait has a finite
time double support period in contrast with the instantaneous
phase of the model, the transition between steps was chosen as
halfway between the double support heel strike and toe off
events. Step time was normalized between 0 (beginning of the
step) and 1 (end of the step). The sagittal plane COP and hip,
knee, and ankle joint angles were delimited by step, and the

= 0.05 — — Circle Model
E 0 e mmm—————o | |-~ Ellipse Model
2~ -0.05 i e B [ Polynomial Model
N
02 -0.1 0 0.1 0.2 0.3

Fig. 3. The circle, ellipse, and polynomial foot shape models
for one subject. Each function is plotted for the stance foot
orientation range -18.4 < § < 23.7 degrees.

mean and standard deviation were calculated. Step length and
step time were also calculated.

3.2 Simulation Methods

The key purpose of the simulation testing was to ensure that
the biped was able to walk with a range of nonuniform foot
shapes. A secondary goal was to begin determining which foot
shape allowed the model to best mimic human walking. Thus,
the model was scaled according to the subject’s height and
mass using standard anthropometric proportions from Winter
(2009). The specific model parameters used are shown in
Table 1. To ascertain the subject’s foot shape, the COP data
was transformed into a foot-fixed reference frame with the
ankle at the origin (Hansen, Childress and Knox, 2004). Using
least-squares curve fitting, three foot shape functions were fit
to the data: a circle

2
fF,C(AxF) = A)’Fo,c - \/Rz - (AxF - AxFO,C) (23a)

where R is the radius and (AxFO_C, Aypo_c) is the offset of the
circle center relative to the ankle; an ellipse

N 2
fre( Axp) = AyFO,E - \/bz - %( Axp — AxFO,E) (23b)

where a, b are the major and minor axes and (“xq g, “Vror)
is the offset of the ellipse center relative to the ankle; and a
fourth-order polynomial

frp(Pxp) = ag “xf + a3 %3 + a “x2 + a; “x + a4 (23¢)

where {a,, a,, a,, as;, a,} is a set of coefficients that satisfy the
convexity requirement of F2. Other convex functions are
possible, but these functions described the data well. The
functions are constrained by the maximum and minimum
absolute stance foot angle observed experimentally. The three
subject-specific foot shapes are shown in Fig. 3. The
polynomial function fit the COP data best, followed by the
ellipse and then the circle.

To simulate the scaled biped model, the actuated joint angle
trajectories were parameterized using fifth-order Bezier
polynomials. To find a set of Bezier coefficients describing a
representative gait for a particular foot shape, nonlinear
constrained optimization was used. The objective function
minimized the difference between the simulated and
experimental spatiotemporal parameters step time, step length,
and speed. Constraints were used to ensure the gait was valid.
Key constraints included periodic walking and no slipping or
lifting at the foot-ground contact point. In addition, the Bezier
coefficients were limited to a small region around the initial
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Fig. 4. Stance hip generalized coordinate phase portraits for
each foot shape model. The trajectories converge to a stable
limit cycle in response to a small perturbation.

conditions because the optimization tended to jump to regions
where the biped could not take a step when the Bezier
coefficients were not constrained. The initial optimization
guess used a hand-tuned gait that could take a step using all
three foot shapes, although not all constraints were met. The
optimization was executed ten consecutive times for each foot
shape, starting from the hand-tuned gait for the first
optimization and using the result of the previous optimization
as the initial condition for the subsequent optimizations. The
gait corresponding to the lowest local minimum was selected.

To compare the simulated generalized coordinate trajectories
to the corresponding experimental kinematics, the Pearson’s
correlation coefficient and root mean square error (RMSE)
were determined for each joint. These values indicate how well
the simulated and experimental results agree.

4. RESULTS AND DISCUSSION

4.1 Identifying Valid Gaits

Valid gaits that minimized the objective function were
identified for each foot shape model. To confirm stability, the
same perturbation for each model was applied to its initial
post-impact state, and the model was simulated for 100 steps.
The phase portrait of the resulting stance hip generalized
coordinate for each model is shown in Fig. 4, confirming the
presence of a stable limit cycle for all foot shape models.

4.2 Spatiotemporal Behavior

The spatiotemporal parameters for each simulated model and
the experimental results are shown in Table 2. The model with
circular feet best matched the experimental walking speed, but
significantly underestimated the step time and step length by
approximately 25%. The ellipse foot shape model severely
underestimated the step time and length by approximately 40%

and 30% respectively and overestimated the speed by 17%.
The polynomial foot shape model results were the best
experimental match for all three parameters overall,
underestimating the step time, step length, and speed by 4%,
15%, and 11%, respectively.

4.3 Kinematic Behavior

The experimental and simulated hip, knee, and ankle angle
trajectories for one stride are shown in Fig. 5. The stance and
swing hip angles exhibited correlation coefficients greater than

— -
£ -
b 2
2 wF
-
=h Expermental
< ok — — —Cirle Model
= —-—-—Ellipse Model
= — s Polynomial Model
20 I i I N N
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(=]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Step Progression

Fig. 5. Joint angle trajectories for the hip (top), knee (middle),
and ankle (bottom) over one stride. When the step progression
is between 0 and 1, the limb is in stance and when the step
progression is between 1 and 2, the limb is in swing. The
stance and swing knee and ankle joint angles correspond
directly to the generalized coordinates. The hip splay,
however, was transformed to absolute thigh orientation during
swing to maintain continuity in this plot.

0.99 and RMSE lower than 6.1 degrees for all three foot shape
models, indicating good agreement between simulated and
experimental data for this joint (Tables 3 and 4). Both the
simulated stance and swing knee angle trajectories also
matched the experimental results well, with correlation
coefficients above 0.90 and 0.99 and RMSE below 8.7 and 5.5
degrees respectively for all foot models.

The simulated stance ankle trajectories demonstrated moderate
experimental agreement, with correlation coefficients of 0.60,
0.66, and 0.71 and RMSE of 6.8, 6.6, and 4.7 degrees for the
circle, ellipse, and polynomial, respectively. Notably, the
correlation coefficient increases and the RMSE decreases at
the stance ankle joint as the foot shape function fit improves,
with the polynomial foot simulation matching the
experimental trajectories better than the ellipse and the circle
foot model simulations. This trend indicates that improving the

Table 2. Spatiotemporal parameters for the three foot shape
models and experimental data.

Model Step Time Step Length ~ Speed

(s) (m) (m/s)
Circle 0.381 0.387 1.018
Ellipse 0.296 0.368 1.246
Polynomial 0.470 0.446 0.948
Experimental 0.489 0.523 1.069
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Table 3. Pearson’s correlation coefficients between the
simulated and experimental joint trajectories for the three
foot models.

Model 1 92 qs s qs e

Circle 0.992 0.998 0.931 0.996 0.600 -0.463
Ellipse 0.993 0.997 0917 0991 0.657 -0.405
Polynomial 0.991 0.998 0.903 0.997 0.712 -0.465

biped model by incorporating nonuniform foot shapes to better
capture the effective human foot shape improves the
simulation-experimental kinematic agreement of the stance
ankle during human walking.

In contrast, the swing foot trajectory was negatively correlated
for all foot shape models, with correlation coefficients less
than -0.41. The RMSE for this joint angle trajectory was
greater than 18.0 degrees for all models, more than double
those of the other joints. Despite the poor simulation-
experiment agreement for this joint, however, the RMSE
decreased across foot shape models as the foot shape function
fit improved.

These results demonstrate that the method described in Section
2 can be used to generate valid walking gaits for a six-link
biped with curved feet described by both uniform and
nonuniform functions. Further, the preliminary simulations
suggest that using a foot shape that matches the effective
human foot shape better than a circular arc improves both
spatiotemporal and kinematic agreement. While some
simulation-experiment discrepancies remain, both in the
spatiotemporal behavior and swing ankle kinematics,
additional optimization with other objective functions could
likely rectify these issues. For example, Martin and
Schmiedeler (2014) used an objective function that minimized
the difference not only between the simulated and
experimental spatiotemporal behavior but also the kinematic
trajectories as well. Additionally, systematically varying the
optimization initial conditions and tolerances could help
identify additional local minima, as the optimization objective
function appears to be highly nonlinear. Including a finite-time
double support phase may also improve the simulation-
experimental agreement during the step-to-step transition in
the gait cycle (Williams and Martin, 2019; Williams and
Martin, 2021). However, the methods used in this work
successfully establish a proof of concept for simulated gait
matching of human walking.
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Table 4. RMSE in degrees between the simulated and
experimental joint trajectories for the three foot models.

Model 1 92 qs qa qs e

Circle 256 6.08 431 305 681 2227
Ellipse 349 370 866 550 658 21.63
Polynomial 3.22 4.44 463 2.63 4.68 1797
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