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A B S T R A C T

Elastomers are used in a wide range of applications because of their large strain to failure, low
density, and tailorable stiffness and toughness. The mechanical behavior of elastomers derives
mainly from the entropic elasticity of the underlying network of polymer chains. Elastomers
under large deformation experience bonds breaking within the backbone chains that constitute
the polymer network. This breaking of chains damages the network, can lead to material
failure, and can be utilized as an energy dissipation mechanism. In the case of reversible bonds,
broken chains may reform and heal the damage in the network. If the reversible bonds are
dynamic, chains constantly break and reform and create a transient network. A fundamental
constitutive theory is developed to model the mechanics of these polymer networks. A statistical
mechanical derivation is conducted to yield a framework that takes in an arbitrary single-chain
model (a Hamiltonian) and outputs the following: the single-chain mechanical response, the
breaking and reforming kinetics, the equilibrium distribution of chains in the network, and
the partial differential equations governing the deformation-coupled network evolution. This
statistical mechanical framework is then brought into the continuum scale by using macroscopic
thermodynamic constitutive theory to obtain a constitutive relation for the Cauchy stress.
The potential-supplemented freely jointed chain (𝑢FJC) model is introduced, and a parametric
study of its mechanical response and breaking kinetics is provided. This single-chain model
is then implemented within the constitutive framework, which we specialize and apply in
two exemplary cases: the mechanical response and irreversible breakdown of a multinetwork
elastomer, and the mechanical response of a dual crosslink gel. After providing a parametric
study of the general constitutive model, we apply it to a hydrogel with reversible metal-
coordination crosslinks. In several cases, we find that the breakdown of the network causes
secondary physical mechanisms to become important and inhibit the accuracy of our model.
We then discuss these mechanisms and indicate how our existing framework can be adjusted
to incorporate them in the future.

. Introduction

Bulk elastomer materials often consist of many single polymer chains crosslinked together to form a network of chains.
lastomers tend to be soft, elastic, and highly stretchable, due to the entropic elasticity of the chains above the glass transition
emperature (Treloar, 1949). From large tires and small seals to soft robotics, elastomers are utilized in a wide variety of applications
ue to their resilience. However, as the elastomer network is deformed more extensively, bonds begin to stretch and then chains
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begin to break. While chain breaking can result in material failure for simpler elastomers, many advanced elastomers are cleverly
designed to take advantage of chain breaking. Firstly, elastomers may be strengthened, toughened, and made more stretchable
through the incorporation of one or more sacrificial networks that begin to break down irreversibly when stretched, dissipating
energy while secondary networks maintain the integrity of the material. The sacrificial network is often embrittled as a swollen
gel (Gong et al., 2003), but could also be pre-stretched using the secondary networks (Ducrot and Creton, 2016) or even designed
without need for pre-stretching (Nakajima et al., 2019). The breaking in the sacrificial network may involve some additional
functionality, such as mechanoluminescence (Ducrot et al., 2014) and recently, chain-lengthening (Wang et al., 2021). Secondly,
elastomers may utilize a range of reversible bonds in order to allow chains to reform after they have been broken. This reversible
breaking allows similar properties as the irreversibly-breaking cases, such as high stretchability and toughness, while also allowing
new properties such as self-healing (Li et al., 2016). Alginate-based gels contain ionic crosslinking that breaks reversibly as the
polymer is deformed, increasing toughness while enabling both self-healing and shape-memory (Sun et al., 2012). Metal–ligand
interactions, which are inherently tunable (Khare et al., 2021), when used as crosslinks provide a precise method to control polymer
mechanical properties via the simple addition of neutral ligands (Vidavsky et al., 2020). Dynamic reversible bonds may also be
utilized: polymers with associative bond exchange reactions like vitrimers behave as an elastic solid at low temperatures while
flowing more similarly to a viscous fluid at high temperatures, all the while maintaining the integrity of the network (Montarnal
et al., 2011). Some of these covalent adaptable networks use light as a stimulus in order to trigger the dynamic bonds to permanently
alter the material shape (Kloxin and Bowman, 2013). Utilizing a combination of interactions is also useful, such as the combination
of permanent covalent bonds and transient physical bonds in dual-crosslink gels (Narita et al., 2013). Overall, the mechanical
properties of these materials tend to be highly nonlinear, rate-dependent, and sensitive to changes in their chemistry. Therefore, a
truly physical constitutive model that accounts for the complexities of chains breaking in a network is desirable to maximize both
predictive power and fundamental understanding for the wide range of available chemistries and combinations.

There are a variety of physically-based constitutive models for polymer networks that incorporate chain breaking, frequently
sing the freely-jointed chain (FJC) single-chain statistical mechanical model (Rubinstein and Colby, 2003). A portion of these
odels are targeted towards the mechanical response of permanently-crosslinked elastomers, where chains or crosslinks are
onsidered to break suddenly and irreversibly (Mao et al., 2017; Mao and Anand, 2018). This approach has been successfully applied
hen modeling the irreversible damage or fracture of polymer networks (Talamini et al., 2018; Tehrani and Sarvestani, 2017; Li and
ouklas, 2020; Yang et al., 2020; Mulderrig et al., 2021). Additionally, irreversible breaking has been incorporated into many models
or multinetwork elastomers and gels (Lavoie et al., 2016; Bacca et al., 2017; Morovati and Dargazany, 2019; Lavoie et al., 2019b;
hong et al., 2020), sometimes addressing a particular phenomenon such as necking instability (Zhao, 2012; Vernerey et al., 2018;
orovati et al., 2020). Another portion of these physically-based constitutive models tends to be specialized for transient networks
nabled by highly dynamic bonds. Transient network theory is typically attributed to Tanaka and Edwards (1992b,a), which is built
pon foundational work from the 1940s to the 1990s (Green and Tobolsky, 1946; Flory, 1960; Thomas, 1966; Fricker, 1973). Recent
evelopment has been driven by Vernerey et al. (2017), and has lead to some success in modeling time-dependent behavior and
racture (Brighenti et al., 2017; Vernerey, 2018; Shen and Vernerey, 2020). Other constitutive models for polymers with dynamic
onds combine physically-based insights with continuum-level constitutive laws, such those for the mechanics of dual-crosslink gels
nd of networks with temperature-sensitive dynamic covalent bonds (Meng et al., 2016; Yu et al., 2018; Lin et al., 2020; Hui and
ong, 2012; Long et al., 2014; Guo et al., 2016; Lu et al., 2020; Long et al., 2013; Long, 2014; Sun et al., 2016).
Although these existing physically-based constitutive models perform well for a range of materials, any one of them lacks

idespread applicability. In this manuscript we present a statistical mechanical derivation that can bridge these models, where
hese models are special cases of the general model. This derivation will yield, from an arbitrary single-chain model Hamiltonian,
1) the single-chain mechanical response, (2) the equilibrium distribution of chains in the network, and (3) the mechanically-
ependent kinetics of chain breaking and reforming. While the first two connections have previously been established (Buche
nd Silberstein, 2020), the force-dependent kinetics have not yet been directly connected to the statistical mechanics of the
ingle-chain model. With limited additional assumptions, this statistical mechanical foundation will then be used to formulate
acroscopic constitutive relations entirely informed by an arbitrary single-chain model. This meticulous procedure carrying the
nderlying statistical mechanics through to the macroscale has many inherent benefits, such as consistency between the equilibrium
onfiguration obtained by statistical thermodynamics and that obtained macroscopically, and the automatic satisfaction of the second
aw of thermodynamics.
This manuscript is organized as follows: In Section 2.1, beginning from the fundamentals of nonequilibrium statistical mechanics,

e obtain evolution equations for the probability of finding an intact chain at a certain end-to-end vector within the network as a
unction of time. This derivation results in the single-chain mechanical behavior, equilibrium distributions of chains in the network,
nd chemical kinetics function of chain breaking/reforming all in terms of the single-chain partition functions. In Section 2.2, our
tatistical theory is brought into the macroscale through the formulation of the Helmholtz free energy of the incompressible network.
fter prescribing an affine deformation, a second-law analysis then results in the constitutive relation for the Cauchy stress entirely in
erms of the intact chain distribution and single-chain mechanical response, where the residual inequality is shown to be arbitrarily
atisfied. With the general theory complete, in Section 3 we introduce and implement the 𝑢FJC single-chain model: the freely jointed
chain (FJC) model supplemented to have stiff, but flexible links with some potential energy 𝑢. We utilize the Morse potential for
𝑢 and study various single-chain functions over a range of parameters. Additionally, we present an original exact solution for the
evolving intact chain probability distribution. In Section 4, we consider several special cases from the limiting behavior of our model
and apply them to exemplary polymers from the literature. We then study the general behavior of the model, drawing conclusions
2

in comparison to these simpler special cases and examining the results over a range of single-chain parameters. Afterward we apply
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the general model to another polymers from the literature. Finally, we discuss the successes and shortcomings of our model and
propose improvements for future work. We have implemented our model in a Python package and made it available on GitHub
and PyPI to facilitate both adoption and adaption by interested readers (Buche, 2021).

2. General theory

2.1. Statistical mechanics

We consider a classical, canonical statistical mechanical ensemble of noninteracting polymer chains that may break/reform via
ultiple reaction pathways. Beginning from the general nonequilibrium formalism of Zwanzig (2001), we derive a general evolution
aw for the probability distribution of intact chains at a certain end-to-end vector. We then apply the assumptions of transition state
heory to obtain a simpler evolution law that does not require knowledge of the phase space distribution function. After making
ome assumptions about the behavior of broken chains, we obtain conservation requirements for all chains in the network, as well
s an evolution law for the probability of each broken chain species.

.1.1. Phase space principles
In classical statistical mechanics (McQuarrie, 2000), the phase space distribution function 𝑓 (𝛤 ; 𝑡) provides the probability density

t time 𝑡 that the system is in the state, denoted by 𝛤 , with the atomic positions 𝐪 and momenta 𝐩. We may calculate the
macroscopically observable value 𝛷(𝑡) of some phase space function 𝜙(𝛤 ), which is the ensemble average of 𝜙(𝛤 ), or ⟨𝜙⟩, as

𝛷(𝑡) = ⟨𝜙⟩ ≡ ∫ ⋯∫ 𝑓 (𝛤 ; 𝑡)𝜙(𝛤 ) 𝑑𝛤 . (1)

In order to find 𝑓 (𝛤 ; 𝑡), we integrate the evolution equation for 𝑓 (𝛤 ; 𝑡), the Liouville equation

𝜕𝑓
𝜕𝑡

= (−ℒ) 𝑓 =
(

𝜕𝐻
𝜕𝐪

⋅
𝜕
𝜕𝐩

− 𝜕𝐻
𝜕𝐩

⋅
𝜕
𝜕𝐪

)

𝑓, (2)

with ℒ being the Liouville operator. Since 𝑓 (𝛤 ; 𝑡) does not evolve at equilibrium, ℒ𝑓 eq = 0 for the equilibrium phase space
distribution function 𝑓 eq(𝛤 ). This equilibrium distribution is the Boltzmann distribution

𝑓 eq(𝛤 ) = 𝑒−𝛽𝐻(𝛤 )

q
, (3)

where𝐻(𝛤 ) is the Hamiltonian of the system, 𝛽 = 1∕b𝑇 is the inverse temperature, b is the Boltzmann constant, 𝑇 is the temperature,
nd

q = ∫ 𝑒−𝛽𝐻(𝛤 ) 𝑑𝛤 (4)

s the canonical partition function for the system. Note that we neglect the factors of the Planck constant ℎ that would nondimen-
ionalize the partition functions, but this has no effect on our classically-obtained results. The equilibrium ensemble average of some
hase space function 𝜙(𝛤 ) is the time-independent average

𝛷eq = ⟨𝜙⟩eq ≡ 1
q ∫ ⋯∫ 𝑒−𝛽𝐻(𝛤 )𝜙(𝛤 ) 𝑑𝛤 . (5)

hile solving for 𝑓 (𝛤 ; 𝑡) would give us full knowledge of the system, it is impractical for our purposes since 𝛤 constitutes far too
any state variables. Fortunately, the macroscopic observables of interest in our case only require knowledge of a subset of the
robability distribution of the phase space variables. Specifically, we will only need the probability density distribution 𝑃A(𝝃; 𝑡) of
ntact chains with end-to-end vector 𝝃 at time 𝑡 to calculate the macroscopic stress. In order to track 𝑃A(𝝃; 𝑡), we will also need to
onsider the analogous distributions of broken chains 𝑃B𝑗 (𝝃; 𝑡), where 𝑗 denotes that the chain has broken via the 𝑗th pathway; this
s illustrated in Fig. 1. In the following section, we will write 𝑃A(𝝃; 𝑡) in terms of 𝑓 (𝛤 ; 𝑡), and subsequently utilize this relation and
he evolution equation for 𝑓 (𝛤 ; 𝑡) to obtain the evolution equation for 𝑃A(𝝃; 𝑡).

.1.2. Evolution of intact chains
The probability density distribution 𝑃 (𝝃; 𝑡) of chains with end-to-end vector 𝝃 at time 𝑡 is given by the ensemble average

𝑃 (𝝃; 𝑡) =
⟨

𝛿3 [𝐑(𝛤 ) − 𝝃]
⟩

, (6)

where 𝛿 is the Dirac delta function and 𝐑(𝛤 ) is the end-to-end vector of the chain as a function of phase space variables 𝛤 . This
ensemble average effectively results in an integration of 𝑓 (𝛤 ; 𝑡) over the portion of the phase space where the end-to-end vector
of the chain is 𝝃. A subset of the phase space variables 𝛤 are the reaction coordinates 𝓁 that determine whether a chain is intact
or broken. We consider 𝑀 of these reaction coordinates, where 𝓁𝑖 is then the 𝑖th reaction coordinate. A chain is intact (A) if all
𝓁𝑖 < 𝓁‡

𝑖 , while a chain is broken (B) if any 𝓁𝑖 > 𝓁‡
𝑖 . The reaction coordinates 𝓁𝑖 then create regions of the phase space where chains

‡

3

re intact () or broken (𝑖). The boundaries separating these two regions are the transition states with 𝓁𝑖 = 𝓁𝑖 . Using Heaviside
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Fig. 1. Illustration of an intact chain (A) with various links of instantaneous length 𝓁𝑖 that may act as reaction coordinates. In this illustration, the links may
break irreversibly (see B1) or reversibly (see B2) when 𝓁𝑖 > 𝓁‡

𝑖 .

step functions 𝛩, we may then write the probability density distribution 𝑃A(𝝃; 𝑡) that a polymer chain is both intact and at end-to-end
vector 𝝃 at time 𝑡 as

𝑃A(𝝃; 𝑡) =

⟨

𝛿3 [𝐑(𝛤 ) − 𝝃]
𝑀
∏

𝑖=1
𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

⟩

. (7)

We differentiate Eq. (7) with respect to time 𝑡 in order to produce the evolution equation for 𝑃A(𝝃; 𝑡). Using Eq. (2) and the properties
of the Liouville operatorℒ noted by Zwanzig (2001), we see that 𝑑

𝑑𝑡 ⟨𝜙⟩ = ⟨ℒ𝜙⟩ for some phase space function 𝜙(𝛤 ), so the evolution
equation for 𝑃A(𝝃; 𝑡) is then

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

=

⟨

ℒ

{

𝛿3 [𝐑(𝛤 ) − 𝝃]
𝑀
∏

𝑖=1
𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

}⟩

. (8)

We will work from Eq. (8) to a readily usable form of the evolution equation for 𝑃A(𝝃; 𝑡), beginning by using the product rule,

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

=

⟨

ℒ
{

𝛿3 [𝐑(𝛤 ) − 𝝃]
}

𝑀
∏

𝑖=1
𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

⟩

+
𝑀
∑

𝑗=1

⟨

𝛿3 [𝐑(𝛤 ) − 𝝃] ℒ
{

𝛩
(

𝓁‡
𝑗 − 𝓁𝑗

)}

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

⟩

. (9)

We consider the first term in Eq. (9) where the Liouville operator ℒ acts on the delta function. In effect, this term accounts for
the evolution of 𝑃A(𝝃; 𝑡) due to 𝝃̇A(𝝃; 𝑡), the average rate of change of the end-to-end vector of an intact chain currently having
end-to-end vector 𝝃,

𝝃̇A(𝝃; 𝑡) ≡

⟨

𝐑̇(𝛤 ) 𝛿3 [𝐑(𝛤 ) − 𝝃]
𝑀
∏

𝑖=1
𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

⟩

. (10)

As detailed in general by Zwanzig (1961), the first term in Eq. (9) can then be written as
⟨

ℒ
{

𝛿3 [𝐑(𝛤 ) − 𝝃]
}

𝑀
∏

𝑖=1
𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

⟩

= − 𝜕
𝜕𝝃

⋅
[

𝝃̇A(𝝃; 𝑡)𝑃A(𝝃; 𝑡)
]

. (11)

We now consider the second set of terms in Eq. (9) where the Liouville operator ℒ acts on each of the step functions 𝛩(𝓁‡
𝑗 − 𝓁𝑗 ).

The derivative of 𝛩 is 𝛿, and ℒ acting on the coordinates 𝓁𝑗 produces the velocities 𝑝𝑗∕𝑚𝑗 , such that

ℒ
{

𝛩
(

𝓁‡
𝑗 − 𝓁𝑗

)}

= −
𝑝𝑗
𝑚𝑗

𝛿
(

𝓁‡
𝑗 − 𝓁𝑗

)

. (12)

The summands of Eq. (9) are therefore the expected values of the velocity −𝑝𝑗∕𝑚𝑗 along the 𝑗th reaction coordinate 𝓁𝑗 for a chain
at end-to-end vector 𝝃 in the 𝑗th transition state 𝓁‡. These summands are understood as the evolution of 𝑃 (𝝃; 𝑡) due to flow across
4
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w

each transition state boundary. If we use step functions to split these flows into the forward  → 𝑗 and reverse 𝑗 →  reactions,
with respective rates

′
𝑗 (𝝃; 𝑡) =

⟨

𝑝𝑗
𝑚𝑗

𝛩(𝑝𝑗 )𝛿3 [𝐑(𝛤 ) − 𝝃] 𝛿
(

𝓁‡
𝑗 − 𝓁𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

⟩

, (13)

′′
𝑗 (𝝃; 𝑡) =

⟨

−
𝑝𝑗
𝑚𝑗

𝛩(−𝑝𝑗 )𝛿3 [𝐑(𝛤 ) − 𝝃] 𝛿
(

𝓁‡
𝑗 − 𝓁𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

⟩

, (14)

then the final evolution law for the distribution of intact chains is

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

=
𝑀
∑

𝑗=1
′′
𝑗 (𝝃; 𝑡) −

𝑀
∑

𝑗=1
′
𝑗 (𝝃; 𝑡) −

𝜕
𝜕𝝃

⋅
[

𝝃̇A(𝝃; 𝑡)𝑃A(𝝃; 𝑡)
]

. (15)

We have now obtained the general evolution law for the probability distribution of intact chains with a certain end-to-end vector
𝑃A(𝝃; 𝑡) in Eq. (15). It remains an issue, however, that we require knowledge of the phase space distribution function 𝑓 (𝛤 ; 𝑡), which is
necessary to compute the ensemble averages for the reaction rates Eqs. (13) and (14). Consequently, we now utilize transition state
theory in order to avoid computing these ensemble averages and therefore eliminate 𝑓 (𝛤 ; 𝑡) from the evolution equation entirely.

2.1.3. Transition state theory
Our derivation so far is general for noninteracting chains, but we now make our first approximation. Let the phase space function

𝑓 (𝛤 ; 𝑡) maintain a local equilibrium in each species’ region (Zwanzig, 2001), such that we may take 𝑓 (𝛤 ; 𝑡) in the phase space region
 to be approximately

𝑓 (𝛤 ; 𝑡) ≈
𝑃A(𝝃; 𝑡)
𝑃 eq
A (𝝃)

𝑓 eq(𝛤 ) in region , (16)

here 𝑃 eq
A (𝝃) is the equilibrium distribution of the end-to-end vectors of intact chains, and 𝑓 eq(𝛤 ) = 𝑒−𝛽𝐻(𝛤 )∕q from Eq. (3). This is

representative of the fact that degrees of freedom not involved with breaking the chain (such as bond rotation) attain equilibrium
much more quickly than those degrees of freedom associated with breaking the chain (i.e. bond breaking). Consequently, our
transition state theory assumption now prevents us from considering cases where the timescales of bond breaking become close
to those of intact chain dynamics.

The distribution of the end-to-end vectors of chains that have broken via the 𝑗th reaction pathway 𝑃B𝑗 (𝝃; 𝑡) can be written by
flipping the sign within the 𝑗th step function in Eq. (7),

𝑃B𝑗 (𝝃; 𝑡) =

⟨

𝛿3 [𝐑(𝛤 ) − 𝝃]𝛩
(

𝓁𝑗 − 𝓁‡
𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

⟩

. (17)

We may similarly approximate 𝑓 (𝛤 ; 𝑡) in each broken chain phase space region as

𝑓 (𝛤 ; 𝑡) ≈
𝑃B𝑗 (𝝃; 𝑡)

𝑃 eq
B𝑗
(𝝃)

𝑓 eq(𝛤 ) in each region 𝑗 , (18)

where 𝑃 eq
B𝑗
(𝝃) is the equilibrium distribution of the end-to-end vectors of chains that have broken via the 𝑗th reaction pathway.

The equilibrium probabilities may be written using Eqs. (7) and (17) in the equilibrium system, or by using the ratio of partition
functions (McQuarrie, 2000; Buche and Silberstein, 2020) as

𝑃 eq
A (𝝃) =

⟨

𝛿3 [𝐑(𝛤 ) − 𝝃]
𝑀
∏

𝑗=1
𝛩
(

𝓁‡
𝑗 − 𝓁𝑗

)

⟩eq

=
q∗A(𝝃)
q

, (19)

𝑃 eq
B𝑗
(𝝃) =

⟨

𝛿3 [𝐑(𝛤 ) − 𝝃]𝛩
(

𝓁𝑗 − 𝓁‡
𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

⟩eq

=
q∗B𝑗

(𝝃)

q
, (20)

where the partition functions of an intact chain at end-to-end vector 𝝃 and a chain that has broken via the 𝑗th reaction pathway at
end-to-end vector 𝝃 (the asterisk ∗ denotes the fixed 𝝃) are given by

q∗A(𝝃) =∫ ⋯∫ 𝑒−𝛽𝐻(𝛤 )𝛿3 [𝐑(𝛤 ) − 𝝃]
𝑀
∏

𝑗=1
𝛩
(

𝓁‡
𝑗 − 𝓁𝑗

)

𝑑𝛤 , (21)

q∗B𝑗
(𝝃) =∫ ⋯∫ 𝑒−𝛽𝐻(𝛤 )𝛿3 [𝐑(𝛤 ) − 𝝃]𝛩

(

𝓁𝑗 − 𝓁‡
𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

𝑑𝛤 . (22)
5
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Similarly, the partition function of an intact chain at end-to-end vector 𝝃 in the 𝑗th transition state is

q∗‡𝑗
(𝝃) = ∫ ⋯∫ 𝑒−𝛽𝐻(𝛤 )𝛿

(

𝑝𝑗
)

𝛿3 [𝐑(𝛤 ) − 𝝃] 𝛿
(

𝓁‡
𝑗 − 𝓁𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

𝑑𝛤 . (23)

Now, after utilizing Eqs. (16)–(23) (for detailed steps, see Appendix A), the rates in Eqs. (13)–(14) become

′
𝑗 (𝝃; 𝑡) =𝑘

′
𝑗 (𝝃)𝑃A(𝝃; 𝑡), (24)

′′
𝑗 (𝝃; 𝑡) =𝑘

′′
𝑗 (𝝃)𝑃B𝑗 (𝝃; 𝑡), (25)

where the forward and reverse reaction rate coefficient functions are respectively given by

𝑘′𝑗 (𝝃) =
1
𝛽

q∗‡𝑗
(𝝃)

q∗A(𝝃)
, (26)

𝑘′′𝑗 (𝝃) =
1
𝛽

q∗‡𝑗
(𝝃)

q∗B𝑗
(𝝃)

. (27)

While extension-dependent rate coefficients have been previously considered for polymer networks (Green and Tobolsky, 1946;
Tanaka and Edwards, 1992b), exact relations have not yet been discovered, leaving models to assume they are constant (Green
and Tobolsky, 1946; Vernerey et al., 2017; Brighenti et al., 2017; Vernerey, 2018; Guo and Long, 2020), or assume some other
form (Tanaka and Edwards, 1992a; Lavoie et al., 2016; Yu et al., 2018; Shen and Vernerey, 2020; Lin et al., 2020; Lu et al.,
2020; Guo and Zaïri, 2021) typically inspired by or in some way similar to the model of Bell (1978). Eqs. (26) and (27) show that
each forward and reverse reaction rate coefficient function is completely determined by the single-chain model via the partition
functions. These partition functions similarly determine the single-chain mechanical response and the equilibrium distribution of
chain end-to-end vectors in the network (Buche and Silberstein, 2020).

After relating the ratio of the reaction rate coefficient functions to the equilibrium probabilities as

𝑘′′𝑗 (𝝃)

𝑘′𝑗 (𝝃)
=

q∗A(𝝃)
q∗B𝑗

(𝝃)
=
𝑃 eq
A (𝝃)

𝑃 eq
B𝑗
(𝝃)

, (28)

we finally rewrite Eq. (15), the evolution law for the probability distribution of intact chains as

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

= −
𝑀
∑

𝑗=1
𝑘′𝑗 (𝝃)

⎡

⎢

⎢

⎣

𝑃A(𝝃; 𝑡) −
𝑃B𝑗 (𝝃; 𝑡)

𝑃 eq
B𝑗
(𝝃)

𝑃 eq
A (𝝃)

⎤

⎥

⎥

⎦

− 𝜕
𝜕𝝃

⋅
[

𝝃̇A(𝝃; 𝑡)𝑃A(𝝃; 𝑡)
]

. (29)

his evolution equation depends only upon the independent variables 𝝃 and 𝑡. We establish the evolution equation for the probability
istribution of each species of broken chains 𝑃B𝑗 (𝝃; 𝑡) in the following section. Later in Section 2.2.2 we constitutively prescribe
̇ A(𝝃; 𝑡) as a function of the deformation.

.1.4. Evolution of broken chains
In this section, we obtain simplified evolution laws for the probability density distribution of the 𝑗th broken chains 𝑃B𝑗 (𝝃; 𝑡), and

n the process further simplify Eq. (29). To proceed, we first neglect the possibility that a chain may break via multiple pathways. This
s reasonable when all breaking pathways remain approximately inaccessible without considerable force acting on the chain, since
roken chains will not support the force required to break again. It is also reasonable when at most one breaking pathway is thermally
ccessible, such as the case with a chain with a single transient bond and many strong covalent bonds. This assumption inhibits our
bility to model chains with many highly dynamic bonds, such as those within vitrimers. Second, we neglect the possibility that
roken chains of different reaction pathways may cross-reform, which prevents us from considering cases where groups of chains
reak and reform together resulting in altered contour lengths. These two assumptions allow us to conclude that the total probability
hat a chain is either intact or is broken via a single reaction pathway is unity, yielding the conservation law

∭ 𝑃A(𝝃; 𝑡) 𝑑3𝝃 +
𝑀
∑

𝑗=1
∭ 𝑃B𝑗 (𝝃; 𝑡) 𝑑

3𝝃 = 1. (30)

e evaluate Eq. (30) at equilibrium and multiply it by the system partition function q, which with the equilibrium probabilities in
qs. (19) and (20) then allows us to relate the partition functions as

q = ∭ q∗A(𝝃) 𝑑
3𝝃 +

𝑀
∑

𝑗=1
∭ q∗B𝑗

(𝝃) 𝑑3𝝃 ≡ qA +
𝑀
∑

𝑗=1
qB𝑗 . (31)

nce we specify a chain model, we can calculate q∗A(𝝃) and each q∗B𝑗
(𝝃), and with Eq. (31) we may then calculate the equilibrium

istributions in Eqs. (19) and (20). Note that we have defined qA and qB𝑗 in Eq. (31), which are the partition functions of
nconstrained intact chains and broken chains, respectively. q and q are equivalently the integrals of q∗ (𝝃) and q∗ (𝝃) over
6
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all end-to-end vectors 𝝃. By the principal thermodynamic connection formula (McQuarrie, 2000) for the Helmholtz free energy
𝜓 = −b𝑇 ln q, we obtain

𝛥𝛹0𝑗 ≡ −b𝑇 ln
( qB𝑗

qA

)

, (32)

where 𝛥𝛹0𝑗 is then the net Helmholtz free energy change for the 𝑗th breaking reaction alone (only having to do with the reaction
coordinate, not the rest of the chain). We now approximate the two ends of any broken chain as effectively noninteracting, which
allows the partition function q∗B𝑗

(𝝃) to be constant in 𝝃,

qB𝑗 ≈ 𝑉B𝑗 q
∗
B𝑗
, (33)

where each 𝑉B𝑗 has units of volume. Using Eq. (32), we can define 𝑉B𝑗 in terms of qA, q
∗
B𝑗
, and 𝛽𝛥𝛹0𝑗 as

𝑉B𝑗 ≡ (qA∕q∗B𝑗 )𝑒
−𝛽𝛥𝛹0𝑗 . (34)

Though we have treated the broken chain mechanics as independent of 𝝃, the reforming reaction rate coefficient function 𝑘′′𝑗 (𝝃) in
Eq. (27) is still a strong function of 𝝃 due to q∗‡𝑗

(𝝃). Our approximation in Eq. (33) causes all broken chain end-to-end vectors to be
equally probable and therefore allows us to equate the probability of broken chains at end-to-end vector 𝝃 to the average of broken
chains at any end-to-end vector,

𝑃B𝑗 (𝝃; 𝑡) ≈
𝑃 tot
B𝑗

(𝑡)

𝑉B𝑗
. (35)

Since we do not track broken chains by end-to-end vector, we rewrite the conservation law from Eq. (30) as

∭ 𝑃A(𝝃; 𝑡) 𝑑3𝝃 +
𝑀
∑

𝑗=1
𝑃 tot
B𝑗

(𝑡) = 1, (36)

and, after taking the time derivative,

∭
𝜕𝑃A(𝝃; 𝑡)

𝜕𝑡
𝑑3𝝃 +

𝑀
∑

𝑗=1

𝜕𝑃 tot
B𝑗

(𝑡)

𝜕𝑡
= 0. (37)

Applying the conservation requirement given by Eq. (31) and the relation between the partition functions given by Eq. (33), we
may now rewrite the equilibrium probabilities from Eqs. (19) and (20) as

𝑃 eq
A (𝝃) = 1

1 +
∑𝑀

𝓁=1 𝑒
−𝛽𝛥𝛹0𝓁

(

q∗A(𝝃)

∭ q∗A(𝝃̃) 𝑑3𝝃̃

)

, (38)

𝑃 tot,eq
B𝑗

= 𝑒−𝛽𝛥𝛹0𝑗

1 +
∑𝑀

𝓁=1 𝑒
−𝛽𝛥𝛹0𝓁

, (39)

nd the evolution of the intact chains from Eq. (29) as

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

= −
𝑀
∑

𝑗=1
𝑘′𝑗 (𝝃)

⎡

⎢

⎢

⎣

𝑃A(𝝃; 𝑡) −
𝑃 tot
B𝑗

(𝑡)

𝑃 tot,eq
B𝑗

𝑃 eq
A (𝝃)

⎤

⎥

⎥

⎦

− 𝜕
𝜕𝝃

⋅
[

𝝃̇A(𝝃; 𝑡)𝑃A(𝝃; 𝑡)
]

. (40)

fter writing the analogous evolution law for 𝑃B𝑗 (𝝃; 𝑡), integrating for 𝑃
tot
B𝑗

(𝑡), and using Eq. (35), the evolution equation for 𝑃 tot
B𝑗

(𝑡)
s given by

𝜕𝑃 tot
B𝑗

(𝑡)

𝜕𝑡
= ∭ 𝑘′𝑗 (𝝃)

⎡

⎢

⎢

⎣

𝑃A(𝝃; 𝑡) −
𝑃 tot
B𝑗

(𝑡)

𝑃 tot,eq
B𝑗

𝑃 eq
A (𝝃)

⎤

⎥

⎥

⎦

𝑑3𝝃 −
𝑃 tot
B𝑗

(𝑡)

𝑉B𝑗 ∭

[

𝜕
𝜕𝝃

⋅ 𝝃̇B(𝝃; 𝑡)
]

𝑑3𝝃. (41)

he last term in Eq. (41) is found equal to zero as follows: Eq. (40) is integrated over all 𝝃 and the conservation requirement in
q. (37) is applied in substituting in for 𝑃 tot

B𝑗
(𝑡), where all the reaction-related terms then cancel. We then apply the divergence

heorem to this integral, which produces a balance law that we satisfy by requiring that the integrand is zero for all 𝝃, which is

⎡

⎢

⎢

⎣

𝝃̇A(𝝃; 𝑡)𝑃A(𝝃; 𝑡) +
𝑀
∑

𝑗=1
𝝃̇B(𝝃; 𝑡)

𝑃 tot
B𝑗

(𝑡)

𝑉B𝑗

⎤

⎥

⎥

⎦𝜕𝝃

= 0. (42)

Here 𝜕𝝃 is the boundary of the region  with outward-pointing unit normal vector 𝐧̂𝜕𝝃, a surface beyond which no intact chain
may exist. Eq. (42) is a balance law for intact chains that are instantaneously broken via 𝝃̇A(𝝃; 𝑡) carrying them across 𝜕𝝃. We will
now assume that a negligible amount of intact chains become extended to this intact limit without first breaking via the chemical
reaction, which is 𝑃 (𝝃; 𝑡)| ≈ 0. We then have 𝝃̇ (𝝃; 𝑡)| ≈ 0 via Eq. (42), which causes the last term in Eq. (41) to become zero
7
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after again using the divergence theorem. Eq. (41) is now

𝜕𝑃 tot
B𝑗

(𝑡)

𝜕𝑡
= ∭ 𝑘′𝑗 (𝝃)

⎡

⎢

⎢

⎣

𝑃A(𝝃; 𝑡) −
𝑃 tot
B𝑗

(𝑡)

𝑃 tot,eq
B𝑗

𝑃 eq
A (𝝃)

⎤

⎥

⎥

⎦

𝑑3𝝃. (43)

Eqs. (40) and (43) together with a prescription for 𝝃̇A(𝝃; 𝑡) create a set of evolution equations that govern the polymer network, are
reasonable to solve, and have a firm foundation in the principles of statistical mechanics. Equipped with this framework to evaluate
the relevant probabilities of chains in the network, we now use statistical thermodynamics to formulate the Helmholtz free energy
and subsequently use macroscopic constitutive theory to obtain the constitutive relation for the Cauchy stress.

2.2. Macroscopic theory

With our statistical mechanical framework complete, we turn now to the macroscopic description of the network. We begin by
formulating the Helmholtz free energy of the network using statistical thermodynamics, which preserves our statistical mechanical
framework as we move into the continuum scale. Knowledge of the Helmholtz free energy allows us to utilize the Coleman–Noll
procedure (Coleman and Noll, 1963; Coleman and Gurtin, 1967) to obtain constitutive relations for the entropy density and Cauchy
stress. We do so after assuming that the temperature (𝑇 ), deformation gradient (𝐅), probability density distribution of attached chains
(𝑃A), and probability of each broken chain type (𝑃 tot

B𝑗
) form a complete set of thermodynamic state variables. We additionally assume

that, on average, the deformation gradient acts affinely on the intact chain end-to-end vectors. Lastly, we show that the residual
inequality – solely dissipation due to the breaking/reforming of chains – is already arbitrarily satisfied for the evolution laws we
have derived in Section 2.1.

2.2.1. Network Helmholtz free energy
The Helmholtz free energy 𝒜(𝑡) of the network is analogous to that of a system of noninteracting particles of different chemical

species (McQuarrie, 2000)

𝒜(𝑡) = 𝑁A(𝑡)𝜇A(𝑡) +
𝑀
∑

𝑗=1
𝑁B𝑗 (𝑡)𝜇B𝑗 (𝑡) −𝑁b𝑇 (𝑡), (44)

with the chemical potentials 𝜇𝑖(𝑡) given by

𝜇𝑖(𝑡) = −b𝑇 ln
[

q𝑖
𝑁𝑖(𝑡)

]

, 𝑖 = A,B1,… ,B𝑀 , (45)

where 𝑁𝑖(𝑡) is the number of either intact or broken chains, and 𝑁 is the constant total number of chains. We use Gibbs’
postulate (McQuarrie, 2000) to write 𝜇A(𝑡) as the time-dependent average

𝜇A(𝑡) =
1

𝑃 tot
A (𝑡) ∭ 𝑃A(𝝃; 𝑡)𝜇∗A(𝝃; 𝑡) 𝑑

3𝝃, (46)

where (using 𝑁𝑖(𝑡) = 𝑃 tot
𝑖 (𝑡)𝑁) the chemical potential of an intact chain at end-to-end vector 𝝃 is

𝜇∗A(𝝃; 𝑡) = −b𝑇 ln
[

q∗A(𝝃)
𝑁𝑃A(𝝃; 𝑡)

]

. (47)

The broken chains have been assumed to be insensitive to extension, so we similarly utilize their chemical potentials as independent
of the end-to-end vector 𝝃,

𝜇B𝑗 (𝑡) = −b𝑇 ln
⎡

⎢

⎢

⎣

𝑉B𝑗 q
∗
B𝑗

𝑁𝑃 tot
B𝑗

(𝑡)

⎤

⎥

⎥

⎦

. (48)

Utilizing Eqs. (44) and (46), we may now write the Helmholtz free energy density 𝑎(𝑡) = 𝒜(𝑡)∕𝑉 of our incompressible network of
oninteracting polymer chains as

𝑎(𝑡) = 𝑛∭ 𝑃A(𝝃; 𝑡)𝜇∗A(𝝃; 𝑡) 𝑑
3𝝃 + 𝑛

𝑀
∑

𝑗=1
𝑃 tot
B𝑗

(𝑡)𝜇B𝑗 (𝑡) − 𝑛b𝑇 (𝑡) − 𝑝[𝐽 (𝑡) − 1], (49)

where 𝑛 = 𝑁∕𝑉 is the constant total number density of chains, and 𝑝 is the pressure acting as a Lagrange multiplier enforcing
the incompressibility constraint that 𝐽 = det(𝐅) = 1. This specific formulation of 𝑎(𝑡) in Eq. (49) is essential to our approach: in
Appendix B.1, we show that it allows the equilibrium probabilities obtained from minimizing 𝑎(𝑡) with respect to each probability
8
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2.2.2. Constitutive relations
The time derivative of the Helmholtz free energy density is

𝑎̇(𝑡) = 𝑛∭ 𝑃̇A(𝝃; 𝑡)𝜇∗A(𝝃; 𝑡) 𝑑
3𝝃 + 𝑛

𝑀
∑

𝑗=1
𝑃̇ tot
B𝑗

(𝑡)𝜇B𝑗 (𝑡) − 𝑛𝑘𝑇̇ (𝑡) − 𝑝(𝑡) [𝟏 ∶ 𝐋(𝑡)] , (50)

where 𝐋 = 𝐅̇ ⋅ 𝐅−1 is the velocity gradient. We have factored out the time derivatives of the chemical potentials after utilizing the
conservation requirement from Eq. (37). Thermodynamically admissible processes must satisfy the second law of thermodynamics
regarding irreversible entropy production, which is embodied in the Clausius–Duhem inequality

𝑎̇ + 𝑠𝑇̇ − 𝝈 ∶ 𝐋 ≤ 0, (51)

where 𝑠(𝑡) is the entropy density and 𝝈(𝑡) is the Cauchy stress tensor (Truesdell and Noll, 2004). Note that this simplified form of
the inequality already assumes incompressibility, neglects nonmechanical work, and assumes the classical constitutive relations for
the entropy flux, the entropy source, and the heat flux (Paolucci, 2016). Further, we will not impose hyperbolicity requirements
that would guarantee finite speeds of propagation (Müller and Ruggeri, 2013).

We will assume that 𝑇 (𝑡), 𝐅(𝑡), 𝑃A(𝝃; 𝑡), and 𝑃 tot
B𝑗

(𝑡) together create a complete set of thermodynamic state variables. This allows
us to treat time derivatives of constitutive variables like 𝑎(𝑡) as fully implicit, where we may expand those time derivatives as
partial derivatives with respect to the state variables. The three independent thermodynamic processes accounted for through our
state variables are temperature change, deformation, and the chain breaking/reforming chemical reactions (denoted as rxn). The
evolution of 𝑎(𝑡) is then expanded as

𝑎̇ =
( 𝜕𝑎
𝜕𝑇

)

𝐅,rxn
𝑇̇ +

( 𝜕𝑎
𝜕𝐅

)

𝑇 ,rxn
∶ 𝐅̇ −rxn, (52)

where rxn is the chemical dissipation per unit volume, calculated from the rate of change of Helmholtz free energy density over
all breaking/reforming reactions

rxn ≡ −
( 𝜕𝑎
𝜕𝑡

)

𝐅,𝑇
. (53)

Substitution of our expansion into the Clausius–Duhem inequality in Eq. (51) yields
[

( 𝜕𝑎
𝜕𝑇

)

𝐅,rxn
+ 𝑠

]

𝑇̇ −rxn +
[

( 𝜕𝑎
𝜕𝐅

)

𝑇 ,rxn
⋅ 𝐅𝑇 − 𝝈

]

∶ 𝐋 ≤ 0. (54)

e first consider the set of processes where the temperature varies arbitrarily, the deformation is held fixed, and the reactions do
ot proceed. In order to arbitrarily satisfy the inequality, we must then have

𝑠 = −
( 𝜕𝑎
𝜕𝑇

)

𝐅,rxn
, (55)

which is the expected constitutive relation for the entropy density. The inequality in Eq. (54) then becomes
[

( 𝜕𝑎
𝜕𝐅

)

𝑇 ,rxn
⋅ 𝐅𝑇 − 𝝈

]

∶ 𝐋 −rxn ≤ 0. (56)

We next consider processes where the motion varies arbitrarily via 𝐋(𝑡) and the reactions do not proceed. Since we have assumed to
have a complete set of thermodynamic state variables, and that set does not include time derivatives of the deformation gradient,
we have already ruled out dissipative stresses (Paolucci, 2016). In order to arbitrarily satisfy the inequality in Eq. (56), we must
then have

𝝈 =
( 𝜕𝑎
𝜕𝐅

)

𝑇 ,rxn
⋅ 𝐅𝑇 , (57)

which is the form of the stress for a hyperelastic material (Truesdell and Noll, 2004). We will now assume that, on average, the
end-to-end vectors 𝝃 are affinely deformed by the deformation gradient 𝐅(𝑡), which can be expanded as 𝝃̇A(𝝃; 𝑡) = 𝐋(𝑡) ⋅ 𝝃. After
pplying this assumption and simplifying (see Appendix B.2), the evolution equation for intact chains Eq. (40) becomes

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

= −
[

𝜕𝑃A(𝝃; 𝑡)
𝜕𝝃

𝝃
]

∶ 𝐋(𝑡) −
𝑀
∑

𝑗=1
𝑘′𝑗 (𝝃)

⎡

⎢

⎢

⎣

𝑃A(𝝃; 𝑡) −
𝑃 tot
B𝑗

(𝑡)

𝑃 tot,eq
B𝑗

𝑃 eq
A (𝝃)

⎤

⎥

⎥

⎦

, (58)

nd the stress in Eq. (57) becomes

𝝈(𝑡) = 𝑛∭ 𝑃A(𝝃; 𝑡)
𝜕𝜓∗

A(𝝃)
𝜕𝝃

𝝃 𝑑3𝝃 − 𝑝(𝑡)𝟏. (59)

This general form of the stress has been obtained previously (Buche and Silberstein, 2020), but the evolution of 𝑃A(𝝃; 𝑡) is now more
complicated here due to the breaking and reforming of chains.
9



Journal of the Mechanics and Physics of Solids 156 (2021) 104593M.R. Buche and M.N. Silberstein

d

o
i
i
i

3

e
a
(
c
p
f
m
i
c

3

o
H

2.2.3. Residual inequality
Now that we have established each constitutive relation, we are left with the residual portion of the Clausius–Duhem inequality

ue to the dissipation rxn(𝑡). Showing that rxn(𝑡) ≥ 0 is similar to the procedure for a reacting system of a finite number of
discrete chemical species (Prigogine, 1967; Powers, 2016), but here we have the additional complication of having the reactions
(chains breaking and reforming) occurring over the continuous variable 𝝃 (see Appendix B.3 for details). We find that the dissipation
may be written succinctly as

rxn(𝑡) =
𝑀
∑

𝑗=1
∭ ∗

𝑗 (𝝃; 𝑡) 𝑑
3𝝃, (60)

where the dissipation density for the 𝑗th reaction occurring at the end-to-end vector 𝝃 is defined as

∗
𝑗 (𝝃; 𝑡) ≡ 𝑛b𝑇

[

′
𝑗 (𝝃; 𝑡) −′′

𝑗 (𝝃; 𝑡)
]

ln

[

′
𝑗 (𝝃; 𝑡)

′′
𝑗 (𝝃; 𝑡)

]

. (61)

Since [′
𝑗 (𝝃; 𝑡) −′′

𝑗 (𝝃; 𝑡)] ln[
′
𝑗 (𝝃; 𝑡)∕

′′
𝑗 (𝝃; 𝑡)] ≥ 0 and 𝑛b𝑇 > 0, we are able to conclude

∗
𝑗 (𝝃; 𝑡) ≥ 0 for all 𝑗, and therefore rxn(𝑡) ≥ 0. (62)

This result means that not only is the residual inequality satisfied, but each chain breaking/reforming reaction at every end-to-end
vector has a positive semi-definite dissipation. Further, this is found without any additional restrictions on the thermodynamic state
variables or the obtained constitutive relations, which can be directly attributed to the strong statistical mechanical foundation we
have incorporated.

2.3. General theory summary

Our general theory is now complete and can be utilized as illustrated by Fig. 2. Two inputs are needed to constitutively define the
polymer — the single-chain model and the total number density of chains 𝑛. Two external conditions are also prescribed as inputs
— the temperature 𝑇 and the deformation gradient 𝐅(𝑡). A single-chain model is chosen through specification of a Hamiltonian
𝐻(𝛤 ), which contains𝑀 transition state coordinates 𝓁𝑗 and locations 𝓁

‡
𝑗 . Next, we calculate the partition function at the end-to-end

vector 𝝃 of the intact chains q∗A(𝝃) using Eq. (21), of each broken chain species q
∗
B𝑗
(at some large 𝝃 where the two broken ends do

not interact) using Eq. (22), and of each transition state q∗‡𝑗
(𝝃) using Eq. (23). We also compute the net free energy changes 𝛥𝛹0𝑗

using 𝐻(𝛤 ) or otherwise specify them as parameters. Equipped with these quantities, we are able to compute each reaction rate
coefficient function 𝑘′𝑗 (𝝃) using Eq. (26), the equilibrium probability density distribution of intact chains 𝑃 eq

A (𝝃) using Eq. (38), and
the equilibrium probability of each broken chain species 𝑃 tot,eq

B𝑗
using Eq. (39). We also compute 𝜓∗

A(𝝃), the Helmholtz free energy
f an intact chain at the end-to-end vector 𝝃, using Eq. (B.13). With a prescribed incompressible deformation history and assuming
nitial conditions, we have all the necessary information to formulate the evolution law for the probability density distribution of
ntact chains 𝑃A(𝝃; 𝑡) using Eq. (58) and those for the probability of each broken chain species 𝑃 tot

B𝑗
(𝑡) using Eq. (43). The stress 𝝈(𝑡)

s then computed using Eq. (59), where the pressure 𝑝(𝑡) is solved for using the traction boundary conditions.

. Single-chain model specification

We are now ready to specify a single-chain model and push it through our general framework as shown Fig. 2, computing
ach quantity of interest to ultimately obtain the stress as a function of deformation. For the materials we will model, we require
single-chain model that incorporates force-sensitive reversible bond breaking. Force-sensitive irreversible and force-insensitive
transient) reversible bonds are special cases of this broader class. We propose the 𝑢FJC for our single-chain model: a freely jointed
hain of flexible links, each with a potential 𝑢 that depends on the difference between the link length and its rest-length. The Morse
otential (Morse, 1929) is used for each link in order to allow the links to break and reform. In the following section, we compute the
unctions related to the mechanical behavior, equilibrium distribution, and kinetics of breaking/reforming for the 𝑢FJC single-chain
odel and provide results with the Morse potential. We then exactly solve the evolution equation for the distribution of intact chains
n the network for all single-chain models with reaction pathways that are all equivalent. Then we present how small adjustments
an be made to the framework to account for when some links in the 𝑢FJC are weaker than the rest.

.1. The uFJC model

The 𝑢FJC model is a freely jointed chain of 𝑁𝑏 flexible links, each with potential 𝑢(𝓁) that depends on the difference between
the link length 𝓁 and its rest-length 𝓁𝑏. This is similar to the freely jointed chain or FJC model (Treloar, 1949; Rubinstein and
Colby, 2003), but with the rigid links replaced by these flexible ones. If the potential is strictly harmonic, we retrieve the extensible
freely jointed chain or EFJC model (Fiasconaro and Falo, 2019). The links of the 𝑢FJC are considered broken if 𝓁 > 𝓁‡ and intact
therwise. Each of the 𝑁𝑏+1 hinges are considered to be point masses with a mass of 𝑚, while the links are massless. The single-chain
amiltonian of this model is

𝐻(𝛤 ) =
𝑁𝑏+1
∑ 𝑝2𝑖 +

𝑁𝑏
∑

𝑢
(

𝓁𝑖
)

. (63)
10

𝑖=1 2𝑚 𝑖=1



Journal of the Mechanics and Physics of Solids 156 (2021) 104593M.R. Buche and M.N. Silberstein

e
g
𝛥
b
o
f
L
a

𝓁

Fig. 2. Diagram describing the utilization of the general theory developed in Section 2. After specifying the single-chain model Hamiltonian 𝐻(𝛤 ), the temperature
𝑇 , the deformation gradient 𝐅(𝑡), and the total number density of chains 𝑛, all quantities of interest may be systematically computed, ultimately resulting in the
stress 𝝈(𝑡).

We substitute this Hamiltonian into Eq. (21) to compute the partition function q∗A(𝝃) = q∗A,momq
∗
A,con(𝝃) of an intact chain with

nd-to-end vector 𝝃, where ‘‘mom’’ and ‘‘con’’ denote the momentum and configuration contributions. Since the link potential only
ives information about the intact state of the links, we must treat the net Helmholtz free energy change when breaking a link,
𝛹0, as an independent parameter. While we may compute q∗A,mom exactly without trouble (McQuarrie, 2000), q∗A,con(𝝃) cannot
e computed analytically in general and is difficult to evaluate numerically. This issue is typically resolved through computation
f the Gibbs (isotensional) ensemble partition function and transforming back to the Helmholtz (isometric; canonical) partition
unction we desire. This transformation is accomplished using an inverse Fourier transform, which is often approximated using a
egendre transformation when chains are sufficiently long (Manca et al., 2012, 2014), the so-called Gibbs–Legendre method (Buche
nd Silberstein, 2020) of obtaining q∗A,con(𝝃). After asymptotically approximating the mechanical response of the 𝑢FJC in the Gibbs
ensemble, we will integrate it and use the Gibbs–Legendre method to obtain the Helmholtz free energy and then compute the desired
partition function.

We obtain an asymptotic approximation for the single-chain mechanical response as

𝛾(𝜂) ∼ (𝜂) + 𝜆(𝜂) − 1 for 𝜅 ≫ 1, (64)

where 𝛾 ≡ 𝜉∕𝑁𝑏𝓁𝑏 is the nondimensional end-to-end length, (𝜂) = coth(𝜂) − 1∕𝜂 is the Langevin function, 𝜆(𝜂) is the link stretch
∕𝓁𝑏 under the nondimensional force 𝜂 ≡ 𝛽𝑓𝓁𝑏, and

𝜅 ≡ 𝛽𝓁2
𝑏
𝜕2𝑢(𝓁)
𝜕𝓁2

|

|

|

|

|𝓁=𝓁𝑏

(65)

is the nondimensional link stiffness. The full derivation of Eq. (64) is in Appendix C.1, where it is shown that the entropically-based
mechanical response of the FJC (given by the Langevin function) may be approximated as decoupled from the link stretching for
sufficiently stiff links. There has been recent interest in similarly supplementing entropic polymer chain models with potential
energy contributions (Mao and Anand, 2018; Talamini et al., 2018; Lavoie et al., 2019a; Li and Bouklas, 2020; Yang et al., 2020;
Mulderrig et al., 2021; Guo and Zaïri, 2021) by a method where a chain free energy is minimized with respect to the potential
degrees of freedom (Mao et al., 2017). Although this current method performs well, we recommend that the asymptotic approach
be used instead for both practical and physical reasons. Practically, asymptotically-correct formulas such as those we provide here
for the 𝑢FJC are easier to use than the current method, which requires implicitly solving nonlinear algebraic equations during the
minimization process. Physically, the minimization of thermodynamic free energies may only involve macroscopic thermodynamic
11

state variables, not phase space degrees of freedom such as link length, which would approach their potential energy minima as
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Fig. 3. Single-chain mechanical response when using the Morse-FJC model. (a) The nondimensional force 𝜂 = 𝛽𝑓𝓁𝑏 as a function of the nondimensional end-to-end
length 𝛾 = 𝜉∕𝑁𝑏𝓁𝑏 for 𝛽𝑢𝑏 = 25 and varying 𝜅. (b) 𝜂 as a function of 𝛾 for 𝜅 = 200 and varying 𝛽𝑢𝑏.

thermal energy becomes scarce. The apparent success of the current method can be attributed to the dominance of potential energy
over the free energy minimization in the same limit, which in effect produces similar results.

We select the Morse potential (Morse, 1929) as the specific form of the 𝑢FJC link potential,

𝑢(𝓁) = 𝑢𝑏
[

1 − 𝑒−
√

𝑘𝑏∕2𝑢𝑏(𝓁−𝓁𝑏)
]2
, (66)

where 𝑢𝑏 is the depth of the Morse potential energy well and 𝑘𝑏 is the curvature near the bottom of the well (the stiffness). The
nondimensional parameters here are the nondimensional energy 𝛽𝑢𝑏, the nondimensional stiffness 𝜅 ≡ 𝛽𝑘𝑏𝓁2

𝑏 , and the link stretch
𝜆 ≡ 𝓁∕𝓁𝑏. The stretch 𝜆‡ ≡ 1 + ln(2)

√

2𝛽𝑢𝑏∕𝜅 is the transition state stretch since this is where the nondimensional force 𝜂 will reach
its maximum possible value of 𝜂max =

√

𝜅𝛽𝑢𝑏∕8. The derivative of the Morse potential gives the force as a function of link length,
which is then inverted and rescaled to obtain the stretch of a single link under force,

𝜆(𝜂) = 1 +

√

2𝛽𝑢𝑏
𝜅

ln

[

2
1 +

√

1 − 𝜂∕𝜂max

]

for 𝜂 ≤ 𝜂max =
√

𝜅𝛽𝑢𝑏
8

. (67)

tilizing Eq. (67) with Eq. (64), we plot the mechanical response of the Morse-FJC in Fig. 3, varying 𝜅 in Fig. 3(a) and varying 𝛽𝑢𝑏
n Fig. 3(b). As 𝜅 increases, we observe a more dramatic transition near 𝛾 = 1 as the increasingly-stiff links begin to be stretched.
ncreasing 𝜅 directly increases the maximum force 𝜂max and causes it to be reached at lower stretches, thereby causing the maximum
ondimensional end-to-end length to decrease with increasing 𝜅 (𝛾max ∼ 𝜆‡). As we increase 𝛽𝑢𝑏, we see an increase in both 𝜂max
nd 𝛾max; the overall mechanical response away from 𝜂max is unchanged. When varying either 𝜅 or 𝛽𝑢𝑏, the mechanical response at
low 𝛾 is unchanged since this regime is dominated by the initially-compliant entropic behavior of the Langevin function (𝜂).

We now compute the other thermodynamic functions of interest: the equilibrium distribution 𝑃 eq
A (𝝃) and the reaction rate

oefficient function 𝑘′(𝝃). For this single-chain model it is most practical to work in terms of the nondimensional chain end-to-
nd vector 𝜸 = 𝝃∕𝑁𝑏𝓁𝑏. Further, our single-chain functions and equilibrium distributions depend only on 𝛾 =

√

𝜸 ⋅ 𝜸. We therefore
introduce the nondimensional configurational Helmholtz free energy per link

𝜗∗A,con(𝛾) ≡
𝛽𝜓∗

A,con(𝛾)

𝑁𝑏
. (68)

We will assume that the number of links in our chain 𝑁𝑏 remains high enough to utilize the Gibbs–Legendre method (Buche and
Silberstein, 2020) to approximate 𝜓∗

A,con(𝛾), which in this case causes 𝜗
∗
A,con(𝛾) to be independent of 𝑁𝑏. While the Gibbs–Legendre

method is invalid under sufficiently small forces (Neumann, 1985), the regime of end-to-end lengths where this matters essentially
vanishes with increasing 𝑁𝑏 (Manca et al., 2012, 2014). Further, these tiny forces contribute little when integrating over all end-to-
nd lengths in Eq. (59) for the stress, causing the Gibbs–Legendre method to become correct as 𝑁𝑏 increases (Buche and Silberstein,
2020). As detailed in Appendix C.2, we obtain

𝜗∗A,con(𝛾) = ln
{

𝜂 exp[𝜂(𝜂)]
sinh(𝜂)

}

+ 𝛽𝑢(𝜂), (69)

where 𝜂 = 𝜂(𝛾) is implied, which allows us to compute the nondimensional equilibrium distribution

𝒫eq
A (𝛾) = 1

−𝛽𝛥𝛹0

(

𝑒−𝑁𝑏𝜗
∗
A,con(𝛾)

−𝑁𝑏𝜗∗ (𝛾̃)

)

. (70)
12
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Fig. 4. The reaction rate coefficient function 𝑘′(𝛾) scaled by its initial value 𝑘′(0) as a function of the nondimensional end-to-end length 𝛾 = 𝜉∕𝑁𝑏𝓁𝑏, using the
orse-FJC model for 𝛽𝑢𝑏 = 25, and varying 𝜅.

n Appendix C.2 we also obtain the forward reaction rate coefficient function

𝑘′(𝛾) =
𝜔‡

2𝜋
𝑒−𝛽𝛥𝛹

∗
‡ (𝛾). (71)

Here 𝜔‡ ≡
√

2𝜅∕𝑚𝛽𝓁2
𝑏 is the attempt frequency, and 𝛥𝛹

∗
‡ (𝛾) is the Helmholtz free energy barrier of a single link to its transition

state as a function of chain extension,

𝛥𝛹∗
‡ (𝛾) ≡ 𝑢(𝓁‡) − 𝑢(𝜂) − b𝑇 ln

{𝜆‡ sinh(𝜆‡𝜂) exp[𝜂(𝜂)]
sinh(𝜂) exp[𝜆‡𝜂(𝜆‡𝜂)]

}

. (72)

Note that we often use the initial rate 𝑘′(0) in place of the attempt frequency 𝜔‡ or mass 𝑚 as a more convenient but equivalent
parameterization. The Helmholtz free energy barrier 𝛥𝛹∗

‡ (𝛾) consists of a positive contribution from the potential energy difference
and a negative contribution from the entropy difference. The initial nondimensional barrier is 𝛽𝛥𝛹∗

‡ (0) = 𝛽𝑢𝑏∕4 − 2 ln 𝜆‡, where
recall 𝜆‡ = 1+ ln(2)

√

2𝛽𝑢𝑏∕𝜅. Due to our requirement 𝜅 ≫ 1, the nondimensional potential energy barrier 𝛽𝑢𝑏 will tend to dominate
the scale of 𝛽𝛥𝛹∗

‡ (𝛾) and therefore 𝑘
′(𝛾). If we assume 𝜆‡ ≈ 1, we ignore the entropic term and take 𝑢(𝜂) ≈ 𝜂𝜆(𝜂)∕2, which then

causes 𝑘′(𝛾) in Eq. (71) to resemble the short-distance force-modified-barrier transition state theories (Kauzmann and Eyring, 1940;
Bell, 1978) that have been applied to polymer chains (Zhurkov, 1984; Tanaka and Edwards, 1992a; Silberstein et al., 2013, 2014;
Meng et al., 2016; Tehrani and Sarvestani, 2017). The general case behavior of 𝑘′(𝛾) here in Eq. (71) is more similar to the model
of Dudko et al. (2006) than these short-distance approximated models, especially since it accounts for both entropic and potential
energy effects. Dudko’s model is based on Kramers’ theory of diffusive barrier crossing (Kramers, 1940; Zwanzig, 2001) and has
proved useful both in polymer chain AFM experiments (Schwaderer et al., 2008) and polymer network constitutive models (Lavoie
et al., 2019a). Our formulation for 𝑘′(𝛾) has an advantage over Dudko’s model: our 𝑘′(𝛾) is directly connected to the statistical
mechanics of the single-chain model, which provides guarantees such as dissipation requirements and solution existence.

The reaction rate coefficient 𝑘′(𝛾) is plotted as a function of the nondimensional end-to-end length 𝛾 in Fig. 4 for 𝛽𝑢𝑏 = 25 and
varying 𝜅. We find that 𝑘′(𝛾) decreases slightly from 𝑘′(0) as the chain is extended, which is due to the increasing entropy of the
links. After a critical chain extension just above unity, we find that 𝑘′(𝛾) increases dramatically due to the potential energy barrier
to the transition state being rapidly reduced. As 𝜅 is increased, this trend becomes even more dramatic since the potential energy
barrier is proportional to 𝜅, and the observed critical extension approaches unity. Varying 𝛽𝑢𝑏 provides little change to the shape of
𝑘′(𝛾)∕𝑘′(0) and effectively varies the maximum allowable extension (not shown). Eqs. (71)–(72) show that 𝑘′(0) decays exponentially
fast as 𝛽𝑢𝑏 becomes large, so varying 𝛽𝑢𝑏 changes the scale of 𝑘′(𝛾) but not its shape. Having both 𝜅 ≫ 1 and 𝛽𝑢𝑏 ≫ 1 simultaneously
tends to result in reaction rate coefficient function 𝑘′(𝛾) that is essentially constant before rapidly becoming effectively infinite at
and above some critical extension 𝛾𝑐 ≳ 1, similar to the 𝜅 = 5000 case in Fig. 4.

3.2. Distribution evolution and solution

Now that the single-chain mechanics and kinetics for the 𝑢FJC model have been formulated, we next determine the evolution
equation for the distribution of intact chains in the network and calculate the stress using Eq. (59). We will continue writing our
results in terms of the nondimensional chain end-to-end vector 𝜸 = 𝝃∕𝑁𝑏𝓁𝑏, and we correspondingly utilize the nondimensional
distribution 𝒫 (𝜸; 𝑡) ≡ (𝑁 𝓁 )3𝑃 (𝝃; 𝑡). It is equally probable that any given link will break, since each behaves the same under the
13
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Gibbs–Legendre method, so when we begin at equilibrium, we will have the same 𝑃 tot
B𝑗

(𝑡) = 𝑃 tot
B (𝑡)∕𝑀 for each 𝑗 of the 𝑀 = 𝑁𝑏

aths, and therefore we may apply conservation and simplify Eq. (58) using

𝜌(𝑡) ≡
𝑃 tot
B𝑗

(𝑡)

𝑃 tot,eq
B𝑗

=
𝑃 tot
B (𝑡)

𝑃 tot,eq
B

=
1 −∭ 𝑃A(𝝃; 𝑡) 𝑑3𝝃
1 −∭ 𝑃 eq

A (𝝃) 𝑑3𝝃
=

1 −∭ 𝒫A(𝜸; 𝑡) 𝑑3𝜸
1 −∭ 𝒫eq

A (𝜸) 𝑑3𝜸
. (73)

Eqs. (58) and (73) allows us to retrieve a linear first order integro-partial differential equation for 𝒫A(𝜸; 𝑡),

𝜕𝒫A(𝜸; 𝑡)
𝜕𝑡

= −
[

𝜕𝒫A(𝜸; 𝑡)
𝜕𝜸

𝜸
]

∶ 𝐋(𝑡) − 𝑘(𝜸)
{

𝒫A(𝜸; 𝑡) −
𝒫eq
A (𝜸)

𝑃 tot,eq
B

[

1 −∭ 𝒫A(𝜸̃; 𝑡) 𝑑3𝜸̃
]

}

, (74)

here 𝑘(𝜸) ≡ 𝑁𝑏𝑘′(𝜸) is the net reaction rate coefficient function. The proportionality of the net rate of breaking 𝑘(𝜸) to the
umber of links 𝑁𝑏 is the effect predicted by Lake and Thomas (1967) and has been used by recent models (Lavoie et al., 2016).
his Lake-Thomas effect is also observed in the manner of our Gibbs–Legendre approximation, which causes an equal force to be
xperienced across all links and the total energy to scale with 𝑁𝑏. Eq. (74) appears similar to several from the literature (Tanaka and
dwards, 1992b; Vernerey et al., 2017; Brighenti et al., 2017; Vernerey, 2018; Guo and Long, 2020), but there are two fundamental
ifferences. First, two evolution equations are typically written — one for the normalized probability 𝒫A(𝜸; 𝑡)∕𝑃 tot

A (𝑡) and another
or the concentration 𝑛𝑃 tot

A (𝑡) – rather than the single evolution equation for 𝒫A(𝜸; 𝑡) in Eq. (74). Second, it is often assumed that one
ay prescribe both forward and reverse reaction rate coefficients independently, where the forward rate would be the same 𝑘(𝜸)
ere, but the reverse rate would be 𝑘𝑎(𝜸)𝒫

eq
A (𝜸)∕𝑃 tot,eq

B . Not only would any 𝑘𝑎(𝜸) ≠ 𝑘(𝜸) violate the statistical mechanical derivation
e have outlined in Section 2.1, namely Eq. (28), but it would also cause the equilibrium distribution of the evolution equation
𝑘𝑎(𝜸)∕𝑘(𝜸)]𝒫

eq
A (𝜸) to differ from the equilibrium distribution from statistical mechanics 𝒫eq

A (𝜸). Separately specifying the forward
nd reverse reaction rate coefficient functions then causes a thermodynamic inconsistency regardless of the single-chain model used.
onceptually, the kinetic rate(s) at which chemical systems approach equilibrium should not change the equilibrium configuration,
ince statistical thermodynamics allows equilibrium configurations to be obtained independently of the kinetics.
We present the path to obtain the exact solution to Eq. (74) in Appendix D. For 𝒫A(𝜸; 𝑡 ≤ 0) = 𝒫eq

A (𝜸) and 𝐅(𝑡 ≤ 0) = 𝟏, the
olution can be written as

𝒫A(𝜸; 𝑡) = ∫

𝑡

−∞
𝒫eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝜸
]

𝑘
[

(𝑡)𝐅(𝜏) ⋅ 𝜸
]

exp
{

−∫

𝑡

𝜏
𝑘
[

(𝑡)𝐅(𝑠) ⋅ 𝜸
]

𝑑𝑠
}

𝜌(𝜏) 𝑑𝜏, (75)

here the relative deformation (Paolucci, 2016) is defined as (𝑡)𝐅(𝜏) ≡ 𝐅(𝜏) ⋅ 𝐅−1(𝑡), and where the solution for 𝜌(𝑡), consistent
ith its definition in Eq. (73) and the solution for 𝒫A(𝜸; 𝑡) in Eq. (75), is given in Appendix D. The stress from Eq. (59), which in
ondimensional form is

𝝈(𝑡) + 𝑝(𝑡)𝟏
𝑛∕𝛽

= 𝑁𝑏∭ 𝒫A(𝜸; 𝑡) 𝜂(𝛾)
(

𝜸𝜸
𝛾

)

𝑑3𝜸, (76)

an now be evaluated at any time 𝑡. As shown in Appendix D.2, the relation for the stress obtained when substituting into Eq. (75)
s objective. For 𝑘(𝜸) ∝ 𝑘′(𝜸) and 𝒫eq

A (𝜸) derived from a single-chain model, such as the Morse-FJC, our solution is guaranteed to
onverge. If one wishes to instead prescribe positive semidefinite functions 𝑘′(𝜸) and 𝒫eq(𝜸) independently of a chain model, our
solution still holds as long as

∭ 𝑘′(𝜸)𝒫eq
A (𝜸) 𝑑3𝜸 <∞. (77)

If this condition is not met, not only does our solution not hold, but there is no solution in general, which means numerical methods
will also fail. This condition in Eq. (77) also keeps the dissipation rxn(𝑡) in Eq. (60) finite. Thus, given admissible 𝑘′(𝜸), 𝒫

eq
A (𝜸), and

(𝑡), we may evaluate 𝒫A(𝜸; 𝑡) in Eq. (75) when integrating for the stress in Eq. (76). Our results here in Section 3.2 can be applied
o other chains that have all identical reaction pathways and are long enough to utilize the Gibbs–Legendre method, or to chains
f any length that instead have only a single reaction pathway (i.e. a chain with a single weak link).

.3. Adjustments for inhomogeneous chains

Polymer networks are often synthesized to contain sacrificial bonds that are designed to break or activate before the rest of
he bonds in the network (Ducrot et al., 2014; Clough et al., 2016; Wang et al., 2021). We can adjust our previous relations to
ccommodate these cases — we consider the same 𝑢FJC model, but now with 𝑁𝑏 breakable links and 𝑁#

𝑏 unbreakable links. The
nbreakable links are assumed to remain in the harmonic region (effectively EFJC), have rest-length 𝓁#

𝑏 , and nondimensional stiffness
#. Due to the nature of the Gibbs–Legendre method, we may simply add these links onto our asymptotic approximations for the
echanical response and Helmholtz free energy. Beginning with the mechanical response in Eq. (64), for an inhomogeneous chain
e now have

𝛾(𝜂) ∼
𝑁𝑏

# [(𝜂) + 𝜆(𝜂) − 1] +
𝜍𝑁#

𝑏
#

[

(𝜍𝜂) + 𝜍𝜂
#

]

, (78)
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Fig. 5. Single-chain functions for the inhomogeneous Morse-FJC model with 𝑁𝑏 = 1, 𝑁#
𝑏 = 8, 𝜅 = 200, 𝛽𝑢𝑏 = 25, and 𝜍 = 1, while varying 𝜅#. (a) The

ondimensional force 𝜂 = 𝛽𝑓𝓁𝑏 as a function of the nondimensional end-to-end length 𝛾 = 𝜉∕𝓁𝑏(𝑁𝑏 + 𝜍𝑁#
𝑏 ). (b) The reaction rate coefficient function 𝑘

′(𝛾) scaled
y its initial value 𝑘′(0) as a function of 𝛾.

here 𝜍 ≡ 𝓁#
𝑏∕𝓁𝑏 is the ratio of rest-lengths of the two link types. Note that the contour length of the chain that scales 𝜉 for 𝛾 is now

𝑏𝓁𝑏 +𝑁#
𝑏 𝓁

#
𝑏 = 𝑁𝑏𝓁𝑏(1 + 𝜍𝑁#

𝑏 ∕𝑁𝑏). Similarly, we adjust Eq. (69) for the nondimensional configurational Helmholtz free energy

(

𝑁𝑏 +𝑁#
𝑏
)

𝜗∗A,con(𝛾) ∼ 𝑁𝑏

[

ln
{

𝜂 exp[𝜂(𝜂)]
sinh(𝜂)

}

+ 𝛽𝑢(𝜂)
]

+𝑁#
𝑏

[

ln
{

𝜍𝜂 exp[𝜍𝜂(𝜍𝜂)]
sinh(𝜍𝜂)

}

+
(𝜍𝜂)2

2𝜅#

]

, (79)

he equilibrium distribution 𝒫eq
A (𝛾) is still given by Eq. (70) after taking 𝑁𝑏𝜗∗A,con(𝛾) ↦ (𝑁𝑏 + 𝑁#

𝑏 )𝜗
∗
A,con(𝛾) and using Eq. (79).

he forward rate coefficient function 𝑘′(𝛾) is still given by Eqs. (71)–(72), and the net reaction rate coefficient function is still
(𝛾) = 𝑁𝑏𝑘′(𝛾). The nondimensional stress from Eq. (76) is now

𝝈(𝑡) + 𝑝(𝑡)𝟏
𝑛∕𝛽

=
(

𝑁𝑏 + 𝜍𝑁#
𝑏
)

∭ 𝒫A(𝜸; 𝑡) 𝜂(𝛾)
(

𝜸𝜸
𝛾

)

𝑑3𝜸. (80)

The inhomogeneous single-chain mechanical response and reaction rate coefficient function is studied in Fig. 5 for varying 𝜅#. For
these results we use 𝑁𝑏 = 1, 𝑁#

𝑏 = 8, 𝜅 = 200, 𝛽𝑢𝑏 = 25, and 𝜍 = 1. For 𝜅# < 𝜅, the mechanical response of the chain is dominated by
the stretching of the unbreakable links, and the stiffer breakable link is stretched slowly due to the smaller forces reached per overall
extension. This in turn causes the reaction rate coefficient function to more gradually increase with extension since the breakable
link will require larger chain extensions to experience the forces necessary for it to begin breaking. For 𝜅# > 𝜅, the mechanical
response of the chain is dominated by the stretching of the breakable link, where for 𝛾 > 1 the chain extension becomes localized
almost entirely in stretching the breakable link. Due to this stretch localization, the reaction rate coefficient function begins to spike
almost instantaneously at 𝛾 = 1. We also observe that for 𝜅# ≫ 𝜅 we may instead take 𝜅# → ∞ to obtain an accurate FJC-based
approximation, which is equivalent (after switching the Morse potential to the relevant potential) to many recent models (Mao et al.,
2017; Mao and Anand, 2018; Li and Bouklas, 2020). Interestingly, combining 𝜅# → ∞ with 𝜍 → ∞ results in the FJC model that
fails instantaneously for some 𝛾𝑐 ≲ 1, which is a simplified form of the approach utilized by Vernerey et al. (2018).

4. Macroscopic results

Now that we have implemented the 𝑢FJC single-chain model within our general theory, the resulting constitutive model is
applied to predict the mechanics of polymer networks with bond breaking. First, we consider two special cases (1) where chains
break rate-independently and irreversibly, and (2) where chains dynamically break and reform in a transient manner. In either case,
we compare the theoretical results from the specialized models to experimental results from exemplary polymers in the literature.
Next, we demonstrate the features of the general model and examine the results in several parametric studies. We then apply the
general model to another polymer that is considered to have force-sensitive reversible chain breaking.

4.1. Rate-independent irreversible breaking

The reaction rate coefficient function 𝑘′(𝛾) often behaves as being nearly constant at its initial value 𝑘′(0) before suddenly
becoming effectively infinite beyond some critical extension 𝛾𝑐 , as observed in Figs. 4–5. Physically, this corresponds to stiff but
breakable links remaining unstretched until the entire chain is extended past the contour length, where the high and rapidly
increasing force required for further extension almost immediately breaks the chain. When thermal energy alone is insufficient
to break the links, we neglect the force-free breaking by letting 𝑘′(0) → 0, which then also implicitly neglects reforming.
15
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Mathematically, the capability to neglect 𝑘′(0) results from the nondimensional link energy 𝛽𝑢𝑏 being sufficiently large in order
to cause 𝑘′(0) ∝ 𝑒−𝛽𝑢𝑏 to become negligible compared to the slowest rate 1∕ , where  is the total time of testing. As shown in
ppendix D.4, the solution for the distribution of intact chains 𝒫A(𝜸; 𝑡) in this special case of rate independent irreversible breaking
implifies to

𝒫A(𝜸; 𝑡) = 𝒫eq
A

[

𝐅−1(𝑡) ⋅ 𝜸
]

𝛩(𝜸; 𝑡, 0), (81)

here the yield function 𝛩(𝜸; 𝑡, 𝜏) is defined as

𝛩(𝜸; 𝑡, 𝜏) ≡

{

1, ‖

‖

‖

(𝑡)𝐅(𝑠) ⋅ 𝜸
‖

‖

‖2
≤ 𝛾𝑐 ∀𝑠 ∈ [𝜏, 𝑡],

0, otherwise.
(82)

Similar forms of this special case have been considered previously, sometimes accounting for variability in the value of 𝛾𝑐 (Vernerey
et al., 2018). Here, if we take 𝛾𝑐 → ∞, chains never break and we retrieve 𝒫A(𝜸; 𝑡) = 𝒫eq

A
[

𝐅−1(𝑡) ⋅ 𝜸
]

, the expected solution for a
etwork of non-breaking chains (Buche and Silberstein, 2020).
This irreversible breaking is especially relevant when considering the sacrificial networks designed to break down within tough-

ned elastomers. These polymers experience noticeable hysteresis under cyclic deformation, exhibiting the Mullins effect (Mullins,
948) and dissipating considerable amounts of energy (Webber et al., 2007). Here, we consider the triple ethyl acrylate network
EA0.5EAEA) of Ducrot et al. (2014). The first network (denoted EA0.5) is synthesized using ethyl acrylate monomers and
echanoluminescent crosslinkers that are specifically weaker than the EA links, allowing the damage in the first network to be
isualized. The second network and third networks (each denoted EA) are synthesized by swelling the existing network in ethyl
crylate monomers and sparsely crosslinking them. The resulting EA0.5EAEA material, at a temperature of 𝑇 = 20 ◦C, was loaded
in cyclic uniaxial tension while the stress and light emission were measured. Repeat cycles showed negligible light emission and
no change in stress, supporting the essential argument that chains in the network effectively break both irreversibly and rate-
independently. We model the first network as isotropically-swollen, with the volumetric swelling ratio 𝐽 = 15.625 known from the
experiment. The theory presented here may be quickly adjusted to account for this swelling: the equilibrium distribution under the
swelling transforms as 𝒫eq

A (𝛾) ↦ 𝒫eq
A (𝐽−1∕3𝛾)∕𝐽 due to the isotropic swelling deformation 𝐽 1∕3𝟏, where the factor of 𝐽−1 preserves

the total probability. The number density of chains 𝑛 transforms under swelling as 𝑛 ↦ 𝑛∕𝐽 , so if 𝑛 is known in the pre-swollen
configuration, the nondimensional stress from Eq. (80) under swelling is

𝝈(𝑡) + 𝑝(𝑡)𝟏
𝑛∕𝛽

=
(

𝑁𝑏 + 𝜍𝑁#
𝑏
)

∭ 𝐽−2𝒫A(𝐽−1∕3𝜸; 𝑡) 𝜂(𝛾)
(

𝜸𝜸
𝛾

)

𝑑3𝜸. (83)

he nondimensional modulus can be shown to be 3𝐽−1∕3 for long chains, which is expected for the isotropic swelling of a
etwork (Bacca et al., 2017). The first network is modeled as a network of chains of 𝑁𝑏 = 1 irreversibly-breaking links and
𝑁#
𝑏 unbreakable links. The EA0.5 material was reported to have a modulus of 0.6 MPa, which corresponds to 𝑛∕𝛽 = 0.2 MPa
or the first network. The second and third networks were over 100 times more sparsely crosslinked than the first, so we treat
hem as one effective filler network represented by the Neo-Hookean model, valid when chains are sufficiently long (Buche and
ilberstein, 2020). Since the EA0.5EAEA material was reported to have a modulus of 1.5 MPa, we obtain 𝑛∕𝛽 = 0.3 MPa for the
filler network. The average number of monomers between mechanoluminescent crosslinkers in the first network was approximately
34, and the crosslinker itself offers some additional effective monomers, so we use 𝑁#

𝑏 = 38. We take 𝛽𝑢𝑏 = 61.57 corresponding
to 150 kJ/mol, the zero-force bond energy of the mechanoluminescent crosslinker (Clough et al., 2016). We find a good fit to
the overall mechanical response for 𝜅 = 9000, 𝜅# = 6000, and 𝜍 = 4, where 𝜍 > 1 represents that the bond breaking within the
mechanoluminescent crosslinker is short compared to the monomer backbone length. These large stiffness values and the small
effective Kuhn length resulting from a link representing a single monomer are reasonable, as similar parameters have been used
to fit the EFJC model to AFM experimental results for other acrylate chains (Grebikova et al., 2014, 2016). The critical chain
extension 𝛾𝑐 = 1.17 results from the intact limit of the chain at 𝜂max = 263.18. The predicted mechanical response of the material
under cyclic uniaxial tension is shown in Fig. 6(a) along with the experimental results. We find a good overall agreement between
the prediction of our theory and the mechanical response of the material but find some difficulty precisely capturing the unloading
curve shape, a somewhat common issue when modeling this material (Bacca et al., 2017; Vernerey et al., 2018; Lavoie et al.,
2019b; Mulderrig et al., 2021). In addition to the mechanical response, we use our theory to predict the light intensity measured
experimentally as the mechanoluminescent crosslinkers break by assuming that the intensity is proportional to the rate at which
chains break in the first network (Lavoie et al., 2019b). The intensity would then be proportional to − 𝑑

𝑑𝑡𝑃
tot
A (𝑡), and we find a good

it for a proportionality constant of 109 photon⋅seconds. The theoretical prediction is shown in Fig. 6(b) along with the experimental
esults, where we observe reasonable agreement but an important shape difference. Specifically, our theory predicts a more gradual
reakdown of the first network than is observed in the experiment. There are several possible explanations for this discrepancy that
e cannot distinguish among within the current framework. First, it could be due to the polydispersity that is present within the
irst network, modeled here as effectively monodisperse. Second, the assumption that the distribution of chains in the first network
well isotropically as the filler network is introduced could be invalid for this large degree of swelling. Third, the breaking of chains
n the first network could induce a more complicated damage mechanism that involves the filler networks (Morovati et al., 2020).
ourth, the discrepancy could be related to transfer reactions that create additional crosslinks during synthesis (Ducrot et al., 2014).
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Fig. 6. (a) Mechanical response of the triple ethyl acrylate network (EA0.5EAEA) of Ducrot et al. (2014) under cyclic uniaxial tension, and that predicted by
the rate-independent irreversibly-breaking model. (b) Light emission from the sacrificial mechanoluminescent crosslinkers breaking within the first network in
the same experiment, and that predicted by the model.

4.2. Transient breaking

When the initial value of the net reaction rate coefficient function 𝑘0 ≡ 𝑘(0) is appreciable and the critical extension 𝛾𝑐 is large
enough to be neglected, we obtain a constant reaction rate coefficient 𝑘(𝛾) = 𝑘0 over all chain extensions. This idea is traditionally
referred to as the transient network model (Tanaka and Edwards, 1992b; Vernerey et al., 2017). As shown in Appendix D.4, the
solution for the distribution of intact chains 𝒫A(𝜸; 𝑡) in this special case simplifies to

𝒫A(𝜸; 𝑡) = ∫

𝑡

−∞
𝒫eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝜸
]

𝑘0𝑒
−𝑘0(𝑡−𝜏) 𝑑𝜏. (84)

The transient network model has been considered previously in several forms, such as for a Gaussian distribution of freely-jointed
chains (Vernerey et al., 2017) or the Neo-Hookean representation retrieved when using ideal chains (Meng et al., 2019). The solution
in Eq. (84), however, is more general since it is independent of single-chain model. We would like to emphasize several vital features
of this special transient case. First, we are now limited to the utilization of single-chain models that are infinitely extensible since
we have neglected 𝛾𝑐 . Here we will simply replace the 𝑢FJC model with the EFJC model, which is infinitely extensible. Second, note
that we have taken 𝜌(𝑡) = 1, meaning that the total fraction of intact chains 𝑃 tot

A (𝑡) remains constant at 𝑃 tot,eq
A for all time, which

is true here (see Appendix D.4). The decoupling of single-chain kinetics from chain extension and the constant fraction of intact
chains allows us to write the stress as

𝝈(𝑡) = ∫

𝑡

−∞
(𝑡)𝝈(𝜏) 𝑘0𝑒−𝑘0(𝑡−𝜏) 𝑑𝜏, (85)

where (𝑡)𝝈(𝜏) is the stress that the network, if permanent, experiences under the relative deformation (𝜏)𝐅(𝑡). Using Eq. (76), we write
this stress in nondimensional form as

(𝑡)𝝈(𝜏) + (𝑡)𝑝(𝜏)𝟏
𝑛∕𝛽

= 𝑁𝑏∭ 𝒫eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝜸
]

𝜂(𝛾)
(

𝜸𝜸
𝛾

)

𝑑3𝜸. (86)

This simplification allows us to eliminate considerable computational expense: for a given model, we may interpolate from tabulated
values of (𝑡)𝐅(0) and (𝑡)𝝈(0) in order to rapidly perform the integration over the history in Eq. (85). In the ideal chain limit (𝑁𝑏 → ∞)
we obtain the Neo-Hookean model (Buche and Silberstein, 2020), where the right-hand side of Eq. (86) becomes (𝜏)𝐅(𝑡) ⋅ (𝜏)𝐅𝑇 (𝑡).

It is common to consider a network that consists of both permanent and transiently-bonded chains (Hui and Long, 2012). In this
ase, after introducing the fraction of permanent chains 0 ≤ 𝑥𝑝 ≤ 1, Eq. (85) becomes

𝝈(𝑡) = 𝑥𝑝 (𝑡)𝝈(0) + (1 − 𝑥𝑝)∫

𝑡

−∞
(𝑡)𝝈(𝜏) 𝑘0𝑒−𝑘0(𝑡−𝜏) 𝑑𝜏 (87)

We apply Eq. (87) under the ideal chain limit to the polyvinyl alcohol (PVA) gel with both permanent and transient crosslinks
in Long et al. (2014) using 𝑘0 = 0.37/s, 𝑥𝑝 = 16%, and 𝑛∕𝛽 = 24.15 kPa. Two cycles of uniaxial tension at a rate of 0.03/s are applied
to the material with wait = 30 min between cycles. Since 𝑘0wait ≫ 1, our transient model will fully relax between cycles and exactly
repeat the mechanical response of the first cycle, as observed in experiment. The results in Fig. 7(a) indicate show reasonable overall
agreement, but there are discrepancies near the beginning of the loading and unloading portion of the cycles. These results seem
to indicate that the single-timescale approach of the transient network model is effective at short and long times, but that many
timescales are required to capture the full material behavior. In order to generalize for many timescales, we can adjust Eq. (87) to

𝝈(𝑡) = 𝑥𝑝 (𝑡)𝝈(0) + (1 − 𝑥𝑝)
𝑡

(𝑡)𝝈(𝜏)
𝜕𝑔(𝑡 − 𝜏)

𝑑𝜏, (88)
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Fig. 7. (a) Mechanical response of the PVA gel in Long et al. (2014) under cyclic uniaxial tension at a rate of 0.03/s, with predictions provided by the transient
network model and the model adjusted to use a relaxation function. (b) Mechanical response of the PVA gel of Mayumi et al. (2013) under monotonic uniaxial
tension at varying rates, with predictions provided again by both models.

where 𝑔(𝑡) is any relaxation function. Taking 𝑔(𝑡) = 𝑒−𝑘0𝑡 recovers the original transient network model. We instead utilize a
non-exponential relaxation function (Long et al., 2014) which in effect represents many timescales,

𝑔(𝑡) =
[

1 + (𝛼 − 1) 𝑡
𝑡𝑅

]1∕(1−𝛼)
, (89)

here 𝛼 > 1 and 𝑡𝑅 is the characteristic bond breaking time. We utilize the parameters reported by Guo et al. (2016) for our adjusted
odel, which in our case are 𝛼 = 2.6, 𝑡𝑅 = 0.6 s, 𝑥𝑝 = 10% and 𝑛∕𝛽 = 24.15 kPa. The resulting mechanical response in Fig. 7(a) is a

near-perfect fit and a substantial improvement upon the transient model.
The PVA gel we are considering was studied under large deformation and over 4 orders of magnitude of strain rates by Mayumi

et al. (2013). Our parameters change here since this material system is sensitive to synthesis conditions, often causing material
parameters to change from batch-to-batch (Long et al., 2014). These experiments were modeled by Guo et al. (2016), from which
we obtain the relaxation function parameters 𝛼 = 1.99, 𝑡𝑅 = 3.23 s, 𝑥𝑝 = 4.68% and 𝑛∕𝛽 = 37.78 kPa. We utilize Eqs. (85) and (86)
with the EFJC model, fitting 𝑁𝑏 = 50 and 𝜅 = 40 to the exponential hardening model used by Guo et al. (2016). For the transient
network model we use the same 𝑁𝑏 = 50 and 𝜅 = 40, but find 𝑥𝑝 = 5.85% and 𝑘0 = 0.12/s by fitting to the 0.0001/s and 0.1/s
rate results, respectively. The modeling results in each case are shown in Fig. 7(b) with the experimental data. Overall, the adjusted
model provides a reasonable prediction of the mechanical response over all strain rates. We find that the transient network model
tends to perform poorly here at intermediate rates and thus in modeling the mechanical response of more dynamic networks at
intermediate timescales. We attribute this to the insufficiency of the single timescale of the transient model in capturing the many
timescales of the material observed in experiment.

4.3. General behavior

We now examine the behavior of the general model in comparison to the special cases we have just outlined, rate-independent
reversible breaking and transient breaking. The Morse-FJC model is used in each case with the same parameters, apart from the
approximations made to the reaction rate coefficient function for the special cases. The critical extension 𝛾𝑐 for both special cases
is taken to be 𝛾max = 1.146, the maximum extension where the chain remains intact. For the version of the transient model that
does not neglect 𝛾𝑐 , see Appendix D.4. Using an exemplary set of parameters, we apply a series of ramps of rate 𝜖̇ and holds to the
deformation gradient, as shown in Fig. 8(a) as a function of the nondimensional time 𝜖̇𝑡. The total probability that a chain is intact,
𝑃 tot
A (𝑡), under this deformation is shown in Fig. 8(b). While a similar fraction of chains break under the first loading period for each
case, a significant amount of reforming occurs under the following holding period for the general and transient case, in contrast
with the irreversible case where reforming is neglected. In all cases, the unloading periods in the second half of the deformation
history break a negligible fraction of chains. Overall, the transient case seems to provide a reasonable approximation of the general
case for 𝑃 tot

A (𝑡) here. The stress in Fig. 8(c), however, is substantially different for the two special cases versus the general case. Due
to their neglect of the nontrivial shape of 𝑘(𝛾), either special case underestimates the fraction of high-extension chains being broken
and therefore tends to overestimate the stress. The reforming process negligibly affects the stress here since chains tend to reform
towards 𝒫eq

A (𝜸), i.e. the stress-free configuration, leading to a surprisingly similar stress response for the transient and irreversible
models. During the holding periods we observe much more substantial stress relaxation in the general case compared to little in
the transient case, which is again due to 𝑘(𝛾) providing a region where chains break quickly but not instantaneously. This effect is
18

clearly apparent from examining 𝒫A(𝛾1, 0, 0; 𝑡) after the second hold period in Fig. 8(d), where 𝛾1 is the component of 𝜸 aligned with
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Fig. 8. (a) The applied deformation 𝐹11(𝑡) as a function of nondimensional time 𝜖̇𝑡, where 𝜖̇ is a constant and the stress is uniaxial tension. (b) The total
probability that a chain is intact, 𝑃 tot

A (𝑡), as function of nondimensional time for the general model and the two special cases. (c) The applied nondimensional
stress 𝛽𝜎11(𝑡)∕𝑛 as a function of nondimensional time for the same cases. (d) The distribution of intact chains 𝒫A(𝜸; 𝑡) aligned with the loading direction (along
the 𝛾1-axis) at the halfway point 𝑡 = 8∕𝜖̇. The nondimensional parameters are 𝑁𝑏 = 1, 𝑁#

𝑏 = 8, 𝜅 = 200, 𝜅# = 500, 𝜍 = 1, 𝛽𝑢𝑏 = 100, 𝛽𝛥𝛹0 = 5, and 𝑘0∕𝜖̇ = 1∕100,
ith 𝛾𝑐 = 𝛾max = 1.146 for the special cases.

he loading direction. Fig. 8(d) shows that the special cases overestimate the fraction of chains at larger extensions and therefore
oth the stress and the rate of breaking chains. This higher rate of breaking in the general case additionally provides a higher rate
f reforming, which is why the general case shows the highest probability of chains near 𝛾 = 0.

arametric studies
Next we conduct parametric studies to understand the dependencies of the general model. In each case we apply one cycle of

niaxial tension with strain rate 𝜖̇ and maximum stretch 9, plotting the results as a function of the nondimensional time 𝜖̇𝑡. The
ondimensional base parameters are 𝑁𝑏 = 1, 𝑁#

𝑏 = 8, 𝜅 = 200, 𝜅# = 500, 𝜍 = 1, 𝛽𝑢𝑏 = 100, 𝛽𝛥𝛹0 = 5, and 𝑘0∕𝜖̇ = 1∕100. First,
we vary the nondimensional initial reaction rate 𝑘0∕𝜖̇, or equivalently, the nondimensional strain rate 𝜖̇∕𝑘0. Fig. 9(a) shows the
nondimensional stress 𝛽𝜎11(𝑡)∕𝑛 as a function of the nondimensional time 𝜖̇𝑡. As 𝑘0 increases relative to 𝜖̇, we see a decrease in the
time it takes for the network to yield as chains break more rapidly. Increasing 𝑘0 also causes broken chains to reform more rapidly,
which causes an increasing amount of compressive stress when fully returning the network to zero strain. This compressive stress
results from chains reforming towards their stress-free equilibrium distribution while the deformation is still being applied to the
network. The rate-independent irreversibly-breaking special case (𝑘0 = 0) is shown for reference, which still differs considerably
from the lowest 𝑘0 case where 𝑘0∕𝜖̇ = 10−4. For additional insight, we plot the fraction of intact chains within the network 𝑃 tot

A (𝑡)
as a function of the nondimensional time 𝜖̇𝑡 in Fig. 9(b). As 𝑘0 increases relative to 𝜖̇, we see that chains reform more rapidly and
correspondingly, more chains are intact at any time. When 𝑘0 becomes sufficiently large it appears that 𝑃 tot

A (𝑡) remains approximately
onstant at its equilibrium value 𝑃 tot,eq

A , however, this is not exactly true (see Appendix D.4). We see that even when 𝑘0 is quite
mall compared to 𝜖̇, reforming still takes place after a sufficient amount of chains are broken. This is because the total reforming
ate is proportional to 𝜌(𝑡) = [1 − 𝑃 tot

A (𝑡)]∕𝑃 tot,eq
B , which spikes if appreciable amount chains break when 𝑃 tot,eq

B is small, e.g. here
here we have 𝑃 tot,eq = 6.69 × 10−3.
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Fig. 9. Parametric studies concerning rates and the unbreakable links, where we vary (a,b) 𝑘0∕𝜖̇, the nondimensional initial reaction rate, (c,d) 𝜅#, the
nondimensional stiffness of the unbreakable links, and (e,f) 𝑁#

𝑏 , the number of unbreakable links, while keeping the number of breakable links, 𝑁𝑏 = 1,
constant. For one cycle of uniaxial monotonic tension, the nondimensional stress, 𝛽𝜎11(𝑡)∕𝑛, and total probability that a chain is intact, 𝑃 tot

A (𝑡), are plotted as a
unction of the nondimensional time 𝜖̇𝑡.

Second, we examine the behavior of the general model while varying the nondimensional stiffness of the unbreakable links 𝜅#
nd keeping that of the breakable link constant, 𝜅 = 200. Referring back to the single-chain mechanical response and the reaction
ate coefficient function in Fig. 5, we recall that while increasing 𝜅# stiffens the chain near its full extension, it causes the chain
o break more rapidly and reduces the maximum extensibility due to an increasing amount of strain localization in the breakable
ink. Fig. 9(c) shows the nondimensional stress 𝛽𝜎 (𝑡)∕𝑛, where we see that the more rapid breaking resulting from increasing 𝜅#
20

11



Journal of the Mechanics and Physics of Solids 156 (2021) 104593M.R. Buche and M.N. Silberstein

9
𝑁
d
b

b

t
c
𝛾
b
m

c
v
3
s
e
r
b
o
s
T
𝛽
v
o
b
t
a
e
i
r

t
a
i
b
T
i
t
o
s

is manifested as more rapid yielding of the network. While larger 𝜅# causes the stress to increase at small deformations, smaller
𝜅# enables much higher stresses to be reached at large deformations due to increased maximum chain extensibility. The fraction of
intact chains, shown in Fig. 9(d), verifies that as 𝜅# increases, chains break more rapidly as the deformation is applied. Overall, these
results illustrate that for a given breakable bond, maximizing single-chain extensibility may be much more effective than maximizing
chain backbone stiffness when it comes to strengthening networks. These results additionally illustrate that force-driven breaking
of chains within the network is substantially increased after ensuring that the breakable bond is far less stiff than the rest of the
chain. Lastly, we find that for 𝜅# ≫ 𝜅 utilizing the relevant rigid-constraint single-chain model (𝜅# = ∞, which is the FJC model
here) captures both single-chain results and macroscopic-level results.

Third, we examine the behavior of the general model while varying the number of unbreakable links 𝑁#
𝑏 . We keep the number of

breakable links 𝑁𝑏 = 1 constant, so we effectively vary the chain length. Our results are independent of whether the number density
of chains, 𝑛, or number density of unbreakable links, 𝑛𝑁#

𝑏 , is kept constant as 𝑁
#
𝑏 increases since we use the nondimensional stress.

As 𝑁#
𝑏 increases, the nondimensional stress, shown in Fig. 9(e), follows a similar trend we observed in Fig. 9(c) when decreasing 𝜅

#.
Longer chains require less force to have the same end-to-end length as shorter chains, and additionally the average nondimensional
end-to-end length at equilibrium decreases as chains become longer (Rubinstein and Colby, 2003; Buche and Silberstein, 2020).
Combined, these two effects allow a network of longer chains to deform more without breaking down and thus reach higher
nondimensional stresses without yielding. This is verified by examining the fraction of intact chains, shown in Fig. 9(f), where
we see less overall breaking as chains become longer. The results in the ideal chain limit (𝑁#

𝑏 = ∞) are also shown in both Figs.
(e) and 9(f), and are equivalent to the results obtained when using the Neo-Hookean model (Buche and Silberstein, 2020). As
#
𝑏 increases, the results of the general model matches the Neo-Hookean model for an increasing amount of time, but continued
eformation of the network always causes the two to diverge as the finite-length chains in the general model stiffen and begin to
reak.
Fourth, we examine the behavior of the general model while varying the nondimensional breakable link energy 𝛽𝑢𝑏. Referring

ack to the single-chain mechanical response in Fig. 3(b), we recall that increasing 𝛽𝑢𝑏 caused the maximum nondimensional force
that a chain could support, 𝜂max ≡

√

𝜅𝛽𝑢𝑏∕8, to increase. We also recall that the overall mechanical response away from 𝜂max and the
reaction rate coefficient function tended not to change when varying 𝛽𝑢𝑏. Fig. 10(a) shows the nondimensional stress 𝛽𝜎11(𝑡)∕𝑛 as a
function of the nondimensional time 𝜖̇𝑡. As 𝛽𝑢𝑏 increases, the shape of the curve remains relatively unchanged while the overall stress
level increases due to increasing 𝜂max. The fraction of intact chains within the network 𝑃 tot

A (𝑡) as a function of the nondimensional
ime 𝜖̇𝑡 is shown in Fig. 10(b). From 𝑃 tot

A (𝑡) we see that the breakdown of the network is only mildly lessened by increasing 𝛽𝑢𝑏, which
an be further understood after reconsidering the mechanical response in Fig. 3(b) and observing that the maximum extensibility
max also only mildly increases with 𝛽𝑢𝑏. While these results show that the network is strengthened by increasing the energy of the
reakable bond, it is unlikely that this energy would be controllable in the range of many factors of b𝑇 = 1∕𝛽. Correspondingly, the
echanics of the network are relatively insensitive to the breakable bond energy.
Fifth, we examine the behavior of the general model while varying 𝛽𝛥𝛹0, the net Helmholtz free energy change when breaking a

hain. This parameter directly controls the total probability at equilibrium that a chain is intact, 𝑃 tot,eq
A , or broken, 𝑃 tot,eq

B = 1−𝑃 tot,eq
A ,

ia Eq. (70). Fig. 10(c) shows the nondimensional stress, where we see that increasing 𝛽𝛥𝛹0 decreases the initial modulus (roughly
𝑛𝑃 tot,eq

A ∕𝛽) as well as the overall stress. Both trends are almost entirely due to decreasing 𝑃 tot,eq
A : when scaling the nondimensional

tress by 𝑃 tot,eq
A , the curves collapse on one another (not shown). Although it is not observed in the stress, 𝛽𝛥𝛹0 also has a strong

ffect on the rate of reforming. The net reverse reaction rate coefficient function, 𝑘(𝜸)𝒫eq
A (𝜸)∕𝑃 tot,eq

B , multiplies 𝑃 tot
B (𝑡) in Eq. (74). The

ate of breaking relative to reforming is then 𝒫eq
A (𝜸)∕𝑃 tot,eq

B , which becomes large as 𝛽𝛥𝛹0 increases. The stress is mostly unaffected
y the rate of reforming since chains reform towards the equilibrium distribution 𝒫eq

A (𝜸) where they tend not to contribute to the
verall stress. Importantly, this reforming towards the stress-free equilibrium distribution does not appear to provide any appreciable
tress reduction, although more rapid reforming does cause an increasing amount of compression when the strain is returned to zero.
he fraction of intact chains, shown in Fig. 10(d), allows us to better examine the effects of the rate of reforming broken chains. As
𝛥𝛹0 increases, more rapid reforming prevents a large percentage of broken chains to be reached at any time, and the equilibrium
alue (which also increases) is more quickly recovered after the loading portion. When 𝛽𝛥𝛹0 is sufficiently large, the reforming
f broken chains becomes so rapid that 𝑃 tot

A (𝑡) appears to remain constant at its equilibrium value. This result might lead one to
elieve that for 𝛽𝛥𝛹0 ≫ 1, 𝜌(𝑡) = 𝑃 tot

B (𝑡)∕𝑃 tot,eq
B could be approximated as 𝜌(𝑡) ∼ 1 within the solution for 𝒫A(𝜸; 𝑡) in Eq. (75),

hus avoiding computing the solution for 𝜌(𝑡) in Appendix D. Such an approximation fails entirely: 𝜌(𝑡) spikes and decays rapidly
s chains break and are immediately reformed, playing a crucial role in the solution for 𝒫A(𝜸; 𝑡). Taking 𝜌(𝑡) ∼ 1 then retrieves
ntirely different results where reforming is vastly under-predicted and 𝑃 tot

A (𝑡) does not actually remain constant (not shown). This
s unfortunate, because cases where 𝛽𝛥𝛹0 ≫ 1 tend to be the most computationally expensive and represent the cases where chains
equire considerable force to break but reform quickly afterward.
Sixth and lastly, we examine the behavior of the general model while varying the number of breakable links 𝑁𝑏. We keep the

otal number of links 𝑁𝑏 +𝑁#
𝑏 = 9 constant, so the chain length remains constant and the number of unbreakable links 𝑁#

𝑏 varies
ccordingly. In effect, this varying 𝑁𝑏 while keeping 𝑁𝑏 +𝑁#

𝑏 constant varies the fraction of the chain that is breakable. The stress
n Fig. 10(e) decreases mildly as 𝑁𝑏 increases while retaining the same overall shape. This is mostly due to the net breaking rate
eing proportional to 𝑁𝑏, but it is also to the equilibrium fraction of intact chains 𝑃 tot,eq

A decreasing as 𝑁𝑏 increases, i.e. Eq. (70).
his is directly observed in Fig. 10(f), where the evolution of the fraction of intact chains in the network, 𝑃 tot

A (𝑡), is shown. As 𝑁𝑏
ncreases, chains break more rapidly and allow a larger fraction of chains to be broken overall. The total rate of reforming seems
o increase with 𝑁𝑏, but this is simply due to more chains being broken, driving faster reforming due to the system being further
ut of equilibrium. Our results here verify that including more breakable bonds within a chain of a fixed contour length causes
21

ubstantially increased bond breaking under a given deformation.
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Fig. 10. Parametric studies concerning the breakable link(s), where we vary (a,b) 𝛽𝑢𝑏, the nondimensional breakable link energy, (c,d) 𝛽𝛥𝛹0, the net Helmholtz
free energy change when breaking a chain, and (e,f) 𝑁𝑏, the number of breakable links, while keeping the total number of links, 𝑁𝑏 +𝑁#

𝑏 = 9, constant. For
one cycle of uniaxial monotonic tension, the nondimensional stress, 𝛽𝜎11(𝑡)∕𝑛, and total probability that a chain is intact, 𝑃 tot

A (𝑡), are plotted as a function of the
ondimensional time 𝜖̇𝑡.

eneral model application
Now that our parametric study is finished, we apply the general model to a material system from the literature with force-sensitive

eversible crosslinks. A tough, self-recovering hydrogel was synthesized by Zheng et al. (2016) using metal-coordination complexes
s reversible crosslinks. This system was modeled by Lin et al. (2020), where the crosslink breaking rate was taken to increase
s the network experienced more stress to account for force-sensitive breaking. We obtain parameters for our model as follows.
he hydrogel was synthesized with 10% mole fraction of crosslinking monomers, so when taking 𝑁 = 1 we obtain 𝑁# = 9 after
22
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Fig. 11. Stress as a function of stretch for one cycle of uniaxial monotonic tension, repeated for different maximum stretches. The experimental results for the
metal-coordinated gel of Lin et al. (2020) are shown with those predicted by the general model.

taking each link to represent a monomer. We obtain 𝑛∕𝛽 = 0.48 MPa from half of the reported shear modulus, 0.96 MPa. We take
𝑘0 = 2 × 10−4/s from the force-free rate of breaking obtained for the model of Lin et al. (2020), and similarly take 𝛽𝛥𝛹0 = 8.55 in
order to match total reforming rate of the model, 𝐾̂ = 1/s. Otherwise, we find 𝜍 = 1, 𝛽𝑢𝑏 = 100, 𝜅 = 200, and 𝜅# = 400 provides the
best fit. The stress as a function of applied stretch is shown in Fig. 11 for one cycle of uniaxial monotonic tension, where different
tests are performed to different maximum stretches. For the first test (to a stretch of 2.5), we find that our model accurately predicts
the loading curve from the experiment but upon unloading overpredicts the recovery and thus underpredicts the dissipation. For
the second test (to a stretch of 4), the model begins to better predict the growing amount of dissipation, but still overpredicts
the recovery and begins to yield. For the third test (to a stretch of 5.5), the model continues to yield and deviates strongly from
the experimental loading curve. Overall, since our model cannot create large amounts of dissipation without significantly breaking
down the network, it is unable to capture the mechanical response observed in experiment due to the accompanying significant
yielding. We attribute this to our model not accounting for the viscous deformation resulting from broken portions of the network
freely flowing before reforming. This was not encountered earlier in Section 4.1 when modeling the multinetwork elastomer since
the secondary networks provided integrity while the sacrificial network broke down. This viscous flow was included in the model
of Lin et al. (2020) and allowed it to make more accurate predictions. Here, the viscous flow would allow for increased dissipation
without requiring the significant network breakdown that creates artificial yielding, and additionally would reduce the predicted
amount of recovery.

5. Conclusion

We have accomplished a fundamental derivation leading to a constitutive model for the stress–strain behavior of elastomers
with chain breaking that properly incorporates the statistical mechanics of a general single-chain model. We have shown that the
single-chain mechanical response, the breaking and reforming kinetics, and the equilibrium distribution of chains in the network
are all inextricably determined by the single-chain model Hamiltonian. Our meticulous formulation was seamlessly brought to the
continuum scale, where we obtained the Cauchy stress entirely in terms of the applied deformation, the temperature, the network
chain density, and the single-chain model. We showed that the second law of thermodynamics was automatically arbitrarily satisfied
as a consequence of our statistical mechanical treatment. We introduced, developed, and studied the potential-supplemented freely
jointed chain (𝑢FJC) model. We then accomplished a valuable exact solution for the evolving distribution of chains in the network,
which is applicable beyond the 𝑢FJC model.

Next, we developed two special cases of our constitutive model and applied them to exemplary polymer materials from the
literature. In the case of the multinetwork elastomer, the rate-independent irreversible theory was mostly successful in modeling
both the mechanical response of the material and the breakdown of the sacrificial network. In the case of the dual crosslink gel,
the single timescale of the transient network model was mostly unable to capture the rate-dependent mechanical response of the
material. We then examined the behavior of our constitutive model in the general case, where we contrasted it with the two special
cases and performed several parametric studies to highlight how material performance could be tuned. Afterward we applied the
general model to a hydrogel with force-sensitive reversible metal-coordinated crosslinks, where we found that the model was unable
to capture the toughness of the material without artificially yielding. Overall, we observed the following: while chain breaking is
a dominant feature in the large deformation of many elastomeric systems, related phenomena often become similarly important as
the network breaks down, limiting the success of our current approach. For example, breaking bonds could increase the effective
contour length of chains rather than simply reduce the amount of intact chains, similar to network alteration theory (Marckmann
23
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et al., 2002; Chagnon et al., 2006). This idea is supported by a recent molecular dynamics study, which determined that network
breakdown in the same multinetwork elastomer we considered here was strongly tied to the evolving shortest contour length between
crosslinks (Yin et al., 2020). Another example: significant network breakdown – especially in the case of a single network material
– seems to be accompanied by additional viscous flow not included in our model (Lin et al., 2020). Nonetheless, our existing theory
provides a strong foundation to build upon and include additional physical mechanisms. The presented approach is a robust method
to obtain macroscopic constitutive functions in terms of molecular functions and parameters.
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Appendix A. Simplification under transition state theory

Here we detail the mathematical operations involved with simplifying the reaction rates ′
𝑗 (𝝃; 𝑡) and′′

𝑗 (𝝃; 𝑡) in Eqs. (13) and (14)
when applying the assumptions of transition state theory, resulting in Eqs. (24) and (25). We first substitute the primary assumption
of transition state theory Eq. (16) into Eq. (13) for

′
𝑗 (𝝃; 𝑡) =

𝑃A(𝝃; 𝑡)
q𝑃 eq

A (𝝃) ∫
⋯∫ 𝑒−𝛽𝐻(𝛤 ) 𝑝𝑗

𝑚𝑗
𝛩(𝑝𝑗 )𝛿3 [𝐑(𝛤 ) − 𝝃] 𝛿

(

𝓁‡
𝑗 − 𝓁𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

𝑑𝛤 . (A.1)

Similarly, we substitute Eq. (18) into Eq. (14) for

′′
𝑗 (𝝃; 𝑡) =

𝑃B𝑗 (𝝃; 𝑡)

q𝑃 eq
B𝑗
(𝝃) ∫ ⋯∫ 𝑒−𝛽𝐻(𝛤 )

(

−
𝑝𝑗
𝑚𝑗

)

𝛩(−𝑝𝑗 )𝛿3 [𝐑(𝛤 ) − 𝝃] 𝛿
(

𝓁‡
𝑗 − 𝓁𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

𝑑𝛤 . (A.2)

ote that we have used Eq. (3), which is 𝑓 eq(𝛤 ) = 𝑒−𝛽𝐻(𝛤 )∕q. We may complete the portion of these integrals related to the
momentum along the reaction coordinate, which contributes a factor of b𝑇 = 1∕𝛽 in either case, and where we retain a delta
function in order to keep the integration over the whole phase space:

∫ ⋯∫ 𝑒−𝛽𝐻(𝛤 ) 𝑝𝑗
𝑚𝑗

𝛩(𝑝𝑗 )𝛿3 [𝐑(𝛤 ) − 𝝃] 𝛿
(

𝓁‡
𝑗 − 𝓁𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

𝑑𝛤 =

∫ ⋯∫ 𝑒−𝛽𝐻(𝛤 )
(

−
𝑝𝑗
𝑚𝑗

)

𝛩(−𝑝𝑗 )𝛿3 [𝐑(𝛤 ) − 𝝃] 𝛿
(

𝓁‡
𝑗 − 𝓁𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

𝑑𝛤 =

1
𝛽 ∫ ⋯∫ 𝑒−𝛽𝐻(𝛤 )𝛿

(

𝑝𝑗
)

𝛿3 [𝐑(𝛤 ) − 𝝃] 𝛿
(

𝓁‡
𝑗 − 𝓁𝑗

)

𝑀
∏

𝑖=1
𝑖≠𝑗

𝛩
(

𝓁‡
𝑖 − 𝓁𝑖

)

𝑑𝛤 . (A.3)

The remaining integral is the partition function of the transition state q∗‡𝑗
(𝝃) in Eq. (23), and the reaction rates are now rewritten as

′
𝑗 (𝝃; 𝑡) =

q∗‡𝑗
(𝝃)

𝛽q𝑃 eq
A (𝝃)

𝑃A(𝝃; 𝑡), (A.4)

′′
𝑗 (𝝃; 𝑡) =

q∗‡𝑗
(𝝃)

𝛽q𝑃 eq
B𝑗
(𝝃)

𝑃B𝑗 (𝝃; 𝑡). (A.5)

We use Eq. (19) for q𝑃 eq
A (𝝃) = q∗A(𝝃) and Eq. (20) for q𝑃

eq
B𝑗
(𝝃) = q∗B𝑗

(𝝃); with the reaction rate coefficient functions 𝑘′𝑗 (𝝃) and 𝑘
′′
𝑗 (𝝃)

efined in Eqs. (26) and (27), this allows us to obtain the simplified reaction rates ′ (𝝃; 𝑡) and ′′(𝝃; 𝑡) in Eqs. (24)–(25).
24
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Appendix B. Extended derivations for the macroscopic theory

B.1. Macroscopically-obtained equilibrium

Here we show that the equilibrium probabilities 𝑃 eq
A (𝝃) and 𝑃 tot,eq

B𝑗
in Eqs. (38) and (39), respectively, may be obtained from the

elmholtz free energy density 𝑎(𝑡) in Eq. (49) through minimization. We use the Lagrange multiplier 𝛬 to enforce the conservation
requirement in Eq. (36) and write

𝑎𝛬(𝑡) ≡ 𝑎(𝑡) − 𝛬

[

∭ 𝑃A(𝝃; 𝑡) 𝑑3𝝃 +
𝑀
∑

𝑗=1
𝑃 tot
B𝑗

(𝑡) − 1

]

. (B.1)

e now take the functional derivative (Giaquinta and Hildebrandt, 2004) of 𝑎𝛬(𝑡) with respect to the intact chain probability
istribution 𝑃A(𝝃; 𝑡) and each broken chain probability 𝑃 tot

B𝑗
(𝑡). Evaluating the results at equilibrium and setting them equal to zero,

e obtain the following:

(

𝛿𝑎𝛬
𝛿𝑃A(𝝃; 𝑡)

)

𝑃 tot
B𝑗

|

|

|

|

|

|

|

eq

= 𝑛𝜇∗,eqA (𝝃) − 𝑛b𝑇 − 𝛬 = 0, (B.2)

⎛

⎜

⎜

⎝

𝛿𝑎𝛬
𝛿𝑃 tot

B𝑗
(𝑡)

⎞

⎟

⎟

⎠𝑃A

|

|

|

|

|

|

|

eq

= 𝑛𝜇eqB𝑗 − 𝑛b𝑇 − 𝛬 = 0. (B.3)

We then see that all chemical potentials are equal at equilibrium, consistent with statistical thermodynamics (McQuarrie, 2000).
Using Eq. (47), we find the equilibrium probability distribution of intact chains to be

𝑃 eq
A (𝝃) = 𝑒𝛽𝛬∕𝑛+1

𝑁
q∗A(𝝃), (B.4)

and using Eq. (48) with Eqs. (32) and (33), we find each broken chain total probability to be

𝑃 tot,eq
B𝑗

= 𝑒𝛽𝛬∕𝑛+1

𝑁
qA𝑒

−𝛽𝛥𝛹0𝑗 . (B.5)

Recall that qA is the integral of q∗A(𝝃) over all 𝝃. In order to solve for the Lagrange multiplier 𝛬 we apply the conservation requirement
Eq. (36), to obtain

𝑒𝛽𝛬∕𝑛+1

𝑁
qA +

𝑀
∑

𝑗=1

𝑒𝛽𝛬∕𝑛+1

𝑁
qA𝑒

−𝛽𝛥𝛹0𝑗 = 1, (B.6)

which is then rearranged to solve for the entire factor

𝑒𝛽𝛬∕𝑛+1

𝑁
= 1

qA

1
1 +

∑𝑀
𝑗=1 𝑒

−𝛽𝛥𝛹0𝑗
. (B.7)

Substitution of this factor into Eq. (B.4) results in Eq. (38), and into Eq. (B.5) results in Eq. (39).

B.2. Retrieving the stress

Starting from the hyperelastic form of the stress given in Eq. (57), here we retrieve the form of the stress in Eq. (59). To begin,
we consider the evolution of the probability distributions due to the deformation from Eq. (40),

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

|

|

|

|𝐅
= − 𝜕

𝜕𝝃
⋅
[

𝝃̇A(𝝃; 𝑡)𝑃A(𝝃; 𝑡)
]

, (B.8)

and from Eq. (43), we have more simply

𝜕𝑃 tot
B𝑗

(𝑡)

𝜕𝑡

|

|

|

|

|

|𝐅

= 0. (B.9)

We now integrate by parts using an extension of the divergence theorem, neglecting the probability of intact chains existing on the
boundary 𝑃A(𝝃; 𝑡)|𝜕𝝃 ≈ 0 as we have previously discussed near the end of Section 2.1.4,

∭
𝜕
𝜕𝝃

⋅
[

𝝃̇A(𝝃; 𝑡)𝑃A(𝝃; 𝑡)
]

𝜇∗A(𝝃; 𝑡) 𝑑
3𝝃 = −∭ 𝑃A(𝝃; 𝑡)

𝜕𝜇∗A(𝝃; 𝑡)
𝜕𝝃

⋅ 𝝃̇A(𝝃; 𝑡) 𝑑3𝝃. (B.10)

ext, we make the affine assumption 𝝃̇A(𝝃; 𝑡) = 𝐋(𝑡)⋅𝝃, which is that the end-to-end vectors 𝝃 are affinely deformed by the deformation
radient 𝐅(𝑡) on average. Upon carrying out the derivatives involved in Eq. (57), the stress is

𝝈(𝑡) = 𝑛 𝑃A(𝝃; 𝑡)
𝜕𝜇∗A(𝝃; 𝑡) 𝝃 𝑑3𝝃 − 𝑝(𝑡)𝟏. (B.11)
25
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The affine assumption allows us to expand Eq. (B.8), where the divergence of 𝝃̇A(𝝃; 𝑡) is zero since 𝟏 ∶ 𝐋(𝑡) = 0 due to
incompressibility, leaving only the term containing the gradient of 𝑃A(𝝃; 𝑡). We substitute this nonzero term into the evolution
quation for 𝑃A(𝝃; 𝑡) in Eq. (40) to obtain

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

= −
[

𝜕𝑃A(𝝃; 𝑡)
𝜕𝝃

𝝃
]

∶ 𝐋(𝑡) −
𝑀
∑

𝑗=1
𝑘′𝑗 (𝝃)

⎡

⎢

⎢

⎣

𝑃A(𝝃; 𝑡) −
𝑃 tot
B𝑗

(𝑡)

𝑃 tot,eq
B𝑗

𝑃 eq
A (𝝃)

⎤

⎥

⎥

⎦

, (B.12)

hich is Eq. (58) in the manuscript. The stress in Eq. (B.11) can be written as a function of the time-independent Helmholtz free
nergy of an intact chain 𝜓∗

A(𝝃) rather than the time-dependent corresponding chemical potential 𝜇
∗
A(𝝃; 𝑡). The chemical potential

f an intact chain 𝜇∗A(𝝃; 𝑡) is given by Eq. (47) in terms of the partition function q∗A(𝝃) and the probability distribution 𝑃A(𝝃; 𝑡). The
rincipal thermodynamic connection formula allows the partition function to be written as a function of the Helmholtz free energy,

q∗A(𝝃) = 𝑒−𝛽𝜓
∗
A(𝝃), (B.13)

o we then expand the gradient of 𝜇∗A(𝝃; 𝑡) in Eq. (47) as

𝜕𝜇∗A(𝝃; 𝑡)
𝜕𝝃

=
𝜕𝜓∗

A(𝝃)
𝜕𝝃

+ b𝑇
𝑃A(𝝃; 𝑡)

𝜕𝑃A(𝝃; 𝑡)
𝜕𝝃

. (B.14)

Substitution of the second term in Eq. (B.14) into the stress Eq. (B.11) results in

𝝈(𝑡) = 𝑛∭ 𝑃A(𝝃; 𝑡)
𝜕𝜓∗

A(𝝃)
𝜕𝝃

𝝃 𝑑3𝝃 + 𝑛b𝑇 ∭
𝜕𝑃A(𝝃; 𝑡)
𝜕𝝃

𝝃 𝑑3𝝃 − 𝑝(𝑡)𝟏. (B.15)

he second term in Eq. (B.15) is simplified by again using integration by parts and 𝑃A(𝝃; 𝑡)|𝜕𝝃 ≈ 0,

𝑛b𝑇 ∭
𝜕𝑃A(𝝃; 𝑡)
𝜕𝝃

𝝃 𝑑3𝝃 = −𝑛b𝑇𝑃 tot
A (𝑡)𝟏. (B.16)

The pressure term in Eq. (B.15) and this term in Eq. (B.16) are both spherical. Since the pressure 𝑝(𝑡) is merely a Lagrange multiplier
enforcing incompressibility, we take 𝑝(𝑡) + 𝑛b𝑇𝑃 tot

A (𝑡) ↦ 𝑝(𝑡) without loss of generality. The stress in Eq. (B.15) is then

𝝈(𝑡) = 𝑛∭ 𝑃A(𝝃; 𝑡)
𝜕𝜓∗

A(𝝃)
𝜕𝝃

𝝃 𝑑3𝝃 − 𝑝(𝑡)𝟏, (B.17)

which is Eq. (59) in the manuscript. This stress is then nondimensionalized as follows: we first rearrange the pressure term and
scale by 𝛽∕𝑛 for

𝝈(𝑡) + 𝑝(𝑡)𝟏
𝛽∕𝑛

= ∭ 𝑃A(𝝃; 𝑡)
𝜕𝛽𝜓∗

A(𝝃)
𝜕𝝃

𝝃 𝑑3𝝃. (B.18)

Next, we substitute in 𝝃 = 𝑁𝑏𝓁𝑏𝜸, using 𝒫A(𝜸; 𝑡) ≡ (𝑁𝑏𝓁𝑏)3𝑃A(𝝃; 𝑡) and then 𝑃A(𝝃; 𝑡) 𝑑3𝝃 = 𝒫A(𝜸; 𝑡) 𝑑3𝜸,

𝝈(𝑡) + 𝑝(𝑡)𝟏
𝛽∕𝑛

= ∭ 𝒫A(𝜸; 𝑡)
𝜕𝛽𝜓∗

A(𝜸)
𝜕𝛾

(

𝜸𝜸
𝛾

)

𝑑3𝜸. (B.19)

We then substitute in 𝛽𝜓∗
A(𝜸) = 𝑁𝑏𝜗∗A(𝛾), where 𝜂(𝜸) = 𝜕𝜗∗A(𝛾)∕𝜕𝛾, to obtain Eq. (76). When an inhomogeneous chain (consists of

both breakable and unbreakable links) is used for the 𝑢FJC model, the homogeneous chain contour length transforms, 𝑁𝑏𝓁𝑏 ↦ (𝑁𝑏+
𝜍𝑁#

𝑏 )𝓁𝑏. To adjust our nondimensional representation of the stress in Eq. (76), we must then transform 𝜸 using 𝑁𝑏𝛾 ↦ (𝑁𝑏 + 𝜍𝑁#
𝑏 )𝛾,

where 𝒫A(𝜸; 𝑡) 𝑑3𝜸 is invariant. The net result within Eq. (76) is effectively

𝑁𝑏

(

𝜸𝜸
𝛾

)

↦
(

𝑁𝑏 + 𝜍𝑁#
𝑏
)

(

𝜸𝜸
𝛾

)

, (B.20)

which taken within Eq. (76) produces Eq. (80).

B.3. Expressing the chemical dissipation

Starting from Eq. (53), here we retrieve the form of the dissipation due to the chemical reactions rxn(𝑡) that allows us to conclude
rxn(𝑡) ≥ 0. We begin by expanding Eq. (53),

rxn(𝑡) = −𝑛∭
𝜕𝑃A(𝝃; 𝑡)

𝜕𝑡
|

|

|

|rxn
𝜇∗A(𝝃; 𝑡) 𝑑

3𝝃 − 𝑛
𝑀
∑

𝑗=1

𝜕𝑃 tot
B𝑗

(𝑡)

𝜕𝑡

|

|

|

|

|

|rxn

𝜇B𝑗 (𝑡). (B.21)

t is possible to write the time derivatives and chemical potentials in Eq. (B.21) strictly in terms of the original forward and reverse
eactions rates, ′

𝑗 (𝝃; 𝑡) and ′′
𝑗 (𝝃; 𝑡). Referring back to Eq. (15), we first write

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

|

|

|

= −
𝑀
∑

[

′
𝑗 (𝝃; 𝑡) −′′

𝑗 (𝝃; 𝑡)
]

. (B.22)
26

|rxn 𝑗=1
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Similarly with Eq. (43), we use 𝑗 (𝝃; 𝑡) = 𝑘′𝑗 (𝝃)𝑃A(𝝃; 𝑡) from Eq. (24) to write

𝜕𝑃 tot
B𝑗

(𝑡)

𝜕𝑡

|

|

|

|

|

|rxn

= ∭

⎡

⎢

⎢

⎣

′
𝑗 (𝝃; 𝑡) − 𝑘

′
𝑗 (𝝃)𝑃

eq
A (𝝃)

𝑃 tot
B𝑗

(𝑡)

𝑃 tot,eq
B𝑗

⎤

⎥

⎥

⎦

𝑑3𝝃. (B.23)

ext, we use Eq. (28) for 𝑘′𝑗 (𝝃)𝑃
eq
A (𝝃) = 𝑘′′𝑗 (𝝃)𝑃

eq
B𝑗
(𝝃). We then use Eq. (35) to simplify

𝑃 eq
B𝑗
(𝝃)

𝑃 tot
B𝑗

(𝑡)

𝑃 tot,eq
B𝑗

= 𝑃 eq
B𝑗
(𝝃)

𝑉B𝑗𝑃B𝑗 (𝝃; 𝑡)

𝑉B𝑗𝑃
eq
B𝑗
(𝝃)

= 𝑃B𝑗 (𝝃; 𝑡), (B.24)

which with ′′
𝑗 (𝝃; 𝑡) = 𝑘′′𝑗 (𝝃)𝑃B𝑗 (𝝃; 𝑡) from Eq. (25) allows us to obtain

𝜕𝑃 tot
B𝑗

(𝑡)

𝜕𝑡

|

|

|

|

|

|rxn

= ∭

[

′
𝑗 (𝝃; 𝑡) −′′

𝑗 (𝝃; 𝑡)
]

𝑑3𝝃. (B.25)

With Eqs. (B.22) and (B.25), the dissipation in Eq. (B.21) now becomes

rxn(𝑡) = 𝑛
𝑀
∑

𝑗=1
∭

[

′
𝑗 (𝝃; 𝑡) −′′

𝑗 (𝝃; 𝑡)
] [

𝜇∗A(𝝃; 𝑡) − 𝜇B𝑗 (𝑡)
]

𝑑3𝝃 (B.26)

Using both Eqs. (47) and (48), we obtain the difference between the chemical potentials

𝜇∗A(𝝃; 𝑡) − 𝜇B𝑗 (𝑡) = b𝑇 ln
⎡

⎢

⎢

⎣

q∗B𝑗

q∗A(𝝃)
𝑃A(𝝃; 𝑡)

𝑃 tot
B𝑗

(𝑡)∕𝑉B𝑗

⎤

⎥

⎥

⎦

. (B.27)

After noting q∗B𝑗
∕q∗A(𝝃) = 𝑘′𝑗 (𝝃)∕𝑘

′′
𝑗 (𝝃) using Eq. (28) and 𝑃

tot
B𝑗

(𝑡)∕𝑉B𝑗 = 𝑃B𝑗 (𝝃; 𝑡) using Eq. (35),

𝜇∗A(𝝃; 𝑡) − 𝜇B𝑗 (𝑡) = b𝑇 ln

[

𝑘′𝑗 (𝝃)𝑃A(𝝃; 𝑡)

𝑘′′𝑗 (𝝃)𝑃B𝑗 (𝝃; 𝑡)

]

, (B.28)

which with Eqs. (24) and (24) allows us to obtain

𝜇∗A(𝝃; 𝑡) − 𝜇B𝑗 (𝑡) = b𝑇 ln

[

′
𝑗 (𝝃; 𝑡)

′′
𝑗 (𝝃; 𝑡)

]

. (B.29)

Combining Eqs. (B.26) and (B.29), we can then write the total dissipation rxn succinctly as

rxn(𝑡) =
𝑀
∑

𝑗=1
∭ ∗

𝑗 (𝝃; 𝑡) 𝑑
3𝝃, (B.30)

where ∗
𝑗 (𝝃; 𝑡), the dissipation density for the 𝑗th reaction occurring at the end-to-end vector 𝝃, is

∗
𝑗 (𝝃; 𝑡) ≡ 𝑛b𝑇

[

′
𝑗 (𝝃; 𝑡) −′′

𝑗 (𝝃; 𝑡)
]

ln

[

′
𝑗 (𝝃; 𝑡)

′′
𝑗 (𝝃; 𝑡)

]

. (B.31)

Eqs. (B.30) and (B.31) are Eqs. (60) and (61) in the manuscript, respectively. The right-hand side of Eq. (B.30) is of the form
𝑐(𝑥 − 𝑦) ln(𝑥∕𝑦), which is a quantity that is positive semidefinite for all 𝑥 > 0 and 𝑦 > 0 if 𝑐 ≥ 0. Since the reactions rates ′

𝑗 (𝝃; 𝑡)
and ′′

𝑗 (𝝃; 𝑡) are both positive definite, we have [′
𝑗 (𝝃; 𝑡) − ′′

𝑗 (𝝃; 𝑡)] ln[
′
𝑗 (𝝃; 𝑡)∕

′′
𝑗 (𝝃; 𝑡)] ≥ 0. For finite temperatures we also have

b𝑇 > 0, which with Eq. (B.31) then allows us to conclude that each ∗
𝑗 (𝝃; 𝑡) ≥ 0, and therefore with Eq. (B.30) that rxn(𝑡) ≥ 0.

ppendix C. Extended details on implementing the 𝒖FJC model

.1. Asymptotic approximation for the 𝑢FJC model

Here we obtain an asymptotic approximation for the single-chain mechanical response of the 𝑢FJC model. For nondimensional
nd-to-end lengths 𝛾 near and below unity, the mechanical response will closely match that of the EFJC (harmonic 𝑢) if 𝜅 ≫ 1.
hysically, 𝜅 ≫ 1 represents that thermal energy is much smaller than the characteristic energy to begin stretching the link, so
hermal sampling will be effectively restricted to where 𝑢 is minimized, which is also where 𝑢 is harmonic. If the force remains
mall enough, 𝜂 ≪ 1, nondimensional end-to-end lengths above unity will not be reached. The analytic expression we use for the
ingle-chain mechanical response of the EFJC in the Gibbs (isotensional) ensemble is (Fiasconaro and Falo, 2019)

𝛾EFJC(𝜂) = (𝜂) + 𝜂
[

1 +
1 − (𝜂) coth(𝜂)

]

, (C.1)
27

𝜅 1 + (𝜂∕𝜅) coth(𝜂)
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where (𝜂) = coth(𝜂)−1∕𝜂 is the Langevin function. Since we will utilize 𝜅 ≫ 1 in order to asymptotically approximate the mechanical
esponse of the 𝑢FJC, we will expand Eq. (C.1) in a series that is valid as 𝜅 → ∞. Using the Maclaurin series for 1∕(1 + 𝑥), we then
ave

𝛾EFJC(𝜂) = (𝜂) + 𝜂
𝜅

{

2 − (𝜂) coth(𝜂) + [1 − (𝜂) coth(𝜂)] 𝜂 coth(𝜂)
∞
∑

𝑛=1
(−𝜅)−𝑛

}

as 𝜅 → ∞. (C.2)

ow, we choose to make a first-order asymptotic approximation, only keeping 𝑂(𝜅−1) terms and writing

𝛾EFJC(𝜂) ∼ (𝜂) + 𝜂
𝜅
[2 − (𝜂) coth(𝜂)] for 𝜅 ≫ 1. (C.3)

or sufficiently low forces, 𝜂 ≪ 1, the mechanical response of the 𝑢FJC matches that of the EFJC with the same stiffness since in
either case the link stretching will be restricted to the harmonic regime. Eq. (C.3) is then the 𝑂(𝜅−1) asymptotic approximation of
the single-chain mechanical response of the 𝑢FJC for 𝜂 ≪ 1,

𝛾(𝜂) ∼ (𝜂) + 𝜂
𝜅
[2 − (𝜂) coth(𝜂)] for 𝜅 ≫ 1 and 𝜂 ≪ 1. (C.4)

ow, for 𝜅 ≫ 1 and 𝛾 ≳ 1 the 𝑢FJC will remain aligned and the links will begin to be stretched directly. As 𝛾 continues to increase,
he corresponding large forces required, 𝜂 ≫ 1, will be approximately due to stretching the links alone. In other words, the forces
equired to significantly stretch the stiff links will eclipse the entropically-based forces. In this limit the mechanical response of the
hain is asymptotically given by that of the links,

𝛾(𝜂) ∼ 𝜆(𝜂) for 𝜅 ≫ 1 and 𝜂 ≫ 1, (C.5)

here 𝜆(𝜂) is the stretch 𝓁∕𝓁𝑏 of a link under the nondimensional force 𝜂, defined through

𝜂 = 𝛽𝓁𝑏
𝜕𝑢(𝓁)
𝜕𝓁

|

|

|

|𝓁=𝓁𝑏𝜆(𝜂)
. (C.6)

We then have two asymptotic approximations when 𝜅 ≫ 1 for the mechanical response in Eqs. (C.4) and (C.5) that we must match.
e may do so using Prandtl’s method of asymptotic matching (Powers and Sen, 2015; Bender and Orszag, 2013), which stipulates
hat the following must be true to obtain a composite approximation:

lim
𝜂→∞

𝛾𝜂≪1(𝜂) = lim
𝜂→0

𝛾𝜂≫1(𝜂). (C.7)

ere the limits are 1+𝜂∕𝜅 in either case, thus we satisfy Eq. (C.7). Prandtl’s method also stipulates that this limit must be subtracted
rom the composite solution obtained when adding the two approximations, otherwise it would be accounted for twice. After
ubtracting this common part of 1 + 𝜂∕𝜅, we obtain the composite first-order asymptotic approximation

𝛾1(𝜂) ∼ (𝜂) + 𝜂
𝜅
[1 − (𝜂) coth(𝜂)] + 𝜆(𝜂) − 1 for 𝜅 ≫ 1. (C.8)

This mechanical response has three distinct terms. The first, (𝜂), is the entropic mechanical response of the FJC that dominates at
low forces. The third, 𝜆(𝜂) − 1, is based upon the mechanical response of the aligned chain 𝜆(𝜂) that dominates at high forces. After
oting that

|

|

|

𝜂[1 − (𝜂) coth(𝜂)]||
|

≤ 1 for all 𝜂, (C.9)

e see that the second term in Eq. (C.8) is essentially an 𝑂(𝜅−1) correction. If 𝜅 is sufficiently high, this correction is negligible and
e may take the even simpler (leading-order) approximation

𝛾0(𝜂) ∼ (𝜂) + 𝜆(𝜂) − 1 for 𝜅 ≫ 1, (C.10)

hich is the asymptotic approximation utilized in Eq. (64) of the manuscript.
When applying the Morse potential to the 𝑢FJC model mechanical response in Eq. (C.10), with link potential energy 𝑢(𝓁) given

y Eq. (66), we first compute the link force

𝑓 =
𝜕𝑢(𝓁)
𝜕𝓁

=
√

2𝑘𝑏𝑢𝑏 𝑒−
√

𝑘𝑏∕2𝑢𝑏(𝓁−𝓁𝑏)
[

1 − 𝑒−
√

𝑘𝑏∕2𝑢𝑏(𝓁−𝓁𝑏)
]

, (C.11)

and afterward nondimensionalize (𝜂 ≡ 𝛽𝑓𝓁𝑏, 𝜅 ≡ 𝛽𝑘𝑏𝓁2
𝑏 , 𝜆 ≡ 𝓁∕𝓁𝑏) to obtain the nondimensional force

𝜂 =
√

2𝜅𝛽𝑢𝑏 𝑒−
√

𝜅∕2𝛽𝑢𝑏[𝜆(𝜂)−1]
{

1 − 𝑒−
√

𝜅∕2𝛽𝑢𝑏[𝜆(𝜂)−1]
}

. (C.12)

e then choose the transition state stretch 𝜆‡ ≡ 1 + ln(2)
√

2𝛽𝑢𝑏∕𝜅 corresponding to the maximum force 𝜂max =
√

𝜅𝛽𝑢𝑏∕8. Solving
q. (C.12) for 𝜆(𝜂), we then obtain

𝜆(𝜂) = 1 +

√

2𝛽𝑢𝑏
𝜅

ln

[

2
1 +

√

1 − 𝜂∕𝜂max

]

for 𝜂 ≤ 𝜂max =
√

𝜅𝛽𝑢𝑏
8

, (C.13)

hich is Eq. (67) from the manuscript. We plot the leading order 𝑂(𝜅0) and first-order corrected 𝑂(𝜅−1) asymptotic approximations
f the mechanical response from Eqs. (C.8) and (C.10) for the Morse-FJC for varying 𝜅 in Fig. C.12(a). We found that varying 𝛽𝑢
28
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Fig. C.12. (a) The nondimensional force 𝜂 = 𝛽𝑓𝓁𝑏 as a function of the leading order (solid) and first-order corrected (dashed) asymptotic approximations of the
orresponding nondimensional end-to-end length 𝛾 = 𝜉∕𝑁𝑏𝓁𝑏 using the Morse-FJC model for 𝛽𝑢𝑏 = 25 and varying 𝜅. (b) The maximum relative error max[𝑒(𝜂)]
or 𝛽𝑢𝑏 = 25 and varying 𝜅.

as little effect on the accuracy of the approximation of the mechanical response. Fig. C.12(a) shows that the 𝑂(𝜅−1) correction
rovides a small contribution for 𝜅 = 20, a nearly negligible contribution for 𝜅 = 50, and essentially no contribution for 𝜅 = 200 and
bove. Higher order corrections may be obtained, but if the 𝑂(𝜅−1) correction is negligible, these will surely be negligible. Going
orward (and in the manuscript), we choose Eq. (C.10) as the asymptotic approximation of the mechanical response 𝛾(𝜂) and treat
he 𝑂(𝜅−1) correction from Eq. (C.8) as an estimate of the error. The relative error 𝑒 ≡ |𝛾1 − 𝛾0|∕𝛾1 would then be

𝑒(𝜂) ∼
(𝜂∕𝜅) [1 − (𝜂) coth(𝜂)]

𝛾1(𝜂)
for 𝜅 ≫ 1. (C.14)

e plot the maximum (over 𝜂) of this relative error in Fig. C.12(b) as a function of 𝜅. For smaller 𝜅 the maximum relative error
can be quite large, indicating that the 𝑂(𝜅−1) correction is (and perhaps higher order corrections are) necessary. As 𝜅 increases the
maximum relative error rapidly shrinks, showing that it indeed becomes accurate to ignore the 𝑂(𝜅−1) correction (and all higher
order corrections) and utilize the Eq. (C.10) as the asymptotic approximation of the mechanical response 𝛾(𝜂).

C.2. Obtaining various single-chain quantities for the 𝑢FJC model

Here we provide a full derivation of the single-chain quantities for the 𝑢FJC model leading up to the reaction rate coefficient
function 𝑘′(𝛾) in Eq. (71). We begin with the nondimensional configurational Helmholtz free energy per link 𝜗∗A,con(𝛾), which under
the Gibbs–Legendre approximation (Buche and Silberstein, 2020) may be obtained from the mechanical response 𝛾(𝜂) via

𝜗∗A,con(𝛾) ∼ 𝜂𝛾(𝜂) − ∫ 𝛾(𝜂) 𝑑𝜂 for 𝑁𝑏 ≫ 1. (C.15)

We then apply our asymptotic approximation for 𝛾(𝜂) in Eq. (64) to obtain

𝜗∗A,con(𝛾) = ln
{

𝜂 exp[𝜂(𝜂)]
sinh(𝜂)

}

+ 𝛽𝑢(𝜂) − 𝑐0, (C.16)

where 𝑐0 = ln(4𝜋𝓁3
𝑏

√

2𝜋∕𝜅) is the constant of integration (Fiasconaro and Falo, 2019). This constant is part of the constant prefactor
f the partition function, and does not appear to produce the correct units in Eq. (69) only because we have scaled away Planck’s
onstant ℎ = 1. Starting from Eq. (69) and continuing in the following equations, note that functions of 𝛾 are often written in terms
of 𝜂, where 𝜂 = 𝜂(𝛾) then represents inverting the mechanical response 𝛾(𝜂) in Eq. (64) for the 𝜂 corresponding to 𝛾. Using the
rincipal thermodynamic connection formula, q = 𝑒−𝑁𝑏𝜗, the configuration partition function is

q∗A,con(𝛾) =

[

𝓁𝑏

√

2𝜋
𝜅
𝑒−𝛽𝑢(𝜂)

]𝑁𝑏

q∗FJC,con(𝛾), (C.17)

where the configuration partition function of the FJC (Rubinstein and Colby, 2003) is given by

q∗FJC,con(𝛾) =

{

4𝜋𝓁2
𝑏 sinh(𝜂)

𝜂 exp[𝜂(𝜂)]

}𝑁𝑏

. (C.18)

After introducing the nondimensional equilibrium distribution 𝒫eq
A (𝛾) ≡ (𝑁𝑏𝓁𝑏)3𝑃

eq
A (𝜉), Eq. (38) gives Eq. (70). The total probability

hat a chain is intact at equilibrium 𝑃 tot,eq is the first factor in Eq. (70). Note that the momentum contribution q∗ to the partition
29
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function q∗A(𝛾) = q∗A,momq
∗
A,con(𝛾) is independent of 𝛾 and identical to q∗B,mom, causing it to vanish from Eq. (70). Additionally, note

that the constant 𝑐0 from Eq. (C.16) cancels when substituting in 𝜗∗A,con(𝛾), showing 𝑐0 is irrelevant (only the relative free energy
atters) when computing 𝒫eq

A (𝛾), which is why 𝑐0 does not appear in Eq. (69) from the manuscript.
We now turn to the partition function of the transition state q∗‡(𝛾), which is a chain of 𝑁𝑏 − 1 intact links and a single link held

igidly in its transition state. Since our Gibbs–Legendre method allows us to treat each link independently, we may compute these
artition function separately and multiply them. The transition state link partition function is that of the FJC with 𝓁𝑏 ↦ 𝓁‡, which
lso takes 𝜂 ↦ 𝜆‡𝜂 with 𝜆‡ ≡ 𝓁‡∕𝓁𝑏 due to the nondimensionalization. We then have

q∗‡,con(𝛾) = 𝑒−𝛽𝑢(𝓁‡)
{

q∗FJC,con(𝛾)
|

|

|𝓁𝑏=𝓁‡
q∗A,con(𝛾)

(𝑁𝑏−1)
}1∕𝑁𝑏

. (C.19)

e then compute the ratio of q∗‡(𝛾) to q∗A(𝛾) in order to retrieve the reaction rate coefficient function 𝑘
′(𝛾) from Eq. (26). The ratio

f the configuration contributions is found using Eqs. (C.17) and (C.19), where the contributions from the 𝑁𝑏 − 1 non-transition
tate links cancel due to the link-independence that the Gibbs–Legendre method permits. The ratio of the momentum contributions
imilarly cancels except for the momentum degree of freedom from stretching the link. The contribution from this stretching degree
f freedom is equivalent to that from the one-dimensional translation of the reduced mass 𝜈 = 𝑚∕2 of the link (McQuarrie, 2000),
o we then have

q∗‡,mom(𝛾)

q∗A,mom(𝛾)
= (2𝜋𝜈b𝑇 )−1∕2. (C.20)

To obtain 𝑘′(𝛾) from Eq. (26), we now multiply the ratio of q∗‡,con(𝛾) in Eq. (C.19) to q∗A,con(𝛾) in Eq. (C.17) by q∗‡,mom(𝛾)∕q
∗
A,mom(𝛾) in

Eq. (C.20) and simplify. When taking the ratio of q∗‡,con(𝛾) to q∗A,con(𝛾), all contributions from all links cancel except that from the
link that may be in the transition state (analogous to the momentum contribution). After simplifying the ratio of q∗‡,con(𝛾) to q∗A,con(𝛾)
through powers of 𝑁𝑏, we have

q∗‡,con(𝛾)

q∗A,con(𝛾)
=
𝑒−𝛽𝑢(𝓁‡)

[

q∗FJC,con(𝛾)|𝓁𝑏=𝓁‡
]1∕𝑁𝑏

q∗A,con(𝛾)
1∕𝑁𝑏

. (C.21)

The denominator is the partition function of a single 𝑢FJC link, while the numerator is the partition function of a single 𝑢FJC link
in its transition state, which would then be that of a single FJC link of length 𝓁‡ (and correspondingly higher potential energy 𝑢(𝓁‡)
due to stretching beyond the rest length 𝓁𝑏). Expanding this result using Eq. (C.17), we obtain

q∗A,con(𝛾)

q∗‡,con(𝛾)
= 𝓁𝑏

√

2𝜋
𝜅
𝑒−𝛽[𝑢(𝓁‡)−𝑢(𝜂)]

[

q∗FJC,con(𝛾)|𝓁𝑏=𝓁‡
q∗FJC,con(𝛾)

]1∕𝑁𝑏

, (C.22)

which consists of three parts. The first part carries units of length with 𝓁𝑏 multiplying a unitless
√

2𝜋∕𝜅, where the units of length
re a direct result of the single additional configurational degree of freedom (stretching) that a 𝑢FJC link has as opposed to the
ransition state link. The second part is the exponential function of the potential energy differences. The third part is the ratio of
he FJC configurational partition functions of different lengths (𝓁‡ and 𝓁𝑏), purely entropic in nature. Multiplying Eq. (C.22) by
Eq. (C.20), scaling by 𝛽 = 1∕b𝑇 and simplifying, we receive the forward reaction rate coefficient function from Eq. (26),

𝑘′(𝛾) = 1
2𝜋

√

𝜅
𝜈𝛽𝓁2

𝑏

𝑒−𝛽[𝑢(𝓁‡)−𝑢(𝜂)]
[

q∗FJC,con(𝛾)|𝓁𝑏=𝓁‡
q∗FJC,con(𝛾)

]1∕𝑁𝑏

. (C.23)

Next, we reference classical transition state theory (Zwanzig, 2001) in order to make sense of Eq. (C.23). The quantity resulting
from the square root function has units of frequency, so we define the attempt frequency 𝜔‡ as

𝜔‡ ≡

√

1
𝜈
𝜕2𝑢
𝜕𝓁2

|

|

|

|𝓁=𝓁𝑏
=
√

𝜅
𝜈𝛽𝓁2

𝑏

. (C.24)

We simplify the last term in Eq. (C.23), which is proportional to the logarithm of the entropy barrier,
[

q∗FJC,con(𝛾)|𝓁𝑏=𝓁‡
q∗FJC,con(𝛾)

]1∕𝑁𝑏

=
𝜆‡ sinh(𝜆‡𝜂) exp[𝜂(𝜂)]
sinh(𝜂) exp[𝜆‡𝜂(𝜆‡𝜂)]

. (C.25)

Combining the entropic and potential energy contributions in Eqs. (C.23) and (C.25), we obtain the Helmholtz free energy barrier
𝛥𝛹∗

‡ (𝛾) as

𝛥𝛹∗
‡ (𝛾) ≡ 𝑢(𝓁‡) − 𝑢(𝜂) − b𝑇 ln

{𝜆‡ sinh(𝜆‡𝜂) exp[𝜂(𝜂)]
sinh(𝜂) exp[𝜆‡𝜂(𝜆‡𝜂)]

}

. (C.26)

Writing 𝑘′(𝛾) in Eq. (C.23) in terms of 𝜔‡ and 𝛥𝛹∗
‡ (𝛾), we obtain

𝑘′(𝛾) =
𝜔‡

2𝜋
𝑒−𝛽𝛥𝛹

∗
‡ (𝛾). (C.27)

Eqs. (C.24)–(C.27) are equivalent to Eqs. (71)–(72) from the manuscript.
30
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Appendix D. Solving for the distribution of intact chains

D.1. Obtaining and verifying the exact solution

Here we exactly solve Eq. (74), the evolution equation for the probability density distribution of intact chains 𝑃A(𝝃; 𝑡). Our
olution is valid for all chain models with a single reaction coordinate or any number of identical reaction coordinates. Eq. (74) in
erms of the chain end-to-end vector 𝝃 is

𝜕𝑃A(𝝃; 𝑡)
𝜕𝑡

= −
[

𝜕𝑃A(𝝃; 𝑡)
𝜕𝝃

𝝃
]

∶ 𝐋(𝑡) − 𝑘(𝝃)
{

𝑃A(𝝃; 𝑡) −
𝑃 eq
A (𝝃)

𝑃 tot,eq
B

[

1 −∭ 𝑃A(𝝃̃; 𝑡) 𝑑3𝝃̃
]

}

. (D.1)

e begin solving Eq. (D.1) by defining the new variable,

𝐻(𝝃; 𝑡) ≡ 𝑃A [𝐅(𝑡) ⋅ 𝝃; 𝑡] 𝑒∫
𝑡
0 𝑘[𝐅(𝑠)⋅𝝃] 𝑑𝑠, (D.2)

here 𝐻(𝝃; 0) = 𝑃A(𝝃; 0) if 𝐅(0) = 𝟏. Substitution of Eq. (D.2) into Eq. (D.1) produces

𝜕𝐻(𝝃; 𝑡)
𝜕𝑡

𝑒− ∫ 𝑡0 𝑘[𝐅(𝑠)⋅𝝃] 𝑑𝑠 =
𝑘 [𝐅(𝑡) ⋅ 𝝃]𝑃 eq

A [𝐅(𝑡) ⋅ 𝝃]

𝑃 tot,eq
B

{

1 −∭ 𝐻(𝝃̃; 𝑡) 𝑒− ∫ 𝑡0 𝑘[𝐅(𝑠)⋅𝝃̃] 𝑑𝑠 𝑑3𝝃̃
}

. (D.3)

q. (D.3) may be rearranged to cause the right-hand side to become a function of time only,

𝜕𝐻(𝝃; 𝑡)
𝜕𝑡

𝑒− ∫ 𝑡0 𝑘[𝐅(𝑠)⋅𝝃] 𝑑𝑠

𝑘 [𝐅(𝑡) ⋅ 𝝃]𝑃 eq
A [𝐅(𝑡) ⋅ 𝝃]

= 1
𝑃 tot,eq
B

{

1 −∭ 𝐻(𝝃̃; 𝑡) 𝑒− ∫ 𝑡0 𝑘[𝐅(𝑠)⋅𝝃̃] 𝑑𝑠 𝑑3𝝃̃
}

, (D.4)

≡𝜌(𝑡), (D.5)

hich we have now defined as 𝜌(𝑡). We see from the right-hand side of Eq. (D.4) that this function happens to be 𝜌(𝑡) = 𝑃 tot
B (𝑡)∕𝑃 tot,eq

B .
earranging and integrating Eq. (D.4), we then retrieve the solution

𝐻(𝝃; 𝑡) = 𝐻(𝝃; 0) + ∫

𝑡

0

𝑘 [𝐅(𝜏) ⋅ 𝝃]𝑃 eq
A [𝐅(𝜏) ⋅ 𝝃]

𝑒− ∫ 𝜏0 𝑘[𝐅(𝑠)⋅𝝃] 𝑑𝑠
𝜌(𝜏) 𝑑𝜏, (D.6)

where we now must determine a solution for 𝜌(𝑡) that is consistent with the solution in Eq. (D.6) by substituting it back into Eq. (D.4).
Our results are simplified by introducing the reaction propagator 𝛯(𝝃; 𝑡, 𝜏), which we define as

𝛯(𝝃; 𝑡, 𝜏) ≡ exp
{

−∫

𝑡

𝜏
𝑘
[

(𝑡)𝐅(𝑠) ⋅ 𝝃
]

𝑑𝑠
}

, (D.7)

here the relative deformation (Paolucci, 2016) is defined as

(𝑡)𝐅(𝜏) ≡ 𝐅(𝜏) ⋅ 𝐅−1(𝑡). (D.8)

Next we define the kernel function 𝐾(𝑡, 𝜏), which we may rewrite in terms of the reaction propagator 𝛯(𝝃; 𝑡, 𝜏) using the invariance
(due to incompressibility) of 𝑑3𝝃 to the transformation 𝝃 ↦ 𝐅−1(𝑡) ⋅ 𝝃, as

𝐾(𝑡, 𝜏) ≡∭
𝑘 [𝐅(𝜏) ⋅ 𝝃]𝑃 eq

A [𝐅(𝜏) ⋅ 𝝃]

𝑃 tot,eq
B 𝑒∫

𝑡
𝜏 𝑘[𝐅(𝑠)⋅𝝃] 𝑑𝑠

𝑑3𝝃, (D.9)

= 1
𝑃 tot,eq
B

∭ 𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
] 𝜕𝛯(𝝃; 𝑡, 𝜏)

𝜕𝜏
𝑑3𝝃, (D.10)

where 𝐾(𝑡, 𝜏 > 𝑡) ≡ 0. Then we similarly define the right-hand side function

𝑏(𝑡) ≡ 1
𝑃 tot,eq
B

{

1 −∭ 𝐻(𝝃; 0)𝑒− ∫ 𝑡0 𝑘[𝐅(𝑠)⋅𝝃̃] 𝑑𝑠 𝑑3𝝃
}

, (D.11)

= 1
𝑃 tot,eq
B

{

1 −∭ 𝑃A
[

𝐅−1(𝑡) ⋅ 𝝃; 0
]

𝛯(𝝃; 𝑡, 0) 𝑑3𝝃
}

. (D.12)

Now, when we substitute Eq. (D.6) into Eq. (D.4) and simplify, we obtain the consistency condition

𝜌(𝑡) + ∫

𝑡

0
𝐾(𝑡, 𝜏)𝜌(𝜏) 𝑑𝜏 = 𝑏(𝑡). (D.13)

Eq. (D.13) is a linear Volterra integral equation of the second kind with eigenvalue −1.
We first consider the special case of motions with constant stretch history (Truesdell and Noll, 2004; Paolucci, 2016) that have

𝐋 = constant, which with 𝐅(0) = 𝟏 allow 𝐅(𝑡) = 𝑒𝑡𝐋 and therefore (𝑡2)𝐅(𝑡1) = 𝐅(𝑡1 − 𝑡2) = 𝐅−1(𝑡2 − 𝑡1). This allows us to rewrite the
kernel 𝐾(𝑡, 𝜏) in Eq. (D.10) to be of the convolution type (Kanwal, 2013) by depending only on the difference 𝑡 − 𝜏,

𝐾(𝑡 − 𝜏) = 1
tot,eq ∭ 𝑃 eq

A (𝝃)𝑘′(𝝃)𝑒− ∫ 𝑡−𝜏0 𝑘[𝐅(𝑠)⋅𝝃] 𝑑𝑠 𝑑3𝝃. (D.14)
31
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Kernels of the convolution type allow Eq. (D.13) to be solved using the Laplace transform L. After utilizing the convolution theorem
twice (Rahman, 2007), the solution may be written as

𝜌(𝑡) = ∫

𝑡

0
𝑊 (𝑡 − 𝜏)𝑏(𝜏) 𝑑𝜏, (D.15)

where the solution kernel (also of the convolution type) is given by

𝑊 (𝑡) = L−1
{

1
1 + L[𝐾(𝑡)]

}

. (D.16)

The solution as 𝑡 → ∞ may be obtained without need for the inverse Laplace transform L−1 and can be utilized to study the
steady-state mechanical response under these special deformations (Tanaka and Edwards, 1992b).

For arbitrary incompressible deformation histories, the solution to Eq. (D.13), obtained using Picard’s method of successive
approximations (Cochran, 1972; Kanwal, 2013), is the Liouville–Neumann series

𝜌(𝑡) = 𝑏(𝑡) +
∞
∑

𝑚=1
(−1)𝑚 ∫

𝑡

0
𝐾𝑚(𝑡, 𝜏)𝑏(𝜏) 𝑑𝜏. (D.17)

The functions 𝐾𝑚(𝑡, 𝜏), where we begin with 𝐾1(𝑡, 𝜏) ≡ 𝐾(𝑡, 𝜏), are defined as

𝐾𝑚(𝑡, 𝜏) ≡ ∫

𝑡

𝜏
𝐾(𝑡, 𝑠)𝐾𝑚−1(𝑠, 𝜏) 𝑑𝑠. (D.18)

This series solution for 𝜌(𝑡) allows the solution for 𝑃A(𝝃; 𝑡) and subsequently 𝝈(𝑡) in Eq. (59) to be written as series. This resulting
series for 𝝈(𝑡) resembles the general viscoelastic constitutive equation for the stress of the integral type (Truesdell and Noll, 2004;
Paolucci, 2016). However, in our case it is much more practical to construct 𝑃A(𝝃; 𝑡) and integrate the single term for 𝝈(𝑡) afterward.

The Liouville–Neumann series in Eq. (D.17) converges for some total time interval 𝑡 ∈ [0,  ] if the kernel function 𝐾(𝑡, 𝜏) is
square-integrable (Cochran, 1972), which requires

‖𝐾‖

2 ≡ ∫



0 ∫

𝑡

0

|

|

|

𝐾(𝑡, 𝜏)||
|

2
𝑑𝜏 𝑑𝑡 < ∞. (D.19)

Since 0 ≤ 𝛯(𝝃; 𝑡, 𝜏) ≤ 1 in Eq. (D.10), we have 𝐾 ≤ 𝐾̂ and thus ‖𝐾‖

2 ≤ ‖𝐾̂‖

2, where

𝐾̂(𝑡, 𝜏) ≡ 1
𝑃 tot,eq
B

∭ 𝑘
[

(𝑡)𝐅(𝜏) ⋅ 𝝃
]

𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
]

𝑑3𝝃, (D.20)

o we may prove Eq. (D.19) by proving ‖𝐾̂‖

2 < ∞. We transform 𝝃 ↦ (𝜏)𝐅(𝑡) ⋅ 𝝃 in order to see that 𝐾̂ is not truly a function of 𝑡
and 𝜏 and is more simply

𝐾̂ = 1
𝑃 tot,eq
B

∭ 𝑘(𝝃)𝑃 eq
A (𝝃) 𝑑3𝝃, (D.21)

which means ‖𝐾̂‖

2 <∞ is proven for a finite time interval, where 0 < 𝑃 tot,eq
B < 1 and 𝑘(𝝃) ∝ 𝑘′(𝝃), if

∭ 𝑘′(𝝃)𝑃 eq
A (𝝃) 𝑑3𝝃 <∞. (D.22)

f the positive semidefinite functions 𝑘′(𝝃) and 𝑃 eq(𝝃) are prescribed without considering a chain model, this relation provides a
onstraint. On the other hand, if we utilize our statistical mechanical framework – namely Eqs. (26), (19), and (23) – we see
q. (D.21) is a requirement that b𝑇 q‡∕qB < ∞. This requirement is generally true for finite, nonzero temperatures because of the
ollowing. First, the momentum portions of the partition functions are known exactly and are finite. Second, the configuration
ortions in general have an upper bound that is powers of the volume (zero potential case), which is then finite if the volume
s finite. Since the partition functions are positive-definite for nonzero temperatures and an appropriate Hamiltonian, the proof is
omplete. For the specific case of the Morse-FJC we have approximately considered in Section 3.1, we can immediately see that it
s explicitly true: the integral of q∗‡(𝝃) over all end-to-end lengths exists and is finite and qB = q − qA is a nonzero finite positive
umber.
While we have obtained the solution for 𝜌(𝑡) in Eq. (D.17) and have proven its convergence, we must now consider error estimates

ince we cannot sum to infinity in practice, and since it is unlikely that we will recognize what the series converges to for a given
ingle-chain model. Including 𝑀 terms in Eq. (D.17),

𝜌(𝑡) = 𝑏(𝑡) +
𝑀
∑

𝑚=1
(−1)𝑚 ∫

𝑡

0
𝐾𝑚(𝑡, 𝜏)𝑏(𝜏) 𝑑𝜏 + 𝑅𝑀+1(𝑡), (D.23)

where 𝑅𝑀+1(𝑡) is then the residual function. It can be shown (Lovitt, 1924) that the absolute value of the residual function in our
case is bound by the inequality

|𝑅𝑀+1(𝑡)| ≤
[

max|𝐾(𝑡, 𝜏)|
]𝑀+1max|𝜌(𝑡)|

. (D.24)
32
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The limit of |
|

𝑅𝑀+1(𝑡)|| as 𝑀 → ∞ is then zero, further verifying the convergence of our series solution in Eq. (D.17). The maximum
f 𝐾(𝑡, 𝜏) > 0 over all 𝑡 and 𝜏 ≤ 𝑡 is 𝐾̂ in Eq. (D.21), and the maximum of 𝜌(𝑡) > 0 is 1∕𝑃 tot,eq

B since the maximum of 𝑃 tot
B (𝑡) is unity.

herefore, we may bound the residual as

|

|

𝑅𝑀+1
|

|

≤ (𝐾̂ )𝑀+1

𝑃 tot,eq
B (𝑀 + 1)!

. (D.25)

The right-hand side of Eq. (D.25) is then our 𝑡-independent estimate for the residual which is computed once after the full time
interval of interest  is specified. This estimate can be scaled by 𝜌(𝑡) for an estimate of the relative error at time 𝑡. We see two effective
timescales — the total time interval  and the timescale 1∕𝐾̂, where 𝐾̂ is actually the total reverse reaction rate coefficient. For
 < 1∕𝐾̂ (short total time), the residual estimate in Eq. (D.25) rapidly becomes small as 𝑀 increases, while for  > 1∕𝐾̂ (long total
time) the residual estimate may require considerably large 𝑀 to become small.

Now that our solution for 𝜌(𝑡) has been proven and error estimates in summing for it have been considered, we can go back to
Eq. (D.6) and transform back using Eq. (D.2) to finally write the solution

𝑃A(𝝃; 𝑡) = 𝑃A
[

𝐅−1(𝑡) ⋅ 𝝃; 0
]

𝛯(𝝃; 𝑡, 0) + ∫

𝑡

0
𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
] 𝜕𝛯(𝝃; 𝑡, 𝜏)

𝜕𝜏
𝜌(𝜏) 𝑑𝜏. (D.26)

Substitution of this solution back into Eq. (D.1) for verification shows that the first term in Eq. (D.26) is the homogeneous solution
and the second term is the particular solution. For further verification, substitution of the solution Eq. (D.26) into the conservation
requirement Eq. (73) retrieves again the integral equation for 𝜌(𝑡) = 𝑃 tot

B (𝑡)∕𝑃 tot,eq
B from Eq. (D.13). As a final check, substitution of

he solution Eq. (D.26) into the evolution equation for broken chains Eq. (43) retrieves (after simplifying and integrating the resulting
rdinary integro-differential equation) the integral equation from Eq. (D.13) yet again. The homogeneous solution accounts for the
ecay of the initial distribution of chains as it is deformed and chains break. The particular solution accounts for broken chains
eforming in time throughout the deformation history, which is why its integrand (a rate of reforming) is proportional to the total
robability of broken chains through 𝜌(𝑡) = 𝑃 tot

B (𝑡)∕𝑃 tot,eq
B . If the reaction propagator 𝛯(𝝃; 𝑡, 𝜏) is treated as independent of end-to-end

ector 𝛯(𝑡, 𝜏) and instead constitutively prescribed, the integral of Eq. (D.26) over all end-to-end vectors for 𝑃 tot
A (𝑡) resembles many

ecent models for the total number of intact bonds in a dynamic network (Long et al., 2013; Sun et al., 2016; Meng et al., 2016;
ui and Long, 2012; Long et al., 2014; Guo et al., 2016).
If the system is initially equilibrated before 𝑡 = 0, which is 𝑃A(𝝃; 𝑡 ≤ 0) = 𝑃 eq

A (𝝃) and 𝐅(𝑡 ≤ 0) = 𝟏, we may use integration by
arts and 𝜌(𝑡 ≤ 0) = 1 to rewrite Eq. (D.26) as a single term,

𝑃A(𝝃; 𝑡) = ∫

𝑡

−∞
𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
] 𝜕𝛯(𝝃; 𝑡, 𝜏)

𝜕𝜏
𝜌(𝜏) 𝑑𝜏, (D.27)

hich is equivalent to the solution from Eq. (75) of the manuscript.

.2. Objectivity of the stress

Here we show that the relation for the Cauchy stress 𝝈(𝑡) in Eq. (59) obtained when substituting in the solution for 𝑃A(𝝃; 𝑡) from
q. (D.26) is objective. Under rigid rotations of the frame of Ref. Paolucci (2016), the relation for 𝝈(𝑡) (if objective) in the new
rame is given by

𝝈′(𝑡) = 𝐐(𝑡) ⋅ 𝝈(𝑡) ⋅𝐐𝑇 (𝑡), (D.28)

here 𝐐(𝑡) is a time-dependent orthogonal rotation tensor, i.e. 𝐐−1(𝑡) = 𝐐𝑇 (𝑡) and det(𝐐) = ±1. The deformation gradient 𝐅(𝑡) is not
n objective tensor, and is instead a double vector:

𝐅′(𝑡) = 𝐐(𝑡) ⋅ 𝐅(𝑡) ⋅𝐐𝑇 (0). (D.29)

he end-to-end vector 𝝃 is a time-independent reference coordinate with 𝝃′ = 𝐐(0) ⋅ 𝝃. While 𝝃 is not objective, the deformed
oordinate 𝐅(𝑡) ⋅ 𝝃 is objective: in the new frame it is given by

[𝐅(𝑡) ⋅ 𝝃]′ = 𝐐(𝑡) ⋅ [𝐅(𝑡) ⋅ 𝝃] . (D.30)

e can utilize this objective vector within the stress in Eq. (59) by taking 𝝃 → 𝐅(𝑡) ⋅ 𝝃 in the integrand, where the element of
ntegration is invariant to this transformation due to the incompressible deformation, and where 𝑓 (𝝃) ≡ 𝜕𝜓∗(𝝃)∕𝜕𝜉 is the force. The
esult is

𝝈(𝑡) = 𝑛∭ 𝑃A [𝐅(𝑡) ⋅ 𝝃; 𝑡] 𝑓 [𝐅(𝑡) ⋅ 𝝃]
[

𝐅(𝑡) ⋅ 𝝃𝝃𝑇 ⋅ 𝐅𝑇 (𝑡)
‖𝐅(𝑡) ⋅ 𝝃‖2

]

𝑑3𝝃 − 𝑝(𝑡)𝟏. (D.31)

ote that we have assume that the single-chain model is spherically-symmetric in 𝝃. Since 𝐅(𝑡) ⋅ 𝝃 is an objective vector, its norm
𝐅(𝑡) ⋅ 𝝃‖2 is an objective scalar, which means that it is entirely invariant to rigid rotations of the frame of reference. This is made
lear as follows: the norm is

𝐅(𝑡) ⋅ 𝝃 =
√

𝝃𝑇 ⋅ 𝐂(𝑡) ⋅ 𝝃, (D.32)
33
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where 𝐂(𝑡) = 𝐅𝑇 (𝑡) ⋅ 𝐅(𝑡) is the right Cauchy–Green strain tensor. Using Eq. (D.29), 𝐂(𝑡) in new frame is given by 𝐐(0) ⋅ 𝐂(𝑡) ⋅𝐐𝑇 (0),
and we then have the invariant quantity

[

𝝃𝑇 ⋅ 𝐂(𝑡) ⋅ 𝝃
]′ = 𝝃𝑇 ⋅𝐐𝑇 (0) ⋅𝐐(0) ⋅ 𝐂(𝑡) ⋅𝐐𝑇 (0) ⋅𝐐(0) ⋅ 𝝃 = 𝝃𝑇 ⋅ 𝐂(𝑡) ⋅ 𝝃, (D.33)

hich means that ‖𝐅(𝑡) ⋅ 𝝃‖2 is invariant. Consequently, all spherically-symmetric scalar functions with argument 𝐅(𝑡) ⋅ 𝝃 are also
nvariant; this is also true for the cases where the deformed coordinate is parameterized by 𝜏 or 𝑠. Thus, in Eq. (D.31), not only
s ‖𝐅(𝑡) ⋅ 𝝃‖2 invariant but 𝑓 [𝐅(𝑡) ⋅ 𝝃] is also invariant. We will next show that 𝑃A [𝐅(𝑡) ⋅ 𝝃; 𝑡] is invariant using the invariance of
pherically-symmetric scalar functions with argument 𝐅(𝑡) ⋅ 𝝃. The kernel function 𝐾(𝑡, 𝜏) in Eq. (D.10) when using 𝝃 → 𝐅(𝑡) ⋅ 𝝃 is
ewritten as

𝐾(𝑡, 𝜏) = 1
𝑃 tot,eq
B

∭ 𝑃 eq
A [𝐅(𝜏) ⋅ 𝝃] 𝑘 [𝐅(𝜏) ⋅ 𝝃] 𝑒− ∫ 𝑡𝜏 𝑘[𝐅(𝑠)⋅𝝃] 𝑑𝑠 𝑑3𝝃. (D.34)

ince 𝑃 eq
A (𝝃) and 𝑘(𝝃) are both spherically-symmetric, each of their instances in this relation for the kernel are invariant. Similarly,

or the right-hand side function 𝑏(𝑡) in Eq. (D.12) we can write

𝑏(𝑡) = 1
𝑃 tot,eq
B

{

1 −∭ 𝑃A(𝝃; 0) 𝑒− ∫ 𝑡0 𝑘[𝐅(𝑠)⋅𝝃] 𝑑3𝝃
}

, (D.35)

hich is then invariant as long as the initial distribution 𝑃A(𝝃; 0) is spherically-symmetric, which is true if it is the equilibrium
istribution 𝑃 eq

A (𝝃). Since the solution for 𝜌(𝑡) in Eq. (D.17) is entirely related to 𝐾(𝑡, 𝜏) and 𝑏(𝑡), it is also invariant. The solution for
A [𝐅(𝑡) ⋅ 𝝃; 𝑡] using Eq. (D.26) is

𝑃A [𝐅(𝑡) ⋅ 𝝃; 𝑡] = 𝑃A(𝝃; 0)𝑒− ∫ 𝑡0 𝑘[𝐅(𝑠)⋅𝝃] + ∫

𝑡

0
𝑃 eq
A [𝐅(𝜏) ⋅ 𝝃] 𝑘 [𝐅(𝜏) ⋅ 𝝃] 𝑒− ∫ 𝑡𝜏 𝑘[𝐅(𝑠)⋅𝝃] 𝑑𝑠 𝜌(𝜏) 𝑑𝜏, (D.36)

nd since each function here on the right-hand side is invariant, 𝑃A [𝐅(𝑡) ⋅ 𝝃; 𝑡] is invariant. We now refer back to Eq. (D.31) and
pply the rigid rotation via 𝐐(𝑡), where we have shown each scalar function within the integrand is invariant. The result is

𝝈′(𝑡) =𝑛∭ 𝑃A [𝐅(𝑡) ⋅ 𝝃; 𝑡] 𝑓 [𝐅(𝑡) ⋅ 𝝃]
[

𝐐(𝑡) ⋅ 𝐅(𝑡) ⋅ 𝝃𝝃𝑇 ⋅ 𝐅𝑇 (𝑡) ⋅𝐐𝑇 (𝑡)
‖𝐅(𝑡) ⋅ 𝝃‖2

]

𝑑3𝝃 − 𝑝(𝑡)𝟏, (D.37)

=𝐐(𝑡) ⋅
{

𝑛∭ 𝑃A [𝐅(𝑡) ⋅ 𝝃; 𝑡] 𝑓 [𝐅(𝑡) ⋅ 𝝃]
[

𝐅(𝑡) ⋅ 𝝃𝝃𝑇 ⋅ 𝐅𝑇 (𝑡)
‖𝐅(𝑡) ⋅ 𝝃‖2

]

𝑑3𝝃 − 𝑝(𝑡)𝟏
}

⋅𝐐𝑇 (𝑡), (D.38)

=𝐐(𝑡) ⋅ 𝝈(𝑡) ⋅𝐐𝑇 (𝑡), (D.39)

hich shows that 𝝈(𝑡) is indeed an objective tensor.

.3. Computational considerations

We recognize that as the current time 𝑡 grows, it becomes computationally prohibitive to store certain quantities (such as the
eaction propagator) over the entire history. Fortunately, we are able to rewrite our solution at 𝑡 in terms of the solution at any
previous time, which allows us to periodically reset and resolve in order to satisfy memory requirements. For an intermediate time
𝑡𝑖 obeying 0 ≤ 𝜏 ≤ 𝑡𝑖 ≤ 𝑡, the reaction propagator has the property

𝛯(𝝃; 𝑡, 𝜏) = 𝛯(𝝃; 𝑡, 𝑡𝑖)𝛯
[

(𝑡)𝐅(𝑡𝑖) ⋅ 𝝃; 𝑡𝑖, 𝜏
]

. (D.40)

his property allows the solution in Eq. (D.26) at time 𝑡 to be written in terms of the solution at an intermediate time 0 ≤ 𝑡𝑖 ≤ 𝑡 and
the history from 𝑡𝑖 to 𝑡,

𝑃A(𝝃; 𝑡) = 𝑃A
[

(𝑡)𝐅(𝑡𝑖) ⋅ 𝝃; 𝑡𝑖
]

𝛯(𝝃; 𝑡, 𝑡𝑖) + ∫

𝑡

𝑡𝑖
𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
] 𝜕𝛯(𝝃; 𝑡, 𝜏)

𝜕𝜏
𝜌(𝜏) 𝑑𝜏. (D.41)

hen applying Eq. (D.40) to the solution for 𝜌(𝑡) in Eq. (D.17), two adjustments must be made. First, the bounds of integration in
q. (D.17) must be 𝜏 ∈ [𝑡𝑖, 𝑡]. Second, 𝑏(𝑡) in Eq. (D.12) must be rewritten as

𝑏(𝑡) = 1
𝑃 tot,eq
B

{

1 −∭ 𝑃A
[

(𝑡)𝐅(𝑡𝑖) ⋅ 𝝃; 𝑡𝑖
]

𝛯(𝝃; 𝑡, 𝑡𝑖) 𝑑3𝝃
}

. (D.42)

Next, we note that it is most computationally expedient to compute 𝜌(𝑡) in Eq. (D.17) by performing successive approxima-
ions (Lovitt, 1924). This is as opposed to computing, storing, integrating, and summing each of the 𝑀 functions 𝐾𝑚(𝑡, 𝜏)𝑏(𝜏), which
s more computationally expensive. After starting with 𝜌0(𝑡) ≡ 𝑏(𝑡) and computing 𝐾(𝑡, 𝜏), storing both 𝑏(𝑡) and 𝐾(𝑡, 𝜏), we successively
pproximate the solution 𝜌(𝑡) by iterating

𝜌𝑀 (𝑡) = 𝑏(𝑡) − ∫

𝑡

0
𝐾(𝑡, 𝜏)𝜌𝑀−1(𝜏) 𝑑𝜏. (D.43)

o computationally obtain the solution as 𝜌(𝑡) = lim𝑀→∞ 𝜌𝑀 (𝑡), we take finite 𝑀 such that the residual in Eq. (D.25) falls below
ome specified tolerance. Finally, we note that exploiting the symmetries of 𝑃A(𝝃; 𝑡) that are preserved over the deformation history
34

dditionally serves to alleviate computation expense when computing the integrals over 𝝃. The 𝑢FJC model we utilize here is
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spherically-symmetric (only depend on ‖𝝃‖2 = 𝜉), allowing many integrals to be reduced to one-dimensional integrals over the
scalar end-to-end length 𝜉. For example, Eq. (D.22) for spherically-symmetric single-chain models is reducible to

∭ 𝑘′(𝝃)𝑃 eq
A (𝝃) 𝑑3𝝃 = 4𝜋 ∫

∞

0
𝑘′(𝜉)𝑃 eq

A (𝜉) 𝜉2 𝑑𝜉. (D.44)

While the time-independent single-chain functions will always retain their symmetry, the distribution 𝑃A(𝝃; 𝑡) will in general not.
Fortunately, many deformation histories of interest will preserve a portion of the original spherical symmetry: when applying
uniaxial tension (not necessarily monotonic), where the relative deformation is given by

(𝑡)𝐅(𝜏) =

⎛

⎜

⎜

⎜

⎜

⎝

𝐹11(𝜏)
𝐹11(𝑡)

0 0

0
[

𝐹11(𝑡)
𝐹11(𝜏)

]1∕2
0

0 0
[

𝐹11(𝑡)
𝐹11(𝜏)

]1∕2

⎞

⎟

⎟

⎟

⎟

⎠

, (D.45)

the angular symmetry about the 𝜉1-axis is preserved. This is made clear after writing

‖

‖

‖

(𝑡)𝐅(𝜏) ⋅ 𝝃
‖

‖

‖2
=

{

[

𝐹11(𝜏)
𝐹11(𝑡)

]2
𝜉21 +

𝐹11(𝑡)
𝐹11(𝜏)

(

𝜉22 + 𝜉
2
3
)

}1∕2

, (D.46)

=

{

[

𝐹11(𝜏)
𝐹11(𝑡)

]2
𝑧2 +

𝐹11(𝑡)
𝐹11(𝜏)

𝑟2
}1∕2

, (D.47)

where 𝑧 ≡ 𝜉1 and 𝑟 ≡ (𝜉22 + 𝜉23 )
1∕2 are the height and radius in cylindrical coordinates. Physically, the deformation stretches a

sphere into a spheroid, which is symmetric about the 𝑧-axis along which the deformation is directed. We then write each single
chain function in terms of 𝑧 and 𝑟 rather than simply 𝜉, such as 𝑃 eq

A (𝑧, 𝑟) ≡ 𝑃 eq
A [(𝑧2 + 𝑟2)1∕2]. After doing so we simplify each of the

hree-dimensional integrals over 𝝃 into two-dimensional integrals over 𝑧 and 𝑟; note that we also exploit the symmetry about the
-plane. For example: for an initially-equilibrated system, the right-hand side function 𝑏(𝑡) from Eq. (D.12) is

𝑏(𝑡) ≡ 1
𝑃 tot,eq
B

{

1 −∭ 𝑃 eq
A

[

𝐅−1(𝑡) ⋅ 𝝃
]

𝛯(𝝃; 𝑡, 0) 𝑑3𝝃
}

, (D.48)

= 1
𝑃 tot,eq
B

⎧

⎪

⎨

⎪

⎩

1 − 4𝜋 ∫

∞

0
𝑟 𝑑𝑟∫

∞

0
𝑑𝑧 𝑃 eq

A

[

𝐹−1
11 (𝑡)𝑧, 𝐹 1∕2

11 (𝑡)𝑟
]

𝑒
− ∫ 𝑡0 𝑑𝑠 𝑘

[

𝐹11(𝑠)
𝐹11(𝑡)

𝑧,
[

𝐹11(𝑡)
𝐹11(𝑠)

]1∕2
𝑟

]

⎫

⎪

⎬

⎪

⎭

. (D.49)

he kernel function 𝐾(𝑡, 𝜏) simplifies similarly, allowing 𝜌(𝑡) and afterward 𝑃A(𝝃; 𝑡) to be evaluated with less computational expense.
urther, 𝑃A(𝝃; 𝑡) too retains a symmetry about 𝜉1, which allows the stress in Eq. (59) to also be written in terms of a two-dimensional
ntegral over 𝑧 and 𝑟:

𝜎11(𝑡) = 2𝜋𝑛∫

∞

0
𝑟 𝑑𝑟∫

∞

0
𝑑𝑧 𝑃A(𝑧, 𝑟; 𝑡) 𝑓 (𝑧, 𝑟)

2𝑧2 − 𝑟2
(

𝑧2 + 𝑟2
)1∕2

. (D.50)

ote that we have also applied the traction-free boundary conditions and correspondingly solved for the pressure 𝑝(𝑡) in order to
btain Eq. (D.50).

.4. Special cases

As we discussed in Section 4.1 and observed in Figs. 4–5, the reaction rate coefficient function 𝑘′(𝜉) often behaves as being
constant at its initial value 𝑘′(0) before suddenly becoming infinite beyond some critical extension 𝜉𝑐 . For the net reaction rate
coefficient function 𝑘(𝜉) = 𝑁𝑏𝑘′(𝜉), this is more specifically

𝑘(𝜉) ∼

{

𝑘0, 𝜉 ≤ 𝜉𝑐 ,
∞, 𝜉 > 𝜉𝑐 .

(D.51)

Applying this approximation to the reaction propagator 𝛯(𝝃; 𝑡, 𝜏) in Eq. (D.7), we obtain

𝛯(𝝃; 𝑡, 𝜏) ∼ 𝛩(𝝃; 𝑡, 𝜏)𝑒−𝑘0(𝑡−𝜏) and 𝜕𝛯(𝝃; 𝑡, 𝜏)
𝜕𝜏

∼ 𝛩(𝝃; 𝑡, 𝜏)𝑘0𝑒−𝑘0(𝑡−𝜏), (D.52)

where the yield function 𝛩(𝝃; 𝑡, 𝜏) is defined as

𝛩(𝝃; 𝑡, 𝜏) ≡

{

1, ‖

‖

‖

(𝑡)𝐅(𝑠) ⋅ 𝝃
‖

‖

‖2
≤ 𝜉𝑐 ∀𝑠 ∈ [𝜏, 𝑡],

0, otherwise.
(D.53)

The yield function accounts for chains that have been broken via extension past 𝜉𝑐 by assigning zero to any vector 𝐅−1(𝑡) ⋅ 𝝃 being
ampled in 𝑃 eq

A
[

𝐅−1(𝑡) ⋅ 𝝃
]

that was outside or deformed outside the yield surface at ‖𝝃‖2 = 𝜉𝑐 during the deformation history. With
q. (D.52), our solution for the distribution of intact chains 𝑃A(𝝃; 𝑡) from Eq. (D.27) becomes

𝑃A(𝝃; 𝑡) =
𝑡
𝑃 eq [

(𝑡)𝐅(𝜏) ⋅ 𝝃
]

𝛩(𝝃; 𝑡, 𝜏)𝑘0𝑒−𝑘0(𝑡−𝜏) 𝜌(𝜏) 𝑑𝜏. (D.54)
35
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This special case is transient chain breaking combined with a finite critical extension.

Rate-independent irreversible breaking
Applying Eq. (D.52) to our solution for the distribution of intact chains 𝑃A(𝝃; 𝑡) from Eq. (D.26),

𝑃A(𝝃; 𝑡) = 𝑃A
[

𝐅−1(𝑡) ⋅ 𝝃; 0
]

𝛩(𝝃; 𝑡, 0)𝑒−𝑘0(𝑡−𝜏) + ∫

𝑡

0
𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
]

𝛩(𝝃; 𝑡, 𝜏)𝑘0𝑒−𝑘0(𝑡−𝜏) 𝜌(𝜏) 𝑑𝜏. (D.55)

e assume that the distribution is initially equilibrated, and then Eq. (D.55) is equivalent to Eq. (D.54). Now, we consider the
pecial case where 𝑘0 ≈ 0, which greatly simplifies Eq. (D.55) to

𝑃A(𝝃; 𝑡) = 𝑃 eq
A

[

𝐅−1(𝑡) ⋅ 𝝃
]

𝛩(𝝃; 𝑡, 0). (D.56)

q. (D.56) is equivalent to Eq. (81) from the manuscript and is the special case of the rate-independent irreversible breaking of
hains.

ransient breaking
Next, we consider the special case where 𝜉𝑐 → ∞ but 𝑘0 remains appreciable, where Eq. (D.54) becomes

𝑃A(𝝃; 𝑡) = ∫

𝑡

−∞
𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
]

𝑘0𝑒
−𝑘0(𝑡−𝜏) 𝑑𝜏. (D.57)

q. (D.57) is equivalent to Eq. (84) from the manuscript and is the special case where chains constantly break and reform, i.e. the
ransient network model. Note that an infinitely-extensible single-chain model (such as the ideal or EFJC models) must be utilized
ince 𝜉𝑐 → ∞. Also note that we have taken 𝜌(𝑡) = 1 within the solution in Eq. (D.57), which means that the total number of
ntact chains 𝑃 tot

A (𝑡) remains constant at 𝑃 tot,eq
A for all time. This can be verified by integrating Eq. (74) over 𝝃 with 𝑘(𝝃) = 𝑘0 for

n initially-equilibrated system. Integrating Eq. (D.57) over 𝝃 additionally will show that 𝑃 tot
A (𝑡) = 𝑃 tot,eq

A for all time as long as
tot
A (0) = 𝑃 tot,eq

A . Further, we point out that 𝑘(𝝃) = 𝑘0 is likely the only way to guarantee that the fraction of intact chains remains
onstant at its equilibrium value. For this to be true, we must have 𝜌(𝑡) = 1 as well as 𝑃 tot

A (𝑡) = 𝑃 tot,eq
A . Considering Eq. (D.13) with

(𝑡) = 1, we reference Eq. (D.10) for 𝐾(𝑡, 𝜏) and Eq. (D.12) for 𝑏(𝑡) in simplifying the following:

∫

𝑡

0
𝐾(𝑡, 𝜏) 𝑑𝜏 = 1

𝑃 tot,eq
B

∫

𝑡

0 ∭ 𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
] 𝜕𝛯(𝝃; 𝑡, 𝜏)

𝜕𝜏
𝑑3𝝃 𝑑𝜏, (D.58)

= 1
𝑃 tot,eq
B

∫

𝑡

0 ∭

( 𝜕
𝜕𝜏

{

𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
]

𝛯(𝝃; 𝑡, 𝜏)
}

− 𝛯(𝝃; 𝑡, 𝜏) 𝜕
𝜕𝜏

𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
]

)

𝑑3𝝃 𝑑𝜏, (D.59)

= 1
𝑃 tot,eq
B

∭

(

𝑃 eq
A (𝝃) − 𝑃 eq

A
[

𝐅−1(𝑡) ⋅ 𝝃
]

𝛯(𝝃; 𝑡, 0) − ∫

𝑡

0
𝛯(𝝃; 𝑡, 𝜏) 𝜕

𝜕𝜏
𝑃 eq
A

[

(𝑡)𝐅(𝜏) ⋅ 𝝃
]

𝑑𝜏
)

𝑑3𝝃, (D.60)

= 𝑏(𝑡) − 1 − 1
𝑃 tot,eq
B

∫

𝑡

0 ∭ 𝛯(𝝃; 𝑡, 𝜏)
⎡

⎢

⎢

⎣

𝜕𝑃 eq
A (𝝃)
𝜕𝝃

|

|

|

|

|𝝃=(𝑡)𝐅(𝜏)⋅𝝃
⋅ 𝐋(𝜏) ⋅ (𝑡)𝐅(𝜏) ⋅ 𝝃

⎤

⎥

⎥

⎦

𝑑3𝝃 𝑑𝜏. (D.61)

e can alternatively arrive at this result by integrating Eq. (D.26) over all 𝝃, setting both 𝜌(𝑡) = 1 and 𝑃 tot
A (𝑡) = 𝑃 tot,eq

A , and similarly
implifying. Substituting Eq. (D.61) into Eq. (D.13), we find in general that 𝑃 tot

A (𝑡) = 𝑃 tot,eq
A is only satisfied when

∫

𝑡

0 ∭ exp
{

−∫

𝑡

𝜏
𝑘
[

(𝜏)𝐅(𝑠) ⋅ 𝝃
]

𝑑𝑠
}

[

𝜕𝑃 eq
A (𝝃)
𝜕𝝃

⋅ 𝐋(𝜏) ⋅ 𝝃
]

𝑑3𝝃 𝑑𝜏 = 0. (D.62)

his condition may also be retrieved through simplifying the spatial integral of Eq. (D.27) with 𝜌(𝑡) = 1 and setting the result equal
o 𝑃 tot,eq

A . While Eq. (D.62) is indeed satisfied for the transient network model where 𝑘(𝝃) = 𝑘0, it is unlikely to be satisfied in all
he other cases where 𝑘(𝝃) is not constant. We therefore find that the transient network model is the only case of our model where
tot
A (𝑡) can be guaranteed to remain constant at its equilibrium value 𝑃 tot,eq

A .
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