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Abstract

We study the regular surface defect in the Q2-deformed four-dimensional super-
symmetric gauge theory with gauge group SU(N) with 2N hypermultiplets in
fundamental representation. We prove its vacuum expectation value obeys the
Knizhnik—Zamolodchikov equation for the 4-point conformal block of the sly-current
algebra, originally introduced in the context of two-dimensional conformal field the-
ory. The level and the vertex operators are determined by the parameters of the
Q-background and the masses of the hypermultiplets; the cross-ratio of the 4 points is
determined by the complexified gauge coupling. We clarify that in a somewhat subtle
way the branching rule is parametrized by the Coulomb moduli. This is an example
of the BPS/CFT relation.

Keywords KZ equation - Surface defect - qq-character - BPS/CFT correspondence -
Supersymmetric gauge theory - Supersymmetry and duality

Mathematics Subject Classification 81T13 - 81T35 - 81T40

1 Introduction

The rich mathematics of quantum field theory has a remarkable feature of admitting,
to some extent, an analytic continuation in various parameters, such as momenta, spins
etc. This feature is best studied in the examples of two-dimensional conformal field
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theories, where one can observe almost with a naked eye that the building blocks of the
correlation functions are analytic in the parameters, such as the central charges, con-
formal dimensions, weights, spins and so on cf. [53]. Some formulae admit analytic
continuation in the level k of the current algebra, cf. [22]. The analytic continuation
offers some glimpses of the Langlands duality [12] (k + 2Y) (kY + k) = 1, which
suggests an identification of the quantum group parameter g with the modular param-
eter exp(2mit) of some elliptic curve [6]. These observations solidified as soon as
the connection between the S-duality of four-dimensional supersymmetric theories
and the modular invariance of two-dimensional conformal field theories was observed
[47]. Localization computations in supersymmetric gauge theories [24, 26, 27, 32-37]
showed that the correlation functions of selected observables coincide with confor-
mal blocks of some two-dimensional conformal field theories, or, more generally, are
given by the matrix elements of representations of some infinite-dimensional algebras,
such as Kac—Moody, Virasoro, or their g-deformations, albeit extended to the com-
plex domain of parameters, typically quantized in the two-dimensional setup. In [26],
this phenomenon was attributed to the chiral nature of the tensor field propagating
on the worldvolume of the fivebranes. The fivebranes (M5 branes in M-theory and
N S5 branes in the 1A string theory) were used in [21, 49] to engineer, in string
theory setup, the supersymmetric systems whose low energy is described by N = 2
supersymmetric gauge theories in four dimensions. This construction was extended
and generalized in [11]. This correspondence, named the BPS/CFT correspondence
in [29, 30], has been supported by a large class of very detailed examples in [1, 2,
32-37], and more recently in [14, 15, 18, 20].

Finally, in [50, 51], the relation of the quantum group parameter ¢ with the ellip-
tic curves has been brought into the familiar context of the relation of the N = 4
super-Yang—Mills theory to elliptic curves. Hopefully, with this understanding of the
analytically continued Chern—Simons theory, the (quasi)-modularity conjectures of
[31] could be tested.

In this paper, we shall be studying a particular corner of that theoretical landscape:
the SU(N) gauge theory with 2N fundamental hypermultiplets. In the BPS/CFT
correspondence, it is associated with a zoo of two-dimensional conformal theo-
ries living on a 4-punctured sphere, all related to the sly current algebra, either
directly, or through the Drinfeld—Sokolov reduction, producing the Wy -algebra [52],
depending on the supersymmetric observables one uses to probe the four-dimensional
theory. Two observables are of interest for us. First, the supersymmetric partition
function Z = Z(a, m, €1, &; q) on R4, which is a function of the vacuum expec-
tation value a = diag (ay, ..., ay) of the scalar in the vector multiplet, the masses
m = {my,my,...,myn_1,man}, the exponentiated complexified gauge coupling
q = exp(2rit),

D 4

Tm Tt

and the parameters ¢ = (g1, &3) of the Q2-deformation. The latter are the equivariant
parameters of the maximal torus U (1) x U (1) of the Euclidean rotation group Spin(4).
In the complex coordinates (z1, z2) on C? ~ R*, the rotational symmetry acts by
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(z1,20) — (€171, €l’e2 z5). Exchanging &1 <> & is part of the Spin(4) Weyl
group; hence, it is a symmetry of Z. The second observable is the partition function ¥
of the regular surface defect which breaks the gauge group down to its maximal torus
U (1)N=1 along the surface, which we shall take to be the zo = 0 plane. This partition
function depends on all the parameters a, m, &, q that the bulk partition function Z
depends on and, in addition, it depends on the parameters

w:(wo:wl:~--:wN_l)e(C]P’N*1

of a two-dimensional theory the defect supports. The physics and mathematics setup of
the problem are explained in [36, 37], which the reader may consult for motivations and
orientation. However, our exposition is self-contained as a well-posed mathematical
problem, which we introduce presently.

Our main result is the proof of a particular case of the BPS/CFT conjecture [29,
30]: the vacuum expectation value (§) of the surface defect obeys the Knizhnik-
Zamolodchikov equation [22], specifically the equation obeyed by the (5[ N) , current
algebra conformal block

¢ = (V1(0)V2(q)V3(1)V4(OO) >a ey

with the vertex operators corresponding to irreducible infinite-dimensional represen-
tations of sly. More specifically, the vertex operators at 0 and oo correspond to the
generic lowest weight V3 and highest weight V= Verma modules, while the vertex

operators at q and 1 correspond to the so-called twisted HW-modules Hh,, fiﬁg} . The
subscripts v, b € C¥—1 and m, m e C determine the values of the Casimir operators,
in correspondence with the 2N masses m and one of the £2-background parameters ;.
The superscripts i, it € CV~! determine the so-called twists of the HW-modules, all
defined below, which we express via m, €1, and the Coulomb parameters a. In other
words, the Coulomb parameters determine the analogue of the “intermediate spin”,
which we indicate by placing a superscript a in (1) to label the specific fusion channel.
We define these representations and the Knizhnik—Zamolodchikov equation [22].

The appearance of the twisted representations is a curious fact not visible in the
rational conformal field theories.

2 Basic setup in four dimensions

First we introduce the setup of the four-dimensional gauge theory calculation.

2.1 Notations

We start by reviewing our notations. The reader is invited to consult [32-37] for the
general orientation.

@ Springer



28 Page4of53 N. Nekrasov, A. Tsymbaliuk

e The parameters of the 2-deformation: £1, &, —two complex parameters, generating
the equivariant cohomology HZ... | . (pt). The twist part of the €2-deformation is
& = €1 + &. The torus C* x C* is the complexification of the maximal torus of
the spin cover of the rotation group Spin(4). We also define

=2 )
&1
e The Coulomb moduli:
a=(a),_, = (a....ay) € C" 3)

—the equivariant parameters of the color group, in other words these are the gen-

erators of HZ(CX Y (pt), on which the symmetric group S(N) acts by permutations.

e The masses:

m=mp)L, =0mi,...,my) e CV )

—the equivariant parameters of the flavor group. The symmetric group S(2N) acts
on them by permutations. The S(2N)-invariants are encoded via the polynomial

2N
Px)=[]&—my). )
f=1

e The splitting of the set of masses into the N “fundamental” and N “anti-
fundamental” ones:

N
PE=PT@P (),  PE0) =[] (x—m}). ©)
=1

e The lattice of equivariant weights A C C is defined by:

N 2N
A:=Z~81@Z~82@@Z'ah@@z~mf. (7)
b=1 f=1

We assume that all the parameters €1 2, a, m are generic, up to the overall trans-
lation a, — ap + s, my +— my + s, for s € C. Thus, the rank of A is at least
3N + 1.

Recall that the bulk theory (subject to noncommutative deformation, leading
to instanton moduli space being partially compactified to the moduli space 7 n
of charge k rank N framed torsion-free sheaves on CP?) is invariant under the
nonabelian symmetry group U (2) of rotations, preserving the complex structure
of C? ~ R*. The group U(N) of constant gauge transformations acts on Mi. N
by changing the asymptotics of instantons at infinity. The Coulomb parameters
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a represent the maximal torus of U (N); they can be viewed as local coordinates
on the Spec H;]( N) (pt) = C[a]’™ with S(N) being the Weyl group. Likewise,
the parameters (g1, €2) are acted by the Weyl group Z, which acts by permut-
ing &1 <> &2. The physical theory has a larger rotation symmetry group Spin(4),
whose Weyl group is Z; x Z but we don’t see the full symmetry in the Z-function.
The full symmetry is present once Z is divided by the so-called U (1)-factor, having
to do with decoupling of the U (1)-part of gauge group [1].

Finally, the masses represent the equivariant parameters of the flavor group
SU(2N) (the physical theory has a larger flavor symmetry group, which we don’t
see either); hence, the Weyl group S(2N) symmetry making the polynomial P (x)
of (5) the good parameter.

The surface defect we are going to study in this paper breaks both the gauge
group U (N) to its maximal torus U ()N and the flavor group to its maximal torus
U(1)* . The group S(N) x S(2N) acts, therefore, on the space of surface defects.
In describing the specific bases in the vector space of surface defects, we keep
track of the ordering of the Coulomb and mass parameters.

e The set of vertices of the Young graph P—the set of all Young diagrams (= partitions
of nonnegative integers) {A}. Then

UJN:{X:(A(I),...,A(N)) Mb)efpfomsbsN}-

e For abox O = (i, j), define its content c(OJ) by:

c(@:=G—Der+(j— Dea. )
e For A € P, define:
Ao = Z <O and Xr = Z @ 9)
Oea Oea

e For » € PN define the multiset, i.e., its elements may have multiplicities, of
tangent weights, {Wt}tETx C A by the character

N
DoeVii= ) (Xf(c-)+e8~xx<h)—(1—es‘)(1—682)~xk<b>xf@)- (10)
[ETX b,c=1

Remark 2.1 The duality: {w;} tely = {e— w,},erx is related to the symplectic structure
on the instanton moduli space and its completion Mx_y.
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e The pseudo-measure © = (a,m, g1, €3; ) : PN — C on PV is defined via:

— 2N N
o v A TS o=t o (ap +c@) —my)
pam e e ) 7= oo ((<DNa) " Mo w
U 5 e Toee (=P @ +e@) PF @ +e))
= Zinst "4 ' ’

HlETX We

(1)
where || = Y0, [A?| with
®) = Z)‘@
1
i

denoting the total number of boxes in A0 and Zinst = Zinst(a m, g, eo; q) is the
Taylor series in q uniquely determined by the normalization

>ouly=1.

rePN

Remark 2.2 The restriction deg P(x) = 2N comes from the convergence of Z™! for
generic a, m, € 3, cf. [9]. When working over the ring C[[q]] of formal power series
in q, the restriction on the degree of P(x), i.e., the number of masses, can be dropped.

e For . € P, we call B € A a corner box if A\\B € P and we call J ¢ A a growth
box if U0 € P. We denote by 34 A the set of all growth boxes of A, and by d_A
the set of all corner boxes of A. It is easy to check that:

BOLh — #O_A = 1.

° l_jor x € C, we define the function ¥ (x) on PV as follows: its value ¥ (x) 5 on
A € PN is equal to

N

o B (x —ap —c() —e)(x —ap — c(L)) — &)
Y(x) I3 = 11:[1 (x ab)Dl;I(b) o —ap— @) —ap — @) — o)

u [oes, o (x —ap — (@)
b=1 [Tmes s (x —ap — & —c(M)’

(12)
the second line being obtained from the first one by the simple inspection of the
cancelling common factors.

e For x € C, we define the function X(x) on PV, called the fundamental qq-
character, by specifying its value X(x) |3 on % € PN as follows:

P(x)
Y(x) I3

X)) |5z =Yx+e)lr+q (13)
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e For a pseudo-measure /i: PV — C and a function g: PV — C(x), the average
(g(x) )y is defined via:

(). = 3 s, (14)

rePN
2.2 Dyson-Schwinger equation
The following is the key property of X: P¥ — C(x) of (13):

Proposition 2.1 The average ( X(x) ), is a regular function of x.

This is the simplest case of the general result on the gg-characters as established
in [32-37]. For completeness of our exposition, an elementary proof is presented in
Appendix A.

2.3 An orbifold version

Asexplained in [35], there is a very important Z y -equivariant counterpart of the above
story. It is defined in several steps.
First, we change the notations:

ap — dp , mjlfn—)nﬁj;, (e1,82) > (61,82), sothat g¢+>¢g:=¢1 +&>.

Next, we introduce the Zy-grading A — G, € Zy of the lattice A via:

h=kier+kody+ Y K ap+ Y KT AT+ K iy
b f /
(15)

Gri=hkt+ Y o Y ki + D KT+ > K | modN,

weZn beA, feF} feF,

for some partitions

{1,...,N] =] 4= || F

weLN wEZN

of the sets of the Coulomb moduli and the fundamental/anti-fundamental masses. Such
Zn-grading is also often called an N-coloring. We define:

Py =[] a—mp).

feFy
The following depends on a choice of a section Zy — Z. We send

Zn>w i~ 0<w<N, (16)
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thus, identifying Zy with {0, ..., N — 1}, as a set. An N-coloring is called regular iff
#A, = #F = #F, = 1 forall w € Zy .

For a regular N-coloring, the w-colored masses are packaged into a degree two poly-
nomial

P,(x) = PF(x)P, (x) = (x — &1ptp — wE2)* — 7812 . (17)

Also, for a regular N-coloring, assuming (16), we set:

1
= —wk + — a 18
Qy a)/<+81 Zab, (18)

beA,
where

K
K= —. 19
K= (19)

We shall also need a few more new notations.

e For every w € Zy, define the observable k,, : PN Z=g by:

N
kolz =20 D0 88, oo (20)

b=1 Oe)®

where ¢(i, j) := (i — ey + (j — 1)é&, cf. (8), and (Sl.j = §;,; is the Kronecker
delta.
e The fractional couplings:

4= (Ao)weczy = (@0, q1, ..., qn-1) € CV. (21)

e Given g of (21), define the observable q: PN — C, called the fractional instanton
factor, as follows:

N
kw|7
alr =[1 IT 9ese = [] 0™ (22)

b=1[e)®) WEZLN

e The pseudo-measure /Lmb = uorb(ﬁ, m, 1,82;q): PN — Con PV is defined
via:

b~ ~ ~ =
wo@,m, e, 8;9) |5

(] 50

LT [
ql5; l_[?/=1 12 Moeo (,}b+5(|]),n~1;) ap @it <7&b —c@) +n“1}) Ay

= \I,insl 506
Wi
[Te Wi

(23)
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where the tangent weights {w;};er; are defined via (10) with the substitution
ay > dp, €2 > &2, and the partition function W™ = W3 1, g1, &,; §) is the

formal power series' in (qo, .. ., qy_1) uniquely determined by the normalization
orb |_ __
D nPE =1 (24)
rePN

e For every w € Zy, define the C(x)-valued observable Y,,: P¥ — C(x) via:

N 52
Yo I5 =[] ((x —ay)
b=1
x l_[ (x —ap—c()) —e; )5%@,#@) (x —ap —c(0) — 52>5%5]1)+5(D)
Oea® x —ap—c(0) x—ap—cd)—¢
(25)
e For every w € Zy, define the C(x)-valued observable X,,: PV — C(x) via:
- Py (x)
X == 5 —. 26
wX) |3 wr1(X +8) 5 + do Yol (26)
2.4 Surface defects
Consider a map
ay: PN — PN (27)
defined via
Tz (30,2 M) > B (AT, A®) @)
with »
A +b—1
AP = [1—} b=1,...,N. (29)
N
The geometric origin of 7y is explained in [32-37]. Note that 7; = Id-p.
Following [32-37], let us now pass from q = (qo, - . ., qn—1) of (21) to another set
of variables, namely w = (wo : wy : --- : wy—1) and q via:
qo = wi/wo, q1 = w2/wi, ..., qN—2 = WN-1/WN-2, qN—-1 = qWo/WN—1 ,
(30)
where the bulk coupling q is recovered by:
q=4dod1-.-qN-1- (31

' One can show that this power series converges when all |q,| < 1, uniformly on compact sets in the
complex domain a;, — ac + iy + jé # Oforalli, j > 1.
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The variables w are redundant, in the sense that correlation functions are invariant
under the simultaneous rescaling of all w’s. However, just as the bulk coupling q
is identified below with the cross-ratio of four points on a sphere, thus revealing a
connection to the 4-point function in conformal field theory, the variables w’s are
identified with the coordinates of N particles, whose dynamics is described by the
partition function Wirst,

In terms of the (w, g)-variables, the instanton factor looks as follows (recall that
k_y =kn-1):

N-1
ko1 —ke
[T o =d JT ws ™. (32)
weLN w=0

Evoking (16), we also have an obvious equality

N—1
D ko = Nky—i+ ) itkioi— k). (33)
i=1

wGZN

Using the aforementioned map my, we define the Surface defect observable
S(a, m, €1, €2; W, q) in the statistical model defined by the pseudo-measure p of (11)
via:

Nl ik )= KO (@, m, e, 825 9) |5
S@m, e enw )y =y  []w " 2,
e p(@,m,er, e:4q) [x
reny! (B) @
(34)
where, again with (16) understood,
e2=N&, ap=ap—6;, &, mjf :ﬁz?—@nﬁ-éz forl <b, f <N.
(35)
Note that
m? =& (npo18us_y) (36)

evoking the notations of (17). The shifts (35) are motivated by the relation between
the sheaves on the orbifold C x C/Zy and the covering space C x C, see [23, 38].
In what follows, we shall not be using the observable (34). Instead, we shall work
directly with the pseudo-measure ;™.

2.5 The key property of X,

The following result [32—37] (whose proof is presented in Appendix A for complete-
ness of our exposition) is a simple consequence of Proposition 2.1:

Proposition 2.2 The average ( X,(x) ) ,om is a regular function of x for every € Zy.
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For a power series F(x) = Y 02 Fyx~“and k € Z, let [x %] F(x) denote the
coefficient Fy. The regularity property of Proposition 2.2 implies the following result:

< [x_k] X (x) >Morb = [x_k] <9Cw(x) >Morb =0 foranyk > Qandeveryw € Zy .

(37
The main point to take home is that the k = 1 case of Eq. (37) implies a second-

order differential equation on the partition function W', viewed as a function of
qo, - - -» qn—1. This differential equation is the subject of the following subsection.

2.6 The differential operator D8PS

To apply (37) for k = 1, we shall first explicitly compute [x~']X,,(x) 5. For every
€ Zy, define the observable ¢, 4: PN — C via:

N
&1 - -
Cw,a |X = Ekwh + § : z : 5%5b+5(m) “(ap + () . (38)
b=1 Dek(b)

Recalling (18, 35), so that in particular a; = £1as,, and k = &/¢e1, we get:

Yo (x) |X
ul g1 er(ap +c()) 384y +20
= —e100—08) <[] [] {(1 _o_a@red) o<x3>) ,,
X X
b=1 Cer®
w—1
a c(™d g 86, 1
x (1 n i—l L o +;2( )9, O(x_3)) v (D)} :

which implies:

Lemma 2.3 The large x expansion of the observable Y, (x) has x as a leading term,
while the next two coefficients are the observables PN — C given explicitly by:

81_1 [xo] Yo(x) = dp := ko1 — ko — @y — 0K,

d2 _ ~\2 _ —
o — (0 + wk) b Rkt + Co—1l,a Cw,a.

81_2 [x_l] Yolr) = 2 €1

As an immediate corollary, using notations (2, 17, 18), we obtain:
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Proposition 2.4 The observable [xfl] Xo(x): PN — C is explicitly given by:

(Cw,a - Ca)-i—l,a) — Qo (Cw—l,a - Cw,a)

&1

+K (ko — qa)kw—l) + o <(dw + Uo + CU/NC‘)z — (S,bLZ) — di)

8;2 [xfl] X (x) =

1 - -
5 (i + G2 + G (@0 + 00 = @ot1 + @+ DR)?) -
(39)

To get rid of the observables c,, a’s (38) in the right-hand side of (39), we introduce,
following [32-37], the functions {U,}wez, Via:

Uy =1+ dot1 + Qot19wt2 + -+ ot do—1 (40)

with the conventions U,y = U, being used. They provide a (unique up to acommon
factor) solution of the following linear system:

(14+90)  Up—Up1—qus1 - Upr1 =0 forany w € Zy . 41)
We also note that
Up— o1 - Upr1 = 1—q forany w € Zy .

Due to the key property (41) of U,,’s, the coefficient of x~! in the observable
ZwEZN U, Xy (x) is a degree-two polynomial in the instanton charges {ky}pez,y -
Therefore,

<[x1] Z Uy X (x) > — Dinst (\I,ins[)
weZN Lo

with D™t a second-order differential operator in q,,’s, naturally arising from the
equality

P Tw . I -

nweZN (Clw ﬁ) W@, m, e, &2; 9)

= , 42)
orb

Winstd, 1, e, &; q)

ne
weLN m

due to (23, 24). We can further express D™™! as a differential operator in ¢ and w,,’s
by using

ad 0 a a

d5- = 4N = (o

0
1 , Wey—— —(qo—— forany w € Zy . (43)
aq dqN—1 dwy

—1
09w—1 0w

It is convenient to introduce the normalized partition function ¥ via:

v = \IIU‘CC . \Ilinst’ (44)
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where

N—-1
1 N-1 2
‘I,tree = q—ﬂ w=0 %o . l—[ wgw_aa) . (45)
w=0

Combining Propositions 2.2, 2.4 with formulae (41) and (42), we get (cf. [32, 37]):
Theorem 2.5 The normalized partition function ¥ = W(a,m, €1, &2; w, q) of (44)
satisfies the equation

with the second-order differential operator DBPS explicitly given by [cf. (2)]

9 Hy H
pors _ D Ho M
dg g9  q-1
where Hy, H, are the second-order differential operators in w,,’s, independent of
qand og’s:

(46)

N—1 N—1 1
A= | X0 B (03— 2) 4 5 - ],
=w+

We
w=0 ‘o 1
Vo1 y @7
A = - Pt (02 ) 2) ,
- X (e
o', w=0
with 5
D, =w,—. (48)
Wy

Remark 2.3 Note that W™' is a single-valued homogeneous function of w,’s.
If we wrote the differential equation obeyed by W™ in the original variables
qo, - - -» qN—2, qN—1, it would not contain any ambiguity due to the redundant nature
of the variables wy, ..., wy—_1. However, the equations written in the invariant vari-
ables, such as the variables v; introduced below, look more complicated. Conversely, by
introducing more degrees of freedom with additional symmetries, modifying accord-
ingly the prefactor W' one arrives at a very simple form of the operators Ho, H,
cf. Theorem 3.1. This is known as the projection method in the theory of many-body
systems [43].

Remark 2.4 The normalized partition function ¥ obeys:

N—-1 N—-1
Y D (W) =) (e — ) V. (49)
w=0 w=0

The operators Hy, H) in (47) are therefore defined up to addition of the second-order
differential operators of the form

N—-1
D1 ) (Do + o — o) (50)

w=0
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with a first-order differential operator ©;. The choice (47) is uniquely characterized
by its «-independence, for any w.

2.7 One more coordinate change

For the purpose of the next section, it will be convenient to use the coordinates

v = Wil L oi=1,....N—1, (51)
wo +wp+ -+ wy_1

and the associated quantities

N
wo= Y wvj, i=0..,N-1, (52)
j=i+1
with
N—-1
vw=1-> v and uy=0. (53)
i=1
Define the (C[[vlil, v;ﬂ, e, vﬁil]]-valued power series in ¢ by:

(v, v2,...,UN=1;q) = yinst (v2/v1, v3/v2, ..., UN/UN=1, QUi /UN),  (54)

where we intentionally omit the parameters a, m, &1, &; in the right-hand side and note
that

v2/v1 = qo, V3/V2 =4q1, ..., qQUI/UN = qN-1 .
The following is a straightforward reformulation of Theorem 2.5 in the present setting:

Theorem 2.6 The function ¥ = ¥ (vy, va, ..., UN—1; q) satisfies the equation
VS () = 0 (55)

with b b
, CI M
Vs =g — 4 0 L (56)
g aq q-1
with the residues of the meromorphic connection VPP at ¢ = 0 and q = 1 having the
decomposition:

~ A~ A ~

~bps _ 7bps bps bps ~bps _ bps bps bps
h() - hO,kin + hO,mag + hO,pot ’ hl - hl,kin + hl,mag + hl,pot ’ (57)
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with the kinetic, magnetic, and potential terms given by:

N-1 N—-1
~bps 1 5 Vi\ ([ 7bps 2 —1y2
o = 502+ ) (i +5) (v'Di—20)Di, A, =D > v7'D2,

i=1 i=1

N—1
ﬁg?;ag = (OtN] +1—-N+ Z(N —i— aNl)v,) D
i=1
N—1
v; -1
+2 (,u,;]ui — i (Mi + E)) (Ui D; — D) ,
i=1
) N—1
B = (N = 14 201 = 2an-DD =2 (uimy o) (v7'D; = D) |
i=1
N—1 2 2 N 2 2
~bps (Hi—1 —@i—1)” —dpi_, ~bps (Ha—1 — @a—1)" — Sy,
hO,pot = Z uj Vi : ’ hl,pot = Z v ‘ ’
. 1 a
i=1 a=1
(58)
where we defined
0
Dj=vi—, i=1,...,N—1, 59)
avi
and
N—1
D = Z D;. (60)

i=1

Remark 2.5 The operator VPPS of (56) depends, explicitly, on ji, 8i, &@. However, The-
orem 2.5 shows that the @ dependence is a pure gauge:

y-lvbpsy s a—independent , (61)

where [cf. (45)]

N
y = gk Dl Ty st o

3 The CFT side, or the projection method

The operator fzgps /q+ fztl’PS /(q—1) of (56) can be viewed as a time-dependent Hamil-

tonian of a quantum mechanical system with N — 1 degrees of freedom vy, ..., vy_1.
The parameters i = (uo, ..., Un—1), 8k = (S, ..., 8un—1) play the role of the
coupling constants, while the parameters & = (ao, ..., ay—1) play the role of the

spectral parameters, such as the asymptotic momenta of N particles, in the center-of-
mass frame, where the interactions between the particles can be neglected.

The BPS/CFT correspondence [29, 30] suggests to look for the representation-
theoretic realization of the operators ﬁgps and ﬁlfps.

We present such a realization below.
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3.1 Flags, co-flags, lines, and co-lines

Let W ~ CV be the complex vector space of dimension N, and let W* denote its
dual. Let F(W), F(W*), P(W), P(W*) denote the space of complete flags in W,
the space of complete flags in W*, the projective space of lines in W, and the projec-
tive space of lines in W*, respectively. The natural action of the general linear group
GL(W) on W and W* gives rise to canonical actions of GL(W) on those four pro-
jective varieties. Let J, f]f, Vi, Vh“, witha,b =1,..., N, denote the vector fields
on F(W), F(W*), P(W), P(W¥*), respectively, representing those actions. Here, to
define those vector fields, we need to choose some basis {eu}g/= 1 in W, with the dual
basis in W* denoted by {&”} 2’21, so that the operators

T = e, ® & € End(W) (63)

represent the action of the Lie algebra of GL(W) on W. They obey the gly commu-
tation relations:

(7.7 ] = oy’ — o475 69

to which we shall refer in what follows. o
We define the second-order differential operators kg, 71 on the product

X = F(W) x F(W*) x P(W) x P(W*) (65)
by
N N
ho = )" Ve, hi= ) VL (66)
a,b=1 a,b=1

These operators are independent of the choice of the basis in W and are globally well
defined on X. Furthermore, they commute with the diagonal action of GL(W) on X:

[+ Tg 4 Vi 4 Vihp| =0, ab=1....N, p=01. (©)

Note that the center of G L(W) acts trivially on X, hence a natural action of PGL(W)
on X.

3.2 The v-coordinates
Let us now endow W with the volume form @ € AN W*. Denote

V=w, av=oleAWwW. (68)
Let H = SL(W,w) ~ SL(N, C) denote the group of linear transformations of W

preserving @w. The center Z(H) ~ Zy of H C GL(W) is finite and acts trivially
on X. There is an H-invariant open subset X° (described in (78)) of X, on which the
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action of H/Z(H) is free. The corresponding quotient X°/H can be coordinatized by
the values of N — 1 functions vy, ..., vy_i, defined as follows:

7 ~i—1 N . ‘
vi (w, W, 2,2) = Eaa'™!) m) 7' (zAmioy)

S — . i=1...,N—1, (69
i(2) - 7N wiy) - 7 ()

where

N-1

(w =W b= (W) Lz, z) eX°

is the collection consisting of a pair

w: O=WoCcWiCWoC...CWy_1CWy=WeFW),

Ww: 0=WoCW i CWoC...C Wy_1 C Wy =W*e F(W¥) 70
of flags in W and W*, respectively, and another pair
Czcw, Czcw* (71)
of lines in W and W*; and finally,
=AW, c AW, #F =AW AW (72)

are the corresponding i-polyvector and the i-form on W, both defined up to a scalar
multiplier. Note that these scalar factor ambiguities cancel out in (69).

We can also view v;’s as meromorphic functions on X/ H. To this end, we promote
7, 7', z, 7 to global objects, the canonical holomorphic sections of the corresponding
vector bundles:

m; ¢ H° (F(W), AW det(Wi)_l) . fen® (F(W*), AW ® det(W,-)) ,
(73)
and

Ze H W), W@0)~WeW*, ZeH'PWH W'@0)~W oW,
(74)
and define

(Z A ﬁi—l) (M) - T (Z A i)
SR S — _ . i=1,....N—1. (75
Z(Z) - T (I) - T 1(T1—p)

We also note that while (69, 75) can be extended to i = N, the corresponding quantity

vy satisfies
N

> vg=1, (76)

a=1
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due to the Desnanot—Jacobi—-Dodgson—Sylvester theorem, which states that

(Z/\ﬁ“> (Z AT1,)
Vgl = Ug — Uga] Uy, = = = , a=0,....N—1. (77)
T e e ‘T Z(2) e,

The open set X° C X has the following description: there exists a basis e, in W such
that

W; = Span(ey, ..., ¢;), Wi=Span(él,...,éi),

N . N B (78)
ZZZfaea, ZZZSae , &4 # 0.
a=1 a=1
We note that the aforementioned equality (76) is obvious in this basis, since
&
Va= 55— a=1,...,N. (79)
g2+ + &2

Remark 3.1 The flag varieties F(W) and F(W™*) are isomorphic. For example, the
assignment W; = Wﬁ_i gives rise to an isomorphism F (W*)%F (W). Alter-
natively, fixing the volume form @ € AN W*, we have an SL(W)-equivariant
isomorphism F(W);F(W*) given by:

Al =w@y), i=1,...,N—1. (80)
Remark 3.2 In the N = 2 case, we have F(W) ~ F(W*) >~ P(W) >~ P(W*), and
the only nontrivial coordinate v; of (69) is determined by the usual cross-ratio of four
points on CP!. More precisely, if z1, 22, 23, z4 € W are defined (each up to a scalar
multiplier) by:

a=m, w(,)=%, o, ) =7, u=z, (81)

then
o (22, 21)@ (23, 24)

= (82)
@ (23, 21) @ (22, 24)
depends only on the four points Cz; € P(W).
3.3 The £-twist
Let Ly, ..., Ly—1 denote the tautological line bundles over F (W), the fiber of L;
over the point0 = Wo C W1 C Wo C ... C Wy_1 C Wy = W being
Ly =W;/W;_y, i=1,...,N—1. (83)
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Similarly, let 1:1, R LV=1 denote the tautological line bundles over F(W*), and

L=0pw) (=1, L =0pwn(-1) (84)

be the tautological line bundles over P(W), P(W*), respectively. We note that

All these line bundles are G L(W)-equivariant. By abuse of notation, we shall use the
same notations for the pull-backs of the aforementioned line bundles to X of (65)
under the natural projections. The line bundles L' A“’IWa_l ® (A“ Wa)’l,
AW, @ LR (AW, L, AW, @ (ATW;)"!, and L' @ £7! on X are H-
invariant (and those with a < N are actually G L(W)-invariant). Furthermore, each
factor in formula (75) can be viewed as a holomorphic section of one of those line
bundles. For example,

[1°(Z A Tly_y) (85)

is a holomorphic section of det(Wa) ® L1 @ det(W,_1)~L. Its zeroes determine
the locus in X where the plane W,_1, the line Cz, and the plane Wlf‘ C W are not in
general position, i.e., their linear span does not coincide with the entire W.Let ¥ C X°
denote the union of vanishing loci of ﬁ“(Z AT, 1), (Z A ﬁ“’l)(ﬂa), l:Ii(l'I,-) for
a = 1,...JNandi =1,...,N—1.

Forn,n € CV, 3 € CN~!, consider the tensor product of “complex powers of
line bundles”

=

(det(Wi)>_vi ® 2 (det(Wi))ai ® LM g
1 i=1

)
Il

Na

(E

(ﬁ—l ® det(W,_1) ® det(Wa)_l)ﬁa ® (det(Wa) oLl det(Wa_l)_l>

)
I
—_

N_
® (det(Wl-) ® det(W;) ™!

i=1

—

)Vi —n;—ii (86)

defined on any simply-connected open domain U C (X°\X) /H. Here, the complex
numbers m, m € C and the vectors v, 7 € CV~1 are defined via:

N
m = ng, m= 7P
Z a Z a (87)
vi=nig1—ni+y, Vi=nmip—ni+y, i=1...,N-1.
Our main result is:
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Theorem 3.1 The operators fzgps, ﬁ?ps of (56) coincide with the operators fzgﬁ, At
which are ho, hy of (60), viewed now as the differential operators on X°/H, twisted
by the “line bundle” £:

Wt =r~'h, T, p=0.1, (88)

where

(2 ) 0N ez an 0\ N
T:Dl e (m,) ( e, ) T (@)™ @9

i=1

is the holomorphic section of £ on . The parametersii, i, y are related to the param-
eters [L, [i and & (which encode the mass parameters m and the Coulomb parameters

a via (17, 36) and (18), respectively) as follows:

np = Wp—1+3hp_1 — dp—1,
np = p—1 — Skp_1 — Ap—1, (90)
vi=—1l—ai1+a,

forb=1,...,Nandi=1,...,N — 1.

For future use, let us record the relation between the parameters of the gauge theory
and the parameters v, b, m, m of (87):

81\},':111;'_ —m?—sl, g1V, =m

1 m,; —é€p,

i+1 "

N N N N
81m=Zm}T—Zab, 81ﬁ1=Zm;—Zab,
f=1 b=1 f=1 b=1

oD

where we used (18, 36) and the second formula of (35).

3.4 Proof of Theorem 3.1

The vector fields V', \71;’ can be explicitly written in the homogeneous coordinates

(' :Z2%2: - ZVYonP(W)yand (Z; :Zp : -+ : Zy) on P(W*):
0 - .0
V(f frd —Zh aza R ‘/f frd Zaa—zb . (92)

so that /i of (66) is explicitly given by:

02997,

N 2

N ad

hy = —2(z) - E — (93)
a=1
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where

N
7(z) = Z Zaz® . (94)
a=1

The minus sign in (92) in the formula for Vab does match the commutation rela-
tions (64). This minus sign is due to the fact that the vector space of polynomials in
z%’s is the symmetric algebra built on W*, while that of polynomials in Z,’s is built
on W. Thus, (92) is the infinitesimal version of the group action, where h € GL(W)

actson f = f(z), f = f@) via f — [, f— fh:
Mfoy=fw" 2, f@=7an. (95)
As for Jg, flf‘, let us first recall the quiver description of the flag varieties

F(W), F(W*). Let Fy, I:"ll...,FN,l, I}N,l be the sequence of complex vector
spaces with dim F; = dim F; = i. Consider the vector spaces of linear maps:

T

A = Hom(Fi, Fit1), (96)

e

=

A = @ Hom(Fiy1, ), (97)

i=1

where we set Fy = W and Fy = W. Consider the groups

N—-1 . N—-1 ~
S=]]oLFE), §G=]]GLE) (98)
i=1

i=1

of linear transformations of the respective vector spaces. The groups G, Gacton A, A,
respectively, in the natural way:

N-1
@' O e A (ginUig!) €4,
i=1
\N-1 N (99)
@' (0)_ edr (@0a)) <4

i=

where g; € GL(F;), U;j: F; — Fit1, g € GL(I:}), Ui: I:“i+1 — 15, and
&N, gn are vacuous. Then, the flag variety F (W) is the quotient of the open sub-
variety A* of A, consisting of the collections (Ui)fvz jl for which the composition
Unv-1Uny—>---U;: F; — W has no kernel for any i = 1,..., N — 1, by the free
action of G:

F(W)=A%/S. (100)
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We can represent the r;’s of (72), in coordinates, as:

ag |1

o= Z DetHI:UN_1UN_2~--Ui]

1<ay<az<...<a;<N

a N Neg . (101)

(5
£ k=1

ax
Here, [U N—1UNn—2---U i]e denote the matrix coefficients of the corresponding linear

operator with respect to some bases {8?}2:1 in F; and the chosen basis {ea}flv: | in
W. Note that the group G acts on A*® by the changes of bases {séi)}zzl in each Fj:
eg) > an:] gf'ree,(,?. This results in Uy_1Uy—3 - - - U; being multiplied on the right
by g, 1; hence, according to (101), the m;’s are transformed via:

i > ;- det(g) !, (102)
thus justifying the det(W;)~! factor in (73). The group GL(W) acts on A via:
h-(Un-1,Un—2,...,U1) = (WUN_1,UN—2,...,Uy) . (103)

This G L(W)-action preserves A* C A and also commutes with the G-action. The
resulting action of G L(W) on A* /G clearly coincides with the natural action of G L(W)
on F(W) = A*/SG. Accordingly, the G L(W)-action on functions on F (W) is given
by:

h: f— fh , fh[UN,1, Un_2,..., U]] = f[h_lUN,h Un_2,..., U]].
(104)
This means that the vector field Jab € Vect(F(W)) representing the action of the
element Tab = ¢, ® &® € gl(W) on functions on F(W) is given by (cf. the first
formula of (92)):

N—1
JP = — § Ut 2 (105)
a N—1im qu e ’
=1 N—1|m

where U,‘f_] m are the matrix coefficients of Uy _|: Fy_; — W defined via:
N
Un—1el ™" =3 Uf_jmea- (106)
a=1

Up to a compensating infinitesimal g;-transformation, the vector field J, (f acts on ir;
(more precisely, on functions of r; viewed as functions on F(W)) by:

I = e, NP ;. (107)

To clarify, the right-hand side of (105) should be viewed as a descent of the G-
equivariant vector field on A*, given by the same formula, to the quotient space
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A*/G = F(W). The attentive reader will be content to see that the minus sign in
(105) is needed to match the commutation relations (64).
Likewise, the flag variety F(W™*) admits the quotient realization:

F(W*) = A%/G, (108)

where the open subvariety A of A consists of the collections (Ui) ~ for which the

i=1
composition U; U1 ---Un—_1: W — F; ha§ no cpkernel (i.e., has the maximal rank)
foranyi = 1,..., N — 1, and the action of G on A is free. We can represent the 7'’s
of (72), in coordinates, as:

i T T7 r7 r7 £ i ajl a
Fo= DetH[UU- ---U_U_] NN
Z iVi+1l N-2UN lak koo=1

1<ai<az<...<aij<N

(109)

~ ~ ~ ~ 4
Here, [U iUit1---Un22U N_l] denote the matrix coefficients of the corresponding
ax

linear operator with respect to some bases {821) Jy— in F; and the bases {ea}N (in W
which is dual to the chosen basis {e“}N | in W*. Note that the group G acts on A*
by the changes of bases {SZ)}K | in each 2% 8(1) — Zm 1 glws,(,l,) This results in

U,- UiJrl e UN_z L7N_1 being multiplied on the left by g;; hence, according to (109),
the 77'’s are transformed via:

Al 7t det(g)), (110)

thus justifying the det(Wi) factor in (73). The group GL(W) acts on A via:
B (On-1.On-2, . 00) = (Onoih ™ Ona o O1) (D)

This action preserves AS C A and also commutes with the G-action. The resulting
action of GL(W) on AS / 9 clearly coincides with the natural action of GL(W) on
F(W*) = fls/g, see (108). Therefore, the vector field JZ’ € Vect(F(W*)) represent-
ing the action of the element Tab =e, ® e’ € gl(W) on F(W*) is given by (cf. the
second formula of (92)):

N-—1 9
Jb § | ——— (112)
N—1la )
m=1 8U1r\7n 116

where U ,’(,‘7] o Are the matrix coefficients of U N_l: W — F, 'v—1 defined via:

N-1
Uv-tea =Y Up_j eV, (113)

m=1
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To clarify, the right-hand sicle of (112) should be viewed as a descent of the 9-
equivariant vector field on A°, given by the same formula, to the quotient space
AS/G = F(W*). The attentive reader will be content to see that the commutation
relations (64) are obeyed by JZ’ of (112).

3.5 End of proof of Theorem 3.1

It remains to compute the action of the operators T-'h » T in the coordinates v;, and
then to compare formulas (264, 265) in Appendix B to formulas (57, 58). We leave
this straightforward computation to the interested reader.

4 Representation theory

Let us now explain the representation-theoretic meaning of the main Theorem 3.1.
Namely, we identify the function @, given by

®=7(V.0.22) v ....on-130), (114)
for any ¢, with the sly-invariant in the completed tensor product
® € (VidVh&V3& V)™ (115)

of four irreducible infinite-dimensional representations {V; }f: | of the Lie algebra sy .
We shall actually define V;’s as representations of gl . Let us denote the generators
of gly by JZ ,witha,b =1, ..., N. These obey the commutation relations (64):

(35,98 ] = 005 — 5335, (116)

Notation 4.1 For a Lie algebra g, its element £ € g, and a representation R of g, we
denote by Tr (&) € End(R) the linear operator in R, corresponding to &.

It is well known that (116) implies that the Casimir operators

N
Co= Y JJB..JY e Ugly) (117)

ay,ay,....ap=1

commute with all generators J¢, so that in every irreducible gl -representation R the
operator Cy acts via a multiplication by a scalar ¢ (R), also commonly known as the
k-th Casimir of R:

> TR(I2)TR(JE) ... Tr (J5!) = c(R) - 1¢. (118)
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Notation 4.2 The Lie algebra sl is a subalgebra of gl with a basis consisting of JZ,
with a # b, and

b =3 -3, i=1..N-1. (119)

Notation 4.3 The Chevalley generators of sly are formed by b;’s, and
=T, a =3t (120)

alsofori =1,...,N — 1.

The elements ¢; generate, via commutators, the Lie subalgebra ny of sly. As a
vector space, ny has a basis consisting of Jg with b > a. Likewise, the elements f;
generate the Lie subalgebra n_ which, as a vector space, has a basis consisting of J. 1;
with b < a.

Remark 4.1 With a slight abuse of notation, when this does not lead to a confusion,
below we shall also denote by b;, i, ¢; the corresponding operators

Te() = Tr(i1)» Tr(ipr) s Tr(X) (121

in a gly-module R.

4.1 Verma modules
4.1.1 Lowest weight module

For a generic v € CV~!, the lowest weight Verma sly-module V; is defined, alge-
braically, as follows. There is a vector Q; € V5, which obeys:

J,Q;=0, a<b, (122)

and:

hi Q= —vQp, i=1,....,N—1, (123)

and which generates V5, i.e., V5 is spanned by polynomials in J7, with a > b, acting
on ;. Geometrically, V; can be realized as the space of analytic functions ¥ of
(U,‘)f.V:*l1 , obeying:

N—-1
N-1 :
gnUig | [T deten” =wivals' . @' e g™, 24)

i=1

where gy is vacuous and §™2! denotes the group of formal exponents g; = exp h&;

with & € End(F;) and & being a nilpotent parameter.
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Remark 4.2 For v € ZN~!, the equation (124) makes sense for (g,-)lN: _11 € §. For

-

NS Zgo_ ! the polynomial solutions to the equation (124) are in one-to-one corre-
spondence with the holomorphic sections of the following line bundle on the complete
flag variety F(W):

N—1
Ly = ) det(W;)™" . (125)
i=1

For our chosen basis {ea}g’:l of W, consider the i-form ﬁé defined via:

1

NN (126)

Then,

b

[UN—IUN—Z e Ui]

a

N-1 L, N-l
2 =[] (ﬁg(n,-)) = 1] (Det
i=l1 i=l1

i Vi
(127)
a,b=1

(here, the index b runs through the labels of the first i basis vectors e, in W, while the
index a runs through the labels of a basis ef,i) in F;) clearly satisfies (124). Furthermore,
using ﬁé (ea A Ebm) = Ounlessi > a and b > i for a # b, we get (122) and (123),
due to (107).

The Lie algebra gl acts on the space of analytic functions ¥ = W[U;] by vector

fields, viewed as the first-order differential operators, via (105):
Ty, (JZ) W = Lie,y () . (128)

We can easily compute the first two Casimirs of V;:

N-1

a(Vp) = — Zivi,

i=1

(129)
N-1 N-1
cﬂVa):Zivi N—i+vi+22vj
i=1 j=i+1

Now, obviously 25 is not well-defined for arbitrary U;’s. We need first to impose:
i) #0, i=1,...,N—1. (130)

On the open set of U;’s obeying (130) 25 is not single-valued. We can, however, view

it as an analytic function in the neighborhood F(W)° of the point where, in some

G-gauge, ; = nl.o with the i-polyvector nl.o defined via:

70— el Ao e (131)
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To parametrize F(W)°, we use:

ex Nétln Det|| (Uy—1---U)y" ||t
g)_ o (e )= L omt=l 1 <k<i<N-1,
770(7Ti) Det|| (Uy—-1---U; )g ”m =1
(132)
where a,, = m for m # k while ay =i + 1, so that the vectors
. 1<e<i, (133)

form the unique basis in W; = Im (Uy_1Uy—2---U;),i =1,..., N — 1, obeying:

(@) @ A (@)

=€ Ne, “Ne;
(l) l+1) (1) (1+1) R (134)
e, tuye 0, 1<L<i<N-1,
with e(N) = ¢,. Therefore, we have:
N—i
(@) ilj
e, 265+ZU£ eitj,
j=1 (135)
UIKU — uEi)Sl _I_Ul+”] 1 + y)Uii}“ 1 ,

with U} polynomial in u™, m > i, nonzero only for 1 < j < N —i, 1 < £ <.

Explicitly,

120 iR 2 0D g 0, D
Ul —M U + l+1 ’

G+, (l+2) (l) (i+2) @+ (i+2)
Tug Uiy Uy (“i+1 Tl Ui )

) (136)
3 _ (+2)
U = ul

Invoking (134) and the first equality of (135), we obtain the following analogue
of (132): '
7 (ep N €m;)

ila—i __
U= 02
no(”i)

l1<b<i<a<N. (137)

Since the local coordinates u,(j)

written as:

are G-invariant, the general solution to (124) can be

v U=y [u] 2 (138)

with some analytic functions 1. We amend the definition of Vj given prior to
Remark 4.2 by rather defining V; as the space of analytic functions W, obeying (124),
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@),

such that the corresponding functions v (138) are polynomials in u; "’s. Using the
equality (based on (137))
Y = — (8 v +ZU,U;‘“ s, (139)

i>a

the generators Jj can be expressed as the first-order differential operators in u,(j):

Jo = — Z <8k +Uz|a z) (32+1 _ u(l)) 54 Zvl Zlezbla i ’
I<k<i<N-1 i>a
(140)

o5 coefficients. In particular, the Cartan generators of gly act

with polynomial in u](c

by:
) 0
_ (a=1) (k)
JZ__Z(k o (a 1))"’ ( ou! k) ) (141)
k>a

k<a

hence, the Cartan generators of s[y act by:

N ; 0 N
) @) _ ((GdV)] O
bi = —vi + 2u; WOl Z <uk D u _Bu(i)>

i k<i k k
*_9 ® _0
+Z (“i 5 k) Uit "o S (k) )
k>i u; Ui
= -y — deguiifl) + deguii) + degu@ — degu@] . (142)

With the natural definition of the order on the weights, it is not difficult to show that

the positive degree polynomials in u,(f)’

state Y = 1. According to (140), the generators f; = Jf 41 actby:

s have higher weights than the vacuum, the

u®
a(l)-i- i (k), (143)

k>i

thus annihilating the vacuum, the state ¢ = 1, as they should. Likewise, according
to (140), the generators ¢; = Jf.+1 act by:

(l) (k) (l) @i—1 (l)
=-2_u +2_u; <k> (Z -2 u <,>
k<i k>i 1+1 k<i k<i

' (144)
which generate the whole module, as we can see using [¢;, ¢j+1] = J;*z, etc.
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4.1.2 Highest weight module

For a generic e CN , the highest weight Verma sl -module \~75 is defined similarly,
so we’d be brief. Algebraically, \~7‘:) is generated by a vector fZI:), obeying:

JyQ:==0, a>b, (145)
and: : y
hi Q2 =i Qz, i=1,...,N—1. (146)
. A . . . . = i N_l
Geometrically, Vz can be realized in the space of analytic functions W of (U,-). _
1=
obeying:
o N pa =~ \—1; = [ V! ~\N—1 _ &formal
Vlatieh ] [T ™ =9[a] . @5 ed™™, a4
=1 -

where gy is vacuous and Glormal genotes the group of formal exponents g; = exp hé;
with & € End(F;) and h being a nilpotent parameter. Again, we take:

& = (ﬁf(n,.o))”" : (148)

v

which clearly satisfies (145, 146). Then, \7]:) isrealized in the space of analytic functions
U, obeying (147), of the form li/[f]i] = &[ﬁ’(‘i)] . Q\:} with 1& polynomial in the 9-
invariant coordinates

~k ~ 0

e Nle, T (\TT;

g’(;)zf‘f—lo('), l<k<i<N-1, (149)
' (7))

on the open domain F(W*)°, where ﬁi(rrio) #0fori=1,...,N—1.

Remark 4.3 The identification of the vector space of representation V;; with the space
of polynomials in u,(cl) ’s, and similarly for Vz, is known mathematically under the name
of the Poincare—Birkhoff—Witt theorem [3, 45, 48] (apparently proven in the case of

our interest by A. Capelli).

Remark 4.4 The genericity assumption on v € CN=1 (resp. bech ~1) guarantees
that the Verma sly-module V5 (resp. Vz) is irreducible, and thus is the unique lowest
(resp. highest) weight module of the given lowest (resp. highest) weight, up to an
isomorphism.

4.2 Twisted HW-modules

For genericn = (n1,....ny) € CV and i = (i1, ..., iy) € CV, let us define the
HW-modules Hy and Hy of gly (for W. Heisenberg and H. Weyl) by making J’; act
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via the first-order differential operators in N complex variables. In other words, the
generators of GL(N) in its defining N-dimensional representation W or its dual W*
act on the space of appropriately twisted functions on Hom(F, W) or Hom(W, F),
where F ~ C, F ~ C denote complex lines.

Explicitly, let (Z”)i\’:l and (Za)é\,:l denote the coordinates on Hom(F, W) and
Hom(W, F), respectively, in the dual bases (ea)évzl, (E“)f:’:l of W, W* we used in
the previous section and in the dual bases e € F, & € F*. Then, the underlying vector
spaces Hy, Hy of the HW-modules are the spaces of homogeneous (i.e., degree zero)
Laurent polynomials in {z%}, {Z,}, respectively:

Hp=C[z%, "%, Hz=Clz, 7,1, (150)

while the generators of gl are represented by the following differential operators:

Ty, (JZ) = _w;1 (Z“BZb) Wn (151)
and
Ty (3) = @5 (70;,) @ (152)
with
N N )
on=[10E)". aa=]]zr. (153)
a=1 a=1
Remark 4.5 Forii = (s, ..., s), the module Hy coincides with V; of [7, Sect. 1], as

sly-modules.

In general, ﬁﬂ is a twisted version of Vi, 1 17 y)/n> With underlying vector spaces
being isomorphic. We thus shall use the following notation:

Notation 4.4 Form € C and i € CVN~!, define:
HE := wq - Hy (154)
with

m=Y n,. pwi=n-—ny. i=1.. N-1. (155)

The action of gl on fJ-Cf;ﬁ is represented by the ordinary vector fields:

9
Ty (30) = _zbﬁ : (156)

Notation 4.5 For m € C and ji € CN~!, define:

HE = g - Hy (157)

SR
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with

N
rh:Zﬁa, fi =i —iig1, i=1,...,N—1. (158)
a=1

The action of gly on JN{H{LI is represented by the ordinary vector fields:

9
_(J) = 3
T}Yg (J) = 7a 55 (159)

Remark 4.6 (a) Itis clear that the Casimirs ¢y (U—({ﬁ) and ¢y, (if{r%), defined by (118),

depend only on m and m, respectively.
(b) The gly-weight subspaces, i.e., the joint eigenspaces of a commuting family

{J4} 9’:1’ of J—ff,ll and J:Cr’% are all one-dimensional, the corresponding sets of weights

being —m + Ag € CN and i + A9 C CV, respectively, where A denotes the
Jattice Ao = |(r1, ) € ZN’ YN n= 0}.

(¢) The vectors Q}("‘ ‘= wy € HE, fzj{; = f € ﬂtfgl have the following sl -
weights: "
bi Qi = —pi- Q. b 95{5 = [ii fzm, i=1,...,N—1. (160)

4.3 Vermas and HW-modules in the N = 2 case

The generators ¢ = ¢1,f = f1,05 = b of slp, see (119, 120), obey the standard
relations:

[e.fl="b, [b,e]=2e, [ fl=-2f. (1el)

Fora,s € Candi € {—1, 0, 1}, consider the differential operators:
Li=—7T9, +(a+ G+ s)7, (162)

obeying the commutation relations:

[Li, Ljl=( —j)Lit;. (163)
The assignments
e—>—L_1, f—= Ly, b 2Ly, (164)
or
e—> —Ly, f—>L_1, b —2Lg, (165)

represent sly by the first-order differential operators on a line.
The modules we defined in the general N case can be described quite explicitly.
Specifically, the highest/lowest weight Verma and the twisted HW sl>-modules are all

@ Springer



28 Page32o0f53 N. Nekrasov, A. Tsymbaliuk

realized in the spaces of the twisted tensors:
fz7%dz", (166)

with f(z) being a single-valued function of z € C*, so that the operators (162) are
the infinitesimal fractional linear transformations:

Z'_>Az+B A B
Cz+D’ CcD

) € SL(.C). (167)

To make this relation precise, let us start with the geometric descriptions of the Verma
modules.

In the geometric realization of the lowest weight Verma modules, we have a two-
component vector

Uy = (Ufll, Uﬁl) - (ul, uz), (168)

which is acted upon by the gauge C*-symmetry via (u', u?) — (¢~ 'ul, 7 'u?). We
look at the space of the locally defined functions W = W(u!, u?) which transform
with weight —v under the Lie algebra of the gauge C*-symmetry. More precisely,
following (138) and the succeeding discussion, we look at W of the form:

W', ) = y(z) - (u‘) (169)

where 1 is a polynomial and z = u?/u! is the only coordinate uil) (132) in the present
setting. One can perceive the right-hand side of (169) as the local section of a complex
power of a line bundle O(1) over a neighborhood of z = 0 in CP!, defined near the
slice u! = 1. The generators of sl, act via:

ad
¢ = —MZW =Zzaz — VI,
S N (170)
N ouz
ad a
h:uzm—ulm =2Z8Z—U,

where the differential operators in the middle act on W while the rightmost ones act
on ¥ = ¥ (z). The vacuum is:

Q, = whHy, (171)

corresponding to ¥ = 1, and the lowest weight Verma module is:
V, = Cle]Q, . (172)

The weight (eigenvalue of h) of the state z”7 is 2n — v. Note that the fractional linear
transformation (167) transforms (u!, u?) — (Cu?+ Du', Au®+ Bu'), hence it maps
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the vacuum to (again, we are working infinitesimally):
(Cu®> + Du')’ = (Cz + D)'Q, . (173)
The formula (173) allows us to match:
Q, ~dz 2. (174)

Thus, the lowest weight Verma module V,, corresponds to the realization (165, 166)
with:

a=0, 5= (175)

v
5
and with polynomial f in (166).

In the geometric realization of the highest weight Verma modules, we have a two-
component covector

0, = (Ufll, 011'2) = (v1, 1), (176)

which is acted upon by the gauge C*-symmetry via (vy, v2) +— (tvy, tvy). We are
looking at the space of locally defined functions W = W (vy, v2), which transform
with weight ¥ under the Lie algebra of the gauge C*-symmetry. More precisely,
following (148, 149), we look at W of the form:

W(vy, 1) = (@) - (), (177)

where v is a polynomial and Z = vy /vy is the only coordinate i % 1 (149) in the present
setting. The generators of sl, act via:

0

= —_——= 3~,
4 v18v2 z
3 o
f= v28_1)1 = —Z 33 + vz y (178)
a ad
=v— —v—— = —238; + ¥,
h vl 31)1 U2802 < Z+U

where the differential operators in the middle act on W, while the rightmost ones act
on ¥ = ¥ (z). The vacuum is:

Q= ()", (179)

corresponding to ¢/ = 1, and the highest weight Verma module is:
V5 = CIfs - (180)

The weight of the state z" is —2n + v. Note that under the SL(2, C) fractional lin-
ear transformation (167) the covector (v, vp) transforms via (vq, v2) > (—Bvy +
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Avy, Dvy—Cvy) with AD—BC = 1, so that the pairing Uy - U; = v-u = u'vi+u?vs
is invariant, leading to:

Dz -C

Z . 181
7 TBitaA (181)
Thus, the vacuum 2 is transformed via:
Q5 > (Av; — Buw)’ = (A — B3)" Q5 (182)
which allows us to match:
Oy ~di 2. (183)

Hence, the highest weight Verma module Vi corresponds to the realization (164, 166)
with:

(184)
and with polynomial f in (166).

We note that the transformations (167) and (181) are related via zz = —1, so that
we get an equivalent representation (165, 166) with:

(185)

a=7u, s =

N <t

Finally, to describe the twisted HW-modules Hy, 1-~1,~1 withn = (ny,np), n =
(n1, ny), we recall the notation (153):

n n ~ ~
g = <zl) ' (22> L ag=2nae (186)

The vector space underlying H, is the space of Laurent polynomials ¥ in z = z2/z.
Analogously, the vector space underlying Hj is the space of Laurent polynomials
in Z = 22 / 21.

In the first case, the generators of sl act via:

a

1 2 2

e=—w z°— Jwn =7°0; — n1z,
" < gzl )" ¢

f=—ow,! 22 on = —. — oz 187
= —w, 2 ) on=—0:—mz (187)

0 0
b:w{l (zzﬁ—zlﬁ>wn=2zaz+n2—n1.

Thus, the twisted HW-module H, ~ %gfs +a) corresponds to the realization (165, 166)

with: n
n n
a = —ny, s = ! 5 2 . (188)
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In the second case, analogously, the generators of sl act via:

o1~ 9\ . Lo
e=w,~,l<Z18—22>wﬁ=az+nzz h

et~ 0\ - . .
f= wﬁl <Z28_21> @p = —720: + iz, (189)

Thus, the twisted HW-module I:If1 ~ ﬂtfggs +a) corresponds to the realization (164, 166)
with:

a=—ny, s = . (190)

4.4 Tensor products and invariants

Let us recall the following SL (2, C)-invariants (under the fractional linear action) on
the configurations of 2, 3, and 4 points on CP!:

d d
Va1, 20) = L B2 (191)
(z1 —z2)
is an invariant (1, 0) ® (1, 0)—form on CP! x CP',
1
_ 2
22—z don — (v(m, 23) ® v(22, Z3)> (192)
(z3 —z1)(z3 — 22) v(z1, 22)

is an invariant 0 ® 0 ® (1, 0)—form on CP! x CP! x CP!, and finally, the cross-ratio

1
22—21 24— 23 v(z1, 23) ® v(22,24) \ 2
[z1, 22; 23, 4] := . = ( (193)
3= W22 v(z1, 22) ® v(z3, 24)
is an invariant meromorphic function on CP' x CP' x CP' x CP'.
Thus,

12 =27 = (1+215)" ([d2) 7 ® (dZ) 2 (194)
is an slp-invariant element in the completed tensor product V,, &V,. More precisely, we
need to view (194) as a power seriesinzy, 2o = —zgl inthe domainz; — 0, zp — oc:

@ AN
L7 zn1<lzal € (Vv®vv) : (195)

For another domain of convergence, e.g., z;1 — 00, 22 —> 0, the expression (194)
would define an invariant in the completed tensor product V,®V, instead:

~ . I:30)
152)|Iz2|<<|z1\ € (VV(X)VU) : (196)

@ Springer



28 Page 36 0f 53 N. Nekrasov, A. Tsymbaliuk

Final~1y, invoking (171, 174, 179, 183), we can express 1,52) (194) in terms of
Uy, U; (168, 176):

19 = '
( EU1|1U1|1+U1|1U1|2_M v t+u 1)2)

=Q,Q, (power seriesinz =u /u 7= vz/vl) . 197)

The benefit of formula (197) is that it admits a natural generalization to
the general N:

~ . gl
(2) l_[ Ha) = Q385 x (power series in u,((’),ftl(‘i)> (\7*@\7 ) v

(198)

Remark 4.7 In coordinates, we have:
#1(;) = Det (0,~0,-+1 Uy Uy ...U,-+1U,-) . (199)
Remark 4.8 The formula (198) determines the unique gl -invariant bilinear pairing:
G, )5: Vs x V5 — C (200)

such that 3
(Qg, szﬁ)ﬁ —1. 201)

One can present (-, -); as an integral over (W), but the quicker way is the following:
the matrix G, = inverse to

o i
ﬂ(u,j) Qs (ﬁ’(‘i)> o (202)

k<i k<i

=l

is given by the coefficients of the expansion

Su

_N—l # () o n® » ﬁfi)_
= T s ) =X 1 (0 @) =re

0
i\ () - 74 (mi) l<k<i<N—1
(203)

Let us now similarly produce an sly-invariant in the completed tensor product of

three sly-representations: the lowest weight and the highest weight Vermas, as well as
the twisted HW-module. To this end, we consider:

_1)1+v2—V3 _v1+V3—v2 _v2+\)3—v1
11513)1}2 v3 = U(Zl ) 12) 4 U(Zl 5 23) 4 U(Zz, 23) 4 . (204)
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By invoking (175, 185, 188) and expanding (204) in the region |z1| < |z2| < |z3],
we arrive at the following interpretation:

~ .~ \sh
L0 sl clzal<les) € (Vv.®f}55§ ”‘®Vv3> : (205)

Finally, in the (u', u?), (z', z%) , (v1, v2)-realizations, this invariant takes the follow-
ing form:

3) v1+v22—v3 v2+v237\z| v +v3—vp
Ly vy vy = (ulzz — u2z1> (vlz1 + v222> (u1v1 + u2v2>

=Qy, Qv3 (ZH" %) x (power series in 7 = uz/ul, 7= /vy, (Zz/zl)i1
(206)
with
n1=V2+v23_vl, :1)1+v22—v3’ (207)

where we matched z| ~ z, 70 ~ 72 /zl, z3 ~ —1/7z. We note that the last two factors
in (206) are gl,-invariant, while the first one is only sl-invariant.

The formula (206) admits a natural generalization to the general N, with the triple
V1, 12, 13 being replaced with vy, v3 € C¥~1, 1, € C. In this case, we have a unique
invariant (cf. (68)):

N N-1
6) s i i
IBI’VZJ*B — 1_[ na (T[afl /\Z)na . l_[ j'[l (jTi)V3.l nj
a=1 i=1

al < (208)
= Q5 (H(za)"") Q, x (power series in u,((l), ﬁ](ci), Za/Zb)
a=1

R N
e(\?gl@)ﬂ{v; ‘®Va3) ,

where the vector n = (n1, ...,ny) € CV is determined from
N
> ng=m (209)
a=1
and
Niy1 — N =V1,; — V3, i=1,...,.N—1. (210)

Similarly to the N = 2 case, the factor AN (ry_1 AZ)™W is only sly-invariant, while
all other factors in (208) are naturally gl -invariant.
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Another generalization of (206) is the invariant

N - N-1
-3 o 5 i . e
I§(|.,)v2,\73 = l_[ (7-[“ A Z(T[a)> . l_[ 7t ()
i=l

a=1
N
i\ = . i~ U 211
= Q5 (1_[ zZ“) Qp, % (power series in u,((’), u](‘i), Zb/Za> @1

S[N

€ (Val ®§CE;753®\~733) :

where the vector it = (7ig, ..., Aixy) € CVN is determined from

D = (212)

and
Rig1 — R =Vv3; — V1, i=1,...,.N—1. (213)

Remark 4.9 The examples (208, 211) demonstrate the need for twists in the definition
of the HW-modules in Sect. 4.2.

To prove that 1@ of (198), I® of (208), and I® of (211) are the only invariants
in the corresponding (completed) tensor products of 2 and 3 modules of sly, see
Corollary 4.9, let us recall the realization of the corresponding spaces of invariants as
the weight subspaces.

Notation 4.6 For an s(y-module W and ae CN—1, we denote by W[X] the weight x
subspace:

we W & bhw) =i -w, i=1..,N-1. (214)

Remark 4.10 We have (cf. Remark 4.6):
He[—jil =C o,  HE[A]1=C- a5 (215)

To Verma modules \713,\75 defined in Sects. 4.1.1 and 4.1.2, we associate

the restricted dual modules \73\7? These are defined as the submodules of
v

Hom¢ (V3 , ©), Hom(c(\?‘:), C), respectively, whose underlying vector spaces are

direct sums of the spaces, dual to the sly-weight subspaces of V5, \~71:}. The following
is well known:

Lemmad.7 If V; (resp. \~7‘:)) is an irreducible sly-module, then Vi =~ V;
(resp. \~7]}j ~ V=)
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For any sly-module W, we define the completed tensor products V; @W and \~75®W
via:

Vs®W :=Home (V;, W), V;&W i=Home (V3. W), 216)

both of which have natural structure of s[y-modules.

Now we are ready to invoke the standard interpretation of the space of s( -invariants
in the tensor product, completed in the sense of (216), of s[y-modules involving
both the highest weight and the lowest weight Verma modules (cf. the proof of
[7, Proposition 1.1]):

Lemma 4.8 Ifthe lowest weight Verma Vi and the highest weight Verma \~7‘:) modules of

sly are irreducible, then the space of sly-invariants in V;®W®\~75 can be described
as follows:

(VU®W®\~7‘:})5[N ~ W [T) — 5] . 217)

Proof This follows from the following sequence of canonical identifications:

(vsewaDs)™ = Home, (Vi wai;)
~ Homgy (V5 W&Y;) =~ (WeP;)" 7] (218)
~ Homy, <\~7’§ W) [V] ~ Hom,, (\7‘:), W) ] ~ W [T) — 1:)]

by using the conventions (216), Lemma 4.7, and Frobenius reciprocity. O

Remark 4.11 Putting together the identifications (218), we see that the resulting vector
space isomorphism

E: (V§®W®\~7‘3>S[N S w -] (219)

A a8l ~ ~
is obtained by pairing an element of (\7;®W®\75> " with Q;®Q: € V;®V:
with respect to (-, -); and (-, -)5 in the first and third tensor factors, cf. Remark 4.8 and
Lemma 4.7.

Applying Lemma 4.8 to the trivial and the twisted HW-modules of s, we obtain:

Corollary 4.9 (a) For the trivial sly-module W = C, the space of invariants
A A7 sl - - . . . .
(\7,31 ®\7‘32> " vanishes if Vi # vy, and is one-dimensional (hence, is spanned by

2) oo

2 of (198)) if By = 1. )

(b) For the twisted HW-modules W = ﬂ-(ffz,ﬂtff,g, the spaces of invariants
sl

L N sly
(\731@5{’;2@\733) N and <V31®9{,’,‘2®V;,3) are at most one-dimensional,

and they vanish if ji + v, — v3 ¢ ZN"1, fi + 73 — vy ¢ ZN=1 respectively.
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A BT oA~ \SIV
In particular, the invariants I- ® (\71;1 ®Hy; U‘®Vg3) and 1Y €

U1,v2,03 V1,v2,03

~ sl
(V;l ®9‘CV1 v ®\7,33> ! of (208) and (211) are unique, up to scalar multipliers.

4.5 Our quartet

We are now finally ready to relate (89, 114) to the invariants in the completed tensor
products of four s[y-modules: the two Vermas and the two twisted HW-modules.

Letus fix v, v,y € CN-1 and m, m € C. Let us specify four sly-representations
as follows: -

Vi=V;, Vo = 9{&—3’ Vi = gffr);—v V= f?i ) (220)
We shall work with the completion
VIOV,QV3&Vy,
so defined (cf. (216)) that it contains the power series expansion in u,E ), ”’(‘ ) 74,7, of

Y given by (89).
Let us now apply Lemma 4.8 to the case W = V» ® V3. Noticing that

W~ [f ‘ fe (C[(zl)il,...,(zN)il zlil,...,zﬁl], deg, (f) = deg,(f) =o],

(221)
with the sly-action (151, 152) twisted by the factors (153), we get the following
identification:

(ndvadvseve)™ = wli—3|=clnf il ] @2

where the variables n;’s are defined via:

t+lZ i1
n,-:=—, 1<i<N-1. (223)
7'7;
The above vector space isomorphism C [ il, o 771%/1_1] = (V1®V2®V3®V4)5[N
1s constructlve Explicitly, given 7 = (r1,...,ry_1) € ZN=1, define the sly-weight
= (81,....,8n-1) € ZN" ' via 8 = ri_ 1—2r, + rig1 with rg = ry = 0.

~ sl
According to Lemma 4.8, the spaces of invariants (V;,(X)i}(r); v®\7); +8) " and

vmy

o= \%W
(\7); 43 ®9—(I}%—v®\75> are one-dimensional (for 7 = 0, they are spanned by 1>

and 1) -). Equivalently, there are unique sl)-module homomorphisms:
y,m,v

B (224)
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such that

N N
(gpl(QHg), Qg)a = 1_[ (Za)ra—l—"a.wn’ (957 ¢2(§2}7+3))5 _ l—[ z(’;a—l—ra.&‘)ﬁ,

a=1 a=1
(225)
cf. (153-155, 157, 158), where we used Lemma 4.7 and the pairing (-, )3, (-, -)z
of Remark 4.8 on the first and second components, respectively. Hence, we get an

sly-module homomorphism:

0 =01 @ V; 58V, 5 — VIBV:QV3®Vs. (226)
Invoking the sly-invariant 1% € (V..-&V..-)"". we obtain the sought-af
nvoking the s N-anarlant )7-5-(_8‘ S ( ]_/.+(S 2 }7+5> , we obtain the soug t-after
sl -invariant

A ~ A [
0 (17;) € M@Va8vseve)°™ (227)

which exactly corresponds to n}'n%* - - -y’ "| under the identification (222).

Remark 4.12 The realization (222) corresponds to the family (over q) of maps
®="W. 0,29 v (U, 0,22,....on1U. 0,25 q)

‘I,inst <7717 M2y N1, q ) (228)
mnz...1MN-1

which consists, in detail, of restricting to m; — nl.o (131), AR ﬁé (126), and
dropping the factor
N

~ N ~ a 51&;71
Y(Uo. Uo. z.2) = [ | Zje )" ~w'™e - ]| (Z—) : (229)
Zq
a=1 a=1

5 Knizhnik-Zamolodchikov equations
5.1 KZ equations

Let us recall the notion of Knizhnik—Zamolodchikov (KZ) equations [22] associated
with the following data:

(a) g —a semisimple Lie algebra,
(b) t —a non-degenerate ad-invariant bilinear form on g, that is:

t(la,b],c) =t(a,[b,c]) foranya,b,ceg,
(c) Vi,...,V, —representations of g,
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(d) k € C*-anonzero constant.

Define the Casimir tensor C € g ® g and the Casimir element Cas € U (g) via:

C= ) "X, ®Xp (230)
A,Bel
and
Cas := » 1" X,Xp, (231)
A,Bel

where {X A} ac; is a basis of g, [|#4? || is the matrix inverse to [|7(X 4, X5)||.
Define the configuration space ¥, C C" via:

s, :={(p1,...,pn)€(C"‘pi;épjfori;éj}. (232)
A function F: £, - V] ® --- ® V,, is said to satisfy the KZ equations [22] if:

dF Cij - F
k——+ > L — =0, i=1..n, (233)
dpi jﬁpi—l’j

where éi i denotes? the action of C (230) on the i-th and j-th factorsof Vi ® - - - ® V.

Remark 5.1 Note that the KZ equations essentially depend only on the ad-invariant
form L.
K

5.2 g-invariance and n = 4 case
A function F: ¥, - V| ® --- ® V, is called g-invariant if:
Fpei®---®V)%, VYp=(p1,...,pn) € Ty (234)

Let n = 4. Recall the cross-ratio (193) of 4 points, which can be thought of as a map:

(p1 — p2)(p3 — p4)
(p1—p3)(p2—pa)’

m: %4 — C*,  p=(p1,p2. p3. P4) = [p1. p2; 3, pal :=

This map can be naturally extended to a map 7 : £4 — CP!, where £4 C (CP")* is
the locus of points with pairwise distinct coordinates. The map 7 is the quotient map
for the natural free action of H = SL(2, C) on 4 (the diagonal action by the fractional
linear transformations). In particular, for any p € X4 the points p = (p1, p2, p3, p4)

2 A more pedantic notation would be:

Cj=Y M1y e  ayX)e - oTy,(Xpe-aly,.
A,Bel
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and (0, q = [p1, p2; p3, pal, 1, 00) of 34 lie in the same H -orbit. Naturally the four
KZ equations (233) on a g-invariant function F reduce to a single equation on a
(V1 ® V2 ® V3 ® Vy)9-valued function of g:

Proposition 5.1 Assume that the Casimir element Cas (231) acts on V; as a multiplica-
tionby A; € Cforanyl <i < 4. Choose constants {d;; |1 < i # j < 4}sothatd;; =
dij and Y ;4; dij = A forany 1 <i <47 Then, F: 54 — (Vi@ V2 ® V3 © V)P
satisfies all four KZ equations (233) if and only if*

d;
Fpropapsope) = [[oi=pp= - @(Iprp2ipaopal)  (239)

i<j

with ®: C*\{1} — (VI ® V2 ® V3 ® V4)? satisfying the following equation:

d® d d C C
K—+< 2 +£)q>+ B 22 p — o, (236)
dq q—1 q q—1 q

The proof of this result is elementary.

5.3 Our KZ setup

Let us now apply the above discussion to g = sly endowed with an ad-invariant
bilinear form 7 (a, b) = trcn (ab), and the n = 4 modules V; (1 <i < 4) as in (220):

Vi=Vs, Va=00" a= 50T Ve = ;.

v

According to Lemma 4.8 and the identification (222), we have:
A A [
(VieVa@V3@V4)* Y ~ C[nfl,...,n?sl_l] :

with n;’s defined in (223). Hence, functions F and ® of Proposition 5.1 can be thought
of as:

F:34 —C [nftl, . ..,nf,l_l] and @®: C*\{1} — C [rﬁ], ...,nﬁl_l]
(237)
Our next goal is to rewrite Eq. (236) on ® as a differential equationing, ny, ..., ny—1.

5.4 The differential operator HXZ

Choose the basis {X 4} of g = sl as follows:

(Xat={|1<a#b<N}u{hli=1,....,N—1}.

3 Such {d ;j} exist and are unique for an arbitrary choice of dq and d3.

4
4 0On any simply connected region in (CIP’1> \ {diagonals}.
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Then, the Casimir tensor (230) has the following form:

N—1
C=>1aJ+ > C/hebesly@sly. (238)
a#b i,j=1

where ||C/|| is the matrix inverse to the Cartan matrix ||(28l.j — 5ij+1 — 8{_1)|| of
sly. To simplify the calculations, it is convenient to consider a natural embedding
t: sly < gly, so that:

N—1 N
. 1
(®0 iglcum@m =;J3®Jg—ﬁel®el, (239)

where C; = Zg’:] J¢ € gly is the first Casimir operator (117). Similarly, the image
of the Casimir element Cas (231) under the induced embedding ¢: U (sly) — U(gly)
is given by:

62
(t® 1) (Cas) = €y — ﬁl

(240)
Define A A
~ C c
grz_-12, B (241)
q q-1
The operators
N me; (V)
A b
Co= 30 v @ T o) + =
a,b= (242)

N ~
R o ) mm
a,b=

coincide with ﬁgﬂ, fz?f‘ of (88), respectively, which in turn coincide with fzgps, fz?ps
of (56), according to Theorem 3.1. This concludes the proof of our main result: the vac-
uum expectation value () of the surface defect obeys the Knizhnik—Zamolodchikov
equation [22], specifically the equation obeyed by the (5 [ N) current algebra conformal

block

k

@ =(VIOV2@Va(DVa(0) | 43)

with the vertex operators at 0 and oo corresponding to the generic lowest weight V;; and
highest weight Vz Verma modules, while the vertex operators at q and 1 correspond

to the twisted HW-modules fJ-Cffl and fﬁ(g .

6 Conclusions and further directions

In this paper, we established that the vacuum expectation value of the regular sur-
face defect in SU(N) gauge theory in four dimensions with N = 2 supersymmetry,
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with 2N fundamental hypermultiplets, obeys the analytical continuation of Knizhnik—
Zamolodchikov equation for the four-point conformal block (ViV,V3Vy4) of the
two-dimensional sly current algebra at the level

k=2 N, (244)
£l

The surprising feature we discovered is the need to twist the irreducible representations
corresponding to the middle vertex operators V> and V3.

Our result has been anticipated for many years, see [29, 30]. In particular, in the
specific limit m; — oo, g — 0, with

2N
AN =g ]_[ my (245)
f=1

the equation (56) becomes the non-stationary version of the periodic Toda equation:

N

N 32

d 1 d

KAa—A\IJ: <§ E ﬁ+A2 E exi_xi+l>\l"a XN+1 = X1, (246)
i=1 i i=1

where
qwm$m; — A2gfoti —Xwt2 (247)

It was shown in [9] that the equation (246) is obeyed by the J-function of the affine
flag variety, which in [29, 30] was interpreted as the vev of the surface defect in the
pure N = 2 super-Yang—Mills theory with SU (N) gauge group. However, the method
of [9] does not generalize to the theories with matter. In [32-37] the equations, obeyed
by the surface defects of certain quiver gauge theories, were derived.

In the limit &1 — 0 and/or ¢ — 0, the differential operator (56) becomes the
equation describing certain Lagrangian submanifolds in the complex symplectic man-
ifolds, which are related to the moduli spaces [46] of vacua of the four-dimensional
gauge theory we started with, compactified on a circle. These moduli spaces can be
also identified with the moduli space of solutions of some partial differential equations,
describing monopoles and instantons in some auxiliary gauge theory [11, 44].

In this paper, we studied the simplest case of the asymptotically conformal N = 2
gauge theory, corresponding to the A1-type quiver. There exist various quiver general-
izations, whose Seiberg—Witten geometry can be exactly computed [39]. The orbifold
surface defects of the A,-generalizations conjecturally obey the KZ equations cor-
responding to the r + 3-point conformal blocks of the Wk current algebra, with
two Verma modules and r 4 1 twisted HW-modules. One can also study the intersect-
ing surface defects. For example, in the companion paper [17] a 5-point conformal

block corresponding to the infinite-dimensional modules V, HH JN{I’% \75, and the N-
dimensional standard representation is associated with the intersecting surface defect
of the orbifold type studied in this paper, and the orthogonal surface defect corre-
sponding to the Q-observable of gauge theory [32-37, 40]
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Perhaps the most interesting continuation of our work would be a translation of the
connection between the conformal blocks of two-dimensional current algebra (s [N) k
to the surface defect partition function of four-dimensional gauge theory that we firmly
established, to the Ay_1 (0, 2)-theory inﬁsix dimensions.

For integral level k and the weights v, D, m, m the current algebra conformal blocks
have a familiar Chern—Simons interpretation. It can be represented as the path integral

in the SU(N) gauge theory on a three-ball B> with the action

k 2
— Tr{AANdA+-ANAANA (248)
47 B3 3

with the gauge fields having a curvature singularity along an embedded graph I, as in
Fig. 1. The edges of the graph are labelled by the conjugacy classes of the monodromy
of connection around the small loop linking the edge. We need an extension, or an
analytic continuation, to the case of complex levels and weights. The paper [50] offers
such a continuation for the Chern—Simons level. The analytic continuation of Chern—
Simons theory in the representation parameters of Wilson and 't Hooft lines is not
yet available, but our results strongly suggest it should be possible. We are familiar
with the Wilson line operators Wg (C), associated with the representation of the gauge
group G and its representation R,

Wgr(C) =Trg Tg <Pexp% A) . (249)
C

More generally, a tri-valent orientation graph I', with oriented edges e labelled by
representations R,, with the understanding that the change of the orientation flips the
representation R; = R, and vertices labelled by the invariants

Iy € (R, ® Rey ® Rey)C (250)

with the edges ey, €3, e3 coming out of the vertex v, corresponds to the Wilson graph

observable
Wr,.r, (D) = [ Trr [T 1o <® Tk, (Pexp/A)) (251)
/ v e ¢

where / labels the loops, i.e., the edges with coinciding ends.
Inthe case the graph has tails, i.e., 1-valent vertices, which are placed at the boundary
d B, the path integral takes values in the Hilbert space obtained by quantizing the moduli
space of flat G-connections on ¥? = 3 B3 with singularities at the end-points, with
fixed conjugacy classes of monodromies around those. In the case of B3, £2 ~ §2
this Hilbert space is isomorphic to the space of invariants in the tensor product of
representations attached to the edges ending at the tails. For the graph I' in Fig. 1, this
would be
(RI® R ® Ry @ R) . (252)

Having the invariants I} € (R] @ Ry ® R)G, Ih € (R*QR3 ® R4)G at the two
internal vertices of I' identifies the conformal block with the channel of the tensor
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Fig. 1 Wilson graph corresponding to the 4-point conformal block

product decomposition (252) corresponding to the intermediate representation R €
R3;® R4, R* € R1 ® R».

All this, to alimited extent, generalizes to the infinite-dimensional g-representations,
although the expression (251) does not literally make sense. Nevertheless, the form

Y =I5 02 0) 1w 0N 1P (0.2.U)

diag

ﬁ{l
z/\r[a : (n/) ez at, )™
nam’ I (M,)

(")
i //)

of our basic invariant Y (89), and moreover, the ¢ — 0 asymptotics of the surface
defect partition function (44), which can be analyzed [23] rather explicitly, are sug-
gestive of some sort of three-dimensional interpretation with the graph I', with some
intermediate sl -module with the highest/lowest/middle weight y .

It does not seem to be possible to analytically continue (251) as a line operator
in the analytically continued Chern—Simons theory, as in [50]. However, it might be
possible to analytically continue the S-dual ’t Hooft operator, as a surface defect in
the topologically twisted N = 4 theory on a four-dimensional manifold with corners,
which locally looks like B3 x I.

On the other hand, the surface defect in four dimensions can be related [42] to
boundary conditions in the two-dimensional sigma model valued in the moduli space
of vacua of the theory, compactified on a circle, which in the present case is believed

Il
P

(253)

X

U=U'= U// U U/ U//
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x

moduli space of
flat Ge-connections

|z o -model
on Hitchin moduli space

Hom( =, S\4pts —>G¢)

—~_

cc brane

surface defect brane

Fig. 2 Four-dimensional gauge theory in two-dimensional presentation

to be the moduli space My <S2\4 pts; v, m, m, \:1) of SU(N) Higgs pairs on a 4-
punctured sphere with the regular punctures at 0 and co, and the minimal punctures at
g and 1, see Fig. 2. The homotopy between these two representatives of a cohomology
class of an intrinsic operator in the six-dimensional theory proceeds by viewing the
two-dimensional sigma model, with the worldsheet C as a long distance limit of the
four-dimensional N = 2 Q-deformed theory compactified on a two-torus 72 as in [42],
which, in turn, is a limit of the Ay_; (0, 2)-theory compactified on (S%\4 pts) x T2,
which, finally, can be reinterpreted, as the N = 4 theory on C X (S2\4 pts). As in
[42], the canonical parameter [19] W (not to be confused with the vev of our surface
defect) is identified with the ratio k of the 2-deformation parameters. With C having
the topology of the corner R2 , as in Fig. 2, the N = 4 theory on C x (52\4 pts) looks
very much like a gradient flow theory of the analytically continued Chern—Simons
theory on Ry x (52 \4 pts), with certain boundary conditions. We plan to discuss this
duality in detail elsewhere.
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Appendix A: Analyticity properties

In this Appendix, we provide proofs of the regularity properties from Sect. 2.
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Proof of Proposition 2.1 By inspecting the right-hand side of (12), we see that, for
generic a, €1, €2, and for any A € PN the rational functions (Y (x) |x)il have only

simple poles in x. Moreover, all the poles of Y (x + ¢) |3 and (Y(x) |x)71 belong to
the set

| | {ab—l—i-sl—l—j-sz i,jeZZo}. (254)

1<b<N
Hence, to prove the regularity of (X(x) ), it suffices to verify that it has no poles
at the above locus (254). Fix 1 <b < N, i >0, j > 0, and set

Xo:=ap+i-&+j-&. (255)

The function ¥ (x + &) |; has a pole at x = x iff 0 = (i + 1, j + 1) € 3_1®), while
the function (¥ (x) |x)‘l hasapoleatx = xoiff D= (i + 1, + 1) € 3;2%. Note
that

e A=A\ (256)

(where Dl(’i +1j41) denotes the (i, j)-th box in the b-th Young diagram) establishes a

bijection between the loci of A satisfying the first condition and the loci of A satis-
fying the second condition. Finally, for any XA from the first locus, a straightforward
computation shows that:

P(x)
Ml Resy=yxy Y(x +8) [ = —q - 157 - Resy=y (W) . (257)
A

This completes our proof of the proposition. O
This result admits the following multi-parameter generalization [32-37]:

Proposition A.1 For arbitrary parameters v = (vy, ..., vy) € C", define the C(x)-
valued observable X(x; v): PY — C(x) via:

jeJ
P(x —vj)

. o I, ). v — 7
Xewolp= 3, a]] Re=v-[[YG—vire) -] e vk
IuJ={1,...,m} iel iel jeJ

(258)
where R(z) = % Then, the average ( X(x; v) ), is a regular function of x.
As for m = 1 and v = 0, we have X(x;0) = X(x), this result generalizes

Proposition 2.1.

Proof of Proposition A.1 The proof is similar to the previous one. For generic
(v, a, €1, &2), each summand of (258) is a rational function in x with simple poles, all
belonging to the set

| | {ab+vr+i-£1+j-82 1§r§m,i,jeZzo}. (259)
1<b<N
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Moreover, for a fixed quadruple (b, r, i, j) € {1,..., N} x {1,...,m} X Z>o X Z>o
as in (259), the (1, J)-th summand of X(x; v) |3 (258) has a pole at

xo=ap+vt+i-e1+j-e (260)

iff either of the following two conditions hold:

M relandd=(G+1,j+1) €d_r®,
) reJandO=(@G+1,j+1) ea r®.

Clearly, the map
{(1, ), X} > {(1’ = I\{r},J = J U {r}), W= X\DZHJH)} 261)

establishes a bijection between the loci of A satisfying the first condition (I) and the
loci of those satisfying the second condition (II), while a straightforward computation
shows that:

I ReSimy X5 W) [ = = o | - Resemyg X(x; v) I3 (262)
The regularity of (X(x; v) ), follows. O

Finally, let us prove the analyticity in the orbifold/colored setup.

Proof of Proposition 2.2 Tt follows immediately from the proof of Proposition 2.1 pre-

sented above. The key observation is that, while each non-colored residue of Y (x+¢) |3;
P(x)

and Yo 1o at x = xp (255) is a product of elements from the lattice A (7) and their
inverses, the corresponding colored residues of Y, 1 (x + ¢€) |5 and YPEJX()X ‘) atx = xo
w %

are zero unless &, = w, while in the latter case they are obtained from their non-
colored counterparts by disregarding all factors from A with a nonzero Zy-grading.
Likewise, all elements of the lattice A that appear in uorb |5 (23) are obtained from
those that appear in u |37 (11) by disregarding all factors from A with a nonzero Zy-
grading.

Therefore, for each pair (&, A ) from the proof of Proposition 2.1, see (256), we get
(cf. (257)):

B 5 Resemy X () [5 = — P |57 - Resemyy (W) |- (263)
The regularity of (X, (x)) oo follows. O
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Appendix B: Some technical computations

The following equations are used in the proof of Theorem 3.1:

N

. v, dv dv;  9*logY ;
Z(z)Z(m, B?E, 82“82a> = <I—Nv,~, V8 —vivj, 0)

N N
dlogY dv;  dlog" dv; | o s - )
Z(z) Z < 92 97, s 97, a?) = (”t <a2::1 na) Vi, nj (Z na) Ul) (264)

a=1
AlogY dlogY < nait
a'ta
(Z)Z daz¢ 0Zq Z Vg

a=1

and

N
S
o2

<8i> = vi (Vi +i =2) +ui Qv = 1)

daz¢

1N}
—_

N
dlogY
b _
I ( S >_ X;(a—l)na
i

1N
—_

i—1 N-1
av ! - ~
2 G0g ) = vi | 30 (v =)+ Doy iy = vy | = i
a,b=1 j=1 j=1

(265)

2P Jf (v )a(logT) (Znu) i — nil;

v i
ZbJéI(U,’)ﬁ =V;V; (5j<,' +2u; — 1+ Ui) — u,-v,-(Si]

Q

=M= M= M= M= M=

)

3(log) il u
Z th,f(logT)v = Z nghp — Z NagVp — ‘;naﬁavl

a,b=1 1<a<b<N I<a<b<N-1 a

with u;’s defined in (77) and satisfying the equality v;+1 = u; — uj4+1 of loc.cit.
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