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Abstract: Generalizing Frassek et al. (Adv. Math. 401, 108283 (2022). https://doi.
org/10.1016/j.aim.2022.108283), we construct a family of SO (2r), Sp(2r), SO (2r+1)
rational Lax matrices Tp(z), polynomial in the spectral parameter z, parametrized by
A*-valued divisors D on P!. To this end, we provide the RTT realization of the an-
tidominantly shifted extended Drinfeld Yangians of g = s02,, $p,,, §02,+1, and of their
coproduct homomorphisms.
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1. Introduction

1.1. Summary. The main results of the present paper are:

e The RTT realization of the antidominantly shifted (extended) Yangians associated
to the simple Lie algebras g of the classical types s02,, $p,,, 502,41, generalizing
the recent isomorphisms of [JLM1] in the non-shifted case. This naturally equips
those algebras with the coproduct homomorphisms, which as we show do coincide
with those of [FKPRW] (obtained by rather lengthy computations in the Drinfeld
realization).

e The construction of a family of (rational) Lax matrices, regular in the spectral
parameter, of the corresponding type, parametrized by the divisors on the projective
line P! with coefficients in A*, the dominant integral cone of the coweight lattice of
g. In the simplest cases, this recovers recent constructions in the physics literature
[IKK,F,KK].

Our exposition follows closely that of our previous joint work with V. Pestun [FPT],
where both above constructions were carried out for g = sl,, (extended version corre-
sponding to gl,,).

The original definition of Yangians Y (g) associated to any simple Lie algebra g is
due to [D1], where these algebras are realized as Hopf algebras with a finite set of
generators. The representation theory of such algebras is best developed using their
alternative Drinfeld realization of these algebras proposed in [D2], though the Hopf
algebra structure is much more involved in this presentation (e.g. the coproduct formula
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has been known since the 90s, see [KT, (2.8)—(2.11)], but its proof has never appeared
in the literature until the very recent paper [GNW]).

For g = gl,,, a closely related algebra was studied earlier in the work of L. Faddeev’s
school (see e.g. [FRT]), where the algebra generators were encoded into an n x n square
matrix 7'(z) subject to a single RTT relation

Ri2(z —w)Th (2) T2 (w) = T2(w)T1(2) Ri2(z — w) (1.1)
involving the rational R-matrix R(z) satisfying the Yang-Baxter equation
R12(2)R13(z + w)Ro3(w) = Rz (w)Ri3(z + w)Ri2(2) (1.2)

(note that the sl,-version is recovered by imposing an extra relation qdet 7(z) = 1).
The Hopf algebra structure is extremely simple in this RTT realization, which is suitable
both for the development of the representation theory and study of the corresponding
integrable systems.

An explicit isomorphism from the new Drinfeld to the RTT realizations of type A Yan-
gians is constructed using the Gauss decomposition of 7 (z), a complete proof provided
in [BK1] (the trigonometric version of this result established earlier in [DF]). A sim-
ilar explicit isomorphism for the remaining classical types B, C, D was only recently
provided in [JLM1], where it was again constructed using the Gauss decomposition
of the generating matrices 7 (z) which are subject to the RTT relations (1.1) with the
rational solutions of (1.2) first discovered in [ZZ]. However, let us emphasize that the
formulas recovering the matrix 7'(z) through the Drinfeld currents in B, C, D types are
significantly harder than their counterparts in type A, see our Lemmas 2.77, 2.79, 2.80,
2.96,2.97,3.11, 3.12, 4.10, 4.11, generalizing partial results of [JLM1]. We note that a
non-constructive existence of such an isomorphism for any g was noted by V. Drinfeld
back in 80s, while a detailed proof of this result was only recently provided in [Wen].

In the present paper, we are mostly interested with the shifted versions of the algebras
above. Historically, the shifted Yangians Y, (g) were first introduced for g = gl,, and
dominant shifts v in [BK2], where their certain quotients were identified with type
A finite W-algebras, the latter being natural quantizations of type A Slodowy slices.
This construction was further generalized to any semisimple g still with dominant shifts
v € AT in [KWWY], where it was shown that their “GKLO-type” quotients (called
truncated shifted Yangians) quantize slices in the affine Grassmannians. To this end, the
authors constructed a family of algebra homomorphisms

O V(g — A (1.3)

to the (localized) oscillator algebra A (generalizing the construction of [GKLO] for
v = 0) parametrized by A € A" and an associated collection of points x € CV. The
generalization to arbitrary shifts v € A was finally carried out in [BFNb, Appendix B]
for simply-laced g and later in [NW, §5] for non-simply-laced types, where it was also
shown (using earlier arguments of A. Weekes) that their images quantize generalized
slices in the affine Grassmannians.

In contrast to [BK2, KWWY, we consider the opposite case of antidominantly shifted
Yangians (note that any shifted Yangian Y, (g) may be embedded into the antidomi-
nantly shifted one Y_, (g), u € A*, via the shift homomorphisms of [FKPRW]). For
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g = 502, 5Py, 502,41, We introduce the shifted extended Drinfeld Yangians X, (g)
related to Y, (g) via isomorphisms

Xu(g) = Ya(g) ® ZX,(g) (1.4)

where the center ZX,,(g) of X, (g) can be explicitly described via a central Cartan
current. For u € A™ and g as above, we also introduce the shifted extended RTT
Yangians X i“u (g), whose generators are encoded in a single matrix 7' (z) (the shift is
reflected in the powers of z) subject to the relation (1.1). Based on and generalizing
[JLM1], we construct isomorphisms

Y_op: Xopu(g) = Xittﬂ(g) forany u e A*. (1.5)

The construction of Y_,: X_,(g) — Xr_“ﬂ (g) is exactly the same as in [JLM1], but
the proof of its injectivity is different, since the arguments of loc.cit. do not apply in the
shifted setup.

To this end, we construct a family of A((z~ 1Y)-valued Lax matrices Tp (z), parametrized
by A*-valued divisors D on the projective line P!, which can be equivalently thought of
as algebra homomorphisms ®p: X r_“u (g) = A with © = D|, the coefficient of [co].
The compositions

Up=0OpoT_,: X_,(g — A (1.6)

coincide with extended versions of (1.3). Combining this with the recent result of [W],
asserting that the intersection of kernels of (1.3) as A varies is trivial, implies the injec-
tivity of YT_ .

The aforementioned Lax matrices Tp(z) are defined explicitly by providing the lower-
triangular, diagonal, and upper-triangular factors in their Gauss decomposition. The
exact defining formulas are exactly engineered (utilizing the new explicit formulas for
the inverse of the isomorphism Y constructed in [JLM1]) to allow us match the resulting
homomorphisms Wp of (1.6) with extended versions of (1.3). Meanwhile, the fact that
thus constructed matrices are Lax, i.e. satisfy (1.1), follows from a simple renormalized
limit argument as we shall explain now (expected from the physics of N' = 2 ADE
quiver gauge theories as explained in [FPT, p. 3]). To this end, we show that if the
divisor D contains a summand w;[x] (with x € P! and w; being the i-th fundamental
coweight of g) and D’ is defined as D' = D — w;[x] + w;[00], then

T (@) = lim {(=x)* - Tn(2)] (1.7)

realizing Tp/(z) as an x — oo limit of Tp(z) multiplied on the left by a z-independent
diagonal factor (—x)®, the latter preserving the RTT relation (1.1). Therefore, it suffices
to prove that Tp(z) satisfies the RTT relation for the divisors D whose support does
not contain co € P!. However, the latter follows from the fact that Yy is indeed an
isomorphism as proved in [JLM1].

Similar to the type A case treated in [FPT], the Lax matrices T (z) are actually regular in
the spectral parameter z (up to a rational factor). This provides a shortcut to the explicit
formulas of all linear (in z) Lax matrices Tp(z), which we classify explicitly for each
of the B, C, D types. We also show that some of our simplest linear and quadratic Lax
matrices, after nontrivial canonical transformations, recover the recent constructions in
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the physics literature [IKK,F,KK] (see also [R2]). The latter results were obtained by
making an ansatz for the Lax matrices and subsequently solving the conditions that arise
from the RTT relation. We would like to point out that our formalism provides a recipe
to write down Lax matrices of any degree in the spectral parameter (with the leading
term not necessarily proportional to the identity matrix) without making such an ansatz.

The algebras X r_“u (g) are naturally equipped with coassociative coproduct homomor-
phisms

AT o XY L@ — XE, @ XD, (@, T~ T@T(@. (18)
Evoking the isomorphisms (1.5) and the embeddings Y_;(g) < X_,(g), cf. (1.4), we
obtain

Afvl,fuz : valfvz(g) — Y7u1 (9) ® Y*VZ (9). (1.9)

We show that the homomorphisms (1.9) precisely coincide with the coproduct homo-
morphisms of [FKPRW, Theorem 4.8] provided in loc.cit. via lengthy formulas (but
suitable for any g).

We note that both the isomorphism (1.5) and the identifications of (1.8, 1.9) with
[FKPRW] were conjectured recently (for a general g) in the physics literature
[CGY, §7-8] (see also [DG]).

1.2. Outline of the paper. The structure of the present paper is the following:

e In Section 2, we present our results relevant to the classical type D, (g = s02,) in
full details.

e In Section 3, we provide our results relevant to the classical type C, (that is, for
g = sp,,). Since this is very similar to the type D,, we only highlight the few technical
differences.

e In Section 4, we provide our results relevant to the classical type B, (that is, for
g = s02,41). Since this is very similar to the type D,, we only highlight the few
technical differences.

e In Section 5, we briefly discuss the further directions.

e In Appendix A, we provide explicit formulas for the Lax matrices in type D,.

e In Appendix B, we provide the shuffle algebra realization of the key homomor-
phisms (1.3), which allows us to derive the explicit formulas for the Lax matrices in
types C, and B,.

2. Type D

Consider the lattice AY = @;:1 ZE}/, endowed with the bilinear form with
(elv , ejV) = §; j. We realize the simple positive roots {ozj}{zl of the Lie algebra so»,
via:

Vv 4 Vv 4 \% \% \% \%
ol =€ —€, =€) —€3, ..., 0_=¢€_,—€,a.=¢€_,+€, (2.1)

so that the Cartan matrix A = (a,-j)f’j:l is symmetric and is given by a;; = (o], a;).
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2.1. Classical (unshifted) story. To motivate our constructions in the shifted setting, as
well as to carry out the explicit computation of the corresponding Lax matrices, we start
by recalling the unshifted setup.

2.1.1. Drinfeld Yangian Y (s02, ) and its extended version X (s02,) The Drinfeld Yangian
of s0p,, denoted by Y(so0y), is the associative C-algebra generated by

{Egk), ng), ka)}kZl with the following defining relations:'

I<i<r
[H® HOT =0, 22)
[El(k)’ F;Z)] — Si,j H§k+£_l), (23)
HE D, EO ) HE), EC) = ("‘vz 7 HE E©), 2.4)
A F0) e py = S e oy 5)
ER, E0) — (E0, EC) = L e ) 2.6)
[F§k+1), FE“Z)] o [F,('k)s FS_€+1)] — _&20[]') {Fl(k)’ FS_K)}’ 2.7

(kd —daj; )
Z [Egka(l))’ [EEkU(Z))’ . [El (1 lj> , E‘(]e)] . ]] — O fori # j, (28)
UES(]—&,’_,‘)

ko(1—a;;))
D LSRN (LN R FO1 =0 fori# ) (29)

1
UES(]*L{U)
fori, je{l,...,r} k, €, ks € Z~o, and k' € Z>(, where we set:
HY =1 and ({a, b} =ab +ba. (2.10)

Considering the generating series:

Ei():=y E“z7% Fi@:=) F'z™,

k=1 k=1
Hiz) = > HPz =143 HP 2.11)
k>0 k>1

the defining relations (2.2)-(2.9) are easily seen to be equivalent to
(cf. [JLM1, (6.1)—(6.5)]):

[Hi(2),H;(w)] =0, (2.12)

(Er(2), F(w)] = sy, @)~ Hilw) 2.13)
—w
) (Hh ). E) @) — E
[Hi(z), E;(w)] = — % ) (Hi). Bj@) — Bjw)}

2.14
2 Z—w ( )

1 We note that our conventions k > 1 instead of k > 0 are in charge of perceiving the Yangian as a QFSHA
(quantum formal series Hopf algebra) which is related to a more standard viewpoint of it as a QUEA (quantum
universal enveloping algebra) via the so-called Drinfeld-Gavarini quantum duality principle, see [D3] and [G].
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@) {Hi(z), Fj(z) — Fj(w))
2 z—w ’
of, %) {Ei(z) — Eij(w), Ej(z) — Ej(w)}

[Hi (), Fjw)] =

(2.15)

[Ei(2), Ej(w)]+[E;(2), E;(w)] = —

2 Z—w
(2.16)
Fie) Pyl + @), Frw) = o (@ 2R B 2 i)
I—w
2.17)

Z [Ei(zo1), [Ei(z62), - s [Ei(Zo(1—a;)), Ej(w)]--- 11 =0 fori # j,

O’ES(l—a,'j)
(2.18)
Z [Fi(zo), [Fi(zo@), -+ s [Fi(zo—a;)), Fj(w)]---11 =0 fori # j,
oeS(1—ajj)
(2.19)

Likewise, following [JLM1, Theorem 5.14], the extended Drinfeld Yangian of 507, de-
noted by X(soa.), is defined as the associative C-algebra generated by

(k) k) k=1 (k) k=1 : . . .
(£, F) U{D;”’} with the following defining relations:

1<i<r 1<i<r+l
[Di(z), Dj(w)] =0, (2.20)
(i), ) =~y -0, @21)
[D: (2). Ej(w)] _ (el_\/’ ot;) i (2)( J(Z) j(w)) iti<r, (2.22)
Z—w
—(€Y,a) D1 (D(E (D)= Er (w)) ifj=r
roe=r z—w
[Dy+1(2), Ej(w)] = Dri1 (D (Er—1(2)—Er—1(w)) ifj=r—1- (2.23)
Z—w
0 if j <r—1
[Di(), Fyw)] = — (e, @) L - _’(ul)”)) @D it <, (2.24)
(€Y. al) (Fr(Z)_FZ‘riTU))DrH(Z) ifj=r
[Dy+1(2), Fj (w)] = _Fo1@=F—1(w)Dri1(2) lfj —r—1, (225)
Z—w
0 ifj<r—1
Y, o) (Ei(z) — E; 2
[Ei(2), Ei(w)] = — @ 2al) (£i(@) = Ei(w)” (2.26)
Z—w

Z[E7 (2), Ej(w)] — wlE;(2), ES(w)] = (o, &) E;()Ej(w) fori # j,  (2.27)

N V3 : _ . 2
[Fi(2), F;(w)] = (“i’z"‘i) (Fi(z) — Fi(w)) ’
Z—w

2[F7(2), Fj(w)] — wlFi(2), F§(w)] = —(af, &) Fj(w)Fi(z) fori # j, (2.29)

Z [Ei(zo1), [Ei(zo@2), -+ s [Ei(Zo(1—a;))s Ejw)]---11 =0 fori # j,
oeS(1—ajj)

(2.28)

(2.30)
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Z [Fi(zo)), [Fi(zo2)s o [Fi(Zo(1=ay)), Fj(w)]---11 =0 fori # j,

UES(]—H,‘_/')

2.31)

where the generating series are defined via:

k) _— o K _—
Ei(2) ::ZE; Y77k, E? (2) :=ZE1-( )7k,

! k=2 (2.32)
Fi) =Y FY*  Fe =Y FY7%
k>1 k=2
as well as:
Di(z) =Y Pz =143 DP*,
k=0 k>1
| . (233)
Ki(z) = D;(z)7 " Dis1(2) ifi <r
D@7 D) ifi =
Let us define the elements {C ,(k)}kzl of X (s0y,) via:
r—1
_ Di(z+i—r)
Cr)=1+Y Wt =] ———— D/@Dmx). (234

= Pl Di(z+i—r+1)

The following result follows from [JLM1, Main Theorem, Theorem 5.8]:

Lemma 2.35. The elements {Cr(k)}kzl are in the center of X (s02,).

This result is actually an immediate corollary of the defining relations (2.20, 2.22-2.25),
as the proof below shows. This will allow us to generalize it to the shifted setup in
Subsection 2.2.1.

Proof. C,(z) obviously commutes with all {D;(w)}" *+1 due to (2.20). We shall now

=1
verify that it also commutes with all {E; (w)}/_, (cf.l[BKl, Theorem 7.2] for the type
A counterpart); the commutativity with {F;(w)}/_, is completely analogous and is left
to the interested reader.

e Fori <r — 2, the relations (2.22, 2.23) imply:
(z—w+ 1DDi(2Ei(w) — Di(2) Ei(z) = (z — w) Ei(w) D;(2), (2.36)
@ —w—=DDis1(Ei(w) + Dis1(2) Ei(2) = (z — w) Ei (w) Diy1(2). (2.37)
Setting w = z — 1 in (2.37), we find:
Ei(z = D)Dj11(2) = Dis1(2) Ei (2). (2.38)

Now, calculating (z — w) E; (w) D; (z) Di+1(z + 1) using (2.36)—(2.38), we find that it
equals (z — w)D;j(z)Dj+1(z + 1)E;(w). Hence, E;(w) commutes with
D;(z)Dj41(z+1). Butitalso commutes with D (z) for j # i, i+1,dueto (2.22,2.23).
Thus, [C,(2), Ei(w)] =0fori <r — 2.
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e Fori = r — 1, applying the same arguments we see that E,_j(w) commutes both
with D,_1(z)D,(z + 1) and D, (z) D, (z + 1), hence, it also commutes with

Dr—1(z—1) (Dr—1(z = 1)Dr(2)) - (Dr(z+ 1) Dr41(2))
— D (@)D (2) = .
Dr_1(2) Dy_1(2)Dy(z+1)

As [E;—1(w), Dj(w)] = 0 for j < r — 1 by (2.22), we thus get the equality
[Cr(2), Er—1(w)] = 0.

e For i = r, applying the same arguments we see that E,(w) commutes with
Dy (z)Dy+1(z + 1) as well as with D,_1(z) Dy+1(z + 1), hence, it also commutes
with

Dy—1(z — l)Dr(Z)Dr+l(Z) _ Dr—1z = DDr+1(2)) - (Dr(2) Drei (z + 1))_
D, _1(2) D;_1(2)Drs1(z+1)
As [E-(w), Dj(w)] = 0 for j < r — 1 by (2.22), we thus get the equality
[Cr(2), Er(w)] = 0. O

On the other hand, comparing the defining relations of Y (s02,) and X (s02,), it is easy
to check (see [JLM1, Proposition 6.2]) that there is a natural homomorphism

10: Y (s02,) —> X (s02,), (2.39)
determined by:
Ei(z+35l) ifi<r Fiz+35l) ifi<r
E@r . 2 o F@e A
E (z+5%) ifi=r Fr(z+5%) iti=r
_ , (2.40)
) o Diz+ 5 D+ 5 ifi<r
’ Droi(z+ 52 Dtz + 52 ifi=r"

Lemma 2.41. 1o of (2.39) is an embedding and we have a tensor product algebra de-
composition:

X (502,) = ¥ (s02,) ®c CH{CP Jiz1]. (2.42)

k>1

1=i <r+1], define the elements

Proof. Given an abstract polynomial algebra B = C[{Di(k)}
(DPY2!_and (€ )iz of B via

1<i<r

Di(z) =1+ Z l_);k)z_k =Di(2) 'Din(z), 1<i<m

k=1
Dr(@) =1+ DMz = Dro1(2) ' Dra (2),
k=1
-l Di(z+i—r)
Criz) =1+ CcP -+« _ "~ . D.(2)D ’
(2) ; 2z E Dicti—r+1) (2) Dr41(2)

where D;(z) == 1+ Zkzl ka)z*k. It is clear that {Dl.(k)}][i.lq U {Cr(k)}kzl provide an

alternative collection of generators of the polynomial algebra I3, so that we have:

B =~ CHCP =11 ®c CHDMYZL 1.
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Applying this in our setup, we get a tensor product decomposition of vector spaces:
X (s02,) = Z ®c X'(s02,), (2.43)

where Z is a C-subalgebra generated by {C,(k)}kz 1 and X'(s0y,) is the C-subalgebra
generated by {El.(k), F l.(k), l_)l.(k)}kZl Moreover, the defining relations (2.20)—(2.25)

<i<r*
are equivalent to Z being centrallféésr explained above) and the commutation relations
between Di(k) and El.(k), Fi(k) exactly matching those of Y (so05,) through (2.40). Thus, ¢
of (2.39, 2.40) is indeed injective, and furthermore (2.43) precisely recovers the tensor
product algebra decomposition (2.42). O

2.1.2. RTT Yangian Y™ (s0,,) and its extended version X" (s0,,) It will be convenient
to use the following notations:

N =2r, Kk=r—1,

y . . (2.44)
i'=N+1—1i for 1 <i<N.
Following [ZZ], we consider the rational R-matrix R(z) given by:
P Q
R(z)=1d+— — (2.45)
z z+k
with P, Q € End CY ® End CV defined via:
N N
P=> E;j®Ej Q=Y Ej®E/. (2.46)
ij=1 i,j=1

We note the following relations:

PP=1d, Q*=NQ, PQ=QP=0Q,

which imply that R(z) of (2.45) satisfies the Yang-Baxter equation with a spectral
parameter:

R12(2)R13(z + w) Ra3(w) = Ro3(w)R13(z + w)R12(2). (2.47)

The extended RTT Yangian of s05,, denoted by X™ (s05,), is the associative C-algebra

generated by {tl.(f)}]f;l, j<N with the following defining relation (the so-called RTT rela-
tion):

Ri2(z —w)T1(2)T2(w) = Tr(w)T1(2) Ri2(z — w), (2.48)

where T (2) € X™(s02,)[[z!]] ®c End CV is defined via:

N
T@ =Y t;@®E; with 1@ =Y 1P =5+ 10z 249
ij=1 k=0 k=1

/O
ij
X" (s00,)[[z~", w™ ] ®c (End CV)®2, which can be explicitly written as:

where we set = 8;i,j. Thus, (2.48) is an equality in
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1
1552 ke ()] = ——— (150}t 2) = 14 )1 ()

N N
1
| S D tpi e w) = 8¢ jr Y tiy (Wt (2)

—wW+K
¢ p=1 p=1

(2.50)

These formulas immediately imply the following simple result, which will be needed
later:

Corollary 2.51. If T°(z) satisfies (2.48) and T = diag(ty, ..., t;) is a diagonal z-
independent matrix such that t1ty), = by, = ... = tt4q, then T°(2) =T - T°(2)
also satisfies (2.48).

The RTT Yangian of so,,, denoted by Y™ (s0,,), is the subalgebra of X™(s0,,) which
consists of the elements stable under the automorphisms:

piT@ e fOT@, VY @=1+fiz"'+fz?+.. eCllz”'1].(252)

At the same time, Y™ (s50,,) may also be viewed as a quotient of X™(s505,). To this

end, we recall the following tensor product decomposition (see [AMR, Theorem 3.1,
Corollary 3.9]):

X" (s02,) >~ ZX"(s02,) ®@c Y™ (s02r), (2.53)

where Z X" (s05,) is the center of X™(s0,,). Explicitly, ZX™(s0,,) is a polynomial
algebra in the coefficients {Z%()}kz 1 of the series

Zy@) =1+ z{*, (2.54)
k>1

determined from (with Iy denoting the N x N identity matrix):
T'(z— )T @) =T@)T (z— k) =2zy(2)]y, (2.55)
where the prime denotes the matrix transposition along the antidiagonal, that is:
(X"ij = Xjy forany N x N matrix X. (2.56)

Therefore, the RTT Yangian Y™ (s0,) may also be realized as a quotient of X™ (s05,)
by:

Zy(z) =1+ Z bszk for any collection of by € C, 2.57)
k>1

though it is common ([AMR, Corollary 3.2]) to choose b>; = 0, so that (2.57) reads
zZy(z) = L.
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2.1.3. From RTT to Drinfeld realization Consider the Gauss decomposition of the matrix
T (z) of (2.49):

T(z) = F(z)- H(z) - E(2), (2.58)
where H (z) is diagonal:
h1(z) 0 e 0
0 h 0
Ho=| | ,ZFZ) A B (2.59)
0 e 0 hn@@
F(z) is lower-triangular:
1 0 . 0
Fo=| 21@ 1 0 , (2.60)
i@ e fywa@ 1
and E(z) is upper-triangular:
1 ep(x) -+ e n(2)
0 1 :
E@=]" . (2.61)
: en—1,N(2)
0 . 0 1

The following explicit identification of the Drinfeld and RTT extended Yangians of so,
constitutes the key result of [JLM1]:

Theorem 2.62 ([JLM1, Theorem 5.14]). There is a C-algebra isomorphism:

Yo: X (s02,) => X™(50,), (2.63)
defined by:
eiiv1(z) ifi<r firi(@  ifi<r
Ei(z) — ’ . , Fi(2) — ' s 2.64)
O @ = O @ =
and
Dj(z)r> hj(z) for 1<j<r+1. (2.65)

Combining the Theorem above with Lemma 2.41, we obtain the following explicit
identification of the Drinfeld and RTT Yangians of so5,:

Theorem 2.66 ([JLM1, Main Theorem]). The composition of the algebra embedding
10 (2.39) and the algebra isomorphism Y (2.63) gives rise to a C-algebra isomorphism:

Yoot Y(s09,) —> Y™ (s05,).
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Explicitly, it is given by:

eiiv1 (2 + 5 ifi<r
) p
er—1,r+1(z+ rT) ifi=r

’

Eiz) — {

il .
Fi(2) > {f’“”(“ 7) fi<r (2.67)

_2 P
fr+l,r—1(Z+rT) fi=r

hiz+5H  his (2 + 50 ifi<r
heoiG+ 52 @+ 52 ifi=r

H,‘(Z) = {

Remark 2.68. (a) We note that our R-matrix R(z) of (2.45) is related to the one of
[JLMI1, (2.6)], to be denoted by R'™(z), via R(z) = R'™(—z). Therefore, our matrix
T(z) of (2.49) is related to the one of [JLMI1, (2.10)], to be denoted by T'™M(z), via
T(z) = T"™M(—z). This explains the sign difference between our relations (2.21)—(2.29)
and those of [JLM1, Theorem 5.14].
(b) Accordingly, our formulas (2.67) agree with those of [JLM1], once we identify
the generating series E;(z), F;(2), H;(z) of Y (so0y,) with & (—2), £ (—2), ki(—z) of
[JLMI, (1.5)], respectively.
Remark 2.69. Evoking the series C,(z) of (2.34) and zy (z) of (2.54), we note that:

r—1 .

hi(z+i—r)

Zy(z) = 11] heti—r+D) hy (2)hr41(2) = Yo(Cr(2)) (2.70)
with the first equality due to [JLM1, Theorem 5.8]. Combining (2.70) with Theo-
rems 2.62, 2.66, Lemma 2.41, and the isomorphism ZX™ (s0;,) =~ C[{Z%)}kzl], we
see that the center of Y (s0,,) is trivial, while the center of X (s0y,) is a polynomial
algebra in {Cﬁk)}kzl.

2.1.4. From Drinfeld to RTT realization To simplify some of the upcoming formulas,
let us introduce the following notations:

E *) —k eiiv1(z)  ifi<r
e(Z) = e’z = i ’
| k>1 l {er—l,r+l (Z) lfl =r

) @.71)
ﬁ(z) = fl(k)Z k = {f‘l+],z( )

Pt fretp—1(2) ifi=r"

According to Theorem 2.62, the coefficients of {e; (z), fi(z)};_, U {h j(z)};;ll generate

the algebra X™(s0,,). In this Subsection, we record the explicit formulas (those of
[JLM1] as well as some new ones) for all other entries of the matrices F (z), H(z), E(z)
in (2.58)—(2.61).

But first let us recall the key ingredient of [JLMI1]: the algebra embeddings

X" (s02(—5)) < X™(s02,) for any 0 < s < r. To this end, consider the following

(2r — 2s) x (2r — 2s) submatrices:

hsoi(z)y 0 - 0
0 heo(z) -+ 0

HY(z) = , (2.72)

0 0 hgry@)
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1 0 . 0

Filg) = [ forasn@ .1 . (2.73)
Sy s+1(@) - fsy,se2y (@ 1
I egr1542() -+ sl (s+1y(2)

EW() = 9 1 . : _ (2.74)
: .. ’ e(s+2), (s+1y (2)
0 .. 0 1

Then, according to [JLM1, Proposition 4.1], the matrix
T8 (2) == FU(z) - H¥(2) - EV)(2) (2.75)

coincides with the image of the corresponding 7-matrix of X™(s02(-—s)) under the
embedding X™ (s0(,—g)) <> X™(s02,) of [JLM1, Theorem 3.7] constructed using the
quasideterminants. While we omit the details of the latter construction, but let us record
an important corollary that provides a powerful “rank-reduction” tool that will be used
through the rest of this Subsection:

Corollary 2.76 ([JLM1, Corollary 4.2]). The subalgebra of X™(s02,) generated by
the coefficients of all matrix coefficients of the matrix T\ (z) (2.75) is isomorphic to
Xm(502(r7s))-

e Matrix H(z) explicitly.

Lemma 2.77. For 1 <i <r — 1, we have:
-1 .
1 . hi(z+j—r)

hi(z) = :
@ hiG+i—r+1) L4 hjG@+j—r+D)

“he(Dhr1 (). (2.78)

Proof. Fori = 1,this follows from (2.70) combined with the equality ki (z) = hl(ZZNf(fll)
of [JLMI, (5.14)] (obtained by comparing the (N, N) matrix coefficients of both sides
of the equality 7"(z — k) = zx(z)T (z)~'). The general case follows now from Corol-

lary 2.76. O
o Matrix E(z) explicitly.

The following result is essentially due to [JLM1]:?

Lemma 2.79. (a) e, ,+1(z) = 0.
(®) e -1y (2) = —er(2).
©) ei1y,i(z) = —ei(z+i—r+1)forl <i<r—1

(d) i j41(2) = =lei (@), eV for 1 i< j<r—1.

© €. j/(2) = lei 1y @), e N for 1 <i < j<r—1

(F) eirr(2) = —lei,—1(2), e 1 for 1 <i <r =2

(@ eir (@) = leq o1y @), e 1 for 1 < j <i—2<r =2

2 Note a sign and index errors in the equality from part (f) as stated in [JLM1].
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Proof. (a, b) follow from Corollary 2.76 and their validity for » = 2 (the latter follow
from the results of [AMR, §4] in a straightforward way, see [JLM1, Lemma 5.3]).

(c) is [JLM1, Proposition 5.7] (due to Corollary 2.76, it suffices to prove it fori = 1
case, in which case it follows by comparing the (N — 1, N) matrix coefficients of both
sides of the equality 7/(z — k) = T(z)"'zy(z) and using the equality &1 (z)e1(z) =
e1(z + 1)h1(2), a result of applying (2.50) to the computation of [t11(z), t12(z + 1)] =
[71(2), hi(z+ Dera(z+ D).

(d, e, f) are [JLM1, Lemma 5.15] (due to Corollary 2.76, it suffices to prove them for
i = 1, in which case they follow by evaluating the w~-coefficients in the expressions
[t1(2), tj, j+1 (W], [t1,(j+1y (@), tjery, j (W], [11,,-1(2), tr—1,741(w)], respectively, us-
ing (2.50), combined with the equalities 1 (z) = h1(z)e; (z) and eE}ll), o= —e the
latter due to part (c)). 7

(g) follows immediately from [JLM1, Proposition 5.6] (based on the observation that
multiplying the bottom-right r x r submatrices of F(z), H(z), E(z) provides anr X r
matrix satisfying the RTT relation of type A) and the equality 88.1_1),’]., = —egl) due to
part (c). O

The remaining matrix coefficients of E(z) from (2.61) are recovered via:

1 )
Lemma 2.80. (a) ¢; ;7(2) = [e; 41y (2). €\ ] — €; (2)ei a1y (@) for | <i <7 — 1.

1 )
(b) ei11,i(z) = [eis1,i+1y (2), e,-( N+e (2)eir1,i+1y(2) — e sy (@) for 1 <i <r —2.
(©) €. j1(2) = lei oy (@) e N for 1 < j <i—2<r-2.

Proof. (a) Due to Corollary 2.76, it suffices to establish this equality for i = 1.
Comparing the w~L-coefficients in the equality [t12,-1(2), tor—12-(w)] =
Br—1.2r—1(@)t,2r (W) —12r—1,2r—1 (W)1,2,(2) of (2.50), we get: [11.21 (), tz(iil,Zr] = —112:(2).

Note that IZ(i)—l o = e;)_l oy = —eilz), due to Lemma 2.79(c). Combining this with the

identities #14 (z) = h1(z)e1 x(z), we find:

[h1(2). e let 2r—1(2) + i (Dle12r-1 @) e’ T = hi@e12r(2).  (2.81)
On the other hand, we have [f11(2), t12(w)] = fll(w)tlz(zz)_—ltuu(z)tﬂ(w), so that
[h1(2), er(w)] = h@Ee@—eaw) Comparing the w™!-coefficients of both sides of

I—w

the latter equality, we get:

[h1(2), eV = —h1 (2)e1(2). (2.82)

Combining the formulas (2.81, 2.82), we immediately obtain the desired equality:

e1.2:(2) = [e12-1(2), €1 — e1(D)e1 2,21 (2). (2.83)

(b) Due to Corollary 2.76, it suffices to establish this equality for i = 1. To this end,
let us compare the w™!-coefficients in the equality

tr—1,2r—1 (212,27 (W) — t2r—1,27—1 (W)t2,2-(2)
w—z
+ Zp Ip2r—1 (Z)[p’,Zr(w)

z—w+r—1

[12,2~1(2), tor—1 2- (W)] =
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of (2.50), which together with the aforementioned equality 1‘5111 = —egl) implies:
(12,2 -1(2), ei“] =12(2) +t1,2,-1(2). (2.84)
Note that
1,2r-1(2) = h2(2)e22r-1(2) + f1(2)h1(2)e1.2r-1(2). (2.85)

Comparing the w™!-coefficients of both sides of [121 (z), t12(w)] = 12 (Z)m(wg;tzl 1w)in@
we get [ f1(2)h1(2). "] = 111(2) — 122(2) = h1(2) — 122(2), s0 that:

[f1(@h1(2)er,2-—1(2), 651)] = (h1(2) — 122(2)) e1,2r—1(2) + 121 (2)[e1,2r—1(2), eil)]-
(2.86)

We also have [/>(z), eil)] = ha(2)e1(z), so that:

h2De2.2r-1(2), eV = h2(2) (€1(Dea 21 D) + ez 1), e 1) . 287)

Combining the formulas (2.84)—(2.87) with (2.83), we immediately obtain the desired
equality:

2.2:(2) = [e22,-1(2), €1+ e1(2)er.2r—1(2) — €12,-1(2). (2.88)

(c) Due to Corollary 2.76, it suffices to establish this equality for j = 1. We shall pro-
ceed by induction on i. Comparing the w~'-coefficients in both parts of
[ti,Zr—l(Z)y t2r—1,2r (w)] — tr—1,2r—1@ti 2r W) —t2r—1,2r—1 (W)t 2r (2) of (250), and evoking

w—z
t2(i)—1,2r = —eil), we obtain:

[1i2r-1(2), &\ = 1i.2- (2). (2.89)

Note that the series featuring in (2.89) are explicitly given by:

i—1
tior (@) = hi(2)ei o () + Y fij(DhjR)ejor(2),
j=1
i—1
tior-1(2) = hi(@eiar1) + Y fij@hj()ej2r-1(2). (2.90)

j=1

H1 (@Dt (w) =t Wtz (z)
w—z ’

we obtain [11(2), e\ = —ti2(z) = — fi2(2)h2(2) — fi.1(2)h1(2)e1 (2), so that:

Comparing the w ™! -coefficients in both sides of [#;1 (z), f12(w)] =

[fi1(@Dh1(2)e12—1(2), eV =

fi1(@h1(2) ([el,zr_l(z), eil)] - el(z)e1,2r_1(z)) — fi2(@)h2(2)e1 2r—1(2).
(2.91)
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For j =2, we have [ f; 2(2), ¢; )] =0 and [h7(2), eg )] = hy(2)e1(z), so that:

[fr2@ha@erz1), e = fi2(ha(2) (e1(e22r-12) + [e22-1(2), 1)
(2.92)

Finally, for 2 < j <i — 1, we clearly have [ f; ;(z), egl)] =0=1[h;(2), egl)], so that:

L @hj@ej 212, i1 = fij@hj@lej 212, i1 = fij(@hj(@)e )2, (2)
(2.93)
with the last equality due to the induction assumption.

Combining the formulas (2.83, 2.88, 2.89-2.93), we immediately obtain the desired
equality:

ein(2) =lein—1(2), "1 for 3<i<r (2.94)

This completes our proof of Lemma 2.80. O

Let us record the recursive relations that follow from the above two Lemmas:

eiji1@ =1 1) lel) el @, Lsi<jsr—1,
eip@=1letV 1e,, - lel) 1 fi)],exz)]] L l=isr-2

e /@ = I-llej @), e 1 e, - ;131] “)] l<i<j<r—1,

e j1(2) = [ [lej -1y @), e 2] e‘”] o jljl] M rsjsi—2sr-2,
e )@ = lleg -1y @ ef L e oo D1 eV 1<j<i—2<r-2

(2.95)

e Matrix F(z) explicitly.

The following result is essentially due to [JLM1]3 and is proved exactly as Lemma 2.79:

Lemma 2.96. (a) fi+1.,(z) = 0.
(b) f(r—l)’,r(z) = —fr(2).
©) fii+iy@ =—fie+i—r+)forl1 <i<r—1

@ froi@ =—LF". fri@lforl si<j<r—L

© 1@ = UV fmyi@lfor 1 <i < j<r—1

) fri@ ==L i@l for1 <i<r—2.

@ firir@ =L, fysyir@lfor1 <j<i—2<r—2

The remaining matrix coefficients of F(z) (2.60) are recovered via the analogue of
Lemma 2.80:

Lemma 2.97.(a) fir.i(2) = £, fusiyi (@] = fasryi@) fix) forl <i <r—1.
®) firin1 @ = LY, Fastyin @1+ fasty.in @) fi(@R) = fustyi(@) forl <i <r—2.
© f1.i@) = U fymyi@lfor 1 < j <i—2<r -2

3 Note a sign and index errors in the equality from part (f) as stated in [JLM1].
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Let us record the recursive relations that follow from the above two Lemmas:

i@ =1 L@, 9L AR A A 1i<j=r—1
fri@ =101 @, £ 90 ﬁ%]f“ﬁ l<i<r-2

Fra@ =10 D, mplﬂl@m L l=i<jsr—1,
firi@ = u“)uﬁ} U faoyi @ l<j<i-2<r-2,
Fro@ =110 f“)ffgﬂpwy@m~lL l<j<i-2<r-2.

(2.98)

2.2. Shifted story.

2.2.1. Shifted extended Drinfeld Yangians of so0y. Consider the extended lattice
AY = @HII Ze} = = AY @ Ze),,, endowed with the bilinear form via (¢, €7) = §; ;.
We shall need the following family of elements {&,;"};_, of AV:

=6/ -6, 8 =6/ —¢), ..., & 1 =¢_—¢, & =€, —¢€y. (299
Let A = @;;1] Ze j be the dual lattice with €, (¢;) = §; ;. Identifying the dual space
(AY ®7C)* with AV ®z C via the form (-, -), the lattice A gets naturally identified with

AY via €; <> €. We will also need another Z-basis: A = P;_, Zw; with

Wy_| ‘= —€, Wy := —€4], W} = —€j4] — €42 — ... — €41 forO0<i <r—1.

(2.100)

For i € A, define d = {ar,-};.;l1 € Z*' and b = {b;}_, € Z" via:

dj = e]Y(u), (2.101)
and b = {b;}i_, € Z' via:
bi ==& (w), (2.102)
so that:
bih=di—dy, br=dr—d3, ..., bp_1 =dr—1 —dr, by =dr—1 — dry1. (2.103)

For u € A, define the shifted extended Drinfeld Yangian of s0;,, denoted by X, (s02,),

to be the associative C-algebra generated by {E; ® , F; ® }Ifz ll<r U {D(k )}]f ;‘i:j | with the

defining relations (2.20, 2.22-2.31) and the followmg replacement of (2.21):

Ki(z) — Ki(w)
[Ei(2), Fj(w)] = =6 ; _z——w— (2.104)

where E;(2), E7(z), Fi(z), F{ (z) are defined via (2.32), D;(z), K;(z) are defined via:
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CIET S R SR

k=d k>d;+1

®) _—k Di(z) " 'Dis(z)  ifi<r
Ki(z) = K; = : 2.105
) k;:b, P {Dr—l(z)_lDrH(Z) ifi=r ( )

with the conventions
Di(di) — 1 — K[(_bi)v

and finally K;(z) denotes the principal part of K; (z):
Ki@ = Y  KP (2.106)
k>max{1l,—b;}
Remark 2.107. For u = 0, we obviously get Xo(s02,) >~ X (s02,).

Similar to our proof of Lemma 2.35, we note that the coefficients {Cr(k)}kzdﬁdmﬂ of
the series

r—1

—d.— _ Di(z+i—r
Cr(z) =z = 4 E Cr(k)z k= l_[ # - Dy (2)Dr11(2)
TADi(z+i—r+1)
k>d+dyi1 i=1

(2.108)

are central elements of X, (s02,), which is an immediate corollary of the relations
(2.22)—(2.25).

Let A = EB;=1 Zw; be the coweight lattice of s0;,, where {w;}/_, are the standard
fundamental coweights of 50, i.e. & (w;) = §;,; for 1 < i, j < r. There is a natural
Z-linear projection:

A— A, p+— ji definedvia o (1) =&’ (n) forl<i<r (2.109)
Explicitly, we have:
p
A>pu — [L:ZbiwieA
i=1
with b; = &, (u), cf. (2.102), so that:
wog=0, @ =w; for 1 <i<r.

The algebra X, (s02,) depends only on the associated sop-—coweight ji, up to an iso-
morphism:

Lemma 2.110. If i1, o € A satisfy i1 = o € A, then the assignment

(ki =€’ (1 —p2))
i

EY v E®, F® s O D& s p (2.111)

1

gives rise to a C-algebra isomorphism

Xy, (502,) = X4, (502,).
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Proof. The assignment (2.111) is clearly compatible with the defining relations
(2.20, 2.22-2.31, 2.104), thus giving rise to a C-algebra homomorphism
Xy, (502,) = Xy, (s02,). Switching 1 and 12, we obtain the inverse homomorphism
X, (502,) — X, (s02,). Hence, the result. |

Let us also recall the shifted Drinfeld Yangians of s0,, introduced in [BFNb, Defini-
tion B.2]. To this end, fix a coweight v € A and set b; := a/(v) for 1 <i < r.The
shifted Drinfeld Yangian of so,,, denoted by Y, (s02,), is the associative C-algebra gen-
erated by {E\", F® HI“ Y1215 7" ith the defining relations (2.12, 2.14-2.19) and

the following replacement of (2.13):

H‘
[Ei(2), Fj(w)] = —§; j —————, (2.112)

where E; (2), F; (z) are defined via (2.11), H; () are defined via:

Hi(z) == Z HEk)z_k =" + Z H;k)z_k,
k>—b; k>1—b;

with the conventions Hg_bi) = 1, and finally H; (z) denotes the principal part of H; (z):

Hie) = Y HP* (2.113)

k>max{1l,—b;}
The explicit relation between the shifted Yangians X, (s02,) and Y, (50,) is as follows:

Proposition 2.114. For any u € A, the assignment (2.40) gives rise to a C-algebra
embedding

tp: Ya(s0p,) — X, (s02). (2.115)
Furthermore, we have a tensor product algebra decomposition:

X, (502,) = Yi(502,) ®c CUC Yizd,4dyy+1]- (2.116)
Remark 2.117. For u = 0, this exactly recovers (2.39) and Lemma 2.41.

Proof. The proof is completely analogous to that of Lemma 2.41 treating the special
case u = 0 (while Lemma 2.41 follows from the results of [JLM1] combined with the
isomorphism (2.63), let us stress right away that our proof was only using the defining
relations (2.20)—(2.31)).

The compatibility of the assignment (2.40) with the defining relations of Y (s02,) is
straightforward, giving rise to a C-algebra homomorphism ¢,,: Y (s02,) — X, (s02).
The injectivity of ¢, as well as the tensor product algebra decomposition (2.116) are im-
mediate after switching from the coefficients of the generating Cartan series { D; (z)}/ ”1 to

the coefficients of the central Cartan series {C,(z)} of (2.108) and the series

r—1
{Di (@) 'Din (Z)}' 1 U {D,_1(z)"'D,;1(z)}, as in our proof of Lemma 2.41. |
L

Corollary 2.118. Y} (so2,) may be realized both as a subalgebra of X, (s02,) via (2.115)
as well as a quotient of X, (s02,) by the central ideal (Cr(k) —Ci)k>d,+d,., forany cx € C.

Similar to Remark 2.69 and [FPT, Lemma 2.26], we have:
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Fig. 1. Oriented Dynkin diagram of type D,

Lemma 2.119. (a) The center of the shifted Yangian Y, (s0>,) is trivial for any v € A.

(b) The center of the shifted extended Yangian X, (s03,) is (C[{Cr(k)}k>d,+d,+l] for any
n e A.

Proof. Part (a) is a general result which follows from [W] as explained in
[FPT, Remark 2.81]. Part (b) follows from (a), the decomposition (2.116), and the series
C,(z) being central. O

2.2.2. Homomorphisms Wp In this Subsection, we generalize [BFNb, Theorem B.15]
for the type D, Dynkin diagram with arrows pointingi — i + 1 for 1 <i <r — 2 and
r — r — 2 (see Fig. 1), by replacing Y (s02,) of loc.cit. with X, (s02,). We closely
follow the presentation of [FPT, §2.2] for type A.

Remark 2.120. While similar generalizations exist for all orientations of D, Dynkin
diagram, it suffices to consider only the above one for the purposes of this paper, see
Remark 2.191.

An element 1 € A will be called dominant, denoted by 1 € A*, if the corresponding
s0p,—coweight A (2.109) is dominant: & € A*. Thus, Y ;_ ciw; is dominant iff ¢; € N
forl <i<r.

A A-valued divisor D on P!, A*-valued outside {0} € P!, is a formal sum:

D= " ymlx]+ uloo] 2.121)
1<s<N
1 ifig #0
withN eN, 0<i; <r, x, €C, y5 = s # ,and u € A. We will write
+1 ifig =0

1= Dleo. (2.122)

If u € A*, we call D a A*-valued divisor on P!. It will be convenient to present D also
as:

D= Y Jdx]+ploc] withi, € A*, (2.123)
xeP!\{oo}
related to (2.121) via A, = D|, = ’f;;N ys@i,. Define A € A* via:
A= Y wpw,= Y Dl (2.124)
1<s<N xeP!\{oo}

Let {a;}/_, C A denote the simple coroots of s05,, explicitly given by:

o] =€ — €, ..., Up2=€_2 —€_], Up_] =€_] — €, 0 =€_] +6€.
(2.125)
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We also consider the following family of elements {&;}/_, C A given by:

Al =€ — €, ..., Up_) =€_2 — €1,
Q| = €1 — €+ €41, Op =61 +6 — €41, (2.126)
which are the “lifts” of «; from (2.125) in the sense of (2.109), that is:
G =a; forl<i<r (2.127)
Following [BFNb], we make the following
Assumption : A+ =aya;+...+aa witha; € N. (2.128)

Let us record the explicit formulas for the coefficients a; of (2.128):

ar = (e +...+¢)(A+pn) for 1 <k<r-2,
(e +...+€¢" | —€)+ )

ar—1 = B s
e/ +...+€l  +e)+
a = (€ r_zl r) “). (2.129)

Remark 2.130. Note that D of (2.121) satisfies the assumption (2.128) iff all quantities in
the right-hand sides of (2.129) are non-negative integers and
(€ +€\ DA +p) =0.
Consider the associative C-algebra

_ I<k#t<a;
A=C(pis 5, (pig = pic+m)!) 2.131)

1<i<r,meZ

with the defining relations:
[0, pjel = FbijSkee™ ™, [pig. pjel =0 = [Tk, U], eFbkeFht =1,

Remark 2.132. (a) This algebra .4 can be represented in the algebra of difference oper-
ators with rational coefficients on functions of {pi,k}%gfra ! by taking eT9i* to be a

difference operator D;—Lk1 that acts as

O W) (Prte s Piks o Pra) =Y (Prie - pik £ L pra,).

(b) The total number of pairs of (p, q)-oscillators in the algebra A will refer to the sum
r
i=14i-

For0 <i <rand1 < j <r, we define:

aj kL
Pj(z) := ]_[(z —pik), Pje@) = ]_[ (Z—Pjk)s
k=1 1<k<a;
Z@w= ] c=x)= [] @-0%®), (2.133)
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where {a@,;"}!_ is a Z-basis of A" dual to the Z-basis {z;}/_, of A.Explicitly, we have:

ay =—€/, 0] =€/ —&), 0y =€y — €3, ...,
~\V Vv Vo o~V 2 Vv
Olr_l = 6}”—1 — ér N (Xr = 6}’—1 — 6r+1. (2.134)
We also set:
ap:=0, a,41:=0, Pyz):=1, P(z):=1. (2.135)

The following result generalizes the D,-case of [BFNb, Theorem B.15] stated for
semisimple Lie algebras g (preceded by [GKLOY] for the trivial shift and by [KWWY]
for dominant shifts):

Theorem 2.136. Let D be as in (2.121), satisfying the assumption (2.128), and set
1 = D|x. There is a unique C-algebra homomorphism

Wp: X_,(s02,) — A, (2.137)
determined by the following assignment:

aj Pi1(pik—1)  qix R
k=1 T pro P € ifi<r-—3
ar_py Pr_ -2 k—1)P, _ ey

I ('z—315f)l2,i)kpr7)2,[((;»[7:722,’:)) ek ifi=r-2

Ei(z) —

Aar—1 Pr_a(pr—1.4—1) Gr—1.k Lo ’
Zk:l G0 P € ifi=r—1

ar 1 ark if i =
YA TP ifi=r
ai  Zi(pixtDPisi (pik+D) —giy .
— . , < —
Zk=1 G—pir—DPirlpip © fi<r-2

3 _ ar—1 Zr—1(pr—1.k+1) —Gr—1k if i —
Fi(@) — Zk:l C—Prax—DPix(pran € fi=r-1,

_y o ZrprtD P2 (prk) ,—q,. L
2isi @ pri=D P (pri) © g ifi=r
i '_1 . .
#(ZZ)—I)' k=0 Zk(2) ifi<r—2
Po1@P @ Tr2 .
PA@RO [ 27, ifi=r—1
Di(Z) ~ Pr(2) r—1 .
oD 1 lk=o Zk(2) ifi=r
Pr—1(2) r—2 7 z o X
pra-h L lk=02k(@) - Z,(2) ifi=r+
P P
W(zz)—n ifi<r—2
P 1P (2)
o ) TPy Hi=r—1
= 1 c-mseo. ey | o1
rePi(oo} oy Vi=r
11;:(;17(11)) ifi=r+1

Remark 2.139. To compare this with [BFND, §B(ii)], let us identify .4 with A of loc.cit.
and the points x; with the parameters z; of loc.cit. (assigned respectively to the summands

T i57ﬁ0 . L
of A = | <s<N @iy) Via:
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wi,k+% ifi <r
ik <> - AP
bi wek+ 52 ifi=r’

eTlik s u?,zkl’ (2.140)

w+y  ifl<ig<r
Xy <

s+ 55 ifig=r
Then, the (restriction) composition

Y_i(s02) 5 X_,i(s02) —2 A (2.141)
is explicitly given by:

ai

ionei Womy Wik — %)
E;(z) — Z HheQ.l(h)_z o(h)\Wi 2 u!

= @ wiWikwip)
4 7 (w: 1 ) W . 1
Fio) e — ) i Wik + D [Thegiom=i Wity Wik +3) )
P (z —wik — DWir(wir)

1
Zi(2) nheQUQ:o(h):i Wiy (z — 3)

Ri@ ~ Wi Wiz — 1)

b

where Q (resp. Q) denotes the set of oriented (resp. oppositely oriented) edges of the
Dynkin diagram from Fig. 1, the notation i(h) = i (resp. o(h) = i) for anedge h € Q
(or h € Q U Q) is to indicate that & points towards (resp. away from) the i-th node, and
the generating series in (2.142) are defined via:

ai k;é[ i5=i
Wi)=[Je=win). Wie@ = [] G-win). Ziw = [] G-2z-13).
k=1 1<k<a; 1<s<N

Thus, the composition
Wpoty: Y_p(s0y) — A

essentially coincides with the version of the homomorphism CIDX_ i of [BFNb, Theo-

rem B.15], where the signs of all E;(z) and F;(z) are reversed, and the Z; (w; x)-factors
in E;(z)-currents are now replaced with the Z; (w; x + 1)-factors in F;(z)-currents, cf.
[FT1, Remark C.3].

Proof of Theorem 2.136. First, let us verify that under the above assignment (2.138),
the image of D;(z) is of the form 7% + (lower order terms in z) forall 1 <i < r + 1.
Let deg; denote the leading power of z in the image of D;(z) (clearly the coefficient of
798 equals 1). Then, we have:

a; — a;—1 ifi #r 1
degi=— > &G+ jar1+a,—a,n ifi=r—1. (2143)
xeP!\{oo} ar—1 — ar ifi =r+1
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Note that er]pl\{oo} A+ =A+u=ayd+...+aa (2.128), so that:

D0+ & W =€ (@dn +... +ard,)

xeP1\{oo}
a; —aj_ ifi #r=+1
=1a_1+a, —a,— ifi=r—1. (2.144)
ar,_1 — ay ifi=r+1

Combining (2.143, 2.144), we thus obtain the desired equality:
deg; = ¢’ (n) = d;. (2.145)
Evoking the algebra decomposition (2.116)

X (s02,) = Y_(s02,) ®c CHCHE Ym—dp—dyr 1,

it suffices to prove that the restrictions of the assignment (2.138) to the subalgebras
Y_j(s02,) and (C[{Cr(k)}b_dr_a/,+1 ] determine algebra homomorphisms, whose images

commute. The former is clear for the restriction to Y_j(s02,), due to Theorem B.15
of [BFNb] combined with Remark 2.139 above. On the other hand, we have:

r—2

(G @) = [[(2@ZiGc+i=r+ D) 2,017 @. (2146

i=0

Thus, the restriction of Wp to the polynomial algebra (C[{C,(k)}k>,d,,dr+,] defines an
algebra homomorphism, whose image is central in A. This completes our proof of
Theorem 2.136. O

Remark 2.147. Our choice of @; € A in (2.126) “lifting” o; € A of (2.125) in the sense
of (2.127) is exactly to guarantee the equality (2.144); moreover, the latter determines
&; uniquely.

2.2.3. Antidominantly shifted extended RTT Yangians of sop, Fix u € A*. Define the

antidominantly shifted extended RTT Yangian of s0,, denoted by X™ ., (502,), to be the

(k) keZ
}

associative C-algebra generated by {t 1<ij<ar

of relations:
e The RTT relation (2.48) with T (z) € X™ (502,)[[ z~'11®c End C?" defined via:

subject to the following two families

TG =Y 6@ ®E; with 1@ =y 1z~ (2.148)

i,j kel

e The second family of relations encodes the fact that 7'(z) admits the Gauss decom-
position:

T(z) =F(z)-H(z) - E(2), (2.149)
where F(z), H(z), E(z) € X™ (s02,)((z™")) ®c End C*" are of the form
F(2) = ZE,, +Y [ii(@®Eji, H@) =Y hi(x) ® Ei,

l<]
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E(z) = ZEH+2611(2)®E11

i<j

with the matrix coefficients having the following expansions in z:

e j(z) = Ze(k) T i) = ij(ﬁ.)z_k forl <i<j<2r

k>1 k>1
h; (Z)_Z T+ Z h(k) 7k hy (z)—zt + Z h(k) kK for1<i<r,
k>1—d; k=1-d]
(2.150)
withi" = 2r + 1 —i as in (2.44) and d] € Z defined via:
d :=dy+d —d; forl <i<r 2.151)

Note that d. = d,.+1. We also note that 4 € A* implies the following inequalities:
dy>dy > >d—y =max{d,,d}} > min{d,,d} = d._; = --- = d|. (2.152)

Remark 2.153. (a) For © = 0, the second family of relations (2.149, 2.150) is equivalent
to the relations ti(]]'() =0fork < 0and tl.(](.)) = 8;,j, so that X{"(s02,) >~ X" (s02,).

(b) If ju1, 2 € A* satisfy ji; = fip € A, that is, up = u| + cwg with ¢ € Z, then the
assignment

T(z) = 2°T(2)
givesrise to a C-algebraisomorphism X™ (502,) = xt (502r) cf. Lemma?2.110.

Similar to the 1+ = 0 case, X™,, (s0,) is generated by

(k) (k) f(k) f(k) (jvj) (2 154)
i .

ll+1’ € 1,r+1° +1,i° Jr+l,r—1° j

foralll <i <r—-1,1<j <r+1,k>1,s; > 1—d;. Furthermore, all the

other generators e(k) f ® h(k) of (2.150) are expressed via (2.154) by exactly the same

formulas as in the u = O case, treated in details in Subsection 2.1.4. This immediately
implies the following result:

Proposition 2.155. For any u € A*, there is a unique C-algebra epimorphism
Yy X pu(s02,) — X" (s02,)
defined by the formulas (2.64, 2.65).

One of our key results (the proof of which is deferred to Subsection 2.3.2) is the following
generalization of Theorem 2.62 (corresponding to the case u = 0):

Theorem 2.156. Y_,,: X_, (s02,) — Xr_ttu (s02,) is a C-algebra isomorphism for any
e A"
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2.2.4. Coproduct homomorphisms One of the key benefits of the RTT realization is that
it immediately endows the (extended) Yangian of so,, with the Hopf algebra structure,
in particular, the coproduct homomorphism:

A™: X (505,) — X™M(500,) @ XM (s02,), T+ T()QT().(2.157)
The main observation of this Subsection is that (2.157) naturally admits a shifted version:

Proposition 2.158. For any 111, 2 € A*, there is a unique C-algebra homomorphism

AN e XN (s00,) — XM (502) @ X™, (s02,) (2.159)
defined by:
rtt —
AY L (T@) =T@ T (). (2.160)

Proof. The proof is completely analogous to its type A counterpart established in
[FPT, Proposition 2.136]: the arguments of loc.cit. apply on the nose, due to (2.152)
as well as e, ,41(z) = 0 = fr41,,(2) (to treat the possible case d, < d), cf. Lem-
mas 2.79(a), 2.96(a). o

Similar to [FPT, Corollary 2.141], we note that Afk“* (2.159) satisfy the natural coasso-
ciativity:

Corollary 2.161. For any 11, |42, 3 € A, the following diagram is commutative:

rtt

It TR TS it It
X~ =3 (8027) BE— XT,, (s02,) @ XT 5 (s02,)
t It
Arf‘m*uz-*ual lld@ A%
t rtt tt Tt t
X s (802r) ® X (502,) e X0, (802,) ® XU (502r) ® X (502,)
—I—H

Evoking the key isomorphism Y_,: X, (502,) —> X", (s02,) of Theorem 2.156 for

W= L1, 12, b1 + (o, we conclude that Ar_"M1 —u, of (2.159) gives rise to the C-algebra
homomorphism
Ay —pnt Xy —pp (802,) —> X1 (802,) ® Xy, (502,). (2.162)

Proposition 2.163. For any i1, o € A*, the above C-algebra homomorphism (2.162)
A—ul,—uz : X—ll«l—ltz (s02,) —> X—p.l (s02/) ® X—}Lz (s02,)

is uniquely determined by specifying the image of the central series C,(z) of (2.108)
via:

Cr(2) = Cr(2) ® Cr(2), (2.164)
and the following formulas (forany 1 <i <rand1 < j <r+1):

Fl.(k) — Fl.(k) ®1 for 1<k <a (n),

&Y 1 o 1
Fi(ot, (n)+1) s Fi(a' (up)+1)

El.(k) - 1® El.(k) for 1 <k <&’ (),

® 1 +1®E(1),
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aY 1 i 1
Efa, (12)+1) - 1® E(a (12)+1) Ei(l) ®1.

1

;—éjv(mﬂu)ﬂ) o D(' €]/ (nn+1) ®1+ 1®D( EV(M2)+1)

(=€ (u1+p2)+2) (=€} (u)+2) (- ev(uz)+2)

D}. |—>Dj / Q1+ 1®D

(=€} (n)+1) (=€} (n2)+1) v vy (D) M
+D, ® D, + ) G yHEN®F). (2165
yVeAt
with
~V \%4

& =¢ forj<r, &} =-¢, (2.166)

and the root generators {E(]) F(]V)}yEN defined via (cf. (2.95, 2.98)):

(eY] () (Y] (Y] D M
Eei Z[E] la[E] 2 [E] 35 " [E,_H»E 1---111,
(1) _ {1 1) (1) (1) (1
Fol oo = LR FRL o i) FDL P,
1 1 1 1 1 1 1
Elee =0 MED B TEDS o LB BT 0L B2, o B
1 1 1 1 1 1 1 1
Fityey = UYL LR FL oo B DL FE
(2.167)
for1 <i < j <r, where A* = {ev + 6\/} is the set of positive roots of 50,
) ! J N<i<j<r

The proof of this result is completely analogous to that of [FPT, Proposition 2.143] with

.. . (=€} (n1+u2)+2) . .
the only non-trivial computation of A, ., (D; ) based on the identifica-

tions:

lJ’ e+ej i,j"

T ED o e ED s el
[

FY o fi F e S Visi<jsr

—€; Jsi’ e +e;
and the equalities e(lj) = q) s fj(ll) = fm for 1 < i < j < 2r, cf.
(A4,A.6,B.29, B 30). Letus note that the formula (2 164) is adirect corollary of the for-
mulas Zy (z) = Y, (Cr(2)) and T (2) T’ (z—«) = Zn ()1 established in Lemma 2.184

and Proposition 2.186 below.
The above result provides a conceptual and elementary proof of [FKPRW, Theorem 4.8]:
Proposition 2.168. (a) Forany vy, v2 € A*, there is a unique C-algebra homomorphism

Ay =yt Yoy -y (802,) —> Yoy, (502,) ® Yy, (502) (2.169)
such that the following diagram is commutative for any i, o € A*:
Yo (502) Y (600) @ Y (502r)

i ,,Ql lt,,” Oty (2.170)

Ay —
Xy (502) — =2 X1, (502:) ® Xy, (502,)
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forany juy, oy € A,
(b) The homomorphism A_,, _,, is uniquely determined by the following formulas:

FO o FY@1  for 1<k<af(m),

Y ( D Y( 1)
Feeth L pe g 1o FD,
EY > 19EY  for 1<k <a/(n),

Y (v2)+1 ¥ (12)+1)
Elga, (v2)+1) - 1® El(a, (v2)+ + Elgl) ®1.

(@) (vi+v2)+1) (@) (v)+1) (@) (n)+1)
H; — H, ®1+1®H, :

(@) (v1+12)+2) (@) (v)+2) (@) (1)+2)
H; — H, ®1+1®H,

(@ D+ _ (@) (m)+1) v vED o gD
+H, ®H, - Y @, yMELeFY, (217D
yVeAt

with the root generators {E;lv), F;lv)}yey defined exactly as in (2.167), but using EEI)
and FEI) instead of E ,.(1) and Fi(l) , respectively.
Proof. This follows immediately from the formulas (2.165) of Proposition 2.163 com-

bined with the formulas (2.40) for the embedding ¢, : Y_z(s02,) < X_,(s02,) of
Proposition 2.114. In particular, the proof of the last formula in (2.171) uses the equality

v ey o
€’ — €. ifi<r . . .

af =0 L with €Y defined in (2.166). O
€, —€&, ifi=r J

Remark 2.172. (a) As our formulas (2.171) coincide with  those of
[FKPRW, Theorem 4.8], this provides a confirmative answer to the question raised
in the end of [CGY, §8], in type D.

(b) A simple argument (see [FKPRW, Theorem 4.12]) shows that the coproduct homo-
morphisms A_,, _,, of (2.169) with vy, v, € A* give rise to a family of coprod-
uct homomorphisms Ay, , : Yy 41, (502,) = Yy, (502,) @ Y, (s02,) for any pair of
s50,—coweights vy, vy € A. However, let us note that Ay vy, (V1,12 € A) are not
coassociative, in contrast to Corollary 2.161.

2.3. Lax matrices.

2.3.1. Motivation, explicit construction, and the normalized limit description Consider
a A*-valued divisor D on P!, see (2.121), satisfying the assumption (2.128). Note
that 4 := D|x € AT. Assuming the validity of Theorem 2.156, let us compose
Wp: X_,(s02,) = Aof (2.137) with T:;]ﬁ ertu(suy) —> X_,(s02,) to get a homo-
morphism:

Op=WpoT ,: X™ (s03) —> A. (2.173)

Such ahomomorphism is uniquely determined by Tp (z) € A((z~!))®cEnd C* defined
via:

Tp(z) :=0Op(T(z)) = Op(F(2)) - Op(H(z)) - Op(E(2)). (2.174)
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While the above definition (2.174) of Tp (z) is based on yet unproved Theorem 2.156, we
can combine the formulas (2.138) for Wp with those of Subsection 2.1.4 to recover the
explicit sought-after images f ﬂ. (2), ef) i (2), h Z.D (z) € A((z™1)) of the generating series
fi.i(2), e j(2), hi(z), the matrix coefficients of F'(z), H(z), E(z) in (2.149). Thus, we
amend (2.174) and define:

Tp(z) = FP(z)- HP(2) - EP(2) (2.175)

with FP(z), EP(z), HP(z) being the lower-triangular, upper-triangular, and diagonal
matrices with matrix coefficients f ﬁi (2), ef i (), h iD (z) obtained from the explicit for-
mulas (2.138) for the images of {e;(z), fi(z)}[_; U {hj(z)};*:l1 combined with Lem-
mas 2.77, 2.79, 2.80, 2.96, 2.97. The explicit formulas for ffi (2), el.l?j (2), hP(z) are

presented in Appendix A, cf. [FPT, §2.4.1]. Therefore, the matrix coefficients of Tp(z)
are given by:

min{e, B}

To@ap= D, fii@) hP@) - el4() (2.176)
i=1

forany 1 < o, B < 2r, with the conventions f2, (z) =1 = 6/?,3(@-

Definition 2.177. For an associative algebra B, a B((z~!))-valued 2r x 2r matrix T(z)
is called Lax (of type D, ) if it satisfies the RTT relation (2.48) with the R-matrix R(z)
of (2.45).

Following the arguments of [FPT, §2.4.2], let us show that Tp(z) € A((z™h) (2.176)
are Lax. To this end, consider a A*-valued divisor D = Zi\;l vswi [xs] + p[oo]. As
the point xy tends to oo (denoted xy — ©0©), we obtain another A*-valued divisor
D = ZNfl yswi [xs] + (1 + ynwiy)[oo]. Similar to [FPT, Proposition 2.75], the

s=1

matrix Tp/(z) of (2.176) is related to Tp(z) via:
Ty @ = lim {(=xn)™ ™ - Tp()}, 2.178)
XN — 00

where x¥ (with x € C*, v € A) denotes the following 2r x 2r diagonal z-independent
matrix:

x" = diag (xelv(”), e xervfl(”), x& 0 xel'Y(”), xelfvfl(”), e, xe/lv(”)) (2.179)

with

Vv
€

oV Y, v .
;=€ el —€ forl <i <r.

Remark 2.180. In contrast to [FPT], we note that the normalization factor (—xy )"V ®in
appears on the left of Tp(z) in (2.178), due to our present choice (2.138) of using Zx (z)-
factors in the W p-images of Fy (z)-currents rather than Ey (z)-currents, cf. Remark 2.139.

In view of (2.178), Tp/(z) can be constructed as a normalized limit of Tp(z), hence we
get:

Corollary 2.181. For any A*-valued divisor D on P' satisfying (2.128), the matrix
Tp(z) of (2.176) is a normalized limit of Ty (z) with a A*-valued divisor D satisfying
Dls = 0.
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Note that the condition D|s, = 0 corresponds to the unshifted case (u = 0), in which
case Theorem 2.156 holds due to Theorem 2.62. Therefore, Tj(z) defined via (2.176)
can also be recovered via (2.173, 2.174), hence, Tj(z) is Lax. Since multiplication by
x" preserves (2.48) (due to Corollary 2.51 and €)/ + €'y =€) +€’y =... =€’ +€')),
we finally obtain:

Proposition 2.182. Forany A*-valued divisor D onP! satisfying the assumption (2.128),
the matrix Tp(z) defined via (2.176) is Lax, i.e. it satisfies the RTT relation (2.48).

2.3.2. Proof of the key isomorphism Reversing the argument from the previous Sub-
section, we note that the Lax matrix Tp(z) (Proposition 2.182) gives rise to the alge-
bra homomorphism ®p: X™ (s02,) — A, whose composition with the epimorphism
Tt X—p(s02,) — XU (s02,) of Proposition 2.155 coincides with the homomor-
phism Wp (2.137). Thus, for © € A* and any A*-valued divisor D on P!, see (2.121),
satisfying (2.128) and D|s = p, the homomorphism Wp does factor through YT_,.
This observation immediately implies the injectivity of Y_,,, due to the recent result of

[W1:4
Theorem 2.183 ([W]). For any coweight v of a semisimple Lie algebra g, the inter-
section of kernels of the homomorphisms ®*  of [BFNb, Theorem B.15] is zero:

Ni Ker(®d* y) = 0, where X\ ranges through all dominant coweights of g such that
A+v =) agja; with a; € N, a; being simple coroots of g, and points {z;} of loc.cit.
specialized to arbitrary complex parameters.

This completes our proof of Theorem 2.156. Combining this with Lemma 2.119(b), we
obtain:

Lemma 2.184. For any i € A™, the center of X r_“M (502,) is a polynomial algebra in the

coefficients {Z%c)}bdﬁdm of the series:

@ = Y, =T u(C@) =
k>dy+dy41
r—1

[T D @ o). (2.185)
Pl hi(z+i—r+1)

The above argument can be also used to establish the crossing relation for X r_"ﬂ (502,):
Proposition 2.186. For any u € A*, the matrix T () of (2.148) satisfies:
T()T'(z—k)=T'(z—k)T(2) = zn(2)Iy. (2.187)
Proof. According to (the extended version of) Theorem 2.183, it suffices to verify:
Tp(2)TH(z — k) = T)H(z —k)Tp(z) = Op(zn(2)Iy (2.188)

for any A*-valued divisor D on P! satisfying (2.128) and D|, = p. Accordingto (2.55),
the equality (2.188) obviously holds for D such that D|, = 0. Therefore, the validity

4 Actually, we need the extended version of Theorem 2.183 (now with the points Z;, cf. (2.140), rang-
ing over all C), which nevertheless follows immediately from the algebra decomposition (2.116) and the
formula (2.146).
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of (2.188) for any D follows now from the “normalized limit” construction (2.178). To
this end, using the notations of loc.cit., the validity of (2.188) for D implies the one for
D’ as follows from:

Tp(@Tp(z k) = lim _((—xp)™ " - Tp@Tp(z k) - (mxw)™ 7)) =

tim (=) 7 - ((=en)” ™) - ©p @ ()l ) = O @x ()1,

XN —> OO
where the last equality follows from

xw’,' . (xwl-)/ _ x—2+5l-’,-,1+5i,r X IN

and the explicit formulas (2.146, 2.185). a

2.3.3. Regularity of Lax matrices Consider the following normalized version of Tp(z):
Tp(2) == Tp(2)/ Zo(2), (2.189)

with the normalization factor Zy(z) defined in (2.133). The key property of these matrices
is their regularity in (the spectral parameter) z:

Theorem 2.190. We have Tp(z) € Alz] ®c End C%.

This straightforward verification, based on the explicit formulas of Appendix A, is com-
pletely analogous (though is more tedious) to its type A counterpart of [FPT, Theo-
rem 2.67].

Remark 2.191. Similar to [BFNb, Theorem B.15], Theorem 2.136 can be generalized
by constructing the homomorphisms Wp: X_, (s02,) — A for any orientation of D,

Dynkin diagram, so that Wp o t_, is to r i of [BFND] as in Remark 2.139 (note
that the images of D;(z) are independent of the orientation, hence, so is the image
of C,(z), see (2.108, 2.146)). However, extending A to its localization Aj,. by the
multiplicative set generated by {p;x — pj.¢ + m}ZfaZ’_’ 1<q. With (i, j) connected by an
edge, these homomorphisms are compositions of (2.137) with algebra automorphisms
of Ajoc. Thus, similar to [FPT, Remark 2.73], the resulting Lax matrices are equivalent,
up to algebra automorphisms of Aj,, to the above Tp(z), cf. Remark 2.120.

2.3.4. Linear Lax matrices The regularity of Theorem 2.190 provides a shortcut to
the computation of the Lax matrices T (z) defined, in general, as a product of three
complicated matrices FP(z), HP (z), EP (z) in (2.175). Let us illustrate this in the case
of the linear ones, i.e. those of degree 1 in the spectral parameter z. We shall use the
following notations:

L) =Y ek Py =Y r e wP e =Y aP R @192)
k>1 k>1 keZ
Let us also recall the coefficients a; € N from (2.128, 2.129).

Proposition 2.193.(a) The normalized Lax matrix Tp(z) of (2.189) is linear iffa; = 1.
(b) Any linear normalized Lax matrix T p(z) is explicitly determined as follows:
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o The diagonal entries are:
To@ii=z- b7 +nP 1<i<orn (2.194)
o The entries above the main diagonal are:

(D)l .,y (D),—1
T = {5 yh #0, l<i<j<2r. (2195
’ 0 otherwise

o The entries below the main diagonal are:

(D)1 .py (D), —1
Tp(2)ji = Jji U , #0, l<i<j<2r (2.196)
0 otherwise
hP (2)

Proof. (a) As Tp(2)11 = Z'O(z) = Pj(z) is a polynomial in z of degree aj, the con-
dition a; < 1 is necessary for Tp(z) to be of degree < 1 in z. On the other hand,
deg, hP(z) > deg. hP(z) forany 1 < i < 2r, due to (2.152). Combining this with
deg, efj (z),deg, f ﬁ- (z2) < 0, we conclude that a; < 1 is also a sufficient condition
for Tp(z) to be of degree < 1 in z. Moreover, T p(z) is actually of degree < 1 in z if
and only if a; < 1. This concludes our proof of part (a).

(b) This follows immediately from the regularity result of Theorem 2.190 combined with
the formula (2.176) and the observation that deg, ef j (2),deg, f fi (z) < O for any
i<j. |

Let us now describe all A*-valued divisors D on P! satisfying (2.128) such that

deg, Tp(z) = 1. Define A, u € A* via(2.122,2.124), sothat A+ o = Z;‘:O bjm; with

by € Z, by, ..., b, € N. Then, the assumption (2.128) implies:
r r
Y bjwj =Y ai& with a eN. (2.197)
r+l

Decomposing both sides of (2.197) in the basis {¢;}} 7}, we can express b;’s via a;’s:

bo = —ay, by =2a; —ay, by = —a;_| +2a; —a;y; for2 <i <r—3,
by =—ar3+2a,2— a1 —ap, bp—y = —a,2+2a,_1, by = —a,» +2a,.
(2.198)
Likewise, let us also express a;’s via b;’s:
i i—1 r—2
al=Z(k—i)bk Zkbk+szk+—(brl+b) forl <i<r—2,
= k=1 k=i
jfa 1 (3 r r—2
a,_l=52(k+2—r)bk=§<Zkbk+§b,_1+ b, |,
k=0 1
! Xr:(k Yo = Zkb 4L +ip (2.199)
ar = - — by = = - , )
r ) rar k = ) k r 1 ) r
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where we used the equality (arising from the comparison of the coefficients of
€ and €,41):

1
bo=~b1—...= by~ S (b1 +by). (2.200)

Note that (2.200) uniquely recovers by in terms of b1, ..., b, and forces b,_1 + b, to
be even. We also note that the total number of pairs of (p, g)-oscillators in the algebra
A (2.131) equals:

L G- —k-1), & k+1 rr—1)
;a,——z 5 bk_];k<r— 5 )bk+ T ro1 ).

k=0
(2.201)

Combining the above formulas (2.199, 2.200) with Proposition 2.193(a), we thus con-
clude that the normalized Lax matrix T p (z) is linear only for the following configurations
of b;’s:

() bp =~-1,bj =1, by = ... =bj1 = bj;1 = ... = b, = 0 for an even
1<j<r-2,

2 bp=—-1,by=...=b,_»=0,b,_1=b=1 if r is odd
bop=—1,b=...=b,_»=0, {by_1,b,} =1{0,2} ifriseven’

As by is uniquely determined via (2.200) and does not affect the normalized Lax
matrix Tp(z), we shall rather focus on the corresponding values of the dominant s05,-
coweights A, it € A*.

eCase(1): A+l =w;jforevenl < j <r—2.
Inthis case, wehavea;=1,...,aj_1=j—l,a; =...=ar— = j,a,_1=0a,=j/2,

and the total number of pairs of (p, g)-oscillators is M, see (2.199, 2.201).

Ff)r r=w i, b = 0 we get a non-degenerate Lax matrix with z appearing on the entire
diagonal:

ij-[xjfwo[y](Z) =z(En+...+ E2r,2r) +0(), (2.202)

depending on the additional parameter x € C (note that it is independent of the point
y e Ph.

The normalized limit (2.178) of (2.202) as x — oo recovers the Lax matrix correspond-
ingto A = 0, & = wj, which is degenerate as it contains z only in the first j diagonal
entries:

ij[oo]—wo[y] :Z(E11+...+Ejj)+0(]) (2.203)
and also satisfies:

L ifj+l<k=<(+1)

0 i <kt (2.204)

T [001—moly1 (Dk.k = :

e Case (2)foroddr : A+ i = wr—1 + oy
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In this case, we havea; = 1,...,a,_ 20 =r —2,a,_] = a, = %, and the total
number of pairs of (p, g)-oscillators is @, see (2.199, 2.201).

For A = w,—1 + o, it = 0 we get a non-degenerate Lax matrix with z on the entire
diagonal:

Twr,l[x1]+w,[x2]—w0[y](z) =z(Eqp+...+ E2r,2r) +0(1), (2.205)

which depends on two additional parameters x1, x, € C (but is independent of y € P1.
The normalized limit (2.178) of (2.205) as x — oo recovers the Lax matrix corre-
sponding to A = w,_1, ji = w,, which is degenerate as it contains z only in the first r
diagonal entries:

To, 1 xt 14w [ool—moly] (2) = 2(E11 + ...+ Er) + O(1) (2.2006)
and also satisfies:
Twrfl[x1]+wr[00]—w0[y](Z)k,k =1 for ' <k< 1. (2.207)

Likewise, the normalized limit of (2.205) as x; — oo recovers the Lax matrix corre-
sponding to A = w,, t = wy_1, Which is degenerate as it contains z only in r of its
diagonal entries:

T, oo l4m, 1 [ool—moly] (@) = 2(E11+ ...+ Er—1 —1 + Erp1 p41) + O(1) (2.208)
and also satisfies:
Tw,[x2]+w,_1[oo]fwolyl(z)k,k =1 for ke{r,r+2,r+3,...,2r}. (2.209)

Finally, the normalized limit of (2.206) as x; — 00, or equivalently of (2.208) as
Xy — 00, recovers the Lax matrix corresponding to A = 0, it = w;_| + ®,, which is
even more degenerate:

T, _ilool4m, [ool-moly](2) = 2(E11+...+ E—1,—1) + O(1) (2.210)

and also satisfying:

1 ifk=rr
T, iloolmy lool-moly) Dk = 10 10 _ p " (2.211)
e Case (2)forevenr : A + = 2w,_1 or 2wy.
In this case, we havea; = 1,...,a, 2 =r —2and {a,-1, a,;} = {5, 5 — 1}, and the

total number of pairs of (p, g)-oscillators is again r(rz—fl), see (2.199, 2.201).
For A = 2w,_1, i = 0 we getanon-degenerate Lax matrix with z on the entire diagonal:

T (14 ) —woy]1 (@) = 2(E11 + ...+ Eor00) + O(1), (2.212)

which depends, in a symmetric way, on additional parameters x, x € C, but not on
y € P!. The normalized limit (2.178) of (2.212) as x, — oo recovers the Lax matrix
corresponding to A = w,_1, L = wy—1, Which is degenerate as it contains z only in half
of its diagonal entries:

T, (i +looh =m0y (@) = 2(Er1+ ...+ Er—y 1+ Ergy p41) + O(1)  (2.213)
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and also satisfies:
Twr_|([x1]+[oo])fwo[y](z)k,k =1 for kef{r,r+2,r+3,...,2r}. (2.214)

Finally, the normalized limit (2.178) of (2.213) as x; — oo recovers the Lax matrix
corresponding to A = 0, it = 2w,_1, which also contains z in half of its diagonal entries:

Tom,_locl-moly] (@) = 2(E11 + o+ Epm gyt + Epgr ) + O(1), (2215)

but is more degenerate in the other diagonal entries:
Tow, _i(col—woly] @Dk =0 for ke{r,r+2,r+3,...,2r}. (2.216)
For A = 2w,, ji = 0 we get a non-degenerate Lax matrix with z on the entire diagonal:

T, (i 1+ —moly] (2) = 2(E11 + ...+ E2r00) + O(1), (2.217)

which depends, in a symmetric way, on additional parameters x;, x € C, but not on
y € P'. The normalized limit (2.178) of (2.217) as x» — oo recovers the Lax matrix
corresponding to A = w,, i = w,, which is degenerate as it contains z only in half of
its diagonal entries:

To, ([x1 [+ ool) —woly] (2) = Z(E11 + ...+ Epp) + O(1) (2.218)
and also satisfies:
T, (i 1+ooh—molyl @ik = 1 for ' <k <1 (2.219)

Finally, the normalized limit (2.178) of (2.218) as x; — oo recovers the Lax matrix
corresponding to A = 0, it = 2w,, which also contains z in half of its diagonal entries:

T2w,[oo]—wo[y](z) = Z(Ell +...+ Err) + 0(1) (2.220)
but is more degenerate in the other diagonal entries:
T2wr[oo]—w0[y](z)k,k =0 for ' <k< 1. (2.221)

We conclude this Subsection with the following important unitarity property of the above
non-degenerate linear Lax matrices (recall the parameter x = r — 1, see (2.44)), cf.
[R2, (3.8)]:

Proposition 2.222.(a) For any even 1 < j <r — 2, the corresponding non-degenerate

linear Lax matrix L ;(z) := Tw] [x]—woly] (z +x+ '%) is unitary:

N2
L;(x)L,(—z2) = |:(K > ]> — z2i| In.

(b) Consider D = w,[x1] + w,[x2] — wolyl with1 = j € {r — 1,r} if r is even
or {1,)} = {r — 1,r} if r is odd. Then, the non-degenerate linear Lax matrix
L(z) :=Tp (z + “3*2) is unitary:

_ 2
L(2)L(—z) = [(%) — 22:| Iy.
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Remark 2.223. We note that such unitarity property can be regarded as a consequence
of the natural constraints that arise for a linear solution when inserted into the RTT
relation (2.48), see [K, (18)].

Proof. (a) Combining Theorem 2.190 and Proposition 2.193 with the equalities

D)0 _ D)0 D)l D)l D)l _ D)1
N L
due to (A.1, A4, A.6), we obtain:
T;zr][x]—wo[y] (Z) = _ij [x]_wo[y](—z +2x — ]) (2224)

According to the crossing relation of Proposition 2.186, see formula (2.188), we also
have:

Tw_/[X]*w’()[y](Z)T;Ifj[x]—wo[y](z —r+l)=(@-x)z—x—r+j+Dly.
(2.225)

The result now follows by combining (2.224, 2.225).

(b) The proof is completely analogous to that of part (a) and is left to the interested reader
(in particular, th)O h(D) +r—1—x1 —x). m]

2.3.5. Examples In this Subsection, we explain how the type D, linear and quadratic
Lax matrices recently constructed by the first author in [F] arise as particular examples
of our general construction.

e Example 1 : Consider the following A*-valued divisor on P':
_ ] [x]+ @r[o0] — woly] ¥fr ?s odd (2.226)
o, [x] + @wr[o0] — @woly] if r is even

depending on x € C (note that T p(z) is independent of y € P!y, so that the total number
of (p, g)-oscillators in the algebra A equals a; + ...+ a, = @

According to (2.206-2.207,2.218-2.219), the corresponding normalized Lax matrix
Tp(z) has the block form:

To(z) = (ZI’S F E’) (2.227)

where B, C, F are z-independent r x r matrices. We have the following properties of

B, C:

Lemma 2.228. (a) The matrices B, C are skew-symmetric with respect to their antidi-
agonals:

Bij = -Bri—jri1-iv  Cij=—=Cri1—jrs1-i-

In particular, B; y41—; = Cj 41— =0 forany 1 <i <r.
(b) The matrix coefficients {B;;}; ._, of the matrix B pairwise commute.

i,j=1
(¢) The matrix coefficients {C;;}}

Pz of the matrix C pairwise commute.
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(d) The commutation among the matrix coefficients of B and C is given by:

[Bij, Ckel = 8i.¢8k — Sisra1—k8j re1—e-

Proof. (a) According to Proposition 2.193, we have B;; = eg[r)j_lj.,
D)1 .. . . D)1 D)1
Brii—jre1—i = e£+l)—j,2r+l—i‘ Combining this with el.(’rij = — £+1)—j,2r+l—i’ due
to (A4), we obtain the desired equality B;; = —Brii—jre1-i
The proof of C;; = —C,41—j r+1—; is completely analogous.

(b, ¢) Those follow immediately from the ansatz (2.227) and the RTT relation (2.50)
applied to the evaluation of [B;;, Brel = [#i /4 (2), tk r+e(w)] or [C;j, Cie]l =
[tr+4i,j(2), trak,e(W)].

(d) This also follows from the ansatz (2.227) and the RTT relation (2.50). Indeed,
evaluating [B,-j, Ciel = [ti,r+j (@), tr+k,e(w)] via (2.50), the first summand is easily
seen to equal 8; ¢8 x, while computing the leading term of the second summand,
we get —&; p41—kSj r+1—0- o

It will be convenient to relabel the matrices B, C as A, —A, respectively:

ap EE ajy 0
< : T —a
B = A = _ .1’2/ s
a1, - < K
0 —a,_1,/ te —ay
a, ] e a1 0
: —a, ,_
—C=A= A (2.229)
ay | . :
0 —ay; - —a,
with the matrix coefficients satisfying the following relations:
lai j,ar o] = 8iedjk, lay j,ap =0, [a;;,a¢]=0, (2.230)

due to Lemma 2.228. Then, a tedious straightforward calculation (cf. [FPT, Theo-
rem 2.133]) yields:

Thr@)=|-——--——— 1_- (2.231)

which can also be written in the following factorized form:
I | |
I, 1A (z+x)I. 10 I 10
Tp@=|--L—| -~ = -+ (2.232)
011 0 i I, ~A L

The type D, Lax matrix of the form (2.231, 2.232) was recently discovered in [F, (4.3)].

e Example 2 : Consider the following A*-valued divisor on P':

p_ @ [x1] + @ [x2] — @oly] %fr %S odd (2.233)
w,[x1] + @r[x2] — woly] if r is even
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depending on x1, xo € C (while Tp(z) does not depend of y € P!), so that the total
number of (p, g)-oscillators in the algebra A equals a; +...+a, = @

We expect that the normalized non-degenerate linear Lax matrix T p (z), see (2.205,2.217),
is equivalent, up to a (nontrivial) canonical transformation, to the Lax matrix £(z) of
[F, (5.4)] (cf. [R2, (3.6)]). The latter was defined via:

_ I _ _
(z+x)DI, —AA I A(xp — x1 +AA)

L) =]-————————— L - (2.234)
—A I (z+x) +AA

with the matrices A, A as in (2.229) encoding ’(rz_ D) pairs of oscillators (2.230), which

can also be written in the following factorized form:

_ |
I. 1A (z+ x| 0 I I —
LO=]--L--||-——- 4 — | —=L1———]. (2.235)
0

e Example 3 : Consider the following A*-valued divisor on P':

D =@ ([x] +[00]) — wo([y1] + [y2]) (2.236)

depending on x € C (while Tp(z) does not depend of y;, y» € P'), so that the total
number of (p, g)-oscillators in the algebra A equals a; +...+a, =2(r — 1).

We expect that the normalized quadratic Lax matrix Tp(z) is equivalent, up to a (non-
trivial) canonical transformation, to the Lax matrix L(z +x) of [F, (4.12)]. The latter was
defined via:

Z+z2 -5 —ww) + fwWIW wiw | 2w — JwIw'w'T | —Lwiw
L(z) = —zw + 2IW' W' Iw A —Iw'w'] —IW
—1w'iw w'] 1
(2.237)
with

1 --- 0 O o --- 0 1

Do o0
=1y = il T=lya= , (2.238
N-2 0 ... 1 0 N-2 0 L ( )

0O --- 0 1 1 0 --- 0

and w, w encoding N — 2 = 2(r — 1) pairs of oscillators:
w=@@,...,a,,a,,...,ay), W= (as,...,a,a,...,ay), (2.239)
so that

la;,a2;]=6;;, [a;,a;]=0, [a;,a;]=0. (2.240)
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The matrix L(z) of (2.237) can also be written in the following factorized form, see
[F, (4.15)]:

L(z) =
1| w [ —3wIw z-Y+2 |00 1 0 [0
ol 1| —Iw 0 o v Lo
olo| 1 0 o1 )\ —awiw|wil1
(2.241)

e Example 4 : Consider the following A*-valued divisor on P!

D = @ ([x1] + [x2]) — @o([y1] + [y2]) (2.242)

depending on x1, x € C (while T p(z) does not depend of yi, y» € P1), so that the total
number of (p, g)-oscillators in the algebra A equals a; +...+a, =2(r — 1).

We expect that the normalized quadratic Lax matrix Tp(z) is equivalent, up to a (non-
trivial) canonical transformation, to the Lax matrix £y, _,, (z + x1) of [F, (5.36, 5.38)]
(see Remark 4.37 where a relation to [R2, (3.11)] is discussed). The latter was defined
via:

1w | —iwiw 1| —w | —1wiw
Lom@=1 o|1| —sw [ Pox@ | of 1 | &
0]o0 1 0] o 1
(2.243)

with [, J, w, w as in (2.238)—(2.240) and the middle factor explicitly given by:
Dxl,xz (z) =

(z—xD)z—x1 —5+2) 0 0

—w(z — x1) (z —x1)(z —x)1 0

_%W’Jw wI(z — x2) (z—x2)(z—x2 — % +2)

We conclude this Subsection with the following observation:
Remark 2.244. We note that the degeneration phenomena observed in [F, (5.11, 5.42)]:

(1) degeneration of the Lax matrix (2.234) into the one of (2.231)
(2) degeneration of the Lax matrix (2.243) into the one of (2.237)

exactly agree with our general normalized limit construction (2.178).

3. Type C

The type C, is completely similar to the type D,, which we considered in details above.
Thus, we’ll be brief, only stating the key results and highlighting the few technical
differences.
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3.1. Classical (unshifted) story. We shall realize the simple positive roots {c}7_; of
the Lie algebra sp,, in A" via:

a =€ -6, =6 —¢), ..., _=¢_,—¢, al=2¢". (3.1

r— r—1
The Drinfeld Yangian of sp,., denoted by Y(sp,,), is defined similarly to
Y (s0p,): itis generated by {Efk), ng), Hgk) }’E l.1<r subject to the defining relations (2.2)—

(2.9), with &/ of (3.1). The extended Drinfeld Yangian of sp,,, denoted by X (sp,,),
is defined alike X (s0,,): it is generated by {El.(k), Fi(k)}]fzilq U {Dl.(k)}lfzilqﬂ subject
to (2.20)—(2.31) with the modification:
Dy11(2)(Er—1(z = 2) — Er—1(w))
z—w—2 ’
(Fr—1(z —2) = Fr—1(w)) Dr41(2)
z—w—2 '

[Dr1(2), Er—1(w)] =
3.2)

[Dr+1(Z), Fr—l(IU)] = —

The central elements {Cr(k) }k>1 of X (sp,,) are now defined via (cf. (2.34)):

,
_ Di(z+i—r—=2)
Cr(Z) =1+ Z C;k)Z k = 1_[ m . Dr(Z — 2)Dr+1(Z). (33)

Furthermore, a natural analogue of Lemma 2.41 holds with ¢o: Y (sp,,) < X(sp,,)
given by:

Ei(z+ 5L ifi <r Fi(z+3=l) ifi <r
E; i 2 , = 4 2 ,
i(2) {Er(z+%) ifi=r i(2) = Fr(z+%) iy
. . (3.4)
Hi(2) Di(z+ 5 ' Dz + 5 ifi <
’ Dr(z+5) ' Dpi(c+y)  ifi=r"

The extended RTT Yangian of sp,,, denoted by X™(sp,,), is defined similarly to

X"(50,): it is generated by {ti(]I-()}lEil’ j<n (N = 2r) subject to the RTT relation (2.48)
with the R-matrix R(z) given by (2.45), but with the following modifications of k € C

and Q € EndC"Y @ End CV:

N
. 1 ifl<i<r
Kk=r+1, Q= ”218,'8]' Eij®Epj with & = it <i<1 3.5)
i,j=
The RTT Yangian of sp,,., denoted by Y™ (sp,,.), is defined alike Y™ (507, ): it is the sub-
algebra of X" (sp,,) consisting of the elements stable under the automorphisms (2.52).
However, it can be also realized as a quotient of X™ (sp,,.) asin (2.57), due to the natural
analogue of (2.53), where the center Z X™ (sp,,.) of X™(sp,,) is explicitly described as a
polynomial algebra in the coefficients {Zg\]/()}kzl of the series Zy (z) = 1+ ;- Zg\/;) 7k
determined from: B

T'(z =T (2) =T @)T (z — k) = 2y ()N, (3.6)
where in the present setup the matrix transposition (2.56) should be redefined via:

(X"ij = ¢€iejXjp forany N x N matrix X. 3.7
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In the notations of Subsection 2.1.3, the analogue of Theorem 2.62 still holds, explicitly:

err+1(z) itk <r

Yo: Ex(z) {ehﬁ.l(z) . o Fi@@) = fisi), Dj(@) = hj(z) (3.8)
et @ g =y

foralli <r,j <r+ 1. Hence, a natural analogue of Theorem 2.66 holds with Y o ¢
given by:

i—1\ e T
E;(z) — eli,i+1(Z+12r) sz.<r’ Fi() s fi+l,i(Z+'rT) ¥fl.<r’
§er,r+l(Z + j) ifi =r fr+l,r(Z + j) ifi =r
i i (3.9
hiz+ 5 Thimz+ 5 ifi <
Hi(z) — 2 ' i _
hr(z"‘i) hr+1(Z+§) ifi=r

We note that our conventions are to those of [JLM1] as in type D, see Remark 2.68 for
details.

Accordingly, the algebra X™ (sp,, ) is generated by the coefficients of {/ (z)};gl as well
as of:

ei(z) = Zei(k)z_k =eiir1(2), fiR) =) O = fini@, 1<isr
k>1 k>1
(3.10)

We shall now record the explicit formulas for all other entries of the matrices F (z), H (z),
E(z) from (2.58)—(2.61). The following result is essentially due to [JLM1]°:

Lemma 3.11.(2) by (2) = 5o - [k % (2 — 2)hrs1 (2) for

1<i<r-—1

(b) eqis1y,ir(2) =—ei(z+i—r—1Dforl <i <r—1

(©) ei.j41(2) = —le; (@), e for L <i < j <r—1.

(d) ejr(2) = lei oy (@), eV for 1 <i < j <r—1.

(©) eir(2) = —3lei (), et 1 for 1 <i <r—1.

() eir j1(2) = lew iy (@) e 1 for 1 < j <i—2<r-2.

(g) ei.i"(z) = lei i+1y(2), €,-(1)] —ei(2)ej ry@ forl <i <r—1

) firiey@ =—fiz+i—r—=1Dforl <i<r—1

(i) fieni@) =—LF{", fi@lfor 1 <i < j<r—1.

G) f1i@) =LF{" fgeyi@lfor 1 <i<j<r—1

&) fri@ =30 fri@lfor1 <i<r—1.

D fii(@) = [fj(l), Sty ir@lforl < j<i—-2<r-2
m) firi@) = £, Fany i@ = fanryi@ fi@ for 1 <i <r — 1.

The remaining matrix coefficients of E(z) and F(z) are recovered via the following
analogues of Lemmas 2.80 and 2.97:

Lemma 3.12. (a) ¢; j(z) = e (j+1y (2), eﬁl)]forl <j<i—-2<r-2

5 Note the missing summands in the equalities from parts (g, m) as stated in [JLM1].
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(0) €41/ (2) = [eiv1 a1y (@), €1+ € (R)eirt sty (2) — €i sty () for L <i <r —1.
© fr.i@) = U fymyi@lfor 1 < j <i—2<r -2
@ firin1@ = LAY, Fastyin @1+ fary.is1 () fi (@) = fasy.i @ forl <i <r—1.

3.2. Shifted story. We shall use the same extended lattice A, but {&"}_, of A are
now defined via:

&’ =€’ —¢€ for 1<i<r (3.13)

. . 1
Wehshall also use the same notation for the dual lattice A = @T | Zej = P Lo
wit

Wi = —€j4] — €42 — ... — €41 for 0<i<r (3.14)

For 1 € A, define d = {dj};gl € Z b = {bi}i_, € Z" via (2.101, 2.102); so that
b; =d; —d;y foralli.

The shifted extended Drinfeld Yangian of sp,,, denoted by X, (sp,,), is defined sim-
ilarly: it is generated by {E\", FOWZI_ U (DFYZ4H] subject to (2.20, 2.22-

1<i<r
2.31, 2.104, 3.2). Like in Lemma 2.110, X, (sp,,) depends only on the image of u
under (2.109), up to an isomorphism.
For v € A, the shifted Drinfeld Yangian of sp,,, denoted by Y, (sp,,), is defined
likewise. It is related to X, (sp,,) via a natural analogue of Proposition 2.114 with
tw: Ya(spy,) = X, (sp,,) determined by (3.4) and the central elements{Cr(k)}kzd,+dr+l+1

of X, (sp,,) defined via:

r—1 .
L _ Di(z+i—r—2)
C — dy—dy+ C(k) k = | | e = D — 2D .
r@) =z - Z rt Di(z+i—r—1) r@=2Dra)

k>dy+dy41 i=1

(3.15)

The natural analogues of Corollary 2.118 and Lemma 2.119 still hold in the present
setup.

We shall use the same notations (2.121)—(2.124) for A-valued divisors D on P!, A*-
valued outside {oo} € P'. The simple coroots {c; yi_, C A of sp,, are explicitly given
by:

A =€ — €, ..., U 2=€_2—€_1, Q] =6_1— €, o =€-. (3.16)

We also consider {&;}/_; C A, which are the “lifts” of {e;} from (3.16) in the sense
of (2.127):

o] =€] — €, ..., Op_2 =€_2 — €], Op_] =€_] —€ + €4, A =€ — €r4].

(3.17)
From now on, we shall impose the following assumption on D (cf. (2.128)):

Assumption : A+ U =ad+...+a-@ with a; €N, (3.18)
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The above coefficients a; in (3.18) are explicitly given by:
ai=('+...+€¢)r+p) for 1<i<r (3.19)

Thus, (3.18) is equivalent to (¢,” + €, ;)(A + u) = 0 and Zi:l €/ (A +p) € N for all
1<i<r.

Consider the algebra A defined as in (2.131) with the following important modification:

o, af )
[, pjel = F > l)5i,j8k,£€iql'k, (3.20)

so that [eT4r& pril = :FZeiq'-k. Then, as in Theorem 2.136, we have an algebra homo-
morphism

Wp: X_u(spy) — A, (3.21)
determined by the following assignment (keeping the notations (2.133, 2.135)):
a; Pi_1(pik—1) ; e
Ei(2) k=1 (Z—Pf.k)Pi,k(Pi.k)eq ! ifi <r
iz ay Pr—l(pr,k*])Pr—l(Pr.k*Z) qrk ifi = ’
k=17 20=p 0 Pi(pr) € L=r
ai  Zi(pix+DPi1 (pik+lD) —giv if -
— 2= — e ik if | <
Fvl(z) — Zk—l (Z_Pl,k I)Pl,k(pl,k) , (322)
_ Zar Zr (pri+2) e drk ifi=r
k=1 (Z_Pr,k_z)Pr,k(pr,k) -
Pi(z)

- o
Pioiz—D) o Zr(z) ifi <r

D;(z) — _ .
{% Trco Ze@) ifi=r+1
The proof is analogous to that of Theorem 2.136 and is based on the explicit formula
r—1

Up(C@) = [[(2@Zic+i-r-1) 2. (3.23)
i=0
as well as the comparison to the homomorphisms of [NW]. Precisely, identifying A with
A of loc.cit. and the points x; with the parameters zg of loc.cit. via:

i1 e i . .
wir+5- ifi <r ) s+% ifl<ig<r
pik<ey 2 , etk s uFl x e T2 T .
wrk+5  ifi=r ’ z+ 5 ifig=r

the (restriction) composition Y_z (sp,,) o ox w(&Po,) Yo, A is given by the for-
mulas (B.4) of Appendix B (applied to the type C, Dynkin diagram with the arrows
po_intingi — i+ 1for1 <i < r), which essentially coincide with the homomorphisms

% 7 of [NW, Theorem 5.4].

For n € A*, the antidominantly shifted extended RTT Yangian of sp,,, denoted by
X™ (spy), is defined similarly to X™, (s0,): it is generated by {ti(]].()}’f;%j ~, subject
to the RTT relation (2.48) and the restriction (2.150) on the matrix coefficients of the
matrices F(z), H(z), E(z) with dlf € Z defined as in (2.151). We note that u € A%

implies now the following inequalities:
dizdy>->dry=dr 2d =d}_| > >d|. (3.24)

One of our key results in the type C, is the natural analogue of Theorem 2.156:
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Theorem 3.25. For any 1 € A™, the assignment (3.8) gives rise to the algebra isomor-
phism Y0 Xy (spy,.) —> X, (spy,).

Similarly to the type D,, the assignment (2.160) gives rise to the coproduct homomor-
phisms

A XN L 6py) — X (spy) ® X (spy) Y, 2 € AT,

for any w;, uy € A, coassociative in the sense of Corollary 2.161. Evoking the iso-
morphism of Theorem 3.25 and the algebra embedding ¢, : Y (shy,) <> X, (spy,), we
obtain the coproduct homomorphisms

A—vl,—vz . Y—vl—vz (5p2r) — Y—vl (5p2r) ® Y—vz (5p2r) (326)

for any vy, v, € A*. Explicitly, the homomorphism (3.26) is uniquely determined by
the formulas (2.171) with the root generators {E;lv), F)(/lv) }yvea+ defined via:

B oo = (B B (B, o (B BT 1L
Fol oy = UL IR RO o P FD L FD ), (3.27)
Il<i<j<r
and
B ey = —L B B B, (B EVT - ILED), - B,
1 —8; 1 1 1 1 1 1
FO o= =270 P RO I (D R R R, FD ),
i J
l<i<j<r (3.28)
where AT = {ev —e.v} U {e.v +€\-/} is the set of positive roots of sp,.
! T N<i<j<r oo N<isjsr

Remark 3.29. As our formulas (2.171) coincide with those of [FKPRW, Theorem 4.8],
this provides a confirmative answer to the question raised in the end of [CGY, §8], in
the type C,.

3.3. Lax matrices. Similar to the type D,, the proof of Theorem 3.25 goes through the
faithfulness result of [W], see Theorem 2.183, and the construction of the Lax matrices
Tp(z). To this end, for any A*-valued divisor D on P! satisfying (3.18), we construct
the matrix Tp(z) via (2.175, 2.176) with the matrix coefficients f fi (2), eiL’) J (2), hiD (2)
obtained from the explicit formulas (3.22) combined with Lemmas 3.11, 3.12. Using
the “normalized limit” procedure (2.178), we conclude that Corollary 2.181 applies in
the present setup. Combining this with Y being an isomorphism [JLM1], we conclude
(as in Proposition 2.182) that Tp(z) are Lax (of type C;).

Similarly to Proposition 2.186, the matrix 7 (z) (encoding all generators of X r_“M (sp2,))
still satisfies the crossing relation (2.187) with the central series zy(z) defined via
(cf. (2.189)):

r

Chi(z+i—r—2)

Zy(z) = Y_ . (Cr(2)) = hGti—r—1)

hr(z = 2hr1(2).  (3.30)

i=1
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In Appendix B (see Theorem B.17, Lemma B.25), we use the shuffle algebra approach
to derive the uniform formulas for the matrix coefficients efj @, f j{)i (z), which are
rather inaccessible if derived iteratively via Lemmas 3.11, 3.12. This allows to prove the
analogue of Theorem 2.190:

Theorem 3.31. The Lax matrix Tp(z)= % is  regular in z, e
Tp(2) € Alz] ®c End C*.

Similar to type D,, the result above provides a shortcut to the computation of the
Lax matrices Tp(z) defined, in general, as a product of three complicated matrices
FP(), HP(2), EP(2). In particular, the natural analogue of Proposition 2.193 holds.
To this end, let us now describe all A*-valued divisors D on P! satisfying (3.18) such that
deg. Tp(z) = 1. Define &, u € A" via(2.122,2.124), so that A+ = Z;‘:o bjw; with
by € Z, by, ...,b, € N. Then, the assumption (3.18) implies that the corresponding
coefficients a; € N are related to b;’s via:

a; :b1+2b2+...+(i—l)b,-_l+i(bl-+...+b,_1)+l§b,, 1<i=<r, (332

andbg = —b;—...—b_1 — b—z’, which uniquely recovers by in terms of by, ..., b, and
forces b, to be even. We also note that the total number of pairs of (p, g)-oscillators in
A equals:

r r—1

kQr—k+1) r(r+1)
Yoai=) 5 bi + (4 by. (3.33)
i=1 k=1

Combining the above formulas (3.32) with Proposition 2.193(a) in type C,, we thus
conclude that the normalized Lax matrix T p(z) is linear only for the following config-
urations of b;’s:

by =-1,b;j =1 by = ... =bj1 = bjs1 = ... = b = 0 for some
1<j<r-—1,

2 bgp=—-1,b1=...=b,_1 =0, b =2.

As by is uniquely determined via by, .. ., b, and does not affect the Lax matrix Tp(z),

we shall rather focus on the corresponding values of the dominant sp,,-coweights
A, L E AT,

eCase(D):A+ji=owjforl <j<r—1
Inthiscase,ay =1,...,a;_1=j—1,a; = ... =a, = j, so that the total number

of pairs of (p, g)-oscillators is M, see (3.32, 3.33). We obtain two Lax matrices:
the non-degenerate one, depending on the additional parameter x € C (but independent
of the parameter y € P'):

ij-[xjfwo[y](z) =z(Eyjp+...+ E2r,2r) +0(1), (3.34)

and its normalized limit as x — oo, which is degenerate with z in the first j diagonal
entries:

Tu‘rj[oo]—wo[y](z) =Z(E11+...+Ejj)+0(1) (335)
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and also satisfying:

T )L ifj el <k<(+1)

wjlool-moly) Qkk = 1 i <k<l :
e Case(2): A+ i = 2w.
In this case, we have a; = 1,...,a, = r, and the total number of pairs of (p, g)-
oscillators is @ see (3.32, 3.33). We thus obtain three Lax matrices: the non-
degenerate one, depending in a symmetric way on additional parameters x1,x, € C
(but independent of y € P!):

T, (-1 (D) = 2(E1 + ...+ E200) + O(1), (3.36)

its normalized limit as x; — 00, which is degenerate with z only in the first » diagonal
entries:

T, [x1 [+ ool —moly] (2) = Z(E11 + ...+ Epp) + O(1), (3.37)

and its further x; — oo normalized limit, which also contains z only in r of its diagonal
entries:

Tow, [ool—moly] (@) = 2(E11 + ...+ Ep) + O(1). (3.38)

The diagonal z-independent entries of these degenerate Lax matrices are explicitly given
by:

T, 111+, [oo]—mol] Dk = 1, T ool-mol] (@Dkk =0 for r' <k <1
(3.39)

Completely analogously to Proposition 2.222, we have the following unitarity property
of the corresponding non-degenerate linear Lax matrices (recall the parameter x = r+1,
see (3.5)):

u

Proposition 3.40. The non-degenerate Lax matrices L ;(z) := ij [x]—woly] (z +x+ )

for1 < j <r,aswell as Ly(z) := T, (1) J+[x2))—moloo] (2 + “52), are unitary:

L)L, (- =[(* S ’)2 -2y, L@L-2 = [ (2 ;xz)z - 2.

We conclude this Section by presenting a few interesting examples of the Lax matrices
Tp(2).

e Example 1 : D = @([oo] — @wyly] (note that Tp(z) is independent of y € P!, as
before).
Inthiscase,a; = ... = a, = 1. Tosimplify our notations, letus relabel { p; 1, et L

el ifi<r . .
1 . . Then, we immediately find:
= 2t ifi=r

by {pi, e*i}_,, sothat [p;, eli] = &; ; - {

Z—p1r *k k.- k%
x 1.0 0 0
x 0 1 -~ 00
Tp@) = . C (3.41)
x 0 0 10
x 0 0 0
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with the nontrivial entries, marked by * above, explicitly given by:

Tp(@)1j = (— 1)) eXhm 4

T = (—1)j+1(17j —Pj-1— l)eZlZ:lqk"Z;;li *k 1<j<r,
Tp@j1 =D/ (pj —pj—1 — De~ Zl{;}‘h’

Tp@@)j1 = (_1)1'6_ZZ=1 ‘“_ZZZ} woy<j<r

r—1 r—1
T,y = k1 W4 Tp(g)yr ) = —e 2 Lhmt U0r,
These entries may be written more invariantly as:

Tp()1,j =—aja;, Tp@,jy=a1a;, 1l<j=<r,
Tp@@)j1 = —ﬁflﬁj, Tp@j1 = —5flaj, l<j=<r
T =27, Tp@y= _5;2’ Tp@i1=z—1—aja;, (3.42)
where we used the following canonical transformation with ([a;,a;] = §;; and
[a;,a;]=0=1a;,a;]):
Ay = —eXhcl O G = (< 1) (p; — pioy — DeXia 4t 1 <<,
a) = —pre” D110 q = (—)ie" Tiei %729 | < <r. (3.43)
e Example 2: D = w[x] — wp[y] with x € C (Tp(z) is independent of y € P!, as
before).

As in the previous example, we have a; = ... = a, = 1, and we shall use
{pi, et }i_, instead of {p; 1, et }i_,- Then, the corresponding Lax matrix becomes:

TD(Z) = (Z_x_ 1)12r+(51’~'-vﬁr’ar’-~~’al)t : (_alv"'9_ar’ér9--~’él)
(3.44)

after the following canonical transformation ([a;, a;] = §; j, [a;,a;] = 0 = [a;, a;]):

_ r—1 1 _ . r—1 1. .
A = —eXh=1 W0 & = (=) (p; — piy — DeXh= %20 1 <i <,

a) = —(p) — x)e” ThD1 %30 g = (—1)em Tic b0 | < <r (3.45)
The type C, Lax matrix of the form (3.44) first appeared in [IKK, (4.34)].

Remark 3.46. In contrast to the natural “normalized limit” relation (2.178) in the (p, ¢)-
oscillators, such construction in the “polynomial” (a, a)-oscillators is more involved.
In particular, to recover the Lax matrix (3.42) from (3.44), one should first apply the
canonical transformation a; ~~» a; — xﬁfl (preserving all other a, a-oscillators), and
only afterwards consider the x — oo limit of the product on the left with the diagonal
factor diag(1, —x Y., —x_l,x_2).

e Example3 : D = w,[x] + w,[o0] — wy[y] with x € C (Tp(z) is independent of
y e Ph.
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In this case, a; = 1,...,a, = r. According to (3.37, 3.39), Tp(z) has the block
form:

o +F B), (3.47)

TD (z) = < C I,

where B, C, F are z-independent r x r matrices. The following properties of B, C are
established exactly as in Lemma 2.228:

Lemma 3.48. (a) The matrices B and C are symmetric with respect to their antidiago-
nals:

Bij =Brri—jr41-i»  Cij =Crpi—jrr1-i-
(b) The matrix coefficients {B;;}! i=1 of the matrix B pairwise commute.

(¢) The matrix coefficients {C;;}" j=1 of the matrix C pairwise commute.
(d) The commutation among the matrix coefficients of B and C is given by:

[Bij, Ckel = 8i,08) k + Sirs1-k8j re1—c-

It will be convenient to relabel the matrices B, C as A, —A, respectively, cf. (2.229):

aj, -o-oapy 2apy sy - As,| Ay,
1 I h 2_1 / N R a. .
B=A= ~ 1.‘2 ,—C=A= r,.rl
A1 T - : a1 : :
2., a1, -c- Ay aypay; - ay |

with the matrix coefficients satisfying the following relations:
lai j,ar o] = 8iedjk, lay j,ap =0, [a;;,a¢]=0, (3.49)
due to Lemma 3.48. Then, a tedious straightforward calculation yields:
_ I _
(z+x), —AA T A

To@) = | o 2" X———+¥— . (3.50)
- 'L,

We note that (3.50) is the exact sp,,-analogue of the type D, Lax matrix of (2.231, 2.232).

e Example4 : D = w, ([x1] + [x2]) — @wo[y] with x1, x5 € C (Tp(z) is independent of
y e Ph.

Applying the arguments of [F] (see [FKT] for more details) to the Lax matrix of (3.50)
and keeping the same notations for the matrices A, A, we immediately obtain the fol-
lowing non-degenerate Lax matrix of type C, (cf. [R2, (3.7)]):

_ I _ _
(z+x)D, —AA I A(xp — x1 +AA)
LGZ)=|-———————- L -1 =

|
—A I (z+x) +AA
I
I _ | |
I 1A (Z+xD)Ir | 0 L | —A
R I e A =212, @5
0L A @)l 04 1

The type C, Lax matrix of the form (3.51) was recently discovered in [KK, §6.2] and can
be viewed as the exact sp,,.-analogue of the type D, Lax matrix of (2.234, 2.235). We
expect that £(z) is equivalent, up to a canonical transformation, to T, (1x; J+[x2]) =[] (2)-
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4. Type B

The type B, is also quite similar to the type D,, which we considered in details above.
Thus, we’ll be brief, only stating the key results and highlighting the few technical
differences.

4.1. Classical (unshifted) story. We shall realize the simple positive roots {a}}!_, of
the Lie algebra 505,41 in AV via:

=€ —&, =6 —€&y, ..., 0l_1=¢"_| —€, a. =€ . 4.1

The Drinfeld Yangian of s03,41, denoted by Y (s02,+1), is defined similarly to Y (so05,):
it is generated by {Efk), ka), ngk)}kzl subject to the relations (2.2)—~(2.9), with o

1<i=<r

of (4.1). The extended Drinfeld Yangian of s07,41, denoted by X (s02,+1), is defined
alike X (s02,): it is generated by {EX, FOPZ!I_ U (DWW subject to (2.20)-
(2.31) with the modification: T T

_ D1 ()(Er(2)—Er(w)) + (Er(z+D)—Er(w)) Dy41(2) lfJ —r
[Drs1(2), Ej(w)] = 2(z—w) 2(z—w+I) o 7
0 ifj<r
4.2)
D1 Q) (Fr(2)—F,(w)) _ (Fr(z+D)—F,(w))Dr41(2) ifj=r
[Dr41(2), Fj(w)] = 2(z—w) 2(z—w+1) v .
0 ifj<r

The central elements {C,(k) }k>1 of X (s02,41) are now defined via (cf. (2.34)):

r

B Di(z+i—r—1)
C@ =1+ P =T] D’i(m —3 D Dm@DmGr . @Y
k>1 i=l 2

Also, a natural analogue of Lemma 2.41 holds with ¢y : Y (s02,4+1) <> X (502,+1) defined
via:

Ei@— Ei(z+5Y), Fi@— Fi(z+5h),

i—1)~1 i1 ; @4
Hi(2) — Di (z+5) Disi(z+5), forany 1<i<r
Define N and « in the present setup via:
N=2r+1, «Kk=r-}% (4.5)

The extended RTT Yangian of 502,,1, denoted by X™ (509,.41), is defined alike X™ (507, ):
itis generated by {t.(;() }EII <N subject to the RTT relation (2.48) with the R-matrix R(z)

1l
given by (2.45). The RTT Yangian of 50;,,1, denoted by Y™ (s05,41), is defined similarly
to Y™ (s05,): it is the subalgebra of X™ (s505,41) consisting of the elements stable under
the automorphisms (2.52). However, it can be also realized as a quotient of X™ (502,41)
as in (2.57), due to the natural analogue of (2.53), where the center ZX™ (s05,41) of

X™(s0p,41) is explicitly described as a polynomial algebra in the coefficients {ZX,() He>1
of the series zy (z) = 1+ k=1 Zg\l,()z*k determined from (keeping the notations (2.56)):

T'(z—1)T(2) =TT (z = k) = Zn (D). (4.6)
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In the notations of Subsection 2.1.3, the analogue of Theorem 2.62 still holds, explicitly:
Yo: Ei(2) > eiiv1(2), Fi(2) = fis1,i(2), Dj(@) > hj(2) 4.7

foralli <r,j <r+ 1. Hence, a natural analogue of Theorem 2.66 holds with Y o ¢
given by:

Ei(@) > eiimi(z+ 5, Fi@ > fiani@+50),

. . (4.8)
Hi(z) ~ hi(z+ 5 hin(z+ 51, forany 1<i<r.

We note that our conventions are to those of [JLM1] as in type D,, see Remark 2.68 for
details.

Accordingly, X" (s0,,,1) is generated by the coefficients of {& j(z)};f;ll as well as of:

@@=y ezt =@, =Y [Pt = fuik), 1<is<r
k=1 k=1
4.9)

We shall now record the explicit formulas for all other entries of the matrices F(z), H (z),
E(z). The following result, the B type analogue of Lemmas 2.79 and 2.96, is essentially
due to [JLM1]:

. 1
hj(z+j—r—7)
Lemma 4.10. (a) () = —— [T/ =2 - hr1 @Dhra1 (2 + }) for
hi(z+i—r+73) hj(z+j—r+7)
1<i<r.
(b) e(iv1y.in(2) = —ej(z+i—r+5)for1 <i <r.
(©) €ij+1(2) = —lerj(2). e for 1 <i < j <.

(d) eijr(z) = lei 1y (@), €1 for L <i < j <.

©) ey jr(2) = [eir a1y @), e for 1 < j <i—2<r -2,

) fisty@ = —file+i—r+g) forl <i <r.

@ fir1i@ = —1f", fli@lfor1 <i<j<r.

(h) fji(2) = [f;l), Sgeyi@lforl1 <i<j<r.

W) fr0@) =" fgayr@lfor1 < j <i—2<r-2.

The remaining matrix coefficients of E(z) and F(z) are recovered via the following
analogues of Lemmas 2.80 and 2.97:

Lemma 4.11. (a) ¢; ;/(2) = [e; 41y (2), e\] = e;(2)ei 41y (2) for | <i <r.

(0) €111, (2) = [ers1, 41y (2), €1+ €1 (2)eirt @1y (2) — ei ey () for 1 <i <r —1.
(©) €;.j1(2) = lei 1y @), e N for 1 < j<i—2<r—1.

@ firi@ =LY, farry i@ = fasyi@fi@ for 1 <i <r.

© firis1@ = [, fiarry int @1+ fasty,is1 @) fi@ = favy i@ forl <i <r—1.
) f7i@ =" fgayi@lfor1 <j<i—2<r—1.
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4.2. Shifted story. We shall use the same extended lattice A, but {&;"}/_, of A" are
now defined via:

&' =¢ —¢4y for 1<i<r (4.12)

We shall also use the same notation for the dual lattice A = EB”I Zej = Pi_y Lwi
with

Wi = —€j4] — €42 — ... — €41 for 0<i<r (4.13)

For i € A, define d = {dj};gl € Z b = {b;}i_, € Z" via (2.101, 2.102); so that
b; =d; —d;y foralli.

The shifted extended Drinfeld Yangian of soy,41, denoted by X, (s02,+1), is defined

similarly: it is generated by {El.(k), Fl.(k)}]lelq U {D(k )}Ifjli: il subject to (2.20, 2.22—

2.31, 2.104, 4.2). Up to an isomorphism, X, (s02,+1) depends only on the image of u
under (2.109), cf. Lemma 2.110.

For v € A, the shifted Drinfeld Yangian of s02,+1, denoted by Y, (s02,41), is defined
likewise. We note that a natural analogue of Proposition 2.114 holds with the algebra
embedding ¢, : Y (s02,41) <> X, (502,41) determined by (4.4) and the central elements

{Cr(k)}kzzdmﬂ of X, (s02,41) defined via:

L Di(z+i—r—1)
C=z7+ 3 Pt =[] D@D+ ).
k> 2d 1 Di(z+i—r+3)

(4.14)

The natural analogues of Corollary 2.118 and Lemma 2.119 still hold in the present
setup.

We shall use the same notations (2.121)—(2.124) for A-valued divisors D on P!, A*-
valued outside {0} € P!. The simple coroots {c; }r 1 C A of 509,41 are explicitly given
by:

Q| =€ —€, ..., U2 =€_)—€_1, Up_| =€_] — €&, a =2¢. (4.15)

We also consider {&i}le C A, which are the “lifts” of {«;} from (4.15) in the sense
of (2.127):

Al =€1—€), ..., Qr_n =€_9 — €r_1, Op_1| = €_1 — €, Qr = 2¢,. (4.16)
From now on, we shall impose the following assumption on D (cf. (2.128)):
Assumption : A+ =aya+...+aa with a; € N. 4.17)
The above coefficients a; are explicitly given by:

ai=(e/ +...+¢)(A+p) for 1<i<r—1,
(6 +...+6)(A+p) (+18)
. .

a, =

Thus, (4.17) is equivalent to €', (A + n) = 0 and 2 dir ZZ:I €/ (A +n) € N for all
1<i<r.
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Consider the algebra A defined as in (2.131) but with the modified relation (3.20) in
place, so that [eTark, Prk]l = :F%ei‘”’k. Then, as in Theorem 2.136, we have an algebra
homomorphism

Wp: Xy (502r41) —> A, (4.19)

determined by the following assignment (keeping the notations (2.133, 2.135)):

@
: P_1(pix—1
Ei(Z) s 25” . Z i 1(Pz,k ) equk’
= (@ = pir) Pik(pik)

X A iti<r -2
O e e ‘ﬁlﬁp’i"f:)'“” it =r -1
-2 %f'm ifi =r (4.20)
O I Zc)  ifi<r—1
D) o { 2P Tl 7 i =
:((:?) [z Zk(2) ifi=r+1

The proof is analogous to that of Theorem 2.136 and is based on the explicit formula

r

V(€ @) = [[(z@ziz+i—r+D) “21)

i=0
as well as the comparison to the homomorphisms of [NW]. Precisely, identifying .A with
A of loc.cit. and the points x; with the parameters z; of loc.cit. via:
s

l_l :tqz -
7’

5

1
Dik < Wik + Fouf,  x e+

the (restriction) composition Y_;(502,41) i) X_,(502,41) 2) A is given by the
formulas (B.4) of Appendix B (applied to the type B, Dynkin diagram with the arrows
pointing i — i+ 1 for 1 <i < r), which essentially coincide with the homomorphisms

qn*_ _ of [NW].

The antidominantly shifted extended RTT Yangian of $02,41, denoted by X (502r+ 1)

(with € A™"), is defined similarly to X" (s02,): it is generated by {t(k) }’fi% j<or+l

subject to the RTT relation (2.48) and the restrlctlon (2.150) on the matrlx coefficients
of the matrices F(z), H(z), E(z) with d{ € Z defined in the present setup via:

d :=2dyy1 —d; for 1<i<r (4.22)
We note that © € A* implies now the following inequalities:
dyzdy>--->dy 2dr > dpyy 2 d) > dj_ > > d]. (4.23)

One of our key results in the type B, is the natural analogue of Theorem 2.156:
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Theorem 4.24. For any 1 € A™, the assignment (4.7) gives rise to the algebra isomor-
phism Y_ 0 X (s02r41) —> X, (502,41).

Similarly to the type D,, the assignment (2.160) gives rise to the coproduct homomor-
phisms

Arft,ﬂ ertm — 1y (802741) —> X,,M (502/4+1) ® ertm(sﬂzm) Vi, o € AT,

coassociative in the sense of Corollary 2.161. Evoking the isomorphism of Theorem 4.24

and the algebra embedding ¢, : Yj;(s02,41) <> X, (502,41), we obtain the coproduct
homomorphisms

Ay~ Yooy (502/41) — Yoy, (502,41) ® Y_,, (502r41) (4.25)

for any vy, v, € A*. Explicitly, the homomorphism (4.25) is uniquely determined by
the formulas (2.171) with the root generators {E;lv), F;lv) }yea+ defined via:

EY =B ED D B EVT
FS)_GV =[[- [FV, F0 - P PO L FD ),
J

r—1°

EQ = ED (EDED,, - [ELLENT 0,
FO) =1L RVl - R R LR,
£ = [ED, (EfY

e+e r—1°

)] (1)
[Er_27 o [E

i+1°

11, ELL, - ED,
Fo oy = (R R IR R - R LD LR,
l<i<j<r (4.26)

J

where At = {e.v + e.v} U {EV} is the set of positive roots of §07,41.
! I<i<j<r " <i<r

Remark 4.27. We note that the last formula of (2.165) holds with the following update
of (2.166): following update of the formula (2.166):

ng = e}/ for j <r, ErvH =0. (4.28)

To this end, let us point out that the j = r + 1 case of the last formula of (2.165) is

due to the equalities e = el and f(l) = f(l) which follow

r+l,r+i € i,r+l r+i,r+1 r+l,r+2—i
from (B.30).

Remark 4.29. As our formulas (2.171) coincide with those of [FKPRW, Theorem 4.8],
this provides a confirmative answer to the question raised in the end of [CGY, §8], in
the type B;.
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4.3. Lax matrices. Similar to type D,, the proof of Theorem 4.24 goes through the
faithfulness result of [W], see Theorem 2.183, and the construction of the Lax matrices
Tp(z). To this end, for any A*-valued divisor D on P! satisfying (4.17), we construct
the matrix Tp(z) via (2.175, 2.176) with the matrix coefficients f, P(2),eP 1 (2), hP(z)
obtained from the explicit formulas (4.20) combined with Lemmas 4 10 4. 1 1 Using the
same “normalized limit” procedure (2.178), we conclude that Corollary 2.181 applies in
the present setup. Combining this with T being an isomorphism [JLM1], we conclude
as in Proposition 2.182 that Tp(z) are Lax (of type B;).

Similarly to Proposition 2.186, the matrix T (z) (encoding all generators of X" (502r+1 )
still satisfies the crossing relation (2.187) with the central series zy (z) deﬁned via
(cf. (2.189)):

Lohi(z+i—r—4

28 @) = T (@) = [ [ D) b+ d). @30
i hiz+i—r+3)

In Appendix B (see Theorem B.17, Lemma B.27), we use the shuﬁ‘le algebra approach
to derive the uniform formulas for the matrix coefficients e (z) f D (z), which are
rather inaccessible if derived iteratively via Lemmas 4.10, 4.1 1 Th1s allows to prove the
analogue of Theorem 2.190:

Theorem 4.31. The Lax matrix Tp(z) = _2[(;((8 is  regular, ie.
To(z) € Alz]l ®c End C¥+1,

Similar to type D,, the result above provides a shortcut to the computation of the
Lax matrices Tp(z) defined, in general, as a product of three complicated matrices
FP(z), HP(z), EP(z). In particular, the natural analogue of Proposition 2.193 holds.
To this end, let us now describe all A*-valued divisors D on P! satisfying (4.17) such that
deg, Tp(z) = 1. Define A, u € A* via(2.122,2.124), sothat A+ = 25':0 bjw; with
by € Z, by, ...,b. € N. Then, the assumption (4.17) implies that the corresponding
coefficients a; € N are related to b;’s via:

a; =b1+2br+...+( — Dbj_1+i(b; +...+b,), l<i<r-—1,
1
g = E(b] +2by ..+ (r — Dby +rbr), (4.32)

aswellasbg = —b; —...—b,_1 —b,, which uniquely recovers by in terms of b1, . . ., b,.
We also note that the total number of pairs of (p, g)-oscillators in the algebra A equals:

r r
;ai _ Z k(2r2— k) b

k=1

Combining the above formulas (4.32) with Proposition 2.193(a) in type B;, we thus
conclude that the normalized Lax matrix T p(z) is linear only for the following config-
urations of b;’s:

° b() = —1, bj = l, bl = ... = bj_l = bj+1 = ... = br = 0 for an even
1<j<r.
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As by is uniquely determined via by, .. ., b, and does not affect the Lax matrix Tp(z),
we shall rather focus on the corresponding values of the dominant s03,.1-coweights
A L€AY

In the above case 0fi+,& =wj,wehavea; =1,...,aj_1 =j—1l,a; = ... =
ar—1 = j,ar = %, and the total of 1(22—_1) pairs of (p, g)-oscillators. We obtain two
Lax matrices: the non-degenerate one, depending on the additional parameter x € C
(but independent of y € P!):

T x1—woly1(2) = Z(E11 + ...+ Ezps1,2041) + O(1), (4.33)

and its normalized limit as x — oo, which is degenerate with z in the first j diagonal
entries:

Tu‘rj[oo]—wo[y](z) =Z(E11+...+Ejj)+0(1) (434)
and also satisfying:

1 ifj+l<k<(G+1)

To;[ool—moly] (Dkk = {0 i <k<l

Completely analogously to Proposition 2.222, we have the following unitarity property
of the corresponding non-degenerate linear Lax matrices (recall the parameter k = r— 5,
see (4.5)):

Proposition 4.35. For any even 1 < j < r, the corresponding linear non-degenerate

Lax matrix L, (2) := To, (x]—aly] (2 + X + “5L) is unitary:

L)L, (—2) = [(%)2 ~ 2.

Motivated by the Examples 3 and 4 in type D,, we expect that

T (i J+xa ) —wo(Ly 1+1y21) (2) and its normalized Hmit ey, (2 )400)) g (1y1 1+121) (2) are
equivalent, up to canonical transformations, to the type B, quadratic Lax matrices given
by the formulas (2.243) and (2.237), respectively, with I, J of (2.238) and w, w encoding
N — 2 = 2r — 1 pairs of oscillators, cf. (2.239):

=t a a a a a t
W= (32, "‘7ar’ar+lvar/’ "'732/)1 W= (32, "‘7arvar+lvar/7"'7a2/) . (436)

Remark 4.37. Let us define £, y,(z) via (2.243) with I, J as in (2.238) and w, w as
in (4.36). Consider the expansion of the Lax matrix

Lxl,xz (Z) = £x1,x2 (Z + a) = Z2 + ZMxl,xz + le,xz (438)

with the shift a of the spectral parameter given by:

xXi+x—1

> (4.39)

Using the equalities

WW =ww+N—2, [WIW,a]=—2a,
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cf. (4.36), it is straightforward to see from (2.243) that the linear term in (4.38) reads:

—x]+x2—%+1—V_VW M2 0
My x, = -w ww — Jw'w'] -1 M3
' _ N -
0 wl X|—x2+ 5 1+ww

with the row M2 and the column M[»3; explicitly given by:
N L N P
Mz ={x1 —x2+ 5~ 24+wWw | w— EWJW wl, (4.40)

Mz = — (Xl —x2+%—2+v'vw) Jv'v’+%v'v]v'v’ W, (4.41)
It is easily seen from the formulas above that the matrix coefficients M;; = (Mx, x,)i,
satisfy
M;ij =—M; (4.42)
as well as obey the following commutation relations:
[Mij, Mye]l = 8; ¢Myj — 81 ¢Myjr — 8; iy My j + 8k Myrjr. (4.43)

Finally, we can show by direct computation that My, ,, satisfies the characteristic iden-
tity:

(My) o, + DMy xy + N +2x1 —2x0 — 2)2My; x, + N — 2x1 +2x2 —2) =0,

(4.44)
while the free term G, x, in (4.38) is expressed via the linear term M, x, as follows:
Gy xy = %Mﬁl,xz + 3—‘(N — )My, + % (N —3—(xy — xg)z) Iy, (4.45)

Let us further introduce the parameter m via:
xl—xzzl—m—g (4.46)

so that the characteristic identity (4.44) for M = M, x, becomes
M—-—m)M+N+m—2)(M+1) =0, 4.47)

thus exactly coinciding with [R2, (3.9)]. Furthermore, after an additional shift in the
spectral parameter, the Lax matrix L(z) = Ly, x,(z) can be written as (taking (4.45)
into an account):

L +N_2 = +N_2 +zM
z 1 =z|z > z

1
+§<M2+(N—2)M—

m(m+N—2)—N+3>
2

which coincides with [R2, (3.11)]. However, our oscillator realisation differs from that
of [R2].
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5. Further Directions

5.1. Trigonometric version. The constructions and results of the present paper admit
natural trigonometric counterparts. To this end, recall the shifted quantum affine algebras
U,+ - (Lg), introduced in [FT1, §5], which are associative C(v)-algebras depending
on a pair of shifts v*, v~ € A. Based on and generalizing the isomorphism between
the new Drinfeld and the RTT realizations of extended quantum affine algebras in the
classical types B, C,, D, recently established in [JLM2,JLM3], it turns out that the
shifted extended quantum affine algebras Ui}jitf,r (Lg) with u*, u= € A* admit the

RTT realization U, _ _(Lg) —> Uﬁ‘jﬁ{ﬂ_ (Lg) alike (1.5). This can be viewed as
a natural generalization of [FPT, Theorem 3.51] for type A, and shall be addressed
elsewhere.

As an immediate corollary, we obtain the following two important structures:
e coproduct homomorphisms

Auf',vl_,ug,vz_: UUT+V§',U1_+UZ_ (Lg) - Uv;',ul_ (Lg) ® U”;’Vz_ (Lg)

e Z[v, v!] integral forms U+ - (Lg) C Uy+ - (Lg) compatible with AvT,v(,v;,v;

for classical types B,, C,, D,, generalizing the only known case type A, of [FT1,FT2].

Combining the above RTT realization with [FT1, Theorem 7.1], one obtains trigonomet-

ric Lax matrices Tgig(z) which can be degenerated to Tp.pjy(foo]—[0]) (2), cf.
[FPT, Proposition 3.94].

5.2. Integrable systems. As yet another important application of our key isomorphism
(1.5) and its aforementioned trigonometric version, the RTT presentation provides (cf.
[MM)]) interesting algebraic quantum integrable systems that appear on the correspond-
ing quantized (K -theoretic) Coulomb branches of 4d supersymmetric N' = 2 quiver
gauge theories, cf. [NP,NPS] and [BFNa,BFNb]. To this end, note that the C[A]-
version of the homomorphisms (B.3) factor through the quantized Coulomb branches
[NW, Theorem 5.6], cf. [FT1, Theorem 8.5] in the trigonometric case.

Let us also note that Tp(z)T},(—z) satisfy the reflection equation [GR, (4.1)], thus
giving rise to shifted versions of reflection algebras (aka twisted extended Yangians
[GR, Theorem 4.2]) of types B, C, D. We expect the latter to be related to integrable
systems with boundary.

5.3. Polynomial solutions and Q-operators. As mentioned in the introduction (with
more details provided in Subsections 2.3.5, 3.3, 4.3), some of the simplest examples of
our Lax matrices Tp(z) are equivalent (up to highly nontrivial canonical transforma-
tions) to the polynomial (as they take values in non-localized oscillator algebras) Lax
matrices constructed quite recently in the physics literature. A very interesting question
is to understand which of our Lax matrices T p(z) can be transformed (up to canonical
transformations) to the polynomial ones. We note that one of the advantages of our con-
struction is a natural limit procedure (2.178) which becomes highly nontrivial for the
polynomial Lax matrices, see e.g. Remark 3.46. However, the polynomial Lax matrices
have an obvious advantage of allowing to take traces, thus leading to Q-operators as
discussed below.
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As outlined in [F], the polynomial solutions for D,-type can be used to construct Q-
operators following [BLZ,BFLMS]. The corresponding Q Q-system for D,-type spin
chains has been recently proposed in [FFK], see also [ESV] for a different approach.
We remark that only a subset of the Q-operators is constructed in [F], namely those
corresponding to the end nodes of the D, Dynkin diagram for which the evaluation map
does exist. While the remaining Q-operators are determined by the Q Q-system, a direct
construction for those is not known. The asymptotic behaviour of the Q-operators in
the spectral parameter can be extracted from the algebraic Bethe ansatz, cf. [R1], and
solutions with the appropriate asymptotic behaviour are obtained in the Table 1 below,
suggesting that a construction from our Lax matrices may be possible. However, the Lax
matrices Tp(z) of the present paper are not polynomial in the oscillators and a trace
prescription remains to be found.

The situation for B, and C, types is similar. The Lax matrices for Q-operators corre-
sponding to the nodes of the Dynkin diagram where the evaluation map exists are pre-
sented here in the polynomial form, see [FKT] for more details. For the non-polynomial
(in oscillators) solutions T (z) of the present paper we are in the same position as for
D,-type discussed above. The expected asymptotic behaviour of the corresponding Q-
operators is spelled out in Tables 2 and 3 below. A study of the O Q-system for the spin
chains of type B, and C, is outstanding.

Table 1. Solutions of D,-type with the expected asymptotic behavior and number of oscillator pairs for
Q-operator at the node i

0; a=(ai,...,an) b=(b1,....b) 7 = (deg Z1, ..., deg Z,) #osc.
1<i<r—2@2.,4,6,...,2i,2,...,2i,ii)(0,...,0,2,0,...,0) (0,...,0,1,0,...,0)  i@r—i—1)
A NGRS R I
i r—i—2 i r—i i r—i

i=r—1
even r 1,2,3,...,r=2,5,2—-1 (0,...,0,2,0

3—12 r—1 ( ) ©,....0,1,0) #
odd r (1,2,3,...,r =254, 21 0,...,0,1, 1)
i=r
even r (1,2,3,...,r=2,5—-1,%) (0,...,0,0,2) ©.....0.0.1) -1
odd r (1,2,3,...,r=2,51 5 (0,...,0,1,1) o 2

Table 2. Solutions of C,-type with the expected asymptotic behavior and number of oscillator pairs for Q-
operator at the node i

0; a=(ay,....an) b=y, ....b) 7 = (degZj, ..., degZ,) #osc.
l1<i<r (2,4,6,...,2i,2i,...,2i) (0,...,0,2,0,...,0) (0,...,0,1,0,...,0) iQr—i+1)
—_— — —_———— ) — — —_— ) — —
i r—i i r—i i r—i
i=r (1,2,3,...,r) ,...,0,2) ©,...,0,1) r(r2+1)

Table 3. Solutions of B,-type with the expected asymptotic behavior and number of oscillator pairs for Q-
operator at the node i

0; i=(a,...,a) b=(by,...,b) Z = (degZy, ..., degZ,) #osc.
l<i<r (2,4,6,...,2i,2i,...,2i,i) (0,...,0,2,0,...,0) (0,...,0,1,0,...,0) iQ2r —1i)
—— —— —— —— —— ——
[ r—i—1 i r—i i r—i

l
i=r (2,4,6,...,2(r—1),r) 0,...,0,2) 0,...,0,1) r2
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Appendix A. Explicit formulas in type D

In this Appendix, we record the explicit formulas for the matrices F D), HP (), EP(2)
the product of which recovers the Lax matrices Tp(z) in type D,, see (2.175, 2.176).
All proofs are straightforward and are based on Lemmas 2.77, 2.79, 2.80, 2.96, 2.97 of
Subsection 2.1.4.

e Matrix H P (z) explicitly.

iy Thizo Zu(@)  ifi<r—2
@) =1 TS 4@ ifi=r—1
P 10 Zk()  ifi=r N
%'HZ:OZk(Z)HZ;%Zk(z+k_r+1) ifi<r— (A1)
hif (@) = %'ﬂi:ozﬂz) fimr—1
g(zl—(zl))' 120 Zi(2) - Zr(2) i,

e Matrix EP (z) explicitly.

Forl <i < j<r—2,weget

2
Z Pi1(pis; — D - TT.27 Pok (Psetbpn — 1) o s
1 =i WKy

1<k;<a; (z = pik) l—H:i Py i, (Ds. k)

I1<kj_1<aj_

() = (1))~
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Forl <i <r —2, we get:

D ) = ( l)r_,' Z Pi_ l(pz -1)- Hr - Py ks (Ps+l.kx+1 -1 P (pr—Z.k,,z)
S = (— —
o 1<k <a; ( - pi.ki) l_[C:,z Ps,k; (ps,ks)

1<k 2<ar >

-2
X eZ,'\-:,» s, ks

Forl <i <r —2, we get:

Z Pi_i(pig, — 1) -T2 27 Pok, (Dot — 1) - Pr(proaiy_s)
1<k <a, (z— pi,k,') l_[s;il Ps,ks (ps,ks)

1<k, l<ar 1

el (z) = (=1) "

-1
X ezsz,- Gs.ks

while er 1
omitted.

(z) is given by the same formula (with i = r — 1) but with P-(p,—2k,_,)

Forl <i < j<r—2,weget

-2
L@ =it Y Pioi(pik; — V- TIZ Poky(Ps+i ey — D) Sy
&) = . =1

]l 1<ki<a; (z— Pj-lkj+J — r) H;!:i Py ks (Ps ky)

1<kj_ 1<a] 1

Forl <i <r —2, we get:

D
ero1yi(@) =

5 Pii(pige — 1) - TT.Z3 Posy (Pt — D - Pr(pr—2, )
A (@ = Pr-2ky> = DITZE Pok, (psk)

1<ky—2<ar—

(_l)r—i+l

r—2
e 623:" qs.ks

Forl <i <r — 2, we get:

3 Pioi(pigy — 1) - TTIi27 Pk (Psstien — 1) - Pr(pr—agy )
e <= pr—tsy D) T2 Poky (Psi)

1<k,—1 <ar 1

el () = (=1~

-1
X eZ_Z:,- qs.,ks

while e - 1),(2) is given by the same formula (with i = r — 1) but with P (pr—2.x,_,)
omltted

Forl <i <r —2, we get:
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D
ei,r’(z) =

iy Y Pici(piy = D - TIZ) Poky (Pstihe = 1) - Prt (Pr-2k, )
1<k; <a; (z— Pi,ki) H;;? Ps,ks (ps,ks) : Pr,kr (Pr,k,)

1<kr—2=<ar—2
1<kr=<ar

-2
X eZ§:i qs.kstqrky

while e? | (z) equals Wp (E(z)) specified in (2.138).

Forl <i <r —2, we get:

L@ = Y Pici(pigs = 1) - TIZ? Pk (Pssi b = D) - Prk, (Pr—2k, )
L= = (@ = pise) [Ti—i Pok, (Psky)

1<k, <a

X ezz:i qs.ks
Forl <i < j<r—2,weget
@ =(=D/7"

s |=1485e(j....r—2 kel
| fj T P (pi = D - THEE o Por(seike — D - Tlies, Prt, (Pr—2,0)

kel,
I,'C{l ..... a,—} (Z - pi,k,‘) I—[igsfr PS,IS (pssk)

YRS gk
X e“is=s=r S5 N

the sum taken over all subsets Iy C {1,...,as},i <s <r, of cardinality |[;| = ... =

i1l =1,|I;| =...=|l,—2| =2,|I,—1| = |I;| = 1, and the natural generalization
of (2.133) being used:
k¢l
P @) = ] G=psp). (A2)
1<k=<ag

Forl <i <r —3, we get:

[Ls|=1+8sefi,....r—2}

== )

kelg,
[Txer, Pi-1(pik — 1) - [T o P (pssik — 1) - [Tker,_, Pra, (Pr—2.k) Sels g
= = . eLiisssr S,
kel
er[i (Z - pi,k) . ni;xér PS,IS (pS,k)

while erl?r, (z) = 0, due to Lemma 2.79(a), and erD—l,(r—l)’(Z) is given by:
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Z Pr72(pr7],k,<_1 -1

e r—1y@ = — 7
’ (@ = Pr—1.4-)@ = Pri) [ T=r—1 Pk (Ps.ky)

1<k,_1<a,—
1<k, <ay,

X eqrfl.kr,l +4qr ky

For2 <i <r —2, we get:

|l>r|:1+85€(i,...,r—2} 1
P = 2= Di—1,k—y —
e i—1y@) = o
Li—1c{l,....ai—1} kel; i
I.c{l,....a)}

kelg,
P 2(pi—1 ki, — 1) - Hif]‘siir,z P 1 (Ps+1.k = U - Tlier_, Pt (Pr—2.1)

x kel
ni—lxgsgr PS,IS (ps,k)

kelg
X ezi—lsxsr s,k

while the i = r — 1, r counterparts of this formula are as follows:

D 2= Pr—2k_, — 1
e r_oy(@) = —
r=Le=2 1Skr£ar—z Z = Pr—14 )@ = Pri,)

1<k,—1=<a,—
1<k, <a,

X Pros(Prostes = 1)Prr—2,k,,2 Pty = D Prk (Pr-2 ) . o 2si=r—2ds.ks
l_[_g‘:r—z Ps,ks (ps,ks)
and
1

D — qr.k
e (2) = — - ek
r,(r—1) _
<k <ay (z Pr,kr)Pr,kr (Pr,kr)

Forl <j<i—-2<r—4,weget:

|Is|=1485ei,....r—2) Z— Piclk 1

N . — Pi—1.k_1 —

e (@)= (=D 2. H(Z—_‘)
I;c{l,....a;} kel; bk
1, C{i:i..,ar}

kelsy
ijl (pj,k‘,' —-1)- Hjiklr_z Ps,lx (Ps+1hk— 1) - erlr,z Pr,[, (pr72,k) kel
x — ‘e

j<s<r 9s.k
kel
HjS;Sr PSJs (ps,k)

while the i = r — 1, r counterparts of this formula are as follows:

D r—j+l (z=pr—ak_— 1
P @) = (—1y~
LJ 2 Z— Pr—140 1)@ — Pr)

I<kj=a;

1<k, =a,

-2
Pi1(pji; — 1) l_K:, Pk, (Ps+1.kges — 1) - Prt, (Pr=2,k,_5) S
X .= S,Ks
H?:j Ps,k_Y (ps,ks)
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and

el (@) = (—1y I

Z Pii(pjx; — - TTiZ; 3 Pty (Dot — D) - Prg (Proak, ») X skt ks

1<k, =a; (z— Pri.) Hs:j Py i, (Ps.ks) - Prk (Prk,)
1<k, _2<ar2
1<k, <ar
Remark A.3. In the notations eiDj () = Zk>1 e(D) , see (2.192), the above formulas
imply:
e = ej.?l?,l, Vi<i<j<o2r (A4)

e Matrix F (z) explicitly.
Forl <i < j<r—1,weget

fh@ ==/
i—1 i—1
Z i:i Zs(ps,ks + 1) ' H;:Hl Ps,k_c (Ps—l,ks_l + 1) ' Pj(Pj—l,kj,l + 1)
i—1
1<ki < (z=pik — DT Pok, (Psik,)

1<k, 1<a, 1

Jj—1
X e_ szi qs.ks

Forl <i <r —1, we get:

f () = (= l)rl Z l_[‘lZ(pSk-i-l) 1_[? z+1PSk(ps Lk T+ 1)
"’ I=ki=ai @ = pik; = DL Pk (Pek)

1<ky— 1<ar 1

X e_ Zz;zl gs ks
Forl <i<j<r—1,weget
P = (~1y/ !

i—1 i—1
Z ;:i Zs(ps,kx + 1) . H£=i+1 Ps,ké- (ps—l,ks,l + 1) : Pj (pj—l,kj_l + 1)
. i—1
1<k <a (z—pj-tk; +J—r—= DI Pk, (Psik,)

1<kj 1<aj 1

Jj—1
X e Zx:i qs,ks

Forl <i <r—1, we get:

Z T2 Zo(psx, + D) - Tzl Pt (Ps—14y, + 1) S S
1<k a @ = Pr—thos = DTTLZ! Pos (Ps.k)

1<k,—1=<ar—1

f;'/[?r/ (Z) — (_l)r—i+]
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Forl <i <r —2, we get:

i@y = =y N

1<k <a;

Pr—2.k,_y (Prt, ) Pr—1(Pr—2.k,y + 1)

1<ky_2<ar—
1<k, <ay

—1 -
. 122 Zo(po, + 1) - TTo7 Pok (Ps—1kyy + 1)

(2= pig — DI Poko (Psks) - Prs (Prky)

-2
e Z;:,' Gs.ks = qr.kr

while fr?rfl (z) equals Wp (Fy(z)) specified in (2.138).
Forl <i <r —2, we get:
fo @ ==n—

Z H;:i Zy (px,ks

1<ki<a;

A1) T Pk sty 4D Pt s (k) 57 g
(2= pik; — D T5=i Pok (Psik,)

lfk;ﬁur
Forl <i < j<r—2,weget

D _ j—i+l
FRi@ = (=7
|1y |:1+8se(j

re2) kel kel,_
S ik 2t DT

i+l<s<r—1 PS‘,I; (Px—l,k +1)- Pr72,1,_2 (pr,k,)
kel
Lcil,..a;) (z— Pik;i — 1) Hlésir Px,ls (Ps,k)
Lc{lar)

kelg
X 67 Zigsfr 4ds.k

where we use the above notation (A.2) and k, denotes the only element of I, i.e
Ir = {kr}‘
Forl <i <r —2, we get:

|Is|=1+85e(i

..... r—2}
D
f@ == 2
Lic{l,....a;}
I,C{i; ar}

kel kel,_
]_[,-;‘5, Zs(psk+1)- l_[iflsslgrfl P (ps—1k+ 1) - Pre2.1,_,(pri.)

kel,
[Tker, = pik—1- ]_[,-;g Ps. 1, (ps,k)

kelg
e~ Zigsgr qs.k

with I, = {k.}, while £,? (z) = 0, due to Lemma 2.96(a), and f?_,, ._(z) is given
by:

Zr—1(Pr=14ey * DZr (pri, + D) Pr—2(pr.i,)
D r r SKp 5Ky 5Ky
f(r—l)’,r—l(z) = - 2 : Hr (z — : 1 l—[r P
1<k,—1<ar_ s=r—1 < pS,kS ) : s=r—1 Ls,kg (pS,k_y)
1<k, <ar

X e_Qr—I,k,.,l —4r.ky
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For2 <i <r —2, we get:

|15 |=1+35efi,...,r—2} = picig, =2
f(?—l)’i(z) == Z —
LAl a1} [lker, G = Pik =1

I.c{l,...ar}

kel kel
[Tt eser Ze(psx + D - TS5 Pty (Ps—1k + 1) - Proa,y (Pri,)
5 <5< <5<

kel
el e Ziflssss s .k
el
[T i< Pty (Psi)

with I, = {k,}, while the i = r — 1, r counterparts of this formula are as follows:
= Pr—2k , —2
Py, 1) =
2 IS,E:SM @ = Pretbyo = D@ = pri, = 1)

I<ky—1=ar—1
1<k,=ar

X Hf:r*z Zs (P.s,ks +D- [r)r—Z,k,,z (pr,kr)Pr—l,kr—] (Pr—2k,_p + 1) e S ks
n.y:r—z Py i, (Ps,ks)

and

Zr(prj, * DPr—2(prk,)  _
f(?—l)/,r(z) = Z (Zr_ " — 1); (r ) . qr.ky
1<k, <a, Pr.k, r.k \Pr.k,
Forl <j<i-—-2<r—4,weget:

|Ls]=1+85e(i

..... r—2}
i—j 2= Pi-lk_; —2
M@=~y o T
1ctmay) [Tker, = Pik =1
Ll ar)

kel kel
l_[jisg, Zs(ps,k +1)- Hji1<sl<r71 PS,I.‘ (Ps—l,k + 1) . Pr—Z,I,-,g (pr,k,-) -y
X S——— S—— .

kel
Tl e j<s<r ds.k
[1)55< Po.t, (Ps.p)
with I, = {k,}, while the i = r — 1, r counterparts of this formula are as follows
—J = Pr—2k,_o — 2
P @ = (=1
fr-l lséa,» @—=Pr—th, —D@=prr, — 1)
1<k, <a,

[Tim) Zs sk + D - TLju Pk (Pomte + D - Proat o (k) s
X > -e s=j 18.Ks
[Ti=; Pok, (Psk,)

and

o= 3

I<kj=a;

Pr 2k s (Pra ) Pr—1(Pr—2,kp_, + 1)

1<kr—2<ar—2
1<k, <a,

s#r—1 r—2
% I%<r Zs(psks + lr)i'zl_[5=j+1 Pok(ps—thy + 1) e~ Yoii ks —drky
(z — Prk, — 1) HS:]' Ps,kx (px,kx) . Pr,kr (pr,k,)

Remark A.5. In the notations f jl,)l. @)= k>1 f j(’ll.))kz_k ,see (2.192), the above formulas
imply:

j(j?” = —fl.Efj),l, Vi<i<j<o2r (A.6)
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Appendix B. Explicit formulas in types B and C

In this Appendix, we provide a shuffle realization of the key homomorphisms of our
paper. To simplify the exposition, we shall follow the uniform formulas of [NW] in the
(w, u)-oscillators (generalizing those of [BFNb] to non-simply-laced cases in the spirit
of [GKLO,FT1])).

B.1. Homomorphisms ¢>l§. Let g be a simple Lie algebra of rank r, and let {e] }7_; (resp.
{@;};_,) be the simple roots (resp. simple coroots) of g. Let (-, -) denote the corresponding
pairing on the root lattice, and set d; := M Let (a;;)

5 be the Cartan matrix of
g, so that d;a;; = (a], ozj.).

-
i,j=1

We also choose an orientation of the graph Dyn obtained from the Dynkin diagram of
g by replacing all multiple edges with simple ones. The notation j — i (resp. j — i or
Jj < 1) is to indicate an edge (resp. oriented edge pointing towards i or j) between the
vertices i, j € Dyng.

Fix a coweight j1 of g, and let Y; (g) denote the corresponding shifted (Drinfeld) Yangian
of g, cf. [BFNb,NW], whose generators are encoded into the series E;(z), F; (2), H; (z)
as before. We also fix a dominant coweight A = w;; + ... + w;y (i being the k-th
fundamental coweight) such that X+ L =ajay+...+aya, with a; € N, and choose a
collection of points zy, ..., zy € C.

Consider the associative C-algebra (cf. (2.131, 3.20))

~ 1<k#(<a;
+1 —1
A= (C<w,-,k, U, (wix — wie+md;) > )
’ 1<i<r,meZ
with the defining relations:
+1, .71
(Ui, wjel = did; j8k Uik, [wik, wjel=0=[Uig, Ujel, U uf =1

Setag :=0, a,4+1 :=0, Wo(z) :=1, Wys1(z) = 1.For 1 <i < r, we also define:

a; k#L ig=i
Wi@:=[e—win, Wie@:= [] G-win, Zi@ = [] G-z -7
k=1 1<k<a; I<s<N

Remark B.1. The shift by —% above is purely historical [BFNb], and can be absorbed
into zg.

The following is a rational counterpart of [FT1, Theorem 7.1] (cf. [NW, Theorem 5.4]):

Theorem B.2. There is a unique C-algebra homomorphism
% Yi(g) — A (B.3)

determined by the following assignment:

7(1(,','

Ei(z) N diZ H]—)l l_[p:l

i (z — wi k) Wik (wi k)

Wi(wir — %(Ol?,a;) — pd;) 1
ik’
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- Z Zi(wig+ J) T TT,24 Wyt + s = Sy e) = pdj)
i = - ' iks
‘ P (z — wix — di) Wik (wi k) .

Zi@ [, [, Wi — S, @ — pd))

i) = Wi (2)Wi(z — di)

(B.4)

B.2. Shuffle algebra realization of @f‘l. Let Y*(g) and Y~ (g) denote the subalgebras of
the Drinfeld Yangian Y (g) generated by {Elgk)}kZl and {Fl(,k)}kZl respectively. They

1<i<r 1<i<r’
can also be described as algebras generated by {Egk)}]ffilq and {ng)}]ffilq subject to
the relations (2.6, 2.8) and (2.7, 2.9), respectively. T T

Remark B.5. Note the algebra isomorphisms Y~ (g) —> Y*(g)°P determined via

Fl(k) — Egk) (given an algebra A, we use A°P to denote the algebra with the oppo-
site multiplication).

For any coweight v of g, we define the subalgebras YUi (g) of the shifted Yangian Y, (g)
likewise. According to [FKPRW, Corollary 3.15], we have algebra isomorphisms for
any v:

~ k k
Yi(g) = Y*(@), EYi—EX,

(B.6)
Yo(@) > Y (@), FO s F0

Consider an N"-graded C-vector space

k=(kt,....k)eN"

where S,((g ) consists of [T;_, S(ki)-symmetric rational functions in the variables {x;  } { g{ff i.

We also fix a matrix of rational functions (Gij ()} =1 via:

N N
i’aj) =1+dia,’j

2z 2z

Gij(z) =1+ (B.8)

Let us define the shuffle product * on S@: given F € Sig), G e Ség) ,define FxG € Sg)ﬁ
via
1
(Fx GY (X115 ooy XL R 4015 e o5 X Ts v e X kptly) = o

1<i’'<r k’>ki/
kl-/ <k,5ki’+£i’

k<ki
xSym | F ({xi,k}ii; )G ({Xi/,k’}]f,-/fr ) : l_[ H i (Xik — Xir k)

1<i<r k<k;

(B.9)

Here, k! = H;Zl k;!, while the symmetrization of f € C({x; 1, ..., Xim 1<i<r) 18
defined via:
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Sym (f) ({xi 1+ - Xim; Yi<izr) =
ZZ: .f<{th(07~--ath(m0}1§i§r)-

(01,...,07)€S(m) X+ x 8 (m;)

This endows S'® with a structure of an associative C-algebra with the unit 1 € 0)

We are interested in a certain C-subspace of S'® defined by the pole and wheel condz—
tions:

e Wesay that F € S,(Cg) satisfies the pole conditions if

f(x11,~- s Xrk,)

l—[unordered Hk< (xl k=X, o)

F =

S(ky)x--xSky)
1<k<k;
 where f € (Cllxi 500) .

(B.10)

e We say that F € S,(Cg ) satisfies the wheel conditions if for any connected i — j, we
have: -

17({xtk})

Let S,Eg) C S,((g) denote the subspace of all elements F satisfying these two conditions

and set
(9) ._ (9)
59 = Ps?.
keNr

ga; =0. (B.I1)

(i1, X02,X135 0051, =gy > (W, w i, wH2;, o wdiay ), xj 1> wh—5+

It is straightforward to check that S® C S(® is x-closed. The resulting algebra (S (®), *)
is called the (rational) shuffle algebra of type g. It is related to Y*(g) via the embedding:

T:rie = S®, EM s xf for 1<i<rnk>1. (B.12)
In view of Remark B.5, we also get:
Yy (@ SOP, FV T for 1<i<r k=1 (B.I3)

Remark B.14. The above embeddings Y of (B.12, B.13) are expected to be actually al-
gebra isomorphisms, similar to the trigonometric counterpart as was recently established
in [NT]. This has been proved in (super version of) the type A in [T, §6-7].

The key result of this Appendix is the construction of the algebra homomorphisms
Fho oSO — A4 sOr ] (B.15)

compatible with Qé (B.3) with respect to the isomorphisms (B.6) and embeddings
(B.12,B.13). Tothisend, for 1 <i <rand 1 < ¢ < a;, we define:
[Tmi T1,20 Wiz = 3@ @) = pd))
di - Wie(2) 7
Zi(z+d) [T [1,20 W)z +di — §(af, &) — pd;)
Wi e(2)

Yie(z) =

Y] (2) = —

. (B.16)
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Theorem B.17.(a) The assignment

(')EN roa (t)
TONFRTISIED S 1 01 0 ERI It
m s em Dk i=1k=1p=1

mg )+, +m,(,r)—kr

xE [wi,k —(p— ])di] 1<i<r

lfkga,-_
1<p<m"
,

<TITT 11 &7 (i = (pr = DA = (i = (p2 = D))
i=1

=1k=1 1§P1<P2§m,(€i)

1<P2<m,(<)

x l_[ H 1_[ C;l<(wi,k1 —(p1 — DAi) — (Wi, — (p2 — 1)di))

i=1 1<k #kr<a; 1<[71<m(.)
=P ="k

I<ky<a; 1=P2 <m(12)

<IT TT T &'(@is = pr=Dd) = @k = (p2 = D))

j—i 1<ki <a; 1<p1<mg>
- = 1

x ]L[]"[um’?)} (B.18)
k=1

i=1

gives rise to the algebra homomorphism

3L 5@ — A (B.19)
Moreover, the composition
(B.6)
Yi(g) = Y*(g) RN s<9> 2% 4 (B.20)

coincides with the restriction of the homomorphism @f‘l (B.3) to the subalgebra

Yi(@) C Ya(g).
(b) The assignment

mmeN rooa

(t)
(¢),0p /
Sty ok 2 F > Z {HHHY (wi,k+(p—l)di)
mD s amB=k; - i=1k=1p=1

mg ey +m,(lr)—k,

xF {wi,k+pdi} I<i<r
1<k<a;

l<p<m]((l)
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r a;
<[ITT  T1T &' (ks padi) = i+ prd)
i=lk=1 1§P1<P2§m,(:>

1=pr=m}]

p
—1
X 1_[ H H Si; ((wi,kz +p2di) — (Wi, +P1di)>
i=1 1<k #kr<a; lfplfml(cil)
1<y <
I<ky=<aj '=P2=My,

[T TI I1 Cj§1<(Wj,k2 +p2dj) — (Wi, +Pldi))

Jj<i 1<ki<a; 1<p|<m£i)
<pr<mf.
r a; m(i)
<TIITer | @2
i=1k=1

gives rise to the algebra homomorphism

BL: 5@ A, (B.22)
Moreover, the composition
(B.6) . o
Y7 () => Y (g) — SO 5 4 (B.23)

coincides with the restriction of the homomorphism CD;_\-L (B.3) to the subalgebra
Y, (@) C Ya(g).

The proof is straightforward and is left to the interested reader. We note that a trigono-
metric type A counterpart of this result played a crucial role in [FT2], see Theorem 4.11
of loc.cit.

B.3. Application to the Lax matrices of types B and C. The key application of The-
orem B.17 to the main subject of the present paper is that it allows to obtain explicit
formulas for the matrix coefficients of EP (z), FP(z) featuring in our definition of the
Lax matrices Tp(z) (2.175). In type D, this recovers the formulas of Appendix A (which
were rather derived using the relations of Lemmas 2.79, 2.80, 2.96, 2.97), while in types
C, and B, this provides concise formulas (used in the proofs of Theorems 3.31, 4.31),
which are quite inaccessible if derived iteratively via Lemmas 3.11, 3.12 or 4.10, 4.11,
respectively.

Let g be either soy (N = 2r,2r + 1) or spy (N = 2r). Let X*(g) and X~ (g)
denote the subalgebras of the corresponding extended Drinfeld Yangian X (g), gener-

ated by {EV) 2] and (FO)F2]_ | respectively. Likewise, let X™*(g) and X"~ (g)

I<i<r 1<i<r’
denote the subalgebras of the corresponding extended RTT Yangian X™(g), generated
by {ei(? }]1‘;1 <j<N and { f j(ﬁ.) }]1‘;1 <j<N> respectively. Then, we have the following natural
algebra isomorphisms:

X" = X > Y, XMT(9) > X (@Y (9. (B.24)
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Let {ng)}kz.1 ._» and {F;’?}ki.1 ., denote the images of e(k) and f(k) in Y*(g) and

1<i<j<N 1<i<j<N
Y~ (g) under the composition maps of (B.24), respectively, and con51der their generating
series:

Eij(2) = Z E(k) 5 FuG) = Z F(k) -,

k>1 k=1
We conclude this Appendix by presenting explicit formulas for Y'(E;;(z)) and Y (F j; (z))
(combining which with Theorem B.17 recovers the Lax matrices Tp(z) of (2.175)). In
what follows, ¢; will denote the i-th coordinate vector: ¢; = (0,...,0,1,0,...,0) e N”
with 1 at the spoti.
Lemma B.25 (Type C;). Define the polynomial Q(z1, z2; w1, w2) via:®

Q(z1, 22: wi, w2) = 22122 + 2wiwy — (21 +22) (W1 + W) + 5. (B.26)

(a) We have the following equalities:

1 (sp
.. j— 2 . .
T(E;](Z)) = = = ISP '+§, , forl<i<j<r,
(z =5 —xi) [Tis (k1 — Xee1,1)
2 o
por) .
T<Eir’(2)) = | p— €Sc+lig, forl<i<r,
(z =5 = xi ) [ Gae1 — Xka1,1)
r—2 .
*(E () 2Q2xj—1,1 —xj1 — x,2) [TiZ; Q1 Xk,23 X1, 1, Xkr1,2)
( i ) - i1 , r—1 P <148 <ks<r
(z—5 —xi1) [Tz np§1+5i5k<r (X, p = Xk+1,p7)
(spo) . < .
€ S§i+4..+§‘,’,1+2g,-+4.4+2§,,1+§, forl <i<j<r
. )
(E,, (z)) 22z =i +2 —xi1 — xi2) [Ty Qa1 %23 Xk, 1, Xke1,2)
ii’ = N - 7
—1 —1 r—1 P <1+8k41
=5 —xi@—F —xi) [ [iase, " Ckp — Xirt,pr)
(spo) c <<
€ Syt ae, yve, forl<i=r
T(Ey () =
i1 . 1 r—2 .
2(0(z — 5=, xim1,15 Xi,1, Xi2) + *(2xz‘—1 1= xi1 — X%i2) [Ty OOk, 1, Xk,25 X1, 15 Xkt1,2)
i—1 P/ =148 <kl
(Z - lT X 1)(Z -7 T X, 2) H pr].;.ail:k:,q (xk,p - xk+1,p’)
(sp2) . .
S§,+ r+§, 142G+, 426146, forl<j<i<r,
T(Ej(2)) = 2 e str) forl <j<r
rj(2) ) = ; P Sjtter =J<r
(z=5 =20 [ Gkt — Xkar,1)
1 (s
p ..
T(Ei/_;/(z)) = - = - S§,+2’+§1 forl<j<i<r

(z+5=—r —Xi—l.l)l_[;;:zj(xk,l = Xk+1,1)
(b) Forany 1 < i < j < 2r, Y(Fji(2)) € §P2r).0P[[z=1]] is given by the same

formula (the expansion in z~' of the corresponding rational function in (a)) as
Y (Eij(2) € Sz ).

6 Note that Q(w,w — 1; w —1/2, z) = 0 in accordance with the wheel conditions (B.11).
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Lemma B.27 (Type B,).
(a) We have the following equalities:

1

T<Eff(z)) =-— = ey | forl<i<j<r+l,
(z— 5 = x,0) [Tici Gt — X110
—1
T(E ( )> [Tz (it — 22 — Dz — xe1 — 1)
iir(Z = —
" i — /<144 i
—1 1 7P =1H0k+1=
=5 —xD ][l l_[p§1+8k2j T (X, p = Xkt pr)
(50241) . .
€ Sgitlhg 142(s 4ty forl <i<j=<r
-1
T<E,A (Z)) [Tizi Gkt — xe2 — D2 — X1 — 1
i = - N " 7
—1 —1 -1’2
(z — lT - Xi,])(Z - ZT - x,',z) n;:i np§2 (xk,p — xk+1,p’)
(50241) .
€ Syt forl=i=<r
' -1
T(E (Z)> =5 —xic ) Tz G — %2 — Do — i1 — 1)
f_f/ = - - . .
—1 -1 —1 7P S 48k412i
(z— lT —xi,1)(z — IT — Xi2) szj l_[p§1+5k;,~ . (Xk,p = Xker1,p')
(502741) . .
€ S§j+.“+§,‘_1+2(§,-+“.+g,) forl<j<i=<r,
1
T(Ei, «/(Z)> - _
J T —
(z+ 5 —r —xim1,0) [T (a1 — xesn,1)

(5027+1) . .
€ S§i+._'+§i71 forl<j<i<r+l1.

(b) Forany 1 <i < j < 2r+1, Y(Fj;(z)) € S®2+D):°P[[z=1] i5 given by the
same formula (the expansion in z~' of the corresponding rational function in (a)) as
T(Eij(z)) € SEor+D[[z71]].

Inspecting the explicit formulas above, we obtain (cf. Remarks A.3, A.5 for the type D, ):

Corollary B.28.(a) In the type C,, we have (with ¢; € {£1} defined as in (3.5)):
Ei) =—aieEL),  F)=—eejF), Vi<i<j<o, (B29)

which imply the corresponding equalities for the matrix coefficients of EP (z), FP (z):

(D)1 (D)1 (D)1 (D)1 . .
¢j = Cifi¢yy, [ =—agify . VIsi<j=2r

(b) In the type B,, we have:

1 1 1 1 . .
E§j> - —Ei.,l?,, F§.i> — _F§,]?,, Vi<i<j<2r+l, (B.30)

which imply the corresponding equalities for the matrix coefficients of E D (2), F D (2):

D)1 _ (D)1 D)1 (D)1 .
€ =€y I __fi/,j’ , Vi<i<j<2r+l1.
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