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Abstract: Generalizing Frassek et al. (Adv. Math. 401, 108283 (2022). https://doi.
org/10.1016/j.aim.2022.108283), we construct a family of SO(2r), Sp(2r), SO(2r+1)
rational Lax matrices TD(z), polynomial in the spectral parameter z, parametrized by
�+-valued divisors D on P

1. To this end, we provide the RTT realization of the an-
tidominantly shifted extended Drinfeld Yangians of g = so2r , sp2r , so2r+1, and of their
coproduct homomorphisms.
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1. Introduction

1.1. Summary. The main results of the present paper are:

• The RTT realization of the antidominantly shifted (extended) Yangians associated
to the simple Lie algebras g of the classical types so2r , sp2r , so2r+1, generalizing
the recent isomorphisms of [JLM1] in the non-shifted case. This naturally equips
those algebras with the coproduct homomorphisms, which as we show do coincide
with those of [FKPRW] (obtained by rather lengthy computations in the Drinfeld
realization).

• The construction of a family of (rational) Lax matrices, regular in the spectral
parameter, of the corresponding type, parametrized by the divisors on the projective
line P

1 with coefficients in �+, the dominant integral cone of the coweight lattice of
g. In the simplest cases, this recovers recent constructions in the physics literature
[IKK,F,KK].

Our exposition follows closely that of our previous joint work with V. Pestun [FPT],
where both above constructions were carried out for g = sln (extended version corre-
sponding to gln).

The original definition of Yangians Y (g) associated to any simple Lie algebra g is
due to [D1], where these algebras are realized as Hopf algebras with a finite set of
generators. The representation theory of such algebras is best developed using their
alternative Drinfeld realization of these algebras proposed in [D2], though the Hopf
algebra structure is much more involved in this presentation (e.g. the coproduct formula
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has been known since the 90s, see [KT, (2.8)–(2.11)], but its proof has never appeared
in the literature until the very recent paper [GNW]).

For g = gln , a closely related algebra was studied earlier in the work of L. Faddeev’s
school (see e.g. [FRT]), where the algebra generators were encoded into an n×n square
matrix T (z) subject to a single RTT relation

R12(z − w)T1(z)T2(w) = T2(w)T1(z)R12(z − w) (1.1)

involving the rational R-matrix R(z) satisfying the Yang-Baxter equation

R12(z)R13(z + w)R23(w) = R23(w)R13(z + w)R12(z) (1.2)

(note that the sln-version is recovered by imposing an extra relation qdet T (z) = 1).
The Hopf algebra structure is extremely simple in this RTT realization, which is suitable
both for the development of the representation theory and study of the corresponding
integrable systems.

An explicit isomorphism from the new Drinfeld to the RTT realizations of type A Yan-
gians is constructed using the Gauss decomposition of T (z), a complete proof provided
in [BK1] (the trigonometric version of this result established earlier in [DF]). A sim-
ilar explicit isomorphism for the remaining classical types B,C, D was only recently
provided in [JLM1], where it was again constructed using the Gauss decomposition
of the generating matrices T (z) which are subject to the RTT relations (1.1) with the
rational solutions of (1.2) first discovered in [ZZ]. However, let us emphasize that the
formulas recovering the matrix T (z) through the Drinfeld currents in B,C, D types are
significantly harder than their counterparts in type A, see our Lemmas 2.77, 2.79, 2.80,
2.96, 2.97, 3.11, 3.12, 4.10, 4.11, generalizing partial results of [JLM1]. We note that a
non-constructive existence of such an isomorphism for any g was noted by V. Drinfeld
back in 80s, while a detailed proof of this result was only recently provided in [Wen].

In the present paper, we are mostly interested with the shifted versions of the algebras
above. Historically, the shifted Yangians Yν(g) were first introduced for g = gln and
dominant shifts ν in [BK2], where their certain quotients were identified with type
A finite W -algebras, the latter being natural quantizations of type A Slodowy slices.
This construction was further generalized to any semisimple g still with dominant shifts
ν ∈ �+ in [KWWY], where it was shown that their “GKLO-type” quotients (called
truncated shifted Yangians) quantize slices in the affine Grassmannians. To this end, the
authors constructed a family of algebra homomorphisms

�
λ,x
ν : Yν(g) −→ A (1.3)

to the (localized) oscillator algebra A (generalizing the construction of [GKLO] for
ν = 0) parametrized by λ ∈ �+ and an associated collection of points x ∈ C

N . The
generalization to arbitrary shifts ν ∈ � was finally carried out in [BFNb, Appendix B]
for simply-laced g and later in [NW, §5] for non-simply-laced types, where it was also
shown (using earlier arguments of A. Weekes) that their images quantize generalized
slices in the affine Grassmannians.

In contrast to [BK2,KWWY], we consider the opposite case of antidominantly shifted
Yangians (note that any shifted Yangian Yν(g) may be embedded into the antidomi-
nantly shifted one Y−μ(g), μ ∈ �+, via the shift homomorphisms of [FKPRW]). For
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g = so2r , sp2r , so2r+1, we introduce the shifted extended Drinfeld Yangians Xμ(g)
related to Yν(g) via isomorphisms

Xμ(g) � Yμ̄(g) ⊗ Z Xμ(g) (1.4)

where the center Z Xμ(g) of Xμ(g) can be explicitly described via a central Cartan
current. For μ ∈ �+ and g as above, we also introduce the shifted extended RTT
Yangians X rtt−μ(g), whose generators are encoded in a single matrix T (z) (the shift is
reflected in the powers of z) subject to the relation (1.1). Based on and generalizing
[JLM1], we construct isomorphisms

ϒ−μ : X−μ(g) ∼−→ X rtt−μ(g) for any μ ∈ �+. (1.5)

The construction of ϒ−μ : X−μ(g) � X rtt−μ(g) is exactly the same as in [JLM1], but
the proof of its injectivity is different, since the arguments of loc.cit. do not apply in the
shifted setup.

To this end, we construct a family ofA((z−1))-valued Laxmatrices TD(z), parametrized
by �+-valued divisors D on the projective line P

1, which can be equivalently thought of
as algebra homomorphisms �D : X rtt−μ(g) → A with μ = D|∞, the coefficient of [∞].
The compositions

�D = �D ◦ ϒ−μ : X−μ(g) −→ A (1.6)

coincide with extended versions of (1.3). Combining this with the recent result of [W],
asserting that the intersection of kernels of (1.3) as λ varies is trivial, implies the injec-
tivity of ϒ−μ.

The aforementioned Lax matrices TD(z) are defined explicitly by providing the lower-
triangular, diagonal, and upper-triangular factors in their Gauss decomposition. The
exact defining formulas are exactly engineered (utilizing the new explicit formulas for
the inverse of the isomorphismϒ0 constructed in [JLM1]) to allow usmatch the resulting
homomorphisms �D of (1.6) with extended versions of (1.3). Meanwhile, the fact that
thus constructed matrices are Lax, i.e. satisfy (1.1), follows from a simple renormalized
limit argument as we shall explain now (expected from the physics of N = 2 ADE
quiver gauge theories as explained in [FPT, p. 3]). To this end, we show that if the
divisor D contains a summand ωi [x] (with x ∈ P

1 and ωi being the i-th fundamental
coweight of g) and D′ is defined as D′ = D − ωi [x] + ωi [∞], then

TD′(z) = lim
x→∞

{
(−x)ωi · TD(z)

}
(1.7)

realizing TD′(z) as an x → ∞ limit of TD(z) multiplied on the left by a z-independent
diagonal factor (−x)ωi , the latter preserving the RTT relation (1.1). Therefore, it suffices
to prove that TD(z) satisfies the RTT relation for the divisors D whose support does
not contain ∞ ∈ P

1. However, the latter follows from the fact that ϒ0 is indeed an
isomorphism as proved in [JLM1].

Similar to the type A case treated in [FPT], the Laxmatrices TD(z) are actually regular in
the spectral parameter z (up to a rational factor). This provides a shortcut to the explicit
formulas of all linear (in z) Lax matrices TD(z), which we classify explicitly for each
of the B,C, D types. We also show that some of our simplest linear and quadratic Lax
matrices, after nontrivial canonical transformations, recover the recent constructions in
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the physics literature [IKK,F,KK] (see also [R2]). The latter results were obtained by
making an ansatz for the Lax matrices and subsequently solving the conditions that arise
from the RTT relation. We would like to point out that our formalism provides a recipe
to write down Lax matrices of any degree in the spectral parameter (with the leading
term not necessarily proportional to the identity matrix) without making such an ansatz.

The algebras X rtt−μ(g) are naturally equipped with coassociative coproduct homomor-
phisms


rtt−μ1,−μ2
: X rtt−μ1−μ2

(g) −→ X rtt−μ1
(g) ⊗ X rtt−μ2

(g), T (z) 
→ T (z) ⊗ T (z). (1.8)

Evoking the isomorphisms (1.5) and the embeddings Y−μ̄(g) ↪→ X−μ(g), cf. (1.4), we
obtain


−ν1,−ν2 : Y−ν1−ν2(g) −→ Y−ν1(g) ⊗ Y−ν2(g). (1.9)

We show that the homomorphisms (1.9) precisely coincide with the coproduct homo-
morphisms of [FKPRW, Theorem 4.8] provided in loc.cit. via lengthy formulas (but
suitable for any g).

We note that both the isomorphism (1.5) and the identifications of (1.8, 1.9) with
[FKPRW] were conjectured recently (for a general g) in the physics literature
[CGY, §7–8] (see also [DG]).

1.2. Outline of the paper. The structure of the present paper is the following:

• In Section 2, we present our results relevant to the classical type Dr (g = so2r ) in
full details.

• In Section 3, we provide our results relevant to the classical type Cr (that is, for
g = sp2r ). Since this is very similar to the type Dr , we only highlight the few technical
differences.

• In Section 4, we provide our results relevant to the classical type Br (that is, for
g = so2r+1). Since this is very similar to the type Dr , we only highlight the few
technical differences.

• In Section 5, we briefly discuss the further directions.
• In Appendix A, we provide explicit formulas for the Lax matrices in type Dr .
• In Appendix B, we provide the shuffle algebra realization of the key homomor-
phisms (1.3), which allows us to derive the explicit formulas for the Lax matrices in
types Cr and Br .

2. Type D

Consider the lattice �̄∨ = ⊕r
j=1 Zε∨

j , endowed with the bilinear form with
(ε∨

i , ε∨
j ) = δi, j . We realize the simple positive roots {α∨

i }ri=1 of the Lie algebra so2r
via:

α∨
1 = ε∨

1 − ε∨
2 , α∨

2 = ε∨
2 − ε∨

3 , . . . , α∨
r−1 = ε∨

r−1 − ε∨
r , α∨

r = ε∨
r−1 + ε∨

r , (2.1)

so that the Cartan matrix A = (ai j )ri, j=1 is symmetric and is given by ai j = (α∨
i , α

∨
j ).
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2.1. Classical (unshifted) story. To motivate our constructions in the shifted setting, as
well as to carry out the explicit computation of the corresponding Lax matrices, we start
by recalling the unshifted setup.

2.1.1. Drinfeld Yangian Y (so2r ) and its extended version X (so2r ) TheDrinfeld Yangian
of so2r , denoted by Y (so2r ), is the associative C-algebra generated by
{E(k)

i ,F(k)
i ,H(k)

i }k≥1
1≤i≤r with the following defining relations:1

[H(k)
i ,H(�)

j ] = 0, (2.2)

[E(k)
i ,F(�)

j ] = δi, j H
(k+�−1)
i , (2.3)

[H(k′+1)
i ,E(�)

j ] − [H(k′)
i ,E(�+1)

j ] = (α∨
i , α

∨
j )

2
{H(k′)

i ,E(�)
j }, (2.4)

[H(k′+1)
i ,F(�)

j ] − [H(k′)
i ,F(�+1)

j ] = − (α∨
i , α

∨
j )

2
{H(k′)

i ,F(�)
j }, (2.5)

[E(k+1)
i ,E(�)

j ] − [E(k)
i ,E(�+1)

j ] = (α∨
i , α

∨
j )

2
{E(k)

i ,E(�)
j }, (2.6)

[F(k+1)
i ,F(�)

j ] − [F(k)
i ,F(�+1)

j ] = − (α∨
i , α

∨
j )

2
{F(k)

i ,F(�)
j }, (2.7)

∑
σ∈S(1−ai j )

[E(kσ(1))

i , [E(kσ(2))

i , · · · , [E(kσ(1−ai j ))

i ,E(�)
j ] · · · ]] = 0 for i �= j, (2.8)

∑
σ∈S(1−ai j )

[F(kσ(1))

i , [F(kσ(2))

i , · · · , [F(kσ(1−ai j ))

i ,F(�)
j ] · · · ]] = 0 for i �= j, (2.9)

for i, j ∈ {1, . . . , r}, k, �, ks ∈ Z>0, and k′ ∈ Z≥0, where we set:

H(0)
i = 1 and {a, b} = ab + ba. (2.10)

Considering the generating series:

Ei (z) :=
∑
k≥1

E(k)
i z−k, Fi (z) :=

∑
k≥1

F(k)
i z−k,

Hi (z) :=
∑
k≥0

H(k)
i z−k = 1 +

∑
k≥1

H(k)
i z−k, (2.11)

the defining relations (2.2)–(2.9) are easily seen to be equivalent to
(cf. [JLM1, (6.1)–(6.5)]):

[Hi (z),H j (w)] = 0, (2.12)

[Ei (z),F j (w)] = −δi, j
Hi (z) − Hi (w)

z − w
, (2.13)

[Hi (z),E j (w)] = − (α∨
i , α

∨
j )

2

{Hi (z),E j (z) − E j (w)}
z − w

, (2.14)

1 We note that our conventions k ≥ 1 instead of k ≥ 0 are in charge of perceiving the Yangian as a QFSHA
(quantum formal series Hopf algebra) which is related to a more standard viewpoint of it as aQUEA (quantum
universal enveloping algebra) via the so-called Drinfeld-Gavarini quantum duality principle, see [D3] and [G].
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[Hi (z),F j (w)] = (α∨
i , α

∨
j )

2

{Hi (z),F j (z) − F j (w)}
z − w

, (2.15)

[Ei (z),E j (w)] + [E j (z),Ei (w)] = − (α∨
i , α

∨
j )

2

{Ei (z) − Ei (w),E j (z) − E j (w)}
z − w

,

(2.16)

[Fi (z),F j (w)] + [F j (z),Fi (w)] = (α∨
i , α

∨
j )

2

{Fi (z) − Fi (w),F j (z) − F j (w)}
z − w

,

(2.17)∑
σ∈S(1−ai j )

[Ei (zσ(1)), [Ei (zσ(2)), · · · , [Ei (zσ(1−ai j )),E j (w)] · · · ]] = 0 for i �= j,

(2.18)∑
σ∈S(1−ai j )

[Fi (zσ(1)), [Fi (zσ(2)), · · · , [Fi (zσ(1−ai j )),F j (w)] · · · ]] = 0 for i �= j,

(2.19)

Likewise, following [JLM1, Theorem 5.14], the extended Drinfeld Yangian of so2r , de-
noted by X (so2r ), is defined as the associative C-algebra generated by
{E (k)

i , F (k)
i }k≥1

1≤i≤r ∪ {D(k)
i }k≥1

1≤i≤r+1 with the following defining relations:

[Di (z), Dj (w)] = 0, (2.20)

[Ei (z), Fj (w)] = −δi, j
Ki (z) − Ki (w)

z − w
, (2.21)

[Di (z), E j (w)] = (ε∨
i , α∨

j )
Di (z)(E j (z) − E j (w))

z − w
if i ≤ r, (2.22)

[Dr+1(z), E j (w)] =

⎧⎪⎨
⎪⎩

−(ε∨
r , α∨

r )
Dr+1(z)(Er (z)−Er (w))

z−w
if j = r

Dr+1(z)(Er−1(z)−Er−1(w))
z−w

if j = r − 1
0 if j < r − 1

, (2.23)

[Di (z), Fj (w)] = −(ε∨
i , α∨

j )
(Fj (z) − Fj (w))Di (z)

z − w
if i ≤ r, (2.24)

[Dr+1(z), Fj (w)] =

⎧⎪⎨
⎪⎩

(ε∨
r , α∨

r )
(Fr (z)−Fr (w))Dr+1(z)

z−w
if j = r

− (Fr−1(z)−Fr−1(w))Dr+1(z)
z−w

if j = r − 1
0 if j < r − 1

, (2.25)

[Ei (z), Ei (w)] = − (α∨
i , α

∨
i )

2

(Ei (z) − Ei (w))2

z − w
, (2.26)

z[E◦
i (z), E j (w)] − w[Ei (z), E

◦
j (w)] = (α∨

i , α
∨
j ) Ei (z)E j (w) for i �= j, (2.27)

[Fi (z), Fi (w)] = (α∨
i , α

∨
i )

2

(Fi (z) − Fi (w))2

z − w
, (2.28)

z[F◦
i (z), Fj (w)] − w[Fi (z), F◦

j (w)] = −(α∨
i , α

∨
j ) Fj (w)Fi (z) for i �= j, (2.29)

∑
σ∈S(1−ai j )

[Ei (zσ(1)), [Ei (zσ(2)), · · · , [Ei (zσ(1−ai j )), E j (w)] · · · ]] = 0 for i �= j,

(2.30)
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∑
σ∈S(1−ai j )

[Fi (zσ(1)), [Fi (zσ(2)), · · · , [Fi (zσ(1−ai j )), Fj (w)] · · · ]] = 0 for i �= j,

(2.31)

where the generating series are defined via:

Ei (z) :=
∑
k≥1

E (k)
i z−k, E◦

i (z) :=
∑
k≥2

E (k)
i z−k,

Fi (z) :=
∑
k≥1

F (k)
i z−k, F◦

i (z) :=
∑
k≥2

F (k)
i z−k,

(2.32)

as well as:

Di (z) :=
∑
k≥0

D(k)
i z−k = 1 +

∑
k≥1

D(k)
i z−k,

Ki (z) :=
{
Di (z)−1Di+1(z) if i < r
Dr−1(z)−1Dr+1(z) if i = r

.

(2.33)

Let us define the elements {C (k)
r }k≥1 of X (so2r ) via:

Cr (z) = 1 +
∑
k≥1

C (k)
r z−k :=

r−1∏
i=1

Di (z + i − r)

Di (z + i − r + 1)
· Dr (z)Dr+1(z). (2.34)

The following result follows from [JLM1, Main Theorem, Theorem 5.8]:

Lemma 2.35. The elements {C (k)
r }k≥1 are in the center of X (so2r ).

This result is actually an immediate corollary of the defining relations (2.20, 2.22–2.25),
as the proof below shows. This will allow us to generalize it to the shifted setup in
Subsection 2.2.1.

Proof. Cr (z) obviously commutes with all {Di (w)}r+1i=1, due to (2.20). We shall now
verify that it also commutes with all {Ei (w)}ri=1 (cf. [BK1, Theorem 7.2] for the type
A counterpart); the commutativity with {Fi (w)}ri=1 is completely analogous and is left
to the interested reader.

• For i ≤ r − 2, the relations (2.22, 2.23) imply:

(z − w + 1)Di (z)Ei (w) − Di (z)Ei (z) = (z − w)Ei (w)Di (z), (2.36)

(z − w − 1)Di+1(z)Ei (w) + Di+1(z)Ei (z) = (z − w)Ei (w)Di+1(z). (2.37)

Setting w = z − 1 in (2.37), we find:

Ei (z − 1)Di+1(z) = Di+1(z)Ei (z). (2.38)

Now, calculating (z − w)Ei (w)Di (z)Di+1(z + 1) using (2.36)–(2.38), we find that it
equals (z − w)Di (z)Di+1(z + 1)Ei (w). Hence, Ei (w) commutes with
Di (z)Di+1(z+1). But it also commuteswith Dj (z) for j �= i, i+1, due to (2.22, 2.23).
Thus, [Cr (z), Ei (w)] = 0 for i ≤ r − 2.



Rational Lax matrices from shifted Yangians: BCD types

• For i = r − 1, applying the same arguments we see that Er−1(w) commutes both
with Dr−1(z)Dr (z + 1) and Dr+1(z)Dr (z + 1), hence, it also commutes with

Dr−1(z − 1)

Dr−1(z)
Dr (z)Dr+1(z) = (Dr−1(z − 1)Dr (z)) · (Dr (z + 1)Dr+1(z))

Dr−1(z)Dr (z + 1)
.

As [Er−1(w), Dj (w)] = 0 for j < r − 1 by (2.22), we thus get the equality
[Cr (z), Er−1(w)] = 0.

• For i = r , applying the same arguments we see that Er (w) commutes with
Dr (z)Dr+1(z + 1) as well as with Dr−1(z)Dr+1(z + 1), hence, it also commutes
with

Dr−1(z − 1)

Dr−1(z)
Dr (z)Dr+1(z) = (Dr−1(z − 1)Dr+1(z)) · (Dr (z)Dr+1(z + 1))

Dr−1(z)Dr+1(z + 1)
.

As [Er (w), Dj (w)] = 0 for j < r − 1 by (2.22), we thus get the equality
[Cr (z), Er (w)] = 0. ��

On the other hand, comparing the defining relations of Y (so2r ) and X (so2r ), it is easy
to check (see [JLM1, Proposition 6.2]) that there is a natural homomorphism

ι0 : Y (so2r ) −→ X (so2r ), (2.39)

determined by:

Ei (z) 
→
{
Ei (z + i−1

2 ) if i < r
Er (z + r−2

2 ) if i = r
, Fi (z) 
→

{
Fi (z + i−1

2 ) if i < r
Fr (z + r−2

2 ) if i = r
,

Hi (z) 
→
{
Di (z + i−1

2 )−1Di+1(z + i−1
2 ) if i < r

Dr−1(z + r−2
2 )−1Dr+1(z + r−2

2 ) if i = r
.

(2.40)

Lemma 2.41. ι0 of (2.39) is an embedding and we have a tensor product algebra de-
composition:

X (so2r ) � Y (so2r ) ⊗C C[{C (k)
r }k≥1]. (2.42)

Proof. Given an abstract polynomial algebraB = C[{D(k)
i }k≥1

1≤i≤r+1], define the elements

{D̄(k)
i }k≥1

1≤i≤r and {C (k)
r }k≥1 of B via

D̄i (z) := 1 +
∑
k≥1

D̄(k)
i z−k = Di (z)

−1Di+1(z), 1 ≤ i < r,

D̄r (z) := 1 +
∑
k≥1

D̄(k)
r z−k = Dr−1(z)

−1Dr+1(z),

Cr (z) := 1 +
∑
k≥1

C (k)
r z−k =

r−1∏
i=1

Di (z + i − r)

Di (z + i − r + 1)
· Dr (z)Dr+1(z),

where Di (z) := 1 +
∑

k≥1 D
(k)
i z−k . It is clear that {D̄(k)

i }k≥1
1≤i≤r ∪ {C (k)

r }k≥1 provide an
alternative collection of generators of the polynomial algebra B, so that we have:

B � C[{C (k)
r }k≥1] ⊗C C[{D̄(k)

i }k≥1
1≤i≤r ].
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Applying this in our setup, we get a tensor product decomposition of vector spaces:

X (so2r ) � Z ⊗C X ′(so2r ), (2.43)

where Z is a C-subalgebra generated by {C (k)
r }k≥1 and X ′(so2r ) is the C-subalgebra

generated by {E (k)
i , F (k)

i , D̄(k)
i }k≥1

1≤i≤r . Moreover, the defining relations (2.20)–(2.25)
are equivalent to Z being central (as explained above) and the commutation relations
between D̄(k)

i and E (k)
i , F (k)

i exactly matching those of Y (so2r ) through (2.40). Thus, ι0
of (2.39, 2.40) is indeed injective, and furthermore (2.43) precisely recovers the tensor
product algebra decomposition (2.42). ��

2.1.2. RTT Yangian Y rtt(so2r ) and its extended version X rtt(so2r ) It will be convenient
to use the following notations:

N = 2r, κ = r − 1,

i ′ = N + 1 − i for 1 ≤ i ≤ N .
(2.44)

Following [ZZ], we consider the rational R-matrix R(z) given by:

R(z) = Id +
P

z
− Q

z + κ
(2.45)

with P,Q ∈ EndC
N ⊗ EndC

N defined via:

P =
N∑

i, j=1

Ei j ⊗ E ji , Q =
N∑

i, j=1

Ei j ⊗ Ei ′ j ′ . (2.46)

We note the following relations:

P2 = Id, Q2 = NQ, PQ = QP = Q,

which imply that R(z) of (2.45) satisfies the Yang-Baxter equation with a spectral
parameter:

R12(z)R13(z + w)R23(w) = R23(w)R13(z + w)R12(z). (2.47)

The extended RTT Yangian of so2r , denoted by X rtt(so2r ), is the associative C-algebra
generated by {t (k)i j }k≥1

1≤i, j≤N with the following defining relation (the so-called RTT rela-
tion):

R12(z − w)T1(z)T2(w) = T2(w)T1(z)R12(z − w), (2.48)

where T (z) ∈ X rtt(so2r )[[z−1]] ⊗C EndC
N is defined via:

T (z) =
N∑

i, j=1

ti j (z) ⊗ Ei j with ti j (z) :=
∑
k≥0

t (k)i j z−k = δi, j +
∑
k≥1

t (k)i j z−k, (2.49)

where we set t (0)i j = δi, j . Thus, (2.48) is an equality in

X rtt(so2r )[[z−1, w−1]] ⊗C (EndC
N )⊗2, which can be explicitly written as:



Rational Lax matrices from shifted Yangians: BCD types

[ti j (z), tk�(w)] = 1

z − w

(
tk j (w)ti�(z) − tk j (z)ti�(w)

)

+
1

z − w + κ

⎛
⎝δk,i ′

N∑
p=1

tpj (z)tp′�(w) − δ�, j ′
N∑
p=1

tkp′(w)tip(z)

⎞
⎠ .

(2.50)

These formulas immediately imply the following simple result, which will be needed
later:

Corollary 2.51. If T◦(z) satisfies (2.48) and T = diag(t1, . . . , t2r ) is a diagonal z-
independent matrix such that t1t2r = t2t2r−1 = . . . = tr tr+1, then T̄◦(z) := T · T◦(z)
also satisfies (2.48).

The RTT Yangian of so2r , denoted by Y rtt(so2r ), is the subalgebra of X rtt(so2r ) which
consists of the elements stable under the automorphisms:

μ f : T (z) 
→ f (z)T (z), ∀ f (z) = 1 + f1z
−1 + f2z

−2 + . . . ∈ C[[z−1]]. (2.52)

At the same time, Y rtt(so2r ) may also be viewed as a quotient of X rtt(so2r ). To this
end, we recall the following tensor product decomposition (see [AMR, Theorem 3.1,
Corollary 3.9]):

X rtt(so2r ) � Z X rtt(so2r ) ⊗C Y rtt(so2r ), (2.53)

where Z X rtt(so2r ) is the center of X rtt(so2r ). Explicitly, Z X rtt(so2r ) is a polynomial
algebra in the coefficients {z(k)

N }k≥1 of the series

zN (z) = 1 +
∑
k≥1

z(k)
N z−k, (2.54)

determined from (with IN denoting the N × N identity matrix):

T ′(z − κ)T (z) = T (z)T ′(z − κ) = zN (z)IN , (2.55)

where the prime denotes the matrix transposition along the antidiagonal, that is:

(X ′)i j = X j ′i ′ for any N × N matrix X. (2.56)

Therefore, the RTT Yangian Y rtt(so2r ) may also be realized as a quotient of X rtt(so2r )
by:

zN (z) = 1 +
∑
k≥1

bkz
−k for any collection of bk ∈ C, (2.57)

though it is common ([AMR, Corollary 3.2]) to choose b≥1 = 0, so that (2.57) reads
zN (z) = 1.
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2.1.3. FromRTT toDrinfeld realization Consider theGauss decompositionof thematrix
T (z) of (2.49):

T (z) = F(z) · H(z) · E(z), (2.58)

where H(z) is diagonal:

H(z) =

⎛
⎜⎜⎝

h1(z) 0 · · · 0
0 h2(z) · · · 0
...

. . .
. . .

...

0 · · · 0 hN (z)

⎞
⎟⎟⎠ , (2.59)

F(z) is lower-triangular:

F(z) =

⎛
⎜⎜⎜⎝

1 0 · · · 0

f2,1(z) 1 . . .
...

...
. . .

. . . 0
fN ,1(z) · · · fN ,N−1(z) 1

⎞
⎟⎟⎟⎠ , (2.60)

and E(z) is upper-triangular:

E(z) =

⎛
⎜⎜⎜⎝

1 e1,2(z) · · · e1,N (z)

0 1 . . .
...

...
. . .

. . . eN−1,N (z)
0 · · · 0 1

⎞
⎟⎟⎟⎠ . (2.61)

The following explicit identification of the Drinfeld and RTT extended Yangians of so2r
constitutes the key result of [JLM1]:

Theorem 2.62 ([JLM1, Theorem 5.14]). There is a C-algebra isomorphism:

ϒ0 : X (so2r )
∼−→ X rtt(so2r ), (2.63)

defined by:

Ei (z) 
→
{
ei,i+1(z) if i < r
er−1,r+1(z) if i = r

, Fi (z) 
→
{
fi+1,i (z) if i < r
fr+1,r−1(z) if i = r

(2.64)

and

D j (z) 
→ h j (z) for 1 ≤ j ≤ r + 1. (2.65)

Combining the Theorem above with Lemma 2.41, we obtain the following explicit
identification of the Drinfeld and RTT Yangians of so2r :

Theorem 2.66 ([JLM1, Main Theorem]). The composition of the algebra embedding
ι0 (2.39) and the algebra isomorphismϒ0 (2.63) gives rise to aC-algebra isomorphism:

ϒ0 ◦ ι0 : Y (so2r )
∼−→ Y rtt(so2r ).
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Explicitly, it is given by:

Ei (z) 
→
{
ei,i+1(z + i−1

2 ) if i < r
er−1,r+1(z + r−2

2 ) if i = r
,

Fi (z) 
→
{
fi+1,i (z + i−1

2 ) if i < r
fr+1,r−1(z + r−2

2 ) if i = r
,

Hi (z) 
→
{
hi (z + i−1

2 )−1hi+1(z + i−1
2 ) if i < r

hr−1(z + r−2
2 )−1hr+1(z + r−2

2 ) if i = r
.

(2.67)

Remark 2.68. (a) We note that our R-matrix R(z) of (2.45) is related to the one of
[JLM1, (2.6)], to be denoted by RJLM(z), via R(z) = RJLM(−z). Therefore, our matrix
T (z) of (2.49) is related to the one of [JLM1, (2.10)], to be denoted by T JLM(z), via
T (z) = T JLM(−z). This explains the sign difference between our relations (2.21)–(2.29)
and those of [JLM1, Theorem 5.14].
(b) Accordingly, our formulas (2.67) agree with those of [JLM1], once we identify
the generating series Ei (z),Fi (z),Hi (z) of Y (so2r ) with ξ−

i (−z), ξ+i (−z), κi (−z) of
[JLM1, (1.5)], respectively.

Remark 2.69. Evoking the series Cr (z) of (2.34) and zN (z) of (2.54), we note that:

zN (z) =
r−1∏
i=1

hi (z + i − r)

hi (z + i − r + 1)
· hr (z)hr+1(z) = ϒ0(Cr (z)) (2.70)

with the first equality due to [JLM1, Theorem 5.8]. Combining (2.70) with Theo-
rems 2.62, 2.66, Lemma 2.41, and the isomorphism Z X rtt(so2r ) � C[{z(k)

N }k≥1], we
see that the center of Y (so2r ) is trivial, while the center of X (so2r ) is a polynomial
algebra in {C (k)

r }k≥1.

2.1.4. From Drinfeld to RTT realization To simplify some of the upcoming formulas,
let us introduce the following notations:

ei (z) =
∑
k≥1

e(k)
i z−k :=

{
ei,i+1(z) if i < r
er−1,r+1(z) if i = r

,

fi (z) =
∑
k≥1

f (k)
i z−k :=

{
fi+1,i (z) if i < r
fr+1,r−1(z) if i = r

.

(2.71)

According to Theorem 2.62, the coefficients of {ei (z), fi (z)}ri=1 ∪ {h j (z)}r+1j=1 generate

the algebra X rtt(so2r ). In this Subsection, we record the explicit formulas (those of
[JLM1] as well as some new ones) for all other entries of the matrices F(z), H(z), E(z)
in (2.58)–(2.61).

But first let us recall the key ingredient of [JLM1]: the algebra embeddings
X rtt(so2(r−s)) ↪→ X rtt(so2r ) for any 0 ≤ s < r . To this end, consider the following
(2r − 2s) × (2r − 2s) submatrices:

H [s](z) =

⎛
⎜⎜⎝

hs+1(z) 0 · · · 0
0 hs+2(z) · · · 0
...

. . .
. . .

...

0 · · · 0 h(s+1)′(z)

⎞
⎟⎟⎠ , (2.72)
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F [s](z) =

⎛
⎜⎜⎜⎝

1 0 · · · 0

fs+2,s+1(z) 1 . . .
...

...
. . .

. . . 0
f(s+1)′,s+1(z) · · · f(s+1)′,(s+2)′(z) 1

⎞
⎟⎟⎟⎠ , (2.73)

E [s](z) =

⎛
⎜⎜⎜⎝

1 es+1,s+2(z) · · · es+1,(s+1)′(z)

0 1 . . .
...

...
. . .

. . . e(s+2)′,(s+1)′(z)
0 · · · 0 1

⎞
⎟⎟⎟⎠ . (2.74)

Then, according to [JLM1, Proposition 4.1], the matrix

T [s](z) := F [s](z) · H [s](z) · E [s](z) (2.75)

coincides with the image of the corresponding T -matrix of X rtt(so2(r−s)) under the
embedding X rtt(so2(r−s)) ↪→ X rtt(so2r ) of [JLM1, Theorem 3.7] constructed using the
quasideterminants. While we omit the details of the latter construction, but let us record
an important corollary that provides a powerful “rank-reduction” tool that will be used
through the rest of this Subsection:

Corollary 2.76 ([JLM1, Corollary 4.2]). The subalgebra of X rtt(so2r ) generated by
the coefficients of all matrix coefficients of the matrix T [s](z) (2.75) is isomorphic to
X rtt(so2(r−s)).

• Matrix H(z) explicitly.

Lemma 2.77. For 1 ≤ i ≤ r − 1, we have:

hi ′(z) = 1

hi (z + i − r + 1)
·

r−1∏
j=i+1

h j (z + j − r)

h j (z + j − r + 1)
· hr (z)hr+1(z). (2.78)

Proof. For i = 1, this follows from (2.70) combinedwith the equality hN (z) = zN (z)
h1(z−r+1)

of [JLM1, (5.14)] (obtained by comparing the (N , N ) matrix coefficients of both sides
of the equality T ′(z − κ) = zN (z)T (z)−1). The general case follows now from Corol-
lary 2.76. ��

• Matrix E(z) explicitly.

The following result is essentially due to [JLM1]:2

Lemma 2.79. (a) er,r+1(z) = 0.
(b) er,(r−1)′(z) = −er (z).
(c) e(i+1)′,i ′(z) = −ei (z + i − r + 1) for 1 ≤ i ≤ r − 1.

(d) ei, j+1(z) = −[ei, j (z), e(1)
j ] for 1 ≤ i < j ≤ r − 1.

(e) ei, j ′(z) = [ei,( j+1)′(z), e(1)
j ] for 1 ≤ i < j ≤ r − 1.

(f) ei,r ′(z) = −[ei,r−1(z), e
(1)
r ] for 1 ≤ i ≤ r − 2.

(g) ei ′, j ′(z) = [ei ′,( j+1)′(z), e(1)
j ] for 1 ≤ j ≤ i − 2 ≤ r − 2.

2 Note a sign and index errors in the equality from part (f) as stated in [JLM1].
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Proof. (a, b) follow from Corollary 2.76 and their validity for r = 2 (the latter follow
from the results of [AMR, §4] in a straightforward way, see [JLM1, Lemma 5.3]).

(c) is [JLM1, Proposition 5.7] (due to Corollary 2.76, it suffices to prove it for i = 1
case, in which case it follows by comparing the (N − 1, N ) matrix coefficients of both
sides of the equality T ′(z − κ) = T (z)−1zN (z) and using the equality h1(z)e1(z) =
e1(z + 1)h1(z), a result of applying (2.50) to the computation of [t11(z), t12(z + 1)] =
[h1(z), h1(z + 1)e1,2(z + 1)]).

(d, e, f) are [JLM1, Lemma 5.15] (due to Corollary 2.76, it suffices to prove them for
i = 1, in which case they follow by evaluating the w−1-coefficients in the expressions
[t1 j (z), t j, j+1(w)], [t1,( j+1)′(z), t( j+1)′, j ′(w)], [t1,r−1(z), tr−1,r+1(w)], respectively, us-
ing (2.50), combined with the equalities t1k(z) = h1(z)e1,k(z) and e

(1)
(i+1)′,i ′ = −e(1)

i , the
latter due to part (c)).

(g) follows immediately from [JLM1, Proposition 5.6] (based on the observation that
multiplying the bottom-right r × r submatrices of F(z), H(z), E(z) provides an r × r
matrix satisfying the RTT relation of type A) and the equality e(1)

( j+1)′, j ′ = −e(1)
j due to

part (c). ��
The remaining matrix coefficients of E(z) from (2.61) are recovered via:

Lemma 2.80. (a) ei,i ′(z) = [ei,(i+1)′(z), e(1)
i ] − ei (z)ei,(i+1)′(z) for 1 ≤ i ≤ r − 1.

(b) ei+1,i ′(z) = [ei+1,(i+1)′(z), e(1)
i ] + ei (z)ei+1,(i+1)′(z) − ei,(i+1)′(z) for 1 ≤ i ≤ r − 2.

(c) ei, j ′(z) = [ei,( j+1)′(z), e(1)
j ] for 1 ≤ j ≤ i − 2 ≤ r − 2.

Proof. (a) Due to Corollary 2.76, it suffices to establish this equality for i = 1.
Comparing the w−1-coefficients in the equality [t1,2r−1(z), t2r−1,2r (w)] =
t2r−1,2r−1(z)t1,2r (w)−t2r−1,2r−1(w)t1,2r (z)

w−z of (2.50), we get: [t1,2r−1(z), t (1)2r−1,2r ] = −t1,2r (z).

Note that t (1)2r−1,2r = e(1)
2r−1,2r = −e(1)

12 , due to Lemma 2.79(c). Combining this with the
identities t1k(z) = h1(z)e1,k(z), we find:

[h1(z), e(1)
1 ]e1,2r−1(z) + h1(z)[e1,2r−1(z), e

(1)
1 ] = h1(z)e1,2r (z). (2.81)

On the other hand, we have [t11(z), t12(w)] = t11(w)t12(z)−t11(z)t12(w)
z−w

, so that

[h1(z), e1(w)] = h1(z)(e1(z)−e1(w))
z−w

. Comparing the w−1-coefficients of both sides of
the latter equality, we get:

[h1(z), e(1)
1 ] = −h1(z)e1(z). (2.82)

Combining the formulas (2.81, 2.82), we immediately obtain the desired equality:

e1,2r (z) = [e1,2r−1(z), e
(1)
1 ] − e1(z)e1,2r−1(z). (2.83)

(b) Due to Corollary 2.76, it suffices to establish this equality for i = 1. To this end,
let us compare the w−1-coefficients in the equality

[t2,2r−1(z), t2r−1,2r (w)] = t2r−1,2r−1(z)t2,2r (w) − t2r−1,2r−1(w)t2,2r (z)

w − z

+

∑
p tp,2r−1(z)tp′,2r (w)

z − w + r − 1
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of (2.50), which together with the aforementioned equality t (1)2r−1,2r = −e(1)
1 implies:

[t2,2r−1(z), e
(1)
1 ] = t2,2r (z) + t1,2r−1(z). (2.84)

Note that

t2,2r−1(z) = h2(z)e2,2r−1(z) + f1(z)h1(z)e1,2r−1(z). (2.85)

Comparing thew−1-coefficients of both sides of [t21(z), t12(w)] = t11(z)t22(w)−t11(w)t22(z)
w−z ,

we get [ f1(z)h1(z), e(1)
1 ] = t11(z) − t22(z) = h1(z) − t22(z), so that:

[ f1(z)h1(z)e1,2r−1(z), e
(1)
1 ] = (h1(z) − t22(z)) e1,2r−1(z) + t21(z)[e1,2r−1(z), e

(1)
1 ].
(2.86)

We also have [h2(z), e(1)
1 ] = h2(z)e1(z), so that:

[h2(z)e2,2r−1(z), e
(1)
1 ] = h2(z)

(
e1(z)e2,2r−1(z) + [e2,2r−1(z), e

(1)
1 ]

)
. (2.87)

Combining the formulas (2.84)–(2.87) with (2.83), we immediately obtain the desired
equality:

e2,2r (z) = [e2,2r−1(z), e
(1)
1 ] + e1(z)e2,2r−1(z) − e1,2r−1(z). (2.88)

(c) Due to Corollary 2.76, it suffices to establish this equality for j = 1.We shall pro-
ceed by induction on i . Comparing the w−1-coefficients in both parts of
[ti,2r−1(z), t2r−1,2r (w)] = t2r−1,2r−1(z)ti,2r (w)−t2r−1,2r−1(w)ti,2r (z)

w−z of (2.50), and evoking

t (1)2r−1,2r = −e(1)
1 , we obtain:

[ti,2r−1(z), e
(1)
1 ] = ti,2r (z). (2.89)

Note that the series featuring in (2.89) are explicitly given by:

ti,2r (z) = hi (z)ei,2r (z) +
i−1∑
j=1

fi, j (z)h j (z)e j,2r (z),

ti,2r−1(z) = hi (z)ei,2r−1(z) +
i−1∑
j=1

fi, j (z)h j (z)e j,2r−1(z). (2.90)

Comparing thew−1-coefficients in both sides of [ti1(z), t12(w)] = t11(z)ti2(w)−t11(w)ti2(z)
w−z ,

we obtain [ti1(z), e(1)
1 ] = −ti2(z) = − fi,2(z)h2(z) − fi,1(z)h1(z)e1(z), so that:

[ fi,1(z)h1(z)e1,2r−1(z), e
(1)
1 ] =

fi,1(z)h1(z)
(
[e1,2r−1(z), e

(1)
1 ] − e1(z)e1,2r−1(z)

)
− fi,2(z)h2(z)e1,2r−1(z).

(2.91)
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For j = 2, we have [ fi,2(z), e(1)
1 ] = 0 and [h2(z), e(1)

1 ] = h2(z)e1(z), so that:

[ fi,2(z)h2(z)e2,2r−1(z), e
(1)
1 ] = fi,2(z)h2(z)

(
e1(z)e2,2r−1(z) + [e2,2r−1(z), e

(1)
1 ]

)
.

(2.92)

Finally, for 2 < j ≤ i − 1, we clearly have [ fi, j (z), e(1)
1 ] = 0 = [h j (z), e

(1)
1 ], so that:

[ fi, j (z)h j (z)e j,2r−1(z), e
(1)
1 ] = fi, j (z)h j (z)[e j,2r−1(z), e

(1)
1 ] = fi, j (z)h j (z)e j,2r (z)

(2.93)

with the last equality due to the induction assumption.

Combining the formulas (2.83, 2.88, 2.89–2.93), we immediately obtain the desired
equality:

ei,2r (z) = [ei,2r−1(z), e
(1)
1 ] for 3 ≤ i ≤ r. (2.94)

This completes our proof of Lemma 2.80. ��
Let us record the recursive relations that follow from the above two Lemmas:

ei, j+1(z) = [e(1)j , [e(1)j−1, · · · , [e(1)i+2, [e(1)i+1, ei (z)]] · · · ]], 1 ≤ i < j ≤ r − 1,

ei,r ′ (z) = [e(1)r , [e(1)r−2, · · · , [e(1)i+2, [e(1)i+1, ei (z)]] · · · ]], 1 ≤ i ≤ r − 2,

ei, j ′ (z) = [[· · · [[ei,r ′ (z), e(1)r−1], e(1)r−2], · · · , e(1)j+1], e(1)j ], 1 ≤ i < j ≤ r − 1,

ei, j ′ (z) = [[· · · [[ei,(i−1)′ (z), e
(1)
i−2], e(1)i−3], · · · , e(1)j+1], e(1)j ], 1 ≤ j ≤ i − 2 ≤ r − 2,

ei ′, j ′(z) = [[· · · [[ei ′,(i−1)′ (z), e
(1)
i−2], e(1)i−3], · · · , e(1)j+1], e(1)j ], 1 ≤ j ≤ i − 2 ≤ r − 2.

(2.95)

• Matrix F(z) explicitly.

The following result is essentially due to [JLM1]3 and is proved exactly asLemma2.79:

Lemma 2.96. (a) fr+1,r (z) = 0.
(b) f(r−1)′,r (z) = − fr (z).
(c) fi ′,(i+1)′(z) = − fi (z + i − r + 1) for 1 ≤ i ≤ r − 1.

(d) f j+1,i (z) = −[ f (1)
j , f j,i (z)] for 1 ≤ i < j ≤ r − 1.

(e) f j ′,i (z) = [ f (1)
j , f( j+1)′,i (z)] for 1 ≤ i < j ≤ r − 1.

(f) fr ′,i (z) = −[ f (1)
r , fr−1,i (z)] for 1 ≤ i ≤ r − 2.

(g) f j ′,i ′(z) = [ f (1)
j , f( j+1)′,i ′(z)] for 1 ≤ j ≤ i − 2 ≤ r − 2.

The remaining matrix coefficients of F(z) (2.60) are recovered via the analogue of
Lemma 2.80:

Lemma 2.97. (a) fi ′,i (z) = [ f (1)
i , f(i+1)′,i (z)] − f(i+1)′,i (z) fi (z) for 1 ≤ i ≤ r − 1.

(b) fi ′,i+1(z) = [ f (1)
i , f(i+1)′,i+1(z)]+ f(i+1)′,i+1(z) fi (z)− f(i+1)′,i (z) for 1 ≤ i ≤ r−2.

(c) f j ′,i (z) = [ f (1)
j , f( j+1)′,i (z)] for 1 ≤ j ≤ i − 2 ≤ r − 2.

3 Note a sign and index errors in the equality from part (f) as stated in [JLM1].
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Let us record the recursive relations that follow from the above two Lemmas:

f j+1,i (z) = [[· · · [[ fi (z), f (1)
i+1], f (1)

i+2], · · · , f (1)
j−1], f (1)

j ], 1 ≤ i < j ≤ r − 1,

fr ′,i (z) = [[· · · [[ fi (z), f (1)
i+1], f (1)

i+2], · · · , f (1)
r−2], f (1)

r ], 1 ≤ i ≤ r − 2,

f j ′,i (z) = [ f (1)
j , [ f (1)

j+1, · · · , [ f (1)
r−2, [ f (1)

r−1, fr ′,i (z)]] · · · ]], 1 ≤ i < j ≤ r − 1,

f j ′,i (z) = [ f (1)
j , [ f (1)

j+1, · · · , [ f (1)
i−3, [ f (1)

i−2, f(i−1)′,i (z)]] · · · ]], 1 ≤ j ≤ i − 2 ≤ r − 2,

f j ′,i ′ (z) = [ f (1)
j , [ f (1)

j+1, · · · , [ f (1)
i−3, [ f (1)

i−2, f(i−1)′,i ′ (z)]] · · · ]], 1 ≤ j ≤ i − 2 ≤ r − 2.

(2.98)

2.2. Shifted story.

2.2.1. Shifted extended Drinfeld Yangians of so2r Consider the extended lattice
�∨ = ⊕r+1

j=1 Zε∨
j = �̄∨ ⊕ Zε∨

r+1, endowed with the bilinear form via (ε∨
i , ε∨

j ) = δi, j .
We shall need the following family of elements {α̂∨

i }ri=1 of �∨:

α̂∨
1 =ε∨

1 − ε∨
2 , α̂∨

2 = ε∨
2 − ε∨

3 , . . . , α̂∨
r−1 = ε∨

r−1 − ε∨
r , α̂∨

r = ε∨
r−1 − ε∨

r+1. (2.99)

Let � = ⊕r+1
j=1 Zε j be the dual lattice with ε∨

i (ε j ) = δi, j . Identifying the dual space
(�∨ ⊗Z C)∗ with�∨ ⊗Z C via the form (·, ·), the lattice� gets naturally identified with
�∨ via εi ↔ ε∨

i . We will also need another Z-basis: � = ⊕r
i=0 Z�i with

�r−1 := −εr , �r := −εr+1, �i = −εi+1 − εi+2 − . . . − εr+1 for 0 ≤ i < r − 1.
(2.100)

For μ ∈ �, define d = {d j }r+1j=1 ∈ Z
r+1 and b = {bi }ri=1 ∈ Z

r via:

d j := ε∨
j (μ), (2.101)

and b = {bi }ri=1 ∈ Z
r via:

bi := α̂∨
i (μ), (2.102)

so that:

b1 = d1 − d2, b2 = d2 − d3, . . . , br−1 = dr−1 − dr , br = dr−1 − dr+1. (2.103)

For μ ∈ �, define the shifted extended Drinfeld Yangian of so2r , denoted by Xμ(so2r ),

to be the associativeC-algebra generated by {E (k)
i , F (k)

i }k≥1
1≤i≤r ∪{D(ki )

i }ki≥di+1
1≤i≤r+1 with the

defining relations (2.20, 2.22–2.31) and the following replacement of (2.21):

[Ei (z), Fj (w)] = −δi, j
Ki (z) − Ki (w)

z − w
, (2.104)

where Ei (z), E◦
i (z), Fi (z), F

◦
i (z) are defined via (2.32), Di (z), Ki (z) are defined via:
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Di (z) :=
∑
k≥di

D(k)
i z−k = z−di +

∑
k≥di+1

D(k)
i z−k,

Ki (z) =
∑

k≥−bi

K (k)
i z−k :=

{
Di (z)−1Di+1(z) if i < r
Dr−1(z)−1Dr+1(z) if i = r

, (2.105)

with the conventions
D(di )
i = 1 = K (−bi )

i ,

and finally Ki (z) denotes the principal part of Ki (z):

Ki (z) :=
∑

k≥max{1,−bi }
K (k)
i z−k . (2.106)

Remark 2.107. For μ = 0, we obviously get X0(so2r ) � X (so2r ).

Similar to our proof of Lemma 2.35, we note that the coefficients {C (k)
r }k≥dr+dr+1+1 of

the series

Cr (z) = z−dr−dr+1 +
∑

k>dr+dr+1

C (k)
r z−k :=

r−1∏
i=1

Di (z + i − r)

Di (z + i − r + 1)
· Dr (z)Dr+1(z)

(2.108)

are central elements of Xμ(so2r ), which is an immediate corollary of the relations
(2.22)–(2.25).

Let �̄ = ⊕r
i=1 Zωi be the coweight lattice of so2r , where {ωi }ri=1 are the standard

fundamental coweights of so2r , i.e. α∨
i (ω j ) = δi, j for 1 ≤ i, j ≤ r . There is a natural

Z-linear projection:

� −→ �̄, μ 
→ μ̄ definedvia α∨
i (μ̄) = α̂∨

i (μ) for 1 ≤ i ≤ r. (2.109)

Explicitly, we have:

� � μ 
→ μ̄ =
r∑

i=1

biωi ∈ �̄

with bi = α̂∨
i (μ), cf. (2.102), so that:

�̄0 = 0, �̄i = ωi for 1 ≤ i ≤ r.

The algebra Xμ(so2r ) depends only on the associated so2r–coweight μ̄, up to an iso-
morphism:

Lemma 2.110. If μ1, μ2 ∈ � satisfy μ̄1 = μ̄2 ∈ �̄, then the assignment

E (k)
i 
→ E (k)

i , F (k)
i 
→ F (k)

i , D(ki )
i 
→ D

(ki−ε∨
i (μ1−μ2))

i (2.111)

gives rise to a C-algebra isomorphism

Xμ1(so2r )
∼−→ Xμ2(so2r ).
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Proof. The assignment (2.111) is clearly compatible with the defining relations
(2.20, 2.22–2.31, 2.104), thus giving rise to a C-algebra homomorphism
Xμ1(so2r ) → Xμ2(so2r ). Switching μ1 and μ2, we obtain the inverse homomorphism
Xμ2(so2r ) → Xμ1(so2r ). Hence, the result. ��
Let us also recall the shifted Drinfeld Yangians of so2r introduced in [BFNb, Defini-
tion B.2]. To this end, fix a coweight ν ∈ �̄ and set bi := α∨

i (ν) for 1 ≤ i ≤ r . The
shifted Drinfeld Yangian of so2r , denoted by Yν(so2r ), is the associative C-algebra gen-
erated by {E(k)

i ,F(k)
i ,H(�i )

i }k≥1,�i>−bi
1≤i≤r with the defining relations (2.12, 2.14–2.19) and

the following replacement of (2.13):

[Ei (z),F j (w)] = −δi, j
Hi (z) − Hi (w)

z − w
, (2.112)

where Ei (z),Fi (z) are defined via (2.11), Hi (z) are defined via:

Hi (z) :=
∑

k≥−bi

H(k)
i z−k = zbi +

∑
k≥1−bi

H(k)
i z−k,

with the conventions H(−bi )
i = 1, and finally Hi (z) denotes the principal part of Hi (z):

Hi (z) :=
∑

k≥max{1,−bi }
H(k)
i z−k . (2.113)

The explicit relation between the shifted Yangians Xμ(so2r ) and Yν(so2r ) is as follows:

Proposition 2.114. For any μ ∈ �, the assignment (2.40) gives rise to a C-algebra
embedding

ιμ : Yμ̄(so2r ) ↪→ Xμ(so2r ). (2.115)

Furthermore, we have a tensor product algebra decomposition:

Xμ(so2r ) � Yμ̄(so2r ) ⊗C C[{C (k)
r }k≥dr+dr+1+1]. (2.116)

Remark 2.117. For μ = 0, this exactly recovers (2.39) and Lemma 2.41.

Proof. The proof is completely analogous to that of Lemma 2.41 treating the special
case μ = 0 (while Lemma 2.41 follows from the results of [JLM1] combined with the
isomorphism (2.63), let us stress right away that our proof was only using the defining
relations (2.20)–(2.31)).

The compatibility of the assignment (2.40) with the defining relations of Yμ̄(so2r ) is
straightforward, giving rise to a C-algebra homomorphism ιμ : Yμ̄(so2r ) → Xμ(so2r ).
The injectivity of ιμ as well as the tensor product algebra decomposition (2.116) are im-
mediate after switching from the coefficients of the generatingCartan series {Di (z)}r+1i=1 to
the coefficients of the central Cartan series {Cr (z)} of (2.108) and the series{
Di (z)−1Di+1(z)

}r−1

i=1
∪ {Dr−1(z)−1Dr+1(z)}, as in our proof of Lemma 2.41. ��

Corollary 2.118. Yμ̄(so2r )may be realized both as a subalgebra of Xμ(so2r ) via (2.115)

as well as a quotient of Xμ(so2r ) by the central ideal (C
(k)
r −ck)k>dr+dr+1 for any ck ∈ C.

Similar to Remark 2.69 and [FPT, Lemma 2.26], we have:
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Dr :

1 2 r − 3

r − 2

r − 1

r

Fig. 1. Oriented Dynkin diagram of type Dr

Lemma 2.119. (a) The center of the shifted Yangian Yν(so2r ) is trivial for any ν ∈ �̄.
(b) The center of the shifted extended Yangian Xμ(so2r ) is C[{C (k)

r }k>dr+dr+1 ] for any
μ ∈ �.

Proof. Part (a) is a general result which follows from [W] as explained in
[FPT, Remark 2.81]. Part (b) follows from (a), the decomposition (2.116), and the series
Cr (z) being central. ��

2.2.2. Homomorphisms �D In this Subsection, we generalize [BFNb, Theorem B.15]
for the type Dr Dynkin diagram with arrows pointing i → i + 1 for 1 ≤ i ≤ r − 2 and
r → r − 2 (see Fig. 1), by replacing Yμ̄(so2r ) of loc.cit. with Xμ(so2r ). We closely
follow the presentation of [FPT, §2.2] for type A.

Remark 2.120. While similar generalizations exist for all orientations of Dr Dynkin
diagram, it suffices to consider only the above one for the purposes of this paper, see
Remark 2.191.

An element λ ∈ � will be called dominant, denoted by λ ∈ �+, if the corresponding
so2r–coweight λ̄ (2.109) is dominant: λ̄ ∈ �̄+. Thus,

∑r
i=0 ci�i is dominant iff ci ∈ N

for 1 ≤ i ≤ r .

A �-valued divisor D on P
1, �+-valued outside {∞} ∈ P

1, is a formal sum:

D =
∑

1≤s≤N

γs�is [xs] + μ[∞] (2.121)

with N ∈ N, 0 ≤ is ≤ r, xs ∈ C, γs =
{
1 if is �= 0
±1 if is = 0

, and μ ∈ �. We will write

μ = D|∞. (2.122)

If μ ∈ �+, we call D a �+-valued divisor on P
1. It will be convenient to present D also

as:

D =
∑

x∈P1\{∞}
λx [x] + μ[∞] with λx ∈ �+, (2.123)

related to (2.121) via λx = D|x := ∑xs=x
1≤s≤N γs�is . Define λ ∈ �+ via:

λ :=
∑

1≤s≤N

γs�is =
∑

x∈P1\{∞}
D|x . (2.124)

Let {αi }ri=1 ⊂ �̄ denote the simple coroots of so2r , explicitly given by:

α1 = ε1 − ε2, . . . , αr−2 = εr−2 − εr−1, αr−1 = εr−1 − εr , αr = εr−1 + εr .

(2.125)
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We also consider the following family of elements {α̂i }ri=1 ⊂ � given by:

α̂1 = ε1 − ε2, . . . , α̂r−2 = εr−2 − εr−1,

α̂r−1 = εr−1 − εr + εr+1, α̂r = εr−1 + εr − εr+1, (2.126)

which are the “lifts” of αi from (2.125) in the sense of (2.109), that is:

¯̂αi = αi for 1 ≤ i ≤ r. (2.127)

Following [BFNb], we make the following

Assumption : λ + μ = a1α̂1 + . . . + ar α̂r with ai ∈ N. (2.128)

Let us record the explicit formulas for the coefficients ai of (2.128):

ak = (ε∨
1 + . . . + ε∨

k )(λ + μ) for 1 ≤ k ≤ r − 2,

ar−1 = (ε∨
1 + . . . + ε∨

r−1 − ε∨
r )(λ + μ)

2
,

ar = (ε∨
1 + . . . + ε∨

r−1 + ε∨
r )(λ + μ)

2
. (2.129)

Remark 2.130. Note that D of (2.121) satisfies the assumption (2.128) iff all quantities in
the right-hand sides of (2.129) are non-negative integers and
(ε∨

r + ε∨
r+1)(λ + μ) = 0.

Consider the associative C-algebra

A = C

〈
pi,k, e

±qi,k , (pi,k − pi,� + m)−1
〉1≤k �=�≤ai

1≤i≤r,m∈Z (2.131)

with the defining relations:

[e±qi,k , p j,�] = ∓δi, jδk,�e
±qi,k , [pi,k, p j,�] = 0 = [eqi,k , eq j,� ], e±qi,k e∓qi,k = 1.

Remark 2.132. (a) This algebra A can be represented in the algebra of difference oper-
ators with rational coefficients on functions of {pi,k}1≤k≤ai

1≤i≤r by taking e∓qi,k to be a

difference operator D±1
i,k that acts as

(D±1
i,k �)(p1,1, . . . , pi,k, . . . , pr,ar ) = �(p1,1, . . . , pi,k ± 1, . . . , pr,ar ).

(b) The total number of pairs of (p, q)-oscillators in the algebraAwill refer to the sum∑r
i=1 ai .

For 0 ≤ i ≤ r and 1 ≤ j ≤ r , we define:

Pj (z) :=
a j∏
k=1

(z − p j,k), Pj,�(z) :=
k �=�∏

1≤k≤a j

(z − p j,k),

Zi (z) :=
is=i∏

1≤s≤N

(z − xs)
γs =

∏

x∈P1\{∞}
(z − x)α̃

∨
i (λx ), (2.133)
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where {̃α∨
i }ri=0 is a Z-basis of�∨ dual to the Z-basis {�i }ri=0 of�. Explicitly, we have:

α̃∨
0 = −ε∨

1 , α̃∨
1 = ε∨

1 − ε∨
2 , α̃∨

2 = ε∨
2 − ε∨

3 , . . . ,

α̃∨
r−1 = ε∨

r−1 − ε∨
r , α̃∨

r = ε∨
r−1 − ε∨

r+1. (2.134)

We also set:

a0 := 0, ar+1 := 0, P0(z) := 1, Pr+1(z) := 1. (2.135)

The following result generalizes the Dr -case of [BFNb, Theorem B.15] stated for
semisimple Lie algebras g (preceded by [GKLO] for the trivial shift and by [KWWY]
for dominant shifts):

Theorem 2.136. Let D be as in (2.121), satisfying the assumption (2.128), and set
μ = D|∞. There is a unique C-algebra homomorphism

�D : X−μ(so2r ) −→ A, (2.137)

determined by the following assignment:

Ei (z) 
→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑ai
k=1

Pi−1(pi,k−1)
(z−pi,k )Pi,k(pi,k )

eqi,k if i ≤ r − 3
∑ar−2

k=1
Pr−3(pr−2,k−1)Pr (pr−2,k )

(z−pr−2,k )Pr−2,k (pr−2,k )
eqr−2,k if i = r − 2

∑ar−1
k=1

Pr−2(pr−1,k−1)
(z−pr−1,k )Pr−1,k (pr−1,k )

eqr−1,k if i = r − 1
∑ar

k=1
1

(z−pr,k )Pr,k (pr,k )
eqr,k if i = r

,

Fi (z) 
→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∑ai
k=1

Zi (pi,k+1)Pi+1(pi,k+1)
(z−pi,k−1)Pi,k(pi,k )

e−qi,k if i ≤ r − 2

−∑ar−1
k=1

Zr−1(pr−1,k+1)
(z−pr−1,k−1)Pr−1,k (pr−1,k )

e−qr−1,k if i = r − 1

−∑ar
k=1

Zr (pr,k+1)Pr−2(pr,k )
(z−pr,k−1)Pr,k (pr,k )

e−qr,k if i = r

,

Di (z) 
→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pi (z)
Pi−1(z−1) ·∏i−1

k=0 Zk(z) if i ≤ r − 2
Pr−1(z)Pr (z)
Pr−2(z−1) ·∏r−2

k=0 Zk(z) if i = r − 1
Pr (z)

Pr−1(z−1) ·∏r−1
k=0 Zk(z) if i = r

Pr−1(z)
Pr (z−1) ·∏r−2

k=0 Zk(z) · Zr (z) if i = r + 1

=
∏

x∈P1\{∞}
(z − x)−ε∨

i (λx ) ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pi (z)
Pi−1(z−1) if i ≤ r − 2
Pr−1(z)Pr (z)
Pr−2(z−1) if i = r − 1
Pr (z)

Pr−1(z−1) if i = r
Pr−1(z)
Pr (z−1) if i = r + 1

. (2.138)

Remark 2.139. To compare this with [BFNb, §B(ii)], let us identifyA with Ã of loc.cit.
and the points xs with the parameters zs of loc.cit. (assigned respectively to the summands
of λ̄ = ∑is �=0

1≤s≤N ωis ) via:
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pi,k ↔
{

wi,k + i−1
2 if i < r

wr,k + r−2
2 if i = r

,

e±qi,k ↔ u∓1
i,k ,

xs ↔
{
zs +

is
2 if 1 ≤ is < r

zs + r−1
2 if is = r

.

(2.140)

Then, the (restriction) composition

Y−μ̄(so2r )
ι−μ−−→ X−μ(so2r )

�D−−→ A (2.141)

is explicitly given by:

Ei (z) 
→
ai∑
k=1

∏
h∈Q:i(h)=i Wo(h)(wi,k − 1

2 )

(z − wi,k)Wi,k(wi,k)
u−1
i,k ,

Fi (z) 
→ −
ai∑
k=1

Zi (wi,k + 1)
∏

h∈Q:o(h)=i Wi(h)(wi,k + 1
2 )

(z − wi,k − 1)Wi,k(wi,k)
ui,k,

Hi (z) 
→ Zi (z)
∏

h∈Q∪Q̄:o(h)=i Wi(h)(z − 1
2 )

Wi (z)Wi (z − 1)
,

(2.142)

where Q (resp. Q̄) denotes the set of oriented (resp. oppositely oriented) edges of the
Dynkin diagram from Fig. 1, the notation i(h) = i (resp. o(h) = i) for an edge h ∈ Q
(or h ∈ Q ∪ Q̄) is to indicate that h points towards (resp. away from) the i-th node, and
the generating series in (2.142) are defined via:

Wi (z) =
ai∏
k=1

(z − wi,k), Wi,�(z) =
k �=�∏

1≤k≤ai

(z − wi,k), Zi (z) =
is=i∏

1≤s≤N

(
z − zs − 1

2

)
.

Thus, the composition

�D ◦ ι−μ : Y−μ̄(so2r ) −→ A

essentially coincides with the version of the homomorphism �λ̄−μ̄ of [BFNb, Theo-
rem B.15], where the signs of all Ei (z) and Fi (z) are reversed, and the Zi (wi,k)-factors
in Ei (z)-currents are now replaced with the Zi (wi,k + 1)-factors in Fi (z)-currents, cf.
[FT1, Remark C.3].

Proof of Theorem 2.136. First, let us verify that under the above assignment (2.138),
the image of Di (z) is of the form zdi + (lower order terms in z) for all 1 ≤ i ≤ r + 1.
Let degi denote the leading power of z in the image of Di (z) (clearly the coefficient of
zdegi equals 1). Then, we have:

degi = −
∑

x∈P1\{∞}
ε∨
i (λx ) +

⎧
⎪⎨
⎪⎩

ai − ai−1 if i �= r ± 1
ar−1 + ar − ar−2 if i = r − 1
ar−1 − ar if i = r + 1

. (2.143)



Rational Lax matrices from shifted Yangians: BCD types

Note that
∑

x∈P1\{∞} λx + μ = λ + μ = a1α̂1 + . . . + ar α̂r (2.128), so that:
∑

x∈P1\{∞}
ε∨
i (λx ) + ε∨

i (μ) = ε∨
i (a1α̂1 + . . . + ar α̂r )

=

⎧⎪⎨
⎪⎩

ai − ai−1 if i �= r ± 1
ar−1 + ar − ar−2 if i = r − 1
ar−1 − ar if i = r + 1

. (2.144)

Combining (2.143, 2.144), we thus obtain the desired equality:

degi = ε∨
i (μ) = di . (2.145)

Evoking the algebra decomposition (2.116)

X−μ(so2r ) � Y−μ̄(so2r ) ⊗C C[{C (k)
r }k>−dr−dr+1 ],

it suffices to prove that the restrictions of the assignment (2.138) to the subalgebras
Y−μ̄(so2r ) and C[{C (k)

r }k>−dr−dr+1 ] determine algebra homomorphisms, whose images
commute. The former is clear for the restriction to Y−μ̄(so2r ), due to Theorem B.15
of [BFNb] combined with Remark 2.139 above. On the other hand, we have:

�D(Cr (z)) =
r−2∏
i=0

(
Zi (z)Zi (z + i − r + 1)

)
· Zr−1(z)Zr (z). (2.146)

Thus, the restriction of �D to the polynomial algebra C[{C (k)
r }k>−dr−dr+1] defines an

algebra homomorphism, whose image is central in A. This completes our proof of
Theorem 2.136. ��
Remark 2.147. Our choice of α̂i ∈ � in (2.126) “lifting” αi ∈ �̄ of (2.125) in the sense
of (2.127) is exactly to guarantee the equality (2.144); moreover, the latter determines
α̂i uniquely.

2.2.3. Antidominantly shifted extended RTT Yangians of so2r Fix μ ∈ �+. Define the
antidominantly shifted extended RTT Yangian of so2r , denoted by X rtt−μ(so2r ), to be the

associative C-algebra generated by {t (k)i j }k∈Z1≤i, j≤2r subject to the following two families
of relations:

• The RTT relation (2.48) with T (z) ∈ X rtt−μ(so2r )[[z, z−1]]⊗CEnd C
2r defined via:

T (z) =
∑
i, j

ti j (z) ⊗ Ei j with ti j (z) :=
∑
k∈Z

t (k)i j z−k . (2.148)

• The second family of relations encodes the fact that T (z) admits the Gauss decom-
position:

T (z) = F(z) · H(z) · E(z), (2.149)

where F(z), H(z), E(z) ∈ X rtt−μ(so2r )((z−1)) ⊗C End C
2r are of the form

F(z) =
∑
i

Eii +
∑
i< j

f j,i (z) ⊗ E ji , H(z) =
∑
i

hi (z) ⊗ Eii ,
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E(z) =
∑
i

Eii +
∑
i< j

ei, j (z) ⊗ Ei j

with the matrix coefficients having the following expansions in z:

ei, j (z) =
∑
k≥1

e(k)
i, j z

−k, f j,i (z) =
∑
k≥1

f (k)
j,i z

−k for 1 ≤ i < j ≤ 2r,

hi (z) = zdi +
∑

k≥1−di

h(k)
i z−k, hi ′(z) = zd

′
i +

∑

k≥1−d ′
i

h(k)
i ′ z−k for 1 ≤ i ≤ r,

(2.150)

with i ′ = 2r + 1 − i as in (2.44) and d ′
i ∈ Z defined via:

d ′
i := dr + dr+1 − di for 1 ≤ i ≤ r. (2.151)

Note that d ′
r = dr+1. We also note that μ ∈ �+ implies the following inequalities:

d1 ≥ d2 ≥ · · · ≥ dr−1 ≥ max{dr , d ′
r } ≥ min{dr , d ′

r } ≥ d ′
r−1 ≥ · · · ≥ d ′

1. (2.152)

Remark 2.153. (a) Forμ = 0, the second family of relations (2.149, 2.150) is equivalent
to the relations t (k)i j = 0 for k < 0 and t (0)i j = δi, j , so that X rtt

0 (so2r ) � X rtt(so2r ).

(b) If μ1, μ2 ∈ �+ satisfy μ̄1 = μ̄2 ∈ �̄, that is, μ2 = μ1 + c�0 with c ∈ Z, then the
assignment

T (z) 
→ zcT (z)

gives rise to aC-algebra isomorphism X rtt−μ1
(so2r )

∼−→ X rtt−μ2
(so2r ), cf. Lemma2.110.

Similar to the μ = 0 case, X rtt−μ(so2r ) is generated by

e(k)
i,i+1, e(k)

r−1,r+1, f (k)
i+1,i , f (k)

r+1,r−1, h
(s j )
j (2.154)

for all 1 ≤ i ≤ r − 1, 1 ≤ j ≤ r + 1, k ≥ 1, s j ≥ 1 − d j . Furthermore, all the

other generators e(k)
i, j , f (k)

j,i , h(k)
i of (2.150) are expressed via (2.154) by exactly the same

formulas as in the μ = 0 case, treated in details in Subsection 2.1.4. This immediately
implies the following result:

Proposition 2.155. For any μ ∈ �+, there is a unique C-algebra epimorphism

ϒ−μ : X−μ(so2r ) � X rtt−μ(so2r )

defined by the formulas (2.64, 2.65).

One of our key results (the proof ofwhich is deferred to Subsection 2.3.2) is the following
generalization of Theorem 2.62 (corresponding to the case μ = 0):

Theorem 2.156. ϒ−μ : X−μ(so2r )
∼−→ X rtt−μ(so2r ) is a C-algebra isomorphism for any

μ ∈ �+.
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2.2.4. Coproduct homomorphisms One of the key benefits of the RTT realization is that
it immediately endows the (extended) Yangian of so2r with the Hopf algebra structure,
in particular, the coproduct homomorphism:


rtt : X rtt(so2r ) −→ X rtt(so2r ) ⊗ X rtt(so2r ), T (z) 
→ T (z) ⊗ T (z). (2.157)

Themain observation of this Subsection is that (2.157) naturally admits a shifted version:

Proposition 2.158. For any μ1, μ2 ∈ �+, there is a unique C-algebra homomorphism


rtt−μ1,−μ2
: X rtt−μ1−μ2

(so2r ) −→ X rtt−μ1
(so2r ) ⊗ X rtt−μ2

(so2r ) (2.159)

defined by:


rtt−μ1,−μ2
(T (z)) = T (z) ⊗ T (z). (2.160)

Proof. The proof is completely analogous to its type A counterpart established in
[FPT, Proposition 2.136]: the arguments of loc.cit. apply on the nose, due to (2.152)
as well as er,r+1(z) = 0 = fr+1,r (z) (to treat the possible case dr < d ′

r ), cf. Lem-
mas 2.79(a), 2.96(a). ��
Similar to [FPT, Corollary 2.141], we note that 
rtt∗,∗ (2.159) satisfy the natural coasso-
ciativity:

Corollary 2.161. For any μ1, μ2, μ3 ∈ �+, the following diagram is commutative:

X rtt−μ1−μ2−μ3
(so2r )


rtt−μ1,−μ2−μ3−−−−−−−−→ X rtt−μ1
(so2r ) ⊗ X rtt−μ2−μ3

(so2r )


rtt−μ1−μ2,−μ3

⏐⏐�
⏐⏐�Id⊗ 
rtt−μ2,−μ3

X rtt−μ1−μ2
(so2r ) ⊗ X rtt−μ3

(so2r ) −−−−−−−−→

rtt−μ1,−μ2

⊗ Id
X rtt−μ1

(so2r ) ⊗ X rtt−μ2
(so2r ) ⊗ X rtt−μ3

(so2r )

Evoking the key isomorphism ϒ−μ : X−μ(so2r )
∼−→ X rtt−μ(so2r ) of Theorem 2.156 for

μ = μ1, μ2, μ1 +μ2, we conclude that 
rtt−μ1,−μ2
of (2.159) gives rise to the C-algebra

homomorphism


−μ1,−μ2 : X−μ1−μ2(so2r ) −→ X−μ1(so2r ) ⊗ X−μ2(so2r ). (2.162)

Proposition 2.163. For anyμ1, μ2 ∈ �+, the aboveC-algebra homomorphism (2.162)


−μ1,−μ2 : X−μ1−μ2(so2r ) −→ X−μ1(so2r ) ⊗ X−μ2(so2r )

is uniquely determined by specifying the image of the central series Cr (z) of (2.108)
via:

Cr (z) 
→ Cr (z) ⊗ Cr (z), (2.164)

and the following formulas (for any 1 ≤ i ≤ r and 1 ≤ j ≤ r + 1):

F (k)
i 
→ F (k)

i ⊗ 1 for 1 ≤ k ≤ α̂∨
i (μ1),

F
(α̂∨

i (μ1)+1)
i 
→ F

(α̂∨
i (μ1)+1)

i ⊗ 1 + 1 ⊗ F (1)
i ,

E (k)
i 
→ 1 ⊗ E (k)

i for 1 ≤ k ≤ α̂∨
i (μ2),



R. Frassek, A. Tsymbaliuk

E
(α̂∨

i (μ2)+1)
i 
→ 1 ⊗ E

(α̂∨
i (μ2)+1)

i + E (1)
i ⊗ 1,

D
(−ε∨

j (μ1+μ2)+1)

j 
→ D
(−ε∨

j (μ1)+1)

j ⊗ 1 + 1 ⊗ D
(−ε∨

j (μ2)+1)

j ,

D
(−ε∨

j (μ1+μ2)+2)

j 
→ D
(−ε∨

j (μ1)+2)

j ⊗ 1 + 1 ⊗ D
(−ε∨

j (μ2)+2)

j

+ D
(−ε∨

j (μ1)+1)

j ⊗ D
(−ε∨

j (μ2)+1)

j +
∑

γ ∨∈
+

(ε̃∨
j , γ ∨)E (1)

γ ∨ ⊗ F (1)
γ ∨ , (2.165)

with

ε̃∨
j = ε∨

j for j ≤ r, ε̃∨
r+1 = −ε∨

r , (2.166)

and the root generators {E (1)
γ ∨ , F (1)

γ ∨ }γ∈
+ defined via (cf. (2.95, 2.98)):

E (1)
ε∨
i −ε∨

j
= [E (1)

j−1, [E (1)
j−2, [E (1)

j−3, · · · , [E (1)
i+1, E

(1)
i ] · · · ]]],

F (1)
ε∨
i −ε∨

j
= [[[· · · [F (1)

i , F (1)
i+1], · · · , F (1)

j−3], F (1)
j−2], F (1)

j−1],
E (1)

ε∨
i +ε∨

j
= [· · · [[E (1)

r , [E (1)
r−2, [E (1)

r−3, · · · , [E (1)
i+1, E

(1)
i ] · · · ]]], E (1)

r−1], · · · , E (1)
j ],

F (1)
ε∨
i +ε∨

j
= [F (1)

j , · · · , [F (1)
r−1, [[[· · · [F (1)

i , F (1)
i+1], · · · , F (1)

r−3], F (1)
r−2], F (1)

r−1]] · · · ]
(2.167)

for 1 ≤ i < j ≤ r , where 
+ =
{
ε∨
i ± ε∨

j

}
1≤i< j≤r

is the set of positive roots of so2r .

The proof of this result is completely analogous to that of [FPT, Proposition 2.143] with

the only non-trivial computation of 
−μ1,−μ2(D
(−ε∨

j (μ1+μ2)+2)

j ) based on the identifica-
tions:

ϒ−μ : E (1)
ε∨
i −ε∨

j

→ e(1)

i, j , E (1)
ε∨
i +ε∨

j

→ e(1)

i, j ′ ,

F (1)
ε∨
i −ε∨

j

→ f (1)

j,i , F (1)
ε∨
i +ε∨

j

→ f (1)

j ′,i ∀ 1 ≤ i < j ≤ r

and the equalities e(1)
i, j = −e(1)

j ′,i ′ , f (1)
j,i = − f (1)

i ′, j ′ for 1 ≤ i < j ≤ 2r , cf.
(A.4, A.6, B.29, B.30). Let us note that the formula (2.164) is a direct corollary of the for-
mulas zN (z) = ϒ−μ(Cr (z)) and T (z)T ′(z−κ) = zN (z)IN established in Lemma 2.184
and Proposition 2.186 below.

The above result provides a conceptual and elementary proof of [FKPRW, Theorem 4.8]:

Proposition 2.168. (a)For any ν1, ν2 ∈ �̄+, there is a uniqueC-algebrahomomorphism


−ν1,−ν2 : Y−ν1−ν2(so2r ) −→ Y−ν1(so2r ) ⊗ Y−ν2(so2r ) (2.169)

such that the following diagram is commutative for any μ1, μ2 ∈ �+:

Y−μ̄1−μ̄2(so2r )

−μ̄1,−μ̄2−−−−−−→ Y−μ̄1(so2r ) ⊗ Y−μ̄2(so2r )

ι−μ1−μ2

⏐⏐�
⏐⏐�ι−μ1⊗ ι−μ2

X−μ1−μ2(so2r )

−μ1,−μ2−−−−−−→ X−μ1(so2r ) ⊗ X−μ2(so2r )

(2.170)
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for any μ1, μ2 ∈ �+.
(b) The homomorphism 
−ν1,−ν2 is uniquely determined by the following formulas:

F(k)
i 
→ F(k)

i ⊗ 1 for 1 ≤ k ≤ α∨
i (ν1),

F
(α∨

i (ν1)+1)
i 
→ F

(α∨
i (ν1)+1)

i ⊗ 1 + 1 ⊗ F(1)
i ,

E(k)
i 
→ 1 ⊗ E(k)

i for 1 ≤ k ≤ α∨
i (ν2),

E
(α∨

i (ν2)+1)
i 
→ 1 ⊗ E

(α∨
i (ν2)+1)

i + E(1)
i ⊗ 1,

H
(α∨

i (ν1+ν2)+1)
i 
→ H

(α∨
i (ν1)+1)

i ⊗ 1 + 1 ⊗ H
(α∨

i (ν2)+1)
i ,

H
(α∨

i (ν1+ν2)+2)
i 
→ H

(α∨
i (ν1)+2)

i ⊗ 1 + 1 ⊗ H
(α∨

i (ν2)+2)
i

+ H
(α∨

i (ν1)+1)
i ⊗ H

(α∨
i (ν2)+1)

i −
∑

γ ∨∈
+

(α∨
i , γ

∨)E(1)
γ ∨ ⊗ F(1)

γ ∨ , (2.171)

with the root generators {E(1)
γ ∨ ,F(1)

γ ∨}γ∈
+ defined exactly as in (2.167), but using E(1)
i

and F(1)
i instead of E (1)

i and F (1)
i , respectively.

Proof. This follows immediately from the formulas (2.165) of Proposition 2.163 com-
bined with the formulas (2.40) for the embedding ι−μ : Y−μ̄(so2r ) ↪→ X−μ(so2r ) of
Proposition 2.114. In particular, the proof of the last formula in (2.171) uses the equality

α∨
i =

{
ε̃∨
i − ε̃∨

i+1 if i < r
ε̃∨
r−1 − ε̃∨

r+1 if i = r
with ε̃∨

j defined in (2.166). ��

Remark 2.172. (a) As our formulas (2.171) coincide with those of
[FKPRW, Theorem 4.8], this provides a confirmative answer to the question raised
in the end of [CGY, §8], in type D.

(b) A simple argument (see [FKPRW, Theorem 4.12]) shows that the coproduct homo-
morphisms 
−ν1,−ν2 of (2.169) with ν1, ν2 ∈ �̄+ give rise to a family of coprod-
uct homomorphisms 
ν1,ν2 : Yν1+ν2(so2r ) → Yν1(so2r ) ⊗ Yν2(so2r ) for any pair of
so2r–coweights ν1, ν2 ∈ �̄. However, let us note that 
ν1,ν2 (ν1, ν2 ∈ �̄) are not
coassociative, in contrast to Corollary 2.161.

2.3. Lax matrices.

2.3.1. Motivation, explicit construction, and the normalized limit description Consider
a �+-valued divisor D on P

1, see (2.121), satisfying the assumption (2.128). Note
that μ := D|∞ ∈ �+. Assuming the validity of Theorem 2.156, let us compose
�D : X−μ(so2r ) → A of (2.137) withϒ−1−μ : X rtt−μ(so2r )

∼−→ X−μ(so2r ) to get a homo-
morphism:

�D = �D ◦ ϒ−1−μ : X rtt−μ(so2r ) −→ A. (2.173)

Such a homomorphism is uniquely determined by TD(z) ∈ A((z−1))⊗CEndC
2r defined

via:

TD(z) := �D(T (z)) = �D(F(z)) · �D(H(z)) · �D(E(z)). (2.174)
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While the above definition (2.174) of TD(z) is based on yet unproved Theorem 2.156, we
can combine the formulas (2.138) for �D with those of Subsection 2.1.4 to recover the
explicit sought-after images f Dj,i (z), e

D
i, j (z), h

D
i (z) ∈ A((z−1)) of the generating series

f j,i (z), ei, j (z), hi (z), the matrix coefficients of F(z), H(z), E(z) in (2.149). Thus, we
amend (2.174) and define:

TD(z) := FD(z) · HD(z) · ED(z) (2.175)

with FD(z), ED(z), HD(z) being the lower-triangular, upper-triangular, and diagonal
matrices with matrix coefficients f Dj,i (z), e

D
i, j (z), h

D
i (z) obtained from the explicit for-

mulas (2.138) for the images of {ei (z), fi (z)}ri=1 ∪ {h j (z)}r+1j=1 combined with Lem-

mas 2.77, 2.79, 2.80, 2.96, 2.97. The explicit formulas for f Dj,i (z), e
D
i, j (z), h

D
i (z) are

presented in Appendix A, cf. [FPT, §2.4.1]. Therefore, the matrix coefficients of TD(z)
are given by:

TD(z)α,β =
min{α,β}∑

i=1

f Dα,i (z) · hD
i (z) · eDi,β(z) (2.176)

for any 1 ≤ α, β ≤ 2r , with the conventions f Dα,α(z) = 1 = eDβ,β(z).

Definition 2.177. For an associative algebra B, a B((z−1))-valued 2r × 2r matrix T(z)
is called Lax (of type Dr ) if it satisfies the RTT relation (2.48) with the R-matrix R(z)
of (2.45).

Following the arguments of [FPT, §2.4.2], let us show that TD(z) ∈ A((z−1)) (2.176)
are Lax. To this end, consider a �+-valued divisor D = ∑N

s=1 γs�is [xs] + μ[∞]. As
the point xN tends to ∞ (denoted xN → ∞), we obtain another �+-valued divisor
D′ = ∑N−1

s=1 γs�is [xs] + (μ + γN�iN )[∞]. Similar to [FPT, Proposition 2.75], the
matrix TD′(z) of (2.176) is related to TD(z) via:

TD′(z) = lim
xN→∞

{
(−xN )γN�iN · TD(z)

}
, (2.178)

where xν (with x ∈ C
×, ν ∈ �) denotes the following 2r × 2r diagonal z-independent

matrix:

xν = diag
(
xε∨

1 (ν), . . . , xε∨
r−1(ν), xε∨

r (ν), xε′∨
r (ν), xε′∨

r−1(ν), . . . , xε′∨
1 (ν)

)
(2.179)

with

ε′∨
i := ε∨

r + ε∨
r+1 − ε∨

i for 1 ≤ i ≤ r.

Remark 2.180. In contrast to [FPT], we note that the normalization factor (−xN )γN�iN

appears on the left of TD(z) in (2.178), due to our present choice (2.138) of using Zk(z)-
factors in the�D-images of Fk(z)-currents rather than Ek(z)-currents, cf. Remark 2.139.

In view of (2.178), TD′(z) can be constructed as a normalized limit of TD(z), hence we
get:

Corollary 2.181. For any �+-valued divisor D on P
1 satisfying (2.128), the matrix

TD(z) of (2.176) is a normalized limit of TD̄(z) with a �+-valued divisor D̄ satisfying
D̄|∞ = 0.
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Note that the condition D̄|∞ = 0 corresponds to the unshifted case (μ = 0), in which
case Theorem 2.156 holds due to Theorem 2.62. Therefore, TD̄(z) defined via (2.176)
can also be recovered via (2.173, 2.174), hence, TD̄(z) is Lax. Since multiplication by
xν preserves (2.48) (due to Corollary 2.51 and ε∨

1 + ε′∨
1 = ε∨

2 + ε′∨
2 = . . . = ε∨

r + ε′∨
r ),

we finally obtain:

Proposition 2.182. Forany�+-valueddivisor D onP
1 satisfying theassumption (2.128),

the matrix TD(z) defined via (2.176) is Lax, i.e. it satisfies the RTT relation (2.48).

2.3.2. Proof of the key isomorphism Reversing the argument from the previous Sub-
section, we note that the Lax matrix TD(z) (Proposition 2.182) gives rise to the alge-
bra homomorphism �D : X rtt−μ(so2r ) → A, whose composition with the epimorphism
ϒ−μ : X−μ(so2r ) � X rtt−μ(so2r ) of Proposition 2.155 coincides with the homomor-
phism �D (2.137). Thus, for μ ∈ �+ and any �+-valued divisor D on P

1, see (2.121),
satisfying (2.128) and D|∞ = μ, the homomorphism �D does factor through ϒ−μ.
This observation immediately implies the injectivity of ϒ−μ, due to the recent result of
[W]:4

Theorem 2.183 ([W]). For any coweight ν of a semisimple Lie algebra g, the inter-
section of kernels of the homomorphisms �∗−ν of [BFNb, Theorem B.15] is zero:⋂

λ Ker(�λ−ν) = 0, where λ ranges through all dominant coweights of g such that
λ + ν = ∑

aiαi with ai ∈ N, αi being simple coroots of g, and points {zi } of loc.cit.
specialized to arbitrary complex parameters.

This completes our proof of Theorem 2.156. Combining this with Lemma 2.119(b), we
obtain:

Lemma 2.184. For any μ ∈ �+, the center of X rtt−μ(so2r ) is a polynomial algebra in the

coefficients {z(k)
N }k>dr+dr+1 of the series:

zN (z) =
∑

k≥dr+dr+1

z(k)
N z−k = ϒ−μ(Cr (z)) =

r−1∏
i=1

hi (z + i − r)

hi (z + i − r + 1)
· hr (z)hr+1(z). (2.185)

The above argument can be also used to establish the crossing relation for X rtt−μ(so2r ):

Proposition 2.186. For any μ ∈ �+, the matrix T (z) of (2.148) satisfies:

T (z)T ′(z − κ) = T ′(z − κ)T (z) = zN (z)IN . (2.187)

Proof. According to (the extended version of) Theorem 2.183, it suffices to verify:

TD(z)T ′
D(z − κ) = T ′

D(z − κ)TD(z) = �D(zN (z))IN (2.188)

for any�+-valued divisor D onP
1 satisfying (2.128) and D|∞ = μ. According to (2.55),

the equality (2.188) obviously holds for D such that D|∞ = 0. Therefore, the validity

4 Actually, we need the extended version of Theorem 2.183 (now with the points Zi , cf. (2.140), rang-
ing over all C), which nevertheless follows immediately from the algebra decomposition (2.116) and the
formula (2.146).
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of (2.188) for any D follows now from the “normalized limit” construction (2.178). To
this end, using the notations of loc.cit., the validity of (2.188) for D implies the one for
D′ as follows from:

TD′(z)T ′
D′(z − κ) = lim

xN→∞
(
(−xN )γN�iN · TD(z)T ′

D(z − κ) · ((−xN )γN�iN
)′ ) =

lim
xN→∞

(
(−xN )γN�iN · ((−xN )γN�iN

)′ · �D(zN (z))IN
)

= �D′(zN (z))IN ,

where the last equality follows from

x�i · (x�i
)′ = x−2+δi,r−1+δi,r · IN

and the explicit formulas (2.146, 2.185). ��

2.3.3. Regularity of Lax matrices Consider the following normalized version of TD(z):

TD(z) := TD(z)/Z0(z), (2.189)

with the normalization factor Z0(z) defined in (2.133). The key property of thesematrices
is their regularity in (the spectral parameter) z:

Theorem 2.190. We have TD(z) ∈ A[z] ⊗C EndC
2r .

This straightforward verification, based on the explicit formulas of Appendix A, is com-
pletely analogous (though is more tedious) to its type A counterpart of [FPT, Theo-
rem 2.67].

Remark 2.191. Similar to [BFNb, Theorem B.15], Theorem 2.136 can be generalized
by constructing the homomorphisms �D : X−μ(so2r ) → A for any orientation of Dr

Dynkin diagram, so that �D ◦ ι−μ is to �λ̄−μ̄ of [BFNb] as in Remark 2.139 (note
that the images of Di (z) are independent of the orientation, hence, so is the image
of Cr (z), see (2.108, 2.146)). However, extending A to its localization Aloc by the
multiplicative set generated by {pi,k − p j,� + m}m∈Z

k≤ai ,�≤a j
with (i, j) connected by an

edge, these homomorphisms are compositions of (2.137) with algebra automorphisms
ofAloc. Thus, similar to [FPT, Remark 2.73], the resulting Lax matrices are equivalent,
up to algebra automorphisms of Aloc, to the above TD(z), cf. Remark 2.120.

2.3.4. Linear Lax matrices The regularity of Theorem 2.190 provides a shortcut to
the computation of the Lax matrices TD(z) defined, in general, as a product of three
complicated matrices FD(z), HD(z), ED(z) in (2.175). Let us illustrate this in the case
of the linear ones, i.e. those of degree 1 in the spectral parameter z. We shall use the
following notations:

eDi, j (z) =
∑
k≥1

e(D)k
i, j z−k, f Dj,i (z) =

∑
k≥1

f (D)k
j,i z−k, hD

i (z) =
∑
k∈Z

h(D)k
i z−k . (2.192)

Let us also recall the coefficients ai ∈ N from (2.128, 2.129).

Proposition 2.193. (a) The normalized Lax matrix TD(z) of (2.189) is linear iff a1 = 1.
(b) Any linear normalized Lax matrix TD(z) is explicitly determined as follows:



Rational Lax matrices from shifted Yangians: BCD types

• The diagonal entries are:

TD(z)i,i = z · h(D),−1
i + h(D)0

i , 1 ≤ i ≤ 2r. (2.194)

• The entries above the main diagonal are:

TD(z)i, j =
{
e(D)1
i, j if h(D),−1

i �= 0

0 otherwise
, 1 ≤ i < j ≤ 2r. (2.195)

• The entries below the main diagonal are:

TD(z) j,i =
{
f (D)1
j,i if h(D),−1

i �= 0

0 otherwise
, 1 ≤ i < j ≤ 2r. (2.196)

Proof. (a) As TD(z)1,1 = hD1 (z)
Z0(z)

= P1(z) is a polynomial in z of degree a1, the con-
dition a1 ≤ 1 is necessary for TD(z) to be of degree ≤ 1 in z. On the other hand,
degz h

D
1 (z) ≥ degz h

D
i (z) for any 1 < i ≤ 2r , due to (2.152). Combining this with

degz e
D
i, j (z), degz f Dj,i (z) < 0, we conclude that a1 ≤ 1 is also a sufficient condition

for TD(z) to be of degree ≤ 1 in z. Moreover, TD(z) is actually of degree < 1 in z if
and only if a1 < 1. This concludes our proof of part (a).

(b) This follows immediately from the regularity result of Theorem 2.190 combined with
the formula (2.176) and the observation that degz e

D
i, j (z), degz f Dj,i (z) < 0 for any

i < j . ��
Let us now describe all �+-valued divisors D on P

1 satisfying (2.128) such that
degz TD(z) = 1. Define λ,μ ∈ �+ via (2.122, 2.124), so that λ+μ = ∑r

j=0 b j� j with
b0 ∈ Z, b1, . . . , br ∈ N. Then, the assumption (2.128) implies:

r∑
j=0

b j� j =
r∑

i=1

ai α̂i with ai ∈ N. (2.197)

Decomposing both sides of (2.197) in the basis {εi }r+1i=1, we can express b j ’s via ai ’s:

b0 = −a1, b1 = 2a1 − a2, bi = −ai−1 + 2ai − ai+1 for 2 ≤ i ≤ r − 3,

br−2 = −ar−3 + 2ar−2 − ar−1 − ar , br−1 = −ar−2 + 2ar−1, br = −ar−2 + 2ar .
(2.198)

Likewise, let us also express ai ’s via b j ’s:

ai =
i∑

k=0

(k − i)bk =
i−1∑
k=1

kbk + i
r−2∑
k=i

bk +
i

2
(br−1 + br ) for 1 ≤ i ≤ r − 2,

ar−1 = 1

2

r−1∑
k=0

(k + 2 − r)bk = 1

2

(
r−2∑
k=1

kbk +
r

2
br−1 +

r − 2

2
br

)
,

ar = 1

2

r∑
k=0

(k − r)bk = 1

2

(
r−2∑
k=1

kbk +
r − 2

2
br−1 +

r

2
br

)
, (2.199)
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where we used the equality (arising from the comparison of the coefficients of
εr and εr+1):

b0 = −b1 − . . . − br−2 − 1

2
(br−1 + br ). (2.200)

Note that (2.200) uniquely recovers b0 in terms of b1, . . . , br and forces br−1 + br to
be even. We also note that the total number of pairs of (p, q)-oscillators in the algebra
A (2.131) equals:

r∑
i=1

ai = −
r∑

k=0

(r − k)(r − k − 1)

2
bk =

r−2∑
k=1

k

(
r − k + 1

2

)
bk +

r(r − 1)

4
(br−1 + br ) .

(2.201)

Combining the above formulas (2.199, 2.200) with Proposition 2.193(a), we thus con-
clude that the normalizedLaxmatrixTD(z) is linear only for the following configurations
of bi ’s:

(1) b0 = −1, b j = 1, b1 = . . . = b j−1 = b j+1 = . . . = br = 0 for an even
1 ≤ j ≤ r − 2,

(2)

{
b0 = −1, b1 = . . . = br−2 = 0, br−1 = br = 1 if r is odd
b0 = −1, b1 = . . . = br−2 = 0, {br−1, br } = {0, 2} if r is even

.

As b0 is uniquely determined via (2.200) and does not affect the normalized Lax
matrix TD(z), we shall rather focus on the corresponding values of the dominant so2r -
coweights λ̄, μ̄ ∈ �̄+.

• Case (1) : λ̄ + μ̄ = ω j for even 1 ≤ j ≤ r − 2.
In this case, we have a1=1, . . . , a j−1= j−1, a j = . . .=ar−2 = j, ar−1=ar = j/2,

and the total number of pairs of (p, q)-oscillators is j (2r− j−1)
2 , see (2.199, 2.201).

For λ̄ = ω j , μ̄ = 0 we get a non-degenerate Lax matrix with z appearing on the entire
diagonal:

T� j [x]−�0[y](z) = z(E11 + . . . + E2r,2r ) + O(1), (2.202)

depending on the additional parameter x ∈ C (note that it is independent of the point
y ∈ P

1).

The normalized limit (2.178) of (2.202) as x → ∞ recovers the Lax matrix correspond-
ing to λ̄ = 0, μ̄ = ω j , which is degenerate as it contains z only in the first j diagonal
entries:

T� j [∞]−�0[y] = z(E11 + . . . + E j j ) + O(1) (2.203)

and also satisfies:

T� j [∞]−�0[y](z)k,k =
{
1 if j + 1 ≤ k ≤ ( j + 1)′
0 if j ′ ≤ k ≤ 1′ . (2.204)

• Case (2) for odd r : λ̄ + μ̄ = ωr−1 + ωr .
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In this case, we have a1 = 1, . . . , ar−2 = r − 2, ar−1 = ar = r−1
2 , and the total

number of pairs of (p, q)-oscillators is r(r−1)
2 , see (2.199, 2.201).

For λ̄ = ωr−1 + ωr , μ̄ = 0 we get a non-degenerate Lax matrix with z on the entire
diagonal:

T�r−1[x1]+�r [x2]−�0[y](z) = z(E11 + . . . + E2r,2r ) + O(1), (2.205)

which depends on two additional parameters x1, x2 ∈ C (but is independent of y ∈ P
1).

The normalized limit (2.178) of (2.205) as x2 → ∞ recovers the Lax matrix corre-
sponding to λ̄ = ωr−1, μ̄ = ωr , which is degenerate as it contains z only in the first r
diagonal entries:

T�r−1[x1]+�r [∞]−�0[y](z) = z(E11 + . . . + Err ) + O(1) (2.206)

and also satisfies:

T�r−1[x1]+�r [∞]−�0[y](z)k,k = 1 for r ′ ≤ k ≤ 1′. (2.207)

Likewise, the normalized limit of (2.205) as x1 → ∞ recovers the Lax matrix corre-
sponding to λ̄ = ωr , μ̄ = ωr−1, which is degenerate as it contains z only in r of its
diagonal entries:

T�r [x2]+�r−1[∞]−�0[y](z) = z(E11 + . . . + Er−1,r−1 + Er+1,r+1) + O(1) (2.208)

and also satisfies:

T�r [x2]+�r−1[∞]−�0[y](z)k,k = 1 for k ∈ {r, r + 2, r + 3, . . . , 2r}. (2.209)

Finally, the normalized limit of (2.206) as x1 → ∞, or equivalently of (2.208) as
x2 → ∞, recovers the Lax matrix corresponding to λ̄ = 0, μ̄ = ωr−1 + ωr , which is
even more degenerate:

T�r−1[∞]+�r [∞]−�0[y](z) = z(E11 + . . . + Er−1,r−1) + O(1) (2.210)

and also satisfying:

T�r−1[∞]+�r [∞]−�0[y](z)k,k =
{
1 if k = r, r ′
0 if r ′ < k ≤ 1′ . (2.211)

• Case (2) for even r : λ̄ + μ̄ = 2ωr−1 or 2ωr .
In this case, we have a1 = 1, . . . , ar−2 = r − 2 and {ar−1, ar } = { r2 , r

2 − 1}, and the
total number of pairs of (p, q)-oscillators is again r(r−1)

2 , see (2.199, 2.201).
For λ̄ = 2ωr−1, μ̄ = 0we get a non-degenerateLaxmatrixwith z on the entire diagonal:

T�r−1([x1]+[x2])−�0[y](z) = z(E11 + . . . + E2r,2r ) + O(1), (2.212)

which depends, in a symmetric way, on additional parameters x1, x2 ∈ C, but not on
y ∈ P

1. The normalized limit (2.178) of (2.212) as x2 → ∞ recovers the Lax matrix
corresponding to λ̄ = ωr−1, μ̄ = ωr−1, which is degenerate as it contains z only in half
of its diagonal entries:

T�r−1([x1]+[∞])−�0[y](z) = z(E11 + . . . + Er−1,r−1 + Er+1,r+1) + O(1) (2.213)
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and also satisfies:

T�r−1([x1]+[∞])−�0[y](z)k,k = 1 for k ∈ {r, r + 2, r + 3, . . . , 2r}. (2.214)

Finally, the normalized limit (2.178) of (2.213) as x1 → ∞ recovers the Lax matrix
corresponding to λ̄ = 0, μ̄ = 2ωr−1, which also contains z in half of its diagonal entries:

T2�r−1[∞]−�0[y](z) = z(E11 + . . . + Er−1,r−1 + Er+1,r+1) + O(1), (2.215)

but is more degenerate in the other diagonal entries:

T2�r−1[∞]−�0[y](z)k,k = 0 for k ∈ {r, r + 2, r + 3, . . . , 2r}. (2.216)

For λ̄ = 2ωr , μ̄ = 0 we get a non-degenerate Lax matrix with z on the entire diagonal:

T�r ([x1]+[x2])−�0[y](z) = z(E11 + . . . + E2r,2r ) + O(1), (2.217)

which depends, in a symmetric way, on additional parameters x1, x2 ∈ C, but not on
y ∈ P

1. The normalized limit (2.178) of (2.217) as x2 → ∞ recovers the Lax matrix
corresponding to λ̄ = ωr , μ̄ = ωr , which is degenerate as it contains z only in half of
its diagonal entries:

T�r ([x1]+[∞])−�0[y](z) = z(E11 + . . . + Err ) + O(1) (2.218)

and also satisfies:

T�r ([x1]+[∞])−�0[y](z)k,k = 1 for r ′ ≤ k ≤ 1′. (2.219)

Finally, the normalized limit (2.178) of (2.218) as x1 → ∞ recovers the Lax matrix
corresponding to λ̄ = 0, μ̄ = 2ωr , which also contains z in half of its diagonal entries:

T2�r [∞]−�0[y](z) = z(E11 + . . . + Err ) + O(1) (2.220)

but is more degenerate in the other diagonal entries:

T2�r [∞]−�0[y](z)k,k = 0 for r ′ ≤ k ≤ 1′. (2.221)

We conclude this Subsectionwith the following important unitarity property of the above
non-degenerate linear Lax matrices (recall the parameter κ = r − 1, see (2.44)), cf.
[R2, (3.8)]:

Proposition 2.222. (a) For any even 1 ≤ j ≤ r − 2, the corresponding non-degenerate
linear Lax matrix Lj (z) := T�j [x]−�0[y]

(
z + x + κ−j

2

)
is unitary:

Lj (z)Lj (−z) =
[(

κ − j

2

)2

− z2
]
IN .

(b) Consider D = �ı [x1] + �j [x2] − �0[y] with ı = j ∈ {r − 1, r} if r is even
or {ı, j} = {r − 1, r} if r is odd. Then, the non-degenerate linear Lax matrix
L(z) := TD

(
z + x1+x2

2

)
is unitary:

L(z)L(−z) =
[(

x1 − x2
2

)2

− z2
]
IN .
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Remark 2.223. We note that such unitarity property can be regarded as a consequence
of the natural constraints that arise for a linear solution when inserted into the RTT
relation (2.48), see [K, (18)].

Proof. (a) Combining Theorem 2.190 and Proposition 2.193 with the equalities

h(D)0
i = −h(D)0

i ′ − 2x + j, e(D)1
i, j = −e(D)1

j ′,i ′ , f (D)1
j,i = − f (D)1

i ′, j ′ ,

due to (A.1, A.4, A.6), we obtain:

T′
�j [x]−�0[y](z) = −T�j [x]−�0[y](−z + 2x − j). (2.224)

According to the crossing relation of Proposition 2.186, see formula (2.188), we also
have:

T�j [x]−�0[y](z)T′
�j [x]−�0[y](z − r + 1) = (z − x)(z − x − r + j + 1)IN .

(2.225)

The result now follows by combining (2.224, 2.225).
(b) The proof is completely analogous to that of part (a) and is left to the interested reader

(in particular, h(D)0
i = −h(D)0

i ′ + r − 1 − x1 − x2). ��

2.3.5. Examples In this Subsection, we explain how the type Dr linear and quadratic
Lax matrices recently constructed by the first author in [F] arise as particular examples
of our general construction.

• Example 1 : Consider the following �+-valued divisor on P
1:

D =
{

�r−1[x] + �r [∞] − �0[y] if r is odd
�r [x] + �r [∞] − �0[y] if r is even

(2.226)

depending on x ∈ C (note that TD(z) is independent of y ∈ P
1), so that the total number

of (p, q)-oscillators in the algebra A equals a1 + . . . + ar = r(r−1)
2 .

According to (2.206–2.207, 2.218–2.219), the corresponding normalized Lax matrix
TD(z) has the block form:

TD(z) =
(
zIr + F B

C Ir

)
, (2.227)

where B,C,F are z-independent r × r matrices. We have the following properties of
B,C:

Lemma 2.228. (a) The matrices B,C are skew-symmetric with respect to their antidi-
agonals:

Bi j = −Br+1− j,r+1−i , Ci j = −Cr+1− j,r+1−i .

In particular, Bi,r+1−i = Ci,r+1−i = 0 for any 1 ≤ i ≤ r .
(b) The matrix coefficients {Bi j }ri, j=1 of the matrix B pairwise commute.
(c) The matrix coefficients {Ci j }ri, j=1 of the matrix C pairwise commute.
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(d) The commutation among the matrix coefficients of B and C is given by:

[Bi j ,Ck�] = δi,�δ j,k − δi,r+1−kδ j,r+1−�.

Proof. (a) According to Proposition 2.193, we have Bi j = e(D)1
i,r+ j ,

Br+1− j,r+1−i = e(D)1
r+1− j,2r+1−i . Combining this with e(D)1

i,r+ j = −e(D)1
r+1− j,2r+1−i , due

to (A.4), we obtain the desired equality Bi j = −Br+1− j,r+1−i .
The proof of Ci j = −Cr+1− j,r+1−i is completely analogous.

(b, c) Those follow immediately from the ansatz (2.227) and the RTT relation (2.50)
applied to the evaluation of [Bi j ,Bk�] = [ti,r+ j (z), tk,r+�(w)] or [Ci j ,Ck�] =
[tr+i, j (z), tr+k,�(w)].

(d) This also follows from the ansatz (2.227) and the RTT relation (2.50). Indeed,
evaluating [Bi j ,Ck�] = [ti,r+ j (z), tr+k,�(w)] via (2.50), the first summand is easily
seen to equal δi,�δ j,k , while computing the leading term of the second summand,
we get −δi,r+1−kδ j,r+1−�. ��

It will be convenient to relabel the matrices B,C as Ā,−A, respectively:

B = Ā =

⎛
⎜⎜⎜⎝

ā1,r ′ · · · ā1,2′ 0
... . .

.
. .

. −ā1,2′

ār−1,r ′ . .
.

. .
. ...

0 −ār−1,r ′ · · · −ā1,r ′

⎞
⎟⎟⎟⎠ ,

−C = A =

⎛
⎜⎜⎜⎝

ar ′,1 · · · ar ′,r−1 0
... . .

.
. .

. −ar ′,r−1

a2′,1 . .
.

. .
. ...

0 −a2′,1 · · · −ar ′,1

⎞
⎟⎟⎟⎠ , (2.229)

with the matrix coefficients satisfying the following relations:

[ai ′, j , āk,�′ ] = δi,�δ j,k, [ai ′, j , ak′,�] = 0, [āi, j ′ , āk,�′ ] = 0, (2.230)

due to Lemma 2.228. Then, a tedious straightforward calculation (cf. [FPT, Theo-
rem 2.133]) yields:

TD(z) =
⎛
⎝ (z + x)Ir − ĀA Ā

−A Ir

⎞
⎠ (2.231)

which can also be written in the following factorized form:

TD(z) =
⎛
⎝ Ir Ā

0 Ir

⎞
⎠
⎛
⎝ (z + x)Ir 0

0 Ir

⎞
⎠
⎛
⎝ Ir 0

−A Ir

⎞
⎠ . (2.232)

The type Dr Lax matrix of the form (2.231, 2.232) was recently discovered in [F, (4.3)].

• Example 2 : Consider the following �+-valued divisor on P
1:

D =
{

�r−1[x1] + �r [x2] − �0[y] if r is odd
�r [x1] + �r [x2] − �0[y] if r is even

(2.233)
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depending on x1, x2 ∈ C (while TD(z) does not depend of y ∈ P
1), so that the total

number of (p, q)-oscillators in the algebra A equals a1 + . . . + ar = r(r−1)
2 .

Weexpect that the normalizednon-degenerate linearLaxmatrixTD(z), see (2.205, 2.217),
is equivalent, up to a (nontrivial) canonical transformation, to the Lax matrix L(z) of
[F, (5.4)] (cf. [R2, (3.6)]). The latter was defined via:

L(z) =
⎛
⎜⎝

(z + x1)Ir − ĀA Ā(x2 − x1 + AĀ)

−A (z + x2)Ir + AĀ

⎞
⎟⎠ (2.234)

with the matrices Ā,A as in (2.229) encoding r(r−1)
2 pairs of oscillators (2.230), which

can also be written in the following factorized form:

L(z) =
⎛
⎝ Ir Ā

0 Ir

⎞
⎠
⎛
⎝ (z + x1)Ir 0

−A (z + x2)Ir

⎞
⎠
⎛
⎝ Ir −Ā

0 Ir

⎞
⎠ . (2.235)

• Example 3 : Consider the following �+-valued divisor on P
1:

D = �1([x] + [∞]) − �0([y1] + [y2]) (2.236)

depending on x ∈ C (while TD(z) does not depend of y1, y2 ∈ P
1), so that the total

number of (p, q)-oscillators in the algebra A equals a1 + . . . + ar = 2(r − 1).

We expect that the normalized quadratic Lax matrix TD(z) is equivalent, up to a (non-
trivial) canonical transformation, to the Lax matrix L(z + x) of [F, (4.12)]. The latter was
defined via:

L(z) =

⎛
⎜⎜⎜⎜⎜⎝

z2 + z(2 − N
2 − w̄w) + 1

4 w̄Jw̄
twt Jw zw̄ − 1

2 w̄Jw̄
twt J − 1

2 w̄Jw̄
t

−zw + 1
2 Jw̄

twt Jw zI − Jw̄twt J −Jw̄t

− 1
2w

t Jw wt J 1

⎞
⎟⎟⎟⎟⎟⎠

(2.237)

with

I = IN−2 =

⎛
⎜⎜⎝

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0
0 · · · 0 1

⎞
⎟⎟⎠ , J = JN−2 =

⎛
⎜⎜⎜⎝

0 · · · 0 1
... . .

.
. .

. 0

0 . .
.

. .
. ...

1 0 · · · 0

⎞
⎟⎟⎟⎠ , (2.238)

and w, w̄ encoding N − 2 = 2(r − 1) pairs of oscillators:

w̄ = (ā2, . . . , ār , ār ′ , . . . , ā2′), w = (a2, . . . , ar , ar ′ , . . . , a2′)t , (2.239)

so that

[ai , ā j ] = δi, j , [ai , a j ] = 0, [āi , ā j ] = 0. (2.240)
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The matrix L(z) of (2.237) can also be written in the following factorized form, see
[F, (4.15)]:

L(z) =⎛
⎜⎜⎜⎜⎝

1 w̄ − 1
2 w̄Jw̄

t

0 I −Jw̄t

0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

z(z − N
2 + 2) 0 0

0 zI 0

0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

−w I 0

− 1
2w

t Jw wt J 1

⎞
⎟⎟⎟⎠ .

(2.241)

• Example 4 : Consider the following �+-valued divisor on P
1:

D = �1([x1] + [x2]) − �0([y1] + [y2]) (2.242)

depending on x1, x2 ∈ C (while TD(z) does not depend of y1, y2 ∈ P
1), so that the total

number of (p, q)-oscillators in the algebra A equals a1 + . . . + ar = 2(r − 1).

We expect that the normalized quadratic Lax matrix TD(z) is equivalent, up to a (non-
trivial) canonical transformation, to the Lax matrix Lx1,−x2(z + x1) of [F, (5.36, 5.38)]
(see Remark 4.37 where a relation to [R2, (3.11)] is discussed). The latter was defined
via:

Lx1,x2(z) =

⎛
⎜⎜⎜⎜⎝

1 w̄ − 1
2 w̄Jw̄

t

0 I −Jw̄t

0 0 1

⎞
⎟⎟⎟⎟⎠

· Dx1,x2(z) ·

⎛
⎜⎜⎜⎜⎝

1 −w̄ − 1
2 w̄Jw̄

t

0 I Jw̄t

0 0 1

⎞
⎟⎟⎟⎟⎠

(2.243)

with I, J,w, w̄ as in (2.238)–(2.240) and the middle factor explicitly given by:

Dx1,x2(z) =⎛
⎜⎜⎜⎜⎜⎝

(z − x1)(z − x1 − N
2 + 2) 0 0

−w(z − x1) (z − x1)(z − x2)I 0

− 1
2w

t Jw wt J(z − x2) (z − x2)(z − x2 − N
2 + 2)

⎞
⎟⎟⎟⎟⎟⎠

.

We conclude this Subsection with the following observation:

Remark 2.244. We note that the degeneration phenomena observed in [F, (5.11, 5.42)]:

(1) degeneration of the Lax matrix (2.234) into the one of (2.231)
(2) degeneration of the Lax matrix (2.243) into the one of (2.237)

exactly agree with our general normalized limit construction (2.178).

3. Type C

The type Cr is completely similar to the type Dr , which we considered in details above.
Thus, we’ll be brief, only stating the key results and highlighting the few technical
differences.
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3.1. Classical (unshifted) story. We shall realize the simple positive roots {α∨
i }ri=1 of

the Lie algebra sp2r in �̄∨ via:

α∨
1 = ε∨

1 − ε∨
2 , α∨

2 = ε∨
2 − ε∨

3 , . . . , α∨
r−1 = ε∨

r−1 − ε∨
r , α∨

r = 2ε∨
r . (3.1)

The Drinfeld Yangian of sp2r , denoted by Y (sp2r ), is defined similarly to
Y (so2r ): it is generated by {E(k)

i ,F(k)
i ,H(k)

i }k≥1
1≤i≤r subject to the defining relations (2.2)–

(2.9), with α∨
i of (3.1). The extended Drinfeld Yangian of sp2r , denoted by X (sp2r ),

is defined alike X (so2r ): it is generated by {E (k)
i , F (k)

i }k≥1
1≤i≤r ∪ {D(k)

i }k≥1
1≤i≤r+1 subject

to (2.20)–(2.31) with the modification:

[Dr+1(z), Er−1(w)] = Dr+1(z)(Er−1(z − 2) − Er−1(w))

z − w − 2
,

[Dr+1(z), Fr−1(w)] = − (Fr−1(z − 2) − Fr−1(w))Dr+1(z)

z − w − 2
.

(3.2)

The central elements {C (k)
r }k≥1 of X (sp2r ) are now defined via (cf. (2.34)):

Cr (z) = 1 +
∑
k≥1

C (k)
r z−k :=

r−1∏
i=1

Di (z + i − r − 2)

Di (z + i − r − 1)
· Dr (z − 2)Dr+1(z). (3.3)

Furthermore, a natural analogue of Lemma 2.41 holds with ι0 : Y (sp2r ) ↪→ X (sp2r )
given by:

Ei (z) 
→
{
Ei (z + i−1

2 ) if i < r
Er (z + r

2 ) if i = r
, Fi (z) 
→

{
Fi (z + i−1

2 ) if i < r
Fr (z + r

2 ) if i = r
,

Hi (z) 
→
{
Di (z + i−1

2 )−1Di+1(z + i−1
2 ) if i < r

Dr (z + r
2 )

−1Dr+1(z + r
2 ) if i = r

.

(3.4)

The extended RTT Yangian of sp2r , denoted by X rtt(sp2r ), is defined similarly to
X rtt(so2r ): it is generated by {t (k)i j }k≥1

1≤i, j≤N (N = 2r ) subject to the RTT relation (2.48)
with the R-matrix R(z) given by (2.45), but with the following modifications of κ ∈ C

and Q ∈ EndC
N ⊗ EndC

N :

κ = r + 1, Q =
N∑

i, j=1

εiε j Ei j ⊗ Ei ′ j ′ with εi =
{
1 if 1 ≤ i ≤ r
−1 if r ′ ≤ i ≤ 1′ . (3.5)

The RTT Yangian of sp2r , denoted by Y
rtt(sp2r ), is defined alike Y

rtt(so2r ): it is the sub-
algebra of X rtt(sp2r ) consisting of the elements stable under the automorphisms (2.52).
However, it can be also realized as a quotient of X rtt(sp2r ) as in (2.57), due to the natural
analogue of (2.53), where the center Z X rtt(sp2r ) of X

rtt(sp2r ) is explicitly described as a
polynomial algebra in the coefficients {z(k)

N }k≥1 of the series zN (z) = 1+
∑

k≥1 z
(k)
N z−k

determined from:

T ′(z − κ)T (z) = T (z)T ′(z − κ) = zN (z)IN , (3.6)

where in the present setup the matrix transposition (2.56) should be redefined via:

(X ′)i j = εiε j X j ′i ′ for any N × N matrix X. (3.7)
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In the notations of Subsection 2.1.3, the analogue of Theorem 2.62 still holds, explicitly:

ϒ0 : Ek(z) 
→
{
ek,k+1(z) if k < r
er,r+1(z)

2 if k = r
, Fi (z) 
→ fi+1,i (z), Dj (z) 
→ h j (z) (3.8)

for all i ≤ r , j ≤ r + 1. Hence, a natural analogue of Theorem 2.66 holds with ϒ0 ◦ ι0
given by:

Ei (z) 
→
{
ei,i+1(z + i−1

2 ) if i < r
1
2er,r+1(z +

r
2 ) if i = r

, Fi (z) 
→
{
fi+1,i (z + i−1

2 ) if i < r
fr+1,r (z + r

2 ) if i = r
,

Hi (z) 
→
{
hi (z + i−1

2 )−1hi+1(z + i−1
2 ) if i < r

hr (z + r
2 )

−1hr+1(z + r
2 ) if i = r

.

(3.9)

We note that our conventions are to those of [JLM1] as in type Dr , see Remark 2.68 for
details.

Accordingly, the algebra X rtt(sp2r ) is generated by the coefficients of {h j (z)}r+1j=1 as well
as of:

ei (z) =
∑
k≥1

e(k)
i z−k := ei,i+1(z), fi (z) =

∑
k≥1

f (k)
i z−k := fi+1,i (z), 1 ≤ i ≤ r.

(3.10)

We shall now record the explicit formulas for all other entries of thematrices F(z), H(z),
E(z) from (2.58)–(2.61). The following result is essentially due to [JLM1]5:

Lemma 3.11. (a) hi ′(z) = 1
hi (z+i−r−1) · ∏r−1

j=i+1
h j (z+ j−r−2)
h j (z+ j−r−1) · hr (z − 2)hr+1(z) for

1 ≤ i ≤ r − 1.
(b) e(i+1)′,i ′(z) = −ei (z + i − r − 1) for 1 ≤ i ≤ r − 1.

(c) ei, j+1(z) = −[ei, j (z), e(1)
j ] for 1 ≤ i < j ≤ r − 1.

(d) ei, j ′(z) = [ei,( j+1)′(z), e(1)
j ] for 1 ≤ i < j ≤ r − 1.

(e) ei,r ′(z) = − 1
2 [ei,r (z), e(1)

r ] for 1 ≤ i ≤ r − 1.

(f) ei ′, j ′(z) = [ei ′,( j+1)′(z), e(1)
j ] for 1 ≤ j ≤ i − 2 ≤ r − 2.

(g) ei,i ′(z) = [ei,(i+1)′(z), e(1)
i ] − ei (z)ei,(i+1)′(z) for 1 ≤ i ≤ r − 1.

(h) fi ′,(i+1)′(z) = − fi (z + i − r − 1) for 1 ≤ i ≤ r − 1.

(i) f j+1,i (z) = −[ f (1)
j , f j,i (z)] for 1 ≤ i < j ≤ r − 1.

(j) f j ′,i (z) = [ f (1)
j , f( j+1)′,i (z)] for 1 ≤ i < j ≤ r − 1.

(k) fr ′,i (z) = − 1
2 [ f (1)

r , fr,i (z)] for 1 ≤ i ≤ r − 1.

(l) f j ′,i ′(z) = [ f (1)
j , f( j+1)′,i ′(z)] for 1 ≤ j ≤ i − 2 ≤ r − 2.

(m) fi ′,i (z) = [ f (1)
i , f(i+1)′,i (z)] − f(i+1)′,i (z) fi (z) for 1 ≤ i ≤ r − 1.

The remaining matrix coefficients of E(z) and F(z) are recovered via the following
analogues of Lemmas 2.80 and 2.97:

Lemma 3.12. (a) ei, j ′(z) = [ei,( j+1)′(z), e(1)
j ] for 1 ≤ j ≤ i − 2 ≤ r − 2.

5 Note the missing summands in the equalities from parts (g, m) as stated in [JLM1].
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(b) ei+1,i ′(z) = [ei+1,(i+1)′(z), e(1)
i ] + ei (z)ei+1,(i+1)′(z) − ei,(i+1)′(z) for 1 ≤ i ≤ r − 1.

(c) f j ′,i (z) = [ f (1)
j , f( j+1)′,i (z)] for 1 ≤ j ≤ i − 2 ≤ r − 2.

(d) fi ′,i+1(z) = [ f (1)
i , f(i+1)′,i+1(z)]+ f(i+1)′,i+1(z) fi (z)− f(i+1)′,i (z) for 1 ≤ i ≤ r −1.

3.2. Shifted story. We shall use the same extended lattice �∨, but {α̂∨
i }ri=1 of �∨ are

now defined via:

α̂∨
i = ε∨

i − ε∨
i+1 for 1 ≤ i ≤ r. (3.13)

We shall also use the same notation for the dual lattice � = ⊕r+1
j=1 Zε j = ⊕r

i=0 Z�i
with

�i = −εi+1 − εi+2 − . . . − εr+1 for 0 ≤ i ≤ r. (3.14)

For μ ∈ �, define d = {d j }r+1j=1 ∈ Z
r+1, b = {bi }ri=1 ∈ Z

r via (2.101, 2.102); so that
bi = di − di+1 for all i .

The shifted extended Drinfeld Yangian of sp2r , denoted by Xμ(sp2r ), is defined sim-

ilarly: it is generated by {E (k)
i , F (k)

i }k≥1
1≤i≤r ∪ {D(ki )

i }ki≥di+1
1≤i≤r+1 subject to (2.20, 2.22–

2.31, 2.104, 3.2). Like in Lemma 2.110, Xμ(sp2r ) depends only on the image of μ

under (2.109), up to an isomorphism.
For ν ∈ �̄, the shifted Drinfeld Yangian of sp2r , denoted by Yν(sp2r ), is defined

likewise. It is related to Xμ(sp2r ) via a natural analogue of Proposition 2.114 with

ιμ : Yμ̄(sp2r ) ↪→ Xμ(sp2r )determinedby (3.4) and the central elements {C (k)
r }k≥dr+dr+1+1

of Xμ(sp2r ) defined via:

Cr (z) = z−dr−dr+1 +
∑

k>dr+dr+1

C (k)
r z−k :=

r−1∏
i=1

Di (z + i − r − 2)

Di (z + i − r − 1)
· Dr (z − 2)Dr+1(z).

(3.15)

The natural analogues of Corollary 2.118 and Lemma 2.119 still hold in the present
setup.

We shall use the same notations (2.121)–(2.124) for �-valued divisors D on P
1, �+-

valued outside {∞} ∈ P
1. The simple coroots {αi }ri=1 ⊂ �̄ of sp2r are explicitly given

by:

α1 = ε1 − ε2, . . . , αr−2 = εr−2 − εr−1, αr−1 = εr−1 − εr , αr = εr . (3.16)

We also consider {α̂i }ri=1 ⊂ �, which are the “lifts” of {αi } from (3.16) in the sense
of (2.127):

α̂1 = ε1 − ε2, . . . , α̂r−2 = εr−2 − εr−1, α̂r−1 = εr−1 − εr + εr+1, α̂r = εr − εr+1.

(3.17)

From now on, we shall impose the following assumption on D (cf. (2.128)):

Assumption : λ + μ = a1α̂1 + . . . + ar α̂r with ai ∈ N. (3.18)
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The above coefficients ai in (3.18) are explicitly given by:

ai = (ε∨
1 + . . . + ε∨

i )(λ + μ) for 1 ≤ i ≤ r. (3.19)

Thus, (3.18) is equivalent to (ε∨
r + ε∨

r+1)(λ + μ) = 0 and
∑i

k=1 ε∨
k (λ + μ) ∈ N for all

1 ≤ i ≤ r .

Consider the algebraA defined as in (2.131) with the following important modification:

[e±qi,k , p j,�] = ∓ (α∨
i , α

∨
i )

2
δi, jδk,�e

±qi,k , (3.20)

so that [e±qr,k , pr,k] = ∓2e±qr,k . Then, as in Theorem 2.136, we have an algebra homo-
morphism

�D : X−μ(sp2r ) −→ A, (3.21)

determined by the following assignment (keeping the notations (2.133, 2.135)):

Ei (z) 
→
⎧⎨
⎩

∑ai
k=1

Pi−1(pi,k−1)
(z−pi,k)Pi,k (pi,k )

eqi,k if i < r
∑ar

k=1
Pr−1(pr,k−1)Pr−1(pr,k−2)

2(z−pr,k )Pr,k (pr,k )
eqr,k if i = r

,

Fi (z) 
→
⎧
⎨
⎩

−∑ai
k=1

Zi (pi,k+1)Pi+1(pi,k+1)
(z−pi,k−1)Pi,k (pi,k)

e−qi,k if i < r

−∑ar
k=1

Zr (pr,k+2)
(z−pr,k−2)Pr,k (pr,k )

e−qr,k if i = r
,

Di (z) 
→
{ Pi (z)

Pi−1(z−1) ·∏i−1
k=0 Zk(z) if i ≤ r

Pr−1(z−2)
Pr (z−2) ·∏r

k=0 Zk(z) if i = r + 1
.

(3.22)

The proof is analogous to that of Theorem 2.136 and is based on the explicit formula

�D(Cr (z)) =
r−1∏
i=0

(
Zi (z)Zi (z + i − r − 1)

)
· Zr (z) (3.23)

as well as the comparison to the homomorphisms of [NW]. Precisely, identifyingAwith
Ã of loc.cit. and the points xs with the parameters zs of loc.cit. via:

pi,k ↔
{

wi,k + i−1
2 if i < r

wr,k + r
2 if i = r

, e±qi,k ↔ u∓1
i,k , xs ↔

{
zs +

is
2 if 1 ≤ is < r

zs + r+1
2 if is = r

,

the (restriction) composition Y−μ̄(sp2r )
ι−μ−−→ X−μ(sp2r )

�D−−→ A is given by the for-
mulas (B.4) of Appendix B (applied to the type Cr Dynkin diagram with the arrows
pointing i → i + 1 for 1 ≤ i < r ), which essentially coincide with the homomorphisms
�λ̄−μ̄ of [NW, Theorem 5.4].

For μ ∈ �+, the antidominantly shifted extended RTT Yangian of sp2r , denoted by
X rtt−μ(sp2r ), is defined similarly to X rtt−μ(so2r ): it is generated by {t (k)i j }k∈Z1≤i, j≤2r subject
to the RTT relation (2.48) and the restriction (2.150) on the matrix coefficients of the
matrices F(z), H(z), E(z) with d ′

i ∈ Z defined as in (2.151). We note that μ ∈ �+

implies now the following inequalities:

d1 ≥ d2 ≥ · · · ≥ dr−1 ≥ dr ≥ d ′
r ≥ d ′

r−1 ≥ · · · ≥ d ′
1. (3.24)

One of our key results in the type Cr is the natural analogue of Theorem 2.156:
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Theorem 3.25. For any μ ∈ �+, the assignment (3.8) gives rise to the algebra isomor-
phism ϒ−μ : X−μ(sp2r )

∼−→ X rtt−μ(sp2r ).

Similarly to the type Dr , the assignment (2.160) gives rise to the coproduct homomor-
phisms


rtt−μ1,−μ2
: X rtt−μ1−μ2

(sp2r ) −→ X rtt−μ1
(sp2r ) ⊗ X rtt−μ2

(sp2r ) ∀μ1, μ2 ∈ �+,

for any μ1, μ2 ∈ �+, coassociative in the sense of Corollary 2.161. Evoking the iso-
morphism of Theorem 3.25 and the algebra embedding ιμ : Yμ̄(sp2r ) ↪→ Xμ(sp2r ), we
obtain the coproduct homomorphisms


−ν1,−ν2 : Y−ν1−ν2(sp2r ) −→ Y−ν1(sp2r ) ⊗ Y−ν2(sp2r ) (3.26)

for any ν1, ν2 ∈ �̄+. Explicitly, the homomorphism (3.26) is uniquely determined by
the formulas (2.171) with the root generators {E(1)

γ ∨ ,F(1)
γ ∨}γ ∨∈
+ defined via:

E(1)
ε∨
i −ε∨

j
= [E(1)

j−1, [E(1)
j−2, [E(1)

j−3, · · · , [E(1)
i+1,E

(1)
i ] · · · ]]],

F(1)
ε∨
i −ε∨

j
= [[[· · · [F(1)

i ,F(1)
i+1], · · · ,F(1)

j−3],F(1)
j−2],F(1)

j−1],
1 ≤ i < j ≤ r

(3.27)

and

E(1)
ε∨
i +ε∨

j
= −[· · · [[E(1)

r−1, [E(1)
r−2, [E(1)

r−3, · · · , [E(1)
i+1,E

(1)
i ] · · · ]]],E(1)

r ], · · · ,E(1)
j ],

F(1)
ε∨
i +ε∨

j
= −2−δi, j [F(1)

j , · · · , [F(1)
r , [[[· · · [F(1)

i ,F(1)
i+1], · · · ,F(1)

r−3],F(1)
r−2],F(1)

r−1]] · · · ],
1 ≤ i ≤ j ≤ r, (3.28)

where 
+ =
{
ε∨
i − ε∨

j

}
1≤i< j≤r

∪
{
ε∨
i + ε∨

j

}
1≤i≤ j≤r

is the set of positive roots of sp2r .

Remark 3.29. As our formulas (2.171) coincide with those of [FKPRW, Theorem 4.8],
this provides a confirmative answer to the question raised in the end of [CGY, §8], in
the type Cr .

3.3. Lax matrices. Similar to the type Dr , the proof of Theorem 3.25 goes through the
faithfulness result of [W], see Theorem 2.183, and the construction of the Lax matrices
TD(z). To this end, for any �+-valued divisor D on P

1 satisfying (3.18), we construct
the matrix TD(z) via (2.175, 2.176) with the matrix coefficients f Dj,i (z), e

D
i, j (z), h

D
i (z)

obtained from the explicit formulas (3.22) combined with Lemmas 3.11, 3.12. Using
the “normalized limit” procedure (2.178), we conclude that Corollary 2.181 applies in
the present setup. Combining this with ϒ0 being an isomorphism [JLM1], we conclude
(as in Proposition 2.182) that TD(z) are Lax (of type Cr ).

Similarly to Proposition 2.186, the matrix T (z) (encoding all generators of X rtt−μ(sp2r ))
still satisfies the crossing relation (2.187) with the central series zN (z) defined via
(cf. (2.185)):

zN (z) = ϒ−μ(Cr (z)) =
r−1∏
i=1

hi (z + i − r − 2)

hi (z + i − r − 1)
· hr (z − 2)hr+1(z). (3.30)
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In Appendix B (see Theorem B.17, Lemma B.25), we use the shuffle algebra approach
to derive the uniform formulas for the matrix coefficients eDi, j (z), f Dj,i (z), which are
rather inaccessible if derived iteratively via Lemmas 3.11, 3.12. This allows to prove the
analogue of Theorem 2.190:

Theorem 3.31. The Lax matrix TD(z)= TD(z)
Z0(z)

is regular in z, i.e.

TD(z) ∈ A[z] ⊗C EndC
2r .

Similar to type Dr , the result above provides a shortcut to the computation of the
Lax matrices TD(z) defined, in general, as a product of three complicated matrices
FD(z), HD(z), ED(z). In particular, the natural analogue of Proposition 2.193 holds.
To this end, let us now describe all�+-valued divisors D onP

1 satisfying (3.18) such that
degz TD(z) = 1. Define λ,μ ∈ �+ via (2.122, 2.124), so that λ+μ = ∑r

j=0 b j� j with
b0 ∈ Z, b1, . . . , br ∈ N. Then, the assumption (3.18) implies that the corresponding
coefficients ai ∈ N are related to b j ’s via:

ai = b1 + 2b2 + . . . + (i − 1)bi−1 + i(bi + . . . + br−1) +
i

2
br , 1 ≤ i ≤ r, (3.32)

and b0 = −b1 − . . .−br−1 − br
2 , which uniquely recovers b0 in terms of b1, . . . , br and

forces br to be even. We also note that the total number of pairs of (p, q)-oscillators in
A equals:

r∑
i=1

ai =
r−1∑
k=1

k(2r − k + 1)

2
bk +

r(r + 1)

4
br . (3.33)

Combining the above formulas (3.32) with Proposition 2.193(a) in type Cr , we thus
conclude that the normalized Lax matrix TD(z) is linear only for the following config-
urations of bi ’s:

(1) b0 = −1, b j = 1, b1 = . . . = b j−1 = b j+1 = . . . = br = 0 for some
1 ≤ j ≤ r − 1,

(2) b0 = −1, b1 = . . . = br−1 = 0, br = 2.

As b0 is uniquely determined via b1, . . . , br and does not affect the Lax matrix TD(z),
we shall rather focus on the corresponding values of the dominant sp2r -coweights
λ̄, μ̄ ∈ �̄+.

• Case (1) : λ̄ + μ̄ = ω j for 1 ≤ j ≤ r − 1.
In this case, a1 = 1, . . . , a j−1 = j − 1, a j = . . . = ar = j , so that the total number

of pairs of (p, q)-oscillators is j (2r− j+1)
2 , see (3.32, 3.33). We obtain two Lax matrices:

the non-degenerate one, depending on the additional parameter x ∈ C (but independent
of the parameter y ∈ P

1):

T� j [x]−�0[y](z) = z(E11 + . . . + E2r,2r ) + O(1), (3.34)

and its normalized limit as x → ∞, which is degenerate with z in the first j diagonal
entries:

T� j [∞]−�0[y](z) = z(E11 + . . . + E j j ) + O(1) (3.35)



Rational Lax matrices from shifted Yangians: BCD types

and also satisfying:

T� j [∞]−�0[y](z)k,k =
{
1 if j + 1 ≤ k ≤ ( j + 1)′
0 if j ′ ≤ k ≤ 1′ .

• Case (2) : λ̄ + μ̄ = 2ωr .
In this case, we have a1 = 1, . . . , ar = r , and the total number of pairs of (p, q)-
oscillators is r(r+1)

2 , see (3.32, 3.33). We thus obtain three Lax matrices: the non-
degenerate one, depending in a symmetric way on additional parameters x1, x2 ∈ C

(but independent of y ∈ P
1):

T�r ([x1]+[x2])−�0[y](z) = z(E11 + . . . + E2r,2r ) + O(1), (3.36)

its normalized limit as x2 → ∞, which is degenerate with z only in the first r diagonal
entries:

T�r [x1]+�r [∞]−�0[y](z) = z(E11 + . . . + Err ) + O(1), (3.37)

and its further x1 → ∞ normalized limit, which also contains z only in r of its diagonal
entries:

T2�r [∞]−�0[y](z) = z(E11 + . . . + Err ) + O(1). (3.38)

The diagonal z-independent entries of these degenerate Laxmatrices are explicitly given
by:

T�r [x1]+�r [∞]−�0[y](z)k,k = 1, T2�r [∞]−�0[y](z)k,k = 0 for r ′ ≤ k ≤ 1′.
(3.39)

Completely analogously to Proposition 2.222, we have the following unitarity property
of the corresponding non-degenerate linear Lax matrices (recall the parameter κ = r +1,
see (3.5)):

Proposition 3.40. Thenon-degenerateLaxmatrices Lj (z) := T�j [x]−�0[y]
(
z + x + κ−j

2

)
for 1 ≤ j < r , as well as Lr (z) := T�r ([x1]+[x2])−�0[∞]

(
z + x1+x2

2

)
, are unitary:

Lj (z)Lj (−z) =
[(κ − j

2

)2 − z2
]
IN , Lr (z)Lr (−z) =

[( x1 − x2
2

)2 − z2
]
IN .

We conclude this Section by presenting a few interesting examples of the Lax matrices
TD(z).

• Example 1 : D = �1[∞] − �0[y] (note that TD(z) is independent of y ∈ P
1, as

before).
In this case,a1 = . . . = ar = 1.To simplify our notations, let us relabel {pi,1, e±qi,1}ri=1

by {pi , e±qi }ri=1, so that [pi , eq j ] = δi, j ·
{
eqi if i < r
2eqr if i = r

. Then, we immediately find:

TD(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

z − p1 ∗ ∗ · · · ∗ ∗
∗ 1 0 · · · 0 0
∗ 0 1 · · · 0 0
...

...
...

. . .
...

...

∗ 0 0 · · · 1 0
∗ 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.41)
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with the nontrivial entries, marked by ∗ above, explicitly given by:

TD(z)1, j = (−1) j e
∑ j−1

k=1 qk ,

TD(z)1, j ′ = (−1) j+1(p j − p j−1 − 1)e
∑r

k=1 qk+
∑r−1

k= j qk , 1 < j ≤ r,

TD(z) j,1 = (−1) j (p j − p j−1 − 1)e−∑ j−1
k=1 qk ,

TD(z) j ′,1 = (−1) j e−∑r
k=1 qk−

∑r−1
k= j qk , 1 < j ≤ r,

TD(z)1,1′ = e2
∑r−1

k=1 qk+qr , TD(z)1′,1 = −e−2
∑r−1

k=1 qk−qr .

These entries may be written more invariantly as:

TD(z)1, j = −ā1a j , TD(z)1, j ′ = ā1ā j , 1 < j ≤ r,

TD(z) j,1 = −ā−1
1 ā j , TD(z) j ′,1 = −ā−1

1 a j , 1 < j ≤ r,

TD(z)1,1′ = ā21, TD(z)1′,1 = −ā−2
1 , TD(z)1,1 = z − 1 − ā1a1, (3.42)

where we used the following canonical transformation with ([ai , ā j ] = δi, j and
[ai , a j ] = 0 = [āi , ā j ]):

ā1 = −e
∑r−1

k=1 qk+
1
2 qr , āi = (−1)i (pi − pi−1 − 1)e

∑r−1
k=i qk+

1
2 qr , 1 < i ≤ r,

a1 = −p1e
−∑r−1

k=1 qk− 1
2 qr , ai = (−1)i e−∑r−1

k=i qk− 1
2 qr , 1 < i ≤ r. (3.43)

• Example 2: D = �1[x] − �0[y] with x ∈ C (TD(z) is independent of y ∈ P
1, as

before).
As in the previous example, we have a1 = . . . = ar = 1, and we shall use

{pi , e±qi }ri=1 instead of {pi,1, e±qi,1}ri=1. Then, the corresponding Lax matrix becomes:

TD(z) = (z − x − 1)I2r + (ā1, . . . , ār , ar , . . . , a1)t · (−a1, . . . ,−ar , ār , . . . , ā1)
(3.44)

after the following canonical transformation ([ai , ā j ] = δi, j , [ai , a j ] = 0 = [āi , ā j ]):

ā1 = −e
∑r−1

k=1 qk+
1
2 qr , āi = (−1)i (pi − pi−1 − 1)e

∑r−1
k=i qk+

1
2 qr , 1 < i ≤ r,

a1 = −(p1 − x)e−∑r−1
k=1 qk− 1

2 qr , ai = (−1)i e−∑r−1
k=i qk− 1

2 qr , 1 < i ≤ r. (3.45)

The type Cr Lax matrix of the form (3.44) first appeared in [IKK, (4.34)].

Remark 3.46. In contrast to the natural “normalized limit” relation (2.178) in the (p, q)-
oscillators, such construction in the “polynomial” (a, ā)-oscillators is more involved.
In particular, to recover the Lax matrix (3.42) from (3.44), one should first apply the
canonical transformation a1 � a1 − x ā−1

1 (preserving all other a, ā-oscillators), and
only afterwards consider the x → ∞ limit of the product on the left with the diagonal
factor diag(1,−x−1, . . . ,−x−1, x−2).

• Example 3 : D = �r [x] + �r [∞] − �0[y] with x ∈ C (TD(z) is independent of

y ∈ P
1).
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In this case, a1 = 1, . . . , ar = r . According to (3.37, 3.39), TD(z) has the block
form:

TD(z) =
(
zIr + F B

C Ir

)
, (3.47)

where B,C,F are z-independent r × r matrices. The following properties of B,C are
established exactly as in Lemma 2.228:

Lemma 3.48. (a) The matrices B and C are symmetric with respect to their antidiago-
nals:

Bi j = Br+1− j,r+1−i , Ci j = Cr+1− j,r+1−i .

(b) The matrix coefficients {Bi j }ri, j=1 of the matrix B pairwise commute.
(c) The matrix coefficients {Ci j }ri, j=1 of the matrix C pairwise commute.
(d) The commutation among the matrix coefficients of B and C is given by:

[Bi j ,Ck�] = δi,�δ j,k + δi,r+1−kδ j,r+1−�.

It will be convenient to relabel the matrices B,C as Ā,−A, respectively, cf. (2.229):

B = Ā =

⎛
⎜⎜⎜⎝

ā1,r ′ · · · ā1,2′ 2ā1,1′
... . .

.
. .

. ā1,2′

ār−1,r ′ . .
.

. .
. ...

2ār,r ′ ār−1,r ′ · · · ā1,r ′

⎞
⎟⎟⎟⎠ , −C = A =

⎛
⎜⎜⎜⎝

ar ′,1 · · · ar ′,r−1 ar ′,r
... . .

.
. .

. ar ′,r−1

a2′,1 . .
.

. .
. ...

a1′,1 a2′,1 · · · ar ′,1

⎞
⎟⎟⎟⎠

with the matrix coefficients satisfying the following relations:

[ai ′, j , āk,�′ ] = δi,�δ j,k, [ai ′, j , ak′,�] = 0, [āi, j ′ , āk,�′ ] = 0, (3.49)

due to Lemma 3.48. Then, a tedious straightforward calculation yields:

TD(z) =
⎛
⎝ (z + x)Ir − ĀA Ā

−A Ir

⎞
⎠ . (3.50)

Wenote that (3.50) is the exact sp2r -analogue of the type Dr Laxmatrix of (2.231, 2.232).

• Example 4 : D = �r ([x1] + [x2]) − �0[y] with x1, x2 ∈ C (TD(z) is independent of

y ∈ P
1).

Applying the arguments of [F] (see [FKT] formore details) to the Laxmatrix of (3.50)
and keeping the same notations for the matrices Ā,A, we immediately obtain the fol-
lowing non-degenerate Lax matrix of type Cr (cf. [R2, (3.7)]):

L(z) =
⎛
⎜⎝

(z + x1)Ir − ĀA Ā(x2 − x1 + AĀ)

−A (z + x2)Ir + AĀ

⎞
⎟⎠ =

⎛
⎝ Ir Ā

0 Ir

⎞
⎠
⎛
⎝ (z + x1)Ir 0

−A (z + x2)Ir

⎞
⎠
⎛
⎝ Ir −Ā

0 Ir

⎞
⎠ . (3.51)

The typeCr Laxmatrix of the form (3.51) was recently discovered in [KK, §6.2] and can
be viewed as the exact sp2r -analogue of the type Dr Lax matrix of (2.234, 2.235). We
expect thatL(z) is equivalent, up to a canonical transformation, toT�r ([x1]+[x2])−�0[y](z).
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4. Type B

The type Br is also quite similar to the type Dr , which we considered in details above.
Thus, we’ll be brief, only stating the key results and highlighting the few technical
differences.

4.1. Classical (unshifted) story. We shall realize the simple positive roots {α∨
i }ri=1 of

the Lie algebra so2r+1 in �̄∨ via:

α∨
1 = ε∨

1 − ε∨
2 , α∨

2 = ε∨
2 − ε∨

3 , . . . , α∨
r−1 = ε∨

r−1 − ε∨
r , α∨

r = ε∨
r . (4.1)

The Drinfeld Yangian of so2r+1, denoted by Y (so2r+1), is defined similarly to Y (so2r ):
it is generated by {E(k)

i ,F(k)
i ,H(k)

i }k≥1
1≤i≤r subject to the relations (2.2)–(2.9), with α∨

i
of (4.1). The extended Drinfeld Yangian of so2r+1, denoted by X (so2r+1), is defined
alike X (so2r ): it is generated by {E (k)

i , F (k)
i }k≥1

1≤i≤r ∪ {D(k)
i }k≥1

1≤i≤r+1 subject to (2.20)–
(2.31) with the modification:

[Dr+1(z), E j (w)] =
{

− Dr+1(z)(Er (z)−Er (w))
2(z−w)

+ (Er (z+1)−Er (w))Dr+1(z)
2(z−w+1) if j = r

0 if j < r
,

[Dr+1(z), Fj (w)] =
{

Dr+1(z)(Fr (z)−Fr (w))
2(z−w)

− (Fr (z+1)−Fr (w))Dr+1(z)
2(z−w+1) if j = r

0 if j < r
.

(4.2)

The central elements {C (k)
r }k≥1 of X (so2r+1) are now defined via (cf. (2.34)):

Cr (z) = 1 +
∑
k≥1

C (k)
r z−k :=

r∏
i=1

Di (z + i − r − 1
2 )

Di (z + i − r + 1
2 )

· Dr+1(z)Dr+1(z + 1
2 ). (4.3)

Also, a natural analogue of Lemma 2.41 holds with ι0 : Y (so2r+1) ↪→ X (so2r+1) defined
via:

Ei (z) 
→ Ei
(
z + i−1

2

)
, Fi (z) 
→ Fi

(
z + i−1

2

)
,

Hi (z) 
→ Di
(
z + i−1

2

)−1
Di+1

(
z + i−1

2

)
, for any 1 ≤ i ≤ r.

(4.4)

Define N and κ in the present setup via:

N = 2r + 1, κ = r − 1
2 . (4.5)

The extended RTTYangian of so2r+1, denoted by X rtt(so2r+1), is defined alike X rtt(so2r ):
it is generated by {t (k)i j }k≥1

1≤i, j≤N subject to the RTT relation (2.48) with the R-matrix R(z)

given by (2.45). The RTT Yangian of so2r+1, denoted by Y rtt(so2r+1), is defined similarly
to Y rtt(so2r ): it is the subalgebra of X rtt(so2r+1) consisting of the elements stable under
the automorphisms (2.52). However, it can be also realized as a quotient of X rtt(so2r+1)
as in (2.57), due to the natural analogue of (2.53), where the center Z X rtt(so2r+1) of
X rtt(so2r+1) is explicitly described as a polynomial algebra in the coefficients {z(k)

N }k≥1

of the series zN (z) = 1+
∑

k≥1 z
(k)
N z−k determined from (keeping the notations (2.56)):

T ′(z − κ)T (z) = T (z)T ′(z − κ) = zN (z)IN . (4.6)
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In the notations of Subsection 2.1.3, the analogue of Theorem 2.62 still holds, explicitly:

ϒ0 : Ei (z) 
→ ei,i+1(z), Fi (z) 
→ fi+1,i (z), Dj (z) 
→ h j (z) (4.7)

for all i ≤ r , j ≤ r + 1. Hence, a natural analogue of Theorem 2.66 holds with ϒ0 ◦ ι0
given by:

Ei (z) 
→ ei,i+1(z + i−1
2 ), Fi (z) 
→ fi+1,i (z + i−1

2 ),

Hi (z) 
→ hi (z + i−1
2 )−1hi+1(z + i−1

2 ), for any 1 ≤ i ≤ r.
(4.8)

We note that our conventions are to those of [JLM1] as in type Dr , see Remark 2.68 for
details.

Accordingly, X rtt(so2r+1) is generated by the coefficients of {h j (z)}r+1j=1 as well as of:

ei (z) =
∑
k≥1

e(k)
i z−k := ei,i+1(z), fi (z) =

∑
k≥1

f (k)
i z−k := fi+1,i (z), 1 ≤ i ≤ r.

(4.9)

We shall now record the explicit formulas for all other entries of thematrices F(z), H(z),
E(z). The following result, the B type analogue of Lemmas 2.79 and 2.96, is essentially
due to [JLM1]:

Lemma 4.10. (a) hi ′(z) = 1

hi (z+i−r+ 12 )
· ∏r

j=i+1
h j (z+ j−r− 1

2 )

h j (z+ j−r+ 12 )
· hr+1(z)hr+1(z + 1

2 ) for

1 ≤ i ≤ r .
(b) e(i+1)′,i ′(z) = −ei (z + i − r + 1

2 ) for 1 ≤ i ≤ r .

(c) ei, j+1(z) = −[ei, j (z), e(1)
j ] for 1 ≤ i < j ≤ r .

(d) ei, j ′(z) = [ei,( j+1)′(z), e(1)
j ] for 1 ≤ i < j ≤ r .

(e) ei ′, j ′(z) = [ei ′,( j+1)′(z), e(1)
j ] for 1 ≤ j ≤ i − 2 ≤ r − 2.

(f) fi ′,(i+1)′(z) = − fi (z + i − r + 1
2 ) for 1 ≤ i ≤ r .

(g) f j+1,i (z) = −[ f (1)
j , f j,i (z)] for 1 ≤ i < j ≤ r .

(h) f j ′,i (z) = [ f (1)
j , f( j+1)′,i (z)] for 1 ≤ i < j ≤ r .

(i) f j ′,i ′(z) = [ f (1)
j , f( j+1)′,i ′(z)] for 1 ≤ j ≤ i − 2 ≤ r − 2.

The remaining matrix coefficients of E(z) and F(z) are recovered via the following
analogues of Lemmas 2.80 and 2.97:

Lemma 4.11. (a) ei,i ′(z) = [ei,(i+1)′(z), e(1)
i ] − ei (z)ei,(i+1)′(z) for 1 ≤ i ≤ r .

(b) ei+1,i ′(z) = [ei+1,(i+1)′(z), e(1)
i ] + ei (z)ei+1,(i+1)′(z) − ei,(i+1)′(z) for 1 ≤ i ≤ r − 1.

(c) ei, j ′(z) = [ei,( j+1)′(z), e(1)
j ] for 1 ≤ j ≤ i − 2 ≤ r − 1.

(d) fi ′,i (z) = [ f (1)
i , f(i+1)′,i (z)] − f(i+1)′,i (z) fi (z) for 1 ≤ i ≤ r .

(e) fi ′,i+1(z) = [ f (1)
i , f(i+1)′,i+1(z)]+ f(i+1)′,i+1(z) fi (z)− f(i+1)′,i (z) for 1 ≤ i ≤ r − 1.

(f) f j ′,i (z) = [ f (1)
j , f( j+1)′,i (z)] for 1 ≤ j ≤ i − 2 ≤ r − 1.
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4.2. Shifted story. We shall use the same extended lattice �∨, but {α̂∨
i }ri=1 of �∨ are

now defined via:

α̂∨
i = ε∨

i − ε∨
i+1 for 1 ≤ i ≤ r. (4.12)

We shall also use the same notation for the dual lattice � = ⊕r+1
j=1 Zε j = ⊕r

i=0 Z�i
with

�i = −εi+1 − εi+2 − . . . − εr+1 for 0 ≤ i ≤ r. (4.13)

For μ ∈ �, define d = {d j }r+1j=1 ∈ Z
r+1, b = {bi }ri=1 ∈ Z

r via (2.101, 2.102); so that
bi = di − di+1 for all i .

The shifted extended Drinfeld Yangian of so2r+1, denoted by Xμ(so2r+1), is defined

similarly: it is generated by {E (k)
i , F (k)

i }k≥1
1≤i≤r ∪ {D(ki )

i }ki≥di+1
1≤i≤r+1 subject to (2.20, 2.22–

2.31, 2.104, 4.2). Up to an isomorphism, Xμ(so2r+1) depends only on the image of μ

under (2.109), cf. Lemma 2.110.

For ν ∈ �̄, the shifted Drinfeld Yangian of so2r+1, denoted by Yν(so2r+1), is defined
likewise. We note that a natural analogue of Proposition 2.114 holds with the algebra
embedding ιμ : Yμ̄(so2r+1) ↪→ Xμ(so2r+1) determined by (4.4) and the central elements

{C (k)
r }k≥2dr+1+1 of Xμ(so2r+1) defined via:

Cr (z) = z−2dr+1 +
∑

k>2dr+1

C (k)
r z−k :=

r∏
i=1

Di (z + i − r − 1
2 )

Di (z + i − r + 1
2 )

· Dr+1(z)Dr+1(z + 1
2 ).

(4.14)

The natural analogues of Corollary 2.118 and Lemma 2.119 still hold in the present
setup.

We shall use the same notations (2.121)–(2.124) for �-valued divisors D on P
1, �+-

valued outside {∞} ∈ P
1. The simple coroots {αi }ri=1 ⊂ �̄ of so2r+1 are explicitly given

by:

α1 = ε1 − ε2, . . . , αr−2 = εr−2 − εr−1, αr−1 = εr−1 − εr , αr = 2εr . (4.15)

We also consider {α̂i }ri=1 ⊂ �, which are the “lifts” of {αi } from (4.15) in the sense
of (2.127):

α̂1 = ε1 − ε2, . . . , α̂r−2 = εr−2 − εr−1, α̂r−1 = εr−1 − εr , α̂r = 2εr . (4.16)

From now on, we shall impose the following assumption on D (cf. (2.128)):

Assumption : λ + μ = a1α̂1 + . . . + ar α̂r with ai ∈ N. (4.17)

The above coefficients ai are explicitly given by:

ai = (ε∨
1 + . . . + ε∨

i )(λ + μ) for 1 ≤ i ≤ r − 1,

ar = (ε∨
1 + . . . + ε∨

r )(λ + μ)

2
.

(4.18)

Thus, (4.17) is equivalent to ε∨
r+1(λ + μ) = 0 and 2−δi,r

∑i
k=1 ε∨

k (λ + μ) ∈ N for all
1 ≤ i ≤ r .
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Consider the algebra A defined as in (2.131) but with the modified relation (3.20) in
place, so that [e±qr,k , pr,k] = ∓ 1

2e
±qr,k . Then, as in Theorem 2.136, we have an algebra

homomorphism

�D : X−μ(so2r+1) −→ A, (4.19)

determined by the following assignment (keeping the notations (2.133, 2.135)):

Ei (z) 
→ 2δi,r ·
ai∑
k=1

Pi−1(pi,k − 1)

(z − pi,k)Pi,k(pi,k)
eqi,k ,

Fi (z) 
→

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∑ai
k=1

Zi (pi,k+1)Pi+1(pi,k+1)
(z−pi,k−1)Pi,k (pi,k )

e−qi,k if i ≤ r − 2

−∑ar−1
k=1

Zr−1(pr−1,k+1)Pr (pr−1,k+1)Pr (pr−1,k+
3
2 )

(z−pr−1,k−1)Pr−1,k (pr−1,k )
e−qr−1,k if i = r − 1

−∑ar
k=1

Zr (pr,k+
1
2 )

(z−pr,k− 1
2 )Pr,k (pr,k )

e−qr,k if i = r

,

Di (z) 
→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pi (z)
Pi−1(z−1) ·∏i−1

k=0 Zk(z) if i ≤ r − 1

Pr (z)Pr (z+ 1
2 )

Pr−1(z−1) ·∏r−1
k=0 Zk(z) if i = r

Pr (z+ 1
2 )

Pr (z− 1
2 )

·∏r
k=0 Zk(z) if i = r + 1

.

(4.20)

The proof is analogous to that of Theorem 2.136 and is based on the explicit formula

�D(Cr (z)) =
r∏

i=0

(
Zi (z)Zi (z + i − r + 1

2 )
)

(4.21)

as well as the comparison to the homomorphisms of [NW]. Precisely, identifyingAwith
Ã of loc.cit. and the points xs with the parameters zs of loc.cit. via:

pi,k ↔ wi,k +
i − 1

2
, e±qi,k ↔ u∓1

i,k , xs ↔ zs +
is
2

,

the (restriction) composition Y−μ̄(so2r+1)
ι−μ−−→ X−μ(so2r+1)

�D−−→ A is given by the
formulas (B.4) of Appendix B (applied to the type Br Dynkin diagram with the arrows
pointing i → i + 1 for 1 ≤ i < r ), which essentially coincide with the homomorphisms
�λ̄−μ̄ of [NW].

The antidominantly shifted extended RTT Yangian of so2r+1, denoted by X rtt−μ(so2r+1)

(with μ ∈ �+), is defined similarly to X rtt−μ(so2r ): it is generated by {t (k)i j }k∈Z1≤i, j≤2r+1
subject to the RTT relation (2.48) and the restriction (2.150) on the matrix coefficients
of the matrices F(z), H(z), E(z) with d ′

i ∈ Z defined in the present setup via:

d ′
i := 2dr+1 − di for 1 ≤ i ≤ r. (4.22)

We note that μ ∈ �+ implies now the following inequalities:

d1 ≥ d2 ≥ · · · ≥ dr−1 ≥ dr ≥ dr+1 ≥ d ′
r ≥ d ′

r−1 ≥ · · · ≥ d ′
1. (4.23)

One of our key results in the type Br is the natural analogue of Theorem 2.156:
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Theorem 4.24. For any μ ∈ �+, the assignment (4.7) gives rise to the algebra isomor-
phism ϒ−μ : X−μ(so2r+1)

∼−→ X rtt−μ(so2r+1).

Similarly to the type Dr , the assignment (2.160) gives rise to the coproduct homomor-
phisms


rtt−μ1,−μ2
: X rtt−μ1−μ2

(so2r+1) −→ X rtt−μ1
(so2r+1) ⊗ X rtt−μ2

(so2r+1) ∀μ1, μ2 ∈ �+,

coassociative in the sense of Corollary 2.161. Evoking the isomorphism of Theorem 4.24
and the algebra embedding ιμ : Yμ̄(so2r+1) ↪→ Xμ(so2r+1), we obtain the coproduct
homomorphisms


−ν1,−ν2 : Y−ν1−ν2(so2r+1) −→ Y−ν1(so2r+1) ⊗ Y−ν2(so2r+1) (4.25)

for any ν1, ν2 ∈ �̄+. Explicitly, the homomorphism (4.25) is uniquely determined by
the formulas (2.171) with the root generators {E(1)

γ ∨ ,F(1)
γ ∨}γ∈
+ defined via:

E(1)
ε∨
i −ε∨

j
= [E(1)

j−1, [E(1)
j−2, [E(1)

j−3, · · · , [E(1)
i+1,E

(1)
i ] · · · ]]],

F(1)
ε∨
i −ε∨

j
= [[[· · · [F(1)

i ,F(1)
i+1], · · · ,F(1)

j−3],F(1)
j−2],F(1)

j−1],
E(1)

ε∨
i

= [E(1)
r , [E(1)

r−1, [E(1)
r−2, · · · , [E(1)

i+1,E
(1)
i ] · · · ]]],

F(1)
ε∨
i

= [[[· · · [F(1)
i ,F(1)

i+1], · · · ,F(1)
r−2],F(1)

r−1],F(1)
r ],

E(1)
ε∨
i +ε∨

j
= [· · · [[E(1)

r , [E(1)
r−1, [E(1)

r−2, · · · , [E(1)
i+1,E

(1)
i ] · · · ]]],E(1)

r ], · · · ,E(1)
j ],

F(1)
ε∨
i +ε∨

j
= [F(1)

j , · · · , [F(1)
r , [[[· · · [F(1)

i ,F(1)
i+1], · · · ,F(1)

r−2],F(1)
r−1],F(1)

r ]] · · · ],
1 ≤ i < j ≤ r, (4.26)

where 
+ =
{
ε∨
i ± ε∨

j

}
1≤i< j≤r

∪
{
ε∨
i

}
1≤i≤r

is the set of positive roots of so2r+1.

Remark 4.27. We note that the last formula of (2.165) holds with the following update
of (2.166): following update of the formula (2.166):

ε̃∨
j = ε∨

j for j ≤ r, ε̃∨
r+1 = 0. (4.28)

To this end, let us point out that the j = r + 1 case of the last formula of (2.165) is
due to the equalities e(1)

r+1,r+i = −e(1)
r+2−i,r+1 and f (1)

r+i,r+1 = − f (1)
r+1,r+2−i which follow

from (B.30).

Remark 4.29. As our formulas (2.171) coincide with those of [FKPRW, Theorem 4.8],
this provides a confirmative answer to the question raised in the end of [CGY, §8], in
the type Br .
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4.3. Lax matrices. Similar to type Dr , the proof of Theorem 4.24 goes through the
faithfulness result of [W], see Theorem 2.183, and the construction of the Lax matrices
TD(z). To this end, for any �+-valued divisor D on P

1 satisfying (4.17), we construct
the matrix TD(z) via (2.175, 2.176) with the matrix coefficients f Dj,i (z), e

D
i, j (z), h

D
i (z)

obtained from the explicit formulas (4.20) combined with Lemmas 4.10, 4.11. Using the
same “normalized limit” procedure (2.178), we conclude that Corollary 2.181 applies in
the present setup. Combining this with ϒ0 being an isomorphism [JLM1], we conclude
as in Proposition 2.182 that TD(z) are Lax (of type Br ).

Similarly to Proposition 2.186, thematrix T (z) (encoding all generators of X rtt−μ(so2r+1))
still satisfies the crossing relation (2.187) with the central series zN (z) defined via
(cf. (2.185)):

zN (z) = ϒ−μ(Cr (z)) =
r∏

i=1

hi (z + i − r − 1
2 )

hi (z + i − r + 1
2 )

· hr+1(z)hr+1(z + 1
2 ). (4.30)

In Appendix B (see Theorem B.17, Lemma B.27), we use the shuffle algebra approach
to derive the uniform formulas for the matrix coefficients eDi, j (z), f Dj,i (z), which are
rather inaccessible if derived iteratively via Lemmas 4.10, 4.11. This allows to prove the
analogue of Theorem 2.190:

Theorem 4.31. The Lax matrix TD(z) = TD(z)
Z0(z)

is regular, i.e.

TD(z) ∈ A[z] ⊗C EndC
2r+1.

Similar to type Dr , the result above provides a shortcut to the computation of the
Lax matrices TD(z) defined, in general, as a product of three complicated matrices
FD(z), HD(z), ED(z). In particular, the natural analogue of Proposition 2.193 holds.
To this end, let us now describe all�+-valued divisors D onP

1 satisfying (4.17) such that
degz TD(z) = 1. Define λ,μ ∈ �+ via (2.122, 2.124), so that λ+μ = ∑r

j=0 b j� j with
b0 ∈ Z, b1, . . . , br ∈ N. Then, the assumption (4.17) implies that the corresponding
coefficients ai ∈ N are related to b j ’s via:

ai = b1 + 2b2 + . . . + (i − 1)bi−1 + i(bi + . . . + br ), 1 ≤ i ≤ r − 1,

ar = 1

2

(
b1 + 2b2 + . . . + (r − 1)br−1 + rbr

)
, (4.32)

as well as b0 = −b1−. . .−br−1−br , which uniquely recovers b0 in terms of b1, . . . , br .
We also note that the total number of pairs of (p, q)-oscillators in the algebraA equals:

r∑
i=1

ai =
r∑

k=1

k(2r − k)

2
bk .

Combining the above formulas (4.32) with Proposition 2.193(a) in type Br , we thus
conclude that the normalized Lax matrix TD(z) is linear only for the following config-
urations of bi ’s:

• b0 = −1, b j = 1, b1 = . . . = b j−1 = b j+1 = . . . = br = 0 for an even
1 ≤ j ≤ r .
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As b0 is uniquely determined via b1, . . . , br and does not affect the Lax matrix TD(z),
we shall rather focus on the corresponding values of the dominant so2r+1-coweights
λ̄, μ̄ ∈ �̄+.

In the above case of λ̄ + μ̄ = ω j , we have a1 = 1, . . . , a j−1 = j − 1, a j = . . . =
ar−1 = j, ar = j

2 , and the total of j (2r− j)
2 pairs of (p, q)-oscillators. We obtain two

Lax matrices: the non-degenerate one, depending on the additional parameter x ∈ C

(but independent of y ∈ P
1):

T� j [x]−�0[y](z) = z(E11 + . . . + E2r+1,2r+1) + O(1), (4.33)

and its normalized limit as x → ∞, which is degenerate with z in the first j diagonal
entries:

T� j [∞]−�0[y](z) = z(E11 + . . . + E j j ) + O(1) (4.34)

and also satisfying:

T� j [∞]−�0[y](z)k,k =
{
1 if j + 1 ≤ k ≤ ( j + 1)′
0 if j ′ ≤ k ≤ 1′ .

Completely analogously to Proposition 2.222, we have the following unitarity property
of the corresponding non-degenerate linear Laxmatrices (recall the parameter κ = r− 1

2 ,
see (4.5)):

Proposition 4.35. For any even 1 ≤ j ≤ r , the corresponding linear non-degenerate
Lax matrix Lj (z) := T�j [x]−�0[y]

(
z + x + κ−j

2

)
is unitary:

Lj (z)Lj (−z) =
[(κ − j

2

)2 − z2
]
IN .

Motivated by the Examples 3 and 4 in type Dr , we expect that
T�1([x1]+[x2])−�0([y1]+[y2])(z) and its normalized limit T�1([x]+[∞])−�0([y1]+[y2])(z) are
equivalent, up to canonical transformations, to the type Br quadratic Lax matrices given
by the formulas (2.243) and (2.237), respectively, with I, J of (2.238) and w̄,w encoding
N − 2 = 2r − 1 pairs of oscillators, cf. (2.239):

w̄ = (ā2, . . . , ār , ār+1, ār ′ , . . . , ā2′), w = (a2, . . . , ar , ar+1, ar ′ , . . . , a2′)t . (4.36)

Remark 4.37. Let us define Lx1,x2(z) via (2.243) with I, J as in (2.238) and w̄,w as
in (4.36). Consider the expansion of the Lax matrix

Lx1,x2(z) = Lx1,x2(z + a) = z2 + zMx1,x2 + Gx1,x2 (4.38)

with the shift a of the spectral parameter given by:

a = x1 + x2 − 1

2
. (4.39)

Using the equalities

wt w̄t = w̄w + N − 2, [w̄Jw̄t , ai ] = −2āi ′ ,
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cf. (4.36), it is straightforward to see from (2.243) that the linear term in (4.38) reads:

Mx1,x2 =

⎛
⎜⎜⎜⎜⎜⎝

−x1 + x2 − N
2 + 1 − w̄w M[12] 0

−w ww̄ − Jw̄twt J − I M[23]

0 wt J x1 − x2 + N
2 − 1 + w̄w

⎞
⎟⎟⎟⎟⎟⎠

with the row M[12] and the column M[23] explicitly given by:

M[12] =
(
x1 − x2 +

N

2
− 2 + w̄w

)
w̄ − 1

2
w̄Jw̄twt J, (4.40)

M[23] = −
(
x1 − x2 +

N

2
− 2 + w̄w

)
Jw̄t +

1

2
w̄Jw̄t · w. (4.41)

It is easily seen from the formulas above that the matrix coefficients Mi j = (Mx1,x2)i, j
satisfy

Mi j = −Mj ′i ′ (4.42)

as well as obey the following commutation relations:

[Mi j , Mk�] = δi,�Mkj − δ j ′,�Mki ′ − δi,k′M�′ j + δ j,kM�′i ′ . (4.43)

Finally, we can show by direct computation that Mx1,x2 satisfies the characteristic iden-
tity:

(Mx1,x2 + 1)(2Mx1,x2 + N + 2x1 − 2x2 − 2)(2Mx1,x2 + N − 2x1 + 2x2 − 2) = 0,
(4.44)

while the free term Gx1,x2 in (4.38) is expressed via the linear term Mx1,x2 as follows:

Gx1,x2 = 1

2
M2

x1,x2 +
1

4
(N − 2)Mx1,x2 +

1

4

(
N − 3 − (x1 − x2)

2
)
IN . (4.45)

Let us further introduce the parameter m via:

x1 − x2 = 1 − m − N

2
(4.46)

so that the characteristic identity (4.44) for M = Mx1,x2 becomes

(M − m)(M + N + m − 2)(M + 1) = 0, (4.47)

thus exactly coinciding with [R2, (3.9)]. Furthermore, after an additional shift in the
spectral parameter, the Lax matrix L(z) = Lx1,x2(z) can be written as (taking (4.45)
into an account):

L

(
z +

N − 2

4

)
= z

(
z +

N − 2

2

)
+ zM

+
1

2

(
M2 + (N − 2)M − m(m + N − 2) − N + 3

2

)

which coincides with [R2, (3.11)]. However, our oscillator realisation differs from that
of [R2].
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5. Further Directions

5.1. Trigonometric version. The constructions and results of the present paper admit
natural trigonometric counterparts. To this end, recall the shifted quantum affine algebras
Uν+,ν−(Lg), introduced in [FT1, §5], which are associative C(v)-algebras depending
on a pair of shifts ν+, ν− ∈ �̄. Based on and generalizing the isomorphism between
the new Drinfeld and the RTT realizations of extended quantum affine algebras in the
classical types Br ,Cr , Dr recently established in [JLM2,JLM3], it turns out that the
shifted extended quantum affine algebras U ext

−μ+,−μ−(Lg) with μ+, μ− ∈ �+ admit the

RTT realization U ext
−μ+,−μ−(Lg) ∼−→U rtt,ext

−μ+,−μ−(Lg) alike (1.5). This can be viewed as
a natural generalization of [FPT, Theorem 3.51] for type Ar and shall be addressed
elsewhere.

As an immediate corollary, we obtain the following two important structures:
• coproduct homomorphisms


ν+1 ,ν−
1 ,ν+2 ,ν−

2
: Uν+1 +ν+2 ,ν−

1 +ν−
2
(Lg) −→ Uν+1 ,ν−

1
(Lg) ⊗Uν+2 ,ν−

2
(Lg)

• Z[v, v−1] integral forms Uν+,ν−(Lg) ⊂ Uν+,ν−(Lg) compatible with 
ν+1 ,ν−
1 ,ν+2 ,ν−

2

for classical types Br ,Cr , Dr , generalizing the only known case type Ar of [FT1,FT2].

Combining the above RTT realization with [FT1, Theorem 7.1], one obtains trigonomet-
ric Lax matrices T trig

D (z) which can be degenerated to TD+D|0([∞]−[0])(z), cf.
[FPT, Proposition 3.94].

5.2. Integrable systems. As yet another important application of our key isomorphism
(1.5) and its aforementioned trigonometric version, the RTT presentation provides (cf.
[MM]) interesting algebraic quantum integrable systems that appear on the correspond-
ing quantized (K -theoretic) Coulomb branches of 4d supersymmetric N = 2 quiver
gauge theories, cf. [NP,NPS] and [BFNa,BFNb]. To this end, note that the C[�]-
version of the homomorphisms (B.3) factor through the quantized Coulomb branches
[NW, Theorem 5.6], cf. [FT1, Theorem 8.5] in the trigonometric case.

Let us also note that TD(z)T ′
D(−z) satisfy the reflection equation [GR, (4.1)], thus

giving rise to shifted versions of reflection algebras (aka twisted extended Yangians
[GR, Theorem 4.2]) of types B,C, D. We expect the latter to be related to integrable
systems with boundary.

5.3. Polynomial solutions and Q-operators. As mentioned in the introduction (with
more details provided in Subsections 2.3.5, 3.3, 4.3), some of the simplest examples of
our Lax matrices TD(z) are equivalent (up to highly nontrivial canonical transforma-
tions) to the polynomial (as they take values in non-localized oscillator algebras) Lax
matrices constructed quite recently in the physics literature. A very interesting question
is to understand which of our Lax matrices TD(z) can be transformed (up to canonical
transformations) to the polynomial ones. We note that one of the advantages of our con-
struction is a natural limit procedure (2.178) which becomes highly nontrivial for the
polynomial Lax matrices, see e.g. Remark 3.46. However, the polynomial Lax matrices
have an obvious advantage of allowing to take traces, thus leading to Q-operators as
discussed below.
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As outlined in [F], the polynomial solutions for Dr -type can be used to construct Q-
operators following [BLZ,BFLMS]. The corresponding QQ-system for Dr -type spin
chains has been recently proposed in [FFK], see also [ESV] for a different approach.
We remark that only a subset of the Q-operators is constructed in [F], namely those
corresponding to the end nodes of the Dr Dynkin diagram for which the evaluation map
does exist. While the remaining Q-operators are determined by the QQ-system, a direct
construction for those is not known. The asymptotic behaviour of the Q-operators in
the spectral parameter can be extracted from the algebraic Bethe ansatz, cf. [R1], and
solutions with the appropriate asymptotic behaviour are obtained in the Table 1 below,
suggesting that a construction from our Lax matrices may be possible. However, the Lax
matrices TD(z) of the present paper are not polynomial in the oscillators and a trace
prescription remains to be found.

The situation for Br and Cr types is similar. The Lax matrices for Q-operators corre-
sponding to the nodes of the Dynkin diagram where the evaluation map exists are pre-
sented here in the polynomial form, see [FKT] for more details. For the non-polynomial
(in oscillators) solutions TD(z) of the present paper we are in the same position as for
Dr -type discussed above. The expected asymptotic behaviour of the corresponding Q-
operators is spelled out in Tables 2 and 3 below. A study of the QQ-system for the spin
chains of type Br and Cr is outstanding.

Table 1. Solutions of Dr -type with the expected asymptotic behavior and number of oscillator pairs for
Q-operator at the node i

Qi �a = (a1, . . . , ar ) �b = (b1, . . . , br ) �Z = (deg Z1, . . . , deg Zr ) #osc.

1 ≤ i ≤ r − 2 (2, 4, 6, . . . , 2i︸ ︷︷ ︸
i

, 2i, . . . , 2i︸ ︷︷ ︸
r−i−2

, i, i) (0, . . . , 0, 2︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
r−i

) (0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
r−i

) i(2r − i − 1)

i = r − 1
even r

odd r

(1, 2, 3, . . . , r − 2, r
2 , r

2 − 1)

(1, 2, 3, . . . , r − 2, r−1
2 , r−1

2 )

(0, . . . , 0, 2, 0)

(0, . . . , 0, 1, 1)
(0, . . . , 0, 1, 0) r(r−1)

2

i = r
even r

odd r

(1, 2, 3, . . . , r − 2, r
2 − 1, r

2 )

(1, 2, 3, . . . , r − 2, r−1
2 , r−1

2 )

(0, . . . , 0, 0, 2)

(0, . . . , 0, 1, 1)
(0, . . . , 0, 0, 1) r(r−1)

2

Table 2. Solutions of Cr -type with the expected asymptotic behavior and number of oscillator pairs for Q-
operator at the node i

Qi �a = (a1, . . . , ar ) �b = (b1, . . . , br ) �Z = (deg Z1, . . . , deg Zr ) #osc.

1 ≤ i < r (2, 4, 6, . . . , 2i︸ ︷︷ ︸
i

, 2i, . . . , 2i︸ ︷︷ ︸
r−i

) (0, . . . , 0, 2︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
r−i

) (0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
r−i

) i(2r − i + 1)

i = r (1, 2, 3, . . . , r) (0, . . . , 0, 2) (0, . . . , 0, 1) r(r+1)
2

Table 3. Solutions of Br -type with the expected asymptotic behavior and number of oscillator pairs for Q-
operator at the node i

Qi �a = (a1, . . . , ar ) �b = (b1, . . . , br ) �Z = (deg Z1, . . . , deg Zr ) #osc.

1 ≤ i < r (2, 4, 6, . . . , 2i︸ ︷︷ ︸
i

, 2i, . . . , 2i︸ ︷︷ ︸
r−i−1

, i) (0, . . . , 0, 2︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
r−i

) (0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
r−i

) i(2r − i)

i = r (2, 4, 6, . . . , 2(r − 1), r) (0, . . . , 0, 2) (0, . . . , 0, 1) r2



R. Frassek, A. Tsymbaliuk

Acknowledgements. We are indebted to Vasily Pestun for bringing us together to the main subject of the
current paper, a natural BCD-type generalization of previous work [FPT] in type A, joint with Vasily. We
are also very grateful to the anonymous referees for useful suggestions. R.F. acknowledges the support of the
DFG Research Fellowships Programme No. 416527151. A.T. is grateful to Boris Feigin, Michael Finkelberg,
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Appendix A. Explicit formulas in type D

In this Appendix, we record the explicit formulas for thematrices FD(z), HD(z), ED(z)
the product of which recovers the Lax matrices TD(z) in type Dr , see (2.175, 2.176).
All proofs are straightforward and are based on Lemmas 2.77, 2.79, 2.80, 2.96, 2.97 of
Subsection 2.1.4.

• Matrix HD(z) explicitly.

hD
i (z) =

⎧
⎪⎪⎨
⎪⎪⎩

Pi (z)
Pi−1(z−1) ·∏i−1

k=0 Zk(z) if i ≤ r − 2
Pr−1(z)Pr (z)
Pr−2(z−1) ·∏r−2

k=0 Zk(z) if i = r − 1
Pr (z)

Pr−1(z−1) ·∏r−1
k=0 Zk(z) if i = r

hD
i ′ (z) =

⎧⎪⎪⎨
⎪⎪⎩

Pi−1(z+i−r)
Pi (z+i−r) ·∏r

k=0 Zk(z)
∏r−2

k=i Zk(z + k − r + 1) if i ≤ r − 2
Pr−2(z−1)

Pr−1(z−1)Pr (z−1) ·∏r
k=0 Zk(z) if i = r − 1

Pr−1(z)
Pr (z−1) ·∏r−2

k=0 Zk(z) · Zr (z) if i = r

(A.1)

• Matrix ED(z) explicitly.

For 1 ≤ i < j ≤ r − 2, we get:

eDi, j (z) = (−1) j−i−1
∑

1≤ki≤ai···
1≤k j−1≤a j−1

Pi−1(pi,ki − 1) ·∏ j−2
s=i Ps,ks (ps+1,ks+1 − 1)

(z − pi,ki )
∏ j−1

s=i Ps,ks (ps,ks )
· e
∑ j−1

s=i qs,ks
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For 1 ≤ i ≤ r − 2, we get:

eDi,r−1(z) = (−1)r−i
∑

1≤ki≤ai···
1≤kr−2≤ar−2

Pi−1(pi,ki − 1) ·∏r−3
s=i Ps,ks (ps+1,ks+1 − 1) · Pr (pr−2,kr−2 )

(z − pi,ki )
∏r−2

s=i Ps,ks (ps,ks )

× e
∑r−2

s=i qs,ks

For 1 ≤ i ≤ r − 2, we get:

eDi,r (z) = (−1)r−i−1
∑

1≤ki≤ai···
1≤kr−1≤ar−1

Pi−1(pi,ki − 1) ·∏r−2
s=i Ps,ks (ps+1,ks+1 − 1) · Pr (pr−2,kr−2 )

(z − pi,ki )
∏r−1

s=i Ps,ks (ps,ks )

× e
∑r−1

s=i qs,ks

while eDr−1,r (z) is given by the same formula (with i = r − 1) but with Pr (pr−2,kr−2)

omitted.

For 1 ≤ i < j ≤ r − 2, we get:

eDj ′,i ′(z) = (−1) j−i
∑

1≤ki≤ai···
1≤k j−1≤a j−1

Pi−1(pi,ki − 1) ·∏ j−2
s=i Ps,ks (ps+1,ks+1 − 1)

(z − p j−1,k j−1 + j − r)
∏ j−1

s=i Ps,ks (ps,ks )
· e
∑ j−1

s=i qs,ks

For 1 ≤ i ≤ r − 2, we get:

eD(r−1)′,i ′(z) =

(−1)r−i+1
∑

1≤ki≤ai···
1≤kr−2≤ar−2

Pi−1(pi,ki − 1) ·∏r−3
s=i Ps,ks (ps+1,ks+1 − 1) · Pr (pr−2,kr−2)

(z − pr−2,kr−2 − 1)
∏r−2

s=i Ps,ks (ps,ks )

× e
∑r−2

s=i qs,ks

For 1 ≤ i ≤ r − 2, we get:

eDr ′,i ′(z) = (−1)r−i
∑

1≤ki≤ai···
1≤kr−1≤ar−1

Pi−1(pi,ki − 1) ·∏r−2
s=i Ps,ks (ps+1,ks+1 − 1) · Pr (pr−2,kr−2)

(z − pr−1,kr−1)
∏r−1

s=i Ps,ks (ps,ks )

× e
∑r−1

s=i qs,ks

while eDr ′,(r−1)′(z) is given by the same formula (with i = r − 1) but with Pr (pr−2,kr−2)

omitted.

For 1 ≤ i ≤ r − 2, we get:
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eDi,r ′(z) =

(−1)r−i
∑

1≤ki≤ai···
1≤kr−2≤ar−2

1≤kr≤ar

Pi−1(pi,ki − 1) ·∏r−3
s=i Ps,ks (ps+1,ks+1 − 1) · Pr,kr (pr−2,kr−2)

(z − pi,ki )
∏r−2

s=i Ps,ks (ps,ks ) · Pr,kr (pr,kr )

× e
∑r−2

s=i qs,ks + qr,kr

while eDr−1,r ′(z) equals �D(Er (z)) specified in (2.138).

For 1 ≤ i ≤ r − 2, we get:

eDi,(r−1)′(z) = (−1)r−i
∑

1≤ki≤ai···
1≤kr≤ar

Pi−1(pi,ki − 1) ·∏r−2
s=i Ps,ks (ps+1,ks+1 − 1) · Pr,kr (pr−2,kr−2 )

(z − pi,ki )
∏r

s=i Ps,ks (ps,ks )

× e
∑r

s=i qs,ks

For 1 ≤ i < j ≤ r − 2, we get:

eDi, j ′(z) = (−1) j−i ·
|Is |=1+δs∈{ j,...,r−2}∑

Ii⊂{1,...,ai }···
Ir⊂{1,...,ar }

Pi−1(pi,ki − 1) ·∏k∈Is+1
i≤s≤r−2 Ps,Is (ps+1,k − 1) ·∏k∈Ir−2

Pr,Ir (pr−2,k)

(z − pi,ki )
∏k∈Is

i≤s≤r Ps,Is (ps,k)

× e
∑k∈Is

i≤s≤r qs,k ,

the sum taken over all subsets Is ⊂ {1, . . . , as}, i ≤ s ≤ r, of cardinality |Ii | = . . . =
|I j−1| = 1, |I j | = . . . = |Ir−2| = 2, |Ir−1| = |Ir | = 1, and the natural generalization
of (2.133) being used:

Ps,Is (z) :=
k /∈Is∏

1≤k≤as

(z − ps,k). (A.2)

For 1 ≤ i ≤ r − 3, we get:

eDi,i ′(z) = −
|Is |=1+δs∈{i,...,r−2}∑

Ii⊂{1,...,ai }···
Ir⊂{1,...,ar }{∏

k∈Ii Pi−1(pi,k − 1) ·∏k∈Is+1
i≤s≤r−2 Ps,Is (ps+1,k − 1) ·∏k∈Ir−2

Pr,Ir (pr−2,k)∏
k∈Ii (z − pi,k) ·∏k∈Is

i≤s≤r Ps,Is (ps,k)
· e
∑k∈Is

i≤s≤r qs,k

}

while eDr,r ′(z) = 0, due to Lemma 2.79(a), and eDr−1,(r−1)′(z) is given by:



Rational Lax matrices from shifted Yangians: BCD types

eDr−1,(r−1)′(z) = −
∑

1≤kr−1≤ar−1
1≤kr≤ar

Pr−2(pr−1,kr−1 − 1)

(z − pr−1,kr−1)(z − pr,kr )
∏r

s=r−1 Ps,ks (ps,ks )

× eqr−1,kr−1+ qr,kr

For 2 ≤ i ≤ r − 2, we get:

eDi,(i−1)′(z) =
|Is |=1+δs∈{i,...,r−2}∑
Ii−1⊂{1,...,ai−1}···
Ir⊂{1,...,ar }

z − pi−1,ki−1 − 1∏
k∈Ii (z − pi,k)

× Pi−2(pi−1,ki−1 − 1) ·∏k∈Is+1
i−1≤s≤r−2 Ps,Is (ps+1,k − 1) ·∏k∈Ir−2

Pr,Ir (pr−2,k)∏k∈Is
i−1≤s≤r Ps,Is (ps,k)

× e
∑k∈Is

i−1≤s≤r qs,k

while the i = r − 1, r counterparts of this formula are as follows:

eDr−1,(r−2)′(z) = −
∑

1≤kr−2≤ar−2
1≤kr−1≤ar−1

1≤kr≤ar

z − pr−2,kr−2 − 1

(z − pr−1,kr−1 )(z − pr,kr )

× Pr−3(pr−2,kr−2 − 1)Pr−2,kr−2 (pr−1,kr−1 − 1)Pr,kr (pr−2,kr−2 )∏r
s=r−2 Ps,ks (ps,ks )

· e
∑r

s=r−2 qs,ks

and

eDr,(r−1)′(z) = −
∑

1≤kr≤ar

1

(z − pr,kr )Pr,kr (pr,kr )
· eqr,kr

For 1 ≤ j ≤ i − 2 ≤ r − 4, we get:

eDi, j ′ (z) = (−1)i− j+1
|Is |=1+δs∈{i,...,r−2}∑

I j⊂{1,...,a j }···
Ir⊂{1,...,ar }

z − pi−1,ki−1 − 1∏
k∈Ii (z − pi,k)

× Pj−1(p j,k j − 1) ·∏k∈Is+1
j≤s≤r−2 Ps,Is (ps+1,k − 1) ·∏k∈Ir−2

Pr,Ir (pr−2,k)
∏k∈Is

j≤s≤r Ps,Is (ps,k)
· e
∑k∈Is

j≤s≤r qs,k

while the i = r − 1, r counterparts of this formula are as follows:

eDr−1, j ′(z) = (−1)r− j+1
∑

1≤k j≤a j···
1≤kr≤ar

(z − pr−2,kr−2 − 1)

(z − pr−1,kr−1 )(z − pr,kr )

× Pj−1(p j,k j − 1) ·∏r−2
s= j Ps,ks (ps+1,ks+1 − 1) · Pr,kr (pr−2,kr−2 )∏r

s= j Ps,ks (ps,ks )
· e
∑r

s= j qs,ks
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and

eDr, j ′ (z) = (−1)r− j+1

∑
1≤k j≤a j···

1≤kr−2≤ar−2
1≤kr≤ar

Pj−1(p j,k j − 1) ·∏r−3
s= j Ps,ks (ps+1,ks+1 − 1) · Pr,kr (pr−2,kr−2 )

(z − pr,kr )
∏r−2

s= j Ps,ks (ps,ks ) · Pr,kr (pr,kr )
· e
∑r−2

s= j qs,ks + qr,kr

Remark A.3. In the notations eDi, j (z) = ∑
k≥1 e

(D)k
i, j z−k , see (2.192), the above formulas

imply:

e(D)1
i, j = −e(D)1

j ′,i ′ , ∀ 1 ≤ i < j ≤ 2r. (A.4)

• Matrix FD(z) explicitly.
For 1 ≤ i < j ≤ r − 1, we get:

f Dj,i (z) = (−1) j−i

∑
1≤ki≤ai···

1≤k j−1≤a j−1

∏ j−1
s=i Zs(ps,ks + 1) ·∏ j−1

s=i+1 Ps,ks (ps−1,ks−1 + 1) · Pj (p j−1,k j−1 + 1)

(z − pi,ki − 1)
∏ j−1

s=i Ps,ks (ps,ks )

× e−∑ j−1
s=i qs,ks

For 1 ≤ i ≤ r − 1, we get:

f Dr,i (z) = (−1)r−i
∑

1≤ki≤ai···
1≤kr−1≤ar−1

∏r−1
s=i Zs(ps,ks + 1) ·∏r−1

s=i+1 Ps,ks (ps−1,ks−1 + 1)

(z − pi,ki − 1)
∏r−1

s=i Ps,ks (ps,ks )

× e−∑r−1
s=i qs,ks

For 1 ≤ i < j ≤ r − 1, we get:

f Di ′, j ′(z) = (−1) j−i−1

∑
1≤ki≤ai···

1≤k j−1≤a j−1

∏ j−1
s=i Zs(ps,ks + 1) ·∏ j−1

s=i+1 Ps,ks (ps−1,ks−1 + 1) · Pj (p j−1,k j−1 + 1)

(z − p j−1,k j−1 + j − r − 1)
∏ j−1

s=i Ps,ks (ps,ks )

× e−∑ j−1
s=i qs,ks

For 1 ≤ i ≤ r − 1, we get:

f Di ′,r ′(z) = (−1)r−i+1
∑

1≤ki≤ai···
1≤kr−1≤ar−1

∏r−1
s=i Zs(ps,ks + 1) ·∏r−1

s=i+1 Ps,ks (ps−1,ks−1 + 1)

(z − pr−1,kr−1 − 1)
∏r−1

s=i Ps,ks (ps,ks )
· e−∑r−1

s=i qs,ks
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For 1 ≤ i ≤ r − 2, we get:

f Dr ′,i (z) = (−1)r−i+1
∑

1≤ki≤ai···
1≤kr−2≤ar−2

1≤kr≤ar

Pr−2,kr−2 (pr,kr )Pr−1(pr−2,kr−2 + 1)

×
∏s �=r−1

i≤s≤r Zs(ps,ks + 1) ·∏r−2
s=i+1 Ps,ks (ps−1,ks−1 + 1)

(z − pi,ki − 1)
∏r−2

s=i Ps,ks (ps,ks ) · Pr,kr (pr,kr )
· e−∑r−2

s=i qs,ks − qr,kr

while f Dr ′,r−1(z) equals �D(Fr (z)) specified in (2.138).

For 1 ≤ i ≤ r − 2, we get:

f D(r−1)′,i (z) = (−1)r−i+1

∑
1≤ki≤ai···
1≤kr≤ar

∏r
s=i Zs(ps,ks + 1) ·∏r−1

s=i+1 Ps,ks (ps−1,ks−1 + 1) · Pr−2,kr−2 (pr,kr )

(z − pi,ki − 1)
∏r

s=i Ps,ks (ps,ks )
· e−∑r

s=i qs,ks

For 1 ≤ i < j ≤ r − 2, we get:

f Dj ′,i (z) = (−1) j−i+1 ·
|Is |=1+δs∈{ j,...,r−2}∑

Ii⊂{1,...,ai }···
Ir⊂{1,...,ar }

∏k∈Is
i≤s≤r Zs(ps,k + 1) ·∏k∈Is−1

i+1≤s≤r−1 Ps,Is (ps−1,k + 1) · Pr−2,Ir−2(pr,kr )

(z − pi,ki − 1)
∏k∈Is

i≤s≤r Ps,Is (ps,k)

× e−∑k∈Is
i≤s≤r qs,k

where we use the above notation (A.2) and kr denotes the only element of Ir , i.e.
Ir = {kr }.
For 1 ≤ i ≤ r − 2, we get:

f Di ′,i (z) = −
|Is |=1+δs∈{i,...,r−2}∑

Ii⊂{1,...,ai }···
Ir⊂{1,...,ar }{∏k∈Is

i≤s≤r Zs(ps,k + 1) ·∏k∈Is−1
i+1≤s≤r−1 Ps,Is (ps−1,k + 1) · Pr−2,Ir−2 (pr,kr )∏

k∈Ii (z − pi,k − 1) ·∏k∈Is
i≤s≤r Ps,Is (ps,k)

· e−∑k∈Is
i≤s≤r qs,k

}

with Ir = {kr }, while f Dr ′,r (z) = 0, due to Lemma 2.96(a), and f D
(r−1)′,r−1(z) is given

by:

f D(r−1)′,r−1(z) = −
∑

1≤kr−1≤ar−1
1≤kr≤ar

Zr−1(pr−1,kr−1 + 1)Zr (pr,kr + 1)Pr−2(pr,kr )∏r
s=r−1(z − ps,ks − 1) ·∏r

s=r−1 Ps,ks (ps,ks )

× e−qr−1,kr−1− qr,kr
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For 2 ≤ i ≤ r − 2, we get:

f D(i−1)′,i (z) = −
|Is |=1+δs∈{i,...,r−2}∑
Ii−1⊂{1,...,ai−1}···
Ir⊂{1,...,ar }

z − pi−1,ki−1 − 2∏
k∈Ii (z − pi,k − 1)

×
∏k∈Is

i−1≤s≤r Zs(ps,k + 1) ·∏k∈Is−1
i≤s≤r−1 Ps,Is (ps−1,k + 1) · Pr−2,Ir−2 (pr,kr )∏k∈Is
i−1≤s≤r Ps,Is (ps,k)

· e−∑k∈Is
i−1≤s≤r qs,k

with Ir = {kr }, while the i = r − 1, r counterparts of this formula are as follows:

f D(r−2)′,r−1(z) =
∑

1≤kr−2≤ar−2
1≤kr−1≤ar−1

1≤kr≤ar

z − pr−2,kr−2 − 2

(z − pr−1,kr−1 − 1)(z − pr,kr − 1)

×
∏r

s=r−2 Zs(ps,ks + 1) · Pr−2,kr−2 (pr,kr )Pr−1,kr−1 (pr−2,kr−2 + 1)∏r
s=r−2 Ps,ks (ps,ks )

· e−∑r
s=r−2 qs,ks

and

f D(r−1)′,r (z) =
∑

1≤kr≤ar

Zr (pr,kr + 1)Pr−2(pr,kr )

(z − pr,kr − 1)Pr,kr (pr,kr )
· e−qr,kr

For 1 ≤ j ≤ i − 2 ≤ r − 4, we get:

f Dj ′,i (z) = (−1)i− j
|Is |=1+δs∈{i,...,r−2}∑

I j⊂{1,...,a j }···
Ir⊂{1,...,ar }

z − pi−1,ki−1 − 2∏
k∈Ii (z − pi,k − 1)

×
∏k∈Is

j≤s≤r Zs(ps,k + 1) ·∏k∈Is−1
j+1≤s≤r−1 Ps,Is (ps−1,k + 1) · Pr−2,Ir−2 (pr,kr )∏k∈Is

j≤s≤r Ps,Is (ps,k)
· e−∑k∈Is

j≤s≤r qs,k

with Ir = {kr }, while the i = r − 1, r counterparts of this formula are as follows:

f Dj ′,r−1(z) = (−1)r− j
∑

1≤k j≤a j···
1≤kr≤ar

z − pr−2,kr−2 − 2

(z − pr−1,kr−1 − 1)(z − pr,kr − 1)

×
∏r

s= j Zs(ps,ks + 1) ·∏r−1
s= j+1 Ps,ks (ps−1,ks−1 + 1) · Pr−2,kr−2 (pr,kr )∏r

s= j Ps,ks (ps,ks )
· e−∑r

s= j qs,ks

and

f Dj ′,r (z) = (−1)r− j
∑

1≤k j≤a j···
1≤kr−2≤ar−2

1≤kr≤ar

Pr−2,kr−2(pr,kr )Pr−1(pr−2,kr−2 + 1)

×
∏s �=r−1

j≤s≤r Zs(ps,ks + 1) ·∏r−2
s= j+1 Ps,ks (ps−1,ks−1 + 1)

(z − pr,kr − 1)
∏r−2

s= j Ps,ks (ps,ks ) · Pr,kr (pr,kr )
· e−∑r−2

s= j qs,ks−qr,kr

Remark A.5. In the notations f Dj,i (z) = ∑
k≥1 f (D)k

j,i z−k , see (2.192), the above formulas
imply:

f (D)1
j,i = − f (D)1

i ′, j ′ , ∀ 1 ≤ i < j ≤ 2r. (A.6)
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Appendix B. Explicit formulas in types B and C

In this Appendix, we provide a shuffle realization of the key homomorphisms of our
paper. To simplify the exposition, we shall follow the uniform formulas of [NW] in the
(w,u)-oscillators (generalizing those of [BFNb] to non-simply-laced cases in the spirit
of [GKLO,FT1]).

B.1. Homomorphisms�λ̄
μ̄. Let g be a simple Lie algebra of rank r , and let {α∨

i }ri=1 (resp.
{αi }ri=1) be the simple roots (resp. simple coroots) ofg. Let (·, ·)denote the corresponding
pairing on the root lattice, and set di := (α∨

i ,α∨
i )

2 . Let (ai j )ri, j=1 be the Cartan matrix of
g, so that di ai j = (α∨

i , α
∨
j ).

We also choose an orientation of the graph Dyng obtained from the Dynkin diagram of
g by replacing all multiple edges with simple ones. The notation j − i (resp. j → i or
j ← i) is to indicate an edge (resp. oriented edge pointing towards i or j) between the
vertices i, j ∈ Dyng.

Fix a coweight μ̄ of g, and let Yμ̄(g) denote the corresponding shifted (Drinfeld) Yangian
of g, cf. [BFNb,NW], whose generators are encoded into the series Ei (z),Fi (z),Hi (z)
as before. We also fix a dominant coweight λ̄ = ωi1 + . . . + ωiN (ωk being the k-th
fundamental coweight) such that λ̄ + μ̄ = a1α1 + . . . + arαr with ai ∈ N, and choose a
collection of points z1, . . . , zN ∈ C.

Consider the associative C-algebra (cf. (2.131, 3.20))

Ã = C

〈
wi,k, u±1

i,k , (wi,k − wi,� + mdi )−1
〉1≤k �=�≤ai

1≤i≤r,m∈Z
with the defining relations:

[ui,k, w j,�] = diδi, jδk,�ui,k, [wi,k, w j,�] = 0 = [ui,k,u j,�], u±1
i,k u

∓1
i,k = 1.

Set a0 := 0, ar+1 := 0, W0(z) := 1, Wr+1(z) = 1. For 1 ≤ i ≤ r , we also define:

Wi (z) :=
ai∏
k=1

(z − wi,k), Wi,�(z) :=
k �=�∏

1≤k≤ai

(z − wi,k), Zi (z) :=
is=i∏

1≤s≤N

(z − zs − 1
2 ).

Remark B.1. The shift by − 1
2 above is purely historical [BFNb], and can be absorbed

into zs .

The following is a rational counterpart of [FT1, Theorem 7.1] (cf. [NW, Theorem 5.4]):

Theorem B.2. There is a unique C-algebra homomorphism

�λ̄
μ̄ : Yμ̄(g) −→ Ã, (B.3)

determined by the following assignment:

Ei (z) 
→ 1

di

ai∑
k=1

∏
j→i

∏−a ji
p=1 Wj (wi,k − 1

2 (α
∨
i , α

∨
j ) − pd j )

(z − wi,k)Wi,k(wi,k)
u−1
i,k ,
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Fi (z) 
→ −
ai∑
k=1

Zi (wi,k + di )
∏

j←i
∏−a ji

p=1 Wj (wi,k + di − 1
2 (α

∨
i , α

∨
j ) − pd j )

(z − wi,k − di )Wi,k(wi,k)
ui,k,

Hi (z) 
→ Zi (z)
∏

j−i
∏−a ji

p=1 Wj (z − 1
2 (α

∨
i , α

∨
j ) − pd j )

Wi (z)Wi (z − di )
. (B.4)

B.2. Shuffle algebra realization of �λ̄
μ̄. Let Y +(g) and Y−(g) denote the subalgebras of

the Drinfeld Yangian Y (g) generated by {E(k)
i }k≥1

1≤i≤r and {F(k)
i }k≥1

1≤i≤r , respectively. They

can also be described as algebras generated by {E(k)
i }k≥1

1≤i≤r and {F(k)
i }k≥1

1≤i≤r subject to
the relations (2.6, 2.8) and (2.7, 2.9), respectively.

Remark B.5. Note the algebra isomorphisms Y−(g) ∼−→ Y +(g)op determined via
F(k)
i 
→ E(k)

i (given an algebra A, we use Aop to denote the algebra with the oppo-
site multiplication).

For any coweight ν of g, we define the subalgebras Y±
ν (g) of the shifted Yangian Yν(g)

likewise. According to [FKPRW, Corollary 3.15], we have algebra isomorphisms for
any ν:

Y +
ν (g) ∼−→ Y +(g), E(k)

i 
→ E(k)
i ,

Y−
ν (g) ∼−→ Y−(g), F(k)

i 
→ F(k)
i .

(B.6)

Consider an N
r -graded C-vector space

S
(g) =

⊕
k=(k1,...,kr )∈Nr

S
(g)
k , (B.7)

whereS
(g)
k consists of

∏r
i=1 S(ki )-symmetric rational functions in thevariables {xi,k}1≤k≤ki

1≤i≤r .
We also fix a matrix of rational functions (ζi j (z))ri, j=1 via:

ζi j (z) = 1 +
(α∨

i , α
∨
j )

2z
= 1 +

di ai j
2z

. (B.8)

Let us define the shuffle product � on S
(g): given F ∈ S

(g)
k ,G ∈ S

(g)
� , define F �G ∈ S

(g)
k+�

via

(F � G)(x1,1, . . . , x1,k1+�1; . . . ; xr,1, . . . , xr,kr+�r ) := 1

k! · �!

×Sym

⎛
⎝F

(
{xi,k}1≤k≤ki

1≤i≤r

)
G
(
{xi ′,k′ }ki ′<k′≤ki ′+�i ′

1≤i ′≤r

)
·
1≤i ′≤r∏
1≤i≤r

k′>ki ′∏
k≤ki

ζi i ′(xi,k − xi ′,k′)

⎞
⎠ .

(B.9)

Here, k! = ∏r
i=1 ki !, while the symmetrization of f ∈ C({xi,1, . . . , xi,mi }1≤i≤r ) is

defined via:
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Sym ( f )
({xi,1, . . . , xi,mi }1≤i≤r

) :=
∑

(σ1,...,σr )∈S(m1)×···×S(mr )

f
(
{xi,σi (1), . . . , xi,σi (mi )}1≤i≤r

)
.

This endows S
(g) with a structure of an associative C-algebra with the unit 1 ∈ S

(g)

(0,...,0).

We are interested in a certain C-subspace of S
(g) defined by the pole and wheel condi-

tions:

• We say that F ∈ S
(g)
k satisfies the pole conditions if

F = f (x1,1, . . . , xr,kr )∏unordered
i− j

∏k′≤k j
k≤ki

(xi,k − x j,k′)
, where f ∈

(
C[{xi,k}1≤k≤ki

1≤i≤r ]
)S(k1)×···×S(kr )

.

(B.10)

• We say that F ∈ S
(g)
k satisfies the wheel conditions if for any connected i − j , we

have:

F
(
{xi,k}

)∣∣∣
(xi1,xi2,xi3,...,xi,1−ai j ) 
→(w,w+di ,w+2di ,...,w+di ai j ), x j1 
→w+

di ai j
2

= 0. (B.11)

Let S(g)
k ⊂ S

(g)
k denote the subspace of all elements F satisfying these two conditions

and set

S(g) :=
⊕
k∈Nr

S(g)
k .

It is straightforward to check that S(g) ⊂ S
(g) is �-closed. The resulting algebra

(
S(g), �

)
is called the (rational) shuffle algebra of type g. It is related to Y +(g) via the embedding:

ϒ : Y +(g) ↪→ S(g), E(k)
i 
→ xk−1

i,1 for 1 ≤ i ≤ r, k ≥ 1. (B.12)

In view of Remark B.5, we also get:

ϒ : Y−(g) ↪→ S(g),op, F(k)
i 
→ xk−1

i,1 for 1 ≤ i ≤ r, k ≥ 1. (B.13)

Remark B.14. The above embeddings ϒ of (B.12, B.13) are expected to be actually al-
gebra isomorphisms, similar to the trigonometric counterpart as was recently established
in [NT]. This has been proved in (super version of) the type A in [T, §6-7].

The key result of this Appendix is the construction of the algebra homomorphisms

�̃λ̄
μ̄ : S(g) −→ Ã, S(g),op −→ Ã, (B.15)

compatible with �λ̄
μ̄ (B.3) with respect to the isomorphisms (B.6) and embeddings

(B.12, B.13). To this end, for 1 ≤ i ≤ r and 1 ≤ � ≤ ai , we define:

Yi,�(z) :=
∏

j→i
∏−a ji

p=1 Wj (z − 1
2 (α

∨
i , α

∨
j ) − pd j )

di · Wi,�(z)
,

Y ′
i,�(z) := −Zi (z + di )

∏
j←i

∏−a ji
p=1 Wj (z + di − 1

2 (α
∨
i , α

∨
j ) − pd j )

Wi,�(z)
. (B.16)
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Theorem B.17. (a) The assignment

S(g)

(k1,...,kr )
� E 
→

m(i)
k ∈N∑

m(1)
1 +...+m(1)

a1 =k1···
m(r)
1 +...+m(r)

ar =kr

{ r∏
i=1

ai∏
k=1

m(i)
k∏

p=1

Yi,k
(
wi,k − (p − 1)di

)

×E

⎛
⎜⎜⎝
{
wi,k − (p − 1)di

}
1≤i≤r
1≤k≤ai

1≤p≤m(i)
k

⎞
⎟⎟⎠

×
r∏

i=1

ai∏
k=1

∏

1≤p1<p2≤m(i)
k

ζ−1
i i

(
(wi,k − (p1 − 1)di ) − (wi,k − (p2 − 1)di )

)

×
r∏

i=1

∏
1≤k1 �=k2≤ai

1≤p2≤m(i)
k2∏

1≤p1≤m(i)
k1

ζ−1
i i

(
(wi,k1 − (p1 − 1)di ) − (wi,k2 − (p2 − 1)di )

)

×
∏
j→i

1≤k2≤a j∏
1≤k1≤ai

1≤p2≤m( j)
k2∏

1≤p1≤m(i)
k1

ζ−1
i j

(
(wi,k1 − (p1 − 1)di ) − (w j,k2 − (p2 − 1)d j )

)

×
r∏

i=1

ai∏
k=1

u
−m(i)

k
i,k

}
(B.18)

gives rise to the algebra homomorphism

�̃λ̄
μ̄ : S(g) −→ Ã. (B.19)

Moreover, the composition

Y +
μ̄ (g)

(B.6)
∼−→ Y +(g)

ϒ−→ S(g)
�̃λ̄

μ̄−→ Ã (B.20)

coincides with the restriction of the homomorphism �λ̄
μ̄ (B.3) to the subalgebra

Y +
μ̄ (g) ⊂ Yμ̄(g).

(b) The assignment

S(g),op
(k1,...,kr )

� F 
→
m(i)
k ∈N∑

m(1)
1 +...+m(1)

a1 =k1···
m(r)
1 +...+m(r)

ar =kr

{ r∏
i=1

ai∏
k=1

m(i)
k∏

p=1

Y ′
i,k

(
wi,k + (p − 1)di

)

×F

⎛
⎜⎜⎝
{
wi,k + pdi

}
1≤i≤r
1≤k≤ai

1≤p≤m(i)
k

⎞
⎟⎟⎠
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×
r∏

i=1

ai∏
k=1

∏

1≤p1<p2≤m(i)
k

ζ−1
i i

(
(wi,k + p2di ) − (wi,k + p1di )

)

×
r∏

i=1

∏
1≤k1 �=k2≤ai

1≤p2≤m(i)
k2∏

1≤p1≤m(i)
k1

ζ−1
i i

(
(wi,k2 + p2di ) − (wi,k1 + p1di )

)

×
∏
j←i

1≤k2≤a j∏
1≤k1≤ai

1≤p2≤m( j)
k2∏

1≤p1≤m(i)
k1

ζ−1
j i

(
(w j,k2 + p2d j ) − (wi,k1 + p1di )

)

×
r∏

i=1

ai∏
k=1

u
m(i)
k

i,k

}
(B.21)

gives rise to the algebra homomorphism

�̃λ̄
μ̄ : S(g),op −→ Ã. (B.22)

Moreover, the composition

Y−
μ̄ (g)

(B.6)
∼−→ Y−(g)

ϒ−→ S(g),op
�̃λ̄

μ̄−→ Ã (B.23)

coincides with the restriction of the homomorphism �λ̄
μ̄ (B.3) to the subalgebra

Y−
μ̄ (g) ⊂ Yμ̄(g).

The proof is straightforward and is left to the interested reader. We note that a trigono-
metric type A counterpart of this result played a crucial role in [FT2], see Theorem 4.11
of loc.cit.

B.3. Application to the Lax matrices of types B and C. The key application of The-
orem B.17 to the main subject of the present paper is that it allows to obtain explicit
formulas for the matrix coefficients of ED(z), FD(z) featuring in our definition of the
Laxmatrices TD(z) (2.175). In type Dr this recovers the formulas of Appendix A (which
were rather derived using the relations of Lemmas 2.79, 2.80, 2.96, 2.97), while in types
Cr and Br this provides concise formulas (used in the proofs of Theorems 3.31, 4.31),
which are quite inaccessible if derived iteratively via Lemmas 3.11, 3.12 or 4.10, 4.11,
respectively.

Let g be either soN (N = 2r, 2r + 1) or spN (N = 2r). Let X+(g) and X−(g)
denote the subalgebras of the corresponding extended Drinfeld Yangian X (g), gener-
ated by {E (k)

i }k≥1
1≤i≤r and {F (k)

i }k≥1
1≤i≤r , respectively. Likewise, let X

rtt,+(g) and X rtt,−(g)

denote the subalgebras of the corresponding extended RTT Yangian X rtt(g), generated
by {e(k)

i, j }k≥1
1≤i< j≤N and { f (k)

j,i }k≥1
1≤i< j≤N , respectively. Then, we have the following natural

algebra isomorphisms:

X rtt,+(g) ∼−→ X+(g) ∼−→ Y +(g), X rtt,−(g) ∼−→ X−(g) ∼−→ Y−(g). (B.24)
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Let {E(k)
i j }k≥1

1≤i< j≤N and {F(k)
j i }k≥1

1≤i< j≤N denote the images of e(k)
i, j and f (k)

j,i in Y +(g) and
Y−(g) under the composition maps of (B.24), respectively, and consider their generating
series:

Ei j (z) :=
∑
k≥1

E(k)
i j z

−k, F j i (z) :=
∑
k≥1

F(k)
j i z

−k .

Weconclude this Appendix by presenting explicit formulas forϒ(Ei j (z)) andϒ(F j i (z))
(combining which with Theorem B.17 recovers the Lax matrices TD(z) of (2.175)). In
what follows,ςi will denote the i-th coordinate vector:ςi = (0, . . . , 0, 1, 0, . . . , 0) ∈ N

r

with 1 at the spot i .

Lemma B.25 (Type Cr ). Define the polynomial Q(z1, z2;w1, w2) via:6

Q(z1, z2;w1, w2) = 2z1z2 + 2w1w2 − (z1 + z2)(w1 + w2) + 1
2 . (B.26)

(a) We have the following equalities:

ϒ
(
Ei j (z)

)
= 1

(z − i−1
2 − xi,1)

∏ j−2
k=i (xk,1 − xk+1,1)

∈ S(sp2r )
ςi+...+ς j−1 for 1 ≤ i < j ≤ r,

ϒ
(
Eir ′ (z)

)
= 2

(z − i−1
2 − xi,1)

∏r−1
k=i (xk,1 − xk+1,1)

∈ S(sp2r )
ςi+...+ςr for 1 ≤ i < r,

ϒ
(
Ei j ′ (z)

)
= 2(2x j−1,1 − x j,1 − x j,2)

∏r−2
k= j Q(xk,1, xk,2; xk+1,1, xk+1,2)

(z − i−1
2 − xi,1)

∏r−1
k=i

∏p′≤1+δ j≤k+1<r
p≤1+δ j≤k<r

(xk,p − xk+1,p′ )

∈ S(sp2r )
ςi+...+ς j−1+2ς j+...+2ςr−1+ςr

for 1 ≤ i < j < r,

ϒ
(
Ei i ′ (z)

)
= 2(2z − i + 2 − xi,1 − xi,2)

∏r−2
k=i Q(xk,1, xk,2; xk+1,1, xk+1,2)

(z − i−1
2 − xi,1)(z − i−1

2 − xi,2)
∏r−1

k=i

∏p′≤1+δk+1<r
p≤1+δk<r

(xk,p − xk+1,p′ )

∈ S(sp2r )
2ςi+...+2ςr−1+ςr

for 1 ≤ i ≤ r,

ϒ
(
Ei j ′ (z)

)
=

2(Q(z − i−1
2 , xi−1,1; xi,1, xi,2) + 1

2 (2xi−1,1 − xi,1 − xi,2))
∏r−2

k=i Q(xk,1, xk,2; xk+1,1, xk+1,2)
(z − i−1

2 − xi,1)(z − i−1
2 − xi,2)

∏r−1
k= j

∏p′≤1+δi≤k+1<r
p≤1+δi≤k<r

(xk,p − xk+1,p′ )

∈ S(sp2r )
ς j+...+ςi−1+2ςi+...+2ςr−1+ςr

for 1 ≤ j < i < r,

ϒ
(
Er j ′ (z)

)
= 2

(z − r
2 − xr,1)

∏r−1
k= j (xk,1 − xk+1,1)

∈ S(sp2r )
ς j+...+ςr for 1 ≤ j < r,

ϒ
(
Ei ′ j ′ (z)

)
= − 1

(z + i−2
2 − r − xi−1,1)

∏i−2
k= j (xk,1 − xk+1,1)

∈ S(sp2r )
ς j+...+ςi−1 for 1 ≤ j < i ≤ r.

(b) For any 1 ≤ i < j ≤ 2r , ϒ(F j i (z)) ∈ S(sp2r ),op[[z−1]] is given by the same
formula (the expansion in z−1 of the corresponding rational function in (a)) as
ϒ(Ei j (z)) ∈ S(sp2r )[[z−1]].

6 Note that Q(w,w − 1;w − 1/2, z) = 0 in accordance with the wheel conditions (B.11).
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Lemma B.27 (Type Br ).

(a) We have the following equalities:

ϒ
(
Ei j (z)

)
= − 1

(z − i−1
2 − xi,1)

∏ j−2
k=i (xk,1 − xk+1,1)

∈ S(so2r+1)
ςi+...+ς j−1 for 1 ≤ i < j ≤ r + 1,

ϒ
(
Ei j ′ (z)

)
= −

∏r−1
k= j (xk,1 − xk,2 − 1)(xk,2 − xk,1 − 1)

(z − i−1
2 − xi,1)

∏r−1
k=i

∏p′≤1+δk+1≥ j
p≤1+δk≥ j

(xk,p − xk+1,p′ )

∈ S(so2r+1)
ςi+...+ς j−1+2(ς j+...+ςr )

for 1 ≤ i < j ≤ r,

ϒ
(
Ei i ′ (z)

)
= −

∏r−1
k=i (xk,1 − xk,2 − 1)(xk,2 − xk,1 − 1)

(z − i−1
2 − xi,1)(z − i−1

2 − xi,2)
∏r−1

k=i

∏p′≤2
p≤2 (xk,p − xk+1,p′ )

∈ S(so2r+1)
2(ςi+...+ςr )

for 1 ≤ i ≤ r,

ϒ
(
Ei j ′ (z)

)
= (z − i

2 − xi−1,1)
∏r−1

k=i (xk,1 − xk,2 − 1)(xk,2 − xk,1 − 1)

(z − i−1
2 − xi,1)(z − i−1

2 − xi,2)
∏r−1

k= j

∏p′≤1+δk+1≥i
p≤1+δk≥i

(xk,p − xk+1,p′ )

∈ S(so2r+1)
ς j+...+ςi−1+2(ςi+...+ςr )

for 1 ≤ j < i ≤ r,

ϒ
(
Ei ′ j ′ (z)

)
= − 1

(z + i+1
2 − r − xi−1,1)

∏i−2
k= j (xk,1 − xk+1,1)

∈ S(so2r+1)
ς j+...+ςi−1 for 1 ≤ j < i ≤ r + 1.

(b) For any 1 ≤ i < j ≤ 2r + 1, ϒ(F j i (z)) ∈ S(so2r+1),op[[z−1]] is given by the
same formula (the expansion in z−1 of the corresponding rational function in (a)) as
ϒ(Ei j (z)) ∈ S(so2r+1)[[z−1]].

Inspecting the explicit formulas above, we obtain (cf. Remarks A.3, A.5 for the type Dr ):

Corollary B.28. (a) In the type Cr , we have (with εi ∈ {±1} defined as in (3.5)):

E(1)
i j = −εiε jE

(1)
j ′i ′ , F(1)

j i = −εiε jF
(1)
i ′ j ′, ∀ 1 ≤ i < j ≤ 2r, (B.29)

which imply the corresponding equalities for thematrix coefficients of ED(z), F D(z):

e(D)1
i, j = −εiε j e

(D)1
j ′,i ′ , f (D)1

j,i = −εiε j f
(D)1
i ′, j ′ , ∀ 1 ≤ i < j ≤ 2r.

(b) In the type Br , we have:

E(1)
i j = −E(1)

j ′i ′ , F(1)
j i = −F(1)

i ′ j ′, ∀ 1 ≤ i < j ≤ 2r + 1, (B.30)

which imply the corresponding equalities for thematrix coefficients of ED(z), F D(z):

e(D)1
i, j = −e(D)1

j ′,i ′ , f (D)1
j,i = − f (D)1

i ′, j ′ , ∀ 1 ≤ i < j ≤ 2r + 1.
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