

1 Manuscript submitted to the *European Journal of Neuroscience*
2
3 Long-term consequences of peri-adolescent social isolation on social preference, anxiety-like
4 behavior, and vasopressin neural circuitry of male and female rats
5

6 Brianna L. Kinley^{1*}, Robert. F. Kyne^{2,3*}, Tamijah S. Lawton-Stone¹, Deena M. Walker⁴, and
7 Matthew J. Paul^{2,3}
8

9 ¹Department of Biological Sciences, ²Department of Psychology, and ³Neuroscience Program,
10 University at Buffalo, SUNY, Buffalo, NY, U.S.A

11 ⁴Department of Behavioral Neuroscience, Oregon Health & Science University School of
12 Medicine, Portland, OR, U.S.A.
13

14 *Equal contributions by authors

15 Address correspondence to: Matthew J. Paul (mjpaul@buffalo.edu)

16 Short title: Long-term effects of PASI

17 Figures: 6

18 Tables: 1

19

20 **Acknowledgements**

21 The authors thank Kelcie Schatz, Nina Ventura, and Akua Ayoluwa for technical assistance and
22 the University at Buffalo Laboratory Animal Facility personnel for providing excellent care to the
23 animals used in these studies. This work was supported by the University at Buffalo Research
24 Foundation (UBF) and the National Science Foundation (NSF; IOS-1754878). UBF and NSF
25 had no role in study design; in the collection, analysis and interpretation of data; in the writing of
26 the report; and in the decision to submit the article for publication.

27 **Abstract**

28 Social isolation during the juvenile and adolescent stages (peri-adolescent social isolation) can
29 have long-term consequences for behavioral and neural development. Most of this research,
30 however, has relied on data from males, and very few studies have included both sexes. The
31 present study investigated the impact of peri-adolescent social isolation on social preference,
32 anxiety-like behavior, and vasopressin neural circuitry of male and female Long Evans rats.
33 Rats were either housed alone for 3 weeks beginning at weaning (Isolated) or in groups (Group-
34 housed). In adulthood, rats were tested in social preference, open field, marble burying, and
35 light/dark box tests, and brains were processed for vasopressin immunohistochemistry. Isolated
36 males exhibited a lower social preference score and spent more time in the light zone of the
37 light/dark box than their group-housed counterparts. Isolated and Group-housed females did
38 not differ in these measures. Peri-adolescent social isolation did not alter vasopressin fiber
39 density in target areas known to influence social and anxiety-like behaviors (the lateral septum
40 or lateral habenula), but increased fiber density in an output pathway of the circadian
41 pacemaker (projections to the paraventricular nucleus of the thalamus); an effect detected
42 across both sexes. A previously unreported sex difference was also detected for vasopressin
43 fiber density in the paraventricular nucleus of the thalamus (females > males). These findings
44 demonstrate long-term consequences of peri-adolescent social isolation on social preference,
45 anxiety-like behavior, and the circadian vasopressin pathway and suggest that socio-affective
46 development of males is more vulnerable to social stressors during the juvenile and adolescent
47 stages.

48 **Introduction**

49 Childhood and adolescence are crucial stages for cognitive, social, and emotional development.
50 During this period, individuals display increased sensitivity to stressful and rewarding stimuli
51 (Eiland & Romeo, 2013; Walker *et al.*, 2017), and adverse experiences can have lasting impacts
52 on the brain, behavior, and mental health (Gutman & Nemeroff, 2003; Lukkes, Watt, *et al.*,
53 2009; Walker *et al.*, 2019). Adversity increases the risk of many physical, psychological, and
54 behavioral disorders including anxiety, depression, post-traumatic stress disorder, and
55 substance use disorder (McFarlane *et al.*, 2005; Espejo *et al.*, 2007; Heim *et al.*, 2008;
56 Childhood Welfare Information Gateway, 2019) all of which display stark sex differences in their
57 emergence and presentation (Wittchen *et al.*, 1998; Merikangas *et al.*, 2010; Avenevoli *et al.*,
58 2015; Gogos *et al.*, 2019). Social interactions during childhood and adolescence influence the
59 development of maladaptive behaviors in adulthood (Patterson *et al.*, 1992; Hankin *et al.*, 1998)
60 and negative social interactions during these life stages are associated with increased rates of
61 depression (Thapar *et al.*, 2012). Hence, understanding the impacts of the juvenile and
62 adolescent social environment on neurobiology and behavior of both sexes is critical to our
63 understanding of mental health disorders.

64

65 Socially isolating rodents at, or shortly after, weaning (post-weaning social isolation) has long-
66 term consequences for neural and behavioral development and is often used as a preclinical
67 model to study the neurobiology underlying childhood and adolescent adversity (Fone &
68 Porkess, 2008; Burke *et al.*, 2017). Post-weaning social isolation protocols can vary markedly
69 across studies, with animals isolated at different ages and for different durations (for a detailed
70 review of these protocols see Lukkes, Watt, *et al.*, 2009). Broadly speaking, there are two main
71 categories of post-weaning social isolation protocols. In most studies, isolated animals remain
72 single-housed for the remainder of the experiment and are tested while still in isolation. This
73 protocol has recently been referred to as isolation housing (Burke *et al.*, 2017). In other studies,

74 animals are only isolated during the juvenile and adolescent periods then re-housed in groups
75 for several weeks before testing. To emphasize the transient nature of the isolation period, we
76 refer to this second protocol as peri-adolescent social isolation (PASI), meaning that isolation
77 occurs around, but is not solely restricted to, adolescence. Distinguishing between isolation
78 housing and PASI is important, and results can differ depending on which protocol is used.
79 Behavior tests of isolation housing protocols can be affected by the ongoing isolation stress at
80 the time of testing, whereas those of PASI protocols can be affected by the re-socialization
81 period occurring after re-housing (Lukkes, Watt, *et al.*, 2009). In the present study, we used the
82 PASI protocol, because unlike isolation housing, it can assess long-term effects of post-weaning
83 social isolation that persist after the cessation of the social stressor.

84

85 PASI has a long-term impact on social development, but most of this research has relied on
86 data from males. PASI has been repeatedly shown to decrease prosocial behaviors of adult
87 male rats in the social interaction test (e.g., social approach, social contact/investigation; Hol *et*
88 *al.*, 1999; Van den Berg *et al.*, 1999; Van Den Berg *et al.*, 1999; Ferdman *et al.*, 2007; Lukkes,
89 Mokin, *et al.*, 2009; Lukkes, Vuong, *et al.*, 2009). To our knowledge, only one study has tested
90 the impact of PASI on social behavior of female rats, and this study did not detect an effect of
91 PASI in the social interaction test (Lukkes *et al.*, 2012). Hence, whether there are long-term
92 consequences of PASI in female rats remains an open question.

93

94 How PASI impacts social behavior of males (and possibly females) is not understood. PASI
95 may impact social behavior by altering preference for social stimuli. Social preference can be
96 assessed by providing an experimental animal the opportunity to interact with a novel object and
97 novel conspecific, either simultaneously or sequentially. The novel conspecific is typically
98 restrained in a cage that allows limited social contact (e.g., wire-mesh cage or plastic cage with
99 small openings) to ensure that interactions are initiated by the experimental animal. The time

100 spent investigating the novel object and novel conspecific are compared to assess the animal's
101 "preference" for social versus non-social stimuli. In these tests, rodents typically prefer social
102 over non-social stimuli (e.g., Lukas *et al.*, 2011; Toth & Neumann, 2013). Effects of PASI on
103 social preference of rats have not been reported in either sex.

104

105 Social deficits from PASI could also be the result of increased anxiety during social interactions
106 (Lukkes, Vuong, *et al.*, 2009). Male rats subjected to PASI exhibit increased endocrine
107 responses and fear during social or aggressive interactions (Van den Berg *et al.*, 1999; Lukkes,
108 Mokin, *et al.*, 2009). This may reflect a more general effect on anxiety-like behavior, as male
109 rats exposed to PASI can exhibit increased anxiety-like behavior in tests that do not include a
110 social component (e.g., open field test and elevated plus maze; Wright *et al.*, 1991; Lukkes,
111 Mokin, *et al.*, 2009; but see Weintraub *et al.*, 2010). Data in females are scarce, but two studies
112 have found little to no effect of PASI on anxiety-like behavior in the open field test (tested in the
113 dark) and the elevated plus maze (Weintraub *et al.*, 2010; Lukkes *et al.*, 2012).

114

115 The vasopressin (VP) pathway emerging from cells in the bed nucleus of the stria terminalis
116 (BNST) and medial amygdala (MeA) is a prime candidate for mediating the effects of PASI on
117 social behavior. This pathway regulates a variety of social and anxiety-like behaviors (Landgraf
118 *et al.*, 1995; Liebsch *et al.*, 1996; Beiderbeck *et al.*, 2007; Veenema *et al.*, 2012, 2013;
119 Bredewold *et al.*, 2014; Caldwell & Albers, 2016). Males have a greater number of VP cells in
120 the BNST and MeA than females as well as more dense fiber projections to target areas such
121 as the lateral septum (LS) and lateral habenula (LHb; reviewed in De Vries & Panzica, 2006; De
122 Vries *et al.*, 2014). Consequently, pharmacological and genetic manipulations of this pathway
123 often impact social and affective behaviors in a sex-specific manner (Albers, 2015; Bredewold &
124 Veenema, 2018; Rigney *et al.*, 2019; Whylings *et al.*, 2020). The BNST/MeA VP pathway
125 continues to develop across the juvenile and adolescent periods (De Vries *et al.*, 1981; Szot &

126 Dorsa, 1993), raising the possibility that adverse environments during these life stages could
127 derail its development. Only one study has assessed the effects of post-weaning social
128 isolation on the BNST/MeA VP pathway, which assessed vasopressin 1a receptor (V1aR)
129 binding after isolation housing. Oliveira et al. (2019) found that isolation housing reversed the
130 sex difference in V1aR binding in the BNST but did not alter receptor binding in the dorsal
131 lateral septum of male or female rats. Potential long-term effects on this pathway using the
132 PASI protocol have not been tested.

133

134 In the present experiment, we tested the hypothesis that post-weaning social isolation has long-
135 term consequences for social preference of male and female rats. We predicted that PASI
136 would decrease social preference in male rats. Due to the dearth of information on the effects
137 of PASI on female social behavior, we tested whether PASI affects social preference in females,
138 but remained agnostic to the presence or direction of the effect. We further tested the
139 hypotheses that PASI-induced deficits in social preference, if present, would be accompanied
140 by increased anxiety-like behavior and altered density of BNST/MeA VP fiber projections. To
141 determine whether effects of PASI on VP-ir fibers, if present, were specific to the BNST/MeA VP
142 pathway, we also assessed VP-ir fibers in the paraventricular nucleus of the thalamus (PVT),
143 which originate from cells located in the suprachiasmatic nucleus of the hypothalamus (SCN;
144 Hoorneman & Buijs, 1982; Rood *et al.*, 2013). The PVT is located at the same rostro-caudal
145 level as the LHB, and fibers from these brain areas can be quantified from the same tissue
146 sections within a single image. Hence, comparison of PVT and LHB vasopressin-ir staining
147 provides a strong test of the hypothesis that group differences would manifest in one brain area,
148 but not the other.

149

150 **Methods**

151 Animals and Housing Conditions

152 Fifty-nine offspring from 7 Long Evans rat breeding pairs from our colony were used as
153 subjects. Litters were not culled or cross-fostered; offspring from each litter were distributed
154 across groups. All rats (Group-housed and Isolated) were housed in plastic cages (44cm X
155 22.5cm X 20.5cm) with corn-cob bedding (Envigo, Indianapolis, IN). Room lights were set to a
156 12 h light/12 h dark cycle with lights off at 6:00 PM EST, and ambient temperature was
157 maintained at 23°C. Food and water were available *ad libitum*. All procedures were approved
158 by the Institutional Animal Care and Use Committee at the University at Buffalo and were in
159 accordance with the *Guide for the Care and Use of Laboratory Animals*.

160

161 Experimental Timeline

162 Figure 1 illustrates the timeline of the housing manipulations, testing, and sacrifice. Rats were
163 weaned at 21 days of age and housed either alone (Isolated; n=14 females, 11 males) or in
164 groups of 2-3 rats/cage (Group-housed; n=19 females, 15 males). All rats were housed in the
165 same room as our colony, and hence, Isolated rats could smell and hear other rats in the room.
166 After 3 weeks of isolation, Isolated rats were group-housed (2-3 rats/cage) for the remainder of
167 the experiment. Four weeks later, all rats were tested in a combined open field and social
168 preference test (at P70-71), the marble burying test (at P72-73), and the light/dark box test (at
169 P74-75), with 1 day between behavioral tests. Rats were sacrificed 1-2 days after the light/dark
170 box test, and brains were removed (at P75-77). A subset of brains (n=36, 9 per group) was
171 processed for vasopressin immunohistochemistry.

172

173 Behavioral Testing

174 *Combined Open Field and Social Preference Test.* Open field and social preference tests were
175 conducted on the same day between zeitgeber time (ZT)5.5 and ZT10.5 under white light; lights

176 on = ZT0 and lights off = ZT12. In the open field phase of the test, a rat was placed in an open
177 arena (73.7cm X 73.7cm X 47.3cm) for 20 min. This phase served as an open field test, but
178 also allowed the animal to acclimate to the testing arena for subsequent phases of the social
179 preference test. The rat was then briefly removed while a novel empty wire-mesh cage was
180 placed along a wall of the arena and secured to the wall with suction cups. The rat was
181 reintroduced along the wall opposite the empty cage and allowed to explore the arena and cage
182 for 10 min (novel object phase). The rat was again removed briefly while the empty cage was
183 replaced with a cage containing a novel, sex-matched adult stimulus rat. The experimental rat
184 was reintroduced again to the arena along the opposite wall of the cage and allowed to
185 investigate the arena and the caged stimulus animal for an additional 10 min (novel animal
186 phase). All stimulus rats were acclimated to the arena and wire-mesh cage for 10 minutes per
187 day for 5 days before the start of the first test. Behaviors were recorded using a camera
188 mounted above the arena. For the open field phase, time spent in the center 25% of the arena
189 and distance travelled were assessed. For the novel object and novel animal phases, time
190 spent in the investigation zone surrounding the novel cage or novel animal was assessed. A
191 social preference score was calculated as (time spent investigating the novel animal – time
192 spent investigating the novel cage) / (time spent investigating the novel animal + time spent
193 investigating the novel cage). All measures were scored automatically using EthoVision
194 software (Noldus Information Technology Inc., Wageningen, The Netherlands).

195

196 *Marble Burying Test.* Marble burying tests were conducted between ZT3.5 and ZT6 under white
197 light. Each rat was placed in a fresh housing cage (plastic, 44cm X 22.5cm X 20.5cm)
198 containing 5 cm of corn-cobb bedding and 12 large multi-colored marbles (diameter = 2.5cm)
199 arranged in a 3 x 4 array on the surface of the bedding. Rats were allowed to freely move about
200 and investigate the cage and marbles for 30 min. The number of marbles buried in the bedding
201 by 2/3 or more was recorded at the end of the testing session.

202

203 *Light/Dark Box Test.* Light/dark box tests were conducted between ZT8.5 and ZT11. The rat
204 was placed inside a dark box (38.9cm X 12.7cm X 15.2cm) with a single entrance to an
205 illuminated open arena (40.0cm X 39.9cm X 31.2cm). The rat was allowed to explore the light
206 and dark zones of the apparatus for 10 min. Activity in the light zone was recorded by a camera
207 mounted above the arena. Time spent in the light zone was scored manually by a researcher
208 unaware of group assignments using Observer software (Noldus Information Technology Inc.,
209 Wageningen, The Netherlands).

210

211 Tissue Preparation, Immunohistochemistry, and Quantification

212 *Tissue Preparation.* At sacrifice, rats were sacrificed by CO₂ inhalation. Brains were removed
213 and drop-fixed in 5% acrolein overnight, then immersed in 30% sucrose until microtome
214 sectioning at a thickness of 40 μ m. Every fourth section was processed by
215 immunohistochemistry for vasopressin.

216

217 *Vasopressin Immunohistochemistry.* Sections were rinsed in phosphate-buffered saline (PBS),
218 then incubated for 30 minutes in 0.05M sodium citrate (at 70°C), 0.1M glycine (at room
219 temperature), and 10% normal goat serum, 0.4% Triton-X, and 1% hydrogen peroxide (at room
220 temperature), with PBS rinses between each incubation. Sections were then incubated
221 overnight with an anti-vasopressin antibody (1:20,000 dilution, T-4563, rabbit, Bachem,
222 Torrance, CA) at room temperature. The following day, sections were incubated in secondary
223 antibody (60 min; biotinylated goat anti-rabbit, BA-1000, Vector Laboratories, Burlingame, CA),
224 ABC-Elite standard kit (60 min; Vector Laboratories), and Peroxidase DAB substrate kit (30 min;
225 Vector Laboratories, SK-4100). The proportions of solutions of the DAB kit were adjusted to
226 prolong the DAB reaction, thereby providing more consistent results between wells: 160 μ l

227 Buffer, 320 μ l DAB, 2 μ l hydrogen peroxide, and 160 μ l nickel per 10ml of water. PBS rinses were
228 conducted before and after each incubation. Sections were mounted onto gelatin-coated slides,
229 air-dried, then coverslipped for microscope analysis.

230

231 This immunohistochemistry protocol was optimized for the detection of parvocellular
232 vasopressin fibers. In double-label immunofluorescent pilot experiments, we found that the
233 dilution of the primary antibody in this protocol faintly co-labels magnocellular oxytocin cells of
234 the paraventricular and supraoptic nuclei of the hypothalamus. To be certain that measures of
235 the present experiment reflect vasopressin staining, we restricted our analysis to brain areas
236 where there are no oxytocin fibers (LHb and PVT) or where they are very rarely detected (LS).

237

238 *Quantification of Vasopressin-ir Fibers and Cell Bodies.* VP staining was visualized on a Nikon
239 Eclipse Ni-U microscope (Nikon Instruments, Melville, NY). For most animals, 3 images were
240 taken of the LS, LHb, and PVT – one from the rostral, mid, and caudal aspects of each brain
241 area. The density of VP fibers was quantified by a researcher unaware of group assignments
242 as the integrated density of staining above background using the threshold feature of ImageJ
243 software (NIH, Bethesda, MD). For the LS and PVT, fiber density was quantified for both the
244 left and right hemispheres within a single measure. For the LHb, fiber density was measured
245 separately for the left and right hemispheres and then summed. Hence, rostral, mid, and caudal
246 measures represented fiber density of both hemispheres. The integrated density across the
247 rostral, mid, and caudal images was then averaged to provide a mean integrated density
248 measure of each brain area for each animal. In some sections, tissue damage/folding or
249 staining artifacts made accurate quantification impossible. Animals were included in statistical
250 analyses as long as 2 of the 3 images could be quantified. The number of animals where 2
251 images could not be quantified, and therefore excluded, was: 2 for the LS, 0 for the LHb, and 0
252 for the PVT.

253

254 Statistical Analyses

255 Behavioral measures were assessed using a 2 X 2 ANOVA with housing (Isolated versus
256 Group-housed) and sex as independent variables. When main effects or interactions were
257 significant, post hoc comparisons were conducted using the Tukey test. Significance was
258 assumed when $P < 0.05$. Social preference was assessed in two ways. First, a social
259 preference score was calculated (see above for equation) and differences were assessed using
260 a 2 X 2 ANOVA with housing and sex as independent variables. We then tested whether the
261 social preference scores of each group were statistically different from chance (i.e., no
262 preference). Negative social preference scores indicate a preference for the novel object,
263 whereas positive social preference scores indicate a preference for the novel animal. Equal
264 investigation of both stimuli results in a 0 social preference score. Therefore, a One-Sample t-
265 Test was conducted on each group to determine whether their social preference scores were
266 statistically different from 0. All measures were assessed for outliers using the Box and
267 Whiskers plot in SPSS that defines outliers as greater than 1.5 times the interquartile range, and
268 outliers were removed from subsequent statistical analyses (Table 1). Potential effects of
269 group-housing density (2/cage versus 3/cage) were assessed in Group-housed rats for each
270 measure using a 2 X 2 ANOVA with housing density and sex as independent variables.
271 Housing density did not alter social preference, open field, or vasopressin-ir measures, and
272 hence, statistical analyses proceeded with both group-housing densities included as a single
273 group for these measures. The number of marbles buried in the marble burying test and the
274 time spent in the light zone of the light/dark box test, however, were impacted by group-housing
275 density. Because of insufficient sample size in females housed 3/cage (there was only a single
276 cage of 3 females), conclusions regarding effects of this housing density were considered
277 unreliable, and rats housed at 3/cage (both male and female) were removed from marble
278 burying and light/dark box analyses. Hence, the Group-housing variable for these tests

279 consisted only of animals housed at 2/cage. Note that this led to a marked reduction in the
280 sample size of Group-house males to n=6. Final group sample sizes for each analysis are
281 denoted in the bars of each graph.

282

283 **Results**

284 Peri-adolescent social isolation decreases social preference in male rats

285 Isolated rats had a lower social preference score than Group-housed rats (Fig. 2A; $F_{(1,50)}=7.19$,
286 $P=0.01$, $\eta_p^2=0.13$, main effect of housing, ANOVA), and there was a trend toward a significant
287 interaction between housing and sex ($P=0.078$, ANOVA). Group-housed females, Group-
288 housed males, and Isolated females each exhibited a significant preference for the novel animal
289 over the novel cage (Group-housed females: $P=0.002$, Cohen's $d=0.91$, One-Sample t-Test;
290 Group-housed males: $P=0.042$, Cohen's $d=0.58$, One-Sample t-Test; Isolated females:
291 $P=0.0008$, Cohen's $d=1.33$, One-sample t-Test). Isolated males, however, did not exhibit a
292 significant preference for either stimulus ($P=0.24$, One-sample t-Test). Because the One-
293 Sample t-Test suggested that PASI only impacted male rats and the ANOVA housing X sex
294 interaction approached significance ($P=0.078$), we conducted the Tukey post hoc test as a
295 second assessment of whether the main effect of housing in the ANOVA statistical approach
296 was significant for both sexes. In post hoc comparisons, the effect of PASI was significant in
297 males ($P=0.019$, Cohen's $d=0.99$, Isolated males versus Group-housed males, Tukey test), but
298 not in females ($P=0.92$, Isolated females versus Group-housed females, Tukey test).

299

300 PASI did not alter the time spent in the center of the open field (Fig. 2B; $F_{(1,54)}=0.02$, $P=0.89$
301 main effect of housing, ANOVA; $F_{(1,54)}=0.19$, $P=0.66$, housing X sex interaction, ANOVA) or the
302 distance travelled in the arena (Fig. 2C; $F_{(1,51)}=0.001$, $P=0.97$, main effect of housing, ANOVA;
303 $F_{(1,51)}=3.29$, $P=0.08$, housing X sex interaction, ANOVA). Females spent more time in the

304 center ($F_{(1,54)}=9.98$, $P=0.003$, $\eta_p^2=0.16$, main effect of sex, ANOVA) and travelled a greater
305 distance ($F_{(1,51)}=22.13$, $P=0.00002$, $\eta_p^2=0.30$, main effect of sex, ANOVA) than males.

306

307 Peri-adolescent social isolation alters anxiety-like behavior in the light/dark box test, but not the
308 marble burying test

309 There was a significant interaction between housing and sex for the number of marbles buried
310 in the marble burying test (Fig. 3; $F_{(1,42)}=5.66$, $P=0.02$, $\eta_p^2=0.12$, housing X sex interaction,
311 ANOVA). Isolated males tended to bury more marbles than isolated females, but this difference
312 fell just short of significance ($P=0.05$, Tukey Test); Group-housed males and females did not
313 differ on this measure ($P=0.82$, Tukey Test). PASI did not significantly impact the number of
314 marbles buried in either males ($P=0.19$, Tukey Test) or females ($P=0.59$, Tukey Test).

315

316 PASI affected the amount of time spent in the light zone of the light/dark box test (Fig. 4;
317 $F_{(1,41)}=19.78$, $P=0.00007$, $\eta_p^2=0.33$, main effect of housing, ANOVA), but in a sex-dependent
318 manner ($F_{(1,41)}=4.55$, $P=0.04$, $\eta_p^2=0.10$, housing X sex interaction, ANOVA). PASI increased the
319 amount of time male rats spent in the light zone of the light/dark box ($P=0.001$, Cohen's $d=2.39$,
320 Isolated males vs. Group-housed males, Tukey test), but did not alter this measure in females
321 ($P=0.23$, Isolated females vs. Group-housed females, Tukey test). Although Group-housed
322 females appeared to spend more time in the light zone than Group-housed males, this
323 difference was not significant after post-hoc correction ($P=0.12$, Tukey Test).

324

325 Peri-adolescent social isolation impacts the circadian, but not BNST/MeA, VP pathway
326 Representative vasopressin staining in the LHB and PVT is illustrated in figure 5. Males had a
327 greater density of VP-ir fibers in the LS and LHB compared to females (Fig. 6A&B; main effects
328 of sex, ANOVA, $F_{(1,29)}=55.38$, $P=0.00000003$, $\eta_p^2=0.66$ for the LS; $F_{(1,31)}= 61.73$,

329 $P=0.000000007$, $\eta_p^2=0.67$ for the Lhb). PASI, however did not alter VP-ir fiber density in either
330 brain area ($F_{(1,29)}=0.72$, $P=0.40$, for the LS, $F_{(1,31)}=1.75$, $P=0.20$, for the Lhb, main effects of
331 housing, ANOVA; $F_{(1,29)}=0.11$, $P=0.74$, for the LS, $F_{(1,31)}=1.12$, $P=0.30$, for the Lhb, housing X
332 sex interactions, ANOVA). For the PVT, females had a greater density of VP-ir fibers than
333 males (Fig. 6C; $F_{(1,31)}=15.11$, $P=0.0005$, $\eta_p^2=0.33$, main effect of sex, ANOVA). PASI increased
334 fiber density in the PVT ($F_{(1,31)}=5.8$, $P=0.02$, $\eta_p^2=0.16$, main effect of housing, ANOVA); the
335 interaction was not significant ($F_{(1,31)}=0.22$, $P=0.64$, ANOVA).

336

337 **Discussion**

338 The present study was the first to test whether social isolation of male and female rats during
339 the juvenile and adolescent periods has long-term consequences for social preference and
340 vasopressin neural circuitry that persist beyond the isolation period. We further assessed the
341 impact of PASI on anxiety-like behavior in 3 behavioral tests to test the hypothesis that deficits
342 in social preference, if present, would be accompanied by increased anxiety-like behavior.
343 Overall, we found that PASI decreased social preference, largely in males, but this effect was
344 not accompanied by increased anxiety-like behavior or large structural changes in vasopressin
345 pathways emanating from the BNST and MeA. Instead, PASI increased vasopressin fiber
346 density in the paraventricular nucleus of the thalamus in both sexes, a projection site of the
347 SCN.

348

349 PASI decreased social preference. Although the sex X housing interaction of the ANOVA fell
350 short of significance, the One-Sample t-Test suggested the effect was restricted to males:
351 Group-housed males, Group-housed females, and Isolated females exhibited a significant
352 preference for the social stimulus, whereas Isolated males did not. Hence, we conducted post-
353 hoc tests on the ANOVA as a second assessment of whether the significant main effect of

354 housing was due to effects in both sexes. As with the One-Sample t-Tests, Tukey post-hoc
355 tests indicated that the effect of PASI was only significant in males: Isolated males differed from
356 Group-housed males, whereas Isolated females did not differ from Group-housed females.
357 Collectively, these analyses suggest that the effects of PASI on social preference are more
358 robust in males than in females. Previous studies have reported deficits in other prosocial
359 behaviors after PASI, including decreased social approach and social contact of male rats (Hol
360 *et al.*, 1999; Van den Berg *et al.*, 1999; Van Den Berg *et al.*, 1999; Ferdman *et al.*, 2007;
361 Lukkes, Mokin, *et al.*, 2009; Lukkes, Vuong, *et al.*, 2009). The present finding suggests that
362 decreased preference for social stimuli may contribute to PASI-induced deficits in prosocial
363 behaviors of male rats.

364

365 In contrast to the present findings, Oliveira *et al.* (2019) did not detect an effect of isolation
366 housing on social preference of male rats. Other studies have also reported differing effects of
367 PASI and isolation housing on social behavior: e.g., isolation housing increases aggression of
368 male rats in the resident-intruder test (Tóth *et al.*, 2008; Toth *et al.*, 2011), whereas PASI does
369 not (Potegal & Einon, 1989). It is tempting to speculate that it is the social reintegration with
370 novel, previously isolated cage mates, rather than the period of isolation itself, that leads to
371 deficits in social preference after PASI. Alternatively, ongoing isolation at the time of social
372 preference testing may maintain the salience of conspecific stimuli, thereby preventing a
373 decrease in time spent investigating the stimulus animal during testing. For example, isolation-
374 housed rats may continue to approach and investigate the stimulus animal due to elevated
375 aggression. Testing during the inactive phase under white light also could have affected
376 performance in the social preference test of the present experiment; Oliveira *et al.* (2019) tested
377 animals in the dark phase under dim red light. White light can decrease investigation time in
378 social preference tests (Rein *et al.*, 2020). Importantly, rats in the present experiment spent a
379 significant proportion of time investigating both the social and non-social stimuli, indicating that

380 the presence of white light did not prevent exploratory behavior (mean novel object investigation
381 time across groups = 250-311 s; mean social investigation time across groups = 285-443 s; out
382 of a possible 600 s). Previous studies have conducted social preference tests in the dark phase
383 under dim red light (e.g., Oliveira *et al.*, 2019) and during the light phase under white light (e.g.,
384 Lukas *et al.*, 2011; Smith *et al.*, 2015). Several other methodological differences between the
385 two studies could also contribute to the divergent findings, including strain of rat tested (Wistar
386 versus Long Evans), behavioral testing history (prior resident-Intruder and elevated plus maze
387 testing versus no prior testing), habituation to the arena (30 s versus 20 min), and duration of
388 the social preference test (4 min versus 10 min).

389

390 The absence of a significant effect of PASI on social preference of females is largely consistent
391 with the limited number of post-weaning social isolation studies conducted to date. Isolation
392 housing does not impact the social preference of female rats (Oliveira *et al.*, 2019), and neither
393 PASI nor isolation housing alter prosocial behaviors of female rats in the social interaction test
394 (Ferdman *et al.*, 2007; Lukkes *et al.*, 2012). Hermes *et al.* (2011) found that isolation housing
395 coupled with early rearing decreases social interactions of female rats. Given the negative
396 findings discussed above, it seems likely that the social deficits were due to, or at least
397 contingent on, early weaning. Not all social behaviors of female rats are resilient to post-
398 weaning social isolation. Isolation housing disrupts social discrimination and social recognition
399 in female (and male) rats (Tanaka *et al.*, 2010; Oliveira *et al.*, 2019); whether similar effects are
400 seen after PASI is not known. Future studies using a variety of social behavior assays are
401 needed in order to fully understand the effects of isolation housing and PASI on female social
402 behavior and to further test the hypothesis of greater vulnerability in males.

403

404 Our second prediction was that PASI-induced deficits in social preference would be
405 accompanied by a general increase in anxiety-like behavior. Counter to our prediction, PASI

406 increased exploratory behavior of male rats in the light/dark box test and did not affect
407 performance on the open field and marble burying tests. These findings do not support the
408 hypothesis that PASI-induced social deficits are due to increased anxiety. Consistent with
409 previous PASI studies (Weintraub *et al.*, 2010; Lukkes *et al.*, 2012), we failed to detect an effect
410 of PASI on anxiety-like behavior of females on all 3 anxiety-like behavior tests employed. Most
411 studies using the isolation housing protocol also report limited effects on anxiety-like behavior of
412 females in the elevated plus maze (Weiss *et al.*, 2004; Jahng *et al.*, 2012; Butler *et al.*, 2014; but
413 see Chmelova *et al.*, 2019), but this may depend upon the behavioral test employed (Einon &
414 Morgan, 1977; Arakawa, 2007).

415

416 Inconsistent anxiety-like behavioral responses after post-weaning social isolation are common
417 in the literature, including across behavioral assays within individual studies (Weiss *et al.*, 2004;
418 McCool & Chappell, 2009; Skelly *et al.*, 2015). It is important to note that factors other than
419 anxiety can affect performance on these behavioral assays (Hascoët & Bourin, 1998; Prut &
420 Belzung, 2003; de Brouwer *et al.*, 2019). In the present experiment, PASI increased the time
421 males spent in the light zone of the light/dark box test, but did not alter performance in open
422 field or marble burying tests, raising the question as to whether PASI impacted anxiety or some
423 other internal drive/behavioral state that could affect performance on the light/dark box test.
424 Increased time in the light zone could be due to increased general locomotor activity (Hascoët &
425 Bourin, 1998). However, locomotor activity in the open field, as measured by distance travelled,
426 was not affected by PASI in the present experiment. Other studies also do not report increased
427 locomotor activity after PASI (Lukkes, Mokin, *et al.*, 2009; Lukkes, Vuong, *et al.*, 2009). The
428 light/dark box test is also impacted by rodents' natural drive to explore novelty (Bourin &
429 Hascoët, 2003). PASI increases contact time with novel objects in an open field (Einon &
430 Morgan, 1977; Einon & Potegal, 1991). Hence, increased time in the light zone of the light/dark
431 box test of isolated males could reflect increased drive to explore a novel illuminated

432 environment. However, Isolated males did not exhibit significantly greater investigation of the
433 novel stimulus cage during the social preference test (mean \pm s.e.m. = 264.7 \pm 50.6 and 296.5 \pm
434 52.2 seconds for Group-housed and Isolated males, respectively; $P=0.96$, Tukey test). We did
435 not set out to test the hypothesis that PASI impacts novelty seeking. Hence, future studies are
436 required before definitive conclusions can be drawn.

437

438 Caution is warranted in the interpretation of the marble burying and light/dark box findings of the
439 present experiment. Sample sizes of Group-housed rats, particularly those of Group-housed
440 males, were markedly reduced, because preliminary analyses indicated that behavioral
441 performance on these tests differed between animals housed 2/cage and those housed 3/cage
442 (see Statistical Analyses section in the Methods). Hence, group-housing densities could not be
443 analyzed as a single group in the marble burying and light/dark box tests. While this was a
444 limitation of the present study, it raises the interesting possibility that the number of *group-*
445 *housed* animals per cage can impact anxiety-like behavior. This could underlie some of the
446 conflicting findings in the post-weaning social isolation literature, in which the number of animals
447 housed per cage in the group-housed control often differs. Future studies are needed to directly
448 test this hypothesis.

449

450 We failed to find support for our third prediction that PASI would alter VP-ir fiber density in the
451 projections of the BNST/MeA VP pathway. As reported previously (De Vries *et al.*, 1981; Rood
452 *et al.*, 2013), males had greater VP-ir fiber density than females in both the LS and LHb. PASI,
453 however, did not alter VP-ir fiber density in either sex. Immunohistochemistry can only detect
454 large structural changes. Hence, it remains possible that PASI impacts the microstructure or
455 functioning of this pathway. Isolation rearing also did not alter V1aR binding in the LS but did
456 reverse the sex difference in V1aR binding in the BNST (Oliveira *et al.*, 2019).

457

458 Other VP pathways are altered by post-weaning social isolation and could contribute to the
459 behavioral consequences of this early life stressor. Parvocellular VP cells in the paraventricular
460 nucleus of the hypothalamus (PVN) regulate neuroendocrine and autonomic stress responses
461 (Swanson & Sawchenko, 1980; Palkovits, 1999; Aguilera *et al.*, 2008). Hence, changes in
462 these cells would likely impact anxiety-like behavior and perhaps social behavior. Isolation
463 housing decreases the number of VP-ir cells in the parvocellular division of the PVN in male, but
464 not female rats (Tanaka *et al.*, 2010), whereas PASI increases VP mRNA in the parvocellular
465 division of the PVN of female, but not male rats (Weintraub *et al.*, 2010). Isolation housing also
466 decreases V1aR binding in the lateral hypothalamus and dentate gyrus of male and female rats
467 (Oliveira *et al.*, 2019). At present, however, the functional consequences of these effects are
468 difficult to discern.

469
470 PASI increased VP-ir fiber density in the PVT of male and female rats. These fibers originate
471 from the suprachiasmatic nucleus of the hypothalamus (SCN) and are thought to influence
472 circadian rhythms (Hoorneman & Buijs, 1982; De Vries & Miller, 1998; Rood *et al.*, 2013).

473 Behavioral rhythms change during adolescence in several mammalian species, suggesting that
474 the development of the circadian system continues across this life stage (Hagenauer & Lee,
475 2012). In rats, both behavioral (e.g., circadian period, phase, and chronotype) and anatomical
476 (e.g., size of nucleus and nucleoli of cells in the SCN) changes across adolescence have been
477 reported (Morishita *et al.*, 1974, 1978; Anderson, 1981; Hagenauer *et al.*, 2011). The present
478 findings demonstrate that PASI disrupts the development of at least one circadian pathway and
479 perhaps circadian regulation of behavior and/or physiology.

480
481 The present study uncovered a previously unknown sex difference – females had greater VP-ir
482 fiber density in the PVT than males. To our knowledge, only one study has quantified VP fibers
483 in the PVT of both sexes, but this study did not detect a sex difference in mice (Rood *et al.*,

484 2013). Hence, the sex difference in VP PVT may be species-dependent. Greater VP fiber
485 density in females has been reported for other circadian outputs, including the periventricular,
486 retrochiasmatic, and dorsomedial nuclei of the hypothalamus (Rood *et al.*, 2013). VP
487 projections to the anteroventral periventricular nucleus of the hypothalamus regulate the
488 circadian timing of the LH surge, and consequently ovulation, in females (Williams *et al.*, 2011;
489 Smarr *et al.*, 2013; Bittman, 2019). The functional significance of sex differences in other VP
490 outputs of the SCN is not known. Nevertheless, a role for VP in sex differences in behavioral
491 timing is consistent with a recent finding that VP deficiency impacts circadian locomotor rhythms
492 differently in male and female mice (Rohr *et al.*, 2021).

493

494 The present study found sex differences in the long-term effects of PASI on the social and
495 anxiety-like behavior of rats, with males being more robustly affected than females. The present
496 findings do not support the hypothesis that increased anxiety-like behavior contributes to social
497 deficits seen after PASI, although 2 of the 3 anxiety-like behavior assays were underpowered in
498 the present study. Contradictory outcomes across anxiety-like behavior assays in this study
499 and in the literature suggest that other affective states should be considered. PASI likely
500 impacts multiple facets of affective behavior, which could explain conflicting findings across
501 behavioral tests that vary in their sensitivity to different affective behaviors, e.g., anxiety-like
502 behavior versus exploration/novelty seeking. Nevertheless, behavioral findings of the present
503 experiment are consistent with the hypothesis that the social, and potentially affective,
504 development of males is more vulnerable to the effects of juvenile and adolescent social
505 isolation. PASI effects on the macrostructure (i.e., fiber density) of VP pathways were limited to
506 the circadian output pathway to the PVT, raising the possibility that PASI impacts circadian
507 regulation of behavior and/or physiology. Future studies into this possibility should include both
508 males and females as several VP output pathways of the SCN are sexually dimorphic, with
509 greater fiber density in females. The present study adds to this list with the discovery of a sex

510 difference in VP fiber density in the PVT. Collectively, these findings highlight the importance of
511 considering sex as a biological variable in post-weaning social isolation studies and the far-
512 reaching consequences of juvenile and adolescent social stress.

513

514 **Conflict of Interest Statement**

515 The authors declare no conflicts of interest.

516

517 **Author Contributions**

518 MJP and DMW conceived of and designed the experiments. BLK, RFK, TSLS, and MJP
519 conducted experiments and analyzed the data. MJP wrote the first draft of the manuscript. All
520 authors reviewed and edited the manuscript.

521

522 **Data Accessibility Statement**

523 The datasets generated during and/or analyzed during the current study are available from the
524 corresponding author (MJP) on request.

525

526 **Abbreviations**

527 BNST – bed nucleus of the stria terminalis

528 ir – immunoreactive

529 LHb – lateral habenula

530 LS – lateral septum

531 MeA – medial amygdala

532 PASI – peri-adolescent social isolation

533 PBS – phosphate-buffered saline

534 PVN – paraventricular nucleus of the hypothalamus

535 PVT – paraventricular nucleus of the thalamus

536 SCN – suprachiasmatic nucleus of the hypothalamus

537 V1aR – vasopressin 1a receptor

538 VP – vasopressin

539 ZT – zeitgeber time

540

541 **References**

542 Aguilera, G., Subburaju, S., Young, S., & Chen, J. (2008) The parvocellular vasopressinergic
543 system and responsiveness of the hypothalamic pituitary adrenal axis during
544 chronic stress. *Prog. Brain Res.*, **170**, 29–39.

545 Albers, H.E. (2015) Species, sex and individual differences in the vasotocin/vasopressin
546 system: relationship to neurochemical signaling in the social behavior neural
547 network. *Front. Neuroendocrinol.*, **36**, 49–71.

548 Anderson, C.H. (1981) Nucleolus: changes at puberty in neurons of the suprachiasmatic
549 nucleus and the preoptic area. *Exp. Neurol.*, **74**, 780–786.

550 Arakawa, H. (2007) Ontogenetic interaction between social relationships and defensive
551 burying behavior in the rat. *Physiol. Behav.*, **90**, 751–759.

552 Avenevoli, S., Swendsen, J., He, J.-P., Burstein, M., & Merikangas, K.R. (2015) Major
553 depression in the national comorbidity survey-adolescent supplement: prevalence,
554 correlates, and treatment. *J. Am. Acad. Child Adolesc. Psychiatry*, **54**, 37-44.e2.

555 Beiderbeck, D.I., Neumann, I.D., & Veenema, A.H. (2007) Differences in intermale
556 aggression are accompanied by opposite vasopressin release patterns within the
557 septum in rats bred for low and high anxiety. *Eur. J. Neurosci.*, **26**, 3597–3605.

558 Bittman, E.L. (2019) Circadian function in multiple cell types is necessary for proper timing
559 of the preovulatory LH surge. *J. Biol. Rhythms*, **34**, 622–633.

560 Bourin, M. & Hascoët, M. (2003) The mouse light/dark box test. *Eur. J. Pharmacol.*, **463**, 55–
561 65.

562 Bredewold, R., Smith, C.J.W., Dumais, K.M., & Veenema, A.H. (2014) Sex-specific modulation
563 of juvenile social play behavior by vasopressin and oxytocin depends on social
564 context. *Front. Behav. Neurosci.*, **8**, 216.

565 Bredewold, R. & Veenema, A.H. (2018) Sex differences in the regulation of social and
566 anxiety-related behaviors: insights from vasopressin and oxytocin brain systems.
567 *Curr. Opin. Neurobiol.*, **49**, 132–140.

568 Burke, A.R., McCormick, C.M., Pellis, S.M., & Lukkes, J.L. (2017) Impact of adolescent social
569 experiences on behavior and neural circuits implicated in mental illnesses. *Neurosci.
570 Biobehav. Rev.*, **76**, 280–300.

571 Butler, T.R., Carter, E., & Weiner, J.L. (2014) Adolescent social isolation does not lead to
572 persistent increases in anxiety- like behavior or ethanol intake in female long-evans
573 rats. *Alcohol. Clin. Exp. Res.*, **38**, 2199–2207.

574 Caldwell, H.K. & Albers, H.E. (2016) Oxytocin, Vasopressin, and the Motivational Forces that
575 Drive Social Behaviors. *Curr. Top. Behav. Neurosci.*, **27**, 51–103.

576 Childhood Welfare Information Gateway (2019) Long-Term Consequences of Child Abuse
577 and Neglect. U.S. Department of Health and Human Services, Administration for
578 Children and Families, Children's Bureau, Washington, D.C., p. 9.

579 Chmelova, M., Balagova, L., Marko, M., Vrankova, S., Cebova, M., Jezova, D., Riecansky, I., &
580 Hlavacova, N. (2019) Behavioral alterations induced by post-weaning isolation
581 rearing of rats are accompanied by reduced VGF/BDNF/TrkB signaling in the
582 hippocampus. *Neurochem. Int.*, **129**, 104473.

583 de Brouwer, G., Fick, A., Harvey, B.H., & Wolmarans, D.W. (2019) A critical inquiry into
584 marble-burying as a preclinical screening paradigm of relevance for anxiety and
585 obsessive-compulsive disorder: Mapping the way forward. *Cogn. Affect. Behav.*
586 *Neurosci.*, **19**, 1-39.

587 De Vries, G.J., Buijs, R.M., & Swaab, D.F. (1981) Ontogeny of the vasopressinergic neurons of
588 the suprachiasmatic nucleus and their extrahypothalamic projections in the rat
589 brain--presence of a sex difference in the lateral septum. *Brain Res.*, **218**, 67-78.

590 De Vries, G.J., Fields, C.T., Peters, N.V., Whylings, J., & Paul, M.J. (2014) Sensitive periods for
591 hormonal programming of the brain. *Curr. Top. Behav. Neurosci.*, **16**, 79-108.

592 De Vries, G.J. & Miller, M.A. (1998) Anatomy and function of extrahypothalamic vasopressin
593 systems in the brain. *Prog. Brain Res.*, **119**, 3-20.

594 De Vries, G.J. & Panzica, G.C. (2006) Sexual differentiation of central vasopressin and
595 vasotocin systems in vertebrates: different mechanisms, similar endpoints.
596 *Neuroscience*, **138**, 947-955.

597 Eiland, L. & Romeo, R.D. (2013) Stress and the developing adolescent brain. *Neuroscience*,
598 **249**, 162-171.

599 Einon, D. & Potegal, M. (1991) Enhanced defense in adult rats deprived of playfighting
600 experience as juveniles. *Aggress. Behav.*, **17**, 27-40.

601 Einon, D.F. & Morgan, M.J. (1977) A critical period for social isolation in the rat. *Dev.*
602 *Psychobiol.*, **10**, 123-132.

603 Espejo, E.P., Hammen, C.L., Connolly, N.P., Brennan, P.A., Najman, J.M., & Bor, W. (2007)
604 Stress sensitization and adolescent depressive severity as a function of childhood
605 adversity: a link to anxiety disorders. *J. Abnorm. Child Psychol.*, **35**, 287-299.

606 Ferdman, N., Murmu, R.P., Bock, J., Braun, K., & Leshem, M. (2007) Weaning age, social
607 isolation, and gender, interact to determine adult explorative and social behavior,
608 and dendritic and spine morphology in prefrontal cortex of rats. *Behav. Brain Res.*,
609 **180**, 174-182.

610 Fone, K.C.F. & Porkess, M.V. (2008) Behavioural and neurochemical effects of post-weaning
611 social isolation in rodents-relevance to developmental neuropsychiatric disorders.
612 *Neurosci. Biobehav. Rev.*, **32**, 1087-1102.

613 Gogos, A., Ney, L.J., Seymour, N., Van Rheenen, T.E., & Felmingham, K.L. (2019) Sex
614 differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder:
615 Are gonadal hormones the link? *Br. J. Pharmacol.*, **176**, 4119-4135.

616 Gutman, D.A. & Nemeroff, C.B. (2003) Persistent central nervous system effects of an
617 adverse early environment: clinical and preclinical studies. *Physiol. Behav.*, **79**, 471-
618 478.

619 Hagenauer, M.H., King, A.F., Possidente, B., McGinnis, M.Y., Lumia, A.R., Peckham, E.M., &
620 Lee, T.M. (2011) Changes in circadian rhythms during puberty in *Rattus norvegicus*:
621 developmental time course and gonadal dependency. *Horm. Behav.*, **60**, 46-57.

622 Hagenauer, M.H. & Lee, T.M. (2012) The neuroendocrine control of the circadian system:
623 adolescent chronotype. *Front. Neuroendocrinol.*, **33**, 211–229.

624 Hankin, B.L., Abramson, L.Y., Moffitt, T.E., Silva, P.A., McGee, R., & Angell, K.E. (1998)
625 Development of depression from preadolescence to young adulthood: emerging
626 gender differences in a 10-year longitudinal study. *J. Abnorm. Psychol.*, **107**, 128–
627 140.

628 Hascoët, M. & Bourin, M. (1998) A new approach to the light/dark test procedure in mice.
629 *Pharmacol. Biochem. Behav.*, **60**, 645–653.

630 Heim, C., Newport, D.J., Mletzko, T., Miller, A.H., & Nemeroff, C.B. (2008) The link between
631 childhood trauma and depression: insights from HPA axis studies in humans.
632 *Psychoneuroendocrinology*, **33**, 693–710.

633 Hermes, G., Li, N., Duman, C., & Duman, R. (2011) Post-weaning chronic social isolation
634 produces profound behavioral dysregulation with decreases in prefrontal cortex
635 synaptic-associated protein expression in female rats. *Physiol. Behav.*, **104**, 354–359.

636 Hol, T., Van den Berg, C.L., Van Ree, J.M., & Spruijt, B.M. (1999) Isolation during the play
637 period in infancy decreases adult social interactions in rats. *Behav. Brain Res.*, **100**,
638 91–97.

639 Hoorneman, E.M. & Buijs, R.M. (1982) Vasopressin fiber pathways in the rat brain following
640 suprachiasmatic nucleus lesioning. *Brain Res.*, **243**, 235–241.

641 Jahng, J.W., Yoo, S.B., Ryu, V., & Lee, J.-H. (2012) Hyperphagia and depression-like behavior
642 by adolescence social isolation in female rats. *Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev.*
643 *Neurosci.*, **30**, 47–53.

644 Landgraf, R., Gerstberger, R., Montkowski, A., Probst, J.C., Wotjak, C.T., Holsboer, F., &
645 Engelmann, M. (1995) V1 vasopressin receptor antisense oligodeoxynucleotide into
646 septum reduces vasopressin binding, social discrimination abilities, and anxiety-
647 related behavior in rats. *J. Neurosci. Off. J. Soc. Neurosci.*, **15**, 4250–4258.

648 Liebsch, G., Wotjak, C.T., Landgraf, R., & Engelmann, M. (1996) Septal vasopressin
649 modulates anxiety-related behaviour in rats. *Neurosci. Lett.*, **217**, 101–104.

650 Lukas, M., Toth, I., Reber, S.O., Slattery, D.A., Veenema, A.H., & Neumann, I.D. (2011) The
651 neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance
652 in rats and mice. *Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol.*,
653 **36**, 2159–2168.

654 Lukkes, J., Vuong, S., Scholl, J., Oliver, H., & Forster, G. (2009) Corticotropin-releasing factor
655 receptor antagonism within the dorsal raphe nucleus reduces social anxiety-like
656 behavior after early-life social isolation. *J. Neurosci. Off. J. Soc. Neurosci.*, **29**, 9955–
657 9960.

658 Lukkes, J.L., Engelmann, G.H., Zelin, N.S., Hale, M.W., & Lowry, C.A. (2012) Post-weaning
659 social isolation of female rats, anxiety-related behavior, and serotonergic systems.
660 *Brain Res.*, **1443**, 1–17.

661 Lukkes, J.L., Mokin, M.V., Scholl, J.L., & Forster, G.L. (2009) Adult rats exposed to early-life
662 social isolation exhibit increased anxiety and conditioned fear behavior, and altered
663 hormonal stress responses. *Horm. Behav.*, **55**, 248–256.

664 Lukkes, J.L., Watt, M.J., Lowry, C.A., & Forster, G.L. (2009) Consequences of post-weaning
665 social isolation on anxiety behavior and related neural circuits in rodents. *Front.*
666 *Behav. Neurosci.*, **3**, 18.

667 McCool, B.A. & Chappell, A.M. (2009) Early social isolation in male Long-Evans rats alters
668 both appetitive and consummatory behaviors expressed during operant ethanol
669 self-administration. *Alcohol. Clin. Exp. Res.*, **33**, 273–282.

670 McFarlane, A., Clark, C.R., Bryant, R.A., Williams, L.M., Niaura, R., Paul, R.H., Hitsman, B.L.,
671 Stroud, L., Alexander, D.M., & Gordon, E. (2005) The impact of early life stress on
672 psychophysiological, personality and behavioral measures in 740 non-clinical
673 subjects. *J. Integr. Neurosci.*, **4**, 27–40.

674 Merikangas, K.R., He, J.-P., Burstein, M., Swanson, S.A., Avenevoli, S., Cui, L., Benjet, C.,
675 Georgiades, K., & Swendsen, J. (2010) Lifetime prevalence of mental disorders in U.S.
676 adolescents: results from the National Comorbidity Survey Replication--Adolescent
677 Supplement (NCS-A). *J. Am. Acad. Child Adolesc. Psychiatry*, **49**, 980–989.

678 Morishita, H., Kawamoto, M., Masuda, Y., Higuchi, K., & Tomioka, M. (1974) Quantitative
679 histological changes in the hypothalamic nuclei in the prepuberal, puberal and
680 postpuberal female rat. *Brain Res.*, **76**, 41–47.

681 Morishita, H., Nagamachi, N., Kawamoto, M., Tomioka, M., Higuchi, K., Hashimoto, T.,
682 Tanaka, T., Kuroiwa, S., Nakago, K., Mitani, H., Miyauchi, Y., Ozasa, T., & Adachi, H.
683 (1978) The effect of prepuberal castration on the development of the nuclear sizes
684 of the neurons in the hypothalamic nuclei of female rats. *Brain Res.*, **146**, 388–391.

685 Oliveira, V.E. de M., Neumann, I.D., & de Jong, T.R. (2019) Post-weaning social isolation
686 exacerbates aggression in both sexes and affects the vasopressin and oxytocin
687 system in a sex-specific manner. *Neuropharmacology*, **156**, 107504.

688 Palkovits, M. (1999) Interconnections between the neuroendocrine hypothalamus and the
689 central autonomic system. Geoffrey Harris Memorial Lecture, Kitakyushu, Japan,
690 October 1998. *Front. Neuroendocrinol.*, **20**, 270–295.

691 Patterson, T.L., Smith, L.W., Smith, T.L., Yager, J., & Grant, I. (1992) Symptoms of illness in
692 late adulthood are related to childhood social deprivation and misfortune in men
693 but not in women. *J. Behav. Med.*, **15**, 113–125.

694 Potegal, M. & Einon, D. (1989) Aggressive behaviors in adult rats deprived of playfighting
695 experience as juveniles. *Dev. Psychobiol.*, **22**, 159–172.

696 Prut, L. & Belzung, C. (2003) The open field as a paradigm to measure the effects of drugs
697 on anxiety-like behaviors: a review. *Eur. J. Pharmacol.*, **463**, 3–33.

698 Rein, B., Ma, K., & Yan, Z. (2020) A standardized social preference protocol for measuring
699 social deficits in mouse models of autism. *Nat. Protoc.*, **15**, 3464–3477.

700 Rigney, N., Whylings, J., Mieda, M., de Vries, G., & Petrusis, A. (2019) Sexually dimorphic
701 vasopressin cells modulate social investigation and communication in sex-specific
702 ways. *eNeuro*, **6**.

703 Rohr, K.E., Telega, A., Savaglio, A., & Evans, J.A. (2021) Vasopressin regulates daily rhythms
704 and circadian clock circuits in a manner influenced by sex. *Horm. Behav.*, **127**,
705 104888.

706 Rood, B.D., Stott, R.T., You, S., Smith, C.J.W., Woodbury, M.E., & De Vries, G.J. (2013) Site of
707 origin of and sex differences in the vasopressin innervation of the mouse (*Mus*
708 *musculus*) brain. *J. Comp. Neurol.*, **521**, 2321–2358.

709 Skelly, M.J., Chappell, A.E., Carter, E., & Weiner, J.L. (2015) Adolescent social isolation
710 increases anxiety-like behavior and ethanol intake and impairs fear extinction in
711 adulthood: Possible role of disrupted noradrenergic signaling. *Neuropharmacology*,
712 **97**, 149–159.

713 Smarr, B.L., Gile, J.J., & de la Iglesia, H.O. (2013) Oestrogen-independent circadian clock
714 gene expression in the anteroventral periventricular nucleus in female rats: possible
715 role as an integrator for circadian and ovarian signals timing the luteinising
716 hormone surge. *J. Neuroendocrinol.*, **25**, 1273–1279.

717 Smith, C.J.W., Wilkins, K.B., Mogavero, J.N., & Veenema, A.H. (2015) Social Novelty
718 Investigation in the Juvenile Rat: Modulation by the μ -Opioid System. *J.*
719 *Neuroendocrinol.*, **27**, 752–764.

720 Swanson, L.W. & Sawchenko, P.E. (1980) Paraventricular nucleus: a site for the integration
721 of neuroendocrine and autonomic mechanisms. *Neuroendocrinology*, **31**, 410–417.

722 Szot, P. & Dorsa, D.M. (1993) Differential timing and sexual dimorphism in the expression
723 of the vasopressin gene in the developing rat brain. *Brain Res. Dev. Brain Res.*, **73**,
724 177–183.

725 Tanaka, K., Osako, Y., & Yuri, K. (2010) Juvenile social experience regulates central
726 neuropeptides relevant to emotional and social behaviors. *Neuroscience*, **166**, 1036–
727 1042.

728 Thapar, A., Collishaw, S., Pine, D.S., & Thapar, A.K. (2012) Depression in adolescence. *Lancet*
729 *Lond. Engl.*, **379**, 1056–1067.

730 Toth, I. & Neumann, I.D. (2013) Animal models of social avoidance and social fear. *Cell*
731 *Tissue Res.*, **354**, 107–118.

732 Tóth, M., Halász, J., Mikics, E., Barsy, B., & Haller, J. (2008) Early social deprivation induces
733 disturbed social communication and violent aggression in adulthood. *Behav.*
734 *Neurosci.*, **122**, 849–854.

735 Toth, M., Mikics, E., Tulogdi, A., Aliczki, M., & Haller, J. (2011) Post-weaning social isolation
736 induces abnormal forms of aggression in conjunction with increased glucocorticoid
737 and autonomic stress responses. *Horm. Behav.*, **60**, 28–36.

738 Van den Berg, C.L., Hol, T., Van Ree, J.M., Spruijt, B.M., Everts, H., & Koolhaas, J.M. (1999)
739 Play is indispensable for an adequate development of coping with social challenges
740 in the rat. *Dev. Psychobiol.*, **34**, 129–138.

741 Van Den Berg, C.L., Van Ree, J.M., & Spruijt, B.M. (1999) Sequential analysis of juvenile
742 isolation-induced decreased social behavior in the adult rat. *Physiol. Behav.*, **67**,
743 483–488.

744 Veenema, A.H., Bredewold, R., & De Vries, G.J. (2012) Vasopressin regulates social
745 recognition in juvenile and adult rats of both sexes, but in sex- and age-specific
746 ways. *Horm. Behav.*, **61**, 50–56.

747 Veenema, A.H., Bredewold, R., & De Vries, G.J. (2013) Sex-specific modulation of juvenile
748 social play by vasopressin. *Psychoneuroendocrinology*, **38**, 2554–2561.

749 Walker, D.M., Bell, M.R., Flores, C., Gulley, J.M., Willing, J., & Paul, M.J. (2017) Adolescence
750 and reward: making sense of neural and behavioral changes amid the chaos. *J.*
751 *Neurosci. Off. J. Soc. Neurosci.*, **37**, 10855–10866.

752 Walker, D.M., Cunningham, A.M., Gregory, J.K., & Nestler, E.J. (2019) Long-Term Behavioral
753 Effects of Post-weaning Social Isolation in Males and Females. *Front. Behav.*
754 *Neurosci.*, **13**, 66.

755 Weintraub, A., Singaravelu, J., & Bhatnagar, S. (2010) Enduring and sex-specific effects of
756 adolescent social isolation in rats on adult stress reactivity. *Brain Res.*, **1343**, 83–92.

757 Weiss, I.C., Pryce, C.R., Jongen-Rêlo, A.L., Nanz-Bahr, N.I., & Feldon, J. (2004) Effect of social
758 isolation on stress-related behavioural and neuroendocrine state in the rat. *Behav.*
759 *Brain Res.*, **152**, 279–295.

760 Whylings, J., Rigney, N., Peters, N.V., de Vries, G.J., & Petrusis, A. (2020) Sexually dimorphic
761 role of BNST vasopressin cells in sickness and social behavior in male and female
762 mice. *Brain. Behav. Immun.*, **83**, 68–77.

763 Williams, W.P., Jarjisian, S.G., Mikkelsen, J.D., & Kriegsfeld, L.J. (2011) Circadian control of
764 kisspeptin and a gated GnRH response mediate the preovulatory luteinizing
765 hormone surge. *Endocrinology*, **152**, 595–606.

766 Wittchen, H.U., Nelson, C.B., & Lachner, G. (1998) Prevalence of mental disorders and
767 psychosocial impairments in adolescents and young adults. *Psychol. Med.*, **28**, 109–
768 126.

769 Wright, I.K., Upton, N., & Marsden, C.A. (1991) Resocialisation of isolation-reared rats does
770 not alter their anxiogenic profile on the elevated X-maze model of anxiety. *Physiol.*
771 *Behav.*, **50**, 1129–1132.

772

773 **Figure Legends**

774 Figure 1. Experimental Timeline. Abbreviations: OF/SP = combined open field / social
775 preference test; MB = marble burying test; LDB = light/dark box test; Sac = sacrifice.

776

777 Figure 2. Peri-adolescent social isolation decreases social preference, but not locomotor activity
778 of male rats. Performance on the social preference test (A) and open field test (B,C) of male
779 and female rats group-housed or isolated from P21-P42 and tested between P70-71. (A) Mean
780 (\pm s.e.) social preference score during the social preference test. (B) Mean (\pm s.e.) time spent in
781 the center zone and (C) mean (\pm s.e.) distance travelled during an open field test. *Indicates
782 significant difference between Group-housed and Isolated male rats ($P<0.05$, Tukey test).
783 Females spent more time in the center and travelled a greater distance than males in the open
784 field test ($P<0.05$, main effect of sex, ANOVA). Sample size indicated within bars.

785

786 Figure 3. Peri-adolescent social isolation does not alter anxiety-like behavior in the marble
787 burying test. Mean (\pm s.e.) number of marbles buried by male and female rats, group-housed or
788 isolated from P21-P42 and tested between P72-73. Sample size indicated within bars.

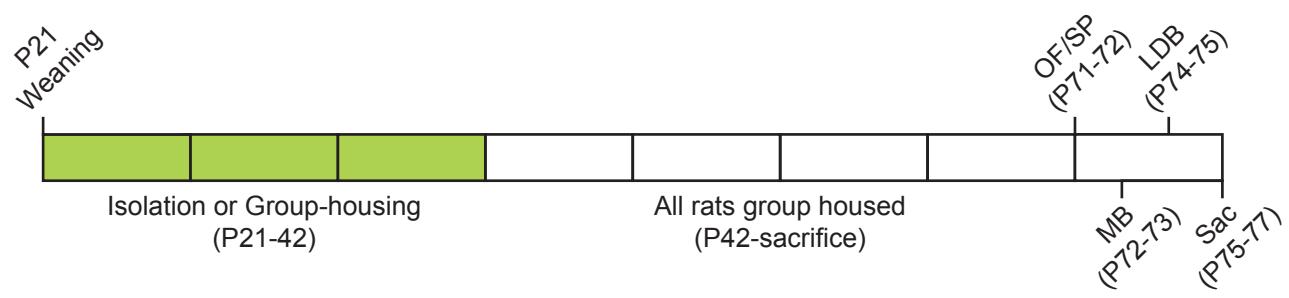
789

790 Figure 4. Peri-adolescent social isolation decreases anxiety-like behavior of male rats in the
791 light/dark box test. Mean (\pm s.e.) time spent in the light zone of the light/dark box test of male
792 and female rats, group-housed or isolated from P21-P42 and tested between P74-75.

793 *Indicates significant difference between Group-housed and Isolated male rats ($P<0.05$, Tukey
794 test). Sample size indicated within bars.

795

796 Figure 5. Vasopressin immunohistochemistry. Representative vasopressin staining in the lateral
797 habenula (LHb) and paraventricular nucleus of the thalamus (PVT) in a Group-housed female
798 (A), Group-housed male (B), Isolated female (C), and Isolated male (D).


799

800 Figure 6. Peri-adolescent social isolation increases vasopressin fiber density in the
801 paraventriulcar nucleus of the thalamus. Mean (\pm s.e.) integrated density of vasopressin fibers
802 in the lateral septum (A), lateral habenula (B), and paraventricular nucleus of the thalamus (C)
803 of male and female rats, group-housed or isolated from P21-P42 and sacrificed between P75-
804 77. *Indicates significant main effect of housing condition ($P<0.05$, ANOVA). Main effect of sex
805 was also significant for all brain areas ($P<0.05$, ANOVA). Sample size indicated within bars.

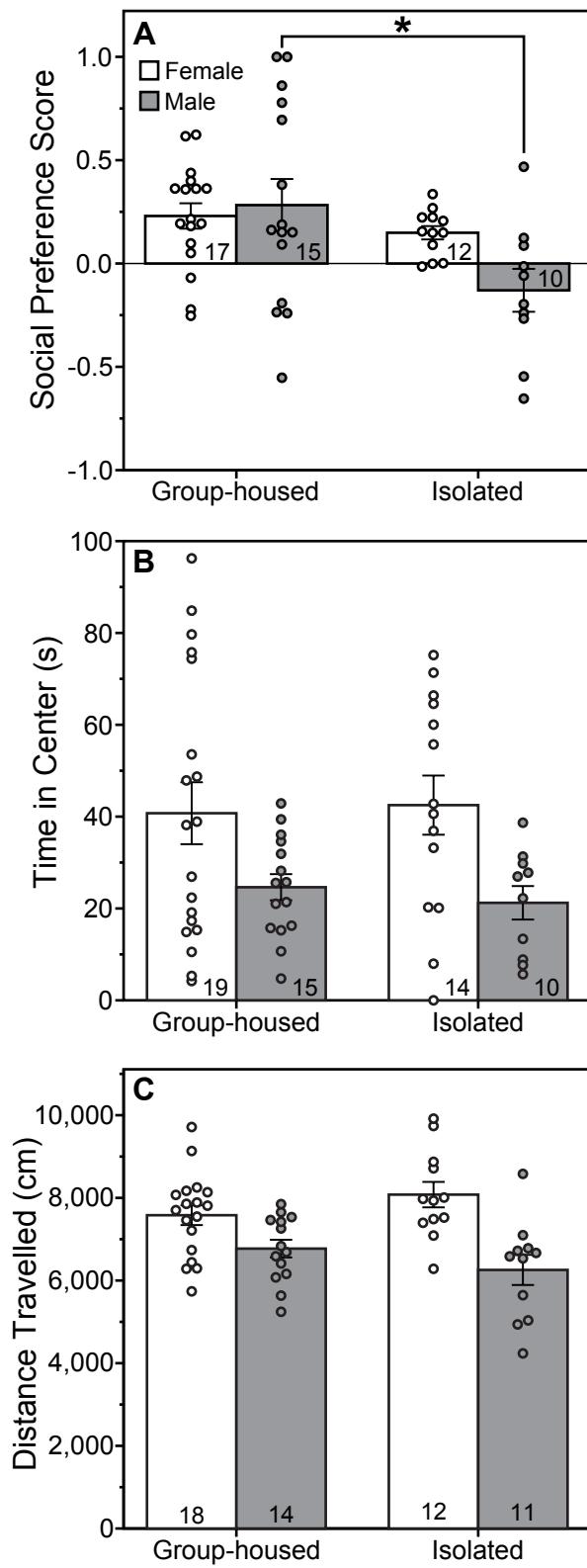
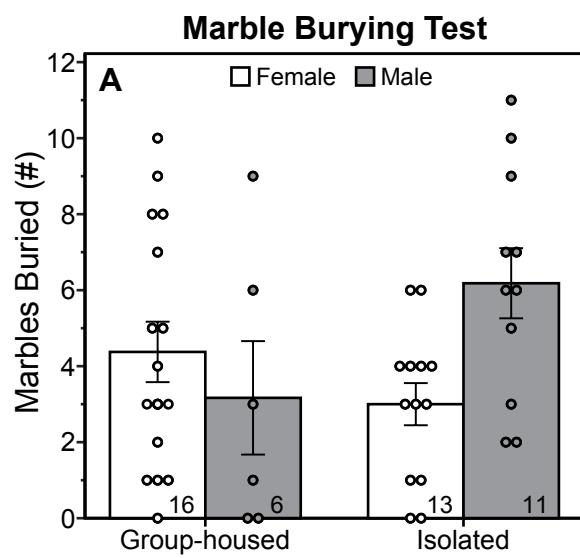
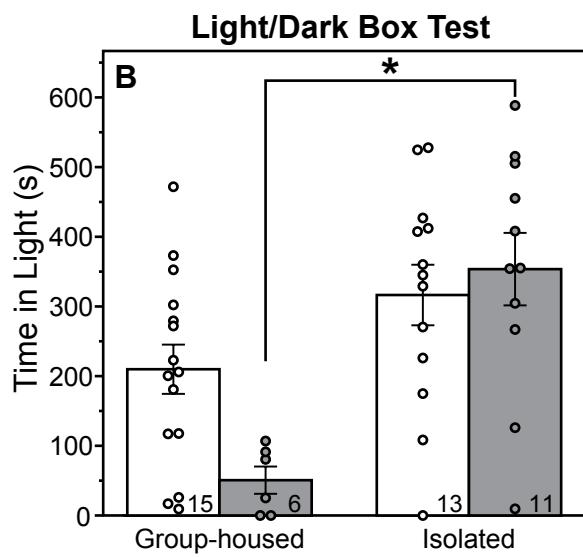
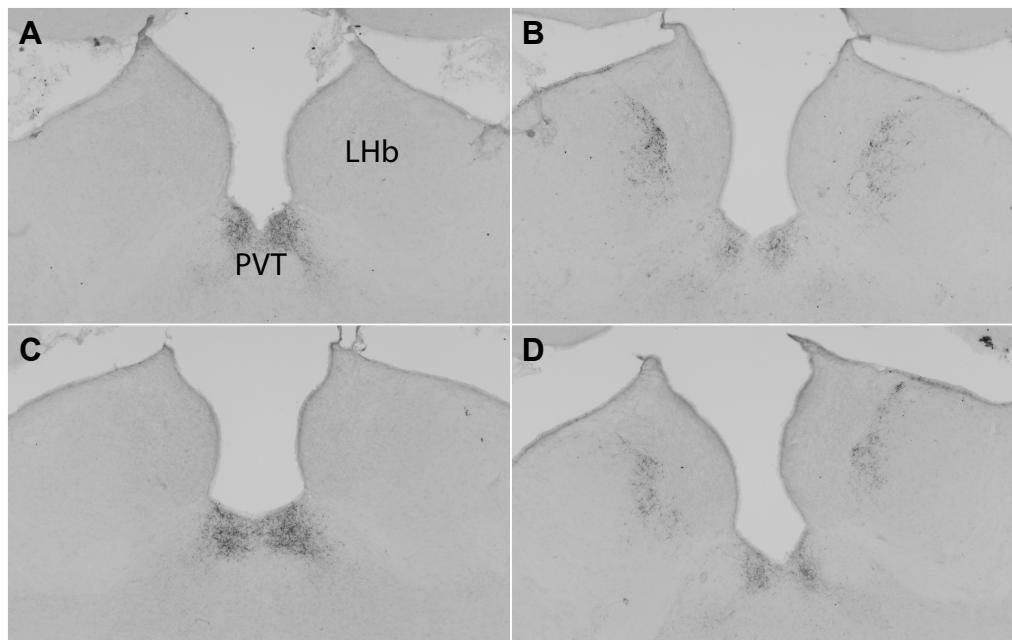

806

Table 1. Number of outliers within each group.


Measure	Group-housed Females	Group-housed Males	Isolated Females	Isolated Males
Social Preference Score	2	0	2	1
OF Time in Center	0	0	0	1
OF Distance Travelled	1	1	2	0
MB Marbles Buried	0	0	1	0
LDB Time in Light	0	0	0	0
AVP LS	0	1	0	0
AVP LHb	0	0	0	1
AVP PVT	0	1	0	0


Figure 1


Figure 2

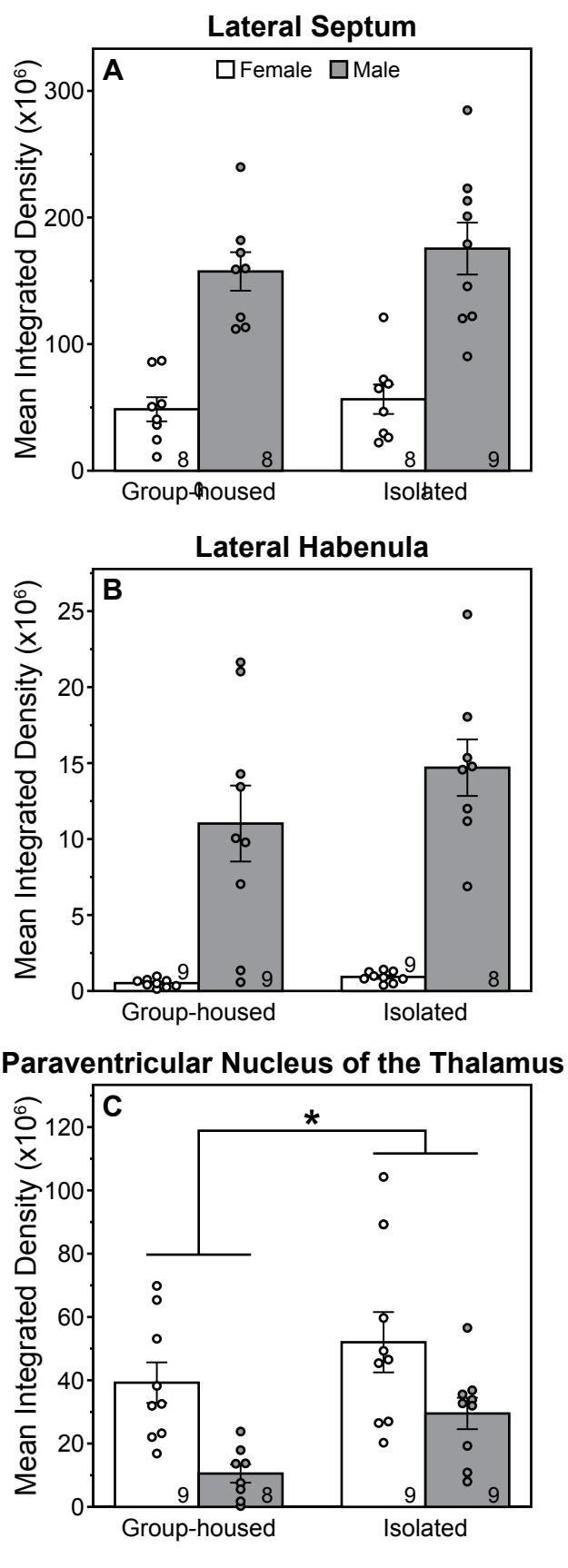

Figure 3

Figure 4

Figure 5

Figure 6