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To Jim Yorke, on the occasion of his 80th birthday

While the forward trajectory of a point in a discrete dynamical system is always unique, in
general, a point can have infinitely many backward trajectories. The union of the limit points of
all backward trajectories through x was called by Hero the “special a-limit” (sa-limit for short)
of z. In this article, we show that there is a hierarchy of sa-limits of points under iterations
of a S-unimodal map: the size of the sa-limit of a point increases monotonically as the point
gets closer and closer to the attractor. The sa-limit of any point of the attractor is the whole
nonwandering set. This hierarchy reflects the structure of the graph of a S-unimodal map recently
introduced jointly by Jim Yorke and the present author.
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1. Introduction

Our interest in sa-limits comes from their relation
to the edges of the graph of a dynamical system,
that we studied in a recent joint work with Yorke

De Leo & Yorke, [2021a] in case of S-unimodal
ma%s. What we ultimately show in [De Leo & Yorkd,

| is that, in the one-dimensional real case,
there is a hierarchy among repellors so that points
arbitrarily close to a given repellor have trajectories
that asymptote to all repellors below him in this
hierarchy and to no other repellor. In [De Leo &
Yorke, |2Q2E] we present numerical evidence that
this phenomenon is common also in multidimen-
sional real discrete dynamical systems.

Due to this hierarchy, backward limits are much
more complicated than in the one-dimensional com-
plex case, where there is, instead, a unique repellor,
the Julia set, and this repellor is both backward and
forward invariant. We believe that this is the main
reason why the standard definition of a-limit was
never questioned by the discrete complex dynam-
ics community. In this article, we argue that the

concept of sa-limit is a more suitable analogue of
w-limit and use our results in [De Leo & Yorkd,
] to find the sa-limit of points of the interval
under a S-unimodal map.

The idea of encoding the qualitative behavior
of a dynamical system in a graph goes back to
Smale that, in , ], proved that the non-
wandering set {1y of an Axiom-A diffeomorphism f
of a compact manifold decomposes in a unique way
as the finite union of disjoint, closed, invariant inde-
composable subsets €);, on each of which f is topo-
logically transitive. Hence one can associate to f a
directed graph, describing its qualitative dynamics,
whose nodes are these €); and such that there is
an edge from (2; to €); if the stable manifold of €;
intersects the unstable manifold of €2;.

A decade later Conley, in ﬂ@, ], widely
generalized this idea to continuous finite-dimen-
sional dynamical systems replacing the nonwander-
ing set with the chain-recurrent set. One of the main
advantages of using the chain-recurrent set is that
on this set there is a natural equivalence relation,
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that does not extend in general to the nonwander-
ing set, whose equivalence classes turn out to be
the exact analogue of the indecomposable subsets
of Axiom-A diffeomorphisms. Conley’s construction
was later generalized to discrete dynamics by Nor-
ton 19955} and to several other settings by other
authors (see [De Leo & Yorkd, 2021H)] for a detailed
bibliography on the subject).

The chain-recurrent set Ry of a dynamical sys-
tem f on X is defined via e-chains, namely finite
sequences of points each of which is within € from
the image of the previous one under f (see the next
section for more precise definitions about the con-
cepts used in this introduction). A point x € X is
upstream from a point y € X if there is an e-chain
that starts at  and ends at y for every € > 0. We
also say that y is downstream from z. A point is
chain-recurrent if it is upstream (or, equivalently,
downstream) from itself.

The relation

x ~y if x is both upstream and

downstream from y

is an equivalence relation. We call nodes its equiva-
lence classes and we associate with f the graph I'y
having the nodes of Ry as its nodes and so that
there is an edge from node A to node B if there is
a bi-infinite trajectory (bitrajectory)

t=(..,t_2,t_q,to,t1,t2,...),

whose limit points for n — —oo lie in A and those
for n — 400 lie in B. The dynamical relevance
of I'y comes from Conley’s decomposition theorem:
given a continuous map f of a compact metric space
X into itself, a point x € X either belongs to a
node of I'y, and so it has some kind or “recurrent”
dynamics, or is “gradient-like”, namely it defines an
edge between two distinct nodes of I'¢ (see M,
@], Thm. 4.10).

In [De Leo & Yorkd, 20214] we studied the
structure of the graph of a S-unimodal map and
proved that such graph is always a tower, namely
that there is an edge between each pair of nodes.
Since there cannot be loops in the graph of a
dynamical system, this means that there is a linear
hierarchy among all nodes: there is a first node Ny
that has edges towards each other node, a node N;
that has edges towards each other node except Ny
and so on up to the attracting node IV,. Each node
but one is repelling and every repelling node, which
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Fig. 1. Bifurcations diagram of the logistic map. This pic-
ture shows the nodes of the logistic map ¢, (z) = pz(1—z) in
the parameter range [2.9, 4] that are visible at this resolution.
Attractors are painted in shades of gray (depending on the
density), repelling periodic orbits in green and repelling Can-
tor sets in red. The colored lines labeled by c¢j, are the lines
Kﬁ(c), where ¢ = 0.5 is the critical point of £,,. The black dots
that are visible within the diagram are points belonging to
low-period cycles, signaling the presence of bifurcation cas-
cades within some window. The fact that some of them keep
close to the line x = ¢ is a reflection of Singer’s Theorem:
when the attractor is a periodic orbit, ¢ belongs to its imme-
diate basin. Notice that, for each p, all nodes but Ng = 0 lie
within the interval [cg,c1] since points in (c1, 1] are outside
the range of the map and, for p > 2, all points in (0, c2) even-
tually fall in [cg, ¢1], which is forward invariant. See Sec.
for further comments of this figure.

can be either a cycle (for short we call cycle a peri-
odic orbit) or a Cantor set, has an edge towards the
attracting node.

Figure [l shows the nodes of the logistic map
ly(x) = pa(l —x), p € [2.9,4], that are visible at
the picture’s resolution. The attracting nodes are
painted in shades of gray, representing the density
of a generic orbit of the attractor. There are five
kinds of attracting nodes: type A1, a cycle; type A,
a cycle of intervals; type As, an adding machine;
type A4, a 1-sided attracting cycle belonging to
a repelling Cantor set (taking place at the begin-
ning of each window); type As (see Theorem
about this complicated case, taking place at the end
of each window). The repelling nodes are painted
either in green (if they are cycle nodes) or in red (if
they are Cantor set nodes). The picture also shows
the curves ¢, = Kﬁ(c), k=1,...,4, where ¢ = 1/2
is the critical point of the logistic map. The points
¢, play a fundamental role in the forward and back-
ward dynamics of S-unimodal maps.
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The main goal of the present article is to use
our results in [De Leo & Yorke, 2!!215] to study
the structure of the sa-limit sets under S-unimodal
maps. After presenting, in Secs. 2 and Bl all def-
initions and main results we need from literature,
we study in Sec. [d] the backward dynamics of points
under a S-unimodal map f : [0, 1] — [0, 1], f(0) = 0.
Except when N, is of type As (see Theorem [l for
a complete statement), our main result can be for-
mulated as follows. When f has p nodes Ny, ..., N,
p > 1, then [0, 1] can be written as the disjoint union
of sets U_1,Up,...,Up, such that:

(1) each Uy, k < p, is the finite union of one or more
intervals (these intervals can be open, half-open
or closed);

(2) U_1 = (c2,1] is the set of all points that have
no bitrajectory passing through them;

(3) Up = [0,cq) is the set of all points with a sin-
gle bitrajectory, which necessarily asymptotes
backward to 0;

(4) Ny C Uy for each k =0,...,p;

(5) Up = Np;

(6) sap(x) = Uf:o N;foreachx € Uy, k=0,...,p.

Notice that proving this theorem requires different
techniques for points that are not chain-recurrent
and points that are so and, for chain-recurrent
points, it requires different techniques for different
types of nodes.

Figures [6HY show examples of these Uy sets in
several cases for the logistic map. For instance, let
us describe Up in several cases when /,, has three
nodes. When g is close enough to 3 from the right,
N1 = {pu} is the nonzero fixed point of ¢, and
Ny = {p1,p2}, p1 < p2, a stable 2-cycle. In this
case,

Ui = [e2,p1) U (p1,p2) U (p2, c1].

When p is a chaotic parameter with just three
nodes and close enough from the left to puys ~ 3.679,
which is the first parameter value at which c3 and ¢4
meet in Fig. [I} then Ny = {p, } is again the nonzero
fixed point of £, but this time Ny = [c2, c4]U[c3, c1].
Hence, in this case,

Ui = (ca, c3).

When p is close enough from the right to ug =
1 4 2v/2, which is the left endpoint of the period-3
window (see Figs. Mland [), then N; is a Cantor set
(painted in red) and Ny ={p1,p2,ps}, ps <p1 <p2,
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is a stable 3-cycle (painted in black). Hence

Ui = [c2,p3) U (p3,p1) U (p1,p2) U (P2, 1.

Our main result above achieves also two
sub-goals. First, it proves for S-unimodal maps
Conjecture [I] (see Sec. ) by Kolyada, Misiurewicz
and Snoha, namely that sa limits are closed sets
for all z € [0,1]. Second, it supports several numer-
ical observations by the author in planar discrete
dynamical systems , ] suggesting that,
in case of real Newton maps on the plane, besides
a nontrivial open set of points with backward tra-
jectories that asymptote to (almost) the whole
Julia set, just as it happens in the complex case
(Theorem [E]), there are also nontrivial open sets
from which one get smaller subsets of the nonwan-
dering set or even the empty set.

2. Forward and Backward Limits

The study of (time-)discrete dynamical systems,
namely iterations of a continuous map f : X — X
on a metric space (X, d), goes back to the introduc-
tion of Poincaré maps [Poincard, 1890, M] as a
tool to study the qualitative behavior of the inte-
gral trajectories of a vector field. One of the main
goals of the field is finding the asymptotics of points
under a given map f: where a point z € X ulti-
mately ends up (the “w-limit” of z) and where it
might come from (the “a-limit” of ).

2.1. Forward asymptotics

The asymptotics in the forward direction present no
ambiguity: given a point x € X, the set

wi(z) = U (@)}

n>0m>n

consists in the accumulation points of the for-
ward orbit of z, namely the sequence {f(z), f%(z),
f3(x),...} where, as usual, we use the notation

@) = f(f"H @)

The setting where discrete dynamics has been possi-
bly more successful to date is iterations of holomor-
phic (and therefore rational) maps on the Riemann
sphere CP!. In this setting, Fy (Fatou set) denotes
the largest open set over which the family of iter-
ates {f"} is normal and J; (Julia set) its comple-
ment and we have the fundamental full classification
below.
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Definition 1. We use cycle as a synonim for
periodic orbit. By n-cycle we mean a periodic orbit
of period n (so, in particular, a n-cycle has n
elements). We denote by || the period of a cycle ~.

Theorem A (w-limits in C M, @D Let f -

CP! — CP! be a rational function of degree larger
than 1. Then:

(1) if x € Jy, then wy(x) is either a repelling cycle
or the whole J;

(2) if x € Fy, then wy¢(x) is either a hyperbolic or
parabolic attracting cycle or a Jordan curve.

Recall that, in the complex setting, the duality
nonchaotic versus chaotic dynamics coincides with
the duality attracting versus repelling set. In the
real case, except in particular cases such as Newton
maps (e.g. see , ]), the two dualities are
independent (for instance, there are chaotic attrac-
tors). In regard to orbits asymptotics, the latter is
the most relevant. An analogue of Theorem [Al for
the real case is given by the following weaker result:

Theorem B (w-limits in R [Martens et all, 1992)).

Let f be either a generic noninvertible C? self-
map of RP! or a S-multimodal map on the interval.
Then, for almost all x, w¢(x) can be of the following
three types:

(1) a cycle;

(2) a minimal Cantor set;

(3) a finite union of closed intervals containing a
critical point and on which f acts transitively

(see Definition [20).

The last case is the one where the dynamics
within the attractor is chaotic, in the sense of sensi-

tivity to initial conditions (see M, ] and
Robinson, QM] for thorough discussions on alter-

nate definitions of chaotic attractors).

2.2. Backward asymptotics

The asymptotics in the backward direction have
been explored much less, even in the two settings
mentioned above. Traditionally, the a-limit of a
point is defined analogously to the w-limit:

ap(x) = () U @)}
n>0 m>n

Notice that, in this case, in general, f~"(x)
consists of more than a single point and the
growth of the number of counterimages with m
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can be exponential. Very few theorems are known
on af(x). We quote below the major ones known to
us:

Theorem C (o-limits in C m, M]) Let f :
CP! — CP! be a rational function of degree larger
than 1. Then, for all z € CP', with at most two
exceptions, af(z) O Jg. Moreover, ay(z) = Jy if
and only if z belongs to either Jy or to the basin of
attraction of some stable cycle of f (but not to the
cycle itself).

As in case of w-limits, also the theorem above
has a, much weaker, real analogue:

Theorem D (a-limits in R [De Melo & van Strierl,
@}) Let f : RP' — RP! be a generic analytic
map and denote by Z; its set of critical points. Then
ay(Zy) = Jy-

More recently, (Cui_and Ding ﬂZQld] studied in

detail the a-limit sets of S-unimodal maps.

2.3. a-limits are not an optimal

analogue of w-limits

While the definition of a-limit sets above has the
appeal to be the precise analogue, replacing images
with counterimages, of the definition of w-limit sets,
the example below suggests that it does not repre-
sent necessarily the best answer to the question of
“where might z come from”.

Definition 2. A bitrajectory of a map f : X — X
based at x € X is a bi-infinite sequence {z; };cz such
that:

(1) wo =
(2) f(x;) = x4 for all i € Z.

Example 1. Consider the logistic map ¢,(x)

px(l — x) for some p € (1,4). The point z =
is a repelling fixed point and f(1) = 0, so a¢(0)
{0, 1}. For xy small enough, the equation £,,(z) = o
has two roots x1, 1 such that:

(1) T € (O,JJQ);
(2) 21 =1 — x; has no counterimage under ¢,,.

o |l

Hence f~™(z() always consists of just two points
Tms Tm, With z,, — 0 and %,, — 1. Ultimately,
ay¢(zg) = {0,1} for all £y small enough.

On the other side, every bitrajectory {t;} of
¢, passing through z satisfies lim, . _t, = 0.
Indeed, clearly the accumulation points of {t_;}ien
belong to a¢(0) and, as long as u < 4, £,(0.5) < 1
and so there is some neighborhood of 1 which is not
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in £,,([0,1]). In particular, no point close enough to 1
can belong to a bitrajectory of /,,.

In fact, an equivalent deﬁnltlon for ay(x) is

given by the following m

Definition 3. a(x) is the set of y € X for which
there is a sequence of points {y,, } and a sequence of
monotonically increasing positive numbers k,, such
that:

(1) fF(yn) =

(2) limy, 00 Yn = .

Namely, arbitrarily close to each point in af(x),
there are points whose forward trajectory passes
through =z.

The discussion above shows that, while formally
there is a perfect symmetry between the definition
of a-limit and the one of w-limit, when a map is
not invertible this symmetry does not extend to
the sets obtained from those definitions: the w-
limit set of a point z contains only (and all) points
that are asymptotically approached by x under f,
while its a-limit contains also points that cannot
be asymptotically approached, going backward, by
a bitrajectory.

2.4. sa-limits are a better analogue
of w-limits

A definition that leads to backward limit sets which
are symmetric, from the point of view highlighted
above, to w-limit sets can be achieved by slightly
modifying the definition above:

Definition 4 [Herd, [1999]. Let 2 € X. The special
a-limit sag(x) is the set of all y € X for which
there is a sequence of points {y,} and a sequence of
monotonically increasing positive numbers k,, such
that:

(1) yo =
(2) fkn(yn) = Yn—1;

The symmetry between say and wy becomes
evident when we write them in terms of limit points
of trajectories t.

Definition 5. Let ¢ be a bitrajectory. We denote
by w(t) (resp., a(t)) the set of all forward (resp.,
backward) limit points of .

Let f + X — X and z € X.

Proposition 1.
Then:
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(1) wy(z) = w(t) for any bitrajectory of f based
at x;

(2) sap(x) = Ual(t), where the union is over all
bitrajectories of f based at x.

Not much is known on general properties of
sa-limit sets. The strongest claim related to them,
in the author’s knowledge, is relative to infinite
backward trajectories of rational maps on the
Riemann sphere:

Theorem E ﬂHamkinL&_Tﬁ;dQﬂ, 120113] Let f be a

rational map of degree larger than 1, zy a nonex-
ceptional point and v the equidistributed Bernoullli
measure on the space of bitrajectories through zp.
Then, for v-almost all bitrajectories t passing
through zo, we have that a(t) = Jy.

Only recently several authors started a thor-
ough investigation of its general properties, in

particular Balibrea_et_all [2013], Mitchell [2020],
Hantakova and Rothl [2020], Kglyada et ng 12020].

In particular, the last three authors formulated the
following conjecture:

Conjecture 1 [Kolyada et all,12020]. For all contin-

uous maps of the interval, all sa-limit sets of points
are closed.

3. Definitions and Graph of
S-Unimodal Maps

A discrete dynamical system on a metric space
(X, d) is given by the iterations of a continuous map
f + X — X. In this article, we are interested in
the case where X is a closed interval and f is a
S-unimodal map, as defined below:

Definition 6 M, @] A C3map f: [a,b] —

[a,b] is S-unimodal if:

(1) either f(a) = f(b) = a or f(a) = f(b) = b;
(2) f has a unique critical point ¢ € (a,b);
(3) the Schwarzian derivative of f

7o -3 (7)

is negative for all x € [a,b], x # c.

Sf(x) =

In all statements and examples throughout the
article, we will assume that ¢ is a maximum. Of
course, the same proofs hold also when ¢ is a mini-
mum after trivial modifications that we leave to the
reader.
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Given any S-unimodal map f, the equation
f(x) = y has two distinct solutions for each
y < f(c). For each p # ¢ in the domain of f, we
denote by p the solution different from p of the

equation f(x) = f(p).

Example 2. In case of the logistic map

0,(2) = pa(1 — )
we have that [a,b] = [0,1], f(0) = f(1) =0,c=0.5
and p = 1 — p. The Schwarzian derivative of £, is
trivially negative since £/ = 0.

Recall that, as a consequence of Gucken-
heimer’s results in |Guckenheimer, [1979], each
S-unimodal map is topologically conjugated to a
logistic map (see Theorem 6.4 and Remark 1 in

,[1993]). In particular, each
S-unimodal map has at most two fixed points.

The following several definitions are needed to

define the graph of a dynamical system f.

Definition 7 [Bowen, [1975]. An e-chain from z € X

to y € X is a sequence of points o = x,xq,...,
Tn, Tne1 = y such that d(f(z;),zi11) < € for all
i =0,...,n. We say that = is downstream (resp.,
upstream from y) if, for every ¢ > 0, there is an
e-chain from y to x (resp., from z to y). A point
x € X is chain-recurrent if it is downstream from
itself.

3.1. Nodes

We denote the set of all chain-recurrent points of X
under f by Ry. The relation x ~ y if and only if  is
both upstream and downstream from ¥ is an equiv-
alent relation in Ry (e.g. see [Nortor, ]). The
points of R/ ~ will be the nodes of the graph and
so we refer to them as nodes. Notice that every node
is closed and invariant under f M, m]
The edges of the graph will be defined through
the asymptotics of the system’s bitrajectories, as
explained below.

Proposition 2 M, M] Given any bitrajec-

tory t, there exist nodes N1, No in Ry, not neces-
sarily distinct, such that a(t) C Ny and w(t) C Na.

Proof. If x,y € w(t) it means that, for every € > 0,
there are integers p,q,r such that |z; — x| < ¢ for
i =p,rand |z, —y| < &, namely z is both upstream
and downstream from y and so they belong to the
same node. The same argument can be repeated in
the case of a-limit. MW
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Notice that, when «(t) and w(t) belong to the
same node N, it means that all points of ¢ actually
belong to N.

Definition 8 [Milnot, [1985]. A closed invariant set
A is an attractor if it satisfies the following
conditions:

(1) the basin of attraction of A, namely the set of
all z € X such that w(z) C A, has strictly
positive measure;

(2) there is no strictly smaller invariant closed sub-
set A C A whose basin differs from the basin
of A by just a zero-measure set.

Definition 9. We call a node an attracting node if it
contains an attractor, otherwise we call it a repelling
node.

Definition 10. We say that a cycle v is critical,
reqular or flip if, given any p € -+, respectively

(f™)(p) =0, (f™)(p) >0 or (f*)(p) <O0.

Notice that the definition is consistent because
the derivative of f™ is constant on any n-cycle.
Recall also that this derivative is zero, and so the
cycle is superattracting, if and only if ¢ belongs to
the cycle.

Definition 11. We call period-k trapping region of
f acollection 7 of k closed intervals Ji, ..., Ji such
that:

(1) clies in the interior of Jy;

(2) the interiors of the J; are pairwise disjoint;

(3) f(Ji) C Jigx1, 4 = 1,...,k, where we use the
notation Ji1 = Ji.

We say that 7 is cyclic if, moreover,

(4) 0J1 = {p1,p1} for some periodic point py;
(5) f(an) C 8Ji+1.

We denote by |7 the period of 7. When 7 is
cyclic, we denote by I'(7) the periodic orbit pass-
ing through p;. We say that I'(7) is the minimal
cycle of T (see Theorem [[]). In general, we say
that a cycle 7 is minimal when v = I'(7) for some
trapping region 7. Sometimes, to emphasize, we
denote by J;(7) the J; interval of 7. We denote
by Jt = J®(T) the union of the interiors of all
the J;. We say that a cyclic trapping region is a flip
trapping region if any two J; have an endpoint in
common, otherwise we say it is a regular trapping
T€GLON.
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Proposition 3. A cyclic trapping region T is flip
(resp., regular) if and only if T(T) is flip (resp.,
reqular). Moreover, |T| = |IN(T)| if T is regular
while |T| =2|T(7)| if T is flip.

Example 3. The interval [a,b] is, trivially, a
period-1 regular cyclic trapping region for every
S-unimodal map.

Example 4. Let p,, be the fixed point of the logistic
map £, other than 0. The collection

'ZL = {Jl = [éi(c),ﬁu], Jo = [puaeu(c)]}

is a period-2 trapping region for all p € (1 +/5,4].
A direct calculation shows that 7, is cyclic only at

3[1 4+ (19 — 3v/33)1/3 4+ (19 + 3v/33)1/7]
2

=
~ 3.67857,

which is exactly the point at which p, plunges into
a chaotic attractor and ceases to be a node in itself.
At that point, the logistic map has a crisis [Grebogi

et al., 1982].

This example above can be generalized to S-
unimodal maps, as shown below.

Definition 12. We call core of a S-unimodal map f

the interval [f2(c), f(c)].

In order to simplify the notation, we often use
the notation ¢ in place of f*(c).

Proposition 4. Let f be a S-unimodal map and p
its internal fixed point. The core of f is forward-
imvariant if and only if p > c.

Proof. Notice first of all that, when c3 < ¢y < ¢,
we have that the restriction of f to [c3,co] is a
orientation-preserving homeomorphism and so
f([es,c2]) = [ea,c3]. Hence, in general, f([ck,
¢k—1]) = [¢k+1,ck], namely the forward orbit of ¢
is a monotonically decreasing sequence contained in
[a, ¢) and therefore it must converge to a fixed point
at the left of ¢. In particular, when ¢ < p, this can-
not happen because, when f has two fixed points,
the boundary one z = a is repelling (recall that
f, being topologically conjugate to a logistic map,
cannot have more than two fixed points). Now let
us go over all possible cases:

Case 1. p < c. Since f is monotonically increasing
at the left of ¢ and monotonically decreasing at its
right, this can happen if and only if the graph of
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f is not above the diagonal at x = ¢, namely we
must have ¢; < ¢. The case ¢; = c¢ is degenerate:
in that case ¢ = p is fixed and [cg, 1] is a single
point. When ¢; < ¢, the restriction of f to [c1, ] is a
orientation-preserving homeomorphism and we fall
again in the case outlined above: f([c1,c]) = [e2, c1]
and f([eca,c1]) = [es, 2], so in particular [cg,cq] is
not forward invariant.

Case 2. ¢ < p, ¢ < ca. In this case, the restriction
of f to [ce, 1] is a orientation-reversing homeomor-
phism and so f([e2, c1]) = [e2,¢3] C [c2, ¢1], showing
that ¢y < c3 and that [cg, ¢1] is forward-invariant. It
is not a trapping region, though, since ¢ & (¢, ¢1).

Case 3. ca < ¢ < p. In this case, we have that
f(le2, a1]) = f(lea, U e, en])

= [e3,c1] U [ea, 1] = [e2, c1]
since, by our argument above, the configuration
c3 < ¢ < ¢ < p cannot take place and therefore
we must have ca < c3. Hence in this case [co, 1] is
a period-1 trapping region. MW

Several examples of cyclic flipping and regular
trapping regions are shown, respectively, in Figs. 2

Bl
Theorem F (Repelling Nodes M,

). Let f be a S-unimodal map. Then the min-
imum distance between a repelling node N and the
critical point of f is achieved at a periodic point pq
of N. The closed interval with endpoints p1 and p;
is the Jy interval of a cyclic trapping region T (N)
such that:

(1) NNJ(T(N)) =0;
(2) p1 € (T (N)) and each interval of T(N) has a
point of T'(T (N)) at its boundary;

Depending on the type of the corresponding trapping
region, there are two types of repelling nodes:

(3) A flip cycle. In this case, T (N) is a flip trapping
TEGLON.

(4) A Cantor set with a dense orbit. In this case,
T(N) is a regular trapping region.

In order to keep notation light, we often write

I'(N) to denote I'(7 (N)) and so on.

Remark 1. A flip cycle node N is always inside the
interior of the union of all J;(N) (see Fig. ). On
the contrary, a Cantor set node M has no point in
common with the interior of the union of all J;(M)

(see Fig. [{).
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Fig. 2.  Ezample of flip trapping region. The interval [p1, q1],

where possibly ¢1 < pi, is the J; interval of some cyclic
trapping region of some period r of a map f, so that Jj is
invariant under f = f]c Inside J; is shown a period-2 flip
trapping region {J}, J5} of f. The point p}, which is fixed
by f, is an endpoint of both J'1,2. Both the other endpoints
q}, ¢4 eventually fall on p/. Notice that f(c) < gb.
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Fig. 3. FEzample of regular trapping region. The interval

[p1,q1], where possibly ¢1 < pi1, is the Jj interval of some
cyclic trapping region of some period r of a map f, so that
Ji is invariant under f = fk. Inside Jj is shown a period-3
regular trapping region {J},J5, J5} of f. The arrows show
how the endpoints map under f: the endpoints p}, p5, ps form
an unstable 3-cycle of f and all other endpoints q'l,q'Q,qg

eventually fall into this cycle.
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Fig. 4. Ezamples of flipping trapping regions. This picture

is discussed in detail in Sec. [3.4]
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Theorem G (Attracting Nodes [De Leo & Yorkd,

2021d]). Let f be a S-unimodal map. Then its
attracting nodes are of the following types:

(A1) An attracting cycle.

(A2) An attracting trapping region.

(As) An attracting minimal Cantor set (this is the
case when there are infinitely many nodes).

(Ag) A repelling Cantor set containing a 1-sided
attracting periodic orbit.

(As) A trapping region which strictly contains an
attracting cyclic trapping region, a repelling
Cantor set and part of the basin of attraction.
The Cantor set and the attractor have a 1-
sided attracting periodic orbit in common.

Remark 2. Among the attracting and repelling
nodes of S-unimodal maps, those of type As are
the only ones containing points that are not non-
wandering points. In particular, since all points in
w(t) and «(t) are nonwandering points, this is the
only node that cannot be equal to either the w-limit
or the a-limit of any bitrajectory.

3.2. Exzamples of nodes

Some of the nodes of the logistic map are shown in
Fig. [

Repelling nodes of type R; (resp., Rg) are
painted in green (resp., red). Each repelling node of
either kind exists over some closed connected inter-
val of parameter values and depends continuously
on it. The parameters range over which a repelling
Cantor set node N that arise is called a window
W(N). The period of W(N) is the period of the
periodic point pi(N). The largest window of the
logistic map family, shown in detail in Fig. [l is the
period-3 window starting at © = 1 + 2v/2 ~ 3.828
and ending at p ~ 3.857 (see [Hasselblatt & Katok,
, p. 299], for an exact expression of this last
number).

Attractors are shown in shades of gray. Attrac-
tors of type A; (isolated black lines) and of type
Ay are both visible. Attractors of types A4 and As
are located, respectively, at the beginning and end

of each window [De Leo & Yorkd, 2021a]. Attrac-

tors of type As are not visible because they arise

for a zero measure set of parameter values
m . The lines visible throughout the
chaotic attractors are iterates of the critical point,
about which the density of points under iterations
is higher. In colors are highlighted the first four of
these iterates.
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3.3. The graph

Finally, we have all ingredients to introduce the
graph of a discrete dynamical system:

Definition 13 ﬂm, @] We call graph I'y of
the dynamical system f on X the directed graph
having as nodes the elements of Ry/ ~ and having
an edge from node N; to node Ny when there exist
a bitrajectory ¢ such that a(t) C Ny and w(t) C Na.

obtalned originally

The key result by Conle
197d] and general-

for continuous systems
ized later bym | to dlscrete ones, is that

the dynamics outside of nodes is purely of gradient-
like nature, as explained below.

Definition 14. A Lyapunov function [Wilson &
Yorke, [1973] for f : X — X is a continuous function
L such that:

(1) L is constant on each node;

(2) L assumes different values on different nodes;

(3) L(f(x)) < L(x) if and only if = is not chain-
recurrent.

Theorem H M, M) Let f be a dynam-

ical system on a compact metric space X. Then
there exists a Lyapunov function for f. In other
words, every point x € X either belongs to Ry or is
gradient-like for f.

Recall that a loop in a graph is a sequence
of nodes Ny, No, ..., Nj such that there is an edge
from N; to N;;q for ¢ = 1,...,n — 1 and then an
edge from Ny back to N;.

Corollary 1. A graph I'y does not have loops.

Definition 15. A graph I'; is a tower if there is an
edge between each pair of nodes.

Notice that, because of the corollary above, if
there is an edge from A to B then there cannot be
an edge from B to A.

In [De Leo & Yorke, [2Q213|] we prove the follow-
ing two fundamental results. Notice that the sec-
ond theorem integrates some original result of ours
together with other classic results by other authors
(references are provided within the claim).

The graph of a S-

Theorem I [Tower Theorem].
unimodal map is a tower.

Theorem J [Chain-Recurrent Spectral Theorem].
Let f be a S-unimodal map with at least a repel-
lor and denote by Ny, N1,...,N,, where p > 1 is
possibly infinite, the nodes of I'y sorted in the order

2230013-9
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determined by the edges (in particular, N, is the
attracting node of f). Then:

(1) Ny is the fized endpoint of f.

(2) Each repelling node N;, 0 < i < p, determines
a cyclic trapping region T (N;) for f such that
(T (N;)) C N; and each Ji,(T (N;)) has a point
of T'(T(N;)) as an endpoint. There is no other
point of N; in T(N;) |De_Leo & Yorke, |2021d].

(3) The trapping regions T (N;) are nested:
T (T;) € JM(To),
where, by convention, we take T (Ng) = {[a, b]}

|De_Leo & Yorke, |2021d).
(4) Each N;, 1 < j < p, is either of type Ry or Rs
,12021d). The measure of each
repelling node is zero and the action of f on it
1s topologically conjugated to a subshift of finite
type lvan Strien, Ll%li]
(5) Each N;, 0 < j < p, is repelling and hyperbolic
jent, [1981).

(6) N, is the unique attracting node of f [Gucken-
heimer, 11979 and it is one of the five types
Ay,..., A5 |De Leo & Yorké, 2021d).

(7) N, is hyperbolic unless it is of type Ay or As

jent, 11981).

(8) In each neighborhood of N;, for each j > i, there
are points falling eventually into N; [De Leo &
Yorke, lal.

(9) When p = oo, the attracting node N is a Can-
tor set of zero Lebesgue measure on which f acts

as an adding machine |van_Strien, [1981].

1<j<p,

3.4. Ezxamples of trapping regions

Several cyclic trapping regions are shown in Figs. @l
and [ in case of the logistic map. In all cases, the
top node is Ny = 0 and its corresponding trapping
region is the interval J;(Np) = [0, 1].

In Fig. @, we see the logistic map’s bifurca-
tion diagram for p € [3.4, 3.6]. Attracting cycles are
shown in black. In this range, most of the figure is
occupied by the first bifurcation cascade of the dia-
gram. Throughout this range, the first node Ny is
the unstable fixed point 0 and the second node N
is the other fixed point p; (painted in green), which
is unstable too. We show respectively in orange and
blue the points ¢4 = p1 = 1 — p1 and qo, where ¢o is
the root of £2(x) = p1 on the other side of g1 with
respect to p; (see Fig. Bl). We paint in lime 7 (Ny).

At 40, the logistic map has a third and final
node: the attracting 2-cycle Ny = {p/, p,}. The flip

WSPC/S0218-1274
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trapping region 7 (N7), painted in red, consists of
the following two intervals: Ji(N1) = [¢q1,p1] and
J2(N1) = [p1, g2

Between p49 and 41, the 2-cycle Ny bifurcates
and becomes repelling and a new attracting 4-cycle
node N3 = {pf,...,pi} arises. We paint in blue
the period-4 flip trapping region 7 (N3), which con-
sists of the following intervals: J1(N2) = [p}, ¢l
J2(N2) = [py, q5], J3(N2) = [¢5,p1] and J4(N2) =
(¢, 5.

Similarly, at p42 node Nz is repelling and we
have a new 8-cycle attractor and a new flip trap-
ping region 7 (N3) generated by Ji(N3) = [¢f,p]]
consisting of eight intervals, painted in olive.

Figure [l shows a detail of the logistic map’s
period-3 window (see also Fig. [§ for a close-up of
its middle cascade). Besides the nodes, we plot the
supplementary lines ¢ for £ = 1,...,6. At the left
endpoint of the window, at g = 142v/2, the graph
has just two nodes: Ny and an attracting node N;
of type A4. We paint in blue 7 (Np).

For all parameter values in the interior of the
window, node Ny is the repelling Cantor set painted
in red. The point p; = pi(N;) belongs to the
repelling 3-cycle p1, po, p3 created together with the
other 3-cycle p},ph, ph, that is the attracting node
for p close enough to g from the right. The regular
trapping region 7 (N7) of the Cantor node, painted
in orange, consists of the three intervals Jy(Np) =
[q1,p1], Jo(N1) = [p2,q2] and J3(N2) = [g3,ps]. At
the right endpoint, the Cantor set has a point in
common with the attracting trapping region, form-
ing an attracting node of type As.

At 4 = ps0 and p = pso the graph has just
three nodes. In the first case, the attracting node
Ny is the 3-cycle pl, p, ph; in the second case, it is
the period-3 trapping region [cy4, c1], [c2, ¢5], [c3, 6]

At p = ps1, the node Ny is repelling and the
attracting node N3 is a 6-cycle {p/}i=1,.. 6. The flip
trapping region 7 (N3), painted in teal, consists of
the six intervals Ji(N2) = [p}, ¢}], J2(N2) = [ph, ¢],
J3(Na) = [q3,p5), Ja(N2) = [qypi], J5(N2) =
[qéapé]v J6(N2) = gaqlﬁ]

At u = sz, node Ny is a second Cantor set,
painted in blue, namely this parameter value is
within a window inside a window. Point pj(NV2)
has period 9, so it is a period-9 window within a
period-3 window. The attractor N3 in this case is
the period-9 orbit originating from the same bifur-
cation that created the repelling period-9 cycle that
p1(N2) belongs to.

2230013-10
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4. Limit Sets of S-Unimodal Maps

We are now ready to study the sa-limit sets of
points under f. Throughout the rest of the paper,
we will assume that f satisfies the following;:

Assumption (A).
least two nodes.

f is a S-unimodal map with at

Under these conditions, the map is not surjec-
tive, i.e. f(c) < b, and the fixed point x = a is a
repelling node, i.e. f’(a) > 1 (note that f/'(a) > 0
since we are assuming that the critical point of f is
a maximum).

Example 5. In case of the logistic map ¢,, : [0,1] —
[0,1], Assumption (A) amounts to f'(0) > 1 and
f(0.5) < 1. These conditions are satisfied if and
only if p € (1,4).

The nodes of f will be denoted by Ny, Ny, ...,
N,, where p > 1 is possibly infinite, and sorted
in the order determined by the graph’s edges (in
particular, N, is the attracting node of f). Recall
that Ny, under Assumption (A), is always equal to
the fixed endpoint of f.

Definition 16. For k = 0,...,p — 1, we denote by
. the period of 7 (V) and we set

Fi= 1" + Ji(Nk) = Ji(Ne),

We denote by K (f;) the core of the map f; and we
call core of T(Ny) the collection of intervals

K(Ne) = {E(f1),-.. . K (fr,)}-

Finally, we denote by K (NVj) the union of all inter-
vals in (V).

iZl,...,Tk.

Example 6. K(Ng) = {[c2, c1]} since g = 1 is the
period of 7 (Ny) = {[a, b]}. If the second fixed point
p of f is a repelling node (as in Fig. M), then N; =
{p}, 1 =2 and K(Ny) = {[c2, c4), [e3, 1]}

Suppose now that the second node N7 is a
Cantor set. Consider for instance the concrete case
of the logistic map with pu = pus0 in Fig.
Then 7 (N;) has period equal to 3 and K(N;) =
{le2, es], e, col, [eas ca]}

Proposition 5. The following properties hold for
each k=0,1,...,p—1:

(1) K(fr,—i) = [Corp—i1, Crp—i1];

(2) K(Nk) C Jmt(Nk);

(3) for k < p—2, K(Ny) is a trapping region and
Jlnt(Nk+1) C K(Nk)

WSPC/S0218-1274
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Proof. Recall that Ji(Ng) = [p1(Nk), p1(Ng)] is the
interval of 7 (N}) containing ¢, so that

K(f1) = [fi(e), F1()] = lean, e, ).

Moreover, each map f|,n,) : Ji(Nk) — Jix1(Ng),
i = 2,...,1%, where we set J,, 11(Ng) = J1(Ng),
is a homeomorphism for 7 > 1, and so

K(.?Tk) - fﬁl(K(?l)) N Jrk (Nk) - [CQTk—17CTk—1]

and, ultimately,
K(?ka’i) =

The assumption that Ny is not the last node implies

the following two facts:

(1) K(f1) < int(J1(Ny)). Otherwise, we would
have f1(c) = p1(Nk) or fi(c) = p1(Nk) and, in
both cases, N;. would be the attractor and there
could be no other node besides it. Hence, in
general, K(f;) C int(J;(Ny)) for i = 1,... 7y,
which proves point (2).

(2) Since the cycle T'(Ng) is repelling and, for k <
p — 1, Niy1 is repelling too, then by Propo-
sition @ we have that the core of each f; is
forward-invariant with respect to f;. Indeed,
each f; is a S-unimodal map on J;(Ny) whose
nonboundary fixed point p; must be at the right
of the critical point, since otherwise p; would
be attractive and there would be no other node
inside J*(N). Hence

FK(f1) = [AE(fr)
== f"(K(f2)) C K(f2)
and, more generally, f(K(fi)) C f(K(fi+1)),

t=1,...,7r, where we put f,, 11 = f1.

[CZkaifla Crkfifl]-

Since the attractor is unique, it must lie inside
K(Ny) and so J™(Ny1) must be completely con-
tained inside K (Ny) as well. In particular, ¢ €
J1(Npy1) C K(f1), so K(Ny) is a trapping region,
proving point (3). W

Definition 17. We define sets Uj,...,U, as fol-
lows:

o U, = Np;
e U, = K(Nkfl)\K(Nk) for 1 <k<p-1,;
o if p < oo, Up—1 = K(Np—2)\Np;

Finally, we set Uy = [a,c2) and U_1 = (¢1,b]. We
say, for short, that = € [a,b] is a level-k point if
x € Uy.

2230013-11
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Proposition 6. The setsU_1,...,U, satisfy the fol-
lowing properties:

(1) [a,0] = L, Uss
(2) Nk, C U fork=0,...,p;
(3) Uy C J™(Ny_1) fork=1,...,p.

Proof

(1) By construction, the U; are all pairwise disjoint.
Assume first that p < co. Then

P
U Ui = (K(No)\ K (N1)) U (K (N1)\K (N3))
i=1

Uu---u (K(Np—2)\Np) U Np
= K(No) = [c2, c1]

so that Uf:_l U; = |a,c2) Ulea, c1] U (c1,b] = [a,b].
If p = o0, then

Ny = () J(Ng) = () K (Ni)
k>1 k>1

and so, even in this case, >, U U Us = [a, b].

(2), (3) Since Uy C K(Ng_1) C J™(Nj-1), Up N
N; = 0 for i < k — 1. Since Ugy1 C K(Ng) C
JP(N), Upp1 N N = 0. More generally, since
K(Nk+1) C K(Nk), U;NNy =0 for i > k+1. Since
every point in [a,b] belongs to some U;, the only
possibility is that N C Uy for each k =0,...,p—1.

[ |

Example 7. Consider the case, shown in Fig. [d of
the logistic map f with u = u49. This map has three
nodes: Ny is the fixed point other than z = 0 and
the attractor Ny is a 2-cycle {p},ph}. In this case

Us = {p1,ph}, Ui =[co,p}) U (P, p5) U (P, cal.

Example 8. Consider the case, shown in Fig. [ of
the logistic map with g = ps3. This map has four
nodes: Np is a Cantor set, painted in red; Ny is a
second Cantor set, painted in blue; the attractor
N3, three points of which are visible (in black) in
Fig. B is a 9-cycle. In this case,

Us = N3,
Uz = [c2, 5] U [e3, ¢6] U [ca, €1]\ V3,

U, = ((25, (23) U (66,65).
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Fig. 6. FEzxzamples of U}, sets in case of flip trapping regions.
This picture is discussed in detail in Sec. L1
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Fig. 7. Ezxamples of U sets in case of regular trapping
regions. This picture is discussed in detail in Sec. E7)
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Fig. 8.  Close-up of the central cascade in Fig.[7 This picture

is discussed in detail in Sec. @71

4.1. Forward limaits

While the focus of this article is on backward limits,
for completeness we include also the following result
about the relation between the forward limit of a
point and its position.

Theorem 1 [w-limits of S-unimodal maps|. Assume
that f satisfies (A) and let v € Uy. Then wy(x) C
N; for some unique i > k.

Proof. By the Chain-Recurrent Spectral Theorem,
we know the following:

(1) Trapping regions are nested one into the other
and are all forward invariant;

(2) N;j C J™(Ny) for all j > k;

(3) Nj N J™(Ng) =0 for all j < k;

(4) Nj N Jnt(Ny) is a single periodic orbit.

Hence, the w-limit set of any z which lies into Uy

must be contained in one of the nodes N; for some

i=k,...,p. N

In particular, this means that the set of possible
outcomes for w¢(x) is a locally constant monotoni-
cally decreasing function of the distance of x from
the critical point c.

Remark 3. By Theorem [Bl w(x) must be either a
cycle or a Cantor set or an interval cycle. More-
over, for Lebesgue-almost all z, w(z) = N,, [Gucken-
heimer, [1979; |Guckenheimer, M] Since all other
nodes are repelling, when w(z) C N; for some i # p
the only possibility is that there is a forward tra-
jectory starting at x that actually falls on N; in
a finite number of iterations. Equivalently, such x
must belong to a backward trajectory from some
point in V;.
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We turn now to the main goal of this article,
which is studying the possible sa-limits of a point
depending on its level, namely depending on which
Uy set it belongs to. Following Conley’s observa-
tion, these points either belong to some node or are
gradient-like, we discuss separately these two cases.
All these partial results will be finally summarized

in Theorem [ (Sec. [A.0)).

4.2. Backward limits within
repelling nodes

As we recalled earlier, repelling nodes are either
cycles (type Rp) or transitive (see Definition [20)
Cantor sets (type Rz). The restriction of f to either
case is topologically conjugated to a subshift of
finite type, a fact that was proved first by van Strien
in 1981 | i ,|_L9§1|] using kneading theory. For
the sake of clarity and self-completeness, we sketch
below a more explicit proof of this fact that will also
lead us to establish that saf(x) O N for each point
x belonging to a repelling node N.

The case of node N7 in the period-3 window
of £,,. Consider the concrete case of the period-3
window W of the logistic map f = ¢, (see Figs. [
and [M). For every p in the interior of W, the
point pi(Ny) belongs to a repelling 3-cycle and
T(N1) = {J1,J2,J3} is a regular period-3 trap-
ping region. Since the J; are disjoint, the set C' =
0,1\ U2y f7*(J1) of all points that do not ever
fall in J; is the complement of a dense countably
infinite union of disjoint intervals and so is a Can-
tor set (see Prop. 3.21 in , 20214
for more details).

Decomposing C. Recall that, when p > ¢, each
node different from Ny lies inside [f?(c), f(c)] and
that, since ¢ belongs to either the basin of the
attractor or to the attractor itself, each repelling
node actually lies in L. = (f?(c), f(c)). Hence
N1 C CN L. Furthermore, by construction we have
that
Ny € C N (LN\J™(NY)).

The set L.\ J(Ny) is the disjoint union of the two
closed intervals

Ao = [p3,1 —p1] and Ay = [p1,po]
and so, correspondingly, we can write
CNL.=CyuCh,
with C; =CNA;, i=0,1.
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A map s : Cy U Cy — 3. Exploiting the decom-
position above, one can associate to the trajec-
tory {f™(p)} of each point p € C'N L, an element
s(p) = (so,81,...) of the single-sided shift space
Y9 in two symbols, say 0 and 1, so that s, = 0
if f*(p) € Cy and s,, = 1 otherwise.

For instance, for every u € W, the map f has
a fixed point p inside Cq, so

s(p) = (111...).

Since f? is a polynomial of degree 4 and both fixed
points of f are also fixed points of f2, for every
p € W the map f has a single 2-cycle {q1, g2},
g1 < 2. Note that it is impossible that g» < ¢ since
f(q1) = g2 would imply f(g2) > g2. Moreover, since
within W this 2-cycle is repelling, then necessarily
f?(c) < cand so ¢ € (q1,G2). Hence,

s(q1) = (0101...),

s(f(@)) = s(q2) =
Finally, in case of the 3-cycle I'(Ny), we have that

(1010...).

s(p1(N1)) = (110110...),
s(f(p1(N1))) = s(p2) = (101101...),
s(f2(p1(N1))) = s(ps) = (011011...).

Notice that, by construction,

s(f(p)) = o(s(p)),

where o : o — Y9 is the standard shift operator
o((arasgas . ..)) = (azas . ..).

Each s(p) misses the word “00”... While
(111...) is in the range of s, (000...) is not, since
the other fixed point of f, namely the node Ny, does
not belong to N7. This is an example of the follow-
ing more general property: o(p) cannot contain the

word “00”. Indeed, since [ps, 1 — p1] C [0,d],
f(Ao) = f([ps, 1 = p1])
= [f(p3), f(1 = p1)]
= [p1,p2] = A
while, since [p1,p2] C [, 1],
f(Ar) = f(lp1,p2]) = [f(p2), f(p1)]

= [p3, p2]

Since C' N L, is invariant under f, this means ulti-
mately that

f(Co) C O,

= Ap U Jl(Nl) UA.

(f((jl) c ColuCy.
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In particular, if the nth component of s(p) is 0, then
its (n + 1)th component must be 1.

.. but misses no other word. Denote by Wy
the subset of X9 of all elements not containing the
word “00”. Clearly Wy is a subshift of finite type,
namely it is invariant under o and is defined by
a finite number of conditions (in fact, by just one
condition). We claim that, for each element w =
Woo, there is p € C'N L, such that s(p) = w.

Indeed, let w = (wywows...) and define the
following sets:

Iy = Ay,

Lpo = Aup, N Aw,)

L3 = Auwy N F7H(Awy) N0 2 (Auwg)
= A, N F 1 (Aw, N FHAW))

Lua = Awy N F7H(Aw,) 0 F 72 (Aug) N 72 (Awy)
= Auwy O F 7 Ay 0 7 (Aug 07 (Awy)))

By construction, I, is the open subset of C' con-
taining all points whose first & symbols coincide
with the first k& symbols of w. Set I, vy L k-
Then I,, C Cy U C] since the orbit of any point
of I, never leaves Ag U Ay and s(p) = w for every
p € I.

In order to show that I, is nonempty for each
w € Wyo, we point out that, since f is unimodal, the
counterimage of any interval not containing c is the
union of two intervals lying on opposite side with
respect to ¢. Given the action of f on Ay and A,
we furthermore have that the counterimage under
flaoua, of any interval in Ay is a subinterval of A;
while the counterimage of any interval in A; is a
pair of intervals, one in Ay and one in A;. Hence,
from the expression of I, x, it is clear that this set
is empty if and only if, for some r < k, the interval
Ay, N f7H...) lies in Ay (so w, = 0) and, at the
following step Ay, Nf (A, Nf7L(...)), we have
Ay, , = Ao (namely w,_; = 0). Ultimately, this
argument, shows that [, is empty if and only if w
contains the word “00”.

s is injective. Since [, C CyUC1 is a closed inter-
val and Cy U (' is a Cantor set, the only possibil-
ity is that [, is a single point, namely s : Cy U
C1 — Wy is a bijection.
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s is a homeomorphism. A basic neighborhood
Uy of a point wyg € Wy is the set of all w € Wy
that coincide with wg up to their rth component for
some r > 0. The set s~1(U,) is the set we denoted
above by I, , and, as we pointed out above, this is
always a neighborhood of s~!(w). Similarly, due to
the continuity of f, given any p € Cy U C, for each
M > 0 there is a neighborhood V), of p such that
s(p) and s(p') coincide up to their first M symbols
for each p’ € V,.

fln, is topologically conjugated to o. This
is an immediate consequence of the fact that, as
pointed out above, so f = o o s for all points of Ny
and that s is a homeomorphism.

N1 = C N L.. Because of the points above, it is
enough to show that there is an e-chain between
every two points of s(CNL,). Given z,y € s(CNL,)
and € > 0, there is an element z whose distance from
x is smaller than e so that all components z; up to
some finite index n = n(e) > 0 coincide with the
components z; while z,; = y; for all ¢ > 0. Then
the sequence
x,2,0(2),...,0"(z) =y

is an e-chain between x and y.

Hence, N7 is the set of all points in [f2(c), f(c)]
that do not fall into J™*(Ny) under f.

The general case. Consider the general case of a
Cantor set retractor Np. Denote by r the period
of the trapping region 7 (Nj_i) and set f;
fT’Ji(Nkfﬂ' Then each fZ : JZ(Nkfl) — Ji(Nk,1
is a S-unimodal map having first node N 00
{pi(Nk—1)} and second node the repelling Cantor
set Ni,l = NN Ji(Nkfl). Note that ’T(NZ71)’ =
[T (Ne)I/|IT (Ng—1)|, i =1,...,7. _

Similarly to the case above, N;1 C [cor—i—1,
Crfifl] and the set (627«,@,1, Crfifl)\Jint(NiJ)
is the disjoint union of r—2 closed intervals A; 1, .. .,
Ajr—o. Hence, like we did above, we can asso-
ciate to each point p € (cor—i—1,¢r—i—1)\Upeg ¥
Ff¥(J1(Ni1)) an element o;(p) belonging to the
single-sided shift space >,._o. Correspondingly to
the action of f; on the A; i, there will be some num-
ber of words that will not appear in any o;(p). Since
there is a finite number of A; ;, there will be a finite
number of forbidden words. Similarly to how we did
above, one can prove that these maps o; are contin-
uous and injective and all elements of ¥, o with-
out those forbidden words in their sequence are the

~—
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image of some p. Hence, the image of each o; is a
subshift of finite type.
Ultimately, we illustrated the following result:

Theorem K |van Strien, 1981]. Let N be a repelling

node of a S-unimodal map f. Then f|n is topologi-
cally conjugate to a subshift of finite type.

4.3. Backward dense orbits in
subshifts of finite type

Shifts have been thoroughly studied because they
appear ubiquitously in every dynamics subfield.
Nevertheless the following elementary result on
backward dynamics, in the author’s knowledge, did
not appear explicitly so far in literature.

Theorem 2. Let S be a 1-sided subshift of finite
type with a dense trajectory. Then each point has a
backward dense bitrajectory.

Proof. Let F be the full 2-sided shift in the same
symbols «q,...a; of S. A bitrajectory passing
through an element x = (z1z2x3...) € S is an ele-
ment X = (...2_3r_ox_1-x12973...) € F.

Recall that, in a (1- or 2-sided) shift space X
with a dense trajectory, for any two words w,w’ €
X, there is a word u € X such that wuw’ € X
M, M] Since in S there is an element d =
(dy1dads . . .) with a dense trajectory, the same is true
about F: given any element Y = (...y_3y_oy_1 -
Y1Y2Yys . . .) there is some finite word w; ... wu, such
that

D= ( o Y—3Y—2Y_1U ... Uy * didads . . ) e F.

By Sec. 9.1 in [Lind & Marcus, M}, every irre-

ducible 2-sided shift (namely a 2-sided shift with
a dense trajectory) has a doubly transitive point
T =(...t_st_ot_q-titsts...), namely a point whose
orbit is dense both backward and forward.

Now, given any z = (xjz923...) € S,
there is a finite word wuj...us such that X =
(...t_gt_ot_quy...us - x1x023...) € F. This point
represents precisely a bitrajectory passing through

x whose backward orbit is dense by construction.
|

As a corollary, we obtain our main result on
retractors.

Theorem 3. FEwvery point of a repelling node N of
f has a bitrajectory backward dense in N.
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May 24, 2022 10:35

R. De Leo

4.4. Backward limits within
attracting nodes

Of the five types of attracting nodes, only types Ao
and As, namely the two cases when the attractor
is chaotic, are nontrivial. Indeed, cases A; (stable
periodic orbit) and A4 (single-sided stable periodic
orbit belonging to a Cantor repellor) are covered by
the results of the previous subsection. About case
As, we recall that it is well-known that, in a min-
imal set, every point has a dense backward orbit

Kolyada & Snoha, 12009].

Backward orbits in a chaotic attractor. Let A
be a chaotic attractor, namely an attracting trap-
ping region. Recall that in A, as well as in every
retracting node, there is a dense set of periodic
points (but ¢ does not belong to any of them, since
any cycle containing c¢ is superattracting). In each
retractor node N, we have a special cycle, the mini-
mal cycle I'(IVy), which is the cycle passing through
p1(Ny), the closest point of N to ¢. On the con-
trary, none of the cycles within A can be minimal,
since A belongs to the attracting node and nodes
are disjoint. Nevertheless, in analogy with minimal
cycles, we give the following standard definition.

Definition 18. Given p,q € [a,b], we say that p is
closer to ¢ than ¢ if (p,p) C (q,q), where as usual
p is the root of f(x) = f(p) other than p. Given a
cycle ~, we denote by pi() the point of v that is
the closest to ¢ and we set Ji(v) = [p1(7),p1(7)].
We say that the cycle 7 is closer to ¢ than the cycle
~" when p1 () is closer to ¢ than pi(y/).

Remark 4. 'The relation among cycles given by
“being closer to ¢” is a linear order in the set of
all cycles of f. In case of the logistic map, the dis-
tance between p1(7y) and c is the same as between
p1(7) = 1 —pi(v) and ¢ and so the “being closer”
relation in this case is literal.

Minimal cycles are quite special: either there
are only finitely many of them (when N, is not of
type As) or p1(I'(Ng)) — ¢ (otherwise). On the con-
trary, the set of accumulation points of the set of
all points p1 () of all cycles v of a S-unimodal map
f having at least one repelling Cantor set is large
(easy to build examples in subshifts of finite type).
Next definition highlights a type of cycle which rep-
resents a slight generalization minimal ones and is
of central importance in the chaotic case.
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Definition 19 [Guckenheimer, [1979]. Given a regu-
lar (resp., flip) n-cycle v C A, we say that p;(v) is
regular central (vesp., flip central) if f™ (resp., f2")
is monotonic on (p1(7),c), namely if ¢ & fi(J1(7))
fori=1,...,n—1 (resp.,,i=1,...,2n—1). When
p1(7y) is central, we also say that ~ itself is central.
Finally, we say that a closed interval H is a homter-
val for f if ¢ ¢ f¥(H) for any integer k > 0, namely
if all iterates f*, k = 0,1, ..., are strictly monotonic
on H.

Example 9. Every minimal cycle T'(7) is central
and its point p1(7) is a central point.

Example 10. Consider the unique 2-cycle vo =
{q—,q+} of the logistic map. For each pu € [1 +
V/5,4], 72 is flip. For pu € [14++/5, puyr], where puyr
is the Myrberg—Feigenbaum point, v is a node.
Hence, close enough from the right to pyr, 72 is

a flip central point. On the other side, at p = 4 we

have that g+ = 5i8‘/5, so that ¢ < ¢ < ¢4 and ¢q—

is the closest to ¢. Set J; = [¢—,1 — g—]. Hence

f() =g, 1],
F2(h) = fla+1]) = [0,q-],
F20n) = f([0,9-1) = [0, g+]-

Since ¢ € f3(J1), 72 is not central. For u close
enough to 4 from the left, ¢; is close to 1 and both
co and c3 are close to 0, so that still ¢ € f3(J;).

Proposition 7. Let f be a S-unimodal map and p
its internal fized point. There is no flip cycle if p <
c. For ¢ < p, the lowest-period flip central point of
fis p. If f has a regular 3-cycle v, then pi(7y) is
the lowest-period reqular central point of f.

Proof. Set Jy = [p,p]. Then f(J1) = [p,c1], which
does not contain ¢, and so p is flip central. Con-
sider now the case when f has a regular 3-cycle

{p1,p2,p3}. Set Ji = [p1,p1]. Then f(J1) = [p2, ci1]
and f2(J1) = |2, p3]. Clearly ¢ does not belong to
either one of these two sets and so py is central. W

The following facts are crucial for our results
below:

Theorem L |[Guckenheimer, 1979]. Let f have a

chaotic attractor A = N, and set r = |T(Np_1)].
Then:

(1) ce 4A;
(2) ay(e) = [a,b];
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(3) for any meighborhood U of the critical point,
there is a central cycle v with Jy(vy) C U;

(4) for each central s-cycle v C A, with s > r if
v is reqular and 2s > r if it is flip, there is a
central cycle v/ C A, closer to ¢ than v, and a
k>0 such that f5(J1(v") D J1(7);

(5) f has no homtervals.

The following proposition is implicitly used in a

proof in |Guckenheimer, 1979] (see also Thm. I1.7.9
in [Collet. & Eckmann, [1980)]).

Proposition 8. The set Cy of all central points of
a S-unimodal map f is finite if and only if Ny is of
type Ay or Ay. When Cy is infinite, the only point
of accumulation of the set of all central points of f
is the critical point.

Proof. Suppose first that there are infinitely many
central points. Consider a sequence ¢, of central
points of period n; such that ¢ is closer to ¢ than
qr—1 for all k and suppose that ¢ — ¢ # c.
Then there is some closed nontrivial interval H C
(goos 1 — ¢oo) not containing the critical point. Now,
notice that ny — oo because there is a finite num-
ber of cycles of any given period. Hence ¢ ¢ f"(H)
for any n > 0 since, for any given n, there are k
for which nj; > n and for such & we must have that
cd fiqu,1 —qp) fori=1,...,n; —1. So H is a
homterval, which contradicts point (5) of the theo-
rem above.

By point (3) of the previous theorem, when the
attractor is chaotic (namely N, is of type Ay or As)
there are infinitely many central points. When N, is
of type As, there are infinitely many nodes Vi and
each point p; (7 (Vg )) is central. When the attractor
is a cycle v (namely N, is of type A; or Ay), then
7 is minimal and the interval J!(v) is contained in
the basin of attraction of v and so cannot contain
any point belonging to a cycle. W

The case N7 = A. In this case there are only two
nodes, the fixed endpoint Ny and the chaotic attrac-
tor N1 = A, which is of type As. The chaotic attrac-
tor must consist of a single interval, since the nonin-
ternal fixed point p of f must belong to it (or there
would be a third node) and a trapping region with
more than one component cannot contain any fixed
point. Since ¢ € A, then A = [ca, ¢1].

The general case. In case p > 1, set r =
|7 (Np—1)|- Then the J;(Np_1) are invariant under
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fr and we set f; = f"1.(n,_1)- Then each
fi has just two nodes: the repelling fixed point
pi(Np—1) and the chaotic attractor NN J;(Np—1) =
[¢2r—i—1,¢r—i—1]. Hence, we reduce again the previ-
ous case.

In order to prove the existence of backward
dense orbits, we use the two general results below
about topological dynamical systems.

Definition 20 [Birkhof, ] A dynamical system

f: X — X is transitive if it has a dense orbit.

Several properties equivalent to topological

transitivity can be found in [Kolyada & Snohd,

1997).

Theorem M ﬂm, M] Each transitive map

f has a dense set of points with a backward dense
orbit.

Definition 21 , ] A dynamical system

f X — X is very strongly transitive if, for every
open set U C X, there is a n > 1 such that

Ui, f1(U) = X.

Recently Akin, Auslander and Nagar gave the
following characterization of very strongly transi-
tive systems.

Theorem N [Akin ef all,[2016]. A dynamical system
f X — X is very strongly transitive if and only
if for any v € X and € > 0 there is a N > 0
such that An(z) = Ufil f~%(x) is e-dense, namely
An(z) intersect all balls of radius € in X.

Proposition 9. The restriction of f to N, = A is
very strongly transitive.

Proof. The general case argument above shows
that it is enough to consider the case p = 1. Since ¢
has a dense set of counterimages in A and there are
central cycles arbitrarily close to ¢, we can assume
without loss of generality that U = int(J;(7y)) for
some central cycle ~.

As shown in Proposition [ the fixed point p is
a flip central point for f. Set J; = [p,p]. Then we
have that f(J1) = [p,c1] and f2(J1) = [co, D], sO
that

A= f(J)U (), f(T)N f2(J1) = {p}.

Starting from the central cycle v9 = {p}, we
can build a sequence of central cycles v so that, for
each k > 1, Ji(vx) C Ji(vk—1) and there is a ny > 2
such that ™ (J1(vx)) D Ji(7k—1). In particular, for
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each k > 1 there is a N} such that [N (Jy (7)) D
J1(70). Since, by Proposition [§, central points can
only accumulate at ¢, then limy_, o p1(7x) = ¢ and
so there is some r > 1 such that ~, is closer
to ¢ than v and so f™ (Ji(y)) D Ji(y). Hence
() D [pyer] and fT2(Ni(7)) D [e2, Bl
namely U772 fi(J, (7)) = 4. ®

Now we are ready to prove our main result on
chaotic attractors.

Theorem 4. Every point of a chaotic attractor A
of f has a bitrajectory backward dense in A. In
particular, every point of an attracting node N of
type As has a backward orbit dense in N.

Proof. By Theorem [Ml applied to the restriction of
f to A, there are points in A having a backward
orbit dense in A. Let b = (b1, bs,...) be one of these
backward dense orbits and let g be any point of A.
Let x1 be a counterimage of z( of some order ny > 0
closer to by than 1/1. Such counterimage exists by
Theorem [Nl Then let x5 be a counterimage of x1 of
some order ny > 0 closer to by than 1/2 and so on.
All these counterimages exist by Theorem The
backward orbit (zg,z1,22,...) is easily seen to be
dense as well. W

The case of nodes of type A;. As we pointed out
in Remark 2, a node of type As contains, besides
a chaotic attractor which is also a cyclic trapping
region, the following two sets: (1) a repelling Can-
tor set, with which it shares a cycle, and (2) inter-
vals of points that are not nonwandering. Since no
backward trajectory can asymptote to points that
are not nonwandering, in this case no point has a
bitrajectory which is backward dense in the whole
node.

4.5. Backward limits of
non-chain-recurrent points

As pointed out initially by Conley in the continuous
finite-dimensional case, and extended later by Nor-
ton to the discrete case , ], all bitrajec-
tories through non-chain-recurrent points have their
backward and forward limits belonging to different
nodes, so that they determine an edge of the graph.
Below we present two examples that turn out to be
typical.

Backward limits of level-0, 1 points when N;
is a repelling cycle. This happens, for instance,
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in case of the logistic map f = ¢, for p € (3, uas).
We already discussed in Example 5 the structure of
the sets Uj.

Points in U_; have no counterimage, so
sap(z) =0if v € U_y.

Each = € Uy has two counterimages but one
of them lies in U_q, so there is a single bitrajec-
tory passing through each such z. Since x = 0 is
backward attracting, this bitrajectory asymptotes
backward to 0. Hence, sa¢(x) = Ny if x € Up.

More generally, each point in [0, ¢;] has a back-
ward trajectory asymptoting to 0 since any interval
[0,¢], e > 0, will eventually cover the whole image
of f under iterations, so sa(x) D Ny if x € [0,¢q].
Indeed, recall that an interval not containing ¢ such
that none of its iterates contain c is called a homter-

val (see [De Leo & Yorke, 20214 for more details on
homtervals and on the argument belowi. As a con-
sequence of a fundamental result of
ﬂﬁ@], the only configuration when a homterval can
arise in a S-unimodal map is when the attractor NN,
is a cycle and the node N,_1 is also a cycle. In that
case, the interval between a point x € N, and a
point y € N,_1 such that no other node point lies
in [z,y] is a homterval. No other type of homter-
val can arise. This means that, in all possible cases,
under iterations [0,e] will eventually cover ¢ and
S0, in the following step, will cover all points in the
image of the map.

Now consider the period-2 cyclic trapping
region of Ny, namely the two intervals

J1(N1) = [q1, 1], J2(N1) = [p1, g2

where ¢; = p1 and f(g2) = ¢1. Notice that both J;
and Jy are forward invariant under f = f2 and let
us set g = f|,. Since ¢ & Jo, the map g : Jo — J;
is a diffeomorphism. For the same reasons above,
within J; only points in [f(c),p1] = [c2,p1] have
a backward trajectory asymptoting to p;. Hence, in
Jo, only points in [g7" (c2), ¢~ (p1)] = [p1, 1] have a
backward trajectory asymptoting to p;. This means
ultimately that the only points with backward tra-
jectories asymptoting to p; are the points in the
interval [co,cq]. Since Uy C [c2,¢1], we have that
saf(x) = NoU Ny if z € U;.

Backward limits of level-0,1 points when N;
is a repelling Cantor set. This happens, for
instance, in case of the logistic map f = ¢, for
p € (14 2v2,3.868...). We already discussed in
Example 6 the structure of the sets Uy.
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Just like the case above, points in U_; have no
bitrajectories passing through them and all points
in [0,c1] have a backward trajectory asymptoting
to 0.

As discussed in Sec. £2 the Cantor set Nj is
the set of all chain-recurrent points in [cg, ¢1] that
do not lie in J(Ny). Each point z € [co,c1] is
either a point of Ny or lies in a counterimage of
J1(N7). The case of points of N; has been dis-
cussed in Sec. In the other case, since by defini-
tion N1 = [c2, c1]\ U0 F7F(J1(Ny)), every point in
[c2, c1]\ V1 belongs to a backward trajectory start-
ing in the interior of J;(/N7) and asymptoting to IVj.
In any case, then, sag(x) = No U Ny if z € Uj.

4.6. Main theorem

We are now ready to prove the main result of the
article.

Theorem 5 [sa-limits of S-unimodal maps|. As-
sume that f satisfies (A), namely that f is a S-
unimodal map with at least two nodes. If x is a level-
k point, k < p, then sop(x) = Uf:o N;. If k =p and
N, is not of type As, then sap(z) = J_, Ni = Qy
for all level-p points. If N, is of type As, denote by
C and A respectively the repelling Cantor set and
the attractor contained in N,. Then sof(x) = Qf
if v € A and sayp(x) = Uf;ol N; UC = Qy\int(A)
otherwise.

Proof. We start by pointing out that, for k =
0,...,p—1, K(Nyg) is the set of all points of Jint(N})
that have a backward trajectory asymptoting to
Niy1. Indeed, let 7 be the period of 7 (Ny) and
set f = f7. Then each J;(Ny) is forward-invariant
under f and after restricting f to each of the .J;(N},)
we reduce to either one of the two case examples in
Sec.

Since K(N;) C K(Ny) for k' < k, then
every point of K(Nj) has also a backward tra-
jectory asymptoting to Nyy1 for k' < k. Since
Uy C K(Nj_1), then say(x) D Uf:o N; for every
x € Uy,. Moreover, since U N J™(Ny 1) = (), then
no point of Uy can asymptote to nodes with &' > k.
This shows that sof(x) = Uf:o N; for every level-k
point, k < p.

Consider now the case & = p. As showed in
Sec. B4} each point of the attracting node N, has
a backward trajectory dense in N, for all types
of attracting node except As, so in all those cases
sagp(z) = o Ny = Qy for every level-p point.
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When N, is of type As, the node contains points
which are not nonwandering and these points can-
not be obtained as limit of backward trajectories.
Recall that, in this case, the attractor is a cyclic
trapping region and C' is the set obtained from
N, after removing from it all counterimages of the
component of A containing the critical point c.
Hence, if z € A then its sa-limit contains both
A, because each point in a chaotic attractor has
a backward dense orbit, and C, because of the rela-
tion mentioned above between A and C, so that
saf(x) = Qy. For the same reasons, if € N,\A,

then say(x) = Uf;ol N,uC. 1

4.7. Examples of Uy, sets

Several examples of Uy sets are shown in Figs. GHS]
in the concrete case of the logistic map £,,.

Figure [0 uses Fig. @] as background, although
we omit the points labels to improve the picture’s
readability. Over this background, we overlap the
curves ¢ = Eﬁ(c), 1 < k <8, and we shade points
of the sets Uy in lime and Uj in red throughout the
whole range of p; we paint the sets Us in blue in
the range when node N, is repelling and is equal
to the 2-cycle {p}, p)}; finally, we paint in olive the
sets Us in the range when node Nj is repelling and is
equal to the 4-cycle {p/,...,p]} for u close enough
to the bifurcation of the 2-cycle attractor.

Note that we shade points in U, with the same
color as 7 (Ny). We leave U_y, the set of points
through which passes no bitrajectory, in white.
Moreover, we dash in two colors the parts of a trap-
ping region 7 (Vi) that are contained in a Uy with
k' < k. For instance, for each point  of 7 (N3) that
is dashed in blue and red, we have sa(z) = NogUNy,
while for each point y of 7 (N3) that is painted in
full blue and is not on the attractor we have that
SO&($) = Ng U N7 UNs.

Close to the left boundary of the picture, the
logistic map has three nodes: Ny is the boundary
fixed point, N7 the internal fixed point and Ny a
2-cycle attractor. For all pu € (3.4,3.6), all points
of [0, 1] have a bitrajectory asymptoting backward
to Ny and all points in K(Ny) = [c2,c1] have a
bitrajectory asymptoting backward to Ni. The only
points with bitrajectories asymptoting backward to
the attractor Ny are the points of the attractor
itself.

At pg = 1++/6 € (40, f141), the 2-cycle under-
goes a bifurcation, becomes repelling and a new
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attracting 4-cycle N3 arises. As soon as Ny becomes
repelling, all points in K(N1) = [c2,c4] U [e3,c1]
(and no other point) have a bitrajectory asymptot-
ing backward to it. This type of behavior repeats
at each bifurcation. For instance, at u = 4o we
have an attracting 8-cycle Ny and all points in
K (N3) = [c2,c6] U [es, ca] Uea, 7] Ues, c1] (and no
other point) have a bitrajectory asymptoting back-
ward to V3.

Figure [ uses Fig. Bl as background, although
we omit the points labels to improve the picture’s
readability. Over this background, we overlap the
curves ¢ = Kﬁ(c), 1 < k <6, and we shade points
of the sets Uy in blue and of the sets U; in orange
throughout the period-3 window. Finally, we paint
in teal the points of the sets Us in two smaller ranges
of parameters, one about the parameter value us;
and one about us3. Note that we shade points in
Ui with the same color as 7 (Ny). We leave U_; in
white.

As in case of Fig. [l we dash in two colors the
parts of a trapping region 7 (N}) that are contained
in a Uy with k¥’ < k. Moreover, we set to transpar-
ent the interior of the line showing 7 (Nj) when
its points belong to Uy with &’ > k. For instance,
in Fig. B at p = pso, for all points z € [co,¢1] C
J1(No) = [0,1] we have that say,(x) = No U N,
where N is the red Cantor set, so we paint Ji(Ny)
as a hollow blue line within that range.

Close to the left endpoint of the period-3 win-
dow, the logistic map has three nodes: Ny is the
boundary fixed point, N; the red Cantor set and
Ny is the attracting 3-cycle that arose together with
the repelling 3-cycle at the boundary of the J;(IN1)
(recall that the right endpoint of the period-3 win-
dow is the parameter value at which this repelling
3-cycle falls into a chaotic attractor). As above,
all points in [0,c¢1] have a bitrajectory asymptot-
ing backward to Ny and all points in K(Ny) =
[c2,c1] have a bitrajectory asymptoting backward
to Nl.

When the attracting 3-cycle bifurcates, we have
the same kind of behavior just illustrated above for
Fig. 6 For instance, after the first bifurcation (e.g.
see pt = us1) all points in K (N7) = [cg, ¢5]U]cs, c]U
[c4, c1] have a bitrajectory asymptoting backward to
the repelling 3-cycle Na.

Case 5o is completely analogous to case usg,
the main difference being that at pso the attractor
is not a cycle but the trapping region

Ny = {[027 05]7 [037 06]7 [04701]}'
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When p = pus3, N2 is the blue Cantor set and
the attractor N3 is a 9-cycle. Similarly to the case
i = ps1, only points of K(N7) have a bitrajectory
asymptoting backward to the blue Cantor set, while
every point in K (Ny) has a bitrajectory asymptot-
ing backward to the red Cantor set. More details
are visible in Fig. 8] where we show a detail of the
central cascade.

4.8. Two corollaries

Theorem [B] can be used to prove the Conjecture by
Kolyada, Misiurewicz and Snoha in the case of S-
unimodal maps as follows.

Corollary 2. Let [ : [a,b] — [a,b] be a S-unimodal
map. Then sag(x) is closed for any = € [a,b].

Proof. The only nontrivial case is when the attrac-
tor is a Cantor set and x belongs to it. In this case,
p =00 and Noo = [);o o J (V).

To see this, we first show that ), J™(N;) is
a node. Indeed, let x and y be any two points in it.
Given any e > 0, there is some n. such that there
is some component of Uy, in both (z — e,z 4+ ¢) and
(y — e,y + ¢) for every k > n.. Hence, there is a
point p’ in the orbit of the periodic point p;(Ng) in
the first neighborhood and one p” in the second, so
that the sequence {z,p’, f(p)),...,f*() = ", y}
is an e-chain from x to y. For the same reason,
{y. 0", fF@"), ..., (") = p/,z} is an e-chain from
x to y. Moreover, z and y are both chain-recurrent
due to the same argument. Hence x and y belong to
the same node, which can only be N, since there is
no other node. Since N, is a subset of each Jit(N;),
these are all points of N..

We showed in the previous theorem that, in this
case, sap(x) = [J;2 Ni, so it is enough to show that
the limit points of the set of nodes coincides with the
attractor. Given any converging sequence xj € N,
k=1,2,...,its limit point cannot be in any set U;,
with ¢ finite, since, from some n on, every point of
the sequence will be out of it. Hence it must belong
to Noo. W

“ 2

The corollary below is a “sa
Theorem [Dt

version of

Corollary 3. Let f : [a,b] — [a,b] be a S-unimodal
map. Then say(c) = Jy N Qg if and only if Ny is
not a superattracting cycle.
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Proof. Notice, first of all, that all repelling nodes
lie in Jy and that the attractor lies inside J if and
only if N, is of type Ag, As or A5 and that, in each
of these three cases, ¢ € N,. Hence, in this case,
sap(c) = Ur_g Nk = Jy N Q. Then notice that
either ¢ € N, or ¢ € Up_;. Indeed, when N, is of
type As, we have that ¢ € IV, and, when IV, is not of
type As, we have that ¢ € J™(N,_1) C K(N,_2)
and Up_1 = K(Np_2)\Np. Hence, when N, is of
type A1 or A; and the attracting cycle does not
contain ¢, we must have that ¢ € U,_1 and therefore
sof(c) = Z;é N = Jy N Qy. Finally, when N, is
superattracting, say(c) contains the attractor but
the attractor does not belong to Jy, so that say(c)
is strictly larger than JyNQy. WA
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