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The high-profile Spectre attack and its variants have revealed that speculative execution may leave secret-

dependent footprints in the cache, allowing an attacker to learn confidential data. However, existing static

side-channel detectors either ignore speculative execution, leading to false negatives, or lack a precise cache

model, leading to false positives. In this paper, somewhat surprisingly, we show that it is challenging to develop

a speculation-aware static analysis with precise cache models: a combination of existing works does not

necessarily catch all cache side channels. Motivated by this observation, we present a new semantic definition

of security against cache-based side-channel attacks, called Speculative-Aware noninterference (SANI), which

is applicable to a variety of attacks and cache models. We also develop SpecSafe to detect the violations of

SANI. Unlike other speculation-aware symbolic executors, SpecSafe employs a novel program transformation

so that SANI can be soundly checked by speculation-unaware side-channel detectors. SpecSafe is shown to be

both scalable and accurate on a set of moderately sized benchmarks, including commonly used cryptography

libraries.
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1 INTRODUCTION
Side-channel attacks have increasingly become a security concern due to their ability to leak

sensitive data quickly and stealthily. They leverage information obtainable by observing the char-

acteristics of a machine during a program’s execution. These attacks have been demonstrated

on modern machines using information from the CPU cache [Bernstein 2005; Osvik et al. 2006],

execution time [Kocher 1996], power usage [Kocher et al. 1999], electromagnetic fields [Agrawal

et al. 2003; Longo et al. 2015] and many more.
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Among all side channels, cache side channels, the focus of this paper, tend to be one of the most
dangerous since they can be launched without physical access to the victim and while maintaining

high throughput. These attacks have been shown to be effective in cloud environments [Ristenpart

et al. 2009; Wu et al. 2012; Xu et al. 2011] and even in Intel’s SGX secure enclave [Brasser et al. 2017;

Götzfried et al. 2017; Schwarz et al. 2017; Van Bulck et al. 2017; Xiao et al. 2017]. Most recently,

Spectre [Kocher et al. 2019] and its variants have shown that speculative program execution creates

a new dimension of side-channel attacks: cache side channels combined with speculative program

execution allow an attacker to learn arbitrary data from a victim’s memory space [Kocher et al.

2019].

To defend against cache side channels, one approach is to manually identify potential vulner-

abilities and fix them in the source code. For example, well-studied cryptographic libraries such

as OpenSSL and libgcrypt, follow this approach. This manual approach is time-consuming, and

might miss vulnerable program points, especially those that elude known vulnerability patterns,

such as Spectre [Kocher et al. 2019]. Another approach typically applied to Spectre attacks, is to

use a compiler-aided patching system to protect every branch in a program, including those that

may not be vulnerable. Unfortunately, blindly protecting every single branch will often result in

prohibitive performance overheads. Moreover, conventional side channels remain.

In this paper, we develop a static program analysis that automatically detects cache side channels

in the source code of unsafe languages such as C, with four important goals:

• Soundness: the analysis catches all cache side channels in a speculative world.

• Flexibility: the analysis reasons about security against a wide range of cache attacks.

• Precision: the analysis embodies cache models to accurately reason about cache status.

• Efficiency: the analysis is applicable to real-world applications.

In the past, much work has been done to automatically detect cache side channels. However,

most of them ([Almeida et al. 2016; Brotzman et al. 2019; Doychev et al. 2013; Doychev and Köpf

2017; Wang et al. 2019a, 2017]) fall short in soundness: they only detect conventional cache side

channels (i.e., in the absence of speculative execution). To detect code vulnerable to Spectre attacks,

a recent tool oo7 [Wang et al. 2019b] searches for vulnerable code patterns—however, no rigorous

definition of side-channel security is provided; as a result, the patterns might miss vulnerabilities.

More recently, sound static analysis [Cauligi et al. 2020; Cheang et al. 2019; Guarnieri et al.

2020] catching cache side channels in a speculative world have been developed. However, they fall

short in flexibility and precision: they all use the program counter security model [Molnar et al.

2006] or the constant-time programming principle [Almeida et al. 2016; Cauligi et al. 2020].As a

consequence, they disallow any branching on sensitive data. While these models are sound and

they simplify static program analysis (as they over-approximate cache effects without modeling the

cache), they also introduce false positives since branching on sensitive data does not necessarily

introduce cache-based side channels. For example, the following program resembles preloading

lookup tables, a permissive and efficient countermeasure against cache attacks on AES:

preload A[0] and A[512]; if (secret) then x:=A[0]; else x:=A[512];

In this example, the value of secret does not affect the final cache status, despite the branch on

sensitive data. Note that such permissive countermeasures have been adopted as options in popular

cryptographic implementations such as libgcrypt and OpenSSL [Doychev and Köpf 2017]. For

conventional cache side channels, various cache side channel detectors (e.g., [Brotzman et al. 2019;

Doychev et al. 2013; Doychev and Köpf 2017; Wang et al. 2019a]) are built on precise cache models

to reduce false positives. However, to the best of our knowledge, no existing sound analysis in a

speculative world meets these flexibility and precision goals.
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In this paper, we first show that, with speculative execution, it is subtle to build a sound, flexible

and precise analysis. In particular, the idea of combining analysis tools for conventional cache side
channels and tools for speculative execution side channels (i.e., tools enforcing security definitions

in [Cheang et al. 2019; Guarnieri et al. 2020]) do not necessarily cover all possible cache side channels.

Indeed, we construct simple code patterns to demonstrate that the combination is sound only when

the conventional side channel detector follows the rigid policy of disallowing any branching

on sensitive data. In other words, it is unsound to combine tools enforcing security definitions

in [Cheang et al. 2019; Guarnieri et al. 2020], for speculative side channels, and tools that use a

precise cache model (e.g., [Brotzman et al. 2019; Doychev et al. 2013; Doychev and Köpf 2017; Wang

et al. 2019a]), for conventional side channels. We also build covert channels on the code patterns

to demonstrate their feasibility. These patterns demonstrate that the ignored attack surface in

previous security definitions are realistic on commodity hardware. Although we have not detected

these patterns in the wild in our experiments, we emphasize that our contribution is to identify the

limitations of existing security definitions, and show that an attacker can utilize them to bypass

state-of-the-art tools for detecting cache side channels.

Second, we propose a security definition for side-channel security against all forms of cache side

channels (including conventional, Spectre, and the new Spectre instances introduced in this paper).

Our security definition can be soundly applied to a variety of attack and cache models. Then, we

propose SpecSafe to detect violations of the security definition in reasonably sized applications.

At the core of SpecSafe is a novel and provably sound program transformations that allow us to

soundly capture all cache side channels, including those manifesting from speculative execution, by

reusing existing conventional side channel detectors. SpecSafe then performs fine-grained symbolic

execution on the transformed code to identify vulnerable code regions.

In order to show the effectiveness of SpecSafe, we apply it to instances of the Spectre vulnerability

by Kocher [2018], our newly discovered vulnerabilities, along with multiple crypto routines from

libgcrypt 1.8.5.

To summarize, the contributions of this work include:

• New Speculative Cache Side Channel: We analyze and identify the limitations of existing

security definitions used in state-of-the-art tools that detect cache-based side channels manifesting

from speculative execution. Based on the limitations discovered in existing security definitions,

we develop and show the practicality of a new kind of speculative cache attack that belongs to

the Spectre Variant 1
1
attack family, but is more stealthy than existing ones since they cannot be

detected by existing security definitions.

• Speculative-Aware Noninterferece (SANI): Motivated by the new vulnerabilities that elude

existing security definitions, we propose SANI, a security definition that captures conventional

cache attacks, Spectre attacks, and beyond. Unlike other existing security definitions, SANI is

versatile enough to be applied to many different cache models (e.g., LRU and age-based) in a sound

way. Hence, SANI rules out both conventional and speculative cache-based side channels. More

importantly, it can reduce false positives in practical cases when compared with more rigid security

definitions, due to the more accurate modeling of the cache.

• Novel Program Transformation: SpecSafe adopts a novel code transformation that assures

the following property: if the transformed program is free of conventional side channels, then the

original code satisfies SANI (i.e., is free of both conventional and speculative side channels). The

novel design allows us to reuse existing conventional side channel detectors on the transformed

code to enforce SANI on the original code. This is in contrast with other state-of-the-art tools that

1
As in [Kocher et al. 2019], we use “Spectre Variant 1” to refer to Spectre attacks that exploit conditional branch misprediction.

This is the same as “Spectre-PHT” in [Canella et al. 2019].
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temp = A[key*512]

size:512}
key is 1!

cache lines before execution

cache lines after execution

Fig. 1. An example of cache-based side channels.

are built from scratch to detect speculative side channels. Moreover, SpecSafe takes a more holistic

approach by detecting both conventional and speculative side channels simultaneously, which

avoids the potential pitfalls of checking incompatible properties in different tools to get a sound

result. Moreover, we provide a formal proof of the soundness of the code transformation.

• Speculative-Aware Symbolic Execution: The core of SpecSafe is a symbolic execution

engine that reasons about program variables, cache state, and speculative execution at the same

time. After symbolic execution, SpecSafe emits verification conditions for the analyzed program

and feeds them to an SMT solver; satisfiable verification conditions imply a violation of SANI in

the source code.

• Side-Channel Detection: We analyze programs known to be vulnerable to Spectre-like

attacks to demonstrate that SpecSafe is capable of detecting all of the vulnerabilities. We also show

that SpecSafe is the only tool that can detect the new side channels discovered in this work. Lastly,

we apply SpecSafe to a variety of crypto benchmarks from libgcrypt to analyze code used in practice.

We find two previously unknown possible side channels, which to the best of our knowledge, have

not been found before in libgcrypt ciphers.

2 BACKGROUND ANDMOTIVATION
2.1 Conventional Cache Side Channels
A program might leak information via its secret-dependent footprints in the CPU cache, known as

cache side channels. We use the simple example in Figure 1 to illustrate how confidential data, i.e.,

the value of key, affects cache. In this example, A is an array storing public data and we assume

cache line size to be 512 bytes. Note that each possible value of key results in the access of a different

cache line in this example; as a result, an attacker can learn the value of key by observing which

cache line is being accessed, through techniques such as prime and probe [Bonneau and Mironov

2006; Liu et al. 2015; Osvik et al. 2006; Tromer et al. 2010; Zhang et al. 2012].

2.2 Speculative Cache Side Channels
Speculative Execution. Modern CPUs employ many optimizations to improve performance. One

such optimization is speculative execution. Speculative execution executes instructions speculatively

but ensures that the instructions are retired in sequential order. One example on modern CPUs

that will cause speculative execution is when the CPU encounters a branch instruction. If the

CPU does not yet know the result of the branch (e.g., waiting on a memory read), it will guess the

condition using a branch predictor and speculatively jump to the instructions corresponding to the

guessed branch. If the branch predictor is wrong, it would have to undo the changes made to the
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architectural state to ensure correctness and then execute the correct branch. However, changes to

the microarchitectural state, such as the CPU cache, are not rolled back. Most importantly, when

the rolled back instructions leave secret-dependent footprints in the CPU cache, an attacker can

reveal them since the microarchitectural state is not rolled back.

Spectre Attack. Spectre [Kocher et al. 2019] is a vulnerability that utilizes speculative execution

to leak the content of an arbitrary location from a victim’s memory space. This is possible since

secret-dependent footprints left by speculative execution are not rolled back in architectural

components such as the CPU cache. The example code fragment shown in Listing 1, taken from

[Kocher et al. 2019], demonstrates a Spectre variant 1 vulnerability, the focus of prior static program

analysis [Cheang et al. 2019; Guarnieri et al. 2020; Wang et al. 2019b]:

1 if (idx < b_size) {

2 temp = A[B[idx ]*512]

3 }

Listing 1. Spectre Example

Assume both A and B are arrays of some size and contain only public information. Somewhere else

in the victim’s address space, there is some sensitive data that the adversary aims to learn. Further,

assume that the adversary can control idx, and she can train the branch predictor such that it

predicts that idx < b_size evaluates to true. Then, the adversary can supply an out-of-bounds

idx value to make B[idx] access the sensitive data of interest. The speculative execution of the

example code will then result in an out-of-bounds memory access to read the sensitive data and

access a cache line that is determined by the value of the sensitive data. The adversary can then

learn the value of the sensitive data by performing a cache attack to determine which cache line is

accessed in array A (as we illustrated in Figure 1, except that the confidential data now is B[idx]
instead of key).

2.3 Spectre Defenses
Many defenses have been proposed to prevent Spectre Variant 1 attacks. At the hardware level,

one can partition the cache into security domains to prevent sharing (e.g., [Kiriansky et al. 2018]).

Other systems [Yan et al. 2018] seek to prevent speculated memory accesses from being visible

until the program uses them.

At the software level, there are two popular approaches. The first uses fences to prevent specula-

tion. The other, known as speculative load hardening (SLH) [Carruth 2019], introduces artificial

data dependencies and masking to secure data.

Fencing. The fencing defense places a special hardware instruction after conditional branches

to prevent speculative execution from happening. For example, to protect the code in Listing 1, a

lfence instruction would be placed between lines 1 and 2. The effectiveness of the defense assumes

that the architecture prevents speculative execution past the lfence instruction, which has been

confirmed by Intel on current Intel architectures [Intel 2018b]. A downside of the defense, however,

is its high overhead when the defense is applied to all conditional branches (which essentially

turns off speculative execution). One refinement is then to apply it only after branches that are

potentially vulnerable to Spectre, which reduces overhead.

Speculative Load Hardening. Speculative Load Hardening, first described by Carruth [2019], uses

two components to protect a conditional branch: creating a data dependence on the branch test

and masking sensitive data during mis-speculation.
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Typically, the implementation of SLH uses conditional moves to create a data dependency

between potentially dangerous memory loads (i.e. line 2 of Listing 1) and the condition flags. The

data dependency prevents the later dependent loads from executing before the branch condition

has been resolved on current processors [Carruth 2019; Oleksenko et al. 2018]. Speculative load

hardening also uses a mask as a fallback to ensure even if the load happens no sensitive data is

revealed. The mask sets the address accessed during a mis-speculation to be a fixed value so no

data can be leaked.

2.4 Threat Model
We assume an adversary who is co-located on the same physical machine as the victim. The

adversary cannot directly observe the victim’s program counter, memory bus and execution time.

However, he can control the victim’s branch predictors; he further shares a data cache with the

victim, and can observe the state of the shared data cache. In the rest of the paper, whenever we

mention cache, it refers to the data cache.

Note that our threat model is weaker than the attack model in constant-time programming

[Almeida et al. 2016; Cauligi et al. 2020; Daniel et al. 2020], which also assumes that the adversary

can directly observe the victim’s program counter and execution time. However, our threat model

more precisely reflects the threat models behind Spectre attacks [Kocher et al. 2019] and other cache

attacks in cloud environments [Ristenpart et al. 2009; Wu et al. 2012; Xu et al. 2011]. The threat

model is also consistent with the ones in prior work on conventional cache side channels [Brotzman

et al. 2019; Doychev et al. 2013; Doychev and Köpf 2017; Wang et al. 2019a, 2017]. Moreover, we

consider a trace-based attacker, in which an attacker can learn the shared cache state after each

program point in the victim program; this models asynchronous cache attacks [Gullasch et al. 2011;

Liu et al. 2015; Yarom and Falkner 2014].

Among all known variants of Spectre attacks, we focus on Spectre Variant 1 attacks [Kocher et al.

2019], also classified as Spectre-PHT attacks in [Canella et al. 2019], which utilize speculation due

to conditional branches. Hence, our threat model not only covers “bounds check bypass” variants

as described by Intel [2018a], but also other attacks exploiting conditional branch misprediction,

including the new instances we present in Section 4.1. However, speculative execution caused by

indirect branches [Kocher et al. 2019], return instructions [Koruyeh et al. 2018; Maisuradze and

Rossow 2018] and speculative stores [Horn 2018] are outside the scope of this paper; we leave a

static analysis targeting those Spectre variants as future work.

3 RELATEDWORK
We describe previous work that identifies different classes of cache attacks using various program

analyses.

3.1 Conventional Cache Attacks Detection
SpecSafe is built on symbolic execution. A few existing systems also use symbolic execution to

model cache behavior in programs and detect potential side channels. One such approach is CacheD

[Wang et al. 2017], which looks at memory accesses along a concrete program trace, and identifies

a side channel when a memory access’s address depends on a secret value. However, this approach

analyzes only one concrete trace; it may miss side channels that can be exploited only by observing

multiple execution paths. More relevant is CaSym [Brotzman et al. 2019], which employs a sound

symbolic execution approach to verify the absence of cache side-channels using various abstract

cache models. This approach is able to capture all program execution paths, and thus does not miss

cache side channels for a given attack and cache model. However, like CacheD, CaSym [Brotzman

et al. 2019] cannot detect speculative cache side channels.
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Another common approach is to use abstract interpretation to reason about the cache state [Doy-

chev et al. 2013; Doychev and Köpf 2017; Wang et al. 2019a]. CacheAudit [Doychev et al. 2013;

Doychev and Köpf 2017] uses abstract interpretation to compute an upper bound on the amount of

leakage possible via side channels using the CPU cache. This is achieved by using a variety of cache

and attack models. Almeida et al. [2016] propose to use abstract interpretation in combination with

a 2-safety property to verify programs to be constant-time. CacheS [Wang et al. 2019a] uses scalable

abstract interpretation to pinpoint where in a program leakage happens. Besides using a different

approach of static analysis, none of these systems can detect speculative cache side channels.

3.2 Spectre Side-Channel Detection
More recently, automatic static analysis for Spectre-style attacks have been proposed. One of

the first such attempts is oo7 [Wang et al. 2019b]. It uses taint analysis along with predefined

code patterns to detect potential Spectre variant 1 vulnerabilities in programs. However, it does

not provide a security definition of what kinds of side channels it can identify, and as we will

show, their pattern-based approach may miss new Spectre side channels. The most related work

to ours is Spectector [Guarnieri et al. 2020], which offers both a formal security definition called

speculative noninterference (SNI) and uses symbolic execution to detect violations of SNI. However,

it assumes the program counter security model [Molnar et al. 2006] and hence, disallows any
branching on sensitive data. Moreover, as we show in Section 5, when combined with other

attack models, SNI might miss vulnerabilities caused by speculative execution. A parallel work

to Spectector, Cheang et al. [2019] present a similar security definition, called trace property-

dependent observational determinism (TPOD). While this definition has been specified as a 4-safety

property, it is noted in [Cheang et al. 2019; Guarnieri et al. 2020] that it is similar to SNI. A recent

work called InSpectre [Guanciale et al. 2020] builds on these ideas to detect multiple variants of

Spectre vulnerabilities not captured by other existing works. Unlike all symbolic executors above

that face the code coverage limitation (i.e., the code is not verified until all paths are analyzed by

those tools), SpecSafe uses a novel program transformation that soundly removes loops in the

original code.

Additionally, SpecFuzz [Oleksenko et al. 2020] uses dynamic symbolic execution to detect bounds-

check bypass vulnerabilities using a technique called speculative exposure that modifies an IR to

simulate branch mispredictions. Their technique only detects bounds-check bypass during a branch

misprediction, a subclass of Spectre Variant 1 attacks. Hence, SpecFuzz cannot find the new Spectre

instances we discover in this paper, since those instances do not rely on bounds-check bypass.

4 NEW SPECULATIVE SIDE CHANNELS
In this section, we first present examples for new instances of Spectre Variant 1 attacks shown in

Figure 2 and show that such attacks are possible in practice. What makes the new attacks especially

interesting is that, as we show in Section 5, existing security definitions of cache side channels, with

or without speculative execution, fail to catch them. Our new security definition in Section 5, on

the other hand, captures all avenues of cache-based leakage with or without speculative execution.

4.1 Attack Code Snippets
We present three code snippets that demonstrate new kinds of speculative cache attacks, which we

call conditional branch speculative side channels, abbreviated as CB-channels.

To clearly show the leakage in each code snippet, we use "begin . . . rollback" to enclosememory

addresses accessed by instructions that are speculatively executed, but are rolled back due to mispredic-
tion. Consider the code in Listing 1.With idx ≥ b_size and the predictor predicting the true branch to
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1 i f ( key == 0 ) {

2 temp=A[ key ∗ 5 1 2 ] ;

3 }

4 e l se {

5 temp=A[ key ∗ 0 ] ;

6 }

(a)

i f ( key%2 == 0 ) {

temp=A [ ( ( key + 1 ) % 2 ) ∗ 5 1 2 ] ;

}

e l se {

temp=A[ ( key % 2 ) ∗ 5 1 2 ] ;

}

(b)

i f ( key == 0 )

d = a ;

. . .

i f ( a == 0 ) b = 0 ;

e l se c = 0 ;

(c)

Fig. 2. Cache side channels that elude existing security notions. key is a one-bit secret in all the examples.

be taken, the following memory accesses are generated:
2 begin B + idx,A + B[idx] ∗ 512 rollback

Due to the accessed memory address A+ B[idx] ∗ 512 (during speculative execution), the cache line
being accessed reveals the value of B[idx]; hence, the program leaks the memory content at B[idx].

Instance 1. The first instance of CB-channels is shown in Figure 2a. In this example, key is a

one-bit secret and we assume key ∗ 512 < Asize (i.e., there is no out-of-bound access). Although

the code always accesses A[0] without speculation, it emits the following execution subtrace when

key = 1, and the predictor predicts the true branch to be taken: beginA + 512 rollback. Therefore,
the value of key directly affects the cache line being accessed; the value of key can be revealed via

a cache attack.

Instance 2. The second instance, shown in Figure 2b, is more subtle than Instance 1. In this

example, only key is confidential. Depending on the value of key, the following access subtraces
will be generated when the predictor predicts the true branch to be taken:

A + 512 when key%2 = 0

begin A rollback, A + 512 when key%2 , 0

In other words, the cache line corresponding to address A is accessed if and only if the last bit of

key is 1. Note that since the hardware does not roll back microarchitectural effects, including cache

effect, a cache attack can reveal at least one bit of key. We note that in this example no information

is leaked from memory accesses during speculation, but whether speculation happens or not leaks
information. Leaking data solely based upon whether speculation occurs or not, to the best of our

knowledge, has not been previously explored as a source of leakage. Technically, the new attacks

can be classified as instances of Spectre Variant 1 attacks since they use conditional branches. We

note that, while this sample code leaks one bit at a time, if it was in a loop, it could leak multiple

sensitive bits.

Instance 3. The last instance, shown in Figure 2c, is similar to the example in Figure 2b since it

also leaks data based on whether speculative execution occurs. However, the reason for the leakage

is a bit different: in this instance, the leakage occurs as a result of whether or not the variable a
is cached or not. This is because speculation will likely occur only when variable a is uncached.

Depending on the value of key, the following two traces will be generated when the predictor

predicts the false branch at line 5:

key,a,d, . . . ,a,b when key = 0 and a = 0

key, . . . ,a, begin c rollback,b when key , 0 and a = 0

2
We provide the formal program semantics that emits traces and cache models that compute cache states from traces in

Appendix A.
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Accuracy >75% >95% >99%

Instance 1 64747 11181 2038

Instance 2 7040 2652 1630

Instance 3 5355 120 12

AES-128 (with Instance 1) 2456 1816 1604

Table 1. The throughput (bits per second) of the new side channels in Figure 2 as well as AES-128 embedded
with Instance 1 at different levels of accuracy.

Note that when key = 0, speculative execution is unlikely to occur for any reasonable speculation

depth since a is cached at line 4 due to an earlier read in d=a; the second trace has a uncached

when reaching the second branch, and therefore there is speculative execution since the processor

will need to wait for a to be fetched from memory.

Whether key is 0 or not is revealed by two side channels in the code: (1) whether the cache

lines corresponding to a and d are accessed after the first branch, and (2) whether the cache line

corresponding to variable c is accessed or not. We note that the first one is a conventional side

channel, but the second one only shows up with speculative execution.

Although all examples in Figure 2 contain key-dependent branches, they are not essential.

Consider the following variation of Figure 2c:

a = arr[key *512];

...

if (arr [0]) b = 0;

else c = 0;

In this case, we know that arr[0] is cached only if key is zero. As discussed previously, the presence
or absence of speculation again leaks the value of key in this example.

4.2 Measuring Channel Throughput
For each of the samples in Figure 2, we construct an attack to reveal confidential data by mostly

following the Spectre attack code presented in [Kocher et al. 2019] as a template. The only subtlety

is for Instance 3; we need to ensure enough time elapses to allow the branch condition’s data cached

before line 5 while not allowing instructions to cause it to be evicted from the cache. We insert a

sufficient number of NOP to tackle the issue.

Moreover, we demonstrate how to use these code snippets as gadgets when they are embedded

inside sensitive applications to exfiltrate sensitive data. This is interesting since, as we will show in

Section 5, state-of-the-art analysis for speculative side channels cannot detect them. In particular,

we embedded Instance 1 code into the AES encryption routine so that it reveals one bit of the

encryption key per AES encryption and obtain a reasonable amount of bandwidth as shown in the

last row of Table 1.

Results. Table 1 shows the throughput of each code snippet with various accuracy rates. Here,

accuracy refers to the percentage of bits correctly detected. Note that each of the code patterns

presented in Figure 2 can leak thousands of bits per second with high accuracy.

The results indicate that CB-channels can leak significant amounts of data in a short period of

time, even though they do it bit by bit. We also note that the throughput difference among the

attacks largely depends on the number of operations in each code fragment.
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Statements
s ::= s1; s2 | skip | fence | X := E | A[X ] := E |

if B then S1 else S2 | while B do S
Expressions
E ::= n | X | A[E] | E1 ⊗ E2
Boolean Expressions
B ::= E1 ⊙ E2 | ¬B | B1 ∧ B2 | B1 ∨ B2

where ⊗ represents binary arithmetic operations, and ⊙ represents binary comparison operators

Fig. 3. Language Syntax

5 SPECULATIVE-AWARE NONINTERFERENCE
We first formalize language, attack and cache models to reason about cache side channels. Then, we

show that, except under the most conservative model, existing security definitions for cache side

channels cannot identify the new CB-channels in Figure 2. Then, we introduce speculative-aware

noninterference (SANI), a new semantic definition of cache side-channel security against a variety

of attack and cache models.

Language Syntax. To formalize SANI and compare it with previous security definitions, we

define a simple imperative language in Figure 3. This language models important features of the

C language, such as sequential composition, assignments, branches, and loops. skip represents a
no-op, which becomes handy to model single-sided branches, for instance. The only non-standard

command is fence, which is a special command that will temporarily disable speculation.

For expressions, the language uses n as a numerical constant, X as a program variable, A[E] an
array with a base location of A at offset E. Lastly, the language allows both arithmetic operations

using ⊗ and Boolean operations using ⊙ on two expressions.

Speculative Program Semantics. Unlike standard semantics without speculation, the speculative

semantics is parameterized on two features:

• prediction oracle O: a partial function that takes the id of a branch command and returns a

queue of booleans that predict the outcomes of the branch.

• speculative transaction’s lengthw : during speculation, instructions from the reorder buffer

are executed speculatively; so the size of the reorder buffer on a processor serves as an upper

bound on the maximum length ofw [Doweck et al. 2017].

Since the semantics mostly follows prior work [Guarnieri et al. 2020], we omit the evaluation rules

(formalized in Figure 7 in the Appendix). Given a program s , an oracle O and transaction length

w , we use JsKO
⟨m,w ⟩

to denote the sequence of emitted events of s with initial memory m. Each

event tracks the memory locations being accessed and program instructions being executed; we

use pc(i) to denote the latter. Finally, we use τ to denote event traces, and assume a trace view

model view (to be defined next), which intuitively specifies the side channel information visible to

the attacker. Hence, two events traces τ and τ ′ are indistinguishable for an attacker with view if
view(τ ) = view(τ ′).

Attacker View and Cache Model. To reason about cache side channels, one crucial and challenging

question is how to model attacker’s view of the cache. To do so, we first assume no cache model and
define attacker’s view as done in [Doychev and Köpf 2017] – an attacker model can be abstracted

as a projection of τ that is visible to an attacker. For instance, the most conservative model is when

the attacker can directly view all the memory locations being accessed and program instructions
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being executed (i.e., view(τ ) = τ . A block-trace observer [Doychev and Köpf 2017] models attackers

that can monitor memory accesses at the granularity level of cache lines; it can be formalized (on

a 64-bit machine with cache line size of 512 bits) as τ ⇂63:8mem , a projection of τ that only contains

bits 8 to 63 of each memory access, excluding pc ′s . A hierarchy of memory trace observers can be

formalized in a similar way [Doychev and Köpf 2017].

The definition above implicitly uses trace projection to estimate cache effects. For better accuracy,

we can tailor a more detailed cache model cacheM(τ ) that computes the (abstract) cache state at the
end of a subtrace τ , which captures the attacker view at the corresponding program point. Hence,

we define the attacker view with projection⇂ and cache model cacheM on the entire trace τ as:

view(τ ) ≜ cacheM(∅), cacheM(τ ⇂≼1), · · · , cacheM(τ ⇂≼ |τ⇂ |)

where τ ⇂≼i represents the prefix of τ up to position i . As another example, a more realistic cache

model (e.g., LRU model) might only return the last memory location on τ when it is not among

the most recently used locations. We refer to [Brotzman et al. 2019; Doychev et al. 2013] for

various cache models ranging from very intricate models including cache size and replacement

policies to abstract cache models that provide a good balance between analysis scalability and

precision [Brotzman et al. 2019].

In this paper, we develop a general static analysis (Section 6) that can be parameterized on any

attacker view defined as above. However, for simplicity, we will use a concrete and representative

attacker view, called block trace view, for the rest of this section:

viewBT(τ ) ≜ τ ⇂63:8mem

This attacker view is particularly interesting since (1) most known cache-based attacks exploit

observations at the granularity of cache lines, (2) most tools for detecting conventional cache side

channels use this attacker view
3
, and (3) recall that we will show that conventional side channel

detectors are unable to catch the new CB-channels in Figure 2; a tool based on more precise cache

models [Brotzman et al. 2019; Doychev et al. 2013] will miss vulnerabilities if they are missed under

viewBT.

5.1 Limitations of Existing Definitions
5.1.1 Conventional Cache Side Channels. Cache side-channel security can be formalized as a

noninterference property [Goguen and Meseguer 1982]: confidential data does not affect the cache

state. Let policy P be a set of public variables. We first define a low-equivalence relation on memory

as follows:

Definition 1 (Low Eqivalence). Given a policy P , two memoriesm1 andm2 are low-equivalent
according to P , written asm1 ≃P m2 if and only if ∀x ∈ P .m1(x) =m2(x).

To capture side channels without speculation, we note that given an oracle that perfectly predicts

every single branch outcome and with w = 0, the program semantics coincides with standard

semantics without speculation. Hence, we define the perfect oracle to be the one that correctly

predicts every single branch outcome for the execution of program s on memorym.
4
To simplify

notation, we use JsKperf
⟨m,w ⟩

to denote the execution of s under m, transaction length w , and the

corresponding perfect oracle. Cache side-channel security without speculation is then formalized

as follows:

3
We note that this is the attack model assumed by CacheD [Wang et al. 2017] and CacheS [Wang et al. 2019a]; it is called

“block-trace observer” in [Doychev and Köpf 2017].

4
Note that since a program s might take different control flows during different executions, the perfect oracle is parameterized

with both s andm.
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Definition 2 (Cache noninterference (CNI)). A program s with policy P satisfies CNI if for all
O,m1 ≃P m2, we have

view(JsKperf
⟨m1,0⟩

) = view(JsKperf
⟨m2,0⟩

)

Consider the code in Figure 1 with policy P ≜ {A≤a_size,A}, meaning that the address of A and

the value of A’s elements within bound are public. Then, it is easy to show that withm1 ≃P m2

butm1(key) = 0 andm2(key) = 1, their memory trace projections are different betweenm1 andm2.

That is, the program violates CNI, and hence, is vulnerable to traditional cache attacks with viewBT.

5.1.2 Speculative Side Channels. Definition 2 falls short for Spectre attacks since it completely

ignores speculative execution. Recent work [Cheang et al. 2019; Guarnieri et al. 2020] proposed

new security definitions to identify side channels that only exhibit themselves with speculative

execution. In this paper, we focus on the definition called speculative noninterference (SNI) [Guarnieri
et al. 2020] since both security definitions proposed concurrently by Guarnieri et al. [2020] and

Cheang et al. [2019] are similar, despite different ways of formalism [Cheang et al. 2019].

Informally, SNI requires that, for everym1 ≃P m2, if their non-speculative traces have exactly
the same event traces, including program counters, then their speculative traces will do the same.

We present a version of SNI generalized with an attack view as follows and emphasize that the

original SNI definition in [Guarnieri et al. 2020] assumes viewSNI(τ ) = τ .

Definition 3 (SNI-GEN). A program s with policy P satisfies SNI-GEN with transaction lengthw
if for allm1 ≃P m2,

view(JsKperf
⟨m1,0⟩

) = view(JsKperf
⟨m2,0⟩

) =⇒ view(JsKmis
⟨m1,w ⟩

) = view(JsKmis
⟨m2,w ⟩

)

where JsKmis
⟨m,w ⟩

is the execution of s under m, transaction length w , and an oracle that always

mispredicts (called the always-mispredict speculative semantic in [Guarnieri et al. 2020]). This

approach proposes that the maximum leakage occurs when a mis-speculation occurs, which we

show next may not always be the case.

5.1.3 Limitations of Existing Security Definitions. SNI is defined to detect side channels that only

show up with speculative execution. However, as we show next, information leakage in Figure 2

remains "undetected" by both CNI and SNI. We will discuss instance 2 (Fig. 2b) in detail to identify

the limitations; other variants are also vulnerable for similar reasons as instance 2.

With instance 2, consider two low-equivalent memories withm1(key) = 0 andm2(key) = 1, we

have

JsKperf
⟨m1,0⟩

= key,pc(2),key,A + 512, temp

JsKperf
⟨m2,0⟩

= key,pc(5),key,A + 512, temp

JsKmis
⟨m1,w ⟩

= key, begin pc(5),key,A, temp rollback,

pc(2),key,A + 512, temp

JsKmis
⟨m2,w ⟩

= key, begin pc(2),key,A, temp rollback,

pc(5),key,A + 512, temp

Limitation 1: SNI, which instantiates Definition 3 with viewSNI(τ ) = τ , assumes a (conservative)

cache side channel detector that rejects any program with a secret-dependent branch. This is

dangerous since the assumption is implicit in the definition, and state-of-the-art detectors for

conventional cache side channels do not necessarily follow this assumption: as discussed earlier,
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most tools for detecting conventional cache side channels use the block trace view viewBT, or an
even more precise cache model.

To see why a mismatch in attacker views is problematic, we first point out that with the block

trace view viewBT (which filters out PC values in traces), Definition 2 holds. Note that despite a

secret-dependent branch in instance 2, there is no cache side channel in non-speculative execution,

since the same sequence of memory addresses are accessed. Further, SNI holds since the assumption

viewSNI(JsK
perf
⟨m1,0⟩

) = viewSNI(JsK
perf
⟨m2,0⟩

) is false due to JsKperf
⟨m1,0⟩

, JsKperf
⟨m2,0⟩

. Hence, both CNI (with

viewBT or a more precise cache model) and SNI (with viewSNI) fail to reject the vulnerable code of

instance 2. But, as we showed in Section 4.1, the code leaks information via a cache side-channel

only when speculative execution is enabled.

Limitation 2. Instance 2 also shows a more fundamental limitation of SNI and its generalized

form SNI-GEN: they both ignore leakage resulting from whether or not to roll back a prediction

transaction.

To see that more clearly, we use viewBT for both CNI and SNI-GEN, which avoids the mismatching

attacker view issue discussed in Limitation 1. It is easy to check that the traces satisfy both

Definitions 2 and 3 (with viewBT) due to the same sequences of memory addresses being accessed

under oracles perf and mis. Nevertheless, whenever the branch predictor O is trained to predict

that the true branch should be taken, the program will produce the following two traces givenm1

andm2 respectively:

JsKO
⟨m1,1⟩

= key,pc(2),key,A + 512, temp

JsKO
⟨m2,1⟩

= key, begin pc(2),key,A, temp rollback,

pc(5),key,A + 512, temp

Hence, the value of key is leaked by deciding whether memory location A is accessed during the

execution.

With a more careful inspection, we observe that the issue here is that SNI only checks information

leakage between two executions that both mispredict. However, the fact that misprediction might

also leak information. Hence, SNI-GEN is insufficient under various attack models, such as viewBT:
with the same predictor, one execution (JsKO

⟨m1,1⟩
) might not have a misprediction while the other

execution does (JsKO
⟨m2,1⟩

). As we demonstrated in Section 4.1, an attacker can reveal at least one

bit of key from Instance 2.

5.2 Speculative Aware Noninterference
Due to the limitations of SNI-GEN, we introduce a new noninterference definition called Speculative
Aware Noninterference (SANI). The idea behind SANI is to compare the behavior of the program’s

memory access trace with any possible outcomes of the branch predictor, without assuming the

original program is side-channel free. More formally:

Definition 4 (Speculative Aware Noninterference (SANI)). A program s with policy P
satisfies SANI w.r.t. attacker view view and transaction lengthw if ∀O,m1 ≃P m2, we have

view(JsKO
⟨m1,w ⟩

) = view(JsKO
⟨m2,w ⟩

)

To see how the new definition correctly identifies CB-channels, consider Instance 2 again. Given

an oracle that predicts the true branch, and two low-equivalent memories withm1(key) = 0 and
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Fig. 4. SpecSafe’s workflow.

m2(key) = 1, we have

JsKO
⟨m1,1⟩

= key,pc(2),key,A + 512, temp

JsKO
⟨m2,1⟩

= key, begin pc(2),key,A, temp rollback,

pc(5),key,A + 512, temp

Hence, SANI is violated since the cache line corresponding to address A is only accessed in the

second trace.

Take Away. SNI (i.e., Definition 3 instantiated with viewSNI) is not compatible with many tools

for detecting conventional cache side channels. Under other (more precise) cache models, however,

SNI-GEN is unsound since it ignores leakage resulting from whether or not to roll back a prediction

transaction, as illustrated by Instance 2. On the other hand, the SANI definition (Definition 4) is

applicable to a variety of cache models, including the ones used by state-of-the-art cache side

channel detectors. To classify conventional vs. Spectre side channels, we can use CNI (Definition 2)

vs. SANI. For the examples presented in Figure 2, we can correctly classify Instance 1 and Instance

2 as Spectre side channels since they both violate SANI but not CNI.

6 SPECSAFE
In this section, we present a speculative-aware symbolic executor, SpecSafe, to enforce SANI.

Compared with existing symbolic executors that are capable of detecting Spectre-like attacks

(e.g., [Cauligi et al. 2020; Guarnieri et al. 2020]), SpecSafe adopts a novel code transformation, which

benefits from the following property: if the transformed code is free of conventional side channels

(i.e., satisfying CNI in Definition 2), then the original code satisfies SANI. The novel design allows

us to reuse existing conventional side channel detectors on the transformed code to enforce SANI

on the original code. Furthermore, the transformation soundly removes loops in the original code.

Hence, SpecSafe avoids the code coverage limitation of other symbolic executors (i.e., the code is

not verified until all paths are analyzed by those tools). Although soundly removing loops is only

possible with the cost of some precision loss, we show that SpecSafe is still precise enough for

real-world applications in Section 7.

SpecSafe’s workflow is shown in Figure 4. SpecSafe performs code transformation on LLVM

IR code and then symbolic execution on the transformed code. The symbolic execution reasons

about architectural states (e.g. variable values), micro-architectural states (e.g. cache states), and

speculative behavior. Security conditions needed for SANI are formalized as logical formulas, which

are sent to an SMT solver (Z3). If the SMT solver determines the formula is satisfiable, it will also
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(SE-Composition)

s1 ⇀ s ′
1

s2 ⇀ s ′
2

K a set of sensitive variables at the last reset

s1; s2 ⇀ s ′
1
; check K ; s ′

2

(SE-IF)

id a unique integer s1 ⇀ s ′
1

s2 ⇀ s ′
2

s∗ ⇀ s ′∗

if B then s1 else s2 ⇀ capture(id); if B then

(
if ¬predid then [s ′

2
; s ′∗]w ; rollback(id)

)
; s ′

1

else

(
if predid then [s ′

1
; s ′∗]w ; rollback(id)

)
; s ′

2
;

(SE-WHILE)

s ⇀ s ′ s∗ ⇀ s ′∗ K0 a set of sensitive variables at the beginning of loop

while B do s ⇀ reset; capture(id); {if B then

(
if ¬predid then [s ′∗]w ; rollback(id)

)
; s ′;

else

(
if pred ′

id then [s ′; (while B do s ′); s ′∗]w ; rollback(id)
)
}; check K0; reset;

Fig. 5. Transformation rules for composition, if and while with transaction length parameterw . The helper
function [S]w statically extractsw instructions from s , unless a fence is encountered during that. Furthermore,
s∗ is used to denote the sub-program right after the sub-program being analyzed (i.e., the extra instructions
being padded in case of misprediction).

report line numbers identifying the vulnerabilities, making it easy to patch the program and restart

verification. If the SMT solver reports the formulas are unsatisfiable, it is safe to conclude there is

no cache-based leakage in the program under conventional or speculative execution.

6.1 Program transformation
In order to model the speculative behavior of a program, we introduce a program transformation

that embeds the speculative behavior into the transformed program. The syntax of transformed

programs includes two new primitives:

• capture(id): an instruction that records the current architectural state (i.e., memory and

registers) of the program so that it can be later retrieved with id .
• rollback(id): an instruction that resets the program’s architectural state (but not the mi-

croarchitectural state such as cache) to the recorded state with id .

To soundly remove loops, the transformed program also includes two security-related primitives

that are introduced by Brotzman et al. [2019]:

• reset: an instruction that sets current architectural and microarchitectural state to an arbitrary

value.

• check K : an instruction that checks cache side channels assuming only the secret-variable

set K carries confidential data at the last reset.

The most interesting rules are listed in Figure 5; for all other instructions, the transformed

program is the same as the original one.

Composition. A sequential composition s1; s2 is transformed to s1; check K ; s2, where K is a set of

sensitive variables at the last reset, provided by a sound taint analysis (described in Section 7). The

inserted check ensures that the attacker view right after s1 reveals no confidential data.

If transformation. Intuitively, programs during ordinary execution have two possible control

flows when it encounters a branch; with speculation, there are four possible control flows due to

the two extra branches on a fresh variable predid , which is true if and only if the predictor predicts
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the true branch. For a misprediction, speculatively executed code up to transaction lengthw (i.e.,

[s ′
2
; s ′∗]w , [s

′
1
; s ′∗]w ) are explicitly instrumented into the resulting code, followed by rollback(id),

which resets the architectural state (but not the microarchitectural state) to the state before the

branch.

Consider the example from Figure 2b. Following the transformation rule in Figure 5, the source

code is transformed into a speculation-aware form, assumingw = 1:

capture(1) ;

i f ( key%2 == 0 ) {

i f (¬pred1 ) {

temp := A[ ( key % 2 ) ∗ 5 1 2 ] ;

rollback(1) ;

}

temp := A [ ( ( key + 1 ) % 2 ) ∗ 5 1 2 ] ;

}

e l se {

i f (pred1 ) {

temp := A [ ( ( key + 1 ) % 2 ) ∗ 5 1 2 ] ;

rollback(1) ;

}

temp = A[ ( key % 2 ) ∗ 5 1 2 ] ;

}

Hence, the transformation faithfully models four possible control flows of the example, assuming

E1=A[(key%2)*512] and E2=A[((key+1)%2)*512]:
capture(1);temp:=E1;rollback(1);temp:=E2;
capture(1);temp:=E2;
capture(1);temp:=E2;rollback(1);temp:=E1;
capture(1);temp:=E1;
In practice, the program will speculate up to a certain depth w , specified as a parameter of

SpecSafe. The transformation statically inserts [s]w , which denotes the firstw instruction of s . Note
that with a fence command, the remaining commands are cut off in the construction of [s]w .

5

Loop transformation. The loop transformation is motivated by the transformation presented

by Brotzman et al. [2019]. However, the latter faces two limitationswhen being applied to speculative

execution. First, it does not consider speculative behavior at all. Second, it assumes that the

loop condition is not sensitive. In comparison, our novel loop transformation is both speculative-

aware and allows sensitive loop conditions. Moreover, we formally prove that our transformation

soundly captures both conventional and speculative side channels, while a formal proof is absent

in [Brotzman et al. 2019]. In fact, a sound loop transformation rule is subtle to develop; the soundness

proof helped us to catch a few flaws in our early trials of the transformation.

The transformation, presented in Figure 5, performs the following major tasks. First, it conserva-

tively resets the initial state to over-approximate both architectural and microarchitectural states

right before each loop iteration.
6
Second, it introduces two new variablespredid andpred

′
id to model

5
Although we formalize SANI and symbolic execution on a C-like source language for simplicity, SpecSafe is built on LLVM

IR. The length of IR code is not the same as the length of micro-ops, but the gap can be reduced by a cost model that maps

from IR instructions to the number of micro-ops.

6
It might seem conservative to reset the state coming in so we know it is in an arbitrary low-equivalent state. We note that

it is possible to make the transformation rule more accurate by requesting a loop invariant from the user and then use it to

improve precision. However, we refrained from asking for a loop invariant to make the symbolic execution fully automatic.
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the outcome of the branch predictor. Unlike in the if-statement case, two such variables are needed

since the loop condition is checked multiple times during execution. Hence, each iteration might

encounter different prediction outcomes. Third, under a mis-prediction, speculatively executed

instructions are instrumented and then rolled back. Note that when b is false but pred ′
id = true,

the instrumented commands are [s ′; (while b do s ′); s ′∗]w , which essentially unrolls the loop to

extract the firstw instructions.

The last component of the transformation: check K0; reset ; first ensures that there is no cache side
channel after each loop iteration, forming a loop invariant, and then resets the final architectural

and microarchitectural states to an arbitrary state as an over-approximation when checking the

code after the loop.

Transformation Soundness. The novel program transformation in Figure 5 satisfies the following

property: for any terminating program, oracle O and transaction lengthw , if the transformed code

satisfies CNI (Definition 2), then the original code satisfies SANI (Definition 4). More formally:

Theorem 1 (Transformation Soundness).

∀s, s,w,O. s terminates ∧ s ⇀ s =⇒

∀m1 ≃P m2.view(JsK
perf
⟨m1,0⟩

)) = view(JsKperf
⟨m2,0⟩

) =⇒

∀m1 ≃P m2. view(JsKO⟨m1,w ⟩
) = view(JsKO

⟨m2,w ⟩
)

Proof. By induction on the structure of the original program s . In most cases, we can show that

the transformed program approximates (in conventional semantics) speculative execution. The

tricky case is for the while loop: the inserted check K0 and reset intuitively enforces the following

loop invariant: any two executions of the loop starting from the same attacker view results in the

same final attacker view.

The full proof can be found in the appendix of [Brotzman 2021]. □

We note that the soundness result assumes that the addresses of data and instructions remain

unchanged by the transformation. This is reasonable as the transformation is at source-code level

and the transformed code is for verification purpose only (i.e., the extra variables and duplicated

instructions in the transformed code are not physically present in memory). Hence, the analysis

on the transformed code can assume that addresses of data and instructions remain unchanged,

and that the duplicated instructions share the same addresses as their counterparts in the original

program.

6.2 Cache-Aware Symbolic Execution
Our program transformation gives us the flexibility to use existing tools that detect conventional

cache-based side channels. We choose to use CaSym [Brotzman et al. 2019] as the core symbolic

execution engine for SpecSafe since it provides cache-aware symbolic execution with support for

configurable attack and cache models. We first introduce the basics of CaSym and then show how

SpecSafe improves it to reason about the new speculation-related primitives (i.e., fence, capture,
and rollback).

Symbolic State. A symbolic state σ is comprised of three components: the program variables

X = e , a cache variable C = ce, and a path condition Ψ. Here, symbolic program state e and path

condition Ψ are mostly standard. ce represents a symbolic cache state, following the abstract cache

models of CaSym. At a high-level, CaSym symbolically executes a program starting from an initial

state σ0 and computes a symbolic state ση at each program position η. To compute a sound symbolic
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SEJfenceKσ := σ
SEJcapture(id)Kσ := σ , mems[id] = e

SEJrollback(id)Kσ := X = mems[id] ∧C = ce ∧ Ψ

Fig. 6. Speculative-aware symbolic execution of SpecSafe assuming that the input σ isX = e∧C = ce∧Ψ. The
symbolic execution also maintains a global list of symbolic memory snapshots mems, indexed by transaction
identifiers.

state at each program point, CaSym uses novel techniques to merge execution paths. Notably, given

two paths with path conditions Ψ1 and Ψ2, CaSym introduces a new logical variable Ψ and adds the

following equation Ψ = Ψ1 ∨ Ψ = Ψ2 along with other equations that merge cache and memory

states. We refer to CaSym [Brotzman et al. 2019] for the technical details.

Verification Condition. To detect potential cache side channels, CaSym generates verification

conditions (i.e., SMT constraints) in the following way.

CaSym starts with an initial symbolic state: X = x ∧C = c ∧ true, where x are initial symbolic

values of variablesX and c is the initial cache state. Then, CaSym symbolically executes the program

being analyzed (as sketched earlier) and computes the final symbolic state σ , which represents

the final program and cache states, in the form of X = f (x) ∧C = д(c, x) ∧ Ψ′
, where f and д are

formulas using x , c and possibly other fresh variables.

Let K be a set of sensitive variables and eqC(c1, c2) be an equality check (details in [Brotzman

et al. 2019]) on two cache states c1 and c2. For a trace-based model, CaSym generates a 2-safety

verification condition at every program point as follows:

VC ≜ ∃x, x ′, c, c ′,
¬(∀Xi ∈ K, xi = x ′

i ) ∧ (∀X j < K, x j = x ′
j )

∧c = c ′ ∧ ¬eqC(д(c, x),д(c
′, x ′

))

(1)

When the verification condition is satisfiable, it is possible to run the program twice with two

low-equivalent memories and the same initial cache state, but resulting in two different cache

states (hence, a violation of CNI). On the other hand, the program being checked satisfies CNI

when the verification condition is unsatisfiable, which implies that the original program before

transformation satisfies SANI, based on Theorem 1.

Handling speculation-related instructions. On top of the symbolic execution rules of CaSym,

Figure 6 formalizes SpecSafe’s symbolic execution over the new speculation-related primitives.

fence has no effects in symbolic execution since it only affects the number of instructions being

speculatively executed (i.e., during the construction of [S]w in Figure 5). capture(id) saves the
current architectural state (i.e., the symbolic state for variables) with id and rollback(id) recovers
the architectural state from the stored states. We use a global list mems to store and retrieve such

memory snapshots. Note that rollback only rolls back the architectural state but not the cache

state and path condition
7
.

7
Rolling back the path condition is unnecessary because rollbacks are added to the end of the instrumented true/false

branches of an if conditional during transformation; so the path condition will be rolled back automatically when symbolic

execution merges path conditions after the if statement.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 129. Publication date: October 2021.



SpecSafe: Detecting Cache Side Channels in a Speculative World 129:19

7 IMPLEMENTATION
We build SpecSafe on top of CaSym [Brotzman et al. 2019] (as an analysis pass in LLVM version 3.7).

8

Besides program transformation (Section 6.1) and reasoning about speculation-related instructions

(Figure 6), SpecSafe also extends CaSym with a more robust reasoning of pointers. SpecSafe uses

Z3 as the back-end for solving the generated verification conditions.

By default, SpecSafe instantiates the configurable transaction length parameterw to be 200 since

this has been used by Guarnieri et al. [2020] and approximates the maximum speculation depth.

Identifying Interesting Functions. One bottleneck of symbolic execution is that it does not scale

to large programs (e.g., the entire libgcrypt library). Hence, in order to analyze large programs,

we first use a static taint analysis to provide a structured way to find intriguing functions where

symbolic execution is subsequently applied. The taint analysis is implemented as an LLVM analysis

pass, also using LLVM version 3.7 [Lattner and Adve 2004]. It is context-, field-, and flow-sensitive.

The taint analysis looks for three patterns in programs that encompass both conventional and

speculative cache side channels.

In particular, we follow patterns described in oo7 [Wang et al. 2019b] to identify interesting

functions to evaluate SpecSafe. In particular, the pattern consists of three components: 1) there is a

conditional branch that uses attacker-controllable data, 2) the attacker can control the index to an

array within the speculation window of the attacker-controllable branch, and 3) the data read from

the array in component 2 is used as an index for another array and the operation is also within the

speculation window of the attacker controllable branch. Here, attacker controllable data means the

data can be either directly or indirectly set by the attacker.

We note that the purpose of the taint analysis is to identify interesting functions in order to

evaluate SpecSafe. However, SpecSafe is unable to detect potential cache side channels in code that

is filtered out by the taint analysis (note that the patterns might miss vulnerabilities). Nevertheless,

it does not undermine the soundness of SpecSafe, as any code that is examined by SpecSafe must

satisfy the SANI requirements. We emphasize that the primary goal of identifying interesting

functions is to evaluate SpecSafe in a structured manner, as opposed to manually identifying

functions to analyze, as done in other works such as CaSym [Brotzman et al. 2019].

8 EVALUATION
We selected a variety of benchmarks to evaluate SpecSafe. These benchmarks include (1) 15

well-known samples vulnerable to Spectre Variant 1 attacks [Kocher 2018]; (2) the 2 samples of

CB-channels from Figure 2; (3) a set of common ciphers from libgcrypt version 1.8.5. Our evaluation

of SpecSafe on these benchmarks was run on Ubuntu 14.04 in a virtual machine with 30GB of RAM

and 4 cores of an Intel i7-5820K CPU. We use the age cache model presented in CaSym [Brotzman

et al. 2019] in our evaluation because it is the most conservative model available. In our experiments,

we answer the following questions:

(1) Can SpecSafe detect cache side channels that are missed by other state-of-the-art tools?

(2) How effective can SpecSafe identify vulnerabilities?

(3) Does SpecSafe verify the absence of cache side channels manifesting from branch speculation?

(4) Can SpecSafe scale to programs of moderate sizes, by combining taint analysis with symbolic

execution?

8
SpecSafe is implemented as an analysis on LLVM IR code. Ideally, an analysis on lower-level code (e.g., binary) offers

stronger security guarantee since it is immune to code transformations by later compiler stages [Daniel et al. 2020]. However,

we note that even binary analysis faces similar limitation due to hardware features such as out-of-order execution. Moreover,

this is largely an implementation limitation, since our methodology can generally be applied to any level of abstraction,

from the source code to binary.
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8.1 Micro-benchmarks
In order to provide a sanity check and also a comparison with other tools, we briefly discuss our

findings on the 15 benchmarks from [Kocher 2018] and the 3 samples from Figure 2.

The second column of Table 2 presents the results of applying SpecSafe on two sets of micro-

benchmarks, including 15well-known samples that are vulnerable to Spectre Variant 1 attacks [Kocher

2018] and the examples in Figure 2. Each example is about 10 to 20 lines of C code. SpecSafe suc-

cessfully detects all vulnerabilities in the micro-benchmarks, within a reasonable amount of time.

Once a vulnerability is detected, we use the locations of the failed checks reported by SpecSafe to

place appropriate protection mechanisms such as lfence or SLH to fix the reported vulnerabilities.

After applying a protection mechanism, we reran SpecSafe, which was able to verify that the

samples with lfence and SLH defenses are free of cache side channels.

Interestingly, two of the new side channels proposed cannot be patched using SLH. This is

because the leakage in them happens due to the existence of a misprediction. Since mitigation

techniques such as SLH do not prevent mispredictions from occurring, it cannot completely protect

all of the variants introduced in this paper.

We also compared SpecSafe with other state-of-the-art systems geared towards finding leakage

caused by speculative execution (Table 3). We note that both Spectector and oo7 cannot detect the

three new instances of speculative leakage discovered in this work. Furthermore, since they cannot

detect the vulnerabilities in the vulnerable code in the first place, their reports on the code with

defense are not meaningful, hence, reported as n/a in the table.

We note that although we have not observed the code patterns presented in Figure 2 in the

wild, an attacker might use them adversarially as small gadgets to fool existing “sound” analysis

tools. This might happen when the attacker has control of the code, e.g., by sneaking code into an

open-source, or community-developed victim program. Such subtle cases are not detectable by

existing tools, and existing defenses (e.g. SLH) might fail to mitigate them.

8.2 Security Benchmarks
Next, we evaluated SpecSafe on libgcrypt ciphers. For each cipher, we treated the encryption key

as sensitive data. Since the sizes of these ciphers were relatively large, symbolic execution was not

scalable to handle them directly; therefore, we had to apply taint analysis (discussed earlier) to

filter functions in those programs. The patterns used for identifying interesting functions require

us to specify what data is considered attacker controllable. We include plaintexts, ciphertexts, and

the size of the data to process as attacker-controllable, since these inputs are commonly provided

to encryption routines by users, including a malicious user.

Taint Results. The first part of Table 4 presents the results gathered by applying our taint analysis
to the various ciphers in libgcrypt. For each cipher, the first column is the cipher being analyzed.

Vulnerable LFENCE SLH

Spectre Examples 5.15so 41.9s µ 76.5s µ
Figure 2a 0.45so 0.06s µ 0.02s µ
Figure 2b 0.20so 0.02s µ 0.59so
Figure 2c 0.63so 0.61s µ 0.87so

Table 2. Results of SpecSafe on micro-benchmarks of both vulnerable code as well as their corresponding
protected versions. Spectre examples includes all 15 from [Kocher 2018]. The numbers in the table are
SpecSafe’s execution times. µ means no side channel is found. o means side channels are detected.
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Benchmark SpecSafe Spectector oo7

[Guarnieri et al. 2020] [Wang et al. 2019b]

Vulnerable
Spectre Examples ✓ ✓ ✓
Figure 2a, 2b, 2c ✓ ✗ ✗

Patched with LFENCE
Spectre Examples ✓ ✓ ✓
Figure 2a, 2b, 2c ✓ N/A N/A

Patched with SLH
Spectre Examples ✓ ✓ ✗
Figure 2a, 2b, 2c ✓ N/A N/A

Table 3. Comparison with existing tools for detecting speculative side channels. A ✓ indicates the tool
correctly judges the security/insecurity of the code (i.e. marking it secure/insecure if it is secure/insecure). A
✗ indicates the tool either has a false negative (when the code is vulnerable) or a false positive (when the
code is secure). N/A applies when the tool fails to detect a vulnerability in the unmitigated code and thus it
does not make sense to reason about the version with a mitigation mechanism.

The next column, IR LOC, is the number of lines of IR code in the cipher, as produced by Clang.

The functions column is the number of functions in the cipher, and the time column represents

how long it took the taint analysis to analyze the cipher in seconds. Each of the following columns

tells the number of functions that were identified by the taint analysis in the specified category.

Overall, taint analysis can take at most an hour to finish, but is often much faster. This is an

improvement over applying symbolic execution to all of these functions, which would likely take

many hours if it terminates at all. Even though taint analysis is rather coarse-grained, we find that

it is often able to rule out about 90% of the functions in each cipher.

From a practical point of view, the taint analysis filters out benign functions quickly. Applying

the symbolic execution on a subset of the program saves a significant amount of analysis time. We

note that this approach is not specific to the crypto algorithms analyzed here; instead, it can also

be applied to other types of applications to improve analysis time.

One source of imprecision comes from the points-to analysis used in taint analysis: it tends

to collapse all of the fields, making some cases field-insensitive. We found that almost all of the

sensitive branches identified by taint analysis were due to the collapsing of the encryption context

and subsequent checks on benign fields of the context (e.g., if (ctx->prefetch_dec_fn)). In total, 10

extraneous functions identified were manually pruned; almost all of them were found in the AES

cipher due to checking the encryption context for certain features. The remaining 29 interesting

functions are then further analyzed by SpecSafe. We note that manual pruning is needed due to

the imprecision of the taint analysis tool (i.e., it is not field-sensitive). In general, this issue can be

resolved by using a more precise taint analysis tool.

Categorizing Side Channels. SpecSafe by design detects any SANI cache side channels. We present

all functions violating our SANI definition under the column "SANI" in Table 4, along with the

total analysis time for symbolic execution under the column Time. To classify the results into

conventional ones and speculative ones, we note that SpecSafe can be easily modified to detect

conventional side channels only. In particular, for cache noninterference (CNI), we modify SpecSafe

to add a constraint for each branch command as follows: ite(condi ,predi = true,predi = false)
where condi is the branch condition being speculated. This effectively creates a perfect oracle,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 129. Publication date: October 2021.



129:22 Robert Brotzman, Danfeng Zhang, Mahmut Taylan Kandemir, and Gang Tan

Taint Analysis︷                    ︸︸                    ︷ Symbolic Execution︷                                ︸︸                                ︷
Module IR Total Time Vulnerable SANI Time CNI Spec

LoC Func. (sec.) Candidates (sec.)

AES 6375 49 293 4 4 58.4 4 0

DES 8619 44 618 4 4 422 4 0

arcfour 536 8 7 2 2 0.75 2 0

blowfish 3535 31 215 3 3 37.5 3 0

camellia 14436 14 4344 0 0 n/a 0 0

cast5 4458 27 455 2 2 3.03 2 0

chacha20 3500 20 88 1 1 37.1 0 1

idea 1650 16 61 3 3 3.09 3 0

md4 1272 12 22 1 0 19.1 0 0

md5 2252 12 44 1 0 19.0 0 0

salsa 1756 20 31 2 2 2.12 2 1

sha256 6086 22 424 1 0 26.7 0 0

sha512 2743 26 100 1 0 31.8 0 0

tiger 2309 17 59 1 0 39.5 0 0

twofish 8238 28 334 3 3 9.79 3 0

total 67765 346 7095 29 24 709.88 23 2

Table 4. Evaluation results for libgcrypt ciphers. The first two columns indicate the lines of LLVM IR and
number of functions analyzed. The first column under taint analysis indicates how long the taint analysis
ran. Vulnerable candidates indicates the number of functions flagged by the taint analysis. The CNI and
Spec columns indicate the number of functions the symbolic execution found containing those kinds of
vulnerabilities. The SANI column contains all functions found that violate our SANI definition, along with the
total analysis time for symbolic execution.

which allows us to analyze a program that never mispredicts. With the modification, we identified

the conventional side channels (column “CNI”) as well as remaining ones (column “Spec”) that only

exhibit themselves with speculative execution. Since we count the number of functions that violate

SANI, there may be functions that violate both CNI and also have a speculative vulnerability; but

such a function is counted only once in the SANI column. Hence the SANI column number is not

necessarily the sum of the columns of CNI and Spec.

Although we were unable to run oo7 [Wang et al. 2019b] nor Spectector [Guarnieri et al. 2020]

on this data set, we believe that they likely will find all vulnerabilities in this data set since the

vulnerabilities are not as intricate as the new counterexamples that we construct in Section 4.

However, SpecSafe reduces false positives. For example, since SpecSafe essentially uses the same

taint analysis approach of oo7 as a filter, the vulnerable candidates column should be similar to the

result of oo7. We note that SpecSafe removes a few false positives from the vulnerable candidates.

Moreover, as we showed in Section 8.1, both oo7 and Spectector produce false negatives and/or

false positives on intricate examples in the micro-benchmarks.

Conventional Cache Side Channels. Among all conventional cache side channels, SpecSafe detects

a previously unreported, to the best of our knowledge, potential vulnerability in the triple DES

routine of libgcrypt. This routine finds weak encryption keys. The following code snippet shows

the problematic code:

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 129. Publication date: October 2021.



SpecSafe: Detecting Cache Side Channels in a Speculative World 129:23

is_weak_key ( const byte *key ) {

...

while(left <= right) {

middle = (left + right) / 2;

// this branch causes the leak

if (!( cmp_result=memcmp(key ,

weak_keys[middle ])))

return -1;

if ( cmp_result > 0 )

left = middle + 1;

else

right = middle - 1;

}

}

It is clear from the identified if statement that this routine will terminate early depending on the

key’s value, thus resulting in a different cache state. Furthermore, the index to the tableweak_keys
is dependent on the value of the key since it uses the result of the memcmp function which depends

on the key.

Checking for weak keys is common in encryption algorithms such as DES, 3DES, RC4, Blowfish,

IDEA, etc. NIST suggests that weak keys be avoided, at least for 3DES [Barker and Mouha 2017],

since they can significantly weaken security, but we find that checking for the keys in naive manners

such as the code snippet above also pose security risks by potentially leaking bits of secure keys.

Speculative Execution Results. Side channels that only show up with speculative execution are

summarized in the last column of Table 4.

We detect two true positives that can potentially be used to perform a Spectre style side-channel

attack. These side channels, found in salsa and chacha20, are similar. The following is a simplified

code snippet highlighting the potential leakage:

if (n > length) // begin speculation

...

// input is attacker controllable

idx = input;

...

buf2 = buf + BLOCK_SIZE + idx;

...

addr = *buf2; // loads secret into addr

...

value = *addr; // use secret addr to load

In this example, we see that within the depth of speculation of the conditional branch, we have a

potential out of bounds read via addr=*buf2; since what buf2 points to may be controlled by the

adversary, an attack can load sensitive data into addr. Furthermore, the sensitive data in addr is
used as an address for a subsequent load on line value=*addr. As a result, a cache attack can be

used to discover the sensitive data in addr.
We investigated if this code pattern could be used to construct a Spectre attack. To this end, we

constructed a test for this snippet similar to what we described in Section 4.2. Our test shows that

this code snippet is capable of leaking information via speculative execution at a rate of over 75k

bits per second with over 99% accuracy.
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Moreover, symbolic execution was able to verify various functions among the interesting func-

tions identified by the taint analysis. Recall that the taint analysis uses the patterns in oo7 [Wang

et al. 2019b] to identify suspicious code that could be vulnerable to Spectre attacks. Hence, the result

also highlights the benefit of using precise symbolic execution, compared with pattern matching

methods, such as oo7 [Wang et al. 2019b].

Take Away. To summarize our findings: 1) built on the new security definition SANI, SpecSafe is

able to detect speculative cache side channels that are missed by Spectector [Guarnieri et al. 2020]

and oo7 [Wang et al. 2019b], the state-of-the-art tools for detecting speculative side channels; 2)

SpecSafe has shown great promise in identifying both conventional and speculative cache side

channels; 3) with the help of taint analysis, SpecSafe can work on programs of roughly 3,000 source

lines or about 30,000 lines of IR code in about an hour which is reasonable considering how long

it would take using only symbolic execution; 4) a coarse-grained taint analysis does a great job

zeroing in on problematic functions to be further refined by symbolic execution, although the

symbolic execution is still, in general, more precise, especially for intricate cases.

9 LIMITATIONS AND FUTURE WORK
When SpecSafe uses an abstract model that ignores the program counter, it needs to reason about

four different execution paths at each branch as two program executions with different secrets

might diverge. Compared to approaches that assume the attacker-observable program counter as

part of their model, SpecSafe is less scalable in terms of handling branches. While analyzing these

additional paths adds more computational cost, it allows SpecSafe to be more permissive and hence,

accept more secure programs under precise cache models. Additionally, evaluation results suggest

that even with the additional computational overhead, SpecSafe can still analyze reasonably sized

programs.

This paper focuses on speculative execution caused by conditional branch instructions that use

the Pattern History Table (PHT) to predict the next instructions. One future work is to incorporate

other avenues of speculative execution, including indirect branches using the Branch Target Buffer
(BTB), return instructions using the Return Stack Buffer (RSB), and speculation that leverages

Store To Load (STL) dependencies. Similar to Spectector [Guarnieri et al. 2020], with more precise

modeling, the noninterference definition we propose here is sufficient to detect these leakage

techniques as well. We plan on progressively adding more of these models to our tool.

The taint analysis and consequently, the symbolic execution relies on a Data Structure Analysis

(DSA) tool in LLVM that can lead to imprecision. This often happens with complex data structures

like structs, making it become field insensitive, leading to over tainting. Symbolic execution is

limited by such imprecision since it uses the taint analysis to determine sensitive information, as

well as use alias analysis to soundly handle pointers.

10 CONCLUSION
In this work, we described shortcomings in existing tools’ ability to detect leakage resulting from

speculative behavior in programs containing direct branches. To resolve this issue, we presented a

novel non-interference definition (SANI) to capture previously unknown avenues of leakage via

the data cache. We demonstrated that these new leakage patterns, both in theory and in practice,

could leak data by constructing covert channels. Lastly, we produced a tool SpecSafe that uses

symbolic execution to detect leakage in programs according to our SANI definition as well as verify

mitigation strategies that may be applied to leakage resulting from speculative execution.
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®µ ′ = zero(®µ) enabled(®µ)

⟨m, ®µ, fence⟩ −→ ⟨m, ®µ ′, skip⟩
(Fence)

eval(e,m) = v ®µ ′ = decr (®µ) enabled(®µ)

⟨m, ®µ, x := e⟩
loc(e)·x
−−−−−−→ ⟨[x/v]m, ®µ ′, skip⟩

(Asgn)

®µ , ∅ enabled(®µ)

⟨m, ®µ, skip⟩ −→ ⟨m, zero(®µ), skip⟩
(Skip)

⟨m, ®µ, S1⟩
e
−→ ⟨m′, ®µ ′, S ′

1
⟩

⟨m, ®µ, S1; S2⟩
e
−→ ⟨m′, ®µ ′, S ′

1
; S2⟩

(Seq1)

⟨m, ®µ, skip; S2⟩ −→ ⟨m, ®µ, S2⟩
(Seq2)

p = O(η).pop() η is the command id cnext =

{
c1 when p = true

c2 when p = false

®µ ′ = decr (®µ) · ⟨p,m,w, if b then c1 else c2⟩ enabled(®µ)

⟨m, ®µ, if b then c1 else c2⟩
begin·pc(cnext )
−−−−−−−−−−−−→ ⟨m, ®µ ′, cnext ⟩

(If)

⟨m, ®µ, while b do c⟩ −→ ⟨m, ®µ, if b then (c; while b do c) else skip⟩
(While)

eval(b,m) = p enabled(®µ ′)

⟨m, ⟨p,m′, 0, if b then c1 else c2⟩ · ®µ
′, c⟩

commit
−−−−−→ ⟨m, ®µ ′, c⟩

(Commit)

eval(b,m) = v , p enabled(®µ ′) c ′ =

{
c1 when v = true

c2 when v = false

⟨m, ⟨p,m′, 0, if b then c1 else c2⟩ · ®µ
′, c⟩

rollback
−−−−−−−→ ⟨m′, ®µ ′, c ′⟩

(Rollback)

Fig. 7. Speculative-Aware semantics given an oracle O and a transaction lengthw .

A FORMALIZING PROGRAM SEMANTICS WITH SPECULATION
Language Semantics. Recall that to model speculative execution, we introduce two parameters: a

prediction oracle, O, as well as the speculative transaction’s length w in the language semantics.

Moreover, O is a partial function that takes the id of a branch command and returns a queue of

predicted branch outcomes (i.e., a queue of truth values). A queue is used in the oracle so that the

semantics can have different outcomes for the same branch at different execution points.

We assume that each command in the source code has a unique id (such as the line number),

denoted byη. To get the next predicted outcome of the branch commandwith idη, we useO(η).pop().
We define a configuration as a tuple ⟨m, ®µ, S⟩ that consists of a memory m, a sequence of

(potentially nested) speculative states ®µ as well as S , the remaining program to be executed. As

standard, memory m is formalized as a map from variables/array elements to their values. A

speculative state µ = ⟨p,m, r , S⟩ represents a speculative transaction [Guarnieri et al. 2020], which

consists of the predicted boolean outcome p, the memorym prior to the start of the transaction,

the remaining number of instructions to be executed in the transaction r , and the commands S to

be resumed in case of a rollback. Moreover, we use the following helper functions to update and

check the remaining number of instructions in all transactions:

• decr(®µ): decrease the remaining instructions by one for each µ ∈ ®µ.
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• zero(®µ): set the remaining instructions to zero for each µ ∈ ®µ.
• enabled(®µ): returns true if r , 0 for any µ ∈ ®µ or when ®µ = ∅.

Given an oracle O and a transaction lengthw , each evaluation rule (summarized in Figure 7) has

the form of ⟨m, ®µ, S⟩
e
−→ ⟨m′, ®µ ′, S ′⟩ where event e tracks the memory locations being accessed and

program instructions being executed; we use pc(η) to denote the latter. Note that the given O andw ,

the semantics is deterministic: rules COMMIT and ROLLBACK apply when one transaction ended,

while the other rules require enabled(®µ); rule COMMIT requires eval(b,m) = p and ROLLBACK

requires eval(b,m) , p.
Given a program S , an oracle O and transaction lengthw , we use JSKO

⟨m,w ⟩
to denote the sequence

of emitted events starting from the initial configuration ⟨m, ∅, S⟩ according to the semantics given

O andw . For example, let S be the code in Listing 1, O(1) = true, w=1 andm(idx) ≥ m(bsize ), we
have the following evaluation steps according to the semantics:

⟨m, ∅, S⟩

begin·pc(2)
−−−−−−−−−→⟨m, ⟨true,m, 1, S⟩, temp=A[B[idx]*512]⟩

idx ,B+idx ,A+B[idx ]∗512
−−−−−−−−−−−−−−−−−−−−→⟨m′, ⟨true,m, 0, S⟩, skip⟩

rollback
−−−−−−−→⟨m, ∅, skip⟩

Hence, JSKO
⟨m,w ⟩

generates an event trace begin,pc(2), idx,B + idx,A + B[idx] ∗ 512, rollback

for the concrete execution.

We note that our interpretation of O andw over-approximates the ones in [Guarnieri et al. 2020],

which assumes a partial function that takes as input a program, a branching history and a branch

instruction, and that returns as output the predicted branch outcome and transaction length. Our

formulation considers all possible outcomes of the semantics in [Guarnieri et al. 2020].
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