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The collapse of the steppe-tundra biome (mammoth steppe) at the
end of the Pleistocene is used as an important example of top-
down ecosystem cascades, where human hunting of keystone spe-
cies led to profound changes in vegetation across high latitudes in
the Northern Hemisphere. Alternatively, it is argued that this
biome transformation occurred through a bottom-up process,
where climate-driven expansion of shrub tundra (Betula, Salix
spp.) replaced the steppe-tundra vegetation that grazing mega-
fauna taxa relied on. In eastern Beringia, these differing hypothe-
ses remain largely untested, in part because the precise timing and
spatial pattern of Late Pleistocene shrub expansion remains poorly
resolved. This uncertainty is caused by chronological ambiguity in
many lake sediment records, which typically rely on radiocarbon
(**C) dates from bulk sediment or aquatic macrofossils—materials
that are known to overestimate the age of sediment layers. Here,
we reexamine Late Pleistocene pollen records for which C dating
of terrestrial macrofossils is available and augment these data
with "C dates from arctic ground-squirrel middens and plant mac-
rofossils. Comparing these paleovegetation data with a database
of published '*C dates from megafauna remains, we find the post-
glacial expansion of shrub tundra preceded the regional extinc-
tions of horse (Equus spp.) and mammoth (Mammuthus
primigenius) and began during a period when the frequency of
14C dates indicates large grazers were abundant. These results are
not consistent with a model of top-down ecosystem cascades and
support the hypothesis that climate-driven habitat loss preceded
and contributed to turnover in mammal communities.

megafauna | eastern Beringia | keystone species | palaeoecology | steppe-
tundra

I n northern high latitudes, the widespread extinction of Quater-
nary megafauna (animals weighing >44 kg) and disappearance
of the steppe-tundra biome they inhabited is used as an important
example of top-down ecosystem cascades, where human hunting
of keystone species led to profound changes in vegetation struc-
ture at the end of the Pleistocene (15 thousand years before 1950
[15 ka] to 11.7 ka) (1-5). This hypothesis, however, is not well
tested, and it is unclear whether the relative timing of megafauna
extinctions and vegetation change is consistent with a top-down
model. Resolving this question is an important part of under-
standing how past ecosystems functioned and may help predict
how modern high-latitude ecosystems will respond to climate-
driven vegetation change, current declines in large mammal spe-
cies, or their deliberate reintroduction.

In eastern Beringia (modern-day Alaska and the Yukon inte-
rior) (Fig. 1), Late Pleistocene megafauna extinctions broadly
coincided with an expansion of shrub tundra vegetation includ-
ing dwarf and tall-shrub species of birch (Betula nana and
Betula glandulosa) and willow (Salix spp.) (6). Prior to these
events, herds of grazing megafauna occupied a biome termed
the mammoth steppe (7-9) or steppe-tundra (10, 11), which
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has no widespread modern analog. This novel, dry environment
supported diverse plant communities, dominated by grasses,
sedges, Artemisia spp., and a range of other forbs (8, 12-16).
Sometime between 16 ka and 13 ka, woody shrub species began
to expand across eastern Beringia, coupled with the develop-
ment of peatlands and organic soil horizons (14, 17, 18). Lake
sediment records show that the expansion of shrubs was rapid
in many cases, and, although pollen influx data suggest herba-
ceous plant taxa continued to form an important part of the
vegetation community, the abundance of Betula and Salix pol-
len (often >50% of the pollen sum) indicates that eastern
Beringia became increasingly dominated by woody vegetation
during this period (19-22).

During the same time period, mammal communities in eastern
Beringia underwent some of the most profound changes to occur
in the region since at least the end of the last interglacial (Marine
Isotope Stage 5e), 115 ka. Of the 13 megafauna taxa present in
eastern Beringia immediately prior to 15 ka, only seven survived
in situ beyond the Pleistocene (steppe bison, Bison priscus; cari-
bou, Rangifer tarandus; wapiti, Cervus canadensis; muskox, Ovibos
moschatus; wolf, Canis lupus; grizzly bear, Ursus arctos; and sheep,
Ovis). The remaining taxa (caballine/stout-legged horses, Equus;
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Fig. 1. Eastern Beringia during the Late Pleistocene. Ice limits (14.2 and
15.5 ka) are redrawn from Dalton et al. (80). Lake sediment records reana-
lyzed in this study are numbered and include the following: 1, Burial Lake
(81); 2, Tukuto Lake (82); 3, Lake of the Pleistocene (18); 4, Okpilak Lake
(44); 5, Trout Lake (55); 6, Hanging Lake (54); 7, Ruppert Lake (83); 8, Xindi
Lake (84); 9, Harding Lake (45); 10, Birch Lake (19); 11, Lost Lake (21); 12,
Jan Lake (47); 13, Idavain Lake (20); 14, Beaver Lake (46); and 15, Discovery
Pond (85).

stilt-legged horses, Haringtonhippus; woolly mammoth, Mammu-
thus primigenius; saiga antelope, Saiga tatarica; lion, Panthera spe-
laea; and short-faced bear, Arctodus simus), along with smaller
mammals such as the arctic ground squirrel (Urocitellus parryii),
became regionally extinct throughout large areas between 15.0 ka
and 11.7 ka, leaving behind a comparatively impoverished mam-
mal community (6, 23). The arrival of moose (Alces alces), an obli-
gate browser, in eastern Beringia shortly after 15 ka (24) marks
the beginning of a shift from the grazer community of the steppe-
tundra toward a community of mixed-feeding megafauna species
better adapted to a shrub tundra environment.

The broad chronological overlap between the timing of shrub
expansion and turnover in mammal populations has led numer-
ous authors to hypothesize that habitat loss was a key driver
of Late Pleistocene extinctions in eastern Beringia (8, 25-27).
These authors argue that the Betula- and Salix-dominated shrub
tundra was inhospitable to grazing megafauna because low-
growing shrubs develop strong antiherbivory compounds, mak-
ing them inedible or toxic to many mammals that lack a rumen
to aid digestion (28). Other researchers have suggested that the
decline in populations of grazing megafauna preceded shrub
expansion, and that the spread of shrub tundra was caused by
the resulting reduction in browsing pressure, vegetation tram-
pling, and snow clearance (2, 29). These studies argue that graz-
ers, and particularly megaherbivores (mammals of >1,000 kg),
such as mammoth, acted as keystone species and were essen-
tial to the continuation of the steppe-tundra (1). In this case,
human-caused “overkill” (30) or the compounded impacts of
humans (e.g., burning, hunting, or simply their presence) in a
dynamic ecosystem are advanced as the causes of megafauna
extinctions. Finally, it is also possible that both of these processes
reinforced one another, and the disappearance of the steppe-
tundra was caused by both bottom-up and top-down pressures,
or even that there was no causal relationship between the mega-
fauna declines and shrub expansion. All of these hypotheses
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remain largely untested and continue to be controversial, in
part because human arrival patterns, hunting preferences, and
population size are largely unknown (31).

In eastern Beringia, it is difficult to distinguish between these
alternative hypotheses because the regional timing and spatial pat-
tern of Late Pleistocene shrub expansion is poorly resolved, despite
more than 50 y of detailed paleoecological study (14, 32-35). This
uncertainty is principally due to the difficulty in accurately
dating lake sediments from high latitudes (36-38). Terrestrial
plant macrofossil remains are often rare in these depositional
environments, and many pioneering paleoenvironmental stud-
ies are founded on chronologies based on radiocarbon (}*C)
dates derived from bulk sediment or aquatic macrofossils. This
is particularly common for lake records obtained before the
routine availability of accelerator mass spectrometer radiocar-
bon (AMS '*C) dating, when larger samples were required.
Radiocarbon dates from bulk sediment or aquatic macrofossils
are often imprecise or contaminated by old carbon (SI Appendix,
Text), and, as a result, chronologies developed in this way are
unreliable.

To assess the chronology of shrub expansion and megafauna
community turnover in eastern Beringia, we reanalyzed 15 lake
sediment records for which AMS '*C dating of terrestrial mac-
rofossils is available (SI Appendix, Figs. S1 and S6-S9). We
developed Bayesian age—depth models for each study site, and
compared the results with a new database of published *C
dates from plant macrofossils, megafauna remains, and arctic
ground squirrel middens (Materials and Methods and SI
Appendix, Text). In each pollen record, we define the beginning
of shrub tundra expansion as the first sustained increase (repli-
cated in three or more consecutive pollen samples) in Betula
pollen above pre-15-ka background values, which are typically
<5% of the pollen sum (SI Appendix, Fig. S2 and Text). In most
cases, this expansion represents an increase to >20% of the pol-
len sum, and, where they are available, we use pollen influx
data to support this timing (SI Appendix, Fig. S3). In some
records, Salix pollen increases in abundance before Betula by as
much as 1,200 y, and, in these cases, we consider the taxa sepa-
rately (Fig. 2 and SI Appendix, Figs. S2 and S3). We define the
timing of Salix expansion as the first sustained increase in Salix
pollen above background values (see above). In most cases, this
expansion represents an increase to >15% of the pollen sum.
This approach is conservative. It provides minimum ages for
the beginning of shrub expansion, as the true increase in shrub
pollen above these thresholds is likely to lie between sampling
points (i.e., would have an older assigned age). In records with
high-resolution sampling [e.g., Birch Lake (19)], this difference
is small; however, in most records, sampling resolution is <1
pollen spectrum every 10 cm, which may represent >500 y of
sediment accumulation (SI Appendix, Table S1). With this
approach, we aim to establish whether shrub expansion began
prior to turnover in megafauna communities, as predicted by
Guthrie (6, 8), or after populations of keystone species col-
lapsed, as suggested by Zimov et al. (2, 29). As these hypothe-
ses predict events in the opposite order, it allows us to assess
whether the Late Pleistocene extinction of grazing megafauna
species was a response to, or the cause of, steppe-tundra
decline.

Study Area—Eastern Beringia

During the Late Pleistocene, eastern Beringia remained largely
unglaciated (Fig. 1) (39); however, it was biologically isolated
from the rest of North America by the coalesced Laurentide
and Cordilleran ice sheets until 13.5 ka to 13.2 ka (40). Low-
ered eustatic sea levels during this cold stage exposed the shal-
low continental shelf between northwest North America and
northeast Asia, forming the Bering Land Bridge. Due to the
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Fig. 2. (A) North Greenland ice core project (NGRIP) 5'80 record (86). (B) Modeled, calibrated age ranges (shown as probability density functions) for the
beginning of Salix (shown in blue when clearly defined) and Betula (shown in gray) expansion from lake sediment records reanalyzed in this study. The
medians of calibrated modeled dates are indicated by black crosses. (C) The median of calibrated '*C age ranges from shrub macrofossils in eastern Beringia.
(D) Kernel Density Estimation modeled distributions (mean and 16 uncertainty) for calibrated 14C dates from moose in eastern Beringia (sum probability distri-
butions shown in SI Appendix, Fig. S3). (E) Kernel Density Estimation modeled distributions (mean and 16 uncertainty) for calibrated '*C dates from horse,
bison, and mammoth in eastern Beringia (sum probability distributions shown in S/ Appendix, Fig. S3). (F) The median of calibrated '“C age ranges from arctic
ground squirrel middens in eastern Beringia. (G) Periods of human occupation at archaeological sites in the Tanana River Valley, Alaska (70).

expanded landmass and the orographic effects of the cordillera
(Alaska Range), eastern Beringia was hypercontinental and
arid during Marine Isotope Stage 2 (29 ka to 14 ka), as evi-
denced by widespread eolian deposits (41) and the scarcity of
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lake sediment records extending beyond 15 ka (8, 32). The
expanded land mass also meant that eastern Beringia was bio-
logically connected with Asia—a connection that served as the
intercontinental land bridge allowing old-world terrestrial
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mammals, including humans, to colonize North America (8,
34). Megafauna that exploited this migration route during the
Late Pleistocene include bison, which reached North America
during Marine Isotope Stage 6 (195 ka to 135 ka) (42), and
moose, which arrived from Asia shortly after 15 ka (24).

Results and Discussion

The Chronology of Shrub Expansion in Eastern Beringia. Several
lines of evidence indicate that, in some areas of eastern Berin-
gia, Salix spp. expanded and were widespread on the landscape
before Betula spp. In six of the reanalyzed pollen records, Salix
is abundant from the lowermost sample (SI Appendix, Fig. S2).
In a further five records, Salix pollen clearly increases prior to
Betula by as much as 1,200 y (Fig. 2). In two other records, Salix
appears to increase ahead of Betula, but the detail of these
early rises becomes obscured by large increases in Betula abun-
dance (SI Appendix, Fig. S2). Salix spp. produce substantially
less pollen than Betula, yet the Late Pleistocene macrofossil
record is dominated by Salix remains, which occur prior to the
earliest '*C-dated Betula macrofossils (Fig. 2).* It is therefore
likely that Salix formed a greater component of the shrub tun-
dra vegetation than is evident from palynology. Salix spp. can
tolerate cooler and drier conditions than Betula (43) and may
have responded to postglacial warming before other shrub spe-
cies. This paleoecological evidence for early expansion of Salix
suggests that the Late Pleistocene vegetation transition took
place in several waves, each of which would have impacted
megafauna differently.

The expansion of Betula, as defined by pollen values, began
Prior to, or soon after, 14 ka in 10 of the 15 reanalyzed AMS
#C-dated lake sediment records (Fig. 2 and SI Appendix, Fig.
S2). The remaining five pollen records, which place the onset
of Betula expansion after this date, lie at high elevation where
shrubs are likely to have expanded later (e.g., Okpilak Lake;
720 m) (44), have limited dating control through this period
(e.g., Lost Lake) (21), or are affected by lower sampling resolu-
tion (e.g., Harding Lake and Beaver Lake) (45, 46). This infre-
quent sampling results in younger age estimates, as the true
Betula increase lies between sampling points. An exception is
Jan Lake (47) where Betula pollen does not become abundant
until ca. 11 ka. While this site meets our dating criteria, it has
atypical lithostratigraphy and biostratigraphy, as well as sub-
stantial age reversals in the lowermost meter of sediment;
therefore, it may provide a less reliable record than the other
pollen records in our database. The ca. 14-ka timing of shrub
expansion in eastern Beringia is consistent with the earliest
14C-dated remains of moose (an obligate browser, and indicator
of an abundance of tall shrubs on the landscape) from interior
Alaska and the North Slope (6, 23, 24), and an abrupt increase
in the frequency of '“C dates from shrub macrofossils (Fig. 2).
These multiproxy paleoecological data place the regional onset
of shrub expansion during the first half of the Bglling—Allergd
Interstadial (14.6 ka to 12.9 ka) (hereafter referred to as the
Bglling—Allergd chronozone).

We find no evidence for a spatial pattern of expansion in
either Betula or Salix, suggesting that woody taxa expanded
from glacial refugia where local conditions provided adequate
snow cover for winter insulation and summer moisture (14, 35).
However, the lack of a spatial pattern may be an artifact of lim-
ited site availability—particularly in eastern Yukon (Fig. 1).
The available evidence implies a gradual fragmentation of
steppe-tundra habitat across eastern Beringia as isolated shrub
communities expanded and coalesced. A coexistence of steppe-
tundra with expanding shrub tundra is supported by the youn-
gest arctic ground squirrel nests, which are indicators of

*M. E. Edwards et al., INQUA 2019 Meeting, October 25-31, 2019, Dublin, Ireland.
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steppe-tundra vegetation and deep active layers (13, 15). These
date to almost 1,000 y after the beginning of postglacial shrub
expansion (Fig. 2) and demonstrate that steppe-tundra per-
sisted in favorable areas (e.g., well-drained soils) for some time
after the postglacial warming began.

Evidence for Bottom-Up, Climate-Driven Controls of Steppe-Tundra
Persistence. The expansion of shrub tundra began during a
period when the frequency of '*C-dated remains from grazers
is high, and >700 y before mammoth (ca. 750 y) and horse (ca.
1,350 y) disappear from the fossil record (Fig. 2 and SI
Appendix, Fig. S4). This demonstrates that a reduction of graz-
ing megafauna populations was not a prerequisite for postgla-
cial shrub expansion in eastern Beringia. Instead, the timing of
shrub expansion corresponds with both Arctic-wide and
regional warming and/or wetting trends that occurred during
the Bglling—Allergd chronozone. These findings indicate that
the role of keystone herbivores was secondary to the role of
climate in preserving the steppe-tundra ecosystem and are
inconsistent with the hypothesis that a decline in ecosystem-
maintaining herbivore populations preceded the expansion of
shrub tundra and drove ecosystem cascades (2, 29).

While our results do not support a top-down model of eco-
system cascades at the end of the Pleistocene, there is ample
evidence for bottom-up controls on megafauna population
dynamics that support the hypothesis that the demise of the
steppe-tundra ecosystem was a climate driven-process:

1) The pattern of megafauna community turnover suggests
Late Pleistocene mammals were responding to vegetation
change, not driving it. Populations of preferential grazers
(horse and mammoth) decline and disappear from the fossil
record independent of more mixed feeders, several of which
occupy Alaska and the Yukon today (wapiti, musk ox, cari-
bou, and reintroduced bison). For example, the number of
C dates from horse species declines early in the
Bglling—Allergd chronozone (Fig. 2), and shortening meta-
carpal lengths (48) suggest that these taxa underwent a
reduction in body size during the same period. Modern
horses are mostly obligate grazers, and, although woody
plant macrofossils have been recovered from the tooth pits
of fossil Alaska horses, the diet of these animals is suggested
to have been heavily reliant on the graminoid and forb vege-
tation of the steppe-tundra (8). Conversely, the number of
!4C dates from steppe bison remains high until ca. 13.6 ka,
and the species persisted into the Holocene along with other
mixed feeders (Fig. 2 and SI Appendix, Fig. S2). Evidence
from tooth-wear analysis and observations of extant wood
bison (Bison bison athabascae) suggest that the steppe bison
had a broader herbivorous diet that included seasonal brows-
ing—allowing the species to better survive the expansion of
woody shrub taxa (49, 50).

2) The expansion of Salix shrubs coincides with increases in
the frequency of '*C-dated remains from steppe bison
and wapiti (Fig. 2 and SI Appendix, Fig. S4). Instead of
suppressing shrub expansion, as predicted in a top-down
model, these taxa appear to have benefited from this vege-
tation change and may have browsed on nutrient-rich,
spring willow leaves (6).

3) Prior to the Pleistocene—Holocene transition, steppe-tundra
persisted in eastern Beringia throughout periods when graz-
ing megafauna populations fluctuated (26). For example, evi-
dence from molecular sequences and the fossil record
suggest that the number of steppe bison declined during the
Last Glacial Maximum (22 ka to 12 ka) (6, 23, 51), and this
taxon is rare in our database prior to ca. 15.8 ka (Fig. 2 and
SI Appendix, Fig. S4).
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4) In other areas of Beringia, vegetation does not appear to
have been affected by the presence or absence of megafauna.
For example, pollen from Lake El'gygytgyn, northeast Sibe-
ria, demonstrates that shrub tundra expanded during previ-
ous interglacial periods when megafauna were unaffected by
human hunting pressure (52).

Although our results do not support top-down cascades as
the initial trigger for shrub expansion, it is possible that the
expansion of shrub tundra caused a positive feedback in which
an increase in unpalatable, woody shrubs fragmented suitable
habitat for grazing megafauna, reducing populations and thus
the effects of trampling and snow clearance, promoting further
shrub expansion.

If the loss of keystone species was not the primary driver of
steppe-tundra biome collapse, then why did it disappear? The
magnitude and duration of Late Pleistocene climate change is
likely to have driven the expansion of shrub tundra and demise
of the steppe-tundra (53). Evidence from chironomid assemb-
lages (54-56), isotopic bone measurements (8'°N) (57), paleo-
lake levels (58, 59), and the onset of aquatic sedimentation in
many basins that were dry prior to 15 ka (34) demonstrate that
eastern Beringia became both warmer and wetter 16,000 y to
13,000 y ago. These changes are likely to be linked with rising
sea levels and a northward shift in storm tracks that increased
the frequency and intensity of maritime air masses penetrating
the region (11, 60). The result was a weakening of continental
aridity and less frequent eolian disturbances (57), which had
previously raised summer soil temperatures and maintained
nutrient levels in the steppe-tundra ecosystem (8, 25). Guthrie
(6) and Mann et al. (26) argued that increased warmth and
moisture would allow for an initial expansion of megafauna
populations as vegetation became more productive. This trend
would have been reversed as woody vegetation began to out-
compete graminoid communities and paludification took hold
across the landscape (“death by peat” hypothesis) (26). The
patterns in the frequency of '*C-dated remains from grazers,
and particularly mammoth and bison, appear to su4pp0rt this
hypothesis; however, the increase in the number of '“C dates is
subtle, and we are hesitant to overinterpret our results, because
of potential for bias or gaps in the fossil record.

The Role of Keystone Herbivores in Maintaining the Steppe-Tundra
Biome. There is clear evidence that the extirpation and/or rein-
troduction of megaherbivores can exert strong, top-down influ-
ences on ecosystems (5, 51, 61-63), yet these effects appear to
have been insufficient to suppress the expansion of shrub tun-
dra during the Late Pleistocene. Therefore, it is pertinent to
ask what role megaherbivores played in maintaining the steppe-
tundra, and why the presence of these taxa did not prevent
shrub expansion.

Late Pleistocene megafauna may have exerted top-down
influences through trampling and nutrient loading (via excre-
tion); however, their dietary preferences meant that shrub vege-
tation was unlikely to be strongly affected by browsing pressure.
Guthrie (8) notes that mammoth, horse species and steppe
bison were all predominantly grazers, whose diets would have
“favored shrub vegetation and woodlands, not the expansion of
grasslands,” by consuming the grasses and forbs in competition
with shrubs. Tooth-wear patterns (49), isotopic analyses (64),
and plant macrofossil remains retrieved from tooth pits, dung
samples, and frozen mummies (8, 65) all support this inferred
dietary preference. In studies focused on extant grazing com-
munities most similar to the megafauna of the steppe-tundra,
large mammals have been shown to promote forb biodiversity
through the selective grazing of grasses (61, 66). If this relation-
ship was replicated in the Late Pleistocene ecosystem, then
large grazers may well have had a keystone role promoting
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herbaceous diversity within the vegetation mosaic, yet have
impacted shrub vegetation to a lesser degree than their closest
extant relatives.

If mammoth, steppe bison, and horse species did exert
strong top-down influences, population density is left as the
remaining explanation as to why the presence of megaherbi-
vores was insufficient to prevent climate-driven biome collapse.
Quantitative estimations of Late Pleistocene megafauna popu-
lations in eastern Beringia are uncertain and range between
590 and 8,800 kg/km? (23, 67-69). Although higher than the
modern megaherbivore biomass in the region (e.g., North
Slope, Alaska: 264 kg/km?) (23), these estimates are signifi-
cantly lower than the megafauna biomass of the sub-Saharan
African plains (4,270 kg/km?® to 23,500 kg/km?) (68), or in
enclosure experiments, where the effects of ecosystem-
maintaining herbivores are clearly observed (5, 62). Therefore,
the weak top-down control in eastern Beringia may have been
because of insufficient population densities. In contrast, Zimov
et al. (29) report considerably higher population estimates from
Duvanny Yar, Siberia, underlining that more precise biomass
estimates are needed to robustly test this hypothesis.

Implications for Late Pleistocene Extinctions in Eastern Beringia.
The timing of shrub expansion has a bearing on Late Pleisto-
cene extinctions in eastern Beringia, which have been attributed
to both human hunting and climate change (2, 6, 29, 53). Our
results do not refute overkill hypotheses; however, the expan-
sion of shrub tundra ca. 14 ka suggests that regional extinctions
of mammoth and horse took place during a period of climate-
driven vegetation change, to which these taxa were poorly
adapted. It is hard to imagine that these vegetation changes would
not have stressed grazing megafauna populations, although some
plasticity in the diet of horses has been inferred from 8'°N values
in “C-dated bones (23). The first appearance of archaeological
evidence in the Tanana Valley, Alaska, closely precedes declines
in the abundance of 'C dates from both mammoth and bison
(Fig. 2), and it is possible that humans had a compounding influ-
ence on population decline. However, archaeological evidence
demonstrates that humans and grazing megafauna coexisted in
eastern Beringia for at least 700 y (70), and possibly for several
millennia (71, 72). Further, while grazers declined as shrubs
expanded, browsers increased in abundance with seemingly lit-
tle influence by human hunting, despite the presence of their
remains in archaeological sites (70) (Fig. 2 and SI Appendix,
Fig. S4). Therefore, any human influence on megafauna popu-
lations was likely gradual and taxa specific.

Implications for Present-Day Arctic “Greening.” Our findings sug-
gest that top-down controls were insufficient to prevent Late
Pleistocene shrub expansion when megafauna biomass was
likely to be higher than today (23). This finding indicates that
extant mammals will have a limited effect on the current,
climate-driven “greening” of the Arctic associated with shrub
expansion (73), and that the reintroduction of megafauna, at
densities similar to those that occupied eastern Beringia during
the Late Pleistocene (assuming it were possible) would not
restore the steppe-tundra biome, or prevent widespread perma-
frost degradation (74). Replicated pollen records show that
Late Pleistocene shrub expansion occurred in several waves as,
first, Salix and, then, Betula responded to rising temperature
and/or precipitation (Fig. 2 and SI Appendix, Fig. S2). This pat-
tern suggests shrub taxa that are currently dominant or expand-
ing at high latitudes may be succeeded by more thermophilous
species if the climate continues to warm. Finally, the close link
between shrub expansion and loss of mammal biodiversity at
the end of the Pleistocene indicates that current Arctic green-
ing will have strong impacts on faunal community structures as
ranges expand or contract (75).
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Conclusions

The reanalysis of robustly dated pollen records and exclusion
of datasets that present chronologies based on ambiguous bulk
sediment or aquatic '*C dates shows that shrub tundra began to
replace steppe-tundra in eastern Beringia around 14 ka—con-
sistent with both the plant macrofossil record and the first
appearance of moose. The fossil record suggests that keystone
megaherbivore species (steppe bison and mammoth) were
abundant at this time, and therefore the expansion of woody
shrub vegetation was not driven by megafauna population
decline and top-down ecological cascades but by a rapid, sus-
tained shift to warmer and wetter conditions. In many areas,
Salix spp. expanded and were widespread on the landscape
before Betula, which is likely to represent the greater tolerance
of some Salix species to low temperatures and aridity. These
findings suggest that extant mammals will have a limited effect
on current shrub expansion in the Arctic and that the reintro-
duction of megafauna, at densities similar to those which occu-
pied eastern Beringia during the Late Pleistocene, will not
restore the steppe-tundra biome.

Materials and Methods

This section provides an overview of the methods used in this study. Full
details can be found in S/ Appendix, Text.

Age-Depth Modeling. We used the Bayesian statistical program OxCal version
4.4 (76) to establish age-depth models for Late Pleistocene pollen records
where AMS '*C dating is available (S/ Appendix, Fig. S1). This involved devel-
oping a P_Sequence depositional model for each record using the IntCal20
Northern Hemisphere calibration curve (77) and a variable K parameter (incre-
ments per unit length). Boundaries were placed at sharp transitions in the sed-
iment stratigraphy where changes in accumulation rate are likely to have
occurred. A general outlier model was applied with a 5% prior probability of
any individual radiocarbon date being a statistical outlier (78). Where the
agreement index for any individual '*C date fell below 60% (typically caused
by an age reversal), we considered this date for manual rejection (78).
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