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Abstract: High-speed and high-precision systems based on piezoelectric actuator (PEA)
demand precise real-time trajectory tracking. Model-based control techniques have been proven
effective in achieving desired tracking accuracy. However, modeling uncertainty and linearization
losses are the biggest hurdles in these techniques to achieve high precision performance over
broad frequency ranges at high speed. To overcome these limitations, in this work, we propose
a long short-term memory (LSTM) neural network-based inverse system identification and
augmented predictive control using a linear model predictive control (MPC) to achieve high
precision trajectory tracking of PEAs. An LSTM network was built and trained to model the
inversion dynamics of the PEA system. The benefit of using LSTM is that it ensures the long-
term dependencies of time series data, and hence it can model the system dynamics for both
low and high-frequency ranges. Once the LSTM inversion model accuracy was evaluated, it
cascaded with the commercial PEA, which together was mostly linear. This combined system
was controlled by augmenting it with a linear MPC controller. The use of augmented predictive
control using the nonlinear LSTM inversion model led to improved modeling accuracy and
higher speed of operation with a reduced computational load. The results demonstrated the
efficacy of the proposed approach in real-time high-speed trajectory tracking of PEAs.

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Neural networks, Nonlinear system identification, Identification for control, Model

predictive control, Tracking, Real-time control, Piezoelectric actuators.

1. INTRODUCTION

In today’s world of nanotechnology, systems and applica-
tions are going towards high speed and nano precision in
operation. The use of PEAs in such applications for the
best possible accuracy has become common practice. The
inherited properties such as mechanical stability, high reso-
lution, and fast response time of PEAs make them suitable
for a variety of high precision applications, such as atomic
force microscope (AFM) (Mollaeian et al. (2018)), scan-
ning tunneling microscopy (Hansma et al. (1988/10/14)),
charge-coupled device drives (Yoichi (2006)), and mass
flow control (Yoichi (2006)). However, the nonlinearities
caused by the hysteresis and creep effects of PEAs are
the barriers in achieving the desired modeling and control
accuracy.

There have been a lot of efforts to tackle this problem using
different real-time control schemes, such as model predic-
tive control (MPC) (Rana et al. (2014)), and iterative
learning-based model predictive control (ILMPC) (Xie and
Ren (2018)). However, the performance of both MPC and
ILMPC were limited due to the rate-dependent nonlinear
dynamics of PEAs (Rana et al. (2014) and Xie and Ren
(2018)), which becomes more significant as the operating
frequency increases (Xie and Ren (2019a)). Discrete-time

quasi-sliding mode control (DQSMC) (Nguyen and Chen
(2017)) and adaptive sliding mode (Utkin and Lee (2006),
Huang et al. (2009)) have been proposed to ease the control
challenges caused by system nonlinearities and modeling
uncertainties. However, both approaches suffer from the
chattering problem (Utkin and Lee (2006)). Moreover,
although both MPC and SMC are effective in real-time
trajectory tracking, these techniques significantly rely on
the system model, which means that their performance
is susceptible to fallacies in the plant or system dynamic
model. Hence, obtaining an accurate dynamic model is
still the major obstacle for precision trajectory tracking
of PEAs.

Historically, physical and phenomenological models of non-
linearities have been used in control theories. Popular mod-
eling approaches such as Preisach model (Ge and Jouaneh
(1997), Mrad and Hu (2002)), Maxwell model (Liu et al.
(2013)), log (t) model (Wei et al. (1996), Jung and Gweon
(2000)) etc. are robust and reliable modeling methods.
Although these models are well in modeling nonlinearities,
they are exclusive to a certain type of nonlinearity. Addi-
tionally, few models are rate-independent in nature, hence
limiting their use in high accuracy applications. Recently,
machine learning-based models, such as the neural net-
work models, have proven its efficacy in the identification
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of system dynamics (Cheng et al. (2015), Xie and Ren
(2019b)). Neural networks, such as feedforward neural
network (FNN), and recurrent neural network (RNN),
have been proposed to model the dynamics of the PEAs
(Cheng et al. (2015), Xie and Ren (2019b), Liu et al.
(2015)). However, the problem with FNN based model
is that it does not consider the system input as a time
series (sequence input) for the purpose of training (Xie
and Ren (2019b)). On the other hand, RNN is much more
effective than FNN and considers the system input as a
time-series signal. RNN is capable of modeling the system
memory and recognizes inter-temporal dependencies (Xie
and Ren (2019b) and Schéfer and Zimmermann (2006)).
However, it fails to consider and understand the long-term
dependencies of the sequential input and hence cannot
capture the correct dynamics of the system over the entire
band of operating frequency (Hochreiter and Schmidhuber
(1997)), especially with variable frequency drive inputs.
To overcome the aforementioned issues, ECNN (error cor-
rection neural network) and DCNN (dynamical consistent
recurrent neural networks) have been proposed (Haykin
et al. (2007)). Although they work better than RNN, their
ability in capturing the system’s long-term dependencies is
still limited, and hence fail to achieve the desired accuracy
in some applications (Haykin et al. (2007)). Such a prob-
lem can be solved with deep RNN (Pascanu et al. (2013),
and Pang et al. (2019)). However, deep RNNs are more
susceptible to gradient vanishing or exploding and hence
difficult to train (Hochreiter and Schmidhuber (1997)).

To address these issues, in this work, we proposed to
use Long Short-Term Memory Network (LSTM) for PEA
system dynamics identification. LSTM takes a sequence of
the inputs into consideration and identifies the system’s
long-term temporal dependencies. Such a network can be
effectively used for nonlinear system modeling (Gonzalez
and Yu (2018)). Moreover, unlike RNN, LSTM does not
suffer from the gradient vanishing or exploding problem
during the training process. In the proposed work, the
LSTM network is used to capture the inverse dynamics of a
PEA system, i.e., to obtain an inversion model. The LSTM
network is trained based on a gradient descent algorithm
(Narendra and Parthasarathy (1991)). Next, the accu-
racy of the obtained LSTM was evaluated by comparing
the LSTM output with the actual measured PEA input-
output data. Then, the obtained inverse LSTM system
model was cascaded with the commercial PEA system,
working together, resulting in a nearly linear behaving
system. Hence, this combined system allows the use of
linear control schemes without sacrificing the modeling
accuracy and eliminates the problem of linearization and
linearization losses. Additionally, it significantly reduces
the computational load and hence makes the control pro-
cess faster. Finally, this combined system was augmented
and controlled by a linear model predictive controller for
high-speed, high precision tracking control of PEA.

2. LONG SHORT-TERM MEMORY NETWORK
(LSTM)-BASED SYSTEM IDENTIFICATION

In this section, we provide the details of the LSTM neural
network, including the architecture of the LSTM cell, and
the process of obtaining the training data set for the LSTM
model.

Fig. 1. Structure of the LSTM

2.1 Long Short-Term Memory Network

Fig. 1 presents the structure of the LSTM model for
modeling the PEA dynamics. The LSTM model consists of
an input layer (hexagon), which is followed by one hidden
layer of LSTM neurons (big circles), and an output dense
layer (concentric circle). Multiple hidden layers of LSTM
units can be stacked together following each other, with
each unit of the previous layer connected to all LSTM
units of the following layer for more accurate system
identification.

As shown in Fig. 1, the output layer has ReLU as an
activation function, and it can be represented as a mea-
surement function, i.e., Y = ReLU(Hy, Wy, Bg), with Wy
and By as weights, and biases associated to the output
layer, respectively. Uy and Yj are the reference input
and the LSTM model output at the sampling instant
k, respectively. H, is the output from the previous layer.
Unlike RNN cell, LSTM cell (big circles in Fig. 1) has
four gates named input, output, forget, and cell gate, and
they can be represented as Iy, Oy, Fj, G respectively, as
shown in Fig. 2. These four gates have their own activation
function, weights, and biases.

The output from this LSTM network at time instant k
for given input Uy is obtained by using the following
equations,

Fk = 0([Wf X Uk] + [Rf X kal] + Bf)

Oy = 0([WO X Uk] + [Ro X kaﬂ + BO)

G = tanh([W, x Ui] + [Ry X Hi_1] + By)
Ik:J([WZ' XUk]+[Rl Xkal]—FBi) (]_)
Cy=Fp*Cp_1+ I x Gy,

Hj, = Oy, # tanh(Cy,)

Yi = ReLU([Wy x Hy] + Bq)

x signifies element-wise multiplication.
Where,
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k-1

Fig. 2. Internal structure of the LSTM cell.

z ifz>0
0 ifz<O

o(z) = 7= and ReLU(x):{

14+e—=

This LSTM network can be represented as a state-space
model as follows. The state vector or function,

_ | Ck| _ | Fr*Cr1 + I x Gy,
X = [H;J - { Oy, * tanh(Cy) } (2)
and measurement function,
- 0
Vi = ReLU (X} x [Wd} + Ba) (3)

Note that Hj, and Cj are the outputs from the LSTM
cell which are considered as primary states, and sec-
ondary states at time instant k as Hj itself is a
function of Cj and the concatenation of Hj, and Cj
is equivalent to the state vector Xj;. The dimensions
of By, B¢, By, Bi, Wy, Wi, W, Wy, Wy are N x 1, and
Ri,Ro, Ry, R, are N x N. By is a 1 x 1 scalar. Where
N represents the number of units in the LSTM layer.

The recurrent layer, i.e., the feedback layer represented by
small circles in Fig. 1 keeps the information of the past
input sequence and their dependencies. Hence, only input
U at time instant k is sufficient as an external input to the
network to produce output Yk.

The aforementioned network can be trained with the back-
propagation method see Goodfellow et al. (2016), which
uses a gradient descent iterative optimization algorithm
to obtain trainable parameters, such as W, R, and B for
all the gates. Specifically, the training goal is to minimize
AY =|| Y = Y ||o, where Y is the measured target data,
and Y is the output of the LSTM model subject to the
same input data U.

2.2 LSTM Training Dataset Generation

One of the crucial tasks in obtaining the mathematical
system model using a neural network is to generate the
training dataset, i.e., U and Y, which covers the entire
working frequency and amplitude ranges, respectively. The
training data must be unbiased towards specific ranges
of frequency and amplitude to achieve a well-generalized
model.

The process of generating the training data starts with
creating input signals for the PEA (i.e., U). Considering
the frequency and amplitude-dependent dynamics of PEA,

the drive input U to the PEA for training the LSTM model
can be designed as,

U= [ alsin@rfit)+C, te0,1/f]. (4)
(ai,fi)€S

where C denotes the constant DC offset. [] denotes con-
catenation of all sinusoidal waves represented by (a;, f;)
(i-e., (amplitude, frequency)) pairs from S, which is a set
consisting p number of (a;, f;) pairs and obtained through
k-means clustering (Lloyd (1982)). Though it is optimal
to use all possible (a;, f;) pairs from the (a — f) plane, it
is not practical, and hence the use of k-means clustering
ensures the best possible (a;, f;) pairs to obtain desired
modeling accuracy. The value p is the cluster quantity
determined through cluster evaluation techniques. Clus-
ter evaluation criterion, such as Silhouette (Rousseeuw
(1987), and Kaufman and Rousseeuw (2009)) and Calin-
skiHarabasz (Caliriski and Harabasz (1974)) criterion, are
good in evaluating the clusters for optimum p value. The
use of a concatenated signal for training, which includes
wide frequency and amplitude signals changing rapidly
over time, can help obtain a generalized network model.
The next step is to measure the corresponding PEA output
Y by applying the designed input U to the commercial
PEA system.

In order to capture the inverse dynamics of the PEA
system, Y and U are used as the input and output of
the LSTM model, respectively, in the training process
described in Sec. 2.1.

2.8 Combined inverse LSTM and PEA system

Integrating the LSTM inversion model with the physical
PEA system in series (represented by a dotted rectangle
in Fig. 3) yields a nearly linear system if the LSTM model
is accurate in capturing the PEA inverse dynamics. This
linear system (referred to as the combined system in the
rest of the paper) can be represented in general state-space
format as follows,

Xk+1 = AXk +Buk (5)

yr = CXg + Duy
where dimensions of A, B,C, D matrices depend on the
degree of the system chosen by the user for better accuracy.

3. PREDICTIVE CONTROL
3.1 Model Predictive Control

The system model represented by (5) can be used by linear
MPC for PEA trajectory tracking control (see Fig. 3).

Kalman
Filter
r——-——-=-=-=-=-=-=-= 1
I I
X, | |
MPC I | LST™- Based en ||
Re Controller  Yx[™ Inverse PEA [~ System —> Y,
| Model |
I I
I I
L e e e e e = = = = 4

Fig. 3. Block diagram of MPC control framework.
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The MPC with internal Kalman filter as a state estimator
achieves this goal by predicting the future PEA trajectory
[k Gkt15 - Yot 11,—1) - over the prediction horizon H,, and
solving the quadratic optimization (QP) problem to obtain
optimum drive input, Ugp¢, to the combined system, where
Uopt is a future input series [ug, w1, ..., Ug+ 1, 1], where
H_ denotes the control horizon.

First, MPC predicts the future PEA trajectory as follows,

i. Compute the innovation ey

e = Yk — [CXpjp—1]- (6)

ii. Update the state estimation to account for the current
measurement

Xk = Xgjp—1 + Mey. (7)

iii. Compute state estimation for the next instant using
updated states.

Xk»Jrl‘k :AXk|k+Buk\k+Lek (8)

where Xj,_1 is a controller state estimates based on
previous time instant, k—1. Y} is the current PEA output.
L and M are the filter gain and the innovation gain,
respectively, obtained using Kalman Estimator.

Similarly, the i*" future state prediction X k+i|x and corre-
sponding output Y44 can be obtained as follows,

Xtk = AXppik + Buggi—1x + Lex, 9)

Yntilk = CXpyie 1€ [0, Hp — 1] (10)
The future output equation i.e. (10) can be represented
in matrix form with constant terms written separately as
follows,

Y =aXi 148U+ Yug_q, (1].)
where
Yk U
. Yk+1 Uk+1
Y = . U= .

Ykt Hp=11 f o1 Uk+He—1d f 51

The terms «, 8, ¥ are defined as

CA CB
C A? CA'B
o= . Y = )
CAHr CA"»—1p
0 O e ()
CB 0 -0
5= CAB CB 0

CA"T»=2B CAH»—3B ...

Next, the following QP is solved to obtain the optimum
input Uppt.

mg'n( = (y(u) + Cau(u), (12)

where
HP

Gy(u) = Z [Phetilk — Ybpilk) s

=1

]

c

Cau(u) =

%

p[uk+i\k - uk-&-i—l\kp’

1

Note that rpi; is the future reference trajectory to
be tracked. (,(u) and (a.(u) are the costs associated
with reference tracking and manipulated variable move
suppression, respectively. Specifically, the cost function
can be simplified as,

min¢ = (R—Y)'(R-Y)+pU"D'DU,  (13)
with
1-1 0 ---0
01 —-1---0
D:
b O O 0 O H:.xH,
and R = [T‘k+177”k+2v"' ’T’k+Hp}T'

3.2 Kalman Estimator

As the combined system model formulated as (5) is nearly
linear if the LSTM inversion model is accurate enough,
linear steady-state Kalman state estimator is a suitable
choice to use as the internal state estimator with MPC.
Kalman estimator estimates the state of the system at
each control instant as follows
Xiy1 = AXy + Buy + wy,
yr = C X + Duy + v,
where wy represents process disturbance, v is the mea-
surement noise, and
Elwywl] =Q, E[uywl]=R, FElww}l]=N
where F represents the estimates of matrices. Then, the
states for the next time interval can be estimated as,

Xk+1|k = AXjs—1+Bu+L(y — CXk|k—l — Duy,). (15)
Here, L is a filter gain matrix, and it is obtained by solving
discrete Riccati equation such that,

L= (APCT + N)(cpPCT + R)!, (16)

with P = E[{X —X}{X —X}7T]. Then the current Kalman
estimator updates the state estimation using all available
measured PEA output up to y as,

Xk = Xpj—1 + M (yr, — C)A(k|k71 — Duy), (17)
where M = PCT(CPCT 4+ R)~! Hence, Y|k becomes,
Yk|k :CXk|k+Duk. (18)

(14)

4. EXPERIMENT RESULT AND DISCUSSION

To validate and demonstrate the proposed approach, the
trained LSTM inversion model was first evaluated by

1 1
1.0 1.2 14

Time(s)

16 18 20

0 02 04 06 0.

Fig. 4. Designed input signal U.
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comparing the LSTM model output with the measured
PEA (Nano-OP30, Mad City Labs) data. The LSTM in-
version model was built and trained in python using Keras
neural network library (Chollet et al. (2015)). Next, it
was cascaded to commercial PEA (Nano-OP30, Mad City
Labs) to form a combined system as described in Sec.
2.3. This system was further tested in Matlab Simulink
(MathWorks, Inc.) on a workstation (Intel Xeon W-2125,
4.00GHz, 32 GB RAM) alongside the data acquisition sys-
tem (NI PCle-6353 by National Instruments) for tracking
control.

The proposed LSTM model was built with 4 layers, in-
cluding one input layer, two LSTM layers, and one fully
connected dense layer, with 1, 100, 35, and 1 neuron (unit),
respectively. For training the LSTM network, particularly
for obtaining a training dataset, the amplitude range was
kept at 0—5 V, and the frequency range was set to 1 —300
Hz. The sampling frequency was set to 10 kHz through-
out the entire experiment. The optimum cluster value p
(the number of (a, f) pairs) was 110, obtained by using
Silhouette cluster evaluation criterion (Rousseeuw (1987)
and Kaufman and Rousseeuw (2009)). Selection of (a, f)
pairs were done using k-means clustering (Lloyd (1982)).
Finally, the training input was obtained using (4) as shown
in Fig. 4. These inputs U and their corresponding outputs
Y measured from the PEA were randomly categorized in
training and testing datasets in a 0.8:0.2 ratio. Note that
training and testing data were not the same, and hence
assures the effectiveness of the model in generalization.
Next, the experiments were conducted to analyze modeling
accuracy and reference trajectory tracking.

First, to validate the accuracy of the LSTM in modeling
the inversion dynamics of PEA, different reference input
signals were applied only to the combined system (shown
by a dotted rectangle in Fig. 3.) without any controller

(a)

in the application. Specifically, sinusoidal signals with the
frequencies of 10, 50, and 117 Hz as well as complex signals
such as variable amplitude sine sweep signal, stepwise sig-
nal, and broadband signal (with the frequency range of 1-
300 Hz) generated using the approach described in Sec. 2.2
were used as references to demonstrate the performance
and generalization ability of the trained model. Note that
the frequencies of the testing reference inputs did not
overlap with that of the training input. The performance
of the trained LSTM inversion model for different sinu-
soidal inputs and complex inputs is shown in Fig. 5, and
Fig. 6, respectively. Further, the modeling accuracy was
computed as follows,

o Y -Rls
&2

where R and Y are the reference input signal given to
the LSTM inversion model and output measured from
the PEA system, respectively. The RMS modeling error
Emar was 0.351%, 0.356%, 0.60% for the 10, 50, and 117
Hz sinusoidal inputs, and 1.2%, 0.937%, and 0.403% for
sine sweep, stepwise signal, and the broadband signal,
respectively. It is clear that the model is accurate enough
to compensate for the nonlinear dynamics of PEA over the
entire trained frequency and amplitude ranges: the input
and output of the combined system are mostly the same.
These results confirm the modeling accuracy of the LSTM
inversion model.

(19)

Next, to demonstrate the performance of the proposed
approach in a trajectory tracking application, the com-
bined system described in Sec. 2.3 was augmented and
controlled by linear MPC, as shown in Fig. 3. The linear
MPC was designed in Matlab (MathWorks, Inc.) using
the MPC control toolbox. To estimate the states of the
system, a linear steady-state Kalman filter was designed
in Matlab Simulink (MathWorks, Inc.). For MPC, the

(b) o

S 4 g 4 g 4
(] () ()]
> (@)} ()]
2 27 g 2 8 2
(®) 6 B
= > >
0 : : : : 0 . - - : 0 . . - -
0 0.1 02 03 04 05 0 002 004 006 008 0.1 0 002 004 006 008 0.1
Time (s) Time (s) Time (s)
(d) (e) (f)
< 02 1 —~ | ~
= KMNW v v
@ o o 0 T 0 TNV A ARASAR AR
+ © ©
5 = =
§ ) o
= 02 = -02 = 02
0 0.1 02 03 04 05 0 002 004 006 008 0.1 0 002 004 006 008 0.1
Time (s) Time (s) Time (s)
‘ —— ReferenceinputR ---- PEAoutputY ‘

Fig. 5. Modeling Performance of LSTM. (a), (b), (c) are the comparisons of the reference input R and PEA output Y’

when no controller in action, and (d), (e), (f) are the corresponding tracking errors (Y — R), when the reference
inputs were 10 Hz, 50 Hz, and 117 Hz sinusoidal signals, respectively.
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(b)
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: : -0.5 : :
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Time (s) Time (s) Time (s)
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Fig. 6. Modeling Performance of LSTM for complex inputs. (a), (b), (c) are the comparisons of the reference input~R

and PEA output Y when no controller in action, and

(d), (e), (f) are the corresponding tracking errors (Y — R),

when the reference inputs were sine sweep signal, broadband signal, stepwise signal, respectively.

prediction horizon H, and the control Horizon H, were
set to 15 and 9, respectively.

The experiments were conducted to track different com-
plex reference signals at a 10 kHz sampling rate. The
tracking accuracy was validated by computing the RMS
tracking error as follows,

€, = I|Y - R|2
IRz

where R is PEA tracking reference and Y is the output of
the PEA, respectively.

(20)

Fig. 7 shows the comparison between actual nonlinear-
ities exhibited by PEA with nonlinearity compensation
achieved using the proposed control approach. Note that
the smaller area between two curves (charging curve and
discharging curve) corresponds to better hysteretic com-
pensation, and the linear nature of the curve is a measure

15
€ €
3 3
=107 =
C C
(O] (]
€ €
(O] (O]
® 3
Q3 o
2 2
[a) [a)
0 L L L
0 1 2 3 4
Input voltage (V)

(a)

of the performance of the model to compensate for overall
nonlinearities exhibited by PEA. From Fig. 7, it is clear
that the devised method has realized notable nonlinear-
ity compensation. Further, The tracking performance of
the proposed LSTM based augmented control scheme for
sinusoidal references of different frequencies (10, and 50
Hz), and variable amplitude sine sweep signal with fre-
quency ranging from 1 to 200 Hz are shown in Fig. 8.
The RMS tracking errors are shown in Table 1, where
the tracking performance of conventional PID feedback
subject to the same references is compared. PID is still one
of the accurate control schemes for real-time commercial
applications, and when tuned properly, it performs supe-
rior compared to modern control schemes. Hence, PID can
be compared to measure the relative performance of the
proposed method. It is clear that the tracking accuracy of
the augmented predictive controller (APC) is much better
than that of the PID feedback control for all desired tra-

15
10t
5 L
O L L L
0 1 2 3 4
Reference input (V)
(b)

Fig. 7. Comparison of actual nonlinearities vs. experimental nonlinearities. (a) Nonlinearities exhibited by PEA, (b)
Nonlinearities after compensation achieved using the proposed control approach.
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Fig. 8. Tracking performance comparison of MPC and PID. (a), (b), (c) are the PEA outputs, and (d), (e), (f) are the
tracking errors for 10 Hz, 50 Hz, and variable amplitude sine sweep signal references, respectively.

jectories. Especially, for the variable frequency references,
it outperformed PID, and the accuracy of the proposed
approach was up to 5 times higher. We noticed that the
performance of the APC was slightly downgraded as the
operating frequency increased. This is associated to the
small values of H. and H), chosen and limited bandwidth
training dataset for system identification. The higher val-
ues of parameter H, and H. can help reduce the tracking
error. However, it can impose additional computational
complexity leading to difficulties in achieving real-time
tracking with limited computing power.

Table 1. RMS tracking error comparison of
the proposed augmented predictive controller
(APC) and PID

&r(%) 10 Hz 50 Hz Sine sweep
APC 0.88 0.39 0.96
PID 1.74 1.86 5.13

In summary, the results above have demonstrated that the
proposed LSTM inversion model is accurate in capturing
the complex dynamics of PEAs. Further, when augmented
using linear MPC, it achieved high trajectory tracking
accuracy at higher speed and lowered computational cost
allowing us to realize the better resolution of operation.

5. CONCLUSION

In this work, we proposed a system identification and
control approach of PEA using the LSTM neural network
for precise trajectory tracking. The LSTM was trained
with the backpropagation method using a gradient descent
optimization algorithm. The proposed LSTM inversion
model effectively captured the PEA system dynamics for
a wide range of operating frequencies. The LSTM network
successfully modeled PEA dynamics with less than 2%
modeling error. Furthermore, the obtained LSTM inver-
sion model was cascaded to PEA and augmented using

a linear model predictive controller for PEA trajectory
tracking. The results have shown that the proposed control
approach can track the complex reference trajectories with
less than 1% RMS tracking error. It is clear from the
results that using the LSTM inversion model to capture
the PEA dynamics and linear MPC to control reference
tracking can achieve high accuracy and precision real-time
trajectory tracking of PEA.
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