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We present a follow-up method based on supervised machine learning (ML) to improve the performance

in the search of gravitational wave (GW) bursts from core-collapse supernovae (CCSNe) using the coherent

WaveBurst (cWB) pipeline. The ML model discriminates noise from signal events by using a set of

reconstruction parameters provided by cWB as features. Detected noise events are discarded yielding a

reduction in the false alarm rate (FAR) and the false alarm probability thus enhancing the statistical

significance. We tested the proposed method using strain data from the first half of the third observing run

of advanced LIGO, and CCSNe GW signals extracted from 3D simulations. The MLmodel is tuned using a

dataset of noise and signal events, and then used to identify and discard noise events in the cWB analyses.

Noise and signal reduction levels were examined in single (L1 and H1) and two detector network (L1H1).

The FAR was reduced by a factor of ∼10 to ∼100 resulting in an enhancement in the statistical significance

of ∼1σ to ∼2σ, while not impacting the detection efficiencies.

DOI: 10.1103/PhysRevD.105.084054

I. INTRODUCTION

The search and characterization of gravitational wave

(GW) bursts with the network of laser interferometers

LIGO [1], VIRGO [2], and KAGRA [3] need to address

issues such as discrimination between GWevents and noise

artifacts, reconstruction of the GW waveforms, and locali-

zation of the source in the sky. In the case of GWs

generated by binary black holes (BBH) and binary neutron

stars (BNS), the existing algorithms benefit from having

highly deterministic signal models, and thus, searches are

based on match-filtering detector strain data with available

template signals (see for example [4,5]).

Core-collapse supernovae (CCSNe) are also a primary

detection target in the upcoming LIGO, VIRGO, and

KAGRA observing runs. CCSNe are of special interest

because the electromagnetic radiation and emission of

neutrinos along with GWs will provide new hints to

understand their formation mechanism and dynamic,

and also will lead to novel insights in multimessenger

astronomy. The morphology of GWs from CCSNe is

predominantly stochastic with some deterministic

components like the growing trend of the central frequency

of the fundamental g-f mode [6] produced by the late

electron capture induced contraction or the GW emission

during the core bounce phase in rapidly rotating progeni-

tors banks [7] which could be described with template

banks [8]. The production of templates from three-dimen-

sional (3D) state-of-the-art numerical simulations is com-

putationally expensive. Furthermore, simulations where

modeling the physical processes or even different numeri-

cal schemes of the same progenitor are expected to have

varying stochastic features. These limitations are the main

reasons why unmodeled or weakly modeled searches are so

far the only approaches considered for CCSNe GWs [9,10].

Coherent WaveBurst (cWB) is a standard method for the

search and characterization of GWs using data collected

by the LIGO, VIRGO, and KAGRA detectors with weak

assumptions about the signal morphology like the fre-

quency band of interest and maximum duration [11]. To

detect unmodeled GW transients, cWB identifies coinci-

dent excess-power between the strain data in the network of

detectors using wavelet-based analyses and a GW mor-

phology consistency test known as the cc coefficient [12].

The coincidence between multiple detectors allows us to

reject many noise events that are present in only one of the*
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detectors. The rate of more rare glitches has been largely

reduced with data quality investigations that correlate the

GW candidates with sensors monitoring local disturbances

(see for example Ref. [9]). cWB also reconstructs the

detected GW and estimates some signal processing param-

eters [13–15]. cWB was used in the detection of many GW

transients from binary systems [16–20], and in the all-sky

and targeted searches of CCSNe GW signals in the

previous LIGO and VIRGO observing runs [9,21–24].

Furthermore, cWB will play a critical role in the detection

of CCSNe GWs in the upcoming fourth and fifth observing

runs (O4 and O5) with the LIGO, VIRGO, and KAGRA

(LVK) network [10].

The search of GWs emitted by CCSNe possesses other

difficulties in addition to the inherent uncertainties in the

waveform models. The production of candidate events is

mostly driven by excess energy instances (and predomi-

nantly driven by Gaussian noise) that can be related to

stationary or nonstationary noise components (glitches). At

small signal-to-noise ratio (SNR) the stationary ones domi-

nates, while nonstationary ones dominate at large SNR

values. If we have only one interferometer collecting data,

temporal coincidence and morphological consistency are not

available. This limitation is expected to make achieving large

statistical confidences in detection candidates challenging as

noted in [25]. This is significant because it has been shown

that there are periods of time during the observing runs for

which only one detector in the network is in operational

conditions and collecting science-quality data [25]. Indeed,

∼30% of the collected strain data during the first observing

runs has been from one detector only [26]. Even in the case

of a network of detectors, the population of non-Gaussian

glitches can have a rate sufficiently large as to be a limiting

factor in obtaining a large statistical confidence in the

detection, especially for extragalactic sources.

Morphologically, both type of noise events tend to carry

specific signatures of the physical causes that generated

them. The events formed by cWB at small SNR tend to

show a fairly compact time-frequency structure that would

be independent of the sources; however, for increasing

amplitudes the morphology can become more varied. The

detector characterization group of the LVK network operate

routinely to classify the morphology of different glitches

[27] and some of them, like the so-called blip glitches can

strongly resemble the core bounce waveform for rapidly

rotating progenitors [10]. All the opportunities to improve

either the detection confidence, the detection range or both

need to be taken. These issues encourage to investigate

more morphological metrics to distinguish CCSNe events

from noise events.

Machine learning (ML) methods offer one of these

opportunities and this paper is part of the systematic

exploration of its potential.

In recent times, ML along with the special class of deep

learning (DL) models tackle several GW data detection

problems [28]. For instance, to discriminate between noise

and GW signals either from binary systems [29–33] or from

CCSNe [34–37], and to identify and remove transient noise

events using strain data or auxiliary channels [38–41].

Notably, ML models have also been used to enhance cWB

performance. Specifically, to distinguish between glitches

and GW signals from BBH [42], to construct a statistical

veto based on the recognition of noise events to improve

the detection efficiencies of GWs from BBH [43], and to

achieve higher detection sensitivity of GW signals from

CCSNe using signal enhancement [44,45]. ML models, in

specific genetic programming algorithms, had been pre-

viously investigated to discriminate CCSNe GW signals

from noise transients for the case of single detector searches

[25]. Along this line, this paper investigates the benefits

of supervised ML as a follow-up method of cWB that

discriminates between noise and signal events in searches

of GWs from CCSNe. We extended the previous approach

[25] by investigating the noise reduction in two detector

network and assess its effects on the detection range for

extragalactic CCSNe; using classification algorithms that

rely on a discriminant function that do not require stochas-

tic initialization of parameters and iterative executions

thus avoiding to perform several training repetitions or

the selection of a suboptimal solution, as in the case of

classifiers based on genetic approaches.

To discriminate between noise and signal triggers, we

use a set of cWB reconstruction signal processing param-

eters such as duration and central frequency as features, and

the supervised classification models linear discriminant

analysis (LDA) and support vector machines (SVM).

We quantified the improvement in the false alarm rate

(FAR) and in the statistical significance with networks of

one or two detectors using strain data from the first half of

the third observing run (O3a), and with several recent

CCSNe GW waveforms from 3D simulations. The selected

families of waveforms from 3D simulations were based on

the fact that the historical approach in the LIGO-Virgo-

KAGRACollaborations has been to employ an evolving set

of GW from numerical simulations that represent the range

of morphologies expected from CCSNe progenitors. The

two most relevant ones are slowly rotating and rapidly

rotating progenitors. The loose criteria have been to update

the simulation set when new ones are available from the

same group. The goal of the all-sky search for GW burst

has been slightly different in that (a) white noise bursts

were included to test for unexpected morphologies (b) only

consider a small token set of CCSNe GW from numerical

simulations. Given that this search is aimed to CCSNe

we do not use in the tuning process of the ML algorithms

morphologies that are not physics driven. We do however

present in the Appendix the results of the ML classification

for generic white noise burst (WNB) signals. We also

performed robustness tests where our ML approach is tuned

with a distribution of noise and signal triggers extracted
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from a stretch of data and then applied on a different

stretch of data.

The paper is organized as follows. Section II describes

the cWB analyses carried out to generate distributions

of noise and signals triggers and the LDA and SVM

classification models used to recognize between noise and

bona fide CCSNe GW events. Section III presents the

results of the studies devoted, first to assess the noise

reduction and signal misclassification rates produced

by the classification models, and second to ascertain

the actual improvement in the FAR and the statistical

significance of the loudest candidates. Section IV presents

conclusions and future directions.

II. METHODS

A. cWB analysis

In this study we used LIGO strain data from the first half

of the third observing run (O3a). cWB analyses were

carried out independently in three stretches of open data

(i.e., three time windows named TW1, TW2, and TW3)

with a duration of three days each. For the case of CCSNe

GWs, the search is typically driven by optical observations

where the time window ranges from hours to days, while it

is a few seconds in the potential case of neutrino-flux driven

searches. Hence, three days was chosen as a representative

window duration of how much we would be able to

constrain the GW emission from electromagnetic observa-

tions and a relatively rapid discovery of the CCSNe. All

cWB analyses were carried out separately with one and two

detectors network (L1, H1, and L1H1) with the aim of

studying the rate of false detection (background analysis),

the detectability of CCSNe GWs (sensitivity analysis),

and to generate datasets of noise and signal events to train

and to test the classification algorithms. Table I shows the

total time of the three time windows for each network of

detectors used in this study.

1. Background

With more that one detector, the data from one detector is

shifted with respect to the other in a time length that has to

be longer than the GW travel time between detectors

(∼10 ms between L1 and H1). This time-shift procedure

is repeated multiple times to obtain a total background

search time (also called nonzero lag time) long enough to

attach a certain statistical significance. All detected events

from this analysis are of nonastrophysical origin and

therefore correspond to false detections or noise events.

Then, the FAR can be estimated simply as the ratio between

the number of detected events and the total background

time. Table I also shows the total background time of the

three time windows considered in this study. Note that

with only one detector available in the network the time

shifting is not possible, neither coincident test to remove

glitches can be performed. This drastically worsens the

FAR in comparison with networks of two or more opera-

tional detectors.

In the cWB background analysis, the FAR is produced

for different values of the network SNR or ρ, yielding to

the FAR versus ρ curves. Note that for the case of a single

interferometer, ρ is equivalent to the SNR of the available

detector. The statistical significance is computed in terms of

the false alarm probability (FAP) as follows [9]:

FAP ¼ 1 − eTon×FAR; ð1Þ

where Ton is the on-source window where a GW signal is

searched for.

Results for the background analysis in the time window

TW1 are presented in Fig. 1. Note how the FAR (Fig. 1(a))

is considerably higher with one detector than with two

detectors. Likewise, the corresponding values of the FAP

(Fig. 1(b), where the ρ threshold was set to 5) for the case of

a search in a on-source window of 1s reveals a statistical

significance barely close to 3σ, and a quite higher signifi-

cance close to 5σ for the two detector network. This

illustrates the need of a follow-up method to identify

and discard noise events (not only in single detector based

searches but also in searches with two detectors) which

reduces the FAR and improves the statistical significance

of the search.

2. Sensitivity

The goal in this analysis is to determine the sensitivity

in the search of known CCSNe GWs, and to obtain a

distribution of signal events. Here, waveforms are

TABLE I. Total time and background time (nonzero lag) of each network of detectors (L1, H1, and L1H1) for the three stretches of

open O3a LIGO data used in this study.

Time window TW1 TW2 TW3

Initial time 2019-06-17T00:00:01 2019-06-25T00:00:01 2019-08-26T00:00:01

Final time 2019-06-19T23:59:59 2019-06-27T23:59:59 2019-08-28T23:59:59

Network Total time Background time Total time Background time Total time Background time

L1 1.73 days … 1.62 days … 2.18 days …

H1 1.77 days … 1.66 days … 2.38 days …

L1H1 1.50 days 4.6 years 1.06 days 3.3 years 1.96 days 6.2 years
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systematically added into detector noise data, rescaled to

different amplitudes corresponding to diverse source dis-

tances, and at different time delays between detectors

corresponding to diverse source sky locations. For the

case of single detector network, the injection is carried out

only in the available detector and thus no time delay is

required. Subsequently, the search of GWs is carried out

and the detection efficiency (DE) is simply measured as the

fraction of successfully detected GWs. DE is computed for

each injected type of GWand for each distance to construct

DE versus source distance curves.

All simulation analyses were done at different source

distances from 0.1 kpc up to 10 kpc. Furthermore, several

families of CCSNe GWs were used (see next subsection).

Results for the analysis around time window TW1 are

presented in Fig. 1(c) for the case of the waveform named

“he3.5” from [46]. These DE curves are for a FAR of

2.74 × 10−2 Hz, 2.47 × 10−2 Hz, and 9.30 × 10−6 Hz for

L1, H1, and L1H1, respectively. This result shows how the

efficiency reduces as the distance increases, and quite

similar performance for all network of detectors. Despite

the good and steady sensitivity irrespective of the number

of detectors, the low statistical significance imply not only

to recognize the noise events with high accuracy, but also to

not to affect these detection efficiencies.

3. CCSNe GW waveforms

To carry out simulation analyses, freely-available

CCSNe GWs from recent 3D simulations were selected

to be added into noise data. We selected recent families

of CCSNe GW waveforms that were used in the all-sky

search of short GW bursts in O3 [47], and that were part of

the recent study devoted to investigate the detectability

of GWs from CCSNe in the upcoming fourth and fifth

observing runs of the Advanced LIGO, Advanced Virgo,

and KAGRA [10]. In specific, we used the following

waveform families representing a wide variety of physical

phenomena and modeling methods:

(i) Scheidegger et al. 2010. This a large set of GWs

obtained in 3D-simulations of magnetohydrody-

namic (MHD) driven explosions with diverse rotat-

ing progenitors [48]. For this work we considered

three representative GWs generated by a progenitor

start of 15 M⊙ with different rotational speeds and

with neutrino leakage scheme, R1E1CA_L (slowly

rotating), R3E1AC_L (moderate rotating), and

R4E1FC_L (rapidly rotating).

(ii) O’Connor et al. 2018. This is a family of seven GWs

generated by a zero age main sequence (ZAMS)

of 20 M⊙ [49]. The simulations considered neutrino

physics and the resulting GW signatures exhibit

strong g-modes and standing-shock accretion insta-

bility (SASI) components [50]. The name of the

seven waveforms are mesa20, mesa20_LR, mesa20_

pert, mesa20_pert_LR, mesa20_v_LR, mesa20_2D,

and mesa20_2D_pert. Nonrotation is presented in

this simulation.

(iii) Powell et al. 2019. This is set of two GWs (named

he3.5 and sl8) that were computed from simulations

considering low to regular energies in the explosion

mechanisms [46]. They are nonrotating models with

3.5 M⊙ helium core after the star has lost its outer

layers due to binary interactions for model he3.5

and with a ZAMS of 18 M⊙ for model sl8. The GW

waveforms exhibit the typical frequency rise asso-

ciated with emission of g-modes.

(iv) Powell et al. 2020. This family of three GWs were

obtained from simulations including explosion prop-

erties of the progenitor star [51]. The name of the

waveforms are m39, s18np, y20. The first model is

from a rapidly rotating progenitor of 39 M⊙, while

the other two are from nonrotating progenitors of

18 M⊙ and 20 M⊙. The model s18np has the same
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FIG. 1. cWB search results for the cases of single detector network (L1 and H1) and two detectors network (L1H1) using strain data in

the time window TW1. (a) False alarm rate versus the ρ statistic from the background analysis. (b) False alarm rate versus false alarm

probability for the case of a on-source window of 1 second. (c) Detection efficiency (DE) with respect to the source distance achieved

with the CCSNe GW “he3.5” from Powell et al. 2019 for a corresponding false alarm rate of 2.74 × 10−2 Hz, 2.47 × 10−2 Hz, and

9.30 × 10−6 Hz for L1, H1, and L1H1, respectively.
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progenitor as the model s18 in Powell et al. 2019,

but it does not include perturbations (np). The GW

waveforms exhibit the typical frequency rise asso-

ciated with emission of f- and g-modes and SASI

prompt convection.

(v) Mezzacappa et al. 2020. This is a single GW named

C15-3D generated by a 15 M⊙ progenitor start that

includes a neutrino-driven convection mechanisms

[52]. The GW signature presents low-frequency and

high-frequency components and SASI emission.

A summary with more physical details of these families

of CCSNe GWs such as the numerical methods, GW

characteristics, mass of the star, angular moment, fre-

quency, energy, and others is presented in [10]. It is worth

summarizing that two waveforms from Scheidegger et al.

2010 (R3E1AC_L and R4E1FC_L) and one from Powell

et al. 2020 (m39) represent rapidly rotating progenitors

while the other ones are from slowly rotating.

B. Features

The features used to feed the classification algorithms in

orderto discriminate between noise and signal events are

reconstruction parameters provided by cWB for each event.

We used the same set of parameters proposed in [25] that

represent the duration, frequency, and time-frequency

characteristics of the reconstructed GW burst transients:

(i) ρ: cWB detection statistic.

(ii) Volume: number of time-frequency pixels compos-

ing the event.

(iii) Duration 1 and Duration 2: time length of the event

computed from the energy-weighted and from the

reconstructed waveform.

(iv) Frequency 0 and Frequency 1: central frequency of

the event computed from the energy-weighted and

from the reconstructed waveform.

(v) Low and High: minimum and maximum frequency

of the time-frequency map pixels.

(vi) Bandwidth 1 and Bandwidth 2: bandwidth estimated

from the energy-weighted and from the time-

frequency map.

(vii) Norm: effective number of time-frequency resolu-

tions used for GW reconstruction.

Hence, the vector of features is x ∈ RNf×1 where Nf is

the number of reconstruction parameters extracted from

each event.

C. Classification algorithms

The classifier is a computational model that takes as

input a vector of features extracted from a cWB event, and

assigns to it one class label indicating “noise” or “signal”.

Common and robust classification models used in diverse

applications are linear discriminant analysis and support

vector machines. These classifiers allow to identify a linear

or nonlinear separation hypersurface in such a way that the

class assigned to an input vector of features depends on

which region the vector is located [53]. They consist of a

discriminant function defined by wT · fðxÞ ¼ 0, where x ∈

R
Nf×1 is the vector of Nf features, fð·Þ is a transformation

function, and w ∈ RNf×1 is a vector of classification

weights (i.e., discriminant vector) that have to be calculated

from a training dataset fxi; yig; i ¼ 1;…; N, where yi
indicates whether xi is a feature vector extracted from a

noise or a signal event, and N in the number of instances.

LDA defines the transformation function as fðxÞ ¼ x,

thus it is only able to construct linear separation surfaces

since the discriminant function becomes wT · x ¼ 0 [54].

In this classifier, the discriminant vector w is estimated

by seeking the projection that maximizes the difference

between the means of the classes while minimizes their

variance (leading to a classification model that is optimal

when the two classes are Gaussian with equal covariance).

Thus, the hypersurface is found by solving this optimiza-

tion problem,

ŵ ¼ argmax
w

wTSBw

wTSWw
; ð2Þ

where SB is the between-class covariance matrix and SW is

the within-class covariance matrix [54].

SVM is able to compute linear or nonlinear separation

surfaces in such a way that maximizes the separation

between the hypersurface and the nearest data points of

each class which are called support vectors [55]. This

involves solving the following optimization problem,

ŵ ¼ argmin
w

1

2
kwk2 þ C

Xn

i¼1

ξi; ð3Þ

subject to the condition yiðw
TfðxiÞÞ≥1−ξi;∀ i¼1;…;N,

where ξi ≥ 0 measure the error in the misclassification

of xi. The separation hyperplane is linear when fðxÞ ¼ x,

leading to the linear SVM (or SVML). On the contrary,

nonlinear separation boundaries are obtained through a

kernel function. The most common kernel is the radial

basis function (RBF), which leads to a nonlinear SVM with

RBF (or SVMR).

In this work, we first used LDA, SVML, and SVMR

to test the discrimination between noise and signal events,

and then, we selected the one with the higher performance

in order to assess the actual improvement produced

by classification model as a follow-up method in offline

cWB searches.

III. RESULTS

A. Training/testing with data

from the same time window

As a first step to investigate the classification between

noise and signal triggers we perform both the training and
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testing with information from the same stretch of strain

data, i.e., noise and signal triggers used to train and test the

classification model are from the same background and

simulation analyses. To do so, a cross-validation process

was employed to assess classification performance. The

process was implemented as follows: (i) randomly split the

dataset of noise and signal triggers into K nonoverlapping

subsets or folds; ðiiÞ use the data from K − 1 subsets

for training and the data from the remaining subset for

testing (note that data for training and testing are always

mutually exclusive); ðiiiÞ use the training set to calculate

the parameters of the classification model; ðivÞ fed the

classification model with all the triggers from the test set

and compute performance metrics by comparing the output

labels provided by the classifier with the corresponding

true labels; (v) repeat steps ðiiÞ to ðivÞ until all the K
combinations of train and test data are exhausted.

This cross-validation process with K ¼ 5 was repeated

10 times to compute distributions of the classification

performance metrics. Prior to the training of the classi-

fication model, the number of noise and signal triggers in

the training set is balanced to avoid overfitting to one of

the classes, moreover, the training data was normalized

according to xi ¼ ðxi − μiÞ=σi, ði ¼ 1; 2;…; NfÞ where μi
and σi are the mean and standard deviation of the ith
feature which are computed exclusively from training

data. The normalization is later applied to each feature

vector in the test set.

To assess performance the following metrics were

computed: true negative rate (TNR) or specificity (i.e.,

correct classification percentage of noise events) and false

negative rate (FNR) (i.e., percentage of signal triggers

incorrectly classified as noise triggers). TNR is expected to

be large to reduce the FAR, while FNR is expected to be

small to not affect the efficiency. Classification analyses

were carried out separately for each variant of:

(i) Detector network: L1, H1, and L1H1.

(ii) Time window of strain data: TW1, TW2, and TW3

(see table I).

(iii) Distance: 1.00, 1.33, 1.78, 2.37, 3.16, 4.22, 5.62,

7.5, 10 kpc, and all those distances together.

(iv) Family of CCSNe GW: Scheidegger et al. 2010,

O’connor et al. 2018, Powell et al. 2019, Powell

et al. 2020, and Mezzacappa et al. 2020 and from all

those families together.

(v) Classification models: LDA, SVML, SVMR.

Figure 2(a) shows the correct noise classification rate

(TNR) and the incorrect signal classification rate (FNR)

obtained with the dataset from the time window TW1

separately with detector networks L1, H1, and L1H1. These

results are for the case of signal triggers from all distances

and from all families of CCSNe GW, which represents the

most difficult situation for a classification model because

they combine signal triggers with different SNR and with

different GW signatures. The percentage of noise triggers

that are correctly classified is on average 97.6� 0.6%,

97.2� 0.5%, and 99.4� 0.6% for detector networks

L1, H1, and L1H1, respectively. This indicates very high

specificity (nearly 100%) with very low variability (less

than 0.6%) irrespective of the number of detectors in the

network. On the contrary, signal triggers are lost, on

average, 16.6� 1.2%, 17.2� 1.4%, and 2.2� 0.9% for

detector networks L1, H1, and L1H1, respectively. These

results shows a very high noise reduction irrespective of

the detector network and low signal lost especially for the

detector network with two interferometers.

To examine the effect of the distance, Fig. 2(b) shows

the classification results obtained with signal triggers from
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FIG. 2. Classification results from the cross-validation analysis obtained with the dataset of triggers extracted from the time window

TW1 in detector networks H1, L1, and L1H1. (a) Distribution of classification rates (TNR and FNR) for the case of signal triggers from

all families of GW and from all distances combined. (b) Mean and standard deviation values of classification rates (TNR and FNR) for

the case of signal triggers from all families of GW and for each distance individually. All these results were obtained when using the

classification algorithm SVMR.
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each distance separately. As the distance increases,

correct noise classification (TNR) decreases while signal

misclassification (FNR) increases and the proportion of lost

signals increases faster than the decrease in correct noise

classification. This is due to the fact that as the distance

increases the SNR of the GW signals decreases, and

therefore it becomes more difficult to discriminate between

noise and signal triggers because they tend to have similar

characteristics.

The results presented in Figs. 2(a) and 2(b) include

signal triggers from all GW families considered herein,

which represent the case with the more variability in

the characteristics of signal triggers. Similar results and

observations were drawn with analysis carried out with

datasets of noise and signal triggers obtained from time

windows TW2 and TW3. Altogether, these results shows

that a better classification between noise and signal triggers

with the network of two detectors L1H1, and the lower

performance with the network of one detector H1.

Figure 3 shows the classification results from the

cross-validation analysis for the three time windows, each

family of CCSNe GW, and for the three classification

algorithms. First, with regard to the three stretches of

strain data (Fig. 3(a)), high-noise detection, and low signal

misclassification was obtained in the three cases, and

there is a similar distribution of the performance metrics.
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FIG. 3. Distribution of classification metrics (TNR and FNR) obtained with (a) the three different time windows, (b) each family

of CCSNe GW, and (c) the three classification algorithms. These results are for the case of the single detector network L1 (upper panel),

H1 (central panel), and L1H1 (lower panel).
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Second, there is some variable classification performance

considering the family of CCSNe GW [Fig. 3(b)]. In

particular, using signal triggers from O’Connor et al.

2018 yielded to a lower noise detection and higher signal

lost, while triggers from Scheidegger et al. 2010, Powell

et al. 2019, and Powell et al. 2020 resulted in the best

performance with the higher TNR and lower FNR.

Importantly, note that for the case of using signal triggers

from all families combined the performance metrics

are distributed within all families. Finally, regarding

the comparison between classification algorithms, all

classifiers achieved similar and high rates of noise

reduction, however, the rate of signal lost varied across

them, in particular, SVMR presented the lower signal

lost. In consequence, the nonlinear SVMR classifier was

selected to be used is the subsequent analyses. The same

behavior of the noise reduction and signal lost is observed

in all detector networks (L1, H1, and L1H1), but the

network of two detectors always presents the best

performance.

A summary of the cross-validation results with the

percentage of noise and signal reduction for each network

of detectors (L1, H1, and L1H1), for each family of CCSNe

GW, for different distances, and for the first time window

of data is presented in Table II. These results shows

that classification performance degrades as the distance

increases, shows no large differences across families of

CCSNe GW and is higher for the two detector network.

B. Training/testing with data

from different time windows

This second study aimed to assess the actual improve-

ment (i.e., noise reduction) and the potential drawback

(i.e., signal reduction) given by the incorporation of the ML

model as a follow-up method in cWB offline searches of

GWs from CCSNe. Here, the classification model is tuned

with a dataset obtained from a given cWB analysis, and

then, used in a different cWB analysis. This allows us to

effectively quantify the improvement in FAR and FAP,

while also measuring the impact in the DE. In addition, to

assess the robustness to unknown GWs, the ML model is

tuned using all but one of families of GW signals, and then,

is tested with the remaining family.

Once the classification model is applied to a offline cWB

analysis, the following performance metrics are computed:

(i) noise reduction rate (TNR), and signal reduction rate

(FNR); ðiiÞ FAR and FAP before and after the application

for the ML model; ðiiiÞ DE before and after the application

for the ML model. Note that FAR, FAP, and DE “before”

TABLE II. Percentage of noise and signal reduction obtained by the three detector networks for each familiy of CCSNe GW

waveforms and for several distances of signal triggers. These results are dataset of noise and signal triggers extracted from the time

window TW1. For the two detector network there are missing results because it was not possible to train and test the classification model

since no signal triggers were obtained in the simulation analysis.

1 kpc 2.37 kpc 4.22 kpc 7.5 kpc 10 kpc All

Noise Signal Noise Signal Noise Signal Noise Signal Noise Signal Noise Signal

L1

Scheidegger et al. 2010 99.6 5.4 99.6 9.5 99.4 13.4 99.0 16.5 98.7 18.5 99.0 7.0

O’connor et al. 2018 97.0 20.9 93.4 35.7 91.9 39.0 90.9 39.3 91.5 39.0 97.5 24.3

Powell et al. 2019 99.4 16.2 98.4 18.5 96.7 22.1 93.7 29.6 92.5 34.5 99.5 15.8

Powell et al. 2020 98.8 8.2 97.5 12.8 96.7 16.5 95.8 20.3 95.5 22.4 97.9 10.4

Mezzacappa et al. 2020 99.2 18.1 97.2 23.7 94.0 35.8 93.5 39.5 93.0 39.1 98.9 20.8

All 97.6 16.1 96.7 23.0 95.3 25.7 93.4 29.7 93.8 32.2 97.5 16.6

H1

Scheidegger et al. 2010 99.0 4.3 98.9 9.1 98.8 12.6 98.5 15.2 98.2 16.5 98.6 6.4

O’connor et al. 2018 96.6 23.3 93.4 32.7 93.8 33.2 93.5 33.0 93.8 33.7 97.8 22.9

Powell et al. 2019 99.4 15.1 97.8 18.7 96.2 24.5 93.5 31.4 92.3 33.0 98.9 15.9

Powell et al. 2020 97.9 7.7 96.3 14.0 94.4 16.6 93.7 19.2 93.7 20.9 97.3 10.9

Mezzacappa et al. 2020 99.2 18.2 96.2 27.3 93.5 33.2 93.8 33.3 93.1 33.5 98.6 20.1

All 97.1 17.4 95.6 22.1 94.1 25.0 93.2 27.4 93.1 28.2 97.2 17.2

L1H1

Scheidegger et al. 2010 98.6 2.2 99.7 1.0 99.9 0.9 99.7 0.1 99.7 0.2 99.5 1.9

O’connor et al. 2018 98.7 1.3 … … … … … … … … 99.4 1.1

Powell et al. 2019 100.0 0.3 99.3 0.3 99.0 0.3 95.9 0.8 … … 99.8 0.1

Powell et al. 2020 99.8 0.1 99.3 1.5 98.5 3.2 98.7 5.0 98.2 7.0 99.4 1.9

Mezzacappa et al. 2020 100.0 0.4 99.3 0.5 … … … … … … 100.0 0.4

All 99.5 0.9 99.0 1.3 98.7 3.3 98.2 7.5 96.1 8.5 99.0 2.2
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refer to the original search results provided by cWB, while

FAR, FAP, and DE “after” refer to the results obtained with

cWB in combination with the ML model. As in the first

study, analyses were carried out separately with each

detector network (L1, H1, L1H1), signal triggers from

each distance and from all distances combined.

The results presented below are for the specific case of

training the ML model with triggers extracted from the

cWB analysis in the time window TW1, whereas the model

is applied to the cWB analysis carried out in the time

window TW2 using exclusively CCSNe GWs from Powell

et al. 2019. Firstly, Fig. 4 shows the distribution of noise

and signal events before and after the application of the ML

model. Noise events are significantly reduced with only a

small proportion remaining after classification, indeed,

noise reduction is 99.4%, 99.2%, and 100.0%, for L1,

H1 and L1H1, respectively. At the same time, most of the

signal events remains after the application of the classifier

since there is low signal reduction of 15.7%, 14.3%, and

0.3%, for L1, H1, and L1H1, respectively. This shows that

irrespective of the detector network, a high proportion of

the noise triggers are removed while a small proportion

of signal triggers are lost. In addition, the higher noise

reduction and the lower signal lost were obtained with the

two detector network.

Secondly, Fig. 5 shows the FAR versus ρ (or SNR for

the case of single interferometer), and the FAP versus FAR

before and after the application of the classifier. These

are crucial results to determine the actual improvement

produced by the incorporation of the classifier as a fol-

low-up method. On the one hand, Fig. 5(a) shows a clear

FAR reduction, especially in low values of ρ. For the specific

operating point of the cWB search (i.e., network ρ ¼ 5),

the FAR before the ML model is 2.97 × 10−2 Hz,

2.53 × 10−2 Hz, and 9.76 × 10−6 Hz for L1, H1, and

L1H1, respectively (red dots in the lower plots of Fig. 5),

while after the ML model, it is reduced to 1.78 × 10−4 Hz,

1.95 × 10−4 Hz, and 9.58 × 10−9 Hz for L1, H1, and L1H1,

respectively (green dots in the lower plots of Fig. 5). This

indicates that the FAR is effectively lowered in a factor of up

to ∼170, ∼130, and ∼1019. On the other hand, Fig. 5(b)

shows the false alarm probability before and after for on-

source windows of 1s (representing a potential neutrino

driven search) and of 1 day (representing a optically targeted

search). For the single detector network, the FAP improve-

ment is about 1.5σ in the case of a on-source window of 1s,

while no improvement was achieved in the case of a on-

source window of 1 day. In contrast, with the two detector

network there is FAP improvement is about 1σ. We stress

that these results represent the most difficult situation to tune

and to test the classification model since it involves signal

triggers of different distances, and because, the ML model

is recognizing unknown GW waveforms that were not

employed in the training.

(a) (b) (c)

FIG. 4. Distribution of noise and signal triggers before and after the application of the classification model with CCSNe GWs from

Powell et al. 2019. These results are for the cWB analysis in the timewindow TW2 for each detector network (a) L1, (b) H1, and (c) L1H1.

For each detector, the classification model was tuned with the corresponding dataset of noise and signal triggers extracted from time

window TW1 with signal triggers from all distances. Top panel shows the noise triggers while bottom panel shows the signal triggers.
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Figure 6 shows the DE versus distance before and after

the application of the classification model for the CCSNe

GW he3.5 from Powell et al. 2019 which enables to

quantify the actual impact of the classifier. There is a

minimum signal reduction for single detector network and

almost null effect for two detector network. Horizontal

lines allow to identify the distances with 90%, 50%, and

10% of efficiency. For L1 and H1, there is no effect in the
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FIG. 5. Results of the cWB background search in the time window TW2 before (red) and after (green) the application of the

classification model. Top panel shows the FAR versus the signal-to-noise ratio (ρ), and bottom panel shows the FAP versus FAR for the

two representative cases in the search of GWs from CCSNe (on-source of 1s resembling a neutrino-driven search, and a on-source of

1 day representing a optical-targeted search). These results are for each detector network, (a) L1, (b) H1, and (c) L1H1. For each detector

network, the classification model was trained with the corresponding dataset of triggers extracted from the time window of TW1 and

with signal triggers from all distances.
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FIG. 6. Results of the cWB simulation analysis for the time window TW2 before (red) and after (green) the application of the

classification model. These results are the detection efficiency (DE) versus distance for each detector network, (a) L1, (b) H1, and

(c) L1H1, obtained with the CCSNe GW he3.5 from Powell et al. 2019. The FAR before/after the classification model is

2.97 × 10−2=1.78 × 10−4, 2.53 × 10−2=1.95 × 10−4, and 9.76 × 10−6=9.58 × 10−9 for L1, H1, and L1H1, respectively. Again, for each

detector network the classification model was trained with the corresponding dataset of triggers extracted from the time window DC1

and with signal triggers from all distances.
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TABLE III. Percentage of noise and signal reduction obtained by the three detector networks and for several distances of signal

triggers. These results are for the time window TW2 and for each familiy of CCSNe GWwaveforms. The classification model is trained

from the dataset of noise and signal triggers obtained from the cWB analysis in the time window TW1. For the two detector network

there are missing results because it was not possible to train and test the classification model since no signal triggers were obtained in the

simulation analysis.

1 kpc 2.37 kpc 4.22 kpc 7.5 kpc 10 kpc All

Noise Signal Noise Signal Noise Signal Noise Signal Noise Signal Noise Signal

L1

Scheidegger et al. 2010 99.6 4.9 99.8 8.4 99.8 12.7 99.3 16.4 98.7 17.7 99.4 8.3

O’connor et al. 2018 96.8 19.7 93.3 31.7 92.0 35.7 91.7 35.3 91.0 35.2 97.4 17.8

Powell et al. 2019 99.3 15.3 98.3 18.8 97.1 21.7 93.6 28.1 91.9 33.1 99.4 15.7

Powell et al. 2020 98.8 8.7 97.3 12.5 95.4 15.4 94.5 19.2 93.9 21.2 97.7 11.2

Mezzacappa et al. 2020 99.2 16.9 96.8 21.9 94.2 32.3 93.9 36.3 93.2 36.0 99.1 16.8

H1

Scheidegger et al. 2010 99.6 4.8 99.4 8.2 99.3 11.9 99.1 15.9 99.1 16.8 99.3 8.0

O’connor et al. 2018 97.9 22.4 96.2 39.2 95.8 40.2 95.5 40.4 95.5 40.2 98.4 17.8

Powell et al. 2019 99.7 15.3 98.7 18.6 97.8 25.4 95.9 37.8 95.3 40.2 99.2 14.3

Powell et al. 2020 98.2 6.9 97.3 12.1 96.3 16.3 96.3 20.4 96.2 22.2 98.1 11.6

Mezzacappa et al. 2020 99.4 16.0 97.6 27.5 95.4 39.4 95.2 40.3 95.5 40.8 99.1 15.9

L1H1

Scheidegger et al. 2010 99.3 1.0 100.0 1.5 99.9 0.8 99.9 0.0 99.9 0.1 99.9 1.7

O’connor et al. 2018 99.4 0.8 … … … … … … … … 99.7 0.7

Powell et al. 2019 100.0 0.1 99.9 0.1 99.4 0.6 98.2 0.6 … … 100.0 0.3

Powell et al. 2020 99.8 0.1 99.2 0.5 98.3 2.8 98.4 6.0 98.1 5.9 99.6 1.9

Mezzacappa et al. 2020 100.0 0.2 99.7 0.3 … … … … … … 100.0 0.3

TABLE IV. Improvement factor in the FAR (i.e., FAR before/FAR after) achieved for the cWB analysis in the time window TW2. The

classification model is trained from the dataset of noise and signal triggers obtained from the cWB analysis in the time window TW1.

Missing values indicate that no classification model was tuned since no triggers were available.

1 kpc 2.37 kpc 4.22 kpc 7.5 kpc 10 kpc All

L1

Scheidegger et al. 2010 260.7 595.9 417.1 139.0 74.5 173.8

O’connor et al. 2018 30.9 14.8 12.6 12.1 11.1 38.6

Powell et al. 2019 149.0 57.9 34.5 15.7 12.4 166.8

Powell et al. 2020 80.2 37.2 22.0 18.1 16.4 43.9

Mezzacappa et al. 2020 122.7 31.4 17.1 16.4 14.7 115.9

H1

Scheidegger et al. 2010 242.7 173.4 140.0 107.1 117.5 134.8

O’connor et al. 2018 48.5 26.2 23.6 22.1 22.1 60.7

Powell et al. 2019 364.1 77.5 45.0 24.6 21.2 130.0

Powell et al. 2020 55.2 37.2 27.4 27.0 26.6 53.5

Mezzacappa et al. 2020 158.3 41.4 21.9 20.7 22.1 113.8

L1H1

Scheidegger et al. 2010 145.6 1019.0 1019.0 1019.0 1019.0 1019.0

O’connor et al. 2018 169.8 … … … … 339.7

Powell et al. 2019 1019.0 1019.0 169.8 56.6 … 1019.0

Powell et al. 2020 509.5 127.4 59.9 63.7 53.6 254.8

Mezzacappa et al. 2020 1019.0 339.7 … … … 1019.0
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distance with 10% of DE, while there is minimum

reduction in the distance for 90% and 50% DE. For

L1H1, no effect in the distances is observed. We conclude

that for single detector networks there is marginal impact in

the detection efficiency whereas there is no effect at all for

the two detector network.

For the cWB analysis in time window TW2, Table III

shows the noise and signal reduction whereas Table IV

shows FAR improvement factor. As in the previous

study, noise detection reduces and signal lost increases

for larger distances and varies across the families of

CCSNe GW. Also, the two detector network provides

the better performance with the higher noise reduction

rates and lower signal reduction rates. Equivalently, FAR

improvement factor is higher for lower distances, and

there are cases in which all noise triggers are completely

identified and therefore the FAR after the classification is

applied reaches its minimum value of the one over the

background time.

IV. CONCLUSIONS

This work investigated the use of supervised machine

learning methods to recognize between noise and signal

events using a set of reconstruction parameters from cWB.

This constitutes a follow-up method devised to recognize

and discard noise events while preserving signal events,

which is essential to reduce the FAR and to increase the

range of detection.

The proposed follow-up ML method to enhance cWB

searches was analyzed in two different studies. The first

aimed to ascertain the classification accuracy between noise

and signal events (i.e., noise and signal reduction rates),

while the second aimed to quantify the actual improvement

in the statistical significance (i.e., reduction in FAR and

FAP for the cases of on-source windows of 1 second

and 1 day which represent a potential neutrino flux and

optically targeted searches, respectively) and the impact in

the detection efficiency. The two studies considered differ-

ent conditions as the number of detectors in the network

(L1, H1, and L1H1); three stretches of open O3a train data,

diverse distances of signal events, various CCSNe GW

families with diverse characteristics, and three classifica-

tion algorithms. Overall, the results of these studies and

variety of conditions with the SVMR classifier showed

high noise reduction rates greater than 90% and 97% with

one and two detectors, respectively, and signal misclassi-

fication rates lower than 30% and 3% with one and two

detectors, respectively.

Importantly, in our analyses we quantified the impact

bring by the ML model in cWB offline searches. The

recognition and discharging of noise triggers from cWB

outputs reduces the FAR in a factor of ∼10 for one detector

(or even more for some families of GWs), and in a factor

of >100 for two detectors in the network. Notably, these

FAR reductions are equivalent to an improvement in the

statistical significance of ∼1.5σ with one detector and even

more with two detectors for the case of a on-source

windows of 1 second. For the case of optically targeted

searches with on-source windows of 1 day, on the other

hand, the FAR reduction yields to a > 1σ improvement

with a two detector network.

The variety of explored conditions allowed to study

several important aspects. First, comparing the classifi-

cation performance when tuning the ML model with a

single or with various families of CCSNe GW showed no

large differences in performance. This shows the robust-

ness of the ML approach with respect to different types of

CCSNe GW signatures, and points out that the morphol-

ogy of noise and signal triggers are effectively distin-

guishable irrespective of the GW signals used to train and

to test the classifier. This is noteworthy since in practice

the ML model must be tuned with a pool of synthetic GWs

obtained for example through numerical simulations (as is

done in this work), but its usage in a real situation implies

correctly identifying signal events generated by actual

GWs that will not exactly match GWs used to train the

model. Secondly, there are high noise reduction rates

with low signal reduction rates irrespective of the number

of detectors in the network, though the classification

performance is better with two detectors. This is simply

because with two detectors the algorithm is tuned with a

uniform distribution of noise triggers with low and

moderate SNR since high SNR noise triggers do not

survive coherence tests between detectors. Also, regarding

the different classification models, the results indicated a

consistent superior performance with the support vector

machine with radial basis function as kernel (SVMR).

This model provides nonlinear separation surfaces

allowing to account for nonlinearities in the feature space.

Despite other methods can also be used for this problem,

we recommend the use of SVMR since it has been proved

to be stable and robust.

With regard to the training of the classification model, it

is important to indicate that the training data in all analyses

was always balanced, hence, there is an equal probability

for each class (noise and signal). However, during the

training procedure of the classifiers there is the possibility

to assign more probability to one class. This would allow to

increase the noise reduction at the expense of the signal

reduction, or vice versa. This is an important aspect to

be able to trade off between statistical significance and

efficiency. It is also possible to train the classification

model using only a subset with loudest noise events, or

with a subset of signal events with certain characteristics

(duration, bandwidth, etc.). This can be used to bias the

follow-up ML model to prioritize specific aspects during

the search by recognizing better one specific type of noise

or signal event.

To sum up, this work presented a follow-up machine

learning method for cWB based searches of GWs from
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CCSNe which can be use with one or multiple detec-

tors. The method identifies and discharges nonastro-

physical noise transients allowing to reduce the false

alarm rate, to improve the statistical significance and to

increase the detection range of the searches. The model

is simply tuned with a set of noise and signal triggers

and then can be easily incorporated into the search

pipeline.
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APPENDIX: RESULTS WITH WHITE NOISE

SIGNALS

In this paper, we explore the performance of the ML

implementation to perform targeted searches for CCSNe

signal. One possible question is how well is the CCSNe

based tuning developed in this work performs on white noise

signals as those that have been considered in generic all sky

burst searches. In Fig. 7 we show, for each detector network,

the distributions of noise and WNB signal triggers before

and after the application of the classification. Note that the

distribution of noise triggers is highly reduced with one

detector and completely reduced with two detectors, while

the majority ofWNB signal triggers remain.We also tried, as

a test, to quantify how distinguishable are WNBs from cWB

noise events if someone would just do the tuning on WNB

signals. For that purpose in Fig. 8 we show the classification

results from the cross-validation analysis for each detector

network. Notice that The vast majority of noise triggers are

correctly identified (TNR greater than 98%with one detector

networks and of 100% for two detectors network) with a

low signal lost (FNR of 20% with one detector and only of

0.37% with two detectors). Altogether, these results show

that generic signals such as white noise bursts can be

effectively recognized and separated from noise.

(a) (b) (c)

FIG. 7. Distribution of noise and signal triggers before and after the application of the classification model with white noise burst

(WNB) type signals. These results are for the cWB analysis in the time window TW2 for each detector network (a) L1, (b) H1, and

(c) L1H1. Top panel shows the noise triggers while bottom panel shows the signal triggers.
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